text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
mask, masked_image_latents = self.prepare_mask_latents( mask_condition, masked_image, batch_size * num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator, self.do_classifier_free_guidance, ) if self.do_perturbed_attention_guidance: if self.do_classifier_free_guidance: mask, _ = mask.chunk(2) masked_image_latents, _ = masked_image_latents.chunk(2) mask = self._prepare_perturbed_attention_guidance(mask, mask, self.do_classifier_free_guidance) masked_image_latents = self._prepare_perturbed_attention_guidance( masked_image_latents, masked_image_latents, self.do_classifier_free_guidance )
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
# 8. Check that sizes of mask, masked image and latents match if num_channels_unet == 9: # default case for runwayml/stable-diffusion-inpainting num_channels_mask = mask.shape[1] num_channels_masked_image = masked_image_latents.shape[1] if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" " `pipeline.unet` or your `mask_image` or `image` input." )
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
elif num_channels_unet != 4: raise ValueError( f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." ) # 9 Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
# For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_perturbed_attention_guidance: prompt_embeds = self._prepare_perturbed_attention_guidance( prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance ) elif self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) if ip_adapter_image is not None or ip_adapter_image_embeds is not None: ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, )
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
for i, image_embeds in enumerate(ip_adapter_image_embeds): negative_image_embeds = None if self.do_classifier_free_guidance: negative_image_embeds, image_embeds = image_embeds.chunk(2) if self.do_perturbed_attention_guidance: image_embeds = self._prepare_perturbed_attention_guidance( image_embeds, negative_image_embeds, self.do_classifier_free_guidance ) elif self.do_classifier_free_guidance: image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) image_embeds = image_embeds.to(device) ip_adapter_image_embeds[i] = image_embeds # 9.1 Add image embeds for IP-Adapter added_cond_kwargs = ( {"image_embeds": ip_adapter_image_embeds} if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) else None )
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
# 9.2 Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) # 10. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
if self.do_perturbed_attention_guidance: original_attn_proc = self.unet.attn_processors self._set_pag_attn_processor( pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance, ) self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) if num_channels_unet == 9: latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
# predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if self.do_perturbed_attention_guidance: noise_pred = self._apply_perturbed_attention_guidance( noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t ) elif self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if num_channels_unet == 4: init_latents_proper = image_latents if self.do_perturbed_attention_guidance: init_mask, *_ = mask.chunk(3) if self.do_classifier_free_guidance else mask.chunk(2) else: init_mask, *_ = mask.chunk(2) if self.do_classifier_free_guidance else mask
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
if i < len(timesteps) - 1: noise_timestep = timesteps[i + 1] init_latents_proper = self.scheduler.add_noise( init_latents_proper, noise, torch.tensor([noise_timestep]) ) latents = (1 - init_mask) * init_latents_proper + init_mask * latents if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) mask = callback_outputs.pop("mask", mask) masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step()
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
if not output_type == "latent": condition_kwargs = {} if isinstance(self.vae, AsymmetricAutoencoderKL): init_image = init_image.to(device=device, dtype=masked_image_latents.dtype) init_image_condition = init_image.clone() init_image = self._encode_vae_image(init_image, generator=generator) mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype) condition_kwargs = {"image": init_image_condition, "mask": mask_condition} image = self.vae.decode( latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs )[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) if padding_mask_crop is not None: image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image] # Offload all models self.maybe_free_model_hooks() if self.do_perturbed_attention_guidance: self.unet.set_attn_processor(original_attn_proc) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
352
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
class SanaPAGPipeline(DiffusionPipeline, PAGMixin): r""" Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629). This pipeline supports the use of [Perturbed Attention Guidance (PAG)](https://huggingface.co/docs/diffusers/main/en/using-diffusers/pag). """ # fmt: off bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}") # fmt: on model_cpu_offload_seq = "text_encoder->transformer->vae" _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, tokenizer: AutoTokenizer, text_encoder: AutoModelForCausalLM, vae: AutoencoderDC, transformer: SanaTransformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, pag_applied_layers: Union[str, List[str]] = "transformer_blocks.0", ): super().__init__()
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler ) self.vae_scale_factor = ( 2 ** (len(self.vae.config.encoder_block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 ) self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) self.set_pag_applied_layers( pag_applied_layers, pag_attn_processors=(PAGCFGSanaLinearAttnProcessor2_0(), PAGIdentitySanaLinearAttnProcessor2_0()), ) def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing()
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling()
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
def encode_prompt( self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool = True, negative_prompt: str = "", num_images_per_prompt: int = 1, device: Optional[torch.device] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, clean_caption: bool = False, max_sequence_length: int = 300, complex_human_instruction: Optional[List[str]] = None, ): r""" Encodes the prompt into text encoder hidden states.
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For PixArt-Alpha, this should be "". do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*):
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string. clean_caption (`bool`, defaults to `False`): If `True`, the function will preprocess and clean the provided caption before encoding. max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt. complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`): If `complex_human_instruction` is not empty, the function will use the complex Human instruction for the prompt. """
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] self.tokenizer.padding_side = "right" # See Section 3.1. of the paper. max_length = max_sequence_length select_index = [0] + list(range(-max_length + 1, 0)) if prompt_embeds is None: prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# prepare complex human instruction if not complex_human_instruction: max_length_all = max_length else: chi_prompt = "\n".join(complex_human_instruction) prompt = [chi_prompt + p for p in prompt] num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt)) max_length_all = num_chi_prompt_tokens + max_length - 2 text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length_all, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_attention_mask = text_inputs.attention_mask prompt_attention_mask = prompt_attention_mask.to(device)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) prompt_embeds = prompt_embeds[0][:, select_index] prompt_attention_mask = prompt_attention_mask[:, select_index] if self.transformer is not None: dtype = self.transformer.dtype elif self.text_encoder is not None: dtype = self.text_encoder.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) negative_prompt_attention_mask = uncond_input.attention_mask negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) else: negative_prompt_embeds = None negative_prompt_attention_mask = None return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1]
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.check_inputs def check_inputs( self, prompt, height, width, callback_on_step_end_tensor_inputs=None, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, ): if height % 32 != 0 or width % 32 != 0: raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: raise ValueError( "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" f" {negative_prompt_attention_mask.shape}." )
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._text_preprocessing def _text_preprocessing(self, text, clean_caption=False): if clean_caption and not is_bs4_available(): logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if clean_caption and not is_ftfy_available(): logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if not isinstance(text, (tuple, list)): text = [text] def process(text: str): if clean_caption: text = self._clean_caption(text) text = self._clean_caption(text) else: text = text.lower().strip() return text return [process(t) for t in text]
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._clean_caption def _clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("<person>", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @<nickname> caption = re.sub(r"@[\w\d]+\b", "", caption)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) #######################################################
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # &quot; caption = re.sub(r"&quot;?", "", caption) # &amp caption = re.sub(r"&amp", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = ftfy.fix_text(caption) caption = html.unescape(html.unescape(caption))
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip()
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): if latents is not None: return latents.to(device=device, dtype=dtype)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) return latents @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1.0 @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, negative_prompt: str = "", num_inference_steps: int = 20, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: float = 4.5, num_images_per_prompt: Optional[int] = 1, height: int = 1024, width: int = 1024, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, clean_caption: bool = False, use_resolution_binning: bool = True,
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 300, complex_human_instruction: List[str] = [ "Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:", "- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.", "- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.", "Here are examples of how to transform or refine prompts:", "- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
"- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.", "Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:", "User Prompt: ", ], pag_scale: float = 3.0, pag_adaptive_scale: float = 0.0, ) -> Union[ImagePipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation.
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_inference_steps (`int`, *optional*, defaults to 20): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 4.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. height (`int`, *optional*, defaults to self.unet.config.sample_size): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size): The width in pixels of the generated image. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic.
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for negative text embeddings. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. clean_caption (`bool`, *optional*, defaults to `True`): Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt.
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
use_resolution_binning (`bool` defaults to `True`): If set to `True`, the requested height and width are first mapped to the closest resolutions using `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to the requested resolution. Useful for generating non-square images. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*):
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to 300): Maximum sequence length to use with the `prompt`. complex_human_instruction (`List[str]`, *optional*): Instructions for complex human attention: https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55. pag_scale (`float`, *optional*, defaults to 3.0): The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention guidance will not be used. pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is used.
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
if use_resolution_binning: if self.transformer.config.sample_size == 128: aspect_ratio_bin = ASPECT_RATIO_4096_BIN elif self.transformer.config.sample_size == 64: aspect_ratio_bin = ASPECT_RATIO_2048_BIN elif self.transformer.config.sample_size == 32: aspect_ratio_bin = ASPECT_RATIO_1024_BIN elif self.transformer.config.sample_size == 16: aspect_ratio_bin = ASPECT_RATIO_512_BIN else: raise ValueError("Invalid sample size") orig_height, orig_width = height, width height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
self.check_inputs( prompt, height, width, callback_on_step_end_tensor_inputs, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) self._pag_scale = pag_scale self._pag_adaptive_scale = pag_adaptive_scale self._guidance_scale = guidance_scale self._interrupt = False # 2. Default height and width to transformer if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# 3. Encode input prompt ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt, self.do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, max_sequence_length=max_sequence_length, complex_human_instruction=complex_human_instruction, )
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
if self.do_perturbed_attention_guidance: prompt_embeds = self._prepare_perturbed_attention_guidance( prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance ) prompt_attention_mask = self._prepare_perturbed_attention_guidance( prompt_attention_mask, negative_prompt_attention_mask, self.do_classifier_free_guidance ) elif self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas )
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, height, width, torch.float32, device, generator, latents, ) if self.do_perturbed_attention_guidance: original_attn_proc = self.transformer.attn_processors self._set_pag_attn_processor( pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance, perturbed-attention guidance, or both latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) latent_model_input = latent_model_input.to(prompt_embeds.dtype) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# predict noise model_output noise_pred = self.transformer( latent_model_input, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, timestep=timestep, return_dict=False, )[0] noise_pred = noise_pred.float() # perform guidance if self.do_perturbed_attention_guidance: noise_pred = self._apply_perturbed_attention_guidance( noise_pred, self.do_classifier_free_guidance, guidance_scale, t ) elif self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
# compute previous image: x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update()
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": image = latents else: latents = latents.to(self.vae.dtype) try: image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] except torch.cuda.OutOfMemoryError as e: warnings.warn( f"{e}. \n" f"Try to use VAE tiling for large images. For example: \n" f"pipe.vae.enable_tiling(tile_sample_min_width=512, tile_sample_min_height=512)" ) if use_resolution_binning: image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height) if not output_type == "latent": image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks()
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
if self.do_perturbed_attention_guidance: self.transformer.set_attn_processor(original_attn_proc) if not return_dict: return (image,) return ImagePipelineOutput(images=image)
353
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sana.py
class StableDiffusionPAGImg2ImgPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin, PAGMixin, ): r""" Pipeline for text-guided image-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful.
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] _exclude_from_cpu_offload = ["safety_checker"] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection = None, requires_safety_checker: bool = True, pag_applied_layers: Union[str, List[str]] = "mid", # ["mid"], ["down.block_1", "up.block_0.attentions_0"] ): super().__init__()
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config)
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config)
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." )
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config)
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) self.set_pag_applied_layers(pag_applied_layers)
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
# dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer.
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
" the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
# textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): image_embeds = [] if do_classifier_free_guidance: negative_image_embeds = [] if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." )
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) image_embeds.append(single_image_embeds[None, :]) if do_classifier_free_guidance: negative_image_embeds.append(single_negative_image_embeds[None, :]) else: for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) negative_image_embeds.append(single_negative_image_embeds) image_embeds.append(single_image_embeds)
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
ip_adapter_image_embeds = [] for i, single_image_embeds in enumerate(image_embeds): single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) single_image_embeds = single_image_embeds.to(device=device) ip_adapter_image_embeds.append(single_image_embeds) return ip_adapter_image_embeds
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
def check_inputs( self, prompt, strength, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." )
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." ) if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" )
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] if hasattr(self.scheduler, "set_begin_index"): self.scheduler.set_begin_index(t_start * self.scheduler.order) return timesteps, num_inference_steps - t_start
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: init_latents = image
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py
else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} " )
354
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_img2img.py