text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
Args: transformer ([`SD3Transformer2DModel`]): Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModelWithProjection`]): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant, with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size` as its dimension. text_encoder_2 ([`CLIPTextModelWithProjection`]):
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically the [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) variant. text_encoder_3 ([`T5EncoderModel`]): Frozen text-encoder. Stable Diffusion 3 uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_2 (`CLIPTokenizer`): Second Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_3 (`T5TokenizerFast`):
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). """
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae" _optional_components = [] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"] def __init__( self, transformer: SD3Transformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_encoder_2: CLIPTextModelWithProjection, tokenizer_2: CLIPTokenizer, text_encoder_3: T5EncoderModel, tokenizer_3: T5TokenizerFast, pag_applied_layers: Union[str, List[str]] = "blocks.1", # 1st transformer block ): super().__init__()
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, tokenizer=tokenizer, tokenizer_2=tokenizer_2, tokenizer_3=tokenizer_3, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.tokenizer_max_length = ( self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 ) self.default_sample_size = ( self.transformer.config.sample_size if hasattr(self, "transformer") and self.transformer is not None else 128 ) self.patch_size = (
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2 )
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
self.set_pag_applied_layers( pag_applied_layers, pag_attn_processors=(PAGCFGJointAttnProcessor2_0(), PAGJointAttnProcessor2_0()) ) # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, max_sequence_length: int = 256, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt)
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
if self.text_encoder_3 is None: return torch.zeros( ( batch_size * num_images_per_prompt, self.tokenizer_max_length, self.transformer.config.joint_attention_dim, ), device=device, dtype=dtype, ) text_inputs = self.tokenizer_3( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] dtype = self.text_encoder_3.dtype prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) _, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds def _get_clip_prompt_embeds( self, prompt: Union[str, List[str]], num_images_per_prompt: int = 1, device: Optional[torch.device] = None, clip_skip: Optional[int] = None, clip_model_index: int = 0, ): device = device or self._execution_device clip_tokenizers = [self.tokenizer, self.tokenizer_2] clip_text_encoders = [self.text_encoder, self.text_encoder_2] tokenizer = clip_tokenizers[clip_model_index] text_encoder = clip_text_encoders[clip_model_index] prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = tokenizer( prompt, padding="max_length", max_length=self.tokenizer_max_length, truncation=True, return_tensors="pt", )
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer_max_length} tokens: {removed_text}" ) prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) pooled_prompt_embeds = prompt_embeds[0] if clip_skip is None: prompt_embeds = prompt_embeds.hidden_states[-2] else: prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
_, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) return prompt_embeds, pooled_prompt_embeds
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], prompt_3: Union[str, List[str]], device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, negative_prompt_3: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, clip_skip: Optional[int] = None, max_sequence_length: int = 256, lora_scale: Optional[float] = None, ):
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
r"""
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in all text-encoders prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is used in all text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. negative_prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. clip_skip (`int`, *optional*):
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ device = device or self._execution_device
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
# set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 prompt_3 = prompt_3 or prompt prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=0, ) prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds( prompt=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=1, ) clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) t5_prompt_embed = self._get_t5_prompt_embeds( prompt=prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, )
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
clip_prompt_embeds = torch.nn.functional.pad( clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]) ) prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt_2 = negative_prompt_2 or negative_prompt negative_prompt_3 = negative_prompt_3 or negative_prompt
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
# normalize str to list negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt negative_prompt_2 = ( batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 ) negative_prompt_3 = ( batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 )
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." )
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds( negative_prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=0, ) negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds( negative_prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=1, ) negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1) t5_negative_prompt_embed = self._get_t5_prompt_embeds( prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, )
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
negative_clip_prompt_embeds = torch.nn.functional.pad( negative_clip_prompt_embeds, (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]), ) negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) negative_pooled_prompt_embeds = torch.cat( [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1 ) if self.text_encoder is not None: if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale)
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.check_inputs def check_inputs( self, prompt, prompt_2, prompt_3, height, width, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None, ): if ( height % (self.vae_scale_factor * self.patch_size) != 0 or width % (self.vae_scale_factor * self.patch_size) != 0 ): raise ValueError( f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}." )
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_3 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError(
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)): raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_2 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_3 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." )
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) if max_sequence_length is not None and max_sequence_length > 512: raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): if latents is not None: return latents.to(device=device, dtype=dtype)
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) return latents @property def guidance_scale(self): return self._guidance_scale @property def clip_skip(self): return self._clip_skip
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def joint_attention_kwargs(self): return self._joint_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, prompt_3: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, sigmas: Optional[List[float]] = None, guidance_scale: float = 7.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, negative_prompt_3: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None,
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 256, pag_scale: float = 3.0, pag_adaptive_scale: float = 0.0, ): r""" Function invoked when calling the pipeline for generation.
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is will be used instead prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is will be used instead height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for the best results. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
The width in pixels of the generated image. This is set to 1024 by default for the best results. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 7.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used instead negative_prompt_3 (`str` or `List[str]`, *optional*):
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `negative_prompt` is used instead num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*):
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*):
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. pag_scale (`float`, *optional*, defaults to 3.0):
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention guidance will not be used. pag_adaptive_scale (`float`, *optional*, defaults to 0.0): The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is used.
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
Examples: Returns: [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
# 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, prompt_3, height, width, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._clip_skip = clip_skip self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False self._pag_scale = pag_scale self._pag_adaptive_scale = pag_adaptive_scale #
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
# 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
lora_scale = ( self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_3=prompt_3, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, do_classifier_free_guidance=self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, clip_skip=self.clip_skip, num_images_per_prompt=num_images_per_prompt,
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
max_sequence_length=max_sequence_length, lora_scale=lora_scale, )
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
if self.do_perturbed_attention_guidance: prompt_embeds = self._prepare_perturbed_attention_guidance( prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance ) pooled_prompt_embeds = self._prepare_perturbed_attention_guidance( pooled_prompt_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance ) elif self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas) num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps)
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
# 5. Prepare latent variables num_channels_latents = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) if self.do_perturbed_attention_guidance: original_attn_proc = self.transformer.attn_processors self._set_pag_attn_processor( pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance, ) # 6. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
# expand the latents if we are doing classifier free guidance, perturbed-attention guidance, or both latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]) noise_pred = self.transformer( hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0]
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
# perform guidance if self.do_perturbed_attention_guidance: noise_pred = self._apply_perturbed_attention_guidance( noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t ) elif self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) negative_pooled_prompt_embeds = callback_outputs.pop( "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds ) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": image = latents else: latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if self.do_perturbed_attention_guidance: self.transformer.set_attn_processor(original_attn_proc) if not return_dict: return (image,) return StableDiffusion3PipelineOutput(images=image)
345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py
class StableDiffusionPAGPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin, PAGMixin, ): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful.
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] _exclude_from_cpu_offload = ["safety_checker"] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection = None, requires_safety_checker: bool = True, pag_applied_layers: Union[str, List[str]] = "mid", ): super().__init__()
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config)
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config)
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." )
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config)
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) self.set_pag_applied_layers(pag_applied_layers)
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer.
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
" the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): image_embeds = [] if do_classifier_free_guidance: negative_image_embeds = [] if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." )
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) image_embeds.append(single_image_embeds[None, :]) if do_classifier_free_guidance: negative_image_embeds.append(single_negative_image_embeds[None, :]) else: for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) negative_image_embeds.append(single_negative_image_embeds) image_embeds.append(single_image_embeds)
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
ip_adapter_image_embeds = [] for i, single_image_embeds in enumerate(image_embeds): single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) single_image_embeds = single_image_embeds.to(device=device) ip_adapter_image_embeds.append(single_image_embeds) return ip_adapter_image_embeds
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." )
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" )
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device)
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 ) -> torch.Tensor: """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
Args: w (`torch.Tensor`): Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. embedding_dim (`int`, *optional*, defaults to 512): Dimension of the embeddings to generate. dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): Data type of the generated embeddings. Returns: `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. """ assert len(w.shape) == 1 w = w * 1000.0
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @property def guidance_scale(self): return self._guidance_scale @property def guidance_rescale(self): return self._guidance_rescale @property def clip_skip(self): return self._clip_skip
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt
346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pag/pipeline_pag_sd.py