text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of `stabilityai/stable-diffusion-xl-base-1-0`. add_watermarker (`bool`, *optional*): Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to watermark output images. If not defined, it will default to True if the package is installed, otherwise no watermarker will be used. is_cosxl_edit (`bool`, *optional*): When set the image latents are scaled. """
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, force_zeros_for_empty_prompt: bool = True, add_watermarker: Optional[bool] = None, is_cosxl_edit: Optional[bool] = False, ): super().__init__()
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, scheduler=scheduler, ) self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.default_sample_size = ( self.unet.config.sample_size if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size") else 128 ) self.is_cosxl_edit = is_cosxl_edit add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
if add_watermarker: self.watermark = StableDiffusionXLWatermarker() else: self.watermark = None def encode_prompt( self, prompt: str, prompt_2: Optional[str] = None, device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[str] = None, negative_prompt_2: Optional[str] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, ): r""" Encodes the prompt into text encoder hidden states.
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*):
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ device = device or self._execution_device
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) else: scale_lora_layers(self.text_encoder_2, lora_scale)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # Define tokenizers and text encoders tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] text_encoders = ( [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] ) if prompt_embeds is None: prompt_2 = prompt_2 or prompt # textual inversion: process multi-vector tokens if necessary prompt_embeds_list = [] prompts = [prompt, prompt_2] for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, tokenizer)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {tokenizer.model_max_length} tokens: {removed_text}" )
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
prompt_embeds = text_encoder( text_input_ids.to(device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2: pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.hidden_states[-2] prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# get unconditional embeddings for classifier free guidance zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) elif do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt_2 = negative_prompt_2 or negative_prompt
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
uncond_tokens: List[str] if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt, negative_prompt_2] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = [negative_prompt, negative_prompt_2]
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
negative_prompt_embeds_list = [] for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) max_length = prompt_embeds.shape[1] uncond_input = tokenizer( negative_prompt, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", )
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
negative_prompt_embeds = text_encoder( uncond_input.input_ids.to(device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2: negative_pooled_prompt_embeds = negative_prompt_embeds[0] negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] negative_prompt_embeds_list.append(negative_prompt_embeds) negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
prompt_embeds_dtype = self.text_encoder_2.dtype if self.text_encoder_2 is not None else self.unet.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) if do_classifier_free_guidance: negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1]
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." )
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." )
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def prepare_image_latents( self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None ): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: image_latents = image else: # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: image = image.float() self.upcast_vae()
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
image_latents = retrieve_latents(self.vae.encode(image), sample_mode="argmax") # cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: # expand image_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = batch_size // image_latents.shape[0] image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
raise ValueError( f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." ) else: image_latents = torch.cat([image_latents], dim=0)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
if do_classifier_free_guidance: uncond_image_latents = torch.zeros_like(image_latents) image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0) if image_latents.dtype != self.vae.dtype: image_latents = image_latents.to(dtype=self.vae.dtype) if self.is_cosxl_edit: image_latents = image_latents * self.vae.config.scaling_factor return image_latents # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids def _get_add_time_ids( self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None ): add_time_ids = list(original_size + crops_coords_top_left + target_size)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
passed_add_embed_dim = ( self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim ) expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features if expected_add_embed_dim != passed_add_embed_dim: raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) return add_time_ids
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): dtype = self.vae.dtype self.vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( self.vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: self.vae.post_quant_conv.to(dtype) self.vae.decoder.conv_in.to(dtype) self.vae.decoder.mid_block.to(dtype)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, image: PipelineImageInput = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 100, denoising_end: Optional[float] = None, guidance_scale: float = 5.0, image_guidance_scale: float = 1.5, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None,
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, original_size: Tuple[int, int] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Tuple[int, int] = None, ): r""" Function invoked when calling the pipeline for generation.
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders image (`torch.Tensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`): The image(s) to modify with the pipeline. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image.
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. denoising_end (`float`, *optional*): When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. image_guidance_scale (`float`, *optional*, defaults to 1.5): Image guidance scale is to push the generated image towards the initial image `image`. Image guidance scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages to generate images that are closely linked to the source image `image`, usually at the expense of lower
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
image quality. This pipeline requires a value of at least `1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
[`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`):
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*):
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.0): Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): For most cases, `target_size` should be set to the desired height and width of the generated image. If
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). aesthetic_score (`float`, *optional*, defaults to 6.0): Used to simulate an aesthetic score of the generated image by influencing the positive text condition. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). negative_aesthetic_score (`float`, *optional*, defaults to 2.5): Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to simulate an aesthetic score of the generated image by influencing the negative text condition.
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
Examples: Returns: [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ # 0. Default height and width to unet height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor original_size = original_size or (height, width) target_size = target_size or (height, width) # 1. Check inputs. Raise error if not correct self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) if image is None: raise ValueError("`image` input cannot be undefined.")
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, )
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# 4. Preprocess image image = self.image_processor.preprocess(image, height=height, width=width).to(device) # 5. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 6. Prepare Image latents image_latents = self.prepare_image_latents( image, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, do_classifier_free_guidance, ) # 7. Prepare latent variables num_channels_latents = self.vae.config.latent_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, )
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# 8. Check that shapes of latents and image match the UNet channels num_channels_image = image_latents.shape[1] if num_channels_latents + num_channels_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_image`: {num_channels_image} " f" = {num_channels_latents + num_channels_image}. Please verify the config of" " `pipeline.unet` or your `image` input." ) # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# 10. Prepare added time ids & embeddings add_text_embeds = pooled_prompt_embeds if self.text_encoder_2 is None: text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) else: text_encoder_projection_dim = self.text_encoder_2.config.projection_dim add_time_ids = self._get_add_time_ids( original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, )
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
if do_classifier_free_guidance: # The extra concat similar to how it's done in SD InstructPix2Pix. prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], dim=0) add_text_embeds = torch.cat( [add_text_embeds, negative_pooled_prompt_embeds, negative_pooled_prompt_embeds], dim=0 ) add_time_ids = torch.cat([add_time_ids, add_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# 11. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1: discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps - (denoising_end * self.scheduler.config.num_train_timesteps) ) ) num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) timesteps = timesteps[:num_inference_steps]
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Expand the latents if we are doing classifier free guidance. # The latents are expanded 3 times because for pix2pix the guidance # is applied for both the text and the input image. latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents # concat latents, image_latents in the channel dimension scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# predict the noise residual added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} noise_pred = self.unet( scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3) noise_pred = ( noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_image) + image_guidance_scale * (noise_pred_image - noise_pred_uncond) )
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
if do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
if needs_upcasting: self.upcast_vae() latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 self.vae = self.vae.to(latents.dtype)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# unscale/denormalize the latents # denormalize with the mean and std if available and not None has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None if has_latents_mean and has_latents_std: latents_mean = ( torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) ) latents_std = ( torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) ) latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean else: latents = latents / self.vae.config.scaling_factor image = self.vae.decode(latents, return_dict=False)[0]
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
# cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16) else: return StableDiffusionXLPipelineOutput(images=latents) # apply watermark if available if self.watermark is not None: image = self.watermark.apply_watermark(image) image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return StableDiffusionXLPipelineOutput(images=image)
327
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
class HunyuanDiTPipeline(DiffusionPipeline): r""" Pipeline for English/Chinese-to-image generation using HunyuanDiT. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by ourselves)
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use `sdxl-vae-fp16-fix`. text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). HunyuanDiT uses a fine-tuned [bilingual CLIP]. tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]): A `BertTokenizer` or `CLIPTokenizer` to tokenize text. transformer ([`HunyuanDiT2DModel`]): The HunyuanDiT model designed by Tencent Hunyuan. text_encoder_2 (`T5EncoderModel`): The mT5 embedder. Specifically, it is 't5-v1_1-xxl'. tokenizer_2 (`MT5Tokenizer`): The tokenizer for the mT5 embedder. scheduler ([`DDPMScheduler`]):
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents. """
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" _optional_components = [ "safety_checker", "feature_extractor", "text_encoder_2", "tokenizer_2", "text_encoder", "tokenizer", ] _exclude_from_cpu_offload = ["safety_checker"] _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", "prompt_embeds_2", "negative_prompt_embeds_2", ] def __init__( self, vae: AutoencoderKL, text_encoder: BertModel, tokenizer: BertTokenizer, transformer: HunyuanDiT2DModel, scheduler: DDPMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, text_encoder_2=T5EncoderModel, tokenizer_2=MT5Tokenizer, ): super().__init__()
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, text_encoder_2=text_encoder_2, )
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) self.default_sample_size = ( self.transformer.config.sample_size if hasattr(self, "transformer") and self.transformer is not None else 128 )
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
def encode_prompt( self, prompt: str, device: torch.device = None, dtype: torch.dtype = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[str] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, max_sequence_length: Optional[int] = None, text_encoder_index: int = 0, ): r""" Encodes the prompt into text encoder hidden states.
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device dtype (`torch.dtype`): torch dtype num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask for the prompt. Required when `prompt_embeds` is passed directly. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt. text_encoder_index (`int`, *optional*): Index of the text encoder to use. `0` for clip and `1` for T5. """ if dtype is None:
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
if self.text_encoder_2 is not None: dtype = self.text_encoder_2.dtype elif self.transformer is not None: dtype = self.transformer.dtype else: dtype = None
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
if device is None: device = self._execution_device tokenizers = [self.tokenizer, self.tokenizer_2] text_encoders = [self.text_encoder, self.text_encoder_2] tokenizer = tokenizers[text_encoder_index] text_encoder = text_encoders[text_encoder_index] if max_sequence_length is None: if text_encoder_index == 0: max_length = 77 if text_encoder_index == 1: max_length = 256 else: max_length = max_sequence_length if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
if prompt_embeds is None: text_inputs = tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {tokenizer.model_max_length} tokens: {removed_text}" )
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
prompt_attention_mask = text_inputs.attention_mask.to(device) prompt_embeds = text_encoder( text_input_ids.to(device), attention_mask=prompt_attention_mask, ) prompt_embeds = prompt_embeds[0] prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
" the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
max_length = prompt_embeds.shape[1] uncond_input = tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) negative_prompt_attention_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds = text_encoder( uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
def check_inputs( self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, prompt_embeds_2=None, negative_prompt_embeds_2=None, prompt_attention_mask_2=None, negative_prompt_attention_mask_2=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is None and prompt_embeds_2 is None: raise ValueError( "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") if prompt_embeds_2 is not None and prompt_attention_mask_2 is None: raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None: raise ValueError( "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None: if prompt_embeds_2.shape != negative_prompt_embeds_2.shape: raise ValueError( "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`" f" {negative_prompt_embeds_2.shape}." )
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device)
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
# scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @property def guidance_scale(self): return self._guidance_scale @property def guidance_rescale(self): return self._guidance_rescale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_2: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_2: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, prompt_attention_mask_2: Optional[torch.Tensor] = None,
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
negative_prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask_2: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], guidance_rescale: float = 0.0, original_size: Optional[Tuple[int, int]] = (1024, 1024), target_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), use_resolution_binning: bool = True, ): r""" The call function to the pipeline for generation with HunyuanDiT.
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`): The height in pixels of the generated image. width (`int`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*):
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.Tensor`, *optional*):
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. prompt_embeds_2 (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. negative_prompt_embeds_2 (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask for the prompt. Required when `prompt_embeds` is passed directly. prompt_attention_mask_2 (`torch.Tensor`, *optional*): Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*): Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`.
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A callback function or a list of callback functions to be called at the end of each denoising step. callback_on_step_end_tensor_inputs (`List[str]`, *optional*): A list of tensor inputs that should be passed to the callback function. If not defined, all tensor inputs will be passed. guidance_rescale (`float`, *optional*, defaults to 0.0): Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`): The original size of the image. Used to calculate the time ids. target_size (`Tuple[int, int]`, *optional*): The target size of the image. Used to calculate the time ids. crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`): The top left coordinates of the crop. Used to calculate the time ids. use_resolution_binning (`bool`, *optional*, defaults to `True`): Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960, 768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 0. default height and width height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor height = int((height // 16) * 16) width = int((width // 16) * 16)
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE: width, height = map_to_standard_shapes(width, height) height = int(height) width = int(width) logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}") # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._interrupt = False
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
# 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
( prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) = self.encode_prompt( prompt=prompt, device=device, dtype=self.transformer.dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, max_sequence_length=77, text_encoder_index=0, ) ( prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2, ) = self.encode_prompt( prompt=prompt, device=device,
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
dtype=self.transformer.dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds_2, negative_prompt_embeds=negative_prompt_embeds_2, prompt_attention_mask=prompt_attention_mask_2, negative_prompt_attention_mask=negative_prompt_attention_mask_2, max_sequence_length=256, text_encoder_index=1, )
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
# 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
# 7 create image_rotary_emb, style embedding & time ids grid_height = height // 8 // self.transformer.config.patch_size grid_width = width // 8 // self.transformer.config.patch_size base_size = 512 // 8 // self.transformer.config.patch_size grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size) image_rotary_emb = get_2d_rotary_pos_embed( self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width), device=device, output_type="pt", ) style = torch.tensor([0], device=device) target_size = target_size or (height, width) add_time_ids = list(original_size + target_size + crops_coords_top_left) add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2]) add_time_ids = torch.cat([add_time_ids] * 2, dim=0) style = torch.cat([style] * 2, dim=0)
328
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py