text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
negative_clip_prompt_embeds = torch.nn.functional.pad(
negative_clip_prompt_embeds,
(0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
)
negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
negative_pooled_prompt_embeds = torch.cat(
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
)
if self.text_encoder is not None:
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None:
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder_2, lora_scale) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
def check_inputs(
self,
prompt,
prompt_2,
prompt_3,
height,
width,
strength,
negative_prompt=None,
negative_prompt_2=None,
negative_prompt_3=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=None,
):
if (
height % (self.vae_scale_factor * self.patch_size) != 0
or width % (self.vae_scale_factor * self.patch_size) != 0
):
raise ValueError(
f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_3 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError( | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}") | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
if max_sequence_length is not None and max_sequence_length > 512:
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(num_inference_steps * strength, num_inference_steps) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
t_start = int(max(num_inference_steps - init_timestep, 0))
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if image.shape[1] == self.vae.config.latent_channels:
init_latents = image | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
else:
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
elif isinstance(generator, list):
init_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
init_latents = (init_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.scale_noise(init_latents, timestep, noise)
latents = init_latents.to(device=device, dtype=dtype)
return latents
@property
def guidance_scale(self):
return self._guidance_scale | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
@property
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_image
def encode_image(self, image: PipelineImageInput, device: torch.device) -> torch.Tensor:
"""Encodes the given image into a feature representation using a pre-trained image encoder. | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
Args:
image (`PipelineImageInput`):
Input image to be encoded.
device: (`torch.device`):
Torch device.
Returns:
`torch.Tensor`: The encoded image feature representation.
"""
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=self.dtype)
return self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_ip_adapter_image_embeds
def prepare_ip_adapter_image_embeds(
self,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
) -> torch.Tensor:
"""Prepares image embeddings for use in the IP-Adapter.
Either `ip_adapter_image` or `ip_adapter_image_embeds` must be passed. | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
Args:
ip_adapter_image (`PipelineImageInput`, *optional*):
The input image to extract features from for IP-Adapter.
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
Precomputed image embeddings.
device: (`torch.device`, *optional*):
Torch device.
num_images_per_prompt (`int`, defaults to 1):
Number of images that should be generated per prompt.
do_classifier_free_guidance (`bool`, defaults to True):
Whether to use classifier free guidance or not.
"""
device = device or self._execution_device | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
if ip_adapter_image_embeds is not None:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = ip_adapter_image_embeds.chunk(2)
else:
single_image_embeds = ip_adapter_image_embeds
elif ip_adapter_image is not None:
single_image_embeds = self.encode_image(ip_adapter_image, device)
if do_classifier_free_guidance:
single_negative_image_embeds = torch.zeros_like(single_image_embeds)
else:
raise ValueError("Neither `ip_adapter_image_embeds` or `ip_adapter_image_embeds` were provided.")
image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
negative_image_embeds = torch.cat([single_negative_image_embeds] * num_images_per_prompt, dim=0)
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
return image_embeds.to(device=device) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self, *args, **kwargs):
if self.image_encoder is not None and "image_encoder" not in self._exclude_from_cpu_offload:
logger.warning(
"`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses "
"`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling "
"`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`."
)
super().enable_sequential_cpu_offload(*args, **kwargs) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
prompt_3: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
image: PipelineImageInput = None,
strength: float = 0.6,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 7.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
negative_prompt_3: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None, | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 256,
mu: Optional[float] = None,
):
r"""
Function invoked when calling the pipeline for generation. | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead
prompt_3 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
will be used instead
height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor): | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used instead
negative_prompt_3 (`str` or `List[str]`, *optional*): | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
`text_encoder_3`. If not defined, `negative_prompt` is used instead
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*): | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
ip_adapter_image (`PipelineImageInput`, *optional*):
Optional image input to work with IP Adapters.
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
Pre-generated image embeddings for IP-Adapter. Should be a tensor of shape `(batch_size, num_images,
emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to
`True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`): | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
Whether or not to return a [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] instead of
a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`. | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
mu (`float`, *optional*): `mu` value used for `dynamic_shifting`. | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
Examples:
Returns:
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is a list with the generated images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
prompt_3,
height,
width,
strength,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_3=prompt_3,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
do_classifier_free_guidance=self.do_classifier_free_guidance,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
device=device,
clip_skip=self.clip_skip,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
# 3. Preprocess image
image = self.image_processor.preprocess(image, height=height, width=width) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
# 4. Prepare timesteps
scheduler_kwargs = {}
if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None:
image_seq_len = (int(height) // self.vae_scale_factor // self.transformer.config.patch_size) * (
int(width) // self.vae_scale_factor // self.transformer.config.patch_size
)
mu = calculate_shift(
image_seq_len,
self.scheduler.config.get("base_image_seq_len", 256),
self.scheduler.config.get("max_image_seq_len", 4096),
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.16),
)
scheduler_kwargs["mu"] = mu
elif mu is not None:
scheduler_kwargs["mu"] = mu
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, sigmas=sigmas, **scheduler_kwargs
) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
# 5. Prepare latent variables
if latents is None:
latents = self.prepare_latents(
image,
latent_timestep,
batch_size,
num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
)
# 6. Prepare image embeddings
if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None:
ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
if self.joint_attention_kwargs is None:
self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds}
else:
self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds)
# 7. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0]) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
pooled_projections=pooled_prompt_embeds,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
negative_pooled_prompt_embeds = callback_outputs.pop(
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if output_type == "latent":
image = latents
else:
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return StableDiffusion3PipelineOutput(images=image) | 318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py |
class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, SD3IPAdapterMixin):
r"""
Args:
transformer ([`SD3Transformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModelWithProjection`]):
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size` | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
as its dimension.
text_encoder_2 ([`CLIPTextModelWithProjection`]):
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
specifically the
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
variant.
text_encoder_3 ([`T5EncoderModel`]):
Frozen text-encoder. Stable Diffusion 3 uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
tokenizer_2 (`CLIPTokenizer`):
Second Tokenizer of class | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
tokenizer_3 (`T5TokenizerFast`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
image_encoder (`PreTrainedModel`, *optional*):
Pre-trained Vision Model for IP Adapter.
feature_extractor (`BaseImageProcessor`, *optional*):
Image processor for IP Adapter.
""" | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->image_encoder->transformer->vae"
_optional_components = ["image_encoder", "feature_extractor"]
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
def __init__(
self,
transformer: SD3Transformer2DModel,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKL,
text_encoder: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer_2: CLIPTokenizer,
text_encoder_3: T5EncoderModel,
tokenizer_3: T5TokenizerFast,
image_encoder: PreTrainedModel = None,
feature_extractor: BaseImageProcessor = None,
):
super().__init__() | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
text_encoder_3=text_encoder_3,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
tokenizer_3=tokenizer_3,
transformer=transformer,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
self.image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, vae_latent_channels=latent_channels
)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor,
vae_latent_channels=latent_channels,
do_normalize=False, | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
do_binarize=True,
do_convert_grayscale=True,
)
self.tokenizer_max_length = (
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
)
self.default_sample_size = (
self.transformer.config.sample_size
if hasattr(self, "transformer") and self.transformer is not None
else 128
)
self.patch_size = (
self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 256,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if self.text_encoder_3 is None:
return torch.zeros(
(
batch_size * num_images_per_prompt,
self.tokenizer_max_length,
self.transformer.config.joint_attention_dim,
),
device=device,
dtype=dtype,
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
text_inputs = self.tokenizer_3(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_sequence_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
dtype = self.text_encoder_3.dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
def _get_clip_prompt_embeds(
self,
prompt: Union[str, List[str]],
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
clip_skip: Optional[int] = None,
clip_model_index: int = 0,
):
device = device or self._execution_device | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
tokenizer = clip_tokenizers[clip_model_index]
text_encoder = clip_text_encoders[clip_model_index]
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer_max_length,
truncation=True,
return_tensors="pt",
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer_max_length} tokens: {removed_text}"
)
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
pooled_prompt_embeds = prompt_embeds[0]
if clip_skip is None:
prompt_embeds = prompt_embeds.hidden_states[-2]
else:
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
return prompt_embeds, pooled_prompt_embeds | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
prompt_2: Union[str, List[str]],
prompt_3: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
negative_prompt_3: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
clip_skip: Optional[int] = None,
max_sequence_length: int = 256,
lora_scale: Optional[float] = None,
): | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
r""" | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in all text-encoders
prompt_3 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
used in all text-encoders
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
negative_prompt_3 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
`text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
clip_skip (`int`, *optional*): | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
device = device or self._execution_device | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if self.text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder_2, lora_scale)
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_2 = prompt_2 or prompt
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
prompt_3 = prompt_3 or prompt
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
clip_skip=clip_skip,
clip_model_index=0,
)
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
prompt=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
clip_skip=clip_skip,
clip_model_index=1,
)
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
t5_prompt_embed = self._get_t5_prompt_embeds(
prompt=prompt_3,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
clip_prompt_embeds = torch.nn.functional.pad(
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
)
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt_2 = negative_prompt_2 or negative_prompt
negative_prompt_3 = negative_prompt_3 or negative_prompt | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
# normalize str to list
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
negative_prompt_2 = (
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
)
negative_prompt_3 = (
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
negative_prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
clip_skip=None,
clip_model_index=0,
)
negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
negative_prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
clip_skip=None,
clip_model_index=1,
)
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
prompt=negative_prompt_3,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
negative_clip_prompt_embeds = torch.nn.functional.pad(
negative_clip_prompt_embeds,
(0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
)
negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
negative_pooled_prompt_embeds = torch.cat(
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
)
if self.text_encoder is not None:
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None:
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder_2, lora_scale) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.check_inputs
def check_inputs(
self,
prompt,
prompt_2,
prompt_3,
height,
width,
strength,
negative_prompt=None,
negative_prompt_2=None,
negative_prompt_3=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=None,
):
if (
height % (self.vae_scale_factor * self.patch_size) != 0
or width % (self.vae_scale_factor * self.patch_size) != 0
):
raise ValueError(
f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}." | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_3 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError( | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}") | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
if max_sequence_length is not None and max_sequence_length > 512:
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(num_inference_steps * strength, num_inference_steps) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
t_start = int(max(num_inference_steps - init_timestep, 0))
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
image=None,
timestep=None,
is_strength_max=True,
return_noise=False,
return_image_latents=False,
):
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
if (image is None or timestep is None) and not is_strength_max:
raise ValueError(
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
"However, either the image or the noise timestep has not been provided."
)
if return_image_latents or (latents is None and not is_strength_max):
image = image.to(device=device, dtype=dtype)
if image.shape[1] == 16:
image_latents = image
else:
image_latents = self._encode_vae_image(image=image, generator=generator)
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
if latents is None:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# if strength is 1. then initialise the latents to noise, else initial to image + noise
latents = noise if is_strength_max else self.scheduler.scale_noise(image_latents, timestep, noise)
else:
noise = latents.to(device)
latents = noise
outputs = (latents,)
if return_noise:
outputs += (noise,)
if return_image_latents:
outputs += (image_latents,)
return outputs | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
if isinstance(generator, list):
image_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
return image_latents | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
num_images_per_prompt,
height,
width,
dtype,
device,
generator,
do_classifier_free_guidance,
):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask = torch.nn.functional.interpolate(
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
)
mask = mask.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
masked_image = masked_image.to(device=device, dtype=dtype)
if masked_image.shape[1] == 16:
masked_image_latents = masked_image
else:
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated" | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
return mask, masked_image_latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
@property
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_image
def encode_image(self, image: PipelineImageInput, device: torch.device) -> torch.Tensor:
"""Encodes the given image into a feature representation using a pre-trained image encoder.
Args:
image (`PipelineImageInput`):
Input image to be encoded.
device: (`torch.device`):
Torch device.
Returns:
`torch.Tensor`: The encoded image feature representation.
"""
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=self.dtype) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
return self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_ip_adapter_image_embeds
def prepare_ip_adapter_image_embeds(
self,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
) -> torch.Tensor:
"""Prepares image embeddings for use in the IP-Adapter.
Either `ip_adapter_image` or `ip_adapter_image_embeds` must be passed. | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
Args:
ip_adapter_image (`PipelineImageInput`, *optional*):
The input image to extract features from for IP-Adapter.
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
Precomputed image embeddings.
device: (`torch.device`, *optional*):
Torch device.
num_images_per_prompt (`int`, defaults to 1):
Number of images that should be generated per prompt.
do_classifier_free_guidance (`bool`, defaults to True):
Whether to use classifier free guidance or not.
"""
device = device or self._execution_device | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
if ip_adapter_image_embeds is not None:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = ip_adapter_image_embeds.chunk(2)
else:
single_image_embeds = ip_adapter_image_embeds
elif ip_adapter_image is not None:
single_image_embeds = self.encode_image(ip_adapter_image, device)
if do_classifier_free_guidance:
single_negative_image_embeds = torch.zeros_like(single_image_embeds)
else:
raise ValueError("Neither `ip_adapter_image_embeds` or `ip_adapter_image_embeds` were provided.")
image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
negative_image_embeds = torch.cat([single_negative_image_embeds] * num_images_per_prompt, dim=0)
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
return image_embeds.to(device=device) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self, *args, **kwargs):
if self.image_encoder is not None and "image_encoder" not in self._exclude_from_cpu_offload:
logger.warning(
"`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses "
"`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling "
"`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`."
)
super().enable_sequential_cpu_offload(*args, **kwargs) | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
prompt_3: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
masked_image_latents: PipelineImageInput = None,
height: int = None,
width: int = None,
padding_mask_crop: Optional[int] = None,
strength: float = 0.6,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 7.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
negative_prompt_3: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 256,
mu: Optional[float] = None,
):
r"""
Function invoked when calling the pipeline for generation. | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead
prompt_3 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
will be used instead
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B, | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
1)`, or `(H, W)`.
mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
`Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
latents tensor will ge generated by `mask_image`.
height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
padding_mask_crop (`int`, *optional*, defaults to `None`): | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
with the same aspect ration of the image and contains all masked area, and then expand that area based
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
resizing to the original image size for inpainting. This is useful when the masked area is small while
the image is large and contain information irrelevant for inpainting, such as background.
strength (`float`, *optional*, defaults to 1.0):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used instead
negative_prompt_3 (`str` or `List[str]`, *optional*): | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
`text_encoder_3`. If not defined, `negative_prompt` is used instead
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*): | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.