text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
if self.sem_guidance is None: self.sem_guidance = torch.zeros((num_inference_steps + 1, *noise_pred_text.shape)) if edit_momentum is None: edit_momentum = torch.zeros_like(noise_guidance)
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
if enable_edit_guidance: concept_weights = torch.zeros( (len(noise_pred_edit_concepts), noise_guidance.shape[0]), device=device, dtype=noise_guidance.dtype, ) noise_guidance_edit = torch.zeros( (len(noise_pred_edit_concepts), *noise_guidance.shape), device=device, dtype=noise_guidance.dtype, ) # noise_guidance_edit = torch.zeros_like(noise_guidance) warmup_inds = [] for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts): self.edit_estimates[i, c] = noise_pred_edit_concept if isinstance(edit_guidance_scale, list): edit_guidance_scale_c = edit_guidance_scale[c] else:
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
edit_guidance_scale_c = edit_guidance_scale
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
if isinstance(edit_threshold, list): edit_threshold_c = edit_threshold[c] else: edit_threshold_c = edit_threshold if isinstance(reverse_editing_direction, list): reverse_editing_direction_c = reverse_editing_direction[c] else: reverse_editing_direction_c = reverse_editing_direction if edit_weights: edit_weight_c = edit_weights[c] else: edit_weight_c = 1.0 if isinstance(edit_warmup_steps, list): edit_warmup_steps_c = edit_warmup_steps[c] else: edit_warmup_steps_c = edit_warmup_steps
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
if isinstance(edit_cooldown_steps, list): edit_cooldown_steps_c = edit_cooldown_steps[c] elif edit_cooldown_steps is None: edit_cooldown_steps_c = i + 1 else: edit_cooldown_steps_c = edit_cooldown_steps if i >= edit_warmup_steps_c: warmup_inds.append(c) if i >= edit_cooldown_steps_c: noise_guidance_edit[c, :, :, :, :] = torch.zeros_like(noise_pred_edit_concept) continue noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond # tmp_weights = (noise_pred_text - noise_pred_edit_concept).sum(dim=(1, 2, 3)) tmp_weights = (noise_guidance - noise_pred_edit_concept).sum(dim=(1, 2, 3))
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
tmp_weights = torch.full_like(tmp_weights, edit_weight_c) # * (1 / enabled_editing_prompts) if reverse_editing_direction_c: noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 concept_weights[c, :] = tmp_weights noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
# torch.quantile function expects float32 if noise_guidance_edit_tmp.dtype == torch.float32: tmp = torch.quantile( torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2), edit_threshold_c, dim=2, keepdim=False, ) else: tmp = torch.quantile( torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2).to(torch.float32), edit_threshold_c, dim=2, keepdim=False, ).to(noise_guidance_edit_tmp.dtype)
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
noise_guidance_edit_tmp = torch.where( torch.abs(noise_guidance_edit_tmp) >= tmp[:, :, None, None], noise_guidance_edit_tmp, torch.zeros_like(noise_guidance_edit_tmp), ) noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp # noise_guidance_edit = noise_guidance_edit + noise_guidance_edit_tmp warmup_inds = torch.tensor(warmup_inds).to(device) if len(noise_pred_edit_concepts) > warmup_inds.shape[0] > 0: concept_weights = concept_weights.to("cpu") # Offload to cpu noise_guidance_edit = noise_guidance_edit.to("cpu")
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
concept_weights_tmp = torch.index_select(concept_weights.to(device), 0, warmup_inds) concept_weights_tmp = torch.where( concept_weights_tmp < 0, torch.zeros_like(concept_weights_tmp), concept_weights_tmp ) concept_weights_tmp = concept_weights_tmp / concept_weights_tmp.sum(dim=0) # concept_weights_tmp = torch.nan_to_num(concept_weights_tmp) noise_guidance_edit_tmp = torch.index_select(noise_guidance_edit.to(device), 0, warmup_inds) noise_guidance_edit_tmp = torch.einsum( "cb,cbijk->bijk", concept_weights_tmp, noise_guidance_edit_tmp ) noise_guidance = noise_guidance + noise_guidance_edit_tmp self.sem_guidance[i] = noise_guidance_edit_tmp.detach().cpu()
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
del noise_guidance_edit_tmp del concept_weights_tmp concept_weights = concept_weights.to(device) noise_guidance_edit = noise_guidance_edit.to(device) concept_weights = torch.where( concept_weights < 0, torch.zeros_like(concept_weights), concept_weights ) concept_weights = torch.nan_to_num(concept_weights) noise_guidance_edit = torch.einsum("cb,cbijk->bijk", concept_weights, noise_guidance_edit) noise_guidance_edit = noise_guidance_edit.to(edit_momentum.device) noise_guidance_edit = noise_guidance_edit + edit_momentum_scale * edit_momentum edit_momentum = edit_mom_beta * edit_momentum + (1 - edit_mom_beta) * noise_guidance_edit
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
if warmup_inds.shape[0] == len(noise_pred_edit_concepts): noise_guidance = noise_guidance + noise_guidance_edit self.sem_guidance[i] = noise_guidance_edit.detach().cpu() if sem_guidance is not None: edit_guidance = sem_guidance[i].to(device) noise_guidance = noise_guidance + edit_guidance noise_pred = noise_pred_uncond + noise_guidance # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step()
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
# 8. Post-processing if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) if not return_dict: return (image, has_nsfw_concept) return SemanticStableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
208
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
class StableCascadeDecoderPipeline(DiffusionPipeline): """ Pipeline for generating images from the Stable Cascade model. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
Args: tokenizer (`CLIPTokenizer`): The CLIP tokenizer. text_encoder (`CLIPTextModel`): The CLIP text encoder. decoder ([`StableCascadeUNet`]): The Stable Cascade decoder unet. vqgan ([`PaellaVQModel`]): The VQGAN model. scheduler ([`DDPMWuerstchenScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. latent_dim_scale (float, `optional`, defaults to 10.67): Multiplier to determine the VQ latent space size from the image embeddings. If the image embeddings are height=24 and width=24, the VQ latent shape needs to be height=int(24*10.67)=256 and width=int(24*10.67)=256 in order to match the training conditions. """
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
unet_name = "decoder" text_encoder_name = "text_encoder" model_cpu_offload_seq = "text_encoder->decoder->vqgan" _callback_tensor_inputs = [ "latents", "prompt_embeds_pooled", "negative_prompt_embeds", "image_embeddings", ] def __init__( self, decoder: StableCascadeUNet, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, scheduler: DDPMWuerstchenScheduler, vqgan: PaellaVQModel, latent_dim_scale: float = 10.67, ) -> None: super().__init__() self.register_modules( decoder=decoder, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=scheduler, vqgan=vqgan, ) self.register_to_config(latent_dim_scale=latent_dim_scale)
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
def prepare_latents( self, batch_size, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, scheduler ): _, channels, height, width = image_embeddings.shape latents_shape = ( batch_size * num_images_per_prompt, 4, int(height * self.config.latent_dim_scale), int(width * self.config.latent_dim_scale), ) if latents is None: latents = randn_tensor(latents_shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
def encode_prompt( self, device, batch_size, num_images_per_prompt, do_classifier_free_guidance, prompt=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, ): if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] attention_mask = attention_mask[:, : self.tokenizer.model_max_length]
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
text_encoder_output = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True ) prompt_embeds = text_encoder_output.hidden_states[-1] if prompt_embeds_pooled is None: prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1) prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0)
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
if negative_prompt_embeds is None and do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds_text_encoder_output = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device), output_hidden_states=True, ) negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1] negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1)
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
seq_len = negative_prompt_embeds_pooled.shape[1] negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to( dtype=self.text_encoder.dtype, device=device ) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view( batch_size * num_images_per_prompt, seq_len, -1 ) # done duplicates return prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
def check_inputs( self, prompt, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
def get_timestep_ratio_conditioning(self, t, alphas_cumprod): s = torch.tensor([0.008]) clamp_range = [0, 1] min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 var = alphas_cumprod[t] var = var.clamp(*clamp_range) s, min_var = s.to(var.device), min_var.to(var.device) ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s return ratio
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image_embeddings: Union[torch.Tensor, List[torch.Tensor]], prompt: Union[str, List[str]] = None, num_inference_steps: int = 10, guidance_scale: float = 0.0, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ):
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
""" Function invoked when calling the pipeline for generation.
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
Args: image_embedding (`torch.Tensor` or `List[torch.Tensor]`): Image Embeddings either extracted from an image or generated by a Prior Model. prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. num_inference_steps (`int`, *optional*, defaults to 12): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 0.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `decoder_guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*):
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` input argument. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*):
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image embeddings. """ # 0. Define commonly used variables device = self._execution_device dtype = self.decoder.dtype self._guidance_scale = guidance_scale if is_torch_version("<", "2.2.0") and dtype == torch.bfloat16: raise ValueError("`StableCascadeDecoderPipeline` requires torch>=2.2.0 when using `torch.bfloat16` dtype.")
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
# 1. Check inputs. Raise error if not correct self.check_inputs( prompt, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) if isinstance(image_embeddings, list): image_embeddings = torch.cat(image_embeddings, dim=0) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
# Compute the effective number of images per prompt # We must account for the fact that the image embeddings from the prior can be generated with num_images_per_prompt > 1 # This results in a case where a single prompt is associated with multiple image embeddings # Divide the number of image embeddings by the batch size to determine if this is the case. num_images_per_prompt = num_images_per_prompt * (image_embeddings.shape[0] // batch_size)
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
# 2. Encode caption if prompt_embeds is None and negative_prompt_embeds is None: _, prompt_embeds_pooled, _, negative_prompt_embeds_pooled = self.encode_prompt( prompt=prompt, device=device, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, )
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
# The pooled embeds from the prior are pooled again before being passed to the decoder prompt_embeds_pooled = ( torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) if self.do_classifier_free_guidance else prompt_embeds_pooled ) effnet = ( torch.cat([image_embeddings, torch.zeros_like(image_embeddings)]) if self.do_classifier_free_guidance else image_embeddings ) self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latents latents = self.prepare_latents( batch_size, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, self.scheduler )
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
if isinstance(self.scheduler, DDPMWuerstchenScheduler): timesteps = timesteps[:-1] else: if hasattr(self.scheduler.config, "clip_sample") and self.scheduler.config.clip_sample: self.scheduler.config.clip_sample = False # disample sample clipping logger.warning(" set `clip_sample` to be False") # 6. Run denoising loop if hasattr(self.scheduler, "betas"): alphas = 1.0 - self.scheduler.betas alphas_cumprod = torch.cumprod(alphas, dim=0) else: alphas_cumprod = []
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
self._num_timesteps = len(timesteps) for i, t in enumerate(self.progress_bar(timesteps)): if not isinstance(self.scheduler, DDPMWuerstchenScheduler): if len(alphas_cumprod) > 0: timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) else: timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) else: timestep_ratio = t.expand(latents.size(0)).to(dtype)
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
# 7. Denoise latents predicted_latents = self.decoder( sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, clip_text_pooled=prompt_embeds_pooled, effnet=effnet, return_dict=False, )[0] # 8. Check for classifier free guidance and apply it if self.do_classifier_free_guidance: predicted_latents_text, predicted_latents_uncond = predicted_latents.chunk(2) predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale)
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
# 9. Renoise latents to next timestep if not isinstance(self.scheduler, DDPMWuerstchenScheduler): timestep_ratio = t latents = self.scheduler.step( model_output=predicted_latents, timestep=timestep_ratio, sample=latents, generator=generator, ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if XLA_AVAILABLE: xm.mark_step()
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
if output_type not in ["pt", "np", "pil", "latent"]: raise ValueError( f"Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}" ) if not output_type == "latent": # 10. Scale and decode the image latents with vq-vae latents = self.vqgan.config.scale_factor * latents images = self.vqgan.decode(latents).sample.clamp(0, 1) if output_type == "np": images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesnt work elif output_type == "pil": images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesnt work images = self.numpy_to_pil(images) else: images = latents # Offload all models self.maybe_free_model_hooks()
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
if not return_dict: return images return ImagePipelineOutput(images)
209
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
class StableCascadeCombinedPipeline(DiffusionPipeline): """ Combined Pipeline for text-to-image generation using Stable Cascade. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
Args: tokenizer (`CLIPTokenizer`): The decoder tokenizer to be used for text inputs. text_encoder (`CLIPTextModel`): The decoder text encoder to be used for text inputs. decoder (`StableCascadeUNet`): The decoder model to be used for decoder image generation pipeline. scheduler (`DDPMWuerstchenScheduler`): The scheduler to be used for decoder image generation pipeline. vqgan (`PaellaVQModel`): The VQGAN model to be used for decoder image generation pipeline. feature_extractor ([`~transformers.CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `image_encoder`. image_encoder ([`CLIPVisionModelWithProjection`]): Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). prior_prior (`StableCascadeUNet`): The prior model to be used for prior pipeline.
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
prior_scheduler (`DDPMWuerstchenScheduler`): The scheduler to be used for prior pipeline. """
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
_load_connected_pipes = True _optional_components = ["prior_feature_extractor", "prior_image_encoder"] def __init__( self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, decoder: StableCascadeUNet, scheduler: DDPMWuerstchenScheduler, vqgan: PaellaVQModel, prior_prior: StableCascadeUNet, prior_text_encoder: CLIPTextModel, prior_tokenizer: CLIPTokenizer, prior_scheduler: DDPMWuerstchenScheduler, prior_feature_extractor: Optional[CLIPImageProcessor] = None, prior_image_encoder: Optional[CLIPVisionModelWithProjection] = None, ): super().__init__()
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
self.register_modules( text_encoder=text_encoder, tokenizer=tokenizer, decoder=decoder, scheduler=scheduler, vqgan=vqgan, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_prior=prior_prior, prior_scheduler=prior_scheduler, prior_feature_extractor=prior_feature_extractor, prior_image_encoder=prior_image_encoder, ) self.prior_pipe = StableCascadePriorPipeline( prior=prior_prior, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_encoder=prior_image_encoder, feature_extractor=prior_feature_extractor, ) self.decoder_pipe = StableCascadeDecoderPipeline( text_encoder=text_encoder, tokenizer=tokenizer, decoder=decoder, scheduler=scheduler,
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
vqgan=vqgan, )
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): r""" Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. """ self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): r""" Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗 Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis. Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower. """ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) def progress_bar(self, iterable=None, total=None): self.prior_pipe.progress_bar(iterable=iterable, total=total) self.decoder_pipe.progress_bar(iterable=iterable, total=total)
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
def set_progress_bar_config(self, **kwargs): self.prior_pipe.set_progress_bar_config(**kwargs) self.decoder_pipe.set_progress_bar_config(**kwargs)
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
@torch.no_grad() @replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None, height: int = 512, width: int = 512, prior_num_inference_steps: int = 60, prior_guidance_scale: float = 4.0, num_inference_steps: int = 12, decoder_guidance_scale: float = 0.0, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None,
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
output_type: Optional[str] = "pil", return_dict: bool = True, prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): """ Function invoked when calling the pipeline for generation.
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation for the prior and decoder. images (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, *optional*): The images to guide the image generation for the prior. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_embeds_pooled (`torch.Tensor`, *optional*):
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt.
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. prior_guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `prior_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `prior_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. prior_num_inference_steps (`Union[int, Dict[float, int]]`, *optional*, defaults to 60):
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
The number of prior denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. For more specific timestep spacing, you can pass customized `prior_timesteps` num_inference_steps (`int`, *optional*, defaults to 12): The number of decoder denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. For more specific timestep spacing, you can pass customized `timesteps` decoder_guidance_scale (`float`, *optional*, defaults to 0.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
(`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. prior_callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `prior_callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. prior_callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ dtype = self.decoder_pipe.decoder.dtype if is_torch_version("<", "2.2.0") and dtype == torch.bfloat16: raise ValueError( "`StableCascadeCombinedPipeline` requires torch>=2.2.0 when using `torch.bfloat16` dtype." )
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
prior_outputs = self.prior_pipe( prompt=prompt if prompt_embeds is None else None, images=images, height=height, width=width, num_inference_steps=prior_num_inference_steps, guidance_scale=prior_guidance_scale, negative_prompt=negative_prompt if negative_prompt_embeds is None else None, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, output_type="pt", return_dict=True, callback_on_step_end=prior_callback_on_step_end, callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, ) image_embeddings = prior_outputs.image_embeddings
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
prompt_embeds = prior_outputs.get("prompt_embeds", None) prompt_embeds_pooled = prior_outputs.get("prompt_embeds_pooled", None) negative_prompt_embeds = prior_outputs.get("negative_prompt_embeds", None) negative_prompt_embeds_pooled = prior_outputs.get("negative_prompt_embeds_pooled", None)
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
outputs = self.decoder_pipe( image_embeddings=image_embeddings, prompt=prompt if prompt_embeds is None else None, num_inference_steps=num_inference_steps, guidance_scale=decoder_guidance_scale, negative_prompt=negative_prompt if negative_prompt_embeds is None else None, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, generator=generator, output_type=output_type, return_dict=return_dict, callback_on_step_end=callback_on_step_end, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) return outputs
210
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
class StableCascadePriorPipelineOutput(BaseOutput): """ Output class for WuerstchenPriorPipeline. Args: image_embeddings (`torch.Tensor` or `np.ndarray`) Prior image embeddings for text prompt prompt_embeds (`torch.Tensor`): Text embeddings for the prompt. negative_prompt_embeds (`torch.Tensor`): Text embeddings for the negative prompt. """ image_embeddings: Union[torch.Tensor, np.ndarray] prompt_embeds: Union[torch.Tensor, np.ndarray] prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] negative_prompt_embeds: Union[torch.Tensor, np.ndarray] negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray]
211
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
class StableCascadePriorPipeline(DiffusionPipeline): """ Pipeline for generating image prior for Stable Cascade. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
Args: prior ([`StableCascadeUNet`]): The Stable Cascade prior to approximate the image embedding from the text and/or image embedding. text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). feature_extractor ([`~transformers.CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `image_encoder`. image_encoder ([`CLIPVisionModelWithProjection`]): Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). scheduler ([`DDPMWuerstchenScheduler`]):
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
A scheduler to be used in combination with `prior` to generate image embedding. resolution_multiple ('float', *optional*, defaults to 42.67): Default resolution for multiple images generated. """
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
unet_name = "prior" text_encoder_name = "text_encoder" model_cpu_offload_seq = "image_encoder->text_encoder->prior" _optional_components = ["image_encoder", "feature_extractor"] _callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"]
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
def __init__( self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, prior: StableCascadeUNet, scheduler: DDPMWuerstchenScheduler, resolution_multiple: float = 42.67, feature_extractor: Optional[CLIPImageProcessor] = None, image_encoder: Optional[CLIPVisionModelWithProjection] = None, ) -> None: super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, image_encoder=image_encoder, feature_extractor=feature_extractor, prior=prior, scheduler=scheduler, ) self.register_to_config(resolution_multiple=resolution_multiple)
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
def prepare_latents( self, batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, scheduler ): latent_shape = ( num_images_per_prompt * batch_size, self.prior.config.in_channels, ceil(height / self.config.resolution_multiple), ceil(width / self.config.resolution_multiple), ) if latents is None: latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != latent_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latent_shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
def encode_prompt( self, device, batch_size, num_images_per_prompt, do_classifier_free_guidance, prompt=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, ): if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] attention_mask = attention_mask[:, : self.tokenizer.model_max_length]
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
text_encoder_output = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True ) prompt_embeds = text_encoder_output.hidden_states[-1] if prompt_embeds_pooled is None: prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1) prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0)
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
if negative_prompt_embeds is None and do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds_text_encoder_output = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device), output_hidden_states=True, ) negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1] negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1)
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
seq_len = negative_prompt_embeds_pooled.shape[1] negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to( dtype=self.text_encoder.dtype, device=device ) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view( batch_size * num_images_per_prompt, seq_len, -1 ) # done duplicates return prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
def encode_image(self, images, device, dtype, batch_size, num_images_per_prompt): image_embeds = [] for image in images: image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) image_embed = self.image_encoder(image).image_embeds.unsqueeze(1) image_embeds.append(image_embed) image_embeds = torch.cat(image_embeds, dim=1) image_embeds = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) negative_image_embeds = torch.zeros_like(image_embeds) return image_embeds, negative_image_embeds
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
def check_inputs( self, prompt, images=None, image_embeds=None, negative_prompt=None, prompt_embeds=None, prompt_embeds_pooled=None, negative_prompt_embeds=None, negative_prompt_embeds_pooled=None, callback_on_step_end_tensor_inputs=None, ): if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and prompt_embeds_pooled is None: raise ValueError( "If `prompt_embeds` are provided, `prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`" )
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
if negative_prompt_embeds is not None and negative_prompt_embeds_pooled is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`" ) if prompt_embeds_pooled is not None and negative_prompt_embeds_pooled is not None: if prompt_embeds_pooled.shape != negative_prompt_embeds_pooled.shape: raise ValueError( "`prompt_embeds_pooled` and `negative_prompt_embeds_pooled` must have the same shape when passed" f"directly, but got: `prompt_embeds_pooled` {prompt_embeds_pooled.shape} !=" f"`negative_prompt_embeds_pooled` {negative_prompt_embeds_pooled.shape}." )
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
if image_embeds is not None and images is not None: raise ValueError( f"Cannot forward both `images`: {images} and `image_embeds`: {image_embeds}. Please make sure to" " only forward one of the two." ) if images: for i, image in enumerate(images): if not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image): raise TypeError( f"'images' must contain images of type 'torch.Tensor' or 'PIL.Image.Image, but got" f"{type(image)} for image number {i}." ) @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
def get_timestep_ratio_conditioning(self, t, alphas_cumprod): s = torch.tensor([0.008]) clamp_range = [0, 1] min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 var = alphas_cumprod[t] var = var.clamp(*clamp_range) s, min_var = s.to(var.device), min_var.to(var.device) ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s return ratio
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None, height: int = 1024, width: int = 1024, num_inference_steps: int = 20, timesteps: List[float] = None, guidance_scale: float = 4.0, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, image_embeds: Optional[torch.Tensor] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None,
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
output_type: Optional[str] = "pt", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): """ Function invoked when calling the pipeline for generation.
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 1024): The height in pixels of the generated image. width (`int`, *optional*, defaults to 1024): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 60): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 8.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
`decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `decoder_guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument.
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` input argument. image_embeds (`torch.Tensor`, *optional*): Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting. If not provided, image embeddings will be generated from `image` input argument if existing. num_images_per_prompt (`int`, *optional*, defaults to 1):
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`):
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
Examples: Returns: [`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image embeddings. """ # 0. Define commonly used variables device = self._execution_device dtype = next(self.prior.parameters()).dtype self._guidance_scale = guidance_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
# 1. Check inputs. Raise error if not correct self.check_inputs( prompt, images=images, image_embeds=image_embeds, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, )
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
# 2. Encode caption + images ( prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled, ) = self.encode_prompt( prompt=prompt, device=device, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, )
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
if images is not None: image_embeds_pooled, uncond_image_embeds_pooled = self.encode_image( images=images, device=device, dtype=dtype, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, ) elif image_embeds is not None: image_embeds_pooled = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) uncond_image_embeds_pooled = torch.zeros_like(image_embeds_pooled) else: image_embeds_pooled = torch.zeros( batch_size * num_images_per_prompt, 1, self.prior.config.clip_image_in_channels, device=device, dtype=dtype, ) uncond_image_embeds_pooled = torch.zeros( batch_size * num_images_per_prompt, 1, self.prior.config.clip_image_in_channels, device=device,
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
dtype=dtype, )
212
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py