text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
Args: transformer ([`FluxTransformer2DModel`]): Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. text_encoder_2 ([`T5EncoderModel`]): [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. tokenizer (`CLIPTokenizer`):
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_2 (`T5TokenizerFast`): Second Tokenizer of class [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). """
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" _optional_components = [] _callback_tensor_inputs = ["latents", "prompt_embeds"] def __init__( self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, text_encoder_2: T5EncoderModel, tokenizer_2: T5TokenizerFast, transformer: FluxTransformer2DModel, ): super().__init__()
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.vae_latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16 # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible # by the patch size. So the vae scale factor is multiplied by the patch size to account for this self.image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor * 2, vae_latent_channels=self.vae_latent_channels ) self.tokenizer_max_length = (
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 ) self.default_sample_size = 128
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, max_sequence_length: int = 512, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
text_inputs = self.tokenizer_2( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, return_length=False, return_overflowing_tokens=False, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
dtype = self.text_encoder_2.dtype prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) _, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds def _get_clip_prompt_embeds( self, prompt: Union[str, List[str]], num_images_per_prompt: int = 1, device: Optional[torch.device] = None, ): device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer_max_length, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
# Use pooled output of CLIPTextModel prompt_embeds = prompt_embeds.pooler_output prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) return prompt_embeds # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], device: Optional[torch.device] = None, num_images_per_prompt: int = 1, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, max_sequence_length: int = 512, lora_scale: Optional[float] = None, ): r"""
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in all text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
If not provided, pooled text embeddings will be generated from `prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ device = device or self._execution_device
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
# set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
# We only use the pooled prompt output from the CLIPTextModel pooled_prompt_embeds = self._get_clip_prompt_embeds( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, ) prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt_2, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, ) if self.text_encoder is not None: if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale)
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
if self.text_encoder_2 is not None: if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale) dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) return prompt_embeds, pooled_prompt_embeds, text_ids
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
def check_inputs( self, prompt, prompt_2, height, width, prompt_embeds=None, pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None, ): if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: logger.warning( f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if max_sequence_length is not None and max_sequence_length > 512: raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") @staticmethod # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids def _prepare_latent_image_ids(batch_size, height, width, device, dtype): latent_image_ids = torch.zeros(height, width, 3) latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape latent_image_ids = latent_image_ids.reshape( latent_image_id_height * latent_image_id_width, latent_image_id_channels ) return latent_image_ids.to(device=device, dtype=dtype) @staticmethod # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents def _pack_latents(latents, batch_size, num_channels_latents, height, width): latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) latents = latents.permute(0, 2, 4, 1, 3, 5) latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) return latents @staticmethod # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents def _unpack_latents(latents, height, width, vae_scale_factor): batch_size, num_patches, channels = latents.shape
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
# VAE applies 8x compression on images but we must also account for packing which requires # latent height and width to be divisible by 2. height = 2 * (int(height) // (vae_scale_factor * 2)) width = 2 * (int(width) // (vae_scale_factor * 2)) latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) latents = latents.permute(0, 3, 1, 4, 2, 5) latents = latents.reshape(batch_size, channels // (2 * 2), height, width) return latents def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing()
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling()
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): # VAE applies 8x compression on images but we must also account for packing which requires # latent height and width to be divisible by 2. height = 2 * (int(height) // (self.vae_scale_factor * 2)) width = 2 * (int(width) // (self.vae_scale_factor * 2)) shape = (batch_size, num_channels_latents, height, width) if latents is not None: latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) return latents.to(device=device, dtype=dtype), latent_image_ids
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) return latents, latent_image_ids
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
# Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image def prepare_image( self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False, ): if isinstance(image, torch.Tensor): pass else: image = self.image_processor.preprocess(image, height=height, width=width) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) if do_classifier_free_guidance and not guess_mode: image = torch.cat([image] * 2) return image
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
@property def guidance_scale(self): return self._guidance_scale @property def joint_attention_kwargs(self): return self._joint_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, control_image: PipelineImageInput = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, sigmas: Optional[List[float]] = None, guidance_scale: float = 3.5, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 512, ): r""" Function invoked when calling the pipeline for generation.
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is will be used instead control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): The ControlNet input condition to provide guidance to the `unet` for generation. If the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for the best results. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. This is set to 1024 by default for the best results. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. sigmas (`List[float]`, *optional*):
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 7.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt.
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
Examples: Returns: [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, height, width, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
# 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Prepare text embeddings lora_scale = ( self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None ) ( prompt_embeds, pooled_prompt_embeds, text_ids, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, )
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
# 4. Prepare latent variables num_channels_latents = self.transformer.config.in_channels // 8 control_image = self.prepare_image( image=control_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=self.vae.dtype, ) if control_image.ndim == 4: control_image = self.vae.encode(control_image).latent_dist.sample(generator=generator) control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor height_control_image, width_control_image = control_image.shape[2:] control_image = self._pack_latents( control_image, batch_size * num_images_per_prompt, num_channels_latents, height_control_image, width_control_image, )
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
latents, latent_image_ids = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, )
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
# 5. Prepare timesteps sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas image_seq_len = latents.shape[1] mu = calculate_shift( image_seq_len, self.scheduler.config.get("base_image_seq_len", 256), self.scheduler.config.get("max_image_seq_len", 4096), self.scheduler.config.get("base_shift", 0.5), self.scheduler.config.get("max_shift", 1.16), ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, sigmas=sigmas, mu=mu, ) num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps)
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
# handle guidance if self.transformer.config.guidance_embeds: guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) guidance = guidance.expand(latents.shape[0]) else: guidance = None # 6. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents, control_image], dim=2) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latents.shape[0]).to(latents.dtype)
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
noise_pred = self.transformer( hidden_states=latent_model_input, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update()
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": image = latents else: latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return FluxPipelineOutput(images=image)
174
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control.py
class StableAudioPipeline(DiffusionPipeline): r""" Pipeline for text-to-audio generation using StableAudio. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
Args: vae ([`AutoencoderOobleck`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.T5EncoderModel`]): Frozen text-encoder. StableAudio uses the encoder of [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) variant. projection_model ([`StableAudioProjectionModel`]): A trained model used to linearly project the hidden-states from the text encoder model and the start and end seconds. The projected hidden-states from the encoder and the conditional seconds are concatenated to give the input to the transformer model. tokenizer ([`~transformers.T5Tokenizer`]): Tokenizer to tokenize text for the frozen text-encoder. transformer ([`StableAudioDiTModel`]):
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
A `StableAudioDiTModel` to denoise the encoded audio latents. scheduler ([`EDMDPMSolverMultistepScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded audio latents. """
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
model_cpu_offload_seq = "text_encoder->projection_model->transformer->vae" def __init__( self, vae: AutoencoderOobleck, text_encoder: T5EncoderModel, projection_model: StableAudioProjectionModel, tokenizer: Union[T5Tokenizer, T5TokenizerFast], transformer: StableAudioDiTModel, scheduler: EDMDPMSolverMultistepScheduler, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, projection_model=projection_model, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler, ) self.rotary_embed_dim = self.transformer.config.attention_head_dim // 2
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.enable_vae_slicing def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() # Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.disable_vae_slicing def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing()
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
def encode_prompt( self, prompt, device, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, attention_mask: Optional[torch.LongTensor] = None, negative_attention_mask: Optional[torch.LongTensor] = None, ): if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
if prompt_embeds is None: # 1. Tokenize text text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( f"The following part of your input was truncated because {self.text_encoder.config.model_type} can " f"only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids.to(device) attention_mask = attention_mask.to(device) # 2. Text encoder forward self.text_encoder.eval() prompt_embeds = self.text_encoder( text_input_ids, attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0]
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
if do_classifier_free_guidance and negative_prompt is not None: uncond_tokens: List[str] if type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# 1. Tokenize text uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) uncond_input_ids = uncond_input.input_ids.to(device) negative_attention_mask = uncond_input.attention_mask.to(device) # 2. Text encoder forward self.text_encoder.eval() negative_prompt_embeds = self.text_encoder( uncond_input_ids, attention_mask=negative_attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if negative_attention_mask is not None: # set the masked tokens to the null embed negative_prompt_embeds = torch.where( negative_attention_mask.to(torch.bool).unsqueeze(2), negative_prompt_embeds, 0.0 )
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# 3. Project prompt_embeds and negative_prompt_embeds if do_classifier_free_guidance and negative_prompt_embeds is not None: # For classifier free guidance, we need to do two forward passes. # Here we concatenate the negative and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) if attention_mask is not None and negative_attention_mask is None: negative_attention_mask = torch.ones_like(attention_mask) elif attention_mask is None and negative_attention_mask is not None: attention_mask = torch.ones_like(negative_attention_mask) if attention_mask is not None: attention_mask = torch.cat([negative_attention_mask, attention_mask])
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
prompt_embeds = self.projection_model( text_hidden_states=prompt_embeds, ).text_hidden_states if attention_mask is not None: prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype) prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype) return prompt_embeds def encode_duration( self, audio_start_in_s, audio_end_in_s, device, do_classifier_free_guidance, batch_size, ): audio_start_in_s = audio_start_in_s if isinstance(audio_start_in_s, list) else [audio_start_in_s] audio_end_in_s = audio_end_in_s if isinstance(audio_end_in_s, list) else [audio_end_in_s] if len(audio_start_in_s) == 1: audio_start_in_s = audio_start_in_s * batch_size if len(audio_end_in_s) == 1: audio_end_in_s = audio_end_in_s * batch_size
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# Cast the inputs to floats audio_start_in_s = [float(x) for x in audio_start_in_s] audio_start_in_s = torch.tensor(audio_start_in_s).to(device) audio_end_in_s = [float(x) for x in audio_end_in_s] audio_end_in_s = torch.tensor(audio_end_in_s).to(device) projection_output = self.projection_model( start_seconds=audio_start_in_s, end_seconds=audio_end_in_s, ) seconds_start_hidden_states = projection_output.seconds_start_hidden_states seconds_end_hidden_states = projection_output.seconds_end_hidden_states
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# For classifier free guidance, we need to do two forward passes. # Here we repeat the audio hidden states to avoid doing two forward passes if do_classifier_free_guidance: seconds_start_hidden_states = torch.cat([seconds_start_hidden_states, seconds_start_hidden_states], dim=0) seconds_end_hidden_states = torch.cat([seconds_end_hidden_states, seconds_end_hidden_states], dim=0) return seconds_start_hidden_states, seconds_end_hidden_states # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1]
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
def check_inputs( self, prompt, audio_start_in_s, audio_end_in_s, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, attention_mask=None, negative_attention_mask=None, initial_audio_waveforms=None, initial_audio_sampling_rate=None, ): if audio_end_in_s < audio_start_in_s: raise ValueError( f"`audio_end_in_s={audio_end_in_s}' must be higher than 'audio_start_in_s={audio_start_in_s}` but " ) if ( audio_start_in_s < self.projection_model.config.min_value or audio_start_in_s > self.projection_model.config.max_value ): raise ValueError( f"`audio_start_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but " f"is {audio_start_in_s}." )
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
if ( audio_end_in_s < self.projection_model.config.min_value or audio_end_in_s > self.projection_model.config.max_value ): raise ValueError( f"`audio_end_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but " f"is {audio_end_in_s}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." )
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and (prompt_embeds is None): raise ValueError( "Provide either `prompt`, or `prompt_embeds`. Cannot leave" "`prompt` undefined without specifying `prompt_embeds`." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]: raise ValueError( "`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:" f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}" )
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
if initial_audio_sampling_rate is None and initial_audio_waveforms is not None: raise ValueError( "`initial_audio_waveforms' is provided but the sampling rate is not. Make sure to pass `initial_audio_sampling_rate`." ) if initial_audio_sampling_rate is not None and initial_audio_sampling_rate != self.vae.sampling_rate: raise ValueError( f"`initial_audio_sampling_rate` must be {self.vae.hop_length}' but is `{initial_audio_sampling_rate}`." "Make sure to resample the `initial_audio_waveforms` and to correct the sampling rate. " )
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
def prepare_latents( self, batch_size, num_channels_vae, sample_size, dtype, device, generator, latents=None, initial_audio_waveforms=None, num_waveforms_per_prompt=None, audio_channels=None, ): shape = (batch_size, num_channels_vae, sample_size) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# encode the initial audio for use by the model if initial_audio_waveforms is not None: # check dimension if initial_audio_waveforms.ndim == 2: initial_audio_waveforms = initial_audio_waveforms.unsqueeze(1) elif initial_audio_waveforms.ndim != 3: raise ValueError( f"`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but has `{initial_audio_waveforms.ndim}` dimensions" ) audio_vae_length = int(self.transformer.config.sample_size) * self.vae.hop_length audio_shape = (batch_size // num_waveforms_per_prompt, audio_channels, audio_vae_length)
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# check num_channels if initial_audio_waveforms.shape[1] == 1 and audio_channels == 2: initial_audio_waveforms = initial_audio_waveforms.repeat(1, 2, 1) elif initial_audio_waveforms.shape[1] == 2 and audio_channels == 1: initial_audio_waveforms = initial_audio_waveforms.mean(1, keepdim=True) if initial_audio_waveforms.shape[:2] != audio_shape[:2]: raise ValueError( f"`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but is of shape `{initial_audio_waveforms.shape}`" )
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# crop or pad audio_length = initial_audio_waveforms.shape[-1] if audio_length < audio_vae_length: logger.warning( f"The provided input waveform is shorter ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be padded." ) elif audio_length > audio_vae_length: logger.warning( f"The provided input waveform is longer ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be cropped." ) audio = initial_audio_waveforms.new_zeros(audio_shape) audio[:, :, : min(audio_length, audio_vae_length)] = initial_audio_waveforms[:, :, :audio_vae_length]
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
encoded_audio = self.vae.encode(audio).latent_dist.sample(generator) encoded_audio = encoded_audio.repeat((num_waveforms_per_prompt, 1, 1)) latents = encoded_audio + latents return latents
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, audio_end_in_s: Optional[float] = None, audio_start_in_s: Optional[float] = 0.0, num_inference_steps: int = 100, guidance_scale: float = 7.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_waveforms_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, initial_audio_waveforms: Optional[torch.Tensor] = None, initial_audio_sampling_rate: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, attention_mask: Optional[torch.LongTensor] = None, negative_attention_mask: Optional[torch.LongTensor] = None, return_dict: bool = True,
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: Optional[int] = 1, output_type: Optional[str] = "pt", ): r""" The call function to the pipeline for generation.
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`. audio_end_in_s (`float`, *optional*, defaults to 47.55): Audio end index in seconds. audio_start_in_s (`float`, *optional*, defaults to 0): Audio start index in seconds. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality audio at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.0): A higher guidance scale value encourages the model to generate audio that is closely linked to the text `prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*):
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
The prompt or prompts to guide what to not include in audio generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_waveforms_per_prompt (`int`, *optional*, defaults to 1): The number of waveforms to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*):
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for audio generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. initial_audio_waveforms (`torch.Tensor`, *optional*): Optional initial audio waveforms to use as the initial audio waveform for generation. Must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)`, where `batch_size` corresponds to the number of prompts passed to the model. initial_audio_sampling_rate (`int`, *optional*): Sampling rate of the `initial_audio_waveforms`, if they are provided. Must be the same as the model. prompt_embeds (`torch.Tensor`, *optional*):
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
Pre-computed text embeddings from the text encoder model. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be computed from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-computed negative text embeddings from the text encoder model. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from `negative_prompt` input argument. attention_mask (`torch.LongTensor`, *optional*): Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will be computed from `prompt` input argument. negative_attention_mask (`torch.LongTensor`, *optional*): Pre-computed attention mask to be applied to the `negative_text_audio_duration_embeds`.
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. output_type (`str`, *optional*, defaults to `"pt"`): The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or `"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion model (LDM) output.
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated audio. """ # 0. Convert audio input length from seconds to latent length downsample_ratio = self.vae.hop_length max_audio_length_in_s = self.transformer.config.sample_size * downsample_ratio / self.vae.config.sampling_rate if audio_end_in_s is None: audio_end_in_s = max_audio_length_in_s
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
if audio_end_in_s - audio_start_in_s > max_audio_length_in_s: raise ValueError( f"The total audio length requested ({audio_end_in_s-audio_start_in_s}s) is longer than the model maximum possible length ({max_audio_length_in_s}). Make sure that 'audio_end_in_s-audio_start_in_s<={max_audio_length_in_s}'." ) waveform_start = int(audio_start_in_s * self.vae.config.sampling_rate) waveform_end = int(audio_end_in_s * self.vae.config.sampling_rate) waveform_length = int(self.transformer.config.sample_size) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, audio_start_in_s, audio_end_in_s, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask, initial_audio_waveforms, initial_audio_sampling_rate, )
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds = self.encode_prompt( prompt, device, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask, )
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# Encode duration seconds_start_hidden_states, seconds_end_hidden_states = self.encode_duration( audio_start_in_s, audio_end_in_s, device, do_classifier_free_guidance and (negative_prompt is not None or negative_prompt_embeds is not None), batch_size, ) # Create text_audio_duration_embeds and audio_duration_embeds text_audio_duration_embeds = torch.cat( [prompt_embeds, seconds_start_hidden_states, seconds_end_hidden_states], dim=1 ) audio_duration_embeds = torch.cat([seconds_start_hidden_states, seconds_end_hidden_states], dim=2)
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# In case of classifier free guidance without negative prompt, we need to create unconditional embeddings and # to concatenate it to the embeddings if do_classifier_free_guidance and negative_prompt_embeds is None and negative_prompt is None: negative_text_audio_duration_embeds = torch.zeros_like( text_audio_duration_embeds, device=text_audio_duration_embeds.device ) text_audio_duration_embeds = torch.cat( [negative_text_audio_duration_embeds, text_audio_duration_embeds], dim=0 ) audio_duration_embeds = torch.cat([audio_duration_embeds, audio_duration_embeds], dim=0)
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
bs_embed, seq_len, hidden_size = text_audio_duration_embeds.shape # duplicate audio_duration_embeds and text_audio_duration_embeds for each generation per prompt, using mps friendly method text_audio_duration_embeds = text_audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1) text_audio_duration_embeds = text_audio_duration_embeds.view( bs_embed * num_waveforms_per_prompt, seq_len, hidden_size ) audio_duration_embeds = audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1) audio_duration_embeds = audio_duration_embeds.view( bs_embed * num_waveforms_per_prompt, -1, audio_duration_embeds.shape[-1] ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# 5. Prepare latent variables num_channels_vae = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_waveforms_per_prompt, num_channels_vae, waveform_length, text_audio_duration_embeds.dtype, device, generator, latents, initial_audio_waveforms, num_waveforms_per_prompt, audio_channels=self.vae.config.audio_channels, ) # 6. Prepare extra step kwargs extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Prepare rotary positional embedding rotary_embedding = get_1d_rotary_pos_embed( self.rotary_embed_dim, latents.shape[2] + audio_duration_embeds.shape[1], use_real=True, repeat_interleave_real=False, )
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.transformer( latent_model_input, t.unsqueeze(0), encoder_hidden_states=text_audio_duration_embeds, global_hidden_states=audio_duration_embeds, rotary_embedding=rotary_embedding, return_dict=False, )[0]
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step()
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
# 9. Post-processing if not output_type == "latent": audio = self.vae.decode(latents).sample else: return AudioPipelineOutput(audios=latents) audio = audio[:, :, waveform_start:waveform_end] if output_type == "np": audio = audio.cpu().float().numpy() self.maybe_free_model_hooks() if not return_dict: return (audio,) return AudioPipelineOutput(audios=audio)
175
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
class StableAudioPositionalEmbedding(nn.Module): """Used for continuous time""" def __init__(self, dim: int): super().__init__() assert (dim % 2) == 0 half_dim = dim // 2 self.weights = nn.Parameter(torch.randn(half_dim)) def forward(self, times: torch.Tensor) -> torch.Tensor: times = times[..., None] freqs = times * self.weights[None] * 2 * pi fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) fouriered = torch.cat((times, fouriered), dim=-1) return fouriered
176
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/modeling_stable_audio.py
class StableAudioProjectionModelOutput(BaseOutput): """ Args: Class for StableAudio projection layer's outputs. text_hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states obtained by linearly projecting the hidden-states for the text encoder. seconds_start_hidden_states (`torch.Tensor` of shape `(batch_size, 1, hidden_size)`, *optional*): Sequence of hidden-states obtained by linearly projecting the audio start hidden states. seconds_end_hidden_states (`torch.Tensor` of shape `(batch_size, 1, hidden_size)`, *optional*): Sequence of hidden-states obtained by linearly projecting the audio end hidden states. """ text_hidden_states: Optional[torch.Tensor] = None seconds_start_hidden_states: Optional[torch.Tensor] = None seconds_end_hidden_states: Optional[torch.Tensor] = None
177
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/modeling_stable_audio.py
class StableAudioNumberConditioner(nn.Module): """ A simple linear projection model to map numbers to a latent space. Args: number_embedding_dim (`int`): Dimensionality of the number embeddings. min_value (`int`): The minimum value of the seconds number conditioning modules. max_value (`int`): The maximum value of the seconds number conditioning modules internal_dim (`int`): Dimensionality of the intermediate number hidden states. """ def __init__( self, number_embedding_dim, min_value, max_value, internal_dim: Optional[int] = 256, ): super().__init__() self.time_positional_embedding = nn.Sequential( StableAudioPositionalEmbedding(internal_dim), nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim), )
178
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/modeling_stable_audio.py
self.number_embedding_dim = number_embedding_dim self.min_value = min_value self.max_value = max_value def forward( self, floats: torch.Tensor, ): floats = floats.clamp(self.min_value, self.max_value) normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value) # Cast floats to same type as embedder embedder_dtype = next(self.time_positional_embedding.parameters()).dtype normalized_floats = normalized_floats.to(embedder_dtype) embedding = self.time_positional_embedding(normalized_floats) float_embeds = embedding.view(-1, 1, self.number_embedding_dim) return float_embeds
178
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/modeling_stable_audio.py
class StableAudioProjectionModel(ModelMixin, ConfigMixin): """ A simple linear projection model to map the conditioning values to a shared latent space. Args: text_encoder_dim (`int`): Dimensionality of the text embeddings from the text encoder (T5). conditioning_dim (`int`): Dimensionality of the output conditioning tensors. min_value (`int`): The minimum value of the seconds number conditioning modules. max_value (`int`): The maximum value of the seconds number conditioning modules """
179
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/modeling_stable_audio.py
@register_to_config def __init__(self, text_encoder_dim, conditioning_dim, min_value, max_value): super().__init__() self.text_projection = ( nn.Identity() if conditioning_dim == text_encoder_dim else nn.Linear(text_encoder_dim, conditioning_dim) ) self.start_number_conditioner = StableAudioNumberConditioner(conditioning_dim, min_value, max_value) self.end_number_conditioner = StableAudioNumberConditioner(conditioning_dim, min_value, max_value)
179
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/modeling_stable_audio.py
def forward( self, text_hidden_states: Optional[torch.Tensor] = None, start_seconds: Optional[torch.Tensor] = None, end_seconds: Optional[torch.Tensor] = None, ): text_hidden_states = ( text_hidden_states if text_hidden_states is None else self.text_projection(text_hidden_states) ) seconds_start_hidden_states = ( start_seconds if start_seconds is None else self.start_number_conditioner(start_seconds) ) seconds_end_hidden_states = end_seconds if end_seconds is None else self.end_number_conditioner(end_seconds) return StableAudioProjectionModelOutput( text_hidden_states=text_hidden_states, seconds_start_hidden_states=seconds_start_hidden_states, seconds_end_hidden_states=seconds_end_hidden_states, )
179
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_audio/modeling_stable_audio.py
class KandinskyV22Pipeline(DiffusionPipeline): """ Pipeline for text-to-image generation using Kandinsky This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. movq ([`VQModel`]): MoVQ Decoder to generate the image from the latents. """ model_cpu_offload_seq = "unet->movq" _callback_tensor_inputs = ["latents", "image_embeds", "negative_image_embeds"] def __init__( self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel, ): super().__init__()
180
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py
self.register_modules( unet=unet, scheduler=scheduler, movq=movq, ) self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1
180
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py
@property def num_timesteps(self): return self._num_timesteps @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image_embeds: Union[torch.Tensor, List[torch.Tensor]], negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]], height: int = 512, width: int = 512, num_inference_steps: int = 100, guidance_scale: float = 4.0, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): """ Function invoked when calling the pipeline for generation.
180
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py
Args: image_embeds (`torch.Tensor` or `List[torch.Tensor]`): The clip image embeddings for text prompt, that will be used to condition the image generation. negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`): The clip image embeddings for negative text prompt, will be used to condition the image generation. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 4.0):
180
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*):
180
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
180
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
180
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py