text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) )
157
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states_1: Optional[torch.Tensor] = None, encoder_attention_mask_1: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = self.resnets[0](hidden_states, temb) num_attention_per_layer = len(self.attentions) // (len(self.resnets) - 1)
157
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
encoder_hidden_states_1 = ( encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states ) encoder_attention_mask_1 = ( encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask ) for i in range(len(self.resnets[1:])): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward
157
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} for idx, cross_attention_dim in enumerate(self.cross_attention_dim): if cross_attention_dim is not None and idx <= 1: forward_encoder_hidden_states = encoder_hidden_states forward_encoder_attention_mask = encoder_attention_mask elif cross_attention_dim is not None and idx > 1: forward_encoder_hidden_states = encoder_hidden_states_1 forward_encoder_attention_mask = encoder_attention_mask_1 else: forward_encoder_hidden_states = None forward_encoder_attention_mask = None hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False),
157
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
hidden_states, forward_encoder_hidden_states, None, # timestep None, # class_labels cross_attention_kwargs, attention_mask, forward_encoder_attention_mask, **ckpt_kwargs, )[0] hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(self.resnets[i + 1]), hidden_states, temb, **ckpt_kwargs, ) else: for idx, cross_attention_dim in enumerate(self.cross_attention_dim): if cross_attention_dim is not None and idx <= 1: forward_encoder_hidden_states = encoder_hidden_states forward_encoder_attention_mask = encoder_attention_mask
157
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
elif cross_attention_dim is not None and idx > 1: forward_encoder_hidden_states = encoder_hidden_states_1 forward_encoder_attention_mask = encoder_attention_mask_1 else: forward_encoder_hidden_states = None forward_encoder_attention_mask = None hidden_states = self.attentions[i * num_attention_per_layer + idx]( hidden_states, attention_mask=attention_mask, encoder_hidden_states=forward_encoder_hidden_states, encoder_attention_mask=forward_encoder_attention_mask, return_dict=False, )[0]
157
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
hidden_states = self.resnets[i + 1](hidden_states, temb) return hidden_states
157
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
class CrossAttnUpBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, transformer_layers_per_block: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, num_attention_heads=1, cross_attention_dim=1280, output_scale_factor=1.0, add_upsample=True, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, ): super().__init__() resnets = [] attentions = [] self.has_cross_attention = True self.num_attention_heads = num_attention_heads
158
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
if isinstance(cross_attention_dim, int): cross_attention_dim = (cross_attention_dim,) if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4: raise ValueError( "Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention " f"dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}" ) self.cross_attention_dim = cross_attention_dim for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels
158
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) for j in range(len(cross_attention_dim)): attentions.append( Transformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block, cross_attention_dim=cross_attention_dim[j],
158
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, double_self_attention=True if cross_attention_dim[j] is None else False, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets)
158
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, upsample_size: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states_1: Optional[torch.Tensor] = None, encoder_attention_mask_1: Optional[torch.Tensor] = None, ): num_layers = len(self.resnets) num_attention_per_layer = len(self.attentions) // num_layers
158
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
encoder_hidden_states_1 = ( encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states ) encoder_attention_mask_1 = ( encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask ) for i in range(num_layers): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs)
158
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
return custom_forward
158
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(self.resnets[i]), hidden_states, temb, **ckpt_kwargs, ) for idx, cross_attention_dim in enumerate(self.cross_attention_dim): if cross_attention_dim is not None and idx <= 1: forward_encoder_hidden_states = encoder_hidden_states forward_encoder_attention_mask = encoder_attention_mask elif cross_attention_dim is not None and idx > 1: forward_encoder_hidden_states = encoder_hidden_states_1 forward_encoder_attention_mask = encoder_attention_mask_1 else: forward_encoder_hidden_states = None
158
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
forward_encoder_attention_mask = None hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False), hidden_states, forward_encoder_hidden_states, None, # timestep None, # class_labels cross_attention_kwargs, attention_mask, forward_encoder_attention_mask, **ckpt_kwargs, )[0] else: hidden_states = self.resnets[i](hidden_states, temb) for idx, cross_attention_dim in enumerate(self.cross_attention_dim): if cross_attention_dim is not None and idx <= 1: forward_encoder_hidden_states = encoder_hidden_states
158
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
forward_encoder_attention_mask = encoder_attention_mask elif cross_attention_dim is not None and idx > 1: forward_encoder_hidden_states = encoder_hidden_states_1 forward_encoder_attention_mask = encoder_attention_mask_1 else: forward_encoder_hidden_states = None forward_encoder_attention_mask = None hidden_states = self.attentions[i * num_attention_per_layer + idx]( hidden_states, attention_mask=attention_mask, encoder_hidden_states=forward_encoder_hidden_states, encoder_attention_mask=forward_encoder_attention_mask, return_dict=False, )[0]
158
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states
158
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py
class AudioLDM2Pipeline(DiffusionPipeline): r""" Pipeline for text-to-audio generation using AudioLDM2. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.ClapModel`]): First frozen text-encoder. AudioLDM2 uses the joint audio-text embedding model [CLAP](https://huggingface.co/docs/transformers/model_doc/clap#transformers.CLAPTextModelWithProjection), specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. The text branch is used to encode the text prompt to a prompt embedding. The full audio-text model is used to rank generated waveforms against the text prompt by computing similarity scores. text_encoder_2 ([`~transformers.T5EncoderModel`, `~transformers.VitsModel`]): Second frozen text-encoder. AudioLDM2 uses the encoder of [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
[google/flan-t5-large](https://huggingface.co/google/flan-t5-large) variant. Second frozen text-encoder use for TTS. AudioLDM2 uses the encoder of [Vits](https://huggingface.co/docs/transformers/model_doc/vits#transformers.VitsModel). projection_model ([`AudioLDM2ProjectionModel`]): A trained model used to linearly project the hidden-states from the first and second text encoder models and insert learned SOS and EOS token embeddings. The projected hidden-states from the two text encoders are concatenated to give the input to the language model. A Learned Position Embedding for the Vits hidden-states language_model ([`~transformers.GPT2Model`]): An auto-regressive language model used to generate a sequence of hidden-states conditioned on the projected outputs from the two text encoders. tokenizer ([`~transformers.RobertaTokenizer`]):
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
Tokenizer to tokenize text for the first frozen text-encoder. tokenizer_2 ([`~transformers.T5Tokenizer`, `~transformers.VitsTokenizer`]): Tokenizer to tokenize text for the second frozen text-encoder. feature_extractor ([`~transformers.ClapFeatureExtractor`]): Feature extractor to pre-process generated audio waveforms to log-mel spectrograms for automatic scoring. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded audio latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. vocoder ([`~transformers.SpeechT5HifiGan`]): Vocoder of class `SpeechT5HifiGan` to convert the mel-spectrogram latents to the final audio waveform. """
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
def __init__( self, vae: AutoencoderKL, text_encoder: ClapModel, text_encoder_2: Union[T5EncoderModel, VitsModel], projection_model: AudioLDM2ProjectionModel, language_model: GPT2Model, tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast], tokenizer_2: Union[T5Tokenizer, T5TokenizerFast, VitsTokenizer], feature_extractor: ClapFeatureExtractor, unet: AudioLDM2UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, vocoder: SpeechT5HifiGan, ): super().__init__()
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, projection_model=projection_model, language_model=language_model, tokenizer=tokenizer, tokenizer_2=tokenizer_2, feature_extractor=feature_extractor, unet=unet, scheduler=scheduler, vocoder=vocoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 # Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.enable_vae_slicing def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing()
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.disable_vae_slicing def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing()
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): r""" Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. """ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") torch_device = torch.device(device) device_index = torch_device.index
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
if gpu_id is not None and device_index is not None: raise ValueError( f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}" f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}" ) device_type = torch_device.type device = torch.device(f"{device_type}:{gpu_id or torch_device.index}") if self.device.type != "cpu": self.to("cpu", silence_dtype_warnings=True) device_mod = getattr(torch, device.type, None) if hasattr(device_mod, "empty_cache") and device_mod.is_available(): device_mod.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
model_sequence = [ self.text_encoder.text_model, self.text_encoder.text_projection, self.text_encoder_2, self.projection_model, self.language_model, self.unet, self.vae, self.vocoder, self.text_encoder, ] hook = None for cpu_offloaded_model in model_sequence: _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) # We'll offload the last model manually. self.final_offload_hook = hook def generate_language_model( self, inputs_embeds: torch.Tensor = None, max_new_tokens: int = 8, **model_kwargs, ): """ Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs.
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
Parameters: inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): The sequence used as a prompt for the generation. max_new_tokens (`int`): Number of new tokens to generate. model_kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward` function of the model.
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
Return: `inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): The sequence of generated hidden-states. """ max_new_tokens = max_new_tokens if max_new_tokens is not None else self.language_model.config.max_new_tokens model_kwargs = self.language_model._get_initial_cache_position(inputs_embeds, model_kwargs) for _ in range(max_new_tokens): # prepare model inputs model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs) # forward pass to get next hidden states output = self.language_model(**model_inputs, return_dict=True) next_hidden_states = output.last_hidden_state # Update the model input inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# Update generated hidden states, model inputs, and length for next step model_kwargs = self.language_model._update_model_kwargs_for_generation(output, model_kwargs) return inputs_embeds[:, -max_new_tokens:, :] def encode_prompt( self, prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, transcription=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, generated_prompt_embeds: Optional[torch.Tensor] = None, negative_generated_prompt_embeds: Optional[torch.Tensor] = None, attention_mask: Optional[torch.LongTensor] = None, negative_attention_mask: Optional[torch.LongTensor] = None, max_new_tokens: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded transcription (`str` or `List[str]`): transcription of text to speech device (`torch.device`): torch device num_waveforms_per_prompt (`int`): number of waveforms that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the audio generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-computed text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, *e.g.*
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
prompt weighting. If not provided, text embeddings will be computed from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-computed negative text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from `negative_prompt` input argument. generated_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_generated_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from `negative_prompt` input argument. attention_mask (`torch.LongTensor`, *optional*): Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will be computed from `prompt` input argument. negative_attention_mask (`torch.LongTensor`, *optional*): Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention mask will be computed from `negative_prompt` input argument. max_new_tokens (`int`, *optional*, defaults to None): The number of new tokens to generate with the GPT2 language model. Returns: prompt_embeds (`torch.Tensor`): Text embeddings from the Flan T5 model. attention_mask (`torch.LongTensor`):
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
Attention mask to be applied to the `prompt_embeds`. generated_prompt_embeds (`torch.Tensor`): Text embeddings generated from the GPT2 langauge model.
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
Example: ```python >>> import scipy >>> import torch >>> from diffusers import AudioLDM2Pipeline >>> repo_id = "cvssp/audioldm2" >>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16) >>> pipe = pipe.to("cuda") >>> # Get text embedding vectors >>> prompt_embeds, attention_mask, generated_prompt_embeds = pipe.encode_prompt( ... prompt="Techno music with a strong, upbeat tempo and high melodic riffs", ... device="cuda", ... do_classifier_free_guidance=True, ... ) >>> # Pass text embeddings to pipeline for text-conditional audio generation >>> audio = pipe( ... prompt_embeds=prompt_embeds, ... attention_mask=attention_mask, ... generated_prompt_embeds=generated_prompt_embeds, ... num_inference_steps=200, ... audio_length_in_s=10.0, ... ).audios[0]
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
>>> # save generated audio sample >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio) ```""" if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # Define tokenizers and text encoders tokenizers = [self.tokenizer, self.tokenizer_2] is_vits_text_encoder = isinstance(self.text_encoder_2, VitsModel) if is_vits_text_encoder: text_encoders = [self.text_encoder, self.text_encoder_2.text_encoder] else: text_encoders = [self.text_encoder, self.text_encoder_2] if prompt_embeds is None: prompt_embeds_list = [] attention_mask_list = []
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
for tokenizer, text_encoder in zip(tokenizers, text_encoders): use_prompt = isinstance( tokenizer, (RobertaTokenizer, RobertaTokenizerFast, T5Tokenizer, T5TokenizerFast) ) text_inputs = tokenizer( prompt if use_prompt else transcription, padding="max_length" if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer)) else True, max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) logger.warning( f"The following part of your input was truncated because {text_encoder.config.model_type} can " f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids.to(device) attention_mask = attention_mask.to(device)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
if text_encoder.config.model_type == "clap": prompt_embeds = text_encoder.get_text_features( text_input_ids, attention_mask=attention_mask, ) # append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size) prompt_embeds = prompt_embeds[:, None, :] # make sure that we attend to this single hidden-state attention_mask = attention_mask.new_ones((batch_size, 1)) elif is_vits_text_encoder: # Add end_token_id and attention mask in the end of sequence phonemes for text_input_id, text_attention_mask in zip(text_input_ids, attention_mask): for idx, phoneme_id in enumerate(text_input_id): if phoneme_id == 0: text_input_id[idx] = 182
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
text_attention_mask[idx] = 1 break prompt_embeds = text_encoder( text_input_ids, attention_mask=attention_mask, padding_mask=attention_mask.unsqueeze(-1) ) prompt_embeds = prompt_embeds[0] else: prompt_embeds = text_encoder( text_input_ids, attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0]
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
prompt_embeds_list.append(prompt_embeds) attention_mask_list.append(attention_mask) projection_output = self.projection_model( hidden_states=prompt_embeds_list[0], hidden_states_1=prompt_embeds_list[1], attention_mask=attention_mask_list[0], attention_mask_1=attention_mask_list[1], ) projected_prompt_embeds = projection_output.hidden_states projected_attention_mask = projection_output.attention_mask generated_prompt_embeds = self.generate_language_model( projected_prompt_embeds, attention_mask=projected_attention_mask, max_new_tokens=max_new_tokens, )
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) attention_mask = ( attention_mask.to(device=device) if attention_mask is not None else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device) ) generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device) bs_embed, seq_len, hidden_size = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size) # duplicate attention mask for each generation per prompt attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt) attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape # duplicate generated embeddings for each generation per prompt, using mps friendly method generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) generated_prompt_embeds = generated_prompt_embeds.view( bs_embed * num_waveforms_per_prompt, seq_len, hidden_size )
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." )
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
else: uncond_tokens = negative_prompt
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
negative_prompt_embeds_list = [] negative_attention_mask_list = [] max_length = prompt_embeds.shape[1] for tokenizer, text_encoder in zip(tokenizers, text_encoders): uncond_input = tokenizer( uncond_tokens, padding="max_length", max_length=tokenizer.model_max_length if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer)) else max_length, truncation=True, return_tensors="pt", ) uncond_input_ids = uncond_input.input_ids.to(device) negative_attention_mask = uncond_input.attention_mask.to(device)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
if text_encoder.config.model_type == "clap": negative_prompt_embeds = text_encoder.get_text_features( uncond_input_ids, attention_mask=negative_attention_mask, ) # append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size) negative_prompt_embeds = negative_prompt_embeds[:, None, :] # make sure that we attend to this single hidden-state negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1)) elif is_vits_text_encoder: negative_prompt_embeds = torch.zeros( batch_size, tokenizer.model_max_length, text_encoder.config.hidden_size, ).to(dtype=self.text_encoder_2.dtype, device=device)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
negative_attention_mask = torch.zeros(batch_size, tokenizer.model_max_length).to( dtype=self.text_encoder_2.dtype, device=device ) else: negative_prompt_embeds = text_encoder( uncond_input_ids, attention_mask=negative_attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
negative_prompt_embeds_list.append(negative_prompt_embeds) negative_attention_mask_list.append(negative_attention_mask) projection_output = self.projection_model( hidden_states=negative_prompt_embeds_list[0], hidden_states_1=negative_prompt_embeds_list[1], attention_mask=negative_attention_mask_list[0], attention_mask_1=negative_attention_mask_list[1], ) negative_projected_prompt_embeds = projection_output.hidden_states negative_projected_attention_mask = projection_output.attention_mask negative_generated_prompt_embeds = self.generate_language_model( negative_projected_prompt_embeds, attention_mask=negative_projected_attention_mask, max_new_tokens=max_new_tokens, ) if do_classifier_free_guidance: seq_len = negative_prompt_embeds.shape[1]
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) negative_attention_mask = ( negative_attention_mask.to(device=device) if negative_attention_mask is not None else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device) ) negative_generated_prompt_embeds = negative_generated_prompt_embeds.to( dtype=self.language_model.dtype, device=device ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# duplicate unconditional attention mask for each generation per prompt negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt) negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len) # duplicate unconditional generated embeddings for each generation per prompt seq_len = negative_generated_prompt_embeds.shape[1] negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) negative_generated_prompt_embeds = negative_generated_prompt_embeds.view( batch_size * num_waveforms_per_prompt, seq_len, -1 )
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) attention_mask = torch.cat([negative_attention_mask, attention_mask]) generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds]) return prompt_embeds, attention_mask, generated_prompt_embeds # Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.mel_spectrogram_to_waveform def mel_spectrogram_to_waveform(self, mel_spectrogram): if mel_spectrogram.dim() == 4: mel_spectrogram = mel_spectrogram.squeeze(1)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
waveform = self.vocoder(mel_spectrogram) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 waveform = waveform.cpu().float() return waveform
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype): if not is_librosa_available(): logger.info( "Automatic scoring of the generated audio waveforms against the input prompt text requires the " "`librosa` package to resample the generated waveforms. Returning the audios in the order they were " "generated. To enable automatic scoring, install `librosa` with: `pip install librosa`." ) return audio inputs = self.tokenizer(text, return_tensors="pt", padding=True) resampled_audio = librosa.resample( audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate ) inputs["input_features"] = self.feature_extractor( list(resampled_audio), return_tensors="pt", sampling_rate=self.feature_extractor.sampling_rate ).input_features.type(dtype) inputs = inputs.to(device)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# compute the audio-text similarity score using the CLAP model logits_per_text = self.text_encoder(**inputs).logits_per_text # sort by the highest matching generations per prompt indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt] audio = torch.index_select(audio, 0, indices.reshape(-1).cpu()) return audio # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1]
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
def check_inputs( self, prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, transcription=None, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, generated_prompt_embeds=None, negative_generated_prompt_embeds=None, attention_mask=None, negative_attention_mask=None, ): min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor if audio_length_in_s < min_audio_length_in_s: raise ValueError( f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but " f"is {audio_length_in_s}." )
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0: raise ValueError( f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the " f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of " f"{self.vae_scale_factor}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." )
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and (prompt_embeds is None or generated_prompt_embeds is None): raise ValueError( "Provide either `prompt`, or `prompt_embeds` and `generated_prompt_embeds`. Cannot leave " "`prompt` undefined without specifying both `prompt_embeds` and `generated_prompt_embeds`." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_embeds is not None and negative_generated_prompt_embeds is None: raise ValueError( "Cannot forward `negative_prompt_embeds` without `negative_generated_prompt_embeds`. Ensure that" "both arguments are specified" )
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]: raise ValueError( "`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:" f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}" )
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
if transcription is None: if self.text_encoder_2.config.model_type == "vits": raise ValueError("Cannot forward without transcription. Please make sure to" " have transcription") elif transcription is not None and ( not isinstance(transcription, str) and not isinstance(transcription, list) ): raise ValueError(f"`transcription` has to be of type `str` or `list` but is {type(transcription)}")
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
if generated_prompt_embeds is not None and negative_generated_prompt_embeds is not None: if generated_prompt_embeds.shape != negative_generated_prompt_embeds.shape: raise ValueError( "`generated_prompt_embeds` and `negative_generated_prompt_embeds` must have the same shape when " f"passed directly, but got: `generated_prompt_embeds` {generated_prompt_embeds.shape} != " f"`negative_generated_prompt_embeds` {negative_generated_prompt_embeds.shape}." ) if ( negative_attention_mask is not None and negative_attention_mask.shape != negative_prompt_embeds.shape[:2] ): raise ValueError( "`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:" f"`attention_mask: {negative_attention_mask.shape} != `prompt_embeds` {negative_prompt_embeds.shape}"
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(self.vocoder.config.model_in_dim) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, transcription: Union[str, List[str]] = None, audio_length_in_s: Optional[float] = None, num_inference_steps: int = 200, guidance_scale: float = 3.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_waveforms_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, generated_prompt_embeds: Optional[torch.Tensor] = None, negative_generated_prompt_embeds: Optional[torch.Tensor] = None, attention_mask: Optional[torch.LongTensor] = None, negative_attention_mask: Optional[torch.LongTensor] = None,
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
max_new_tokens: Optional[int] = None, return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: Optional[int] = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, output_type: Optional[str] = "np", ): r""" The call function to the pipeline for generation.
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`. transcription (`str` or `List[str]`, *optional*):\ The transcript for text to speech. audio_length_in_s (`int`, *optional*, defaults to 10.24): The length of the generated audio sample in seconds. num_inference_steps (`int`, *optional*, defaults to 200): The number of denoising steps. More denoising steps usually lead to a higher quality audio at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 3.5): A higher guidance scale value encourages the model to generate audio that is closely linked to the text `prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`.
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in audio generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_waveforms_per_prompt (`int`, *optional*, defaults to 1): The number of waveforms to generate per prompt. If `num_waveforms_per_prompt > 1`, then automatic scoring is performed between the generated outputs and the text prompt. This scoring ranks the generated waveforms based on their cosine similarity with the text input in the joint text-audio embedding space. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for spectrogram generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*):
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. generated_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_generated_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from `negative_prompt` input argument. attention_mask (`torch.LongTensor`, *optional*):
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will be computed from `prompt` input argument. negative_attention_mask (`torch.LongTensor`, *optional*): Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention mask will be computed from `negative_prompt` input argument. max_new_tokens (`int`, *optional*, defaults to None): Number of new tokens to generate with the GPT2 language model. If not provided, number of tokens will be taken from the config of the model. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*):
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). output_type (`str`, *optional*, defaults to `"np"`): The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or `"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
model (LDM) output.
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated audio. """ # 0. Convert audio input length from seconds to spectrogram height vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate if audio_length_in_s is None: audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor height = int(audio_length_in_s / vocoder_upsample_factor)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate) if height % self.vae_scale_factor != 0: height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor logger.info( f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} " f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the " f"denoising process." ) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, transcription, negative_prompt, prompt_embeds, negative_prompt_embeds, generated_prompt_embeds, negative_generated_prompt_embeds, attention_mask, negative_attention_mask, )
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# 3. Encode input prompt prompt_embeds, attention_mask, generated_prompt_embeds = self.encode_prompt( prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, transcription, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, generated_prompt_embeds=generated_prompt_embeds, negative_generated_prompt_embeds=negative_generated_prompt_embeds, attention_mask=attention_mask, negative_attention_mask=negative_attention_mask, max_new_tokens=max_new_tokens, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_waveforms_per_prompt, num_channels_latents, height, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=generated_prompt_embeds, encoder_hidden_states_1=prompt_embeds, encoder_attention_mask_1=attention_mask, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() self.maybe_free_model_hooks() # 8. Post-processing if not output_type == "latent": latents = 1 / self.vae.config.scaling_factor * latents mel_spectrogram = self.vae.decode(latents).sample else: return AudioPipelineOutput(audios=latents) audio = self.mel_spectrogram_to_waveform(mel_spectrogram) audio = audio[:, :original_waveform_length]
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
# 9. Automatic scoring if num_waveforms_per_prompt > 1 and prompt is not None: audio = self.score_waveforms( text=prompt, audio=audio, num_waveforms_per_prompt=num_waveforms_per_prompt, device=device, dtype=prompt_embeds.dtype, ) if output_type == "np": audio = audio.numpy() if not return_dict: return (audio,) return AudioPipelineOutput(audios=audio)
159
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py
class FluxControlInpaintPipeline( DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin, ): r""" The Flux pipeline for image inpainting using Flux-dev-Depth/Canny. Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
Args: transformer ([`FluxTransformer2DModel`]): Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. text_encoder_2 ([`T5EncoderModel`]): [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. tokenizer (`CLIPTokenizer`):
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_2 (`T5TokenizerFast`): Second Tokenizer of class [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). """
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" _optional_components = [] _callback_tensor_inputs = ["latents", "prompt_embeds"] def __init__( self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, text_encoder_2: T5EncoderModel, tokenizer_2: T5TokenizerFast, transformer: FluxTransformer2DModel, ): super().__init__()
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible # by the patch size. So the vae scale factor is multiplied by the patch size to account for this self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16 self.mask_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor * 2, vae_latent_channels=latent_channels, do_normalize=False,
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
do_binarize=True, do_convert_grayscale=True, ) self.tokenizer_max_length = ( self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 ) self.default_sample_size = 128
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, max_sequence_length: int = 512, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
text_inputs = self.tokenizer_2( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, return_length=False, return_overflowing_tokens=False, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
dtype = self.text_encoder_2.dtype prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) _, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds def _get_clip_prompt_embeds( self, prompt: Union[str, List[str]], num_images_per_prompt: int = 1, device: Optional[torch.device] = None, ): device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer_max_length, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
# Use pooled output of CLIPTextModel prompt_embeds = prompt_embeds.pooler_output prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) return prompt_embeds # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], device: Optional[torch.device] = None, num_images_per_prompt: int = 1, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, max_sequence_length: int = 512, lora_scale: Optional[float] = None, ): r"""
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in all text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
If not provided, pooled text embeddings will be generated from `prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ device = device or self._execution_device
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
# set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
# We only use the pooled prompt output from the CLIPTextModel pooled_prompt_embeds = self._get_clip_prompt_embeds( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, ) prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt_2, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, ) if self.text_encoder is not None: if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale)
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
if self.text_encoder_2 is not None: if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale) dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) return prompt_embeds, pooled_prompt_embeds, text_ids
160
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py