text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
def validate_environment(self, *args, **kwargs):
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"):
raise ImportError(
"Loading GGUF Parameters requires `accelerate` installed in your enviroment: `pip install 'accelerate>=0.26.0'`"
)
if not is_gguf_available() or is_gguf_version("<", "0.10.0"):
raise ImportError(
"To load GGUF format files you must have `gguf` installed in your environment: `pip install gguf>=0.10.0`"
)
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.adjust_max_memory
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for buffers that are created during quantization
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory | 24 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/gguf_quantizer.py |
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if target_dtype != torch.uint8:
logger.info(f"target_dtype {target_dtype} is replaced by `torch.uint8` for GGUF quantization")
return torch.uint8
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
torch_dtype = self.compute_dtype
return torch_dtype
def check_quantized_param_shape(self, param_name, current_param, loaded_param):
loaded_param_shape = loaded_param.shape
current_param_shape = current_param.shape
quant_type = loaded_param.quant_type
block_size, type_size = GGML_QUANT_SIZES[quant_type] | 24 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/gguf_quantizer.py |
inferred_shape = _quant_shape_from_byte_shape(loaded_param_shape, type_size, block_size)
if inferred_shape != current_param_shape:
raise ValueError(
f"{param_name} has an expected quantized shape of: {inferred_shape}, but receieved shape: {loaded_param_shape}"
)
return True
def check_if_quantized_param(
self,
model: "ModelMixin",
param_value: Union["GGUFParameter", "torch.Tensor"],
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
if isinstance(param_value, GGUFParameter):
return True
return False | 24 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/gguf_quantizer.py |
def create_quantized_param(
self,
model: "ModelMixin",
param_value: Union["GGUFParameter", "torch.Tensor"],
param_name: str,
target_device: "torch.device",
state_dict: Optional[Dict[str, Any]] = None,
unexpected_keys: Optional[List[str]] = None,
):
module, tensor_name = get_module_from_name(model, param_name)
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
if tensor_name in module._parameters:
module._parameters[tensor_name] = param_value.to(target_device)
if tensor_name in module._buffers:
module._buffers[tensor_name] = param_value.to(target_device) | 24 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/gguf_quantizer.py |
def _process_model_before_weight_loading(
self,
model: "ModelMixin",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
state_dict = kwargs.get("state_dict", None)
self.modules_to_not_convert.extend(keep_in_fp32_modules)
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None]
_replace_with_gguf_linear(
model, self.compute_dtype, state_dict, modules_to_not_convert=self.modules_to_not_convert
)
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs):
return model
@property
def is_serializable(self):
return False
@property
def is_trainable(self) -> bool:
return False | 24 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/gguf_quantizer.py |
def _dequantize(self, model):
is_model_on_cpu = model.device.type == "cpu"
if is_model_on_cpu:
logger.info(
"Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device."
)
model.to(torch.cuda.current_device())
model = _dequantize_gguf_and_restore_linear(model, self.modules_to_not_convert)
if is_model_on_cpu:
model.to("cpu")
return model | 24 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/gguf_quantizer.py |
class GGUFParameter(torch.nn.Parameter):
def __new__(cls, data, requires_grad=False, quant_type=None):
data = data if data is not None else torch.empty(0)
self = torch.Tensor._make_subclass(cls, data, requires_grad)
self.quant_type = quant_type
return self
def as_tensor(self):
return torch.Tensor._make_subclass(torch.Tensor, self, self.requires_grad)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
result = super().__torch_function__(func, types, args, kwargs) | 25 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/utils.py |
# When converting from original format checkpoints we often use splits, cats etc on tensors
# this method ensures that the returned tensor type from those operations remains GGUFParameter
# so that we preserve quant_type information
quant_type = None
for arg in args:
if isinstance(arg, list) and (arg[0], GGUFParameter):
quant_type = arg[0].quant_type
break
if isinstance(arg, GGUFParameter):
quant_type = arg.quant_type
break
if isinstance(result, torch.Tensor):
return cls(result, quant_type=quant_type)
# Handle tuples and lists
elif isinstance(result, (tuple, list)):
# Preserve the original type (tuple or list)
wrapped = [cls(x, quant_type=quant_type) if isinstance(x, torch.Tensor) else x for x in result]
return type(result)(wrapped)
else:
return result | 25 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/utils.py |
class GGUFLinear(nn.Linear):
def __init__(
self,
in_features,
out_features,
bias=False,
compute_dtype=None,
device=None,
) -> None:
super().__init__(in_features, out_features, bias, device)
self.compute_dtype = compute_dtype
def forward(self, inputs):
weight = dequantize_gguf_tensor(self.weight)
weight = weight.to(self.compute_dtype)
bias = self.bias.to(self.compute_dtype) if self.bias is not None else None
output = torch.nn.functional.linear(inputs, weight, bias)
return output | 26 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/utils.py |
class TorchAoHfQuantizer(DiffusersQuantizer):
r"""
Diffusers Quantizer for TorchAO: https://github.com/pytorch/ao/.
"""
requires_calibration = False
required_packages = ["torchao"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
def validate_environment(self, *args, **kwargs):
if not is_torchao_available():
raise ImportError(
"Loading a TorchAO quantized model requires the torchao library. Please install with `pip install torchao`"
)
torchao_version = version.parse(importlib.metadata.version("torch"))
if torchao_version < version.parse("0.7.0"):
raise RuntimeError(
f"The minimum required version of `torchao` is 0.7.0, but the current version is {torchao_version}. Please upgrade with `pip install -U torchao`."
)
self.offload = False | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
device_map = kwargs.get("device_map", None)
if isinstance(device_map, dict):
if "cpu" in device_map.values() or "disk" in device_map.values():
if self.pre_quantized:
raise ValueError(
"You are attempting to perform cpu/disk offload with a pre-quantized torchao model "
"This is not supported yet. Please remove the CPU or disk device from the `device_map` argument."
)
else:
self.offload = True | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
if self.pre_quantized:
weights_only = kwargs.get("weights_only", None)
if weights_only:
torch_version = version.parse(importlib.metadata.version("torch"))
if torch_version < version.parse("2.5.0"):
# TODO(aryan): TorchAO is compatible with Pytorch >= 2.2 for certain quantization types. Try to see if we can support it in future
raise RuntimeError(
f"In order to use TorchAO pre-quantized model, you need to have torch>=2.5.0. However, the current version is {torch_version}."
)
def update_torch_dtype(self, torch_dtype):
quant_type = self.quantization_config.quant_type | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
if quant_type.startswith("int") or quant_type.startswith("uint"):
if torch_dtype is not None and torch_dtype != torch.bfloat16:
logger.warning(
f"You are trying to set torch_dtype to {torch_dtype} for int4/int8/uintx quantization, but "
f"only bfloat16 is supported right now. Please set `torch_dtype=torch.bfloat16`."
)
if torch_dtype is None:
# We need to set the torch_dtype, otherwise we have dtype mismatch when performing the quantized linear op
logger.warning(
"Overriding `torch_dtype` with `torch_dtype=torch.bfloat16` due to requirements of `torchao` "
"to enable model loading in different precisions. Pass your own `torch_dtype` to specify the "
"dtype of the remaining non-linear layers, or pass torch_dtype=torch.bfloat16, to remove this warning."
)
torch_dtype = torch.bfloat16
return torch_dtype | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
quant_type = self.quantization_config.quant_type
if quant_type.startswith("int8") or quant_type.startswith("int4"):
# Note that int4 weights are created by packing into torch.int8, but since there is no torch.int4, we use torch.int8
return torch.int8
elif quant_type == "uintx_weight_only":
return self.quantization_config.quant_type_kwargs.get("dtype", torch.uint8)
elif quant_type.startswith("uint"):
return {
1: torch.uint1,
2: torch.uint2,
3: torch.uint3,
4: torch.uint4,
5: torch.uint5,
6: torch.uint6,
7: torch.uint7,
}[int(quant_type[4])]
elif quant_type.startswith("float") or quant_type.startswith("fp"):
return torch.bfloat16 | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
if isinstance(target_dtype, SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION):
return target_dtype
# We need one of the supported dtypes to be selected in order for accelerate to determine
# the total size of modules/parameters for auto device placement.
possible_device_maps = ["auto", "balanced", "balanced_low_0", "sequential"]
raise ValueError(
f"You have set `device_map` as one of {possible_device_maps} on a TorchAO quantized model but a suitable target dtype "
f"could not be inferred. The supported target_dtypes are: {SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION}. If you think the "
f"dtype you are using should be supported, please open an issue at https://github.com/huggingface/diffusers/issues."
)
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
max_memory = {key: val * 0.9 for key, val in max_memory.items()}
return max_memory | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
def check_if_quantized_param(
self,
model: "ModelMixin",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
param_device = kwargs.pop("param_device", None)
# Check if the param_name is not in self.modules_to_not_convert
if any((key + "." in param_name) or (key == param_name) for key in self.modules_to_not_convert):
return False
elif param_device == "cpu" and self.offload:
# We don't quantize weights that we offload
return False
else:
# We only quantize the weight of nn.Linear
module, tensor_name = get_module_from_name(model, param_name)
return isinstance(module, torch.nn.Linear) and (tensor_name == "weight") | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
def create_quantized_param(
self,
model: "ModelMixin",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: List[str],
):
r"""
Each nn.Linear layer that needs to be quantized is processsed here. First, we set the value the weight tensor,
then we move it to the target device. Finally, we quantize the module.
"""
module, tensor_name = get_module_from_name(model, param_name) | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
if self.pre_quantized:
# If we're loading pre-quantized weights, replace the repr of linear layers for pretty printing info
# about AffineQuantizedTensor
module._parameters[tensor_name] = torch.nn.Parameter(param_value.to(device=target_device))
if isinstance(module, nn.Linear):
module.extra_repr = types.MethodType(_linear_extra_repr, module)
else:
# As we perform quantization here, the repr of linear layers is that of AQT, so we don't have to do it ourselves
module._parameters[tensor_name] = torch.nn.Parameter(param_value).to(device=target_device)
quantize_(module, self.quantization_config.get_apply_tensor_subclass())
def _process_model_before_weight_loading(
self,
model: "ModelMixin",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
self.modules_to_not_convert = self.quantization_config.modules_to_not_convert | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
self.modules_to_not_convert.extend(keep_in_fp32_modules)
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
self.modules_to_not_convert.extend(keys_on_cpu)
# Purge `None`.
# Unlike `transformers`, we don't know if we should always keep certain modules in FP32
# in case of diffusion transformer models. For language models and others alike, `lm_head`
# and tied modules are usually kept in FP32.
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None]
model.config.quantization_config = self.quantization_config | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
def _process_model_after_weight_loading(self, model: "ModelMixin"):
return model
def is_serializable(self, safe_serialization=None):
# TODO(aryan): needs to be tested
if safe_serialization:
logger.warning(
"torchao quantized model does not support safe serialization, please set `safe_serialization` to False."
)
return False
_is_torchao_serializable = version.parse(importlib.metadata.version("huggingface_hub")) >= version.parse(
"0.25.0"
)
if not _is_torchao_serializable:
logger.warning("torchao quantized model is only serializable after huggingface_hub >= 0.25.0 ") | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
if self.offload and self.quantization_config.modules_to_not_convert is None:
logger.warning(
"The model contains offloaded modules and these modules are not quantized. We don't recommend saving the model as we won't be able to reload them."
"If you want to specify modules to not quantize, please specify modules_to_not_convert in the quantization_config."
)
return False
return _is_torchao_serializable
@property
def is_trainable(self):
return self.quantization_config.quant_type.startswith("int8") | 27 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py |
class BnB4BitDiffusersQuantizer(DiffusersQuantizer):
"""
4-bit quantization from bitsandbytes.py quantization method:
before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the
layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call saving:
from state dict, as usual; saves weights and `quant_state` components
loading:
need to locate `quant_state` components and pass to Param4bit constructor
"""
use_keep_in_fp32_modules = True
requires_calibration = False
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
if self.quantization_config.llm_int8_skip_modules is not None:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
def validate_environment(self, *args, **kwargs):
if not torch.cuda.is_available():
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"):
raise ImportError(
"Using `bitsandbytes` 4-bit quantization requires Accelerate: `pip install 'accelerate>=0.26.0'`"
)
if not is_bitsandbytes_available() or is_bitsandbytes_version("<", "0.43.3"):
raise ImportError(
"Using `bitsandbytes` 4-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`"
)
if kwargs.get("from_flax", False):
raise ValueError(
"Converting into 4-bit weights from flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
) | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
device_map = kwargs.get("device_map", None)
if (
device_map is not None
and isinstance(device_map, dict)
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
):
device_map_without_no_convert = {
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
}
if "cpu" in device_map_without_no_convert.values() or "disk" in device_map_without_no_convert.values():
raise ValueError(
"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the "
"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules "
"in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to "
"`from_pretrained`. Check " | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
"https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu "
"for more details. "
) | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if target_dtype != torch.int8:
from accelerate.utils import CustomDtype
logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization")
return CustomDtype.INT4
else:
raise ValueError(f"Wrong `target_dtype` ({target_dtype}) provided.")
def check_if_quantized_param(
self,
model: "ModelMixin",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
import bitsandbytes as bnb | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit):
# Add here check for loaded components' dtypes once serialization is implemented
return True
elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias":
# bias could be loaded by regular set_module_tensor_to_device() from accelerate,
# but it would wrongly use uninitialized weight there.
return True
else:
return False
def create_quantized_param(
self,
model: "ModelMixin",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: Optional[List[str]] = None,
):
import bitsandbytes as bnb
module, tensor_name = get_module_from_name(model, param_name) | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
if tensor_name not in module._parameters:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
old_value = getattr(module, tensor_name)
if tensor_name == "bias":
if param_value is None:
new_value = old_value.to(target_device)
else:
new_value = param_value.to(target_device)
new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad)
module._parameters[tensor_name] = new_value
return | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit):
raise ValueError("this function only loads `Linear4bit components`")
if (
old_value.device == torch.device("meta")
and target_device not in ["meta", torch.device("meta")]
and param_value is None
):
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
# construct `new_value` for the module._parameters[tensor_name]:
if self.pre_quantized:
# 4bit loading. Collecting components for restoring quantized weight
# This can be expanded to make a universal call for any quantized weight loading | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
if not self.is_serializable:
raise ValueError(
"Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. "
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
)
if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and (
param_name + ".quant_state.bitsandbytes__nf4" not in state_dict
):
raise ValueError(
f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components."
) | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
quantized_stats = {}
for k, v in state_dict.items():
# `startswith` to counter for edge cases where `param_name`
# substring can be present in multiple places in the `state_dict`
if param_name + "." in k and k.startswith(param_name):
quantized_stats[k] = v
if unexpected_keys is not None and k in unexpected_keys:
unexpected_keys.remove(k)
new_value = bnb.nn.Params4bit.from_prequantized(
data=param_value,
quantized_stats=quantized_stats,
requires_grad=False,
device=target_device,
)
else:
new_value = param_value.to("cpu")
kwargs = old_value.__dict__
new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device)
module._parameters[tensor_name] = new_value | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
def check_quantized_param_shape(self, param_name, current_param, loaded_param):
current_param_shape = current_param.shape
loaded_param_shape = loaded_param.shape
n = current_param_shape.numel()
inferred_shape = (n,) if "bias" in param_name else ((n + 1) // 2, 1)
if loaded_param_shape != inferred_shape:
raise ValueError(
f"Expected the flattened shape of the current param ({param_name}) to be {loaded_param_shape} but is {inferred_shape}."
)
else:
return True
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for buffers that are created during quantization
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
logger.info(
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
" torch_dtype=torch.float16 to remove this warning.",
torch_dtype,
)
torch_dtype = torch.float16
return torch_dtype | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
# (sayakpaul): I think it could be better to disable custom `device_map`s
# for the first phase of the integration in the interest of simplicity.
# Commenting this for discussions on the PR.
# def update_device_map(self, device_map):
# if device_map is None:
# device_map = {"": torch.cuda.current_device()}
# logger.info(
# "The device_map was not initialized. "
# "Setting device_map to {'':torch.cuda.current_device()}. "
# "If you want to use the model for inference, please set device_map ='auto' "
# )
# return device_map
def _process_model_before_weight_loading(
self,
model: "ModelMixin",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from .utils import replace_with_bnb_linear
load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
# We may keep some modules such as the `proj_out` in their original dtype for numerical stability reasons
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
self.modules_to_not_convert.extend(keep_in_fp32_modules)
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
raise ValueError(
"If you want to offload some keys to `cpu` or `disk`, you need to set "
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
" converted to 8-bit but kept in 32-bit."
)
self.modules_to_not_convert.extend(keys_on_cpu)
# Purge `None`.
# Unlike `transformers`, we don't know if we should always keep certain modules in FP32
# in case of diffusion transformer models. For language models and others alike, `lm_head`
# and tied modules are usually kept in FP32.
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
model = replace_with_bnb_linear(
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
)
model.config.quantization_config = self.quantization_config
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs):
model.is_loaded_in_4bit = True
model.is_4bit_serializable = self.is_serializable
return model
@property
def is_serializable(self):
# Because we're mandating `bitsandbytes` 0.43.3.
return True
@property
def is_trainable(self) -> bool:
# Because we're mandating `bitsandbytes` 0.43.3.
return True
def _dequantize(self, model):
from .utils import dequantize_and_replace | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
is_model_on_cpu = model.device.type == "cpu"
if is_model_on_cpu:
logger.info(
"Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device."
)
model.to(torch.cuda.current_device())
model = dequantize_and_replace(
model, self.modules_to_not_convert, quantization_config=self.quantization_config
)
if is_model_on_cpu:
model.to("cpu")
return model | 28 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
class BnB8BitDiffusersQuantizer(DiffusersQuantizer):
"""
8-bit quantization from bitsandbytes quantization method:
before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the
layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call
saving:
from state dict, as usual; saves weights and 'SCB' component
loading:
need to locate SCB component and pass to the Linear8bitLt object
"""
use_keep_in_fp32_modules = True
requires_calibration = False
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
if self.quantization_config.llm_int8_skip_modules is not None:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
def validate_environment(self, *args, **kwargs):
if not torch.cuda.is_available():
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"):
raise ImportError(
"Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install 'accelerate>=0.26.0'`"
)
if not is_bitsandbytes_available() or is_bitsandbytes_version("<", "0.43.3"):
raise ImportError(
"Using `bitsandbytes` 8-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`"
)
if kwargs.get("from_flax", False):
raise ValueError(
"Converting into 8-bit weights from flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
) | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
device_map = kwargs.get("device_map", None)
if (
device_map is not None
and isinstance(device_map, dict)
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
):
device_map_without_no_convert = {
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
}
if "cpu" in device_map_without_no_convert.values() or "disk" in device_map_without_no_convert.values():
raise ValueError(
"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the "
"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules "
"in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to "
"`from_pretrained`. Check " | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
"https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu "
"for more details. "
) | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.adjust_max_memory
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for buffers that are created during quantization
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.update_torch_dtype
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
logger.info(
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
" torch_dtype=torch.float16 to remove this warning.",
torch_dtype,
)
torch_dtype = torch.float16
return torch_dtype | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
# # Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.update_device_map
# def update_device_map(self, device_map):
# if device_map is None:
# device_map = {"": torch.cuda.current_device()}
# logger.info(
# "The device_map was not initialized. "
# "Setting device_map to {'':torch.cuda.current_device()}. "
# "If you want to use the model for inference, please set device_map ='auto' "
# )
# return device_map
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if target_dtype != torch.int8:
logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization")
return torch.int8 | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
def check_if_quantized_param(
self,
model: "ModelMixin",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
):
import bitsandbytes as bnb
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Int8Params):
if self.pre_quantized:
if param_name.replace("weight", "SCB") not in state_dict.keys():
raise ValueError("Missing quantization component `SCB`")
if param_value.dtype != torch.int8:
raise ValueError(
f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`."
)
return True
return False | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
def create_quantized_param(
self,
model: "ModelMixin",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: Optional[List[str]] = None,
):
import bitsandbytes as bnb
fp16_statistics_key = param_name.replace("weight", "SCB")
fp16_weights_format_key = param_name.replace("weight", "weight_format")
fp16_statistics = state_dict.get(fp16_statistics_key, None)
fp16_weights_format = state_dict.get(fp16_weights_format_key, None)
module, tensor_name = get_module_from_name(model, param_name)
if tensor_name not in module._parameters:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
old_value = getattr(module, tensor_name) | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params):
raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.")
if (
old_value.device == torch.device("meta")
and target_device not in ["meta", torch.device("meta")]
and param_value is None
):
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
new_value = param_value.to("cpu")
if self.pre_quantized and not self.is_serializable:
raise ValueError(
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. "
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
)
kwargs = old_value.__dict__
new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device) | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
module._parameters[tensor_name] = new_value
if fp16_statistics is not None:
setattr(module.weight, "SCB", fp16_statistics.to(target_device))
if unexpected_keys is not None:
unexpected_keys.remove(fp16_statistics_key)
# We just need to pop the `weight_format` keys from the state dict to remove unneeded
# messages. The correct format is correctly retrieved during the first forward pass.
if fp16_weights_format is not None and unexpected_keys is not None:
unexpected_keys.remove(fp16_weights_format_key)
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer._process_model_after_weight_loading with 4bit->8bit
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs):
model.is_loaded_in_8bit = True
model.is_8bit_serializable = self.is_serializable
return model | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer._process_model_before_weight_loading
def _process_model_before_weight_loading(
self,
model: "ModelMixin",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from .utils import replace_with_bnb_linear
load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload
# We may keep some modules such as the `proj_out` in their original dtype for numerical stability reasons
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
self.modules_to_not_convert.extend(keep_in_fp32_modules) | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
raise ValueError(
"If you want to offload some keys to `cpu` or `disk`, you need to set "
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
" converted to 8-bit but kept in 32-bit."
)
self.modules_to_not_convert.extend(keys_on_cpu) | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
# Purge `None`.
# Unlike `transformers`, we don't know if we should always keep certain modules in FP32
# in case of diffusion transformer models. For language models and others alike, `lm_head`
# and tied modules are usually kept in FP32.
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None]
model = replace_with_bnb_linear(
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
)
model.config.quantization_config = self.quantization_config
@property
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.is_serializable
def is_serializable(self):
# Because we're mandating `bitsandbytes` 0.43.3.
return True | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
@property
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.is_serializable
def is_trainable(self) -> bool:
# Because we're mandating `bitsandbytes` 0.43.3.
return True
def _dequantize(self, model):
from .utils import dequantize_and_replace
model = dequantize_and_replace(
model, self.modules_to_not_convert, quantization_config=self.quantization_config
)
return model | 29 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py |
class FlaxImagePipelineOutput(BaseOutput):
"""
Output class for image pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
"""
images: Union[List[PIL.Image.Image], np.ndarray] | 30 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
r"""
Base class for Flax-based pipelines.
[`FlaxDiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
provides methods for loading, downloading and saving models. It also includes methods to:
- enable/disable the progress bar for the denoising iteration
Class attributes:
- **config_name** ([`str`]) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def register_modules(self, **kwargs):
# import it here to avoid circular import
from diffusers import pipelines
for name, module in kwargs.items():
if module is None:
register_dict = {name: (None, None)}
else:
# retrieve library
library = module.__module__.split(".")[0] | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
# check if the module is a pipeline module
pipeline_dir = module.__module__.split(".")[-2]
path = module.__module__.split(".")
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
# if library is not in LOADABLE_CLASSES, then it is a custom module.
# Or if it's a pipeline module, then the module is inside the pipeline
# folder so we set the library to module name.
if library not in LOADABLE_CLASSES or is_pipeline_module:
library = pipeline_dir
# retrieve class_name
class_name = module.__class__.__name__
register_dict = {name: (library, class_name)}
# save model index config
self.register_to_config(**register_dict)
# set models
setattr(self, name, module) | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
params: Union[Dict, FrozenDict],
push_to_hub: bool = False,
**kwargs,
):
# TODO: handle inference_state
"""
Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
class implements both a save and loading method. The pipeline is easily reloaded using the
[`~FlaxDiffusionPipeline.from_pretrained`] class method. | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
self.save_config(save_directory)
model_index_dict = dict(self.config)
model_index_dict.pop("_class_name")
model_index_dict.pop("_diffusers_version")
model_index_dict.pop("_module", None) | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
private = kwargs.pop("private", None)
create_pr = kwargs.pop("create_pr", False)
token = kwargs.pop("token", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
for pipeline_component_name in model_index_dict.keys():
sub_model = getattr(self, pipeline_component_name)
if sub_model is None:
# edge case for saving a pipeline with safety_checker=None
continue
model_cls = sub_model.__class__ | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
save_method_name = None
# search for the model's base class in LOADABLE_CLASSES
for library_name, library_classes in LOADABLE_CLASSES.items():
library = importlib.import_module(library_name)
for base_class, save_load_methods in library_classes.items():
class_candidate = getattr(library, base_class, None)
if class_candidate is not None and issubclass(model_cls, class_candidate):
# if we found a suitable base class in LOADABLE_CLASSES then grab its save method
save_method_name = save_load_methods[0]
break
if save_method_name is not None:
break
save_method = getattr(sub_model, save_method_name)
expects_params = "params" in set(inspect.signature(save_method).parameters.keys()) | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
if expects_params:
save_method(
os.path.join(save_directory, pipeline_component_name), params=params[pipeline_component_name]
)
else:
save_method(os.path.join(save_directory, pipeline_component_name))
if push_to_hub:
self._upload_folder(
save_directory,
repo_id,
token=token,
commit_message=commit_message,
create_pr=create_pr,
)
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
r"""
Instantiate a Flax-based diffusion pipeline from pretrained pipeline weights.
The pipeline is set in evaluation mode (`model.eval()) by default and dropout modules are deactivated. | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of FlaxUNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
```
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either: | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
- A string, the *repo id* (for example `stable-diffusion-v1-5/stable-diffusion-v1-5`) of a
pretrained pipeline hosted on the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
using [`~FlaxDiffusionPipeline.save_pretrained`].
dtype (`str` or `jnp.dtype`, *optional*):
Override the default `jnp.dtype` and load the model under this dtype. If `"auto"`, the dtype is
automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist. | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`): | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components) of the specific pipeline
class. The overwritten components are passed directly to the pipelines `__init__` method. | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
<Tip>
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import FlaxDiffusionPipeline
>>> # Download pipeline from huggingface.co and cache.
>>> # Requires to be logged in to Hugging Face hub,
>>> # see more in [the documentation](https://huggingface.co/docs/hub/security-tokens)
>>> pipeline, params = FlaxDiffusionPipeline.from_pretrained(
... "stable-diffusion-v1-5/stable-diffusion-v1-5",
... variant="bf16",
... dtype=jnp.bfloat16,
... )
>>> # Download pipeline, but use a different scheduler
>>> from diffusers import FlaxDPMSolverMultistepScheduler | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
>>> model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
>>> dpmpp, dpmpp_state = FlaxDPMSolverMultistepScheduler.from_pretrained(
... model_id,
... subfolder="scheduler",
... )
>>> dpm_pipe, dpm_params = FlaxStableDiffusionPipeline.from_pretrained(
... model_id, variant="bf16", dtype=jnp.bfloat16, scheduler=dpmpp
... )
>>> dpm_params["scheduler"] = dpmpp_state
```
"""
cache_dir = kwargs.pop("cache_dir", None)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
from_pt = kwargs.pop("from_pt", False)
use_memory_efficient_attention = kwargs.pop("use_memory_efficient_attention", False)
split_head_dim = kwargs.pop("split_head_dim", False)
dtype = kwargs.pop("dtype", None) | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
# 1. Download the checkpoints and configs
# use snapshot download here to get it working from from_pretrained
if not os.path.isdir(pretrained_model_name_or_path):
config_dict = cls.load_config(
pretrained_model_name_or_path,
cache_dir=cache_dir,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
)
# make sure we only download sub-folders and `diffusers` filenames
folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
allow_patterns = [os.path.join(k, "*") for k in folder_names]
allow_patterns += [FLAX_WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, cls.config_name]
ignore_patterns = ["*.bin", "*.safetensors"] if not from_pt else []
ignore_patterns += ["*.onnx", "*.onnx_data", "*.xml", "*.pb"] | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
if cls != FlaxDiffusionPipeline:
requested_pipeline_class = cls.__name__
else:
requested_pipeline_class = config_dict.get("_class_name", cls.__name__)
requested_pipeline_class = (
requested_pipeline_class
if requested_pipeline_class.startswith("Flax")
else "Flax" + requested_pipeline_class
)
user_agent = {"pipeline_class": requested_pipeline_class}
user_agent = http_user_agent(user_agent) | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
# download all allow_patterns
cached_folder = snapshot_download(
pretrained_model_name_or_path,
cache_dir=cache_dir,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
user_agent=user_agent,
)
else:
cached_folder = pretrained_model_name_or_path
config_dict = cls.load_config(cached_folder) | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
# 2. Load the pipeline class, if using custom module then load it from the hub
# if we load from explicit class, let's use it
if cls != FlaxDiffusionPipeline:
pipeline_class = cls
else:
diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
class_name = (
config_dict["_class_name"]
if config_dict["_class_name"].startswith("Flax")
else "Flax" + config_dict["_class_name"]
)
pipeline_class = getattr(diffusers_module, class_name)
# some modules can be passed directly to the init
# in this case they are already instantiated in `kwargs`
# extract them here
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
# define init kwargs
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
# remove `null` components
def load_module(name, value):
if value[0] is None:
return False
if name in passed_class_obj and passed_class_obj[name] is None:
return False
return True
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
# Throw nice warnings / errors for fast accelerate loading
if len(unused_kwargs) > 0:
logger.warning(
f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
)
# inference_params
params = {}
# import it here to avoid circular import
from diffusers import pipelines | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
# 3. Load each module in the pipeline
for name, (library_name, class_name) in init_dict.items():
if class_name is None:
# edge case for when the pipeline was saved with safety_checker=None
init_kwargs[name] = None
continue
is_pipeline_module = hasattr(pipelines, library_name)
loaded_sub_model = None
sub_model_should_be_defined = True
# if the model is in a pipeline module, then we load it from the pipeline
if name in passed_class_obj:
# 1. check that passed_class_obj has correct parent class
if not is_pipeline_module:
library = importlib.import_module(library_name)
class_obj = getattr(library, class_name)
importable_classes = LOADABLE_CLASSES[library_name]
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
expected_class_obj = None
for class_name, class_candidate in class_candidates.items():
if class_candidate is not None and issubclass(class_obj, class_candidate):
expected_class_obj = class_candidate | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
raise ValueError(
f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
f" {expected_class_obj}"
)
elif passed_class_obj[name] is None:
logger.warning(
f"You have passed `None` for {name} to disable its functionality in {pipeline_class}. Note"
f" that this might lead to problems when using {pipeline_class} and is not recommended."
)
sub_model_should_be_defined = False
else:
logger.warning(
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
" has the correct type"
) | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
# set passed class object
loaded_sub_model = passed_class_obj[name]
elif is_pipeline_module:
pipeline_module = getattr(pipelines, library_name)
class_obj = import_flax_or_no_model(pipeline_module, class_name)
importable_classes = ALL_IMPORTABLE_CLASSES
class_candidates = {c: class_obj for c in importable_classes.keys()}
else:
# else we just import it from the library.
library = importlib.import_module(library_name)
class_obj = import_flax_or_no_model(library, class_name)
importable_classes = LOADABLE_CLASSES[library_name]
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
if loaded_sub_model is None and sub_model_should_be_defined:
load_method_name = None
for class_name, class_candidate in class_candidates.items():
if class_candidate is not None and issubclass(class_obj, class_candidate):
load_method_name = importable_classes[class_name][1]
load_method = getattr(class_obj, load_method_name)
# check if the module is in a subdirectory
if os.path.isdir(os.path.join(cached_folder, name)):
loadable_folder = os.path.join(cached_folder, name)
else:
loaded_sub_model = cached_folder | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
if issubclass(class_obj, FlaxModelMixin):
loaded_sub_model, loaded_params = load_method(
loadable_folder,
from_pt=from_pt,
use_memory_efficient_attention=use_memory_efficient_attention,
split_head_dim=split_head_dim,
dtype=dtype,
)
params[name] = loaded_params
elif is_transformers_available() and issubclass(class_obj, FlaxPreTrainedModel):
if from_pt:
# TODO(Suraj): Fix this in Transformers. We should be able to use `_do_init=False` here
loaded_sub_model = load_method(loadable_folder, from_pt=from_pt)
loaded_params = loaded_sub_model.params
del loaded_sub_model._params
else: | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
loaded_sub_model, loaded_params = load_method(loadable_folder, _do_init=False)
params[name] = loaded_params
elif issubclass(class_obj, FlaxSchedulerMixin):
loaded_sub_model, scheduler_state = load_method(loadable_folder)
params[name] = scheduler_state
else:
loaded_sub_model = load_method(loadable_folder) | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...)
# 4. Potentially add passed objects if expected
missing_modules = set(expected_modules) - set(init_kwargs.keys())
passed_modules = list(passed_class_obj.keys())
if len(missing_modules) > 0 and missing_modules <= set(passed_modules):
for module in missing_modules:
init_kwargs[module] = passed_class_obj.get(module, None)
elif len(missing_modules) > 0:
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
raise ValueError(
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
)
model = pipeline_class(**init_kwargs, dtype=dtype)
return model, params | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
@classmethod
def _get_signature_keys(cls, obj):
parameters = inspect.signature(obj.__init__).parameters
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
expected_modules = set(required_parameters.keys()) - {"self"}
return expected_modules, optional_parameters
@property
def components(self) -> Dict[str, Any]:
r"""
The `self.components` property can be useful to run different pipelines with the same weights and
configurations to not have to re-allocate memory.
Examples:
```py
>>> from diffusers import (
... FlaxStableDiffusionPipeline,
... FlaxStableDiffusionImg2ImgPipeline,
... ) | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
>>> text2img = FlaxStableDiffusionPipeline.from_pretrained(
... "stable-diffusion-v1-5/stable-diffusion-v1-5", variant="bf16", dtype=jnp.bfloat16
... )
>>> img2img = FlaxStableDiffusionImg2ImgPipeline(**text2img.components)
```
Returns:
A dictionary containing all the modules needed to initialize the pipeline.
"""
expected_modules, optional_parameters = self._get_signature_keys(self)
components = {
k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
}
if set(components.keys()) != expected_modules:
raise ValueError(
f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
f" {expected_modules} to be defined, but {components} are defined."
)
return components | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
@staticmethod
def numpy_to_pil(images):
"""
Convert a NumPy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
# TODO: make it compatible with jax.lax
def progress_bar(self, iterable):
if not hasattr(self, "_progress_bar_config"):
self._progress_bar_config = {}
elif not isinstance(self._progress_bar_config, dict):
raise ValueError(
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
) | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
return tqdm(iterable, **self._progress_bar_config)
def set_progress_bar_config(self, **kwargs):
self._progress_bar_config = kwargs | 31 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/pipeline_flax_utils.py |
class AutoPipelineForText2Image(ConfigMixin):
r"""
[`AutoPipelineForText2Image`] is a generic pipeline class that instantiates a text-to-image pipeline class. The
specific underlying pipeline class is automatically selected from either the
[`~AutoPipelineForText2Image.from_pretrained`] or [`~AutoPipelineForText2Image.from_pipe`] methods.
This class cannot be instantiated using `__init__()` (throws an error).
Class attributes:
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
) | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
r"""
Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight.
The from_pretrained() method takes care of returning the correct pipeline class instance by:
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
config object
2. Find the text-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
name.
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetPipeline`] object.
The pipeline is set in evaluation mode (`model.eval()`) by default.
If you get the error message below, you need to finetune the weights for your downstream task: | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Parameters:
pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
Can be either: | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
saved using
[`~DiffusionPipeline.save_pretrained`].
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*): | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used. | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`): | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
A map that specifies where each submodule should go. It doesn’t need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device. | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if device_map contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
kwargs (remaining dictionary of keyword arguments, *optional*): | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`. | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
<Tip>
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import AutoPipelineForText2Image
>>> pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
>>> image = pipeline(prompt).images[0]
```
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None) | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
load_config_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"proxies": proxies,
"token": token,
"local_files_only": local_files_only,
"revision": revision,
}
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
orig_class_name = config["_class_name"]
if "ControlPipeline" in orig_class_name:
to_replace = "ControlPipeline"
else:
to_replace = "Pipeline" | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
if "controlnet" in kwargs:
if isinstance(kwargs["controlnet"], ControlNetUnionModel):
orig_class_name = config["_class_name"].replace(to_replace, "ControlNetUnionPipeline")
else:
orig_class_name = config["_class_name"].replace(to_replace, "ControlNetPipeline")
if "enable_pag" in kwargs:
enable_pag = kwargs.pop("enable_pag")
if enable_pag:
orig_class_name = orig_class_name.replace(to_replace, "PAGPipeline")
text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name)
kwargs = {**load_config_kwargs, **kwargs}
return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)
@classmethod
def from_pipe(cls, pipeline, **kwargs):
r"""
Instantiates a text-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class. | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-image
pipeline linked to the pipeline class using pattern matching on pipeline class name.
All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
additional memory.
The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pipeline (`DiffusionPipeline`):
an instantiated `DiffusionPipeline` object
```py
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
>>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
... "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False
... )
>>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
>>> image = pipe_t2i(prompt).images[0]
```
""" | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
original_config = dict(pipeline.config)
original_cls_name = pipeline.__class__.__name__
# derive the pipeline class to instantiate
text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name)
if "controlnet" in kwargs:
if kwargs["controlnet"] is not None:
to_replace = "PAGPipeline" if "PAG" in text_2_image_cls.__name__ else "Pipeline"
text_2_image_cls = _get_task_class(
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
text_2_image_cls.__name__.replace("ControlNet", "").replace(to_replace, "ControlNet" + to_replace),
)
else:
text_2_image_cls = _get_task_class(
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
text_2_image_cls.__name__.replace("ControlNet", ""),
) | 32 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/auto_pipeline.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.