text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
Whether to disable mmap when loading a Safetensors model. This option can perform better when the model is on a network mount or hard drive, which may not handle the seeky-ness of mmap very well. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to overwrite load and saveable variables (for example the pipeline components of the specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` method. See example below for more information.
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
```py >>> from diffusers import StableCascadeUNet >>> ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors" >>> model = StableCascadeUNet.from_single_file(ckpt_path) ``` """ mapping_class_name = _get_single_file_loadable_mapping_class(cls) # if class_name not in SINGLE_FILE_LOADABLE_CLASSES: if mapping_class_name is None: raise ValueError( f"FromOriginalModelMixin is currently only compatible with {', '.join(SINGLE_FILE_LOADABLE_CLASSES.keys())}" )
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
pretrained_model_link_or_path = kwargs.get("pretrained_model_link_or_path", None) if pretrained_model_link_or_path is not None: deprecation_message = ( "Please use `pretrained_model_link_or_path_or_dict` argument instead for model classes" ) deprecate("pretrained_model_link_or_path", "1.0.0", deprecation_message) pretrained_model_link_or_path_or_dict = pretrained_model_link_or_path config = kwargs.pop("config", None) original_config = kwargs.pop("original_config", None) if config is not None and original_config is not None: raise ValueError( "`from_single_file` cannot accept both `config` and `original_config` arguments. Please provide only one of these arguments" )
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) token = kwargs.pop("token", None) cache_dir = kwargs.pop("cache_dir", None) local_files_only = kwargs.pop("local_files_only", None) subfolder = kwargs.pop("subfolder", None) revision = kwargs.pop("revision", None) config_revision = kwargs.pop("config_revision", None) torch_dtype = kwargs.pop("torch_dtype", None) quantization_config = kwargs.pop("quantization_config", None) device = kwargs.pop("device", None) disable_mmap = kwargs.pop("disable_mmap", False)
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
if isinstance(pretrained_model_link_or_path_or_dict, dict): checkpoint = pretrained_model_link_or_path_or_dict else: checkpoint = load_single_file_checkpoint( pretrained_model_link_or_path_or_dict, force_download=force_download, proxies=proxies, token=token, cache_dir=cache_dir, local_files_only=local_files_only, revision=revision, disable_mmap=disable_mmap, ) if quantization_config is not None: hf_quantizer = DiffusersAutoQuantizer.from_config(quantization_config) hf_quantizer.validate_environment() else: hf_quantizer = None mapping_functions = SINGLE_FILE_LOADABLE_CLASSES[mapping_class_name]
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
checkpoint_mapping_fn = mapping_functions["checkpoint_mapping_fn"] if original_config is not None: if "config_mapping_fn" in mapping_functions: config_mapping_fn = mapping_functions["config_mapping_fn"] else: config_mapping_fn = None if config_mapping_fn is None: raise ValueError( ( f"`original_config` has been provided for {mapping_class_name} but no mapping function" "was found to convert the original config to a Diffusers config in" "`diffusers.loaders.single_file_utils`" ) ) if isinstance(original_config, str): # If original_config is a URL or filepath fetch the original_config dict original_config = fetch_original_config(original_config, local_files_only=local_files_only)
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
config_mapping_kwargs = _get_mapping_function_kwargs(config_mapping_fn, **kwargs) diffusers_model_config = config_mapping_fn( original_config=original_config, checkpoint=checkpoint, **config_mapping_kwargs ) else: if config is not None: if isinstance(config, str): default_pretrained_model_config_name = config else: raise ValueError( ( "Invalid `config` argument. Please provide a string representing a repo id" "or path to a local Diffusers model repo." ) ) else: config = fetch_diffusers_config(checkpoint) default_pretrained_model_config_name = config["pretrained_model_name_or_path"]
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
if "default_subfolder" in mapping_functions: subfolder = mapping_functions["default_subfolder"] subfolder = subfolder or config.pop( "subfolder", None ) # some configs contain a subfolder key, e.g. StableCascadeUNet diffusers_model_config = cls.load_config( pretrained_model_name_or_path=default_pretrained_model_config_name, subfolder=subfolder, local_files_only=local_files_only, token=token, revision=config_revision, ) expected_kwargs, optional_kwargs = cls._get_signature_keys(cls)
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
# Map legacy kwargs to new kwargs if "legacy_kwargs" in mapping_functions: legacy_kwargs = mapping_functions["legacy_kwargs"] for legacy_key, new_key in legacy_kwargs.items(): if legacy_key in kwargs: kwargs[new_key] = kwargs.pop(legacy_key) model_kwargs = {k: kwargs.get(k) for k in kwargs if k in expected_kwargs or k in optional_kwargs} diffusers_model_config.update(model_kwargs) checkpoint_mapping_kwargs = _get_mapping_function_kwargs(checkpoint_mapping_fn, **kwargs) diffusers_format_checkpoint = checkpoint_mapping_fn( config=diffusers_model_config, checkpoint=checkpoint, **checkpoint_mapping_kwargs ) if not diffusers_format_checkpoint: raise SingleFileComponentError( f"Failed to load {mapping_class_name}. Weights for this component appear to be missing in the checkpoint." )
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
ctx = init_empty_weights if is_accelerate_available() else nullcontext with ctx(): model = cls.from_config(diffusers_model_config) # Check if `_keep_in_fp32_modules` is not None use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and ( (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules") ) if use_keep_in_fp32_modules: keep_in_fp32_modules = cls._keep_in_fp32_modules if not isinstance(keep_in_fp32_modules, list): keep_in_fp32_modules = [keep_in_fp32_modules] else: keep_in_fp32_modules = [] if hf_quantizer is not None: hf_quantizer.preprocess_model( model=model, device_map=None, state_dict=diffusers_format_checkpoint, keep_in_fp32_modules=keep_in_fp32_modules, )
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
if is_accelerate_available(): param_device = torch.device(device) if device else torch.device("cpu") named_buffers = model.named_buffers() unexpected_keys = load_model_dict_into_meta( model, diffusers_format_checkpoint, dtype=torch_dtype, device=param_device, hf_quantizer=hf_quantizer, keep_in_fp32_modules=keep_in_fp32_modules, named_buffers=named_buffers, ) else: _, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False) if model._keys_to_ignore_on_load_unexpected is not None: for pat in model._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
if len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" ) if hf_quantizer is not None: hf_quantizer.postprocess_model(model) model.hf_quantizer = hf_quantizer if torch_dtype is not None and hf_quantizer is None: model.to(torch_dtype) model.eval() return model
1,259
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py
class LoraBaseMixin: """Utility class for handling LoRAs.""" _lora_loadable_modules = [] num_fused_loras = 0 def load_lora_weights(self, **kwargs): raise NotImplementedError("`load_lora_weights()` is not implemented.") @classmethod def save_lora_weights(cls, **kwargs): raise NotImplementedError("`save_lora_weights()` not implemented.") @classmethod def lora_state_dict(cls, **kwargs): raise NotImplementedError("`lora_state_dict()` is not implemented.") @classmethod def _optionally_disable_offloading(cls, _pipeline): """ Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU. Args: _pipeline (`DiffusionPipeline`): The pipeline to disable offloading for.
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
Returns: tuple: A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True. """ return _func_optionally_disable_offloading(_pipeline=_pipeline) @classmethod def _fetch_state_dict(cls, *args, **kwargs): deprecation_message = f"Using the `_fetch_state_dict()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _fetch_state_dict`." deprecate("_fetch_state_dict", "0.35.0", deprecation_message) return _fetch_state_dict(*args, **kwargs)
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
@classmethod def _best_guess_weight_name(cls, *args, **kwargs): deprecation_message = f"Using the `_best_guess_weight_name()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _best_guess_weight_name`." deprecate("_best_guess_weight_name", "0.35.0", deprecation_message) return _best_guess_weight_name(*args, **kwargs) def unload_lora_weights(self): """ Unloads the LoRA parameters. Examples: ```python >>> # Assuming `pipeline` is already loaded with the LoRA parameters. >>> pipeline.unload_lora_weights() >>> ... ``` """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.")
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
for component in self._lora_loadable_modules: model = getattr(self, component, None) if model is not None: if issubclass(model.__class__, ModelMixin): model.unload_lora() elif issubclass(model.__class__, PreTrainedModel): _remove_text_encoder_monkey_patch(model) def fuse_lora( self, components: List[str] = [], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. <Tip warning={true}> This is an experimental API. </Tip>
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ if "fuse_unet" in kwargs: depr_message = "Passing `fuse_unet` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_unet` will be removed in a future version." deprecate( "fuse_unet", "1.0.0", depr_message, ) if "fuse_transformer" in kwargs:
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
depr_message = "Passing `fuse_transformer` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_transformer` will be removed in a future version." deprecate( "fuse_transformer", "1.0.0", depr_message, ) if "fuse_text_encoder" in kwargs: depr_message = "Passing `fuse_text_encoder` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_text_encoder` will be removed in a future version." deprecate( "fuse_text_encoder", "1.0.0", depr_message, )
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
if len(components) == 0: raise ValueError("`components` cannot be an empty list.") for fuse_component in components: if fuse_component not in self._lora_loadable_modules: raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.") model = getattr(self, fuse_component, None) if model is not None: # check if diffusers model if issubclass(model.__class__, ModelMixin): model.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) # handle transformers models. if issubclass(model.__class__, PreTrainedModel): fuse_text_encoder_lora( model, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) self.num_fused_loras += 1
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
def unfuse_lora(self, components: List[str] = [], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). <Tip warning={true}> This is an experimental API. </Tip>
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. unfuse_text_encoder (`bool`, defaults to `True`): Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the LoRA parameters then it won't have any effect. """ if "unfuse_unet" in kwargs: depr_message = "Passing `unfuse_unet` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_unet` will be removed in a future version." deprecate( "unfuse_unet", "1.0.0", depr_message, ) if "unfuse_transformer" in kwargs:
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
depr_message = "Passing `unfuse_transformer` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_transformer` will be removed in a future version." deprecate( "unfuse_transformer", "1.0.0", depr_message, ) if "unfuse_text_encoder" in kwargs: depr_message = "Passing `unfuse_text_encoder` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_text_encoder` will be removed in a future version." deprecate( "unfuse_text_encoder", "1.0.0", depr_message, )
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
if len(components) == 0: raise ValueError("`components` cannot be an empty list.") for fuse_component in components: if fuse_component not in self._lora_loadable_modules: raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.") model = getattr(self, fuse_component, None) if model is not None: if issubclass(model.__class__, (ModelMixin, PreTrainedModel)): for module in model.modules(): if isinstance(module, BaseTunerLayer): module.unmerge() self.num_fused_loras -= 1 def set_adapters( self, adapter_names: Union[List[str], str], adapter_weights: Optional[Union[float, Dict, List[float], List[Dict]]] = None, ): adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names adapter_weights = copy.deepcopy(adapter_weights)
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
# Expand weights into a list, one entry per adapter if not isinstance(adapter_weights, list): adapter_weights = [adapter_weights] * len(adapter_names) if len(adapter_names) != len(adapter_weights): raise ValueError( f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(adapter_weights)}" ) list_adapters = self.get_list_adapters() # eg {"unet": ["adapter1", "adapter2"], "text_encoder": ["adapter2"]} # eg ["adapter1", "adapter2"] all_adapters = {adapter for adapters in list_adapters.values() for adapter in adapters} missing_adapters = set(adapter_names) - all_adapters if len(missing_adapters) > 0: raise ValueError( f"Adapter name(s) {missing_adapters} not in the list of present adapters: {all_adapters}." )
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
# eg {"adapter1": ["unet"], "adapter2": ["unet", "text_encoder"]} invert_list_adapters = { adapter: [part for part, adapters in list_adapters.items() if adapter in adapters] for adapter in all_adapters } # Decompose weights into weights for denoiser and text encoders. _component_adapter_weights = {} for component in self._lora_loadable_modules: model = getattr(self, component) for adapter_name, weights in zip(adapter_names, adapter_weights): if isinstance(weights, dict): component_adapter_weights = weights.pop(component, None) if component_adapter_weights is not None and not hasattr(self, component): logger.warning( f"Lora weight dict contains {component} weights but will be ignored because pipeline does not have {component}." )
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
if component_adapter_weights is not None and component not in invert_list_adapters[adapter_name]: logger.warning( ( f"Lora weight dict for adapter '{adapter_name}' contains {component}," f"but this will be ignored because {adapter_name} does not contain weights for {component}." f"Valid parts for {adapter_name} are: {invert_list_adapters[adapter_name]}." ) ) else: component_adapter_weights = weights _component_adapter_weights.setdefault(component, []) _component_adapter_weights[component].append(component_adapter_weights)
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
if issubclass(model.__class__, ModelMixin): model.set_adapters(adapter_names, _component_adapter_weights[component]) elif issubclass(model.__class__, PreTrainedModel): set_adapters_for_text_encoder(adapter_names, model, _component_adapter_weights[component]) def disable_lora(self): if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") for component in self._lora_loadable_modules: model = getattr(self, component, None) if model is not None: if issubclass(model.__class__, ModelMixin): model.disable_lora() elif issubclass(model.__class__, PreTrainedModel): disable_lora_for_text_encoder(model) def enable_lora(self): if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.")
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
for component in self._lora_loadable_modules: model = getattr(self, component, None) if model is not None: if issubclass(model.__class__, ModelMixin): model.enable_lora() elif issubclass(model.__class__, PreTrainedModel): enable_lora_for_text_encoder(model) def delete_adapters(self, adapter_names: Union[List[str], str]): """ Args: Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s). adapter_names (`Union[List[str], str]`): The names of the adapter to delete. Can be a single string or a list of strings """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") if isinstance(adapter_names, str): adapter_names = [adapter_names]
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
for component in self._lora_loadable_modules: model = getattr(self, component, None) if model is not None: if issubclass(model.__class__, ModelMixin): model.delete_adapters(adapter_names) elif issubclass(model.__class__, PreTrainedModel): for adapter_name in adapter_names: delete_adapter_layers(model, adapter_name) def get_active_adapters(self) -> List[str]: """ Gets the list of the current active adapters. Example: ```python from diffusers import DiffusionPipeline
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", ).to("cuda") pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy") pipeline.get_active_adapters() ``` """ if not USE_PEFT_BACKEND: raise ValueError( "PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`" ) active_adapters = [] for component in self._lora_loadable_modules: model = getattr(self, component, None) if model is not None and issubclass(model.__class__, ModelMixin): for module in model.modules(): if isinstance(module, BaseTunerLayer): active_adapters = module.active_adapters break return active_adapters
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
def get_list_adapters(self) -> Dict[str, List[str]]: """ Gets the current list of all available adapters in the pipeline. """ if not USE_PEFT_BACKEND: raise ValueError( "PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`" ) set_adapters = {} for component in self._lora_loadable_modules: model = getattr(self, component, None) if ( model is not None and issubclass(model.__class__, (ModelMixin, PreTrainedModel)) and hasattr(model, "peft_config") ): set_adapters[component] = list(model.peft_config.keys()) return set_adapters
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None: """ Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case you want to load multiple adapters and free some GPU memory. Args: adapter_names (`List[str]`): List of adapters to send device to. device (`Union[torch.device, str, int]`): Device to send the adapters to. Can be either a torch device, a str or an integer. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.")
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
for component in self._lora_loadable_modules: model = getattr(self, component, None) if model is not None: for module in model.modules(): if isinstance(module, BaseTunerLayer): for adapter_name in adapter_names: module.lora_A[adapter_name].to(device) module.lora_B[adapter_name].to(device) # this is a param, not a module, so device placement is not in-place -> re-assign if hasattr(module, "lora_magnitude_vector") and module.lora_magnitude_vector is not None: if adapter_name in module.lora_magnitude_vector: module.lora_magnitude_vector[adapter_name] = module.lora_magnitude_vector[ adapter_name ].to(device)
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
@staticmethod def pack_weights(layers, prefix): layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} return layers_state_dict @staticmethod def write_lora_layers( state_dict: Dict[str, torch.Tensor], save_directory: str, is_main_process: bool, weight_name: str, save_function: Callable, safe_serialization: bool, ): if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return if save_function is None: if safe_serialization: def save_function(weights, filename): return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) else: save_function = torch.save
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
os.makedirs(save_directory, exist_ok=True) if weight_name is None: if safe_serialization: weight_name = LORA_WEIGHT_NAME_SAFE else: weight_name = LORA_WEIGHT_NAME save_path = Path(save_directory, weight_name).as_posix() save_function(state_dict, save_path) logger.info(f"Model weights saved in {save_path}") @property def lora_scale(self) -> float: # property function that returns the lora scale which can be set at run time by the pipeline. # if _lora_scale has not been set, return 1 return self._lora_scale if hasattr(self, "_lora_scale") else 1.0
1,260
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py
class SingleFileComponentError(Exception): def __init__(self, message=None): self.message = message super().__init__(self.message)
1,261
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_utils.py
class StableDiffusionLoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). """ _lora_loadable_modules = ["unet", "text_encoder"] unet_name = UNET_NAME text_encoder_name = TEXT_ENCODER_NAME def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into `self.unet`.
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded into `self.text_encoder`.
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. kwargs (`dict`, *optional*): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.")
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # if a dict is passed, copy it instead of modifying it inplace if isinstance(pretrained_model_name_or_path_or_dict, dict): pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.")
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
self.load_lora_into_unet( state_dict, network_alphas=network_alphas, unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) self.load_lora_into_text_encoder( state_dict, network_alphas=network_alphas, text_encoder=getattr(self, self.text_encoder_name) if not hasattr(self, "text_encoder") else self.text_encoder, lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod @validate_hf_hub_args def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas.
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
<Tip warning={true}> We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future. </Tip> Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`):
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
The subfolder location of a model file within a larger model repository on the Hub or locally. weight_name (`str`, *optional*, defaults to None): Name of the serialized state dict file. """ # Load the main state dict first which has the LoRA layers for either of # UNet and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) unet_config = kwargs.pop("unet_config", None) use_safetensors = kwargs.pop("use_safetensors", None)
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", }
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) is_dora_scale_present = any("dora_scale" in k for k in state_dict) if is_dora_scale_present: warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." logger.warning(warn_msg)
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
network_alphas = None # TODO: replace it with a method from `state_dict_utils` if all( ( k.startswith("lora_te_") or k.startswith("lora_unet_") or k.startswith("lora_te1_") or k.startswith("lora_te2_") ) for k in state_dict.keys() ): # Map SDXL blocks correctly. if unet_config is not None: # use unet config to remap block numbers state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict) return state_dict, network_alphas @classmethod def load_lora_into_unet( cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `unet`.
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). unet (`UNet2DConditionModel`): The UNet model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
`default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading only loading the pretrained LoRA weights and not initializing the random weights. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.")
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." )
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as # their prefixes. keys = list(state_dict.keys()) only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys) if not only_text_encoder: # Load the layers corresponding to UNet. logger.info(f"Loading {cls.unet_name}.") unet.load_lora_adapter( state_dict, prefix=cls.unet_name, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, )
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
@classmethod def load_lora_into_text_encoder( cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False, ): """ This will load the LoRA layers specified in `state_dict` into `text_encoder`
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The key should be prefixed with an additional `text_encoder` to distinguish between unet lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). text_encoder (`CLIPTextModel`): The text encoder model to load the LoRA layers into. prefix (`str`): Expected prefix of the `text_encoder` in the `state_dict`. lora_scale (`float`): How much to scale the output of the lora linear layer before it is added with the output of the regular
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
lora layer. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ _load_lora_into_text_encoder( state_dict=state_dict, network_alphas=network_alphas, lora_scale=lora_scale, text_encoder=text_encoder, prefix=prefix, text_encoder_name=cls.text_encoder_name, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, )
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
@classmethod def save_lora_weights( cls, save_directory: Union[str, os.PathLike], unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder.
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `unet`. text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`):
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {}
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
if not (unet_lora_layers or text_encoder_lora_layers): raise ValueError("You must pass at least one of `unet_lora_layers` and `text_encoder_lora_layers`.") if unet_lora_layers: state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name)) if text_encoder_lora_layers: state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) # Save the model cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, )
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
def fuse_lora( self, components: List[str] = ["unet", "text_encoder"], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. <Tip warning={true}> This is an experimental API. </Tip> Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Example: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ super().fuse_lora( components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). <Tip warning={true}> This is an experimental API. </Tip>
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. unfuse_text_encoder (`bool`, defaults to `True`): Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the LoRA parameters then it won't have any effect. """ super().unfuse_lora(components=components)
1,262
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`], [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection). """ _lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"] unet_name = UNET_NAME text_encoder_name = TEXT_ENCODER_NAME def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name: Optional[str] = None, **kwargs, ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`.
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into `self.unet`. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded into `self.text_encoder`.
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. kwargs (`dict`, *optional*): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.")
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # We could have accessed the unet config from `lora_state_dict()` too. We pass # it here explicitly to be able to tell that it's coming from an SDXL # pipeline. # if a dict is passed, copy it instead of modifying it inplace if isinstance(pretrained_model_name_or_path_or_dict, dict): pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
# First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict, network_alphas = self.lora_state_dict( pretrained_model_name_or_path_or_dict, unet_config=self.unet.config, **kwargs, ) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.")
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
self.load_lora_into_unet( state_dict, network_alphas=network_alphas, unet=self.unet, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} if len(text_encoder_state_dict) > 0: self.load_lora_into_text_encoder( text_encoder_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder, prefix="text_encoder", lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, )
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} if len(text_encoder_2_state_dict) > 0: self.load_lora_into_text_encoder( text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder_2, prefix="text_encoder_2", lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod @validate_hf_hub_args # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.lora_state_dict def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas. <Tip warning={true}>
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future. </Tip> Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`):
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
The subfolder location of a model file within a larger model repository on the Hub or locally. weight_name (`str`, *optional*, defaults to None): Name of the serialized state dict file. """ # Load the main state dict first which has the LoRA layers for either of # UNet and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) unet_config = kwargs.pop("unet_config", None) use_safetensors = kwargs.pop("use_safetensors", None)
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", }
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) is_dora_scale_present = any("dora_scale" in k for k in state_dict) if is_dora_scale_present: warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." logger.warning(warn_msg)
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
network_alphas = None # TODO: replace it with a method from `state_dict_utils` if all( ( k.startswith("lora_te_") or k.startswith("lora_unet_") or k.startswith("lora_te1_") or k.startswith("lora_te2_") ) for k in state_dict.keys() ): # Map SDXL blocks correctly. if unet_config is not None: # use unet config to remap block numbers state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict) return state_dict, network_alphas
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
@classmethod # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_unet def load_lora_into_unet( cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `unet`.
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). unet (`UNet2DConditionModel`): The UNet model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
`default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading only loading the pretrained LoRA weights and not initializing the random weights. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.")
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." )
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as # their prefixes. keys = list(state_dict.keys()) only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys) if not only_text_encoder: # Load the layers corresponding to UNet. logger.info(f"Loading {cls.unet_name}.") unet.load_lora_adapter( state_dict, prefix=cls.unet_name, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, )
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
@classmethod # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder def load_lora_into_text_encoder( cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False, ): """ This will load the LoRA layers specified in `state_dict` into `text_encoder`
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The key should be prefixed with an additional `text_encoder` to distinguish between unet lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). text_encoder (`CLIPTextModel`): The text encoder model to load the LoRA layers into. prefix (`str`): Expected prefix of the `text_encoder` in the `state_dict`. lora_scale (`float`): How much to scale the output of the lora linear layer before it is added with the output of the regular
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
lora layer. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ _load_lora_into_text_encoder( state_dict=state_dict, network_alphas=network_alphas, lora_scale=lora_scale, text_encoder=text_encoder, prefix=prefix, text_encoder_name=cls.text_encoder_name, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, )
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
@classmethod def save_lora_weights( cls, save_directory: Union[str, os.PathLike], unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder.
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `unet`. text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. is_main_process (`bool`, *optional*, defaults to `True`):
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {}
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): raise ValueError( "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`." ) if unet_lora_layers: state_dict.update(cls.pack_weights(unet_lora_layers, "unet")) if text_encoder_lora_layers: state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder")) if text_encoder_2_lora_layers: state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, )
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
def fuse_lora( self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. <Tip warning={true}> This is an experimental API. </Tip>
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ super().fuse_lora( components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). <Tip warning={true}> This is an experimental API. </Tip>
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. unfuse_text_encoder (`bool`, defaults to `True`): Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the LoRA parameters then it won't have any effect. """ super().unfuse_lora(components=components)
1,263
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
class SD3LoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into [`SD3Transformer2DModel`], [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection). Specific to [`StableDiffusion3Pipeline`]. """ _lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"] transformer_name = TRANSFORMER_NAME text_encoder_name = TEXT_ENCODER_NAME @classmethod @validate_hf_hub_args def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas. <Tip warning={true}> We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future.
1,264
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
</Tip> Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
1,264
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.
1,264
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`):
1,264
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py
The subfolder location of a model file within a larger model repository on the Hub or locally.
1,264
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py