text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
Parameters:
encoder_hidden_size (`int`, *optional*, defaults to 128):
Intermediate representation dimension for the encoder.
downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 4, 8, 8]`):
Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
channel_multiples (`List[int]`, *optional*, defaults to `[1, 2, 4, 8, 16]`):
Multiples used to determine the hidden sizes of the hidden layers.
decoder_channels (`int`, *optional*, defaults to 128):
Intermediate representation dimension for the decoder.
decoder_input_channels (`int`, *optional*, defaults to 64):
Input dimension for the decoder. Corresponds to the latent dimension.
audio_channels (`int`, *optional*, defaults to 2):
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
sampling_rate (`int`, *optional*, defaults to 44100): | 1,201 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py |
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
""" | 1,201 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py |
_supports_gradient_checkpointing = False
@register_to_config
def __init__(
self,
encoder_hidden_size=128,
downsampling_ratios=[2, 4, 4, 8, 8],
channel_multiples=[1, 2, 4, 8, 16],
decoder_channels=128,
decoder_input_channels=64,
audio_channels=2,
sampling_rate=44100,
):
super().__init__()
self.encoder_hidden_size = encoder_hidden_size
self.downsampling_ratios = downsampling_ratios
self.decoder_channels = decoder_channels
self.upsampling_ratios = downsampling_ratios[::-1]
self.hop_length = int(np.prod(downsampling_ratios))
self.sampling_rate = sampling_rate
self.encoder = OobleckEncoder(
encoder_hidden_size=encoder_hidden_size,
audio_channels=audio_channels,
downsampling_ratios=downsampling_ratios,
channel_multiples=channel_multiples,
) | 1,201 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py |
self.decoder = OobleckDecoder(
channels=decoder_channels,
input_channels=decoder_input_channels,
audio_channels=audio_channels,
upsampling_ratios=self.upsampling_ratios,
channel_multiples=channel_multiples,
)
self.use_slicing = False
def enable_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False | 1,201 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py |
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderOobleckOutput, Tuple[OobleckDiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded images. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self.encoder(x)
posterior = OobleckDiagonalGaussianDistribution(h) | 1,201 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py |
if not return_dict:
return (posterior,)
return AutoencoderOobleckOutput(latent_dist=posterior)
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[OobleckDecoderOutput, torch.Tensor]:
dec = self.decoder(z)
if not return_dict:
return (dec,)
return OobleckDecoderOutput(sample=dec)
@apply_forward_hook
def decode(
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
) -> Union[OobleckDecoderOutput, torch.FloatTensor]:
"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.OobleckDecoderOutput`] instead of a plain tuple. | 1,201 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py |
Returns:
[`~models.vae.OobleckDecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.OobleckDecoderOutput`] is returned, otherwise a plain `tuple`
is returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return OobleckDecoderOutput(sample=decoded) | 1,201 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py |
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[OobleckDecoderOutput, torch.Tensor]:
r"""
Args:
sample (`torch.Tensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`OobleckDecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z).sample
if not return_dict:
return (dec,)
return OobleckDecoderOutput(sample=dec) | 1,201 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py |
class LTXVideoCausalConv3d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int, int]] = 3,
stride: Union[int, Tuple[int, int, int]] = 1,
dilation: Union[int, Tuple[int, int, int]] = 1,
groups: int = 1,
padding_mode: str = "zeros",
is_causal: bool = True,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.is_causal = is_causal
self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size, kernel_size)
dilation = dilation if isinstance(dilation, tuple) else (dilation, 1, 1)
stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
height_pad = self.kernel_size[1] // 2
width_pad = self.kernel_size[2] // 2
padding = (0, height_pad, width_pad) | 1,202 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
self.conv = nn.Conv3d(
in_channels,
out_channels,
self.kernel_size,
stride=stride,
dilation=dilation,
groups=groups,
padding=padding,
padding_mode=padding_mode,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
time_kernel_size = self.kernel_size[0]
if self.is_causal:
pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, time_kernel_size - 1, 1, 1))
hidden_states = torch.concatenate([pad_left, hidden_states], dim=2)
else:
pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
pad_right = hidden_states[:, :, -1:, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
hidden_states = torch.concatenate([pad_left, hidden_states, pad_right], dim=2)
hidden_states = self.conv(hidden_states)
return hidden_states | 1,202 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
class LTXVideoResnetBlock3d(nn.Module):
r"""
A 3D ResNet block used in the LTXVideo model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
dropout (`float`, defaults to `0.0`):
Dropout rate.
eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
elementwise_affine (`bool`, defaults to `False`):
Whether to enable elementwise affinity in the normalization layers.
non_linearity (`str`, defaults to `"swish"`):
Activation function to use.
conv_shortcut (bool, defaults to `False`):
Whether or not to use a convolution shortcut.
""" | 1,203 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
dropout: float = 0.0,
eps: float = 1e-6,
elementwise_affine: bool = False,
non_linearity: str = "swish",
is_causal: bool = True,
inject_noise: bool = False,
timestep_conditioning: bool = False,
) -> None:
super().__init__()
out_channels = out_channels or in_channels
self.nonlinearity = get_activation(non_linearity)
self.norm1 = RMSNorm(in_channels, eps=1e-8, elementwise_affine=elementwise_affine)
self.conv1 = LTXVideoCausalConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
) | 1,203 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
self.norm2 = RMSNorm(out_channels, eps=1e-8, elementwise_affine=elementwise_affine)
self.dropout = nn.Dropout(dropout)
self.conv2 = LTXVideoCausalConv3d(
in_channels=out_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
)
self.norm3 = None
self.conv_shortcut = None
if in_channels != out_channels:
self.norm3 = nn.LayerNorm(in_channels, eps=eps, elementwise_affine=True, bias=True)
self.conv_shortcut = LTXVideoCausalConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_causal=is_causal
)
self.per_channel_scale1 = None
self.per_channel_scale2 = None
if inject_noise:
self.per_channel_scale1 = nn.Parameter(torch.zeros(in_channels, 1, 1))
self.per_channel_scale2 = nn.Parameter(torch.zeros(in_channels, 1, 1)) | 1,203 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
self.scale_shift_table = None
if timestep_conditioning:
self.scale_shift_table = nn.Parameter(torch.randn(4, in_channels) / in_channels**0.5)
def forward(
self, inputs: torch.Tensor, temb: Optional[torch.Tensor] = None, generator: Optional[torch.Generator] = None
) -> torch.Tensor:
hidden_states = inputs
hidden_states = self.norm1(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.scale_shift_table is not None:
temb = temb.unflatten(1, (4, -1)) + self.scale_shift_table[None, ..., None, None, None]
shift_1, scale_1, shift_2, scale_2 = temb.unbind(dim=1)
hidden_states = hidden_states * (1 + scale_1) + shift_1
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states) | 1,203 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
if self.per_channel_scale1 is not None:
spatial_shape = hidden_states.shape[-2:]
spatial_noise = torch.randn(
spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
)[None]
hidden_states = hidden_states + (spatial_noise * self.per_channel_scale1)[None, :, None, ...]
hidden_states = self.norm2(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.scale_shift_table is not None:
hidden_states = hidden_states * (1 + scale_2) + shift_2
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states) | 1,203 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
if self.per_channel_scale2 is not None:
spatial_shape = hidden_states.shape[-2:]
spatial_noise = torch.randn(
spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
)[None]
hidden_states = hidden_states + (spatial_noise * self.per_channel_scale2)[None, :, None, ...]
if self.norm3 is not None:
inputs = self.norm3(inputs.movedim(1, -1)).movedim(-1, 1)
if self.conv_shortcut is not None:
inputs = self.conv_shortcut(inputs)
hidden_states = hidden_states + inputs
return hidden_states | 1,203 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
class LTXVideoUpsampler3d(nn.Module):
def __init__(
self,
in_channels: int,
stride: Union[int, Tuple[int, int, int]] = 1,
is_causal: bool = True,
residual: bool = False,
upscale_factor: int = 1,
) -> None:
super().__init__()
self.stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
self.residual = residual
self.upscale_factor = upscale_factor
out_channels = (in_channels * stride[0] * stride[1] * stride[2]) // upscale_factor
self.conv = LTXVideoCausalConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=1,
is_causal=is_causal,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = hidden_states.shape | 1,204 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
if self.residual:
residual = hidden_states.reshape(
batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
)
residual = residual.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
repeats = (self.stride[0] * self.stride[1] * self.stride[2]) // self.upscale_factor
residual = residual.repeat(1, repeats, 1, 1, 1)
residual = residual[:, :, self.stride[0] - 1 :]
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.reshape(
batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
)
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
hidden_states = hidden_states[:, :, self.stride[0] - 1 :]
if self.residual:
hidden_states = hidden_states + residual
return hidden_states | 1,204 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
class LTXVideoDownBlock3D(nn.Module):
r"""
Down block used in the LTXVideo model. | 1,205 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
num_layers (`int`, defaults to `1`):
Number of resnet layers.
dropout (`float`, defaults to `0.0`):
Dropout rate.
resnet_eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
resnet_act_fn (`str`, defaults to `"swish"`):
Activation function to use.
spatio_temporal_scale (`bool`, defaults to `True`):
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
Whether or not to downsample across temporal dimension.
is_causal (`bool`, defaults to `True`):
Whether this layer behaves causally (future frames depend only on past frames) or not.
"""
_supports_gradient_checkpointing = True | 1,205 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
spatio_temporal_scale: bool = True,
is_causal: bool = True,
):
super().__init__()
out_channels = out_channels or in_channels
resnets = []
for _ in range(num_layers):
resnets.append(
LTXVideoResnetBlock3d(
in_channels=in_channels,
out_channels=in_channels,
dropout=dropout,
eps=resnet_eps,
non_linearity=resnet_act_fn,
is_causal=is_causal,
)
)
self.resnets = nn.ModuleList(resnets) | 1,205 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
self.downsamplers = None
if spatio_temporal_scale:
self.downsamplers = nn.ModuleList(
[
LTXVideoCausalConv3d(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
stride=(2, 2, 2),
is_causal=is_causal,
)
]
)
self.conv_out = None
if in_channels != out_channels:
self.conv_out = LTXVideoResnetBlock3d(
in_channels=in_channels,
out_channels=out_channels,
dropout=dropout,
eps=resnet_eps,
non_linearity=resnet_act_fn,
is_causal=is_causal,
)
self.gradient_checkpointing = False | 1,205 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
) -> torch.Tensor:
r"""Forward method of the `LTXDownBlock3D` class."""
for i, resnet in enumerate(self.resnets):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, generator
)
else:
hidden_states = resnet(hidden_states, temb, generator)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states) | 1,205 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
if self.conv_out is not None:
hidden_states = self.conv_out(hidden_states, temb, generator)
return hidden_states | 1,205 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
class LTXVideoMidBlock3d(nn.Module):
r"""
A middle block used in the LTXVideo model.
Args:
in_channels (`int`):
Number of input channels.
num_layers (`int`, defaults to `1`):
Number of resnet layers.
dropout (`float`, defaults to `0.0`):
Dropout rate.
resnet_eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
resnet_act_fn (`str`, defaults to `"swish"`):
Activation function to use.
is_causal (`bool`, defaults to `True`):
Whether this layer behaves causally (future frames depend only on past frames) or not.
"""
_supports_gradient_checkpointing = True | 1,206 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def __init__(
self,
in_channels: int,
num_layers: int = 1,
dropout: float = 0.0,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
is_causal: bool = True,
inject_noise: bool = False,
timestep_conditioning: bool = False,
) -> None:
super().__init__()
self.time_embedder = None
if timestep_conditioning:
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0) | 1,206 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
resnets = []
for _ in range(num_layers):
resnets.append(
LTXVideoResnetBlock3d(
in_channels=in_channels,
out_channels=in_channels,
dropout=dropout,
eps=resnet_eps,
non_linearity=resnet_act_fn,
is_causal=is_causal,
inject_noise=inject_noise,
timestep_conditioning=timestep_conditioning,
)
)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
) -> torch.Tensor:
r"""Forward method of the `LTXMidBlock3D` class.""" | 1,206 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
if self.time_embedder is not None:
temb = self.time_embedder(
timestep=temb.flatten(),
resolution=None,
aspect_ratio=None,
batch_size=hidden_states.size(0),
hidden_dtype=hidden_states.dtype,
)
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
for i, resnet in enumerate(self.resnets):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, generator
)
else:
hidden_states = resnet(hidden_states, temb, generator)
return hidden_states | 1,206 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
class LTXVideoUpBlock3d(nn.Module):
r"""
Up block used in the LTXVideo model. | 1,207 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
num_layers (`int`, defaults to `1`):
Number of resnet layers.
dropout (`float`, defaults to `0.0`):
Dropout rate.
resnet_eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
resnet_act_fn (`str`, defaults to `"swish"`):
Activation function to use.
spatio_temporal_scale (`bool`, defaults to `True`):
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
Whether or not to downsample across temporal dimension.
is_causal (`bool`, defaults to `True`):
Whether this layer behaves causally (future frames depend only on past frames) or not.
"""
_supports_gradient_checkpointing = True | 1,207 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
spatio_temporal_scale: bool = True,
is_causal: bool = True,
inject_noise: bool = False,
timestep_conditioning: bool = False,
upsample_residual: bool = False,
upscale_factor: int = 1,
):
super().__init__()
out_channels = out_channels or in_channels
self.time_embedder = None
if timestep_conditioning:
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0) | 1,207 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
self.conv_in = None
if in_channels != out_channels:
self.conv_in = LTXVideoResnetBlock3d(
in_channels=in_channels,
out_channels=out_channels,
dropout=dropout,
eps=resnet_eps,
non_linearity=resnet_act_fn,
is_causal=is_causal,
inject_noise=inject_noise,
timestep_conditioning=timestep_conditioning,
)
self.upsamplers = None
if spatio_temporal_scale:
self.upsamplers = nn.ModuleList(
[
LTXVideoUpsampler3d(
out_channels * upscale_factor,
stride=(2, 2, 2),
is_causal=is_causal,
residual=upsample_residual,
upscale_factor=upscale_factor,
)
]
) | 1,207 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
resnets = []
for _ in range(num_layers):
resnets.append(
LTXVideoResnetBlock3d(
in_channels=out_channels,
out_channels=out_channels,
dropout=dropout,
eps=resnet_eps,
non_linearity=resnet_act_fn,
is_causal=is_causal,
inject_noise=inject_noise,
timestep_conditioning=timestep_conditioning,
)
)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
) -> torch.Tensor:
if self.conv_in is not None:
hidden_states = self.conv_in(hidden_states, temb, generator) | 1,207 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
if self.time_embedder is not None:
temb = self.time_embedder(
timestep=temb.flatten(),
resolution=None,
aspect_ratio=None,
batch_size=hidden_states.size(0),
hidden_dtype=hidden_states.dtype,
)
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
for i, resnet in enumerate(self.resnets):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward | 1,207 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, generator
)
else:
hidden_states = resnet(hidden_states, temb, generator)
return hidden_states | 1,207 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
class LTXVideoEncoder3d(nn.Module):
r"""
The `LTXVideoEncoder3d` layer of a variational autoencoder that encodes input video samples to its latent
representation. | 1,208 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
Args:
in_channels (`int`, defaults to 3):
Number of input channels.
out_channels (`int`, defaults to 128):
Number of latent channels.
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
The number of output channels for each block.
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
Whether a block should contain spatio-temporal downscaling layers or not.
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
The number of layers per block.
patch_size (`int`, defaults to `4`):
The size of spatial patches.
patch_size_t (`int`, defaults to `1`):
The size of temporal patches.
resnet_norm_eps (`float`, defaults to `1e-6`):
Epsilon value for ResNet normalization layers.
is_causal (`bool`, defaults to `True`): | 1,208 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
Whether this layer behaves causally (future frames depend only on past frames) or not.
""" | 1,208 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def __init__(
self,
in_channels: int = 3,
out_channels: int = 128,
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
patch_size: int = 4,
patch_size_t: int = 1,
resnet_norm_eps: float = 1e-6,
is_causal: bool = True,
):
super().__init__()
self.patch_size = patch_size
self.patch_size_t = patch_size_t
self.in_channels = in_channels * patch_size**2
output_channel = block_out_channels[0]
self.conv_in = LTXVideoCausalConv3d(
in_channels=self.in_channels,
out_channels=output_channel,
kernel_size=3,
stride=1,
is_causal=is_causal,
) | 1,208 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
# down blocks
num_block_out_channels = len(block_out_channels)
self.down_blocks = nn.ModuleList([])
for i in range(num_block_out_channels):
input_channel = output_channel
output_channel = block_out_channels[i + 1] if i + 1 < num_block_out_channels else block_out_channels[i]
down_block = LTXVideoDownBlock3D(
in_channels=input_channel,
out_channels=output_channel,
num_layers=layers_per_block[i],
resnet_eps=resnet_norm_eps,
spatio_temporal_scale=spatio_temporal_scaling[i],
is_causal=is_causal,
)
self.down_blocks.append(down_block)
# mid block
self.mid_block = LTXVideoMidBlock3d(
in_channels=output_channel,
num_layers=layers_per_block[-1],
resnet_eps=resnet_norm_eps,
is_causal=is_causal,
) | 1,208 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
# out
self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
self.conv_act = nn.SiLU()
self.conv_out = LTXVideoCausalConv3d(
in_channels=output_channel, out_channels=out_channels + 1, kernel_size=3, stride=1, is_causal=is_causal
)
self.gradient_checkpointing = False
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
r"""The forward method of the `LTXVideoEncoder3d` class."""
p = self.patch_size
p_t = self.patch_size_t
batch_size, num_channels, num_frames, height, width = hidden_states.shape
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p
post_patch_width = width // p | 1,208 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
hidden_states = hidden_states.reshape(
batch_size, num_channels, post_patch_num_frames, p_t, post_patch_height, p, post_patch_width, p
)
# Thanks for driving me insane with the weird patching order :(
hidden_states = hidden_states.permute(0, 1, 3, 7, 5, 2, 4, 6).flatten(1, 4)
hidden_states = self.conv_in(hidden_states)
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
for down_block in self.down_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), hidden_states)
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), hidden_states)
else:
for down_block in self.down_blocks:
hidden_states = down_block(hidden_states) | 1,208 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
hidden_states = self.mid_block(hidden_states)
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
last_channel = hidden_states[:, -1:]
last_channel = last_channel.repeat(1, hidden_states.size(1) - 2, 1, 1, 1)
hidden_states = torch.cat([hidden_states, last_channel], dim=1)
return hidden_states | 1,208 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
class LTXVideoDecoder3d(nn.Module):
r"""
The `LTXVideoDecoder3d` layer of a variational autoencoder that decodes its latent representation into an output
sample. | 1,209 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
Args:
in_channels (`int`, defaults to 128):
Number of latent channels.
out_channels (`int`, defaults to 3):
Number of output channels.
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
The number of output channels for each block.
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
Whether a block should contain spatio-temporal upscaling layers or not.
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
The number of layers per block.
patch_size (`int`, defaults to `4`):
The size of spatial patches.
patch_size_t (`int`, defaults to `1`):
The size of temporal patches.
resnet_norm_eps (`float`, defaults to `1e-6`):
Epsilon value for ResNet normalization layers.
is_causal (`bool`, defaults to `False`): | 1,209 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
Whether this layer behaves causally (future frames depend only on past frames) or not.
timestep_conditioning (`bool`, defaults to `False`):
Whether to condition the model on timesteps.
""" | 1,209 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def __init__(
self,
in_channels: int = 128,
out_channels: int = 3,
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
patch_size: int = 4,
patch_size_t: int = 1,
resnet_norm_eps: float = 1e-6,
is_causal: bool = False,
inject_noise: Tuple[bool, ...] = (False, False, False, False),
timestep_conditioning: bool = False,
upsample_residual: Tuple[bool, ...] = (False, False, False, False),
upsample_factor: Tuple[bool, ...] = (1, 1, 1, 1),
) -> None:
super().__init__()
self.patch_size = patch_size
self.patch_size_t = patch_size_t
self.out_channels = out_channels * patch_size**2 | 1,209 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
block_out_channels = tuple(reversed(block_out_channels))
spatio_temporal_scaling = tuple(reversed(spatio_temporal_scaling))
layers_per_block = tuple(reversed(layers_per_block))
inject_noise = tuple(reversed(inject_noise))
upsample_residual = tuple(reversed(upsample_residual))
upsample_factor = tuple(reversed(upsample_factor))
output_channel = block_out_channels[0]
self.conv_in = LTXVideoCausalConv3d(
in_channels=in_channels, out_channels=output_channel, kernel_size=3, stride=1, is_causal=is_causal
)
self.mid_block = LTXVideoMidBlock3d(
in_channels=output_channel,
num_layers=layers_per_block[0],
resnet_eps=resnet_norm_eps,
is_causal=is_causal,
inject_noise=inject_noise[0],
timestep_conditioning=timestep_conditioning,
) | 1,209 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
# up blocks
num_block_out_channels = len(block_out_channels)
self.up_blocks = nn.ModuleList([])
for i in range(num_block_out_channels):
input_channel = output_channel // upsample_factor[i]
output_channel = block_out_channels[i] // upsample_factor[i]
up_block = LTXVideoUpBlock3d(
in_channels=input_channel,
out_channels=output_channel,
num_layers=layers_per_block[i + 1],
resnet_eps=resnet_norm_eps,
spatio_temporal_scale=spatio_temporal_scaling[i],
is_causal=is_causal,
inject_noise=inject_noise[i + 1],
timestep_conditioning=timestep_conditioning,
upsample_residual=upsample_residual[i],
upscale_factor=upsample_factor[i],
)
self.up_blocks.append(up_block) | 1,209 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
# out
self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
self.conv_act = nn.SiLU()
self.conv_out = LTXVideoCausalConv3d(
in_channels=output_channel, out_channels=self.out_channels, kernel_size=3, stride=1, is_causal=is_causal
)
# timestep embedding
self.time_embedder = None
self.scale_shift_table = None
if timestep_conditioning:
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(output_channel * 2, 0)
self.scale_shift_table = nn.Parameter(torch.randn(2, output_channel) / output_channel**0.5)
self.gradient_checkpointing = False
def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
hidden_states = self.conv_in(hidden_states)
if torch.is_grad_enabled() and self.gradient_checkpointing: | 1,209 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), hidden_states, temb
)
for up_block in self.up_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), hidden_states, temb)
else:
hidden_states = self.mid_block(hidden_states, temb)
for up_block in self.up_blocks:
hidden_states = up_block(hidden_states, temb)
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) | 1,209 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
if self.time_embedder is not None:
temb = self.time_embedder(
timestep=temb.flatten(),
resolution=None,
aspect_ratio=None,
batch_size=hidden_states.size(0),
hidden_dtype=hidden_states.dtype,
)
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1).unflatten(1, (2, -1))
temb = temb + self.scale_shift_table[None, ..., None, None, None]
shift, scale = temb.unbind(dim=1)
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
p = self.patch_size
p_t = self.patch_size_t | 1,209 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
batch_size, num_channels, num_frames, height, width = hidden_states.shape
hidden_states = hidden_states.reshape(batch_size, -1, p_t, p, p, num_frames, height, width)
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 4, 7, 3).flatten(6, 7).flatten(4, 5).flatten(2, 3)
return hidden_states | 1,209 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
class AutoencoderKLLTXVideo(ModelMixin, ConfigMixin, FromOriginalModelMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
[LTX](https://huggingface.co/Lightricks/LTX-Video).
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving). | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
Args:
in_channels (`int`, defaults to `3`):
Number of input channels.
out_channels (`int`, defaults to `3`):
Number of output channels.
latent_channels (`int`, defaults to `128`):
Number of latent channels.
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
The number of output channels for each block.
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
Whether a block should contain spatio-temporal downscaling or not.
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
The number of layers per block.
patch_size (`int`, defaults to `4`):
The size of spatial patches.
patch_size_t (`int`, defaults to `1`):
The size of temporal patches.
resnet_norm_eps (`float`, defaults to `1e-6`):
Epsilon value for ResNet normalization layers. | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
scaling_factor (`float`, *optional*, defaults to `1.0`):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
encoder_causal (`bool`, defaults to `True`):
Whether the encoder should behave causally (future frames depend only on past frames) or not.
decoder_causal (`bool`, defaults to `False`): | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
Whether the decoder should behave causally (future frames depend only on past frames) or not.
""" | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
_supports_gradient_checkpointing = True | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
latent_channels: int = 128,
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
decoder_layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
decoder_spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
decoder_inject_noise: Tuple[bool, ...] = (False, False, False, False, False),
upsample_residual: Tuple[bool, ...] = (False, False, False, False),
upsample_factor: Tuple[int, ...] = (1, 1, 1, 1),
timestep_conditioning: bool = False,
patch_size: int = 4,
patch_size_t: int = 1,
resnet_norm_eps: float = 1e-6,
scaling_factor: float = 1.0, | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
encoder_causal: bool = True,
decoder_causal: bool = False,
) -> None:
super().__init__() | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
self.encoder = LTXVideoEncoder3d(
in_channels=in_channels,
out_channels=latent_channels,
block_out_channels=block_out_channels,
spatio_temporal_scaling=spatio_temporal_scaling,
layers_per_block=layers_per_block,
patch_size=patch_size,
patch_size_t=patch_size_t,
resnet_norm_eps=resnet_norm_eps,
is_causal=encoder_causal,
)
self.decoder = LTXVideoDecoder3d(
in_channels=latent_channels,
out_channels=out_channels,
block_out_channels=decoder_block_out_channels,
spatio_temporal_scaling=decoder_spatio_temporal_scaling,
layers_per_block=decoder_layers_per_block,
patch_size=patch_size,
patch_size_t=patch_size_t,
resnet_norm_eps=resnet_norm_eps,
is_causal=decoder_causal,
timestep_conditioning=timestep_conditioning,
inject_noise=decoder_inject_noise, | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
upsample_residual=upsample_residual,
upsample_factor=upsample_factor,
) | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
latents_mean = torch.zeros((latent_channels,), requires_grad=False)
latents_std = torch.ones((latent_channels,), requires_grad=False)
self.register_buffer("latents_mean", latents_mean, persistent=True)
self.register_buffer("latents_std", latents_std, persistent=True)
self.spatial_compression_ratio = patch_size * 2 ** sum(spatio_temporal_scaling)
self.temporal_compression_ratio = patch_size_t * 2 ** sum(spatio_temporal_scaling)
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
# to perform decoding of a single video latent at a time.
self.use_slicing = False | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
# intermediate tiles together, the memory requirement can be lowered.
self.use_tiling = False
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
self.use_framewise_encoding = False
self.use_framewise_decoding = False | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
# This can be configured based on the amount of GPU memory available.
# `16` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
# Setting it to higher values results in higher memory usage.
self.num_sample_frames_batch_size = 16
self.num_latent_frames_batch_size = 2
# The minimal tile height and width for spatial tiling to be used
self.tile_sample_min_height = 512
self.tile_sample_min_width = 512
self.tile_sample_min_num_frames = 16
# The minimal distance between two spatial tiles
self.tile_sample_stride_height = 448
self.tile_sample_stride_width = 448
self.tile_sample_stride_num_frames = 8
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (LTXVideoEncoder3d, LTXVideoDecoder3d)):
module.gradient_checkpointing = value | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def enable_tiling(
self,
tile_sample_min_height: Optional[int] = None,
tile_sample_min_width: Optional[int] = None,
tile_sample_min_num_frames: Optional[int] = None,
tile_sample_stride_height: Optional[float] = None,
tile_sample_stride_width: Optional[float] = None,
tile_sample_stride_num_frames: Optional[float] = None,
) -> None:
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images. | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
Args:
tile_sample_min_height (`int`, *optional*):
The minimum height required for a sample to be separated into tiles across the height dimension.
tile_sample_min_width (`int`, *optional*):
The minimum width required for a sample to be separated into tiles across the width dimension.
tile_sample_stride_height (`int`, *optional*):
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
no tiling artifacts produced across the height dimension.
tile_sample_stride_width (`int`, *optional*):
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
artifacts produced across the width dimension.
"""
self.use_tiling = True
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def _encode(self, x: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = x.shape | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames:
return self._temporal_tiled_encode(x)
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
return self.tiled_encode(x)
enc = self.encoder(x)
return enc
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
Returns:
The latent representations of the encoded videos. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self._encode(x)
posterior = DiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior) | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def _decode(
self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
) -> Union[DecoderOutput, torch.Tensor]:
batch_size, num_channels, num_frames, height, width = z.shape
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames:
return self._temporal_tiled_decode(z, temb, return_dict=return_dict)
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
return self.tiled_decode(z, temb, return_dict=return_dict)
dec = self.decoder(z, temb)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec) | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
@apply_forward_hook
def decode(
self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
) -> Union[DecoderOutput, torch.Tensor]:
"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.shape[0] > 1:
if temb is not None:
decoded_slices = [
self._decode(z_slice, t_slice).sample for z_slice, t_slice in (z.split(1), temb.split(1))
]
else:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z, temb).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded) | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
for x in range(blend_extent):
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
x / blend_extent
)
return b
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
r"""Encode a batch of images using a tiled encoder.
Args:
x (`torch.Tensor`): Input batch of videos.
Returns:
`torch.Tensor`:
The latent representation of the encoded videos.
"""
batch_size, num_channels, num_frames, height, width = x.shape
latent_height = height // self.spatial_compression_ratio
latent_width = width // self.spatial_compression_ratio | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = tile_latent_min_height - tile_latent_stride_height
blend_width = tile_latent_min_width - tile_latent_stride_width
# Split x into overlapping tiles and encode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, self.tile_sample_stride_height):
row = []
for j in range(0, width, self.tile_sample_stride_width):
time = self.encoder(
x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
) | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
row.append(time)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
result_rows.append(torch.cat(result_row, dim=4))
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
return enc | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def tiled_decode(
self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
) -> Union[DecoderOutput, torch.Tensor]:
r"""
Decode a batch of images using a tiled decoder.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
batch_size, num_channels, num_frames, height, width = z.shape
sample_height = height * self.spatial_compression_ratio
sample_width = width * self.spatial_compression_ratio | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, tile_latent_stride_height):
row = []
for j in range(0, width, tile_latent_stride_width):
time = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width], temb) | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
row.append(time)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
result_rows.append(torch.cat(result_row, dim=4))
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec) | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
batch_size, num_channels, num_frames, height, width = x.shape
latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames
row = []
for i in range(0, num_frames, self.tile_sample_stride_num_frames):
tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :]
if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width):
tile = self.tiled_encode(tile)
else:
tile = self.encoder(tile)
if i > 0:
tile = tile[:, :, 1:, :, :]
row.append(tile) | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
result_row = []
for i, tile in enumerate(row):
if i > 0:
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :])
else:
result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :])
enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames]
return enc
def _temporal_tiled_decode(
self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
) -> Union[DecoderOutput, torch.Tensor]:
batch_size, num_channels, num_frames, height, width = z.shape
num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
row = []
for i in range(0, num_frames, tile_latent_stride_num_frames):
tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :]
if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height):
decoded = self.tiled_decode(tile, temb, return_dict=True).sample
else:
decoded = self.decoder(tile, temb)
if i > 0:
decoded = decoded[:, :, :-1, :, :]
row.append(decoded)
result_row = []
for i, tile in enumerate(row):
if i > 0:
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
tile = tile[:, :, : self.tile_sample_stride_num_frames, :, :]
result_row.append(tile)
else:
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :])
dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames] | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.Tensor,
temb: Optional[torch.Tensor] = None,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[torch.Tensor, torch.Tensor]:
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z, temb)
if not return_dict:
return (dec.sample,)
return dec | 1,210 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py |
class AsymmetricAutoencoderKL(ModelMixin, ConfigMixin):
r"""
Designing a Better Asymmetric VQGAN for StableDiffusion https://arxiv.org/abs/2306.04632 . A VAE model with KL loss
for encoding images into latents and decoding latent representations into images.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving). | 1,211 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_asym_kl.py |
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
down_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of down block output channels.
layers_per_down_block (`int`, *optional*, defaults to `1`):
Number layers for down block.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
up_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of up block output channels.
layers_per_up_block (`int`, *optional*, defaults to `1`):
Number layers for up block. | 1,211 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_asym_kl.py |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
norm_num_groups (`int`, *optional*, defaults to `32`):
Number of groups to use for the first normalization layer in ResNet blocks.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | 1,211 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_asym_kl.py |
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
""" | 1,211 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_asym_kl.py |
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
down_block_out_channels: Tuple[int, ...] = (64,),
layers_per_down_block: int = 1,
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
up_block_out_channels: Tuple[int, ...] = (64,),
layers_per_up_block: int = 1,
act_fn: str = "silu",
latent_channels: int = 4,
norm_num_groups: int = 32,
sample_size: int = 32,
scaling_factor: float = 0.18215,
) -> None:
super().__init__() | 1,211 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_asym_kl.py |
# pass init params to Encoder
self.encoder = Encoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=down_block_out_channels,
layers_per_block=layers_per_down_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=True,
)
# pass init params to Decoder
self.decoder = MaskConditionDecoder(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=up_block_out_channels,
layers_per_block=layers_per_up_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
)
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) | 1,211 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_asym_kl.py |
self.use_slicing = False
self.use_tiling = False
self.register_to_config(block_out_channels=up_block_out_channels)
self.register_to_config(force_upcast=False)
@apply_forward_hook
def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[AutoencoderKLOutput, Tuple[torch.Tensor]]:
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(
self,
z: torch.Tensor,
image: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
z = self.post_quant_conv(z)
dec = self.decoder(z, image, mask)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec) | 1,211 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_asym_kl.py |
@apply_forward_hook
def decode(
self,
z: torch.Tensor,
generator: Optional[torch.Generator] = None,
image: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
decoded = self._decode(z, image, mask).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded) | 1,211 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_asym_kl.py |
def forward(
self,
sample: torch.Tensor,
mask: Optional[torch.Tensor] = None,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
r"""
Args:
sample (`torch.Tensor`): Input sample.
mask (`torch.Tensor`, *optional*, defaults to `None`): Optional inpainting mask.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z, generator, sample, mask).sample | 1,211 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_asym_kl.py |
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec) | 1,211 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_asym_kl.py |
class VQEncoderOutput(BaseOutput):
"""
Output of VQModel encoding method.
Args:
latents (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
The encoded output sample from the last layer of the model.
"""
latents: torch.Tensor | 1,212 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vq_model.py |
class VQModel(ModelMixin, ConfigMixin):
r"""
A VQ-VAE model for decoding latent representations.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving). | 1,213 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vq_model.py |
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
layers_per_block (`int`, *optional*, defaults to `1`): Number of layers per block.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): Sample input size. | 1,213 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vq_model.py |
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
norm_num_groups (`int`, *optional*, defaults to `32`): Number of groups for normalization layers.
vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE.
scaling_factor (`float`, *optional*, defaults to `0.18215`):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | 1,213 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vq_model.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.