index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
8,957 |
sentencepiece
|
Load
|
Overwride SentencePieceProcessor.Load to support both model_file and model_proto.
Args:
model_file: The sentencepiece model file path.
model_proto: The sentencepiece model serialized proto. Either `model_file`
or `model_proto` must be set.
|
def Load(self, model_file=None, model_proto=None):
"""Overwride SentencePieceProcessor.Load to support both model_file and model_proto.
Args:
model_file: The sentencepiece model file path.
model_proto: The sentencepiece model serialized proto. Either `model_file`
or `model_proto` must be set.
"""
if model_file and model_proto:
raise RuntimeError('model_file and model_proto must be exclusive.')
if model_proto:
return self.LoadFromSerializedProto(model_proto)
return self.LoadFromFile(model_file)
|
(self, model_file=None, model_proto=None)
|
8,958 |
sentencepiece
|
LoadFromFile
| null |
def LoadFromFile(self, arg):
return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg)
|
(self, arg)
|
8,959 |
sentencepiece
|
LoadFromSerializedProto
| null |
def LoadFromSerializedProto(self, serialized):
return _sentencepiece.SentencePieceProcessor_LoadFromSerializedProto(self, serialized)
|
(self, serialized)
|
8,960 |
sentencepiece
|
LoadVocabulary
| null |
def LoadVocabulary(self, filename, threshold):
return _sentencepiece.SentencePieceProcessor_LoadVocabulary(self, filename, threshold)
|
(self, filename, threshold)
|
8,961 |
sentencepiece
|
NBestEncode
|
NBestEncode text input to segmented ids or tokens.
Args:
input: input string. accepsts list of string.
out_type: output type. int or str.
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
nbest_size: nbest size
|
def NBestEncode(self,
input,
out_type=None,
add_bos=None,
add_eos=None,
reverse=None,
emit_unk_piece=None,
nbest_size=None):
"""NBestEncode text input to segmented ids or tokens.
Args:
input: input string. accepsts list of string.
out_type: output type. int or str.
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
nbest_size: nbest size
"""
if out_type is None:
out_type = self._out_type
if add_bos is None:
add_bos = self._add_bos
if add_eos is None:
add_eos = self._add_eos
if reverse is None:
reverse = self._reverse
if emit_unk_piece is None:
emit_unk_piece = self._emit_unk_piece
if nbest_size is None:
nbest_size = self._nbest_size
if nbest_size <= 0:
nbest_size=1
def _encode(text):
if out_type is int:
return self._NBestEncodeAsIds(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type is str:
return self._NBestEncodeAsPieces(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'serialized_proto' or out_type == 'proto':
return self._NBestEncodeAsSerializedProto(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'immutable_proto':
return self._NBestEncodeAsImmutableProto(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
raise RuntimeError('unknown out_type')
if type(input) is list:
return [_encode(n) for n in input]
return _encode(input)
|
(self, input, out_type=None, add_bos=None, add_eos=None, reverse=None, emit_unk_piece=None, nbest_size=None)
|
8,962 |
sentencepiece
|
NBestEncodeAsIds
| null |
def NBestEncodeAsIds(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type=int, **kwargs)
|
(self, input, nbest_size=None, **kwargs)
|
8,963 |
sentencepiece
|
NBestEncodeAsImmutableProto
| null |
def NBestEncodeAsImmutableProto(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type='immutable_proto', **kwargs)
|
(self, input, nbest_size=None, **kwargs)
|
8,964 |
sentencepiece
|
NBestEncodeAsPieces
| null |
def NBestEncodeAsPieces(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type=str, **kwargs)
|
(self, input, nbest_size=None, **kwargs)
|
8,965 |
sentencepiece
|
NBestEncodeAsSerializedProto
| null |
def NBestEncodeAsSerializedProto(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type='serialized_proto', **kwargs)
|
(self, input, nbest_size=None, **kwargs)
|
8,967 |
sentencepiece
|
OverrideNormalizerSpec
| null |
def OverrideNormalizerSpec(self, **kwargs):
new_kwargs = {}
for key, value in kwargs.items():
new_kwargs[key] = str(value)
return self._OverrideNormalizerSpec(new_kwargs)
|
(self, **kwargs)
|
8,969 |
sentencepiece
|
ResetVocabulary
| null |
def ResetVocabulary(self):
return _sentencepiece.SentencePieceProcessor_ResetVocabulary(self)
|
(self)
|
8,970 |
sentencepiece
|
SampleEncodeAndScore
|
SampleEncodeAndScore text input to segmented ids or tokens.
Args:
input: input string. accepsts list of string.
out_type: output type. int or str or 'serialized_proto' or 'immutable_proto'
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
num_samples: How many samples to return (Default = 1)
alpha: inverse temperature for sampling
wor: whether to sample without replacement (Default = false)
include_best: whether to include the best tokenization, requires wor=True (Default = false)
|
def SampleEncodeAndScore(self,
input,
out_type=None,
add_bos=None,
add_eos=None,
reverse=None,
emit_unk_piece=None,
num_samples=None,
alpha=None,
wor=None,
include_best=None):
"""SampleEncodeAndScore text input to segmented ids or tokens.
Args:
input: input string. accepsts list of string.
out_type: output type. int or str or 'serialized_proto' or 'immutable_proto'
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
num_samples: How many samples to return (Default = 1)
alpha: inverse temperature for sampling
wor: whether to sample without replacement (Default = false)
include_best: whether to include the best tokenization, requires wor=True (Default = false)
"""
if out_type is None:
out_type = self._out_type
if add_bos is None:
add_bos = self._add_bos
if add_eos is None:
add_eos = self._add_eos
if reverse is None:
reverse = self._reverse
if emit_unk_piece is None:
emit_unk_piece = self._emit_unk_piece
if num_samples is None:
num_samples = 1
if alpha is None:
alpha = 1.
if wor is None:
wor = False
if include_best is None:
include_best = False
if num_samples <= 0:
raise RuntimeError('num_examples must be positive')
if include_best and not wor:
raise RuntimeError('When include_best is True, We must specify "wor = True".')
def _encode(text):
if out_type is int:
return self._SampleEncodeAndScoreAsIds(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type is str:
return self._SampleEncodeAndScoreAsPieces(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'serialized_proto' or out_type == 'proto':
return self._SampleEncodeAndScoreAsSerializedProto(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'immutable_proto':
return self._SampleEncodeAndScoreAsImmutableProto(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
raise RuntimeError('unknown output type')
if type(input) is list:
return [_encode(n) for n in input]
return _encode(input)
|
(self, input, out_type=None, add_bos=None, add_eos=None, reverse=None, emit_unk_piece=None, num_samples=None, alpha=None, wor=None, include_best=None)
|
8,971 |
sentencepiece
|
SampleEncodeAndScoreAsIds
| null |
def SampleEncodeAndScoreAsIds(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type=int, **kwargs)
|
(self, input, num_samples=None, alpha=None, **kwargs)
|
8,972 |
sentencepiece
|
SampleEncodeAndScoreAsImmutableProto
| null |
def SampleEncodeAndScoreAsImmutableProto(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type='immutable_proto', **kwargs)
|
(self, input, num_samples=None, alpha=None, **kwargs)
|
8,973 |
sentencepiece
|
SampleEncodeAndScoreAsPieces
| null |
def SampleEncodeAndScoreAsPieces(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type=str, **kwargs)
|
(self, input, num_samples=None, alpha=None, **kwargs)
|
8,974 |
sentencepiece
|
SampleEncodeAndScoreAsSerializedProto
| null |
def SampleEncodeAndScoreAsSerializedProto(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type='serialized_proto', **kwargs)
|
(self, input, num_samples=None, alpha=None, **kwargs)
|
8,975 |
sentencepiece
|
SampleEncodeAsIds
| null |
def SampleEncodeAsIds(self, input, nbest_size=None, alpha=None,**kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type=int, enable_sampling=True, **kwargs)
|
(self, input, nbest_size=None, alpha=None, **kwargs)
|
8,976 |
sentencepiece
|
SampleEncodeAsImmutableProto
| null |
def SampleEncodeAsImmutableProto(self, input, nbest_size=None, alpha=None, **kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type='immutable_proto', enable_sampling=True, **kwargs)
|
(self, input, nbest_size=None, alpha=None, **kwargs)
|
8,977 |
sentencepiece
|
SampleEncodeAsPieces
| null |
def SampleEncodeAsPieces(self, input, nbest_size=None, alpha=None, **kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type=str, enable_sampling=True, **kwargs)
|
(self, input, nbest_size=None, alpha=None, **kwargs)
|
8,978 |
sentencepiece
|
SampleEncodeAsSerializedProto
| null |
def SampleEncodeAsSerializedProto(self, input, nbest_size=None, alpha=None, **kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type='serialized_proto', enable_sampling=True, **kwargs)
|
(self, input, nbest_size=None, alpha=None, **kwargs)
|
8,979 |
sentencepiece
|
SetDecodeExtraOptions
| null |
def SetDecodeExtraOptions(self, extra_option):
return _sentencepiece.SentencePieceProcessor_SetDecodeExtraOptions(self, extra_option)
|
(self, extra_option)
|
8,980 |
sentencepiece
|
SetEncodeExtraOptions
| null |
def SetEncodeExtraOptions(self, extra_option):
return _sentencepiece.SentencePieceProcessor_SetEncodeExtraOptions(self, extra_option)
|
(self, extra_option)
|
8,981 |
sentencepiece
|
SetVocabulary
| null |
def SetVocabulary(self, valid_vocab):
return _sentencepiece.SentencePieceProcessor_SetVocabulary(self, valid_vocab)
|
(self, valid_vocab)
|
8,983 |
sentencepiece
|
_CalculateEntropy
| null |
def _CalculateEntropy(self, text, alpha):
return _sentencepiece.SentencePieceProcessor__CalculateEntropy(self, text, alpha)
|
(self, text, alpha)
|
8,984 |
sentencepiece
|
_CalculateEntropyBatch
| null |
def _CalculateEntropyBatch(self, ins, alpha, num_threads):
return _sentencepiece.SentencePieceProcessor__CalculateEntropyBatch(self, ins, alpha, num_threads)
|
(self, ins, alpha, num_threads)
|
8,985 |
sentencepiece
|
_DecodeIds
| null |
def _DecodeIds(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIds(self, ids)
|
(self, ids)
|
8,986 |
sentencepiece
|
_DecodeIdsAsBytes
| null |
def _DecodeIdsAsBytes(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsBytes(self, ids)
|
(self, ids)
|
8,987 |
sentencepiece
|
_DecodeIdsAsBytesBatch
| null |
def _DecodeIdsAsBytesBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsBytesBatch(self, ins, num_threads)
|
(self, ins, num_threads)
|
8,988 |
sentencepiece
|
_DecodeIdsAsImmutableProto
| null |
def _DecodeIdsAsImmutableProto(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsImmutableProto(self, ids)
|
(self, ids)
|
8,989 |
sentencepiece
|
_DecodeIdsAsImmutableProtoBatch
| null |
def _DecodeIdsAsImmutableProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsImmutableProtoBatch(self, ins, num_threads)
|
(self, ins, num_threads)
|
8,990 |
sentencepiece
|
_DecodeIdsAsSerializedProto
| null |
def _DecodeIdsAsSerializedProto(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsSerializedProto(self, ids)
|
(self, ids)
|
8,991 |
sentencepiece
|
_DecodeIdsAsSerializedProtoBatch
| null |
def _DecodeIdsAsSerializedProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsSerializedProtoBatch(self, ins, num_threads)
|
(self, ins, num_threads)
|
8,992 |
sentencepiece
|
_DecodeIdsBatch
| null |
def _DecodeIdsBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsBatch(self, ins, num_threads)
|
(self, ins, num_threads)
|
8,993 |
sentencepiece
|
_DecodePieces
| null |
def _DecodePieces(self, pieces):
return _sentencepiece.SentencePieceProcessor__DecodePieces(self, pieces)
|
(self, pieces)
|
8,994 |
sentencepiece
|
_DecodePiecesAsImmutableProto
| null |
def _DecodePiecesAsImmutableProto(self, pieces):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsImmutableProto(self, pieces)
|
(self, pieces)
|
8,995 |
sentencepiece
|
_DecodePiecesAsImmutableProtoBatch
| null |
def _DecodePiecesAsImmutableProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsImmutableProtoBatch(self, ins, num_threads)
|
(self, ins, num_threads)
|
8,996 |
sentencepiece
|
_DecodePiecesAsSerializedProto
| null |
def _DecodePiecesAsSerializedProto(self, pieces):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsSerializedProto(self, pieces)
|
(self, pieces)
|
8,997 |
sentencepiece
|
_DecodePiecesAsSerializedProtoBatch
| null |
def _DecodePiecesAsSerializedProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsSerializedProtoBatch(self, ins, num_threads)
|
(self, ins, num_threads)
|
8,998 |
sentencepiece
|
_DecodePiecesBatch
| null |
def _DecodePiecesBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodePiecesBatch(self, ins, num_threads)
|
(self, ins, num_threads)
|
8,999 |
sentencepiece
|
_EncodeAsIds
| null |
def _EncodeAsIds(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsIds(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
9,000 |
sentencepiece
|
_EncodeAsIdsBatch
| null |
def _EncodeAsIdsBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsIdsBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
9,001 |
sentencepiece
|
_EncodeAsImmutableProto
| null |
def _EncodeAsImmutableProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsImmutableProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
9,002 |
sentencepiece
|
_EncodeAsImmutableProtoBatch
| null |
def _EncodeAsImmutableProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsImmutableProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
9,003 |
sentencepiece
|
_EncodeAsPieces
| null |
def _EncodeAsPieces(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsPieces(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
9,004 |
sentencepiece
|
_EncodeAsPiecesBatch
| null |
def _EncodeAsPiecesBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsPiecesBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
9,005 |
sentencepiece
|
_EncodeAsSerializedProto
| null |
def _EncodeAsSerializedProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsSerializedProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
9,006 |
sentencepiece
|
_EncodeAsSerializedProtoBatch
| null |
def _EncodeAsSerializedProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsSerializedProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
|
9,007 |
sentencepiece
|
_NBestEncodeAsIds
| null |
def _NBestEncodeAsIds(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsIds(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
|
9,008 |
sentencepiece
|
_NBestEncodeAsImmutableProto
| null |
def _NBestEncodeAsImmutableProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsImmutableProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
|
9,009 |
sentencepiece
|
_NBestEncodeAsPieces
| null |
def _NBestEncodeAsPieces(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsPieces(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
|
9,010 |
sentencepiece
|
_NBestEncodeAsSerializedProto
| null |
def _NBestEncodeAsSerializedProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsSerializedProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
|
9,011 |
sentencepiece
|
_Normalize
| null |
def _Normalize(self, text):
return _sentencepiece.SentencePieceProcessor__Normalize(self, text)
|
(self, text)
|
9,012 |
sentencepiece
|
_NormalizeWithOffsets
| null |
def _NormalizeWithOffsets(self, text):
return _sentencepiece.SentencePieceProcessor__NormalizeWithOffsets(self, text)
|
(self, text)
|
9,013 |
sentencepiece
|
_OverrideNormalizerSpec
| null |
def _OverrideNormalizerSpec(self, args):
return _sentencepiece.SentencePieceProcessor__OverrideNormalizerSpec(self, args)
|
(self, args)
|
9,014 |
sentencepiece
|
_SampleEncodeAndScoreAsIds
| null |
def _SampleEncodeAndScoreAsIds(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsIds(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
|
9,015 |
sentencepiece
|
_SampleEncodeAndScoreAsImmutableProto
| null |
def _SampleEncodeAndScoreAsImmutableProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsImmutableProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
|
9,016 |
sentencepiece
|
_SampleEncodeAndScoreAsPieces
| null |
def _SampleEncodeAndScoreAsPieces(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsPieces(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
|
9,017 |
sentencepiece
|
_SampleEncodeAndScoreAsSerializedProto
| null |
def _SampleEncodeAndScoreAsSerializedProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsSerializedProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
|
(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
|
9,018 |
sentencepiece
|
__getitem__
| null |
def __getitem__(self, piece):
return self.PieceToId(piece)
|
(self, piece)
|
9,021 |
sentencepiece
|
__len__
| null |
def __len__(self):
return self.GetPieceSize()
|
(self)
|
9,024 |
sentencepiece
|
bos_id
| null |
def bos_id(self):
return _sentencepiece.SentencePieceProcessor_bos_id(self)
|
(self)
|
9,039 |
sentencepiece
|
eos_id
| null |
def eos_id(self):
return _sentencepiece.SentencePieceProcessor_eos_id(self)
|
(self)
|
9,059 |
sentencepiece
|
pad_id
| null |
def pad_id(self):
return _sentencepiece.SentencePieceProcessor_pad_id(self)
|
(self)
|
9,060 |
sentencepiece
|
piece_size
| null |
def piece_size(self):
return self.GetPieceSize()
|
(self)
|
9,072 |
sentencepiece
|
serialized_model_proto
| null |
def serialized_model_proto(self):
return _sentencepiece.SentencePieceProcessor_serialized_model_proto(self)
|
(self)
|
9,077 |
sentencepiece
|
unk_id
| null |
def unk_id(self):
return _sentencepiece.SentencePieceProcessor_unk_id(self)
|
(self)
|
9,078 |
sentencepiece
|
vocab_size
| null |
def vocab_size(self):
return self.GetPieceSize()
|
(self)
|
9,079 |
sentencepiece
|
SentencePieceTrainer
| null |
class SentencePieceTrainer(object):
thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
def __init__(self, *args, **kwargs):
raise AttributeError("No constructor defined")
__repr__ = _swig_repr
@staticmethod
def _TrainFromString(arg):
return _sentencepiece.SentencePieceTrainer__TrainFromString(arg)
@staticmethod
def _TrainFromMap(args):
return _sentencepiece.SentencePieceTrainer__TrainFromMap(args)
@staticmethod
def _TrainFromMap2(args, iter):
return _sentencepiece.SentencePieceTrainer__TrainFromMap2(args, iter)
@staticmethod
def _TrainFromMap3(args):
return _sentencepiece.SentencePieceTrainer__TrainFromMap3(args)
@staticmethod
def _TrainFromMap4(args, iter):
return _sentencepiece.SentencePieceTrainer__TrainFromMap4(args, iter)
@staticmethod
def _Train(arg=None, **kwargs):
"""Train Sentencepiece model. Accept both kwargs and legacy string arg."""
if arg is not None and type(arg) is str:
return SentencePieceTrainer._TrainFromString(arg)
def _encode(value):
"""Encode value to CSV.."""
if type(value) is list:
if sys.version_info[0] == 3:
f = StringIO()
else:
f = BytesIO()
writer = csv.writer(f, lineterminator='')
writer.writerow([str(v) for v in value])
return f.getvalue()
else:
return str(value)
sentence_iterator = None
model_writer = None
new_kwargs = {}
for key, value in kwargs.items():
if key in ['sentence_iterator', 'sentence_reader']:
sentence_iterator = value
elif key in ['model_writer']:
model_writer = value
else:
new_kwargs[key] = _encode(value)
if model_writer:
if sentence_iterator:
model_proto = SentencePieceTrainer._TrainFromMap4(new_kwargs,
sentence_iterator)
else:
model_proto = SentencePieceTrainer._TrainFromMap3(new_kwargs)
model_writer.write(model_proto)
else:
if sentence_iterator:
return SentencePieceTrainer._TrainFromMap2(new_kwargs, sentence_iterator)
else:
return SentencePieceTrainer._TrainFromMap(new_kwargs)
return None
@staticmethod
def Train(arg=None, logstream=None, **kwargs):
with _LogStream(ostream=logstream):
SentencePieceTrainer._Train(arg=arg, **kwargs)
|
(*args, **kwargs)
|
9,080 |
sentencepiece
|
Train
| null |
@staticmethod
def Train(arg=None, logstream=None, **kwargs):
with _LogStream(ostream=logstream):
SentencePieceTrainer._Train(arg=arg, **kwargs)
|
(arg=None, logstream=None, **kwargs)
|
9,081 |
sentencepiece
|
_Train
|
Train Sentencepiece model. Accept both kwargs and legacy string arg.
|
@staticmethod
def _Train(arg=None, **kwargs):
"""Train Sentencepiece model. Accept both kwargs and legacy string arg."""
if arg is not None and type(arg) is str:
return SentencePieceTrainer._TrainFromString(arg)
def _encode(value):
"""Encode value to CSV.."""
if type(value) is list:
if sys.version_info[0] == 3:
f = StringIO()
else:
f = BytesIO()
writer = csv.writer(f, lineterminator='')
writer.writerow([str(v) for v in value])
return f.getvalue()
else:
return str(value)
sentence_iterator = None
model_writer = None
new_kwargs = {}
for key, value in kwargs.items():
if key in ['sentence_iterator', 'sentence_reader']:
sentence_iterator = value
elif key in ['model_writer']:
model_writer = value
else:
new_kwargs[key] = _encode(value)
if model_writer:
if sentence_iterator:
model_proto = SentencePieceTrainer._TrainFromMap4(new_kwargs,
sentence_iterator)
else:
model_proto = SentencePieceTrainer._TrainFromMap3(new_kwargs)
model_writer.write(model_proto)
else:
if sentence_iterator:
return SentencePieceTrainer._TrainFromMap2(new_kwargs, sentence_iterator)
else:
return SentencePieceTrainer._TrainFromMap(new_kwargs)
return None
|
(arg=None, **kwargs)
|
9,082 |
sentencepiece
|
_TrainFromMap
| null |
@staticmethod
def _TrainFromMap(args):
return _sentencepiece.SentencePieceTrainer__TrainFromMap(args)
|
(args)
|
9,083 |
sentencepiece
|
_TrainFromMap2
| null |
@staticmethod
def _TrainFromMap2(args, iter):
return _sentencepiece.SentencePieceTrainer__TrainFromMap2(args, iter)
|
(args, iter)
|
9,084 |
sentencepiece
|
_TrainFromMap3
| null |
@staticmethod
def _TrainFromMap3(args):
return _sentencepiece.SentencePieceTrainer__TrainFromMap3(args)
|
(args)
|
9,085 |
sentencepiece
|
_TrainFromMap4
| null |
@staticmethod
def _TrainFromMap4(args, iter):
return _sentencepiece.SentencePieceTrainer__TrainFromMap4(args, iter)
|
(args, iter)
|
9,086 |
sentencepiece
|
_TrainFromString
| null |
@staticmethod
def _TrainFromString(arg):
return _sentencepiece.SentencePieceTrainer__TrainFromString(arg)
|
(arg)
|
9,087 |
sentencepiece
|
__init__
| null |
def __init__(self, *args, **kwargs):
raise AttributeError("No constructor defined")
|
(self, *args, **kwargs)
|
9,090 |
sentencepiece
|
SetMinLogLevel
| null |
def SetMinLogLevel(v):
return _sentencepiece.SetMinLogLevel(v)
|
(v)
|
9,091 |
sentencepiece
|
SetRandomGeneratorSeed
| null |
def SetRandomGeneratorSeed(seed):
return _sentencepiece.SetRandomGeneratorSeed(seed)
|
(seed)
|
9,093 |
sentencepiece
|
_LogStream
| null |
class _LogStream(object):
def __init__(self, ostream=None):
self.ostream = ostream
if self.ostream is not None:
self.orig_stream_fileno = sys.stderr.fileno()
def __enter__(self):
if self.ostream is not None:
self.orig_stream_dup = os.dup(self.orig_stream_fileno)
os.dup2(self.ostream.fileno(), self.orig_stream_fileno)
def __exit__(self, type, value, traceback):
if self.ostream is not None:
os.close(self.orig_stream_fileno)
os.dup2(self.orig_stream_dup, self.orig_stream_fileno)
os.close(self.orig_stream_dup)
self.ostream.close()
|
(ostream=None)
|
9,094 |
sentencepiece
|
__enter__
| null |
def __enter__(self):
if self.ostream is not None:
self.orig_stream_dup = os.dup(self.orig_stream_fileno)
os.dup2(self.ostream.fileno(), self.orig_stream_fileno)
|
(self)
|
9,095 |
sentencepiece
|
__exit__
| null |
def __exit__(self, type, value, traceback):
if self.ostream is not None:
os.close(self.orig_stream_fileno)
os.dup2(self.orig_stream_dup, self.orig_stream_fileno)
os.close(self.orig_stream_dup)
self.ostream.close()
|
(self, type, value, traceback)
|
9,096 |
sentencepiece
|
__init__
| null |
def __init__(self, ostream=None):
self.ostream = ostream
if self.ostream is not None:
self.orig_stream_fileno = sys.stderr.fileno()
|
(self, ostream=None)
|
9,097 |
sentencepiece
|
_SwigNonDynamicMeta
|
Meta class to enforce nondynamic attributes (no new attributes) for a class
|
class _SwigNonDynamicMeta(type):
"""Meta class to enforce nondynamic attributes (no new attributes) for a class"""
__setattr__ = _swig_setattr_nondynamic_class_variable(type.__setattr__)
| null |
9,098 |
sentencepiece
|
set_class_attr
| null |
def _swig_setattr_nondynamic_class_variable(set):
def set_class_attr(cls, name, value):
if hasattr(cls, name) and not isinstance(getattr(cls, name), property):
set(cls, name, value)
else:
raise AttributeError("You cannot add class attributes to %s" % cls)
return set_class_attr
|
(cls, name, value)
|
9,100 |
sentencepiece
|
_add_snake_case
|
Added snake_cased method from CammelCased method.
|
def _add_snake_case(classname):
"""Added snake_cased method from CammelCased method."""
snake_map = {}
for k, v in classname.__dict__.items():
if re.match(r'^[A-Z]+', k):
snake = re.sub(r'(?<!^)(?=[A-Z])', '_',
k).lower().replace('n_best', 'nbest')
snake_map[snake] = v
for k, v in snake_map.items():
setattr(classname, k, v)
|
(classname)
|
9,101 |
sentencepiece
|
_batchnize
|
Enables batch request for the method classname.name.
|
def _batchnize(classname, name):
"""Enables batch request for the method classname.name."""
func = getattr(classname, name, None)
def _func(v, n):
if type(n) is int and (n < 0 or n >= v.piece_size()):
raise IndexError('piece id is out of range.')
return func(v, n)
def _batched_func(self, arg):
if type(arg) is list:
return [_func(self, n) for n in arg]
else:
return _func(self, arg)
setattr(classname, name, _batched_func)
|
(classname, name)
|
9,103 |
sentencepiece
|
__init__
| null |
def __init__(self):
_sentencepiece.SentencePieceNormalizer_swiginit(self, _sentencepiece.new_SentencePieceNormalizer())
|
(self)
|
9,104 |
sentencepiece
|
__init__
| null |
def __init__(self):
_sentencepiece.SentencePieceProcessor_swiginit(self, _sentencepiece.new_SentencePieceProcessor())
|
(self)
|
9,105 |
sentencepiece
|
_swig_add_metaclass
|
Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass
|
def _swig_add_metaclass(metaclass):
"""Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass"""
def wrapper(cls):
return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy())
return wrapper
|
(metaclass)
|
9,108 |
sentencepiece
|
_swig_setattr_nondynamic_instance_variable
| null |
def _swig_setattr_nondynamic_instance_variable(set):
def set_instance_attr(self, name, value):
if name == "this":
set(self, name, value)
elif name == "thisown":
self.this.own(value)
elif hasattr(self, name) and isinstance(getattr(type(self), name), property):
set(self, name, value)
else:
raise AttributeError("You cannot add instance attributes to %s" % self)
return set_instance_attr
|
(set)
|
9,116 |
geonamescache
|
GeonamesCache
| null |
class GeonamesCache:
us_states = geonamesdata.us_states
continents = None
countries = None
cities = None
cities_items = None
cities_by_names = {}
us_counties = None
def __init__(self, min_city_population=15000):
self.min_city_population = min_city_population
def get_dataset_by_key(self, dataset, key):
return dict((d[key], d) for c, d in list(dataset.items()))
def get_continents(self):
if self.continents is None:
self.continents = self._load_data(
self.continents, 'continents.json')
return self.continents
def get_countries(self):
if self.countries is None:
self.countries = self._load_data(self.countries, 'countries.json')
return self.countries
def get_us_states(self):
return self.us_states
def get_countries_by_names(self):
return self.get_dataset_by_key(self.get_countries(), 'name')
def get_us_states_by_names(self):
return self.get_dataset_by_key(self.get_us_states(), 'name')
def get_cities(self):
"""Get a dictionary of cities keyed by geonameid."""
if self.cities is None:
self.cities = self._load_data(self.cities, f'cities{self.min_city_population}.json')
return self.cities
def get_cities_by_name(self, name):
"""Get a list of city dictionaries with the given name.
City names cannot be used as keys, as they are not unique.
"""
if name not in self.cities_by_names:
if self.cities_items is None:
self.cities_items = list(self.get_cities().items())
self.cities_by_names[name] = [dict({gid: city})
for gid, city in self.cities_items if city['name'] == name]
return self.cities_by_names[name]
def get_us_counties(self):
if self.us_counties is None:
self.us_counties = self._load_data(self.us_counties, 'us_counties.json')
return self.us_counties
def search_cities(self, query, attribute='alternatenames', case_sensitive=False, contains_search=True):
"""Search all city records and return list of records, that match query for given attribute."""
results = []
query = (case_sensitive and query) or query.casefold()
for record in self.get_cities().values():
record_value = record[attribute]
if contains_search:
if isinstance(record_value, list):
if any(query in ((case_sensitive and value) or value.casefold()) for value in record_value):
results.append(record)
elif query in ((case_sensitive and record_value) or record_value.casefold()):
results.append(record)
else:
if isinstance(record_value, list):
if case_sensitive:
if query in record_value:
results.append(record)
else:
if any(query == value.casefold() for value in record_value):
results.append(record)
elif query == ((case_sensitive and record_value) or record_value.casefold()):
results.append(record)
return results
@staticmethod
def _load_data(datadict, datafile):
if datadict is None:
with open(os.path.join(os.path.dirname(__file__), 'data', datafile)) as f:
datadict = json.load(f)
return datadict
|
(min_city_population=15000)
|
9,117 |
geonamescache
|
__init__
| null |
def __init__(self, min_city_population=15000):
self.min_city_population = min_city_population
|
(self, min_city_population=15000)
|
9,118 |
geonamescache
|
_load_data
| null |
@staticmethod
def _load_data(datadict, datafile):
if datadict is None:
with open(os.path.join(os.path.dirname(__file__), 'data', datafile)) as f:
datadict = json.load(f)
return datadict
|
(datadict, datafile)
|
9,119 |
geonamescache
|
get_cities
|
Get a dictionary of cities keyed by geonameid.
|
def get_cities(self):
"""Get a dictionary of cities keyed by geonameid."""
if self.cities is None:
self.cities = self._load_data(self.cities, f'cities{self.min_city_population}.json')
return self.cities
|
(self)
|
9,120 |
geonamescache
|
get_cities_by_name
|
Get a list of city dictionaries with the given name.
City names cannot be used as keys, as they are not unique.
|
def get_cities_by_name(self, name):
"""Get a list of city dictionaries with the given name.
City names cannot be used as keys, as they are not unique.
"""
if name not in self.cities_by_names:
if self.cities_items is None:
self.cities_items = list(self.get_cities().items())
self.cities_by_names[name] = [dict({gid: city})
for gid, city in self.cities_items if city['name'] == name]
return self.cities_by_names[name]
|
(self, name)
|
9,121 |
geonamescache
|
get_continents
| null |
def get_continents(self):
if self.continents is None:
self.continents = self._load_data(
self.continents, 'continents.json')
return self.continents
|
(self)
|
9,122 |
geonamescache
|
get_countries
| null |
def get_countries(self):
if self.countries is None:
self.countries = self._load_data(self.countries, 'countries.json')
return self.countries
|
(self)
|
9,123 |
geonamescache
|
get_countries_by_names
| null |
def get_countries_by_names(self):
return self.get_dataset_by_key(self.get_countries(), 'name')
|
(self)
|
9,124 |
geonamescache
|
get_dataset_by_key
| null |
def get_dataset_by_key(self, dataset, key):
return dict((d[key], d) for c, d in list(dataset.items()))
|
(self, dataset, key)
|
9,125 |
geonamescache
|
get_us_counties
| null |
def get_us_counties(self):
if self.us_counties is None:
self.us_counties = self._load_data(self.us_counties, 'us_counties.json')
return self.us_counties
|
(self)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.