code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
from subprocess import run # python -u val_resnet.py cuda = 0 # which gpu to use dataset = 'cifar10' logs_path = 'logs_resnet' + '_' + dataset manualSeed = 99 workers = 0 for model in ['resnet20', 'preact_resnet20']: commands = [ 'python', '-u', 'validate_resnet.py', '--dataset=' + dataset, '--model=' + model, '-c=' + str(cuda), '--workers=' + str(workers), '--manualSeed=' + str(manualSeed), '--logs_path=' + logs_path, ] run(commands) for model in ['resnet20', 'preact_resnet20']: f = True for k in [1, 3]: for ff in [False, True]: commands = [ 'python', '-u', 'validate_resnet.py', '--dataset=' + dataset, '--model=' + model, '-k=' + str(k), '-c=' + str(cuda), '--workers=' + str(workers), '--manualSeed=' + str(manualSeed), '--logs_path=' + logs_path, ] if f: commands.append('-f') if ff: commands.append('--ff') run(commands)
[ "subprocess.run" ]
[((497, 510), 'subprocess.run', 'run', (['commands'], {}), '(commands)\n', (500, 510), False, 'from subprocess import run\n'), ((1096, 1109), 'subprocess.run', 'run', (['commands'], {}), '(commands)\n', (1099, 1109), False, 'from subprocess import run\n')]
from akagi.data_source import DataSource from akagi.data_file import DataFile class SpreadsheetDataSource(DataSource): '''SpreadsheetSource replesents a data on Google Spreadsheets ''' def __init__(self, sheet_id, sheet_range='A:Z', no_cache=False): self._sheet_id = sheet_id self._sheet_range = sheet_range @property def data_files(self): return [DataFile.spreadsheet(self._sheet_id, self._sheet_range)]
[ "akagi.data_file.DataFile.spreadsheet" ]
[((396, 451), 'akagi.data_file.DataFile.spreadsheet', 'DataFile.spreadsheet', (['self._sheet_id', 'self._sheet_range'], {}), '(self._sheet_id, self._sheet_range)\n', (416, 451), False, 'from akagi.data_file import DataFile\n')]
""" File: my_drawing.py Name: 黃科諺 ---------------------- TODO: """ from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc from campy.graphics.gwindow import GWindow def main(): """ Meet Snorlax (卡比獸) of stanCode! He dreams of Python when he sleeps. Be like Snorlax. """ window = GWindow(width=300, height=300) face_outer = GOval(120, 75, x=(window.width-120)/2, y=50) face_outer.filled = True face_outer.fill_color = 'darkcyan' face_outer.color = 'darkcyan' window.add(face_outer) face_inner = GOval(100, 65, x=(window.width-100)/2, y=60) face_inner.filled = True face_inner.fill_color = 'lightsalmon' face_inner.color = 'lightsalmon' window.add(face_inner) forehead = GPolygon() forehead.add_vertex((135, 60)) forehead.add_vertex((165, 60)) forehead.add_vertex((150, 68)) forehead.filled = True forehead.fill_color = 'darkcyan' forehead.color = 'darkcyan' window.add(forehead) r_ear = GPolygon() r_ear.add_vertex((113, 35)) r_ear.add_vertex((95, 75)) r_ear.add_vertex((140, 50)) r_ear.filled = True r_ear.fill_color = 'darkcyan' r_ear.color = 'darkcyan' window.add(r_ear) l_ear = GPolygon() l_ear.add_vertex((187, 35)) l_ear.add_vertex((205, 75)) l_ear.add_vertex((160, 50)) l_ear.filled = True l_ear.fill_color = 'darkcyan' l_ear.color = 'darkcyan' window.add(l_ear) r_eye = GLine (120, 75, 140, 75) window.add(r_eye) l_eye = GLine(180, 75, 160, 75) window.add(l_eye) mouth = GLine(135, 85, 165, 85) window.add(mouth) r_tooth = GPolygon() r_tooth.add_vertex((135, 84)) r_tooth.add_vertex((139, 84)) r_tooth.add_vertex((137, 80)) r_tooth.filled = True r_tooth.fill_color = 'white' r_tooth.color = 'white' window.add(r_tooth) l_tooth = GPolygon() l_tooth.add_vertex((165, 84)) l_tooth.add_vertex((161, 84)) l_tooth.add_vertex((163, 80)) l_tooth.filled = True l_tooth.fill_color = 'white' l_tooth.color = 'white' window.add(l_tooth) r_arm = GOval(100, 45, x=25, y=98) r_arm.filled = True r_arm.fill_color = 'darkcyan' r_arm.color = 'darkcyan' window.add(r_arm) l_arm = GOval(100, 45, x=175, y=98) l_arm.filled = True l_arm.fill_color = 'darkcyan' l_arm.color = 'darkcyan' window.add(l_arm) body = GOval(200, 160, x=(window.width - 200) / 2, y=95) body.filled = True body.fill_color = 'darkcyan' body.color = 'darkcyan' window.add(body) belly = GOval(176, 120, x=(window.width - 176) / 2, y=95) belly.filled = True belly.fill_color = 'lightsalmon' window.add(belly) r_claw1 = GPolygon() r_claw1.add_vertex((38, 100)) r_claw1.add_vertex((44, 102)) r_claw1.add_vertex((40, 106)) r_claw1.filled = True r_claw1.fill_color = 'white' window.add(r_claw1) r_claw2 = GPolygon() r_claw2.add_vertex((32, 102)) r_claw2.add_vertex((38, 104)) r_claw2.add_vertex((35, 108)) r_claw2.filled = True r_claw2.fill_color = 'white' window.add(r_claw2) r_claw3 = GPolygon() r_claw3.add_vertex((28, 104)) r_claw3.add_vertex((34, 106)) r_claw3.add_vertex((31, 110)) r_claw3.filled = True r_claw3.fill_color = 'white' window.add(r_claw3) r_claw4 = GPolygon() r_claw4.add_vertex((24, 109)) r_claw4.add_vertex((30, 111)) r_claw4.add_vertex((27, 115)) r_claw4.filled = True r_claw4.fill_color = 'white' window.add(r_claw4) r_claw5 = GPolygon() r_claw5.add_vertex((19, 122)) r_claw5.add_vertex((25, 121)) r_claw5.add_vertex((28, 127)) r_claw5.filled = True r_claw5.fill_color = 'white' window.add(r_claw5) l_claw1 = GPolygon() l_claw1.add_vertex((262, 100)) l_claw1.add_vertex((256, 102)) l_claw1.add_vertex((260, 106)) l_claw1.filled = True l_claw1.fill_color = 'white' window.add(l_claw1) l_claw2 = GPolygon() l_claw2.add_vertex((268, 102)) l_claw2.add_vertex((262, 104)) l_claw2.add_vertex((265, 108)) l_claw2.filled = True l_claw2.fill_color = 'white' window.add(l_claw2) l_claw3 = GPolygon() l_claw3.add_vertex((272, 104)) l_claw3.add_vertex((266, 106)) l_claw3.add_vertex((269, 110)) l_claw3.filled = True l_claw3.fill_color = 'white' window.add(l_claw3) r_claw4 = GPolygon() r_claw4.add_vertex((276, 109)) r_claw4.add_vertex((270, 111)) r_claw4.add_vertex((273, 115)) r_claw4.filled = True r_claw4.fill_color = 'white' window.add(r_claw4) r_claw5 = GPolygon() r_claw5.add_vertex((281, 122)) r_claw5.add_vertex((275, 121)) r_claw5.add_vertex((272, 127)) r_claw5.filled = True r_claw5.fill_color = 'white' window.add(r_claw5) r_foot = GOval(65, 60, x=50, y=220) r_foot.filled = True r_foot.fill_color = 'lightsalmon' r_foot.color = 'lightsalmon' window.add(r_foot) r_palm = GOval(45, 40, x=65, y=235) r_palm.filled = True r_palm.fill_color = 'Chocolate' r_palm.color = 'Chocolate' window.add(r_palm) r_nail1 = GPolygon() r_nail1.add_vertex((80, 210)) r_nail1.add_vertex((88, 223)) r_nail1.add_vertex((78, 224)) r_nail1.filled = True r_nail1.fill_color = 'white' window.add(r_nail1) r_nail2 = GPolygon() r_nail2.add_vertex((52, 220)) r_nail2.add_vertex((65, 228)) r_nail2.add_vertex((57, 235)) r_nail2.filled = True r_nail2.fill_color = 'white' window.add(r_nail2) r_nail3 = GPolygon() r_nail3.add_vertex((43, 250)) r_nail3.add_vertex((54, 248)) r_nail3.add_vertex((52, 258)) r_nail3.filled = True r_nail3.fill_color = 'white' window.add(r_nail3) l_foot = GOval(65, 60, x=185, y=220) l_foot.filled = True l_foot.fill_color = 'lightsalmon' l_foot.color = 'lightsalmon' window.add(l_foot) l_palm = GOval(45, 40, x=190, y=235) l_palm.filled = True l_palm.fill_color = 'Chocolate' l_palm.color = 'Chocolate' window.add(l_palm) l_nail1 = GPolygon() l_nail1.add_vertex((220, 210)) l_nail1.add_vertex((212, 223)) l_nail1.add_vertex((222, 224)) l_nail1.filled = True l_nail1.fill_color = 'white' window.add(l_nail1) r_nail2 = GPolygon() r_nail2.add_vertex((248, 220)) r_nail2.add_vertex((235, 228)) r_nail2.add_vertex((243, 235)) r_nail2.filled = True r_nail2.fill_color = 'white' window.add(r_nail2) r_nail3 = GPolygon() r_nail3.add_vertex((257, 250)) r_nail3.add_vertex((246, 248)) r_nail3.add_vertex((248, 258)) r_nail3.filled = True r_nail3.fill_color = 'white' window.add(r_nail3) word = GLabel('stanCode', x=123, y=185) word.font = '-8-bold' window.add(word) bubble1 = GOval(10, 10, x=140, y=35) window.add(bubble1) bubble2 = GOval(15, 15, x=155, y=23) window.add(bubble2) bubble3 = GOval(20, 20, x=175, y=12) window.add(bubble3) bubble4 = GOval(95, 85, x=200, y=5) window.add(bubble4) word2 = GLabel('Python', x=207, y=50) word2.font = 'Courier-18' window.add(word2) word3 = GLabel('Python', x=220, y=80) word3.font = 'Courier-13' window.add(word3) word4 = GLabel('Python', x=242, y=60) word4.font = 'Courier-8' window.add(word4) if __name__ == '__main__': main()
[ "campy.graphics.gobjects.GPolygon", "campy.graphics.gobjects.GLabel", "campy.graphics.gwindow.GWindow", "campy.graphics.gobjects.GLine", "campy.graphics.gobjects.GOval" ]
[((323, 353), 'campy.graphics.gwindow.GWindow', 'GWindow', ([], {'width': '(300)', 'height': '(300)'}), '(width=300, height=300)\n', (330, 353), False, 'from campy.graphics.gwindow import GWindow\n'), ((371, 419), 'campy.graphics.gobjects.GOval', 'GOval', (['(120)', '(75)'], {'x': '((window.width - 120) / 2)', 'y': '(50)'}), '(120, 75, x=(window.width - 120) / 2, y=50)\n', (376, 419), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((562, 610), 'campy.graphics.gobjects.GOval', 'GOval', (['(100)', '(65)'], {'x': '((window.width - 100) / 2)', 'y': '(60)'}), '(100, 65, x=(window.width - 100) / 2, y=60)\n', (567, 610), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((757, 767), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (765, 767), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((1006, 1016), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (1014, 1016), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((1233, 1243), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (1241, 1243), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((1461, 1484), 'campy.graphics.gobjects.GLine', 'GLine', (['(120)', '(75)', '(140)', '(75)'], {}), '(120, 75, 140, 75)\n', (1466, 1484), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((1520, 1543), 'campy.graphics.gobjects.GLine', 'GLine', (['(180)', '(75)', '(160)', '(75)'], {}), '(180, 75, 160, 75)\n', (1525, 1543), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((1578, 1601), 'campy.graphics.gobjects.GLine', 'GLine', (['(135)', '(85)', '(165)', '(85)'], {}), '(135, 85, 165, 85)\n', (1583, 1601), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((1638, 1648), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (1646, 1648), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((1876, 1886), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (1884, 1886), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((2112, 2138), 'campy.graphics.gobjects.GOval', 'GOval', (['(100)', '(45)'], {'x': '(25)', 'y': '(98)'}), '(100, 45, x=25, y=98)\n', (2117, 2138), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((2260, 2287), 'campy.graphics.gobjects.GOval', 'GOval', (['(100)', '(45)'], {'x': '(175)', 'y': '(98)'}), '(100, 45, x=175, y=98)\n', (2265, 2287), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((2408, 2457), 'campy.graphics.gobjects.GOval', 'GOval', (['(200)', '(160)'], {'x': '((window.width - 200) / 2)', 'y': '(95)'}), '(200, 160, x=(window.width - 200) / 2, y=95)\n', (2413, 2457), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((2575, 2624), 'campy.graphics.gobjects.GOval', 'GOval', (['(176)', '(120)'], {'x': '((window.width - 176) / 2)', 'y': '(95)'}), '(176, 120, x=(window.width - 176) / 2, y=95)\n', (2580, 2624), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((2722, 2732), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (2730, 2732), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((2932, 2942), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (2940, 2942), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((3142, 3152), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (3150, 3152), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((3352, 3362), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (3360, 3362), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((3562, 3572), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (3570, 3572), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((3772, 3782), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (3780, 3782), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((3985, 3995), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (3993, 3995), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((4198, 4208), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (4206, 4208), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((4411, 4421), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (4419, 4421), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((4624, 4634), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (4632, 4634), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((4836, 4862), 'campy.graphics.gobjects.GOval', 'GOval', (['(65)', '(60)'], {'x': '(50)', 'y': '(220)'}), '(65, 60, x=50, y=220)\n', (4841, 4862), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((4995, 5021), 'campy.graphics.gobjects.GOval', 'GOval', (['(45)', '(40)'], {'x': '(65)', 'y': '(235)'}), '(45, 40, x=65, y=235)\n', (5000, 5021), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((5151, 5161), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (5159, 5161), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((5361, 5371), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (5369, 5371), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((5571, 5581), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (5579, 5581), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((5780, 5807), 'campy.graphics.gobjects.GOval', 'GOval', (['(65)', '(60)'], {'x': '(185)', 'y': '(220)'}), '(65, 60, x=185, y=220)\n', (5785, 5807), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((5940, 5967), 'campy.graphics.gobjects.GOval', 'GOval', (['(45)', '(40)'], {'x': '(190)', 'y': '(235)'}), '(45, 40, x=190, y=235)\n', (5945, 5967), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((6097, 6107), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (6105, 6107), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((6310, 6320), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (6318, 6320), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((6523, 6533), 'campy.graphics.gobjects.GPolygon', 'GPolygon', ([], {}), '()\n', (6531, 6533), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((6733, 6765), 'campy.graphics.gobjects.GLabel', 'GLabel', (['"""stanCode"""'], {'x': '(123)', 'y': '(185)'}), "('stanCode', x=123, y=185)\n", (6739, 6765), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((6827, 6853), 'campy.graphics.gobjects.GOval', 'GOval', (['(10)', '(10)'], {'x': '(140)', 'y': '(35)'}), '(10, 10, x=140, y=35)\n', (6832, 6853), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((6892, 6918), 'campy.graphics.gobjects.GOval', 'GOval', (['(15)', '(15)'], {'x': '(155)', 'y': '(23)'}), '(15, 15, x=155, y=23)\n', (6897, 6918), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((6957, 6983), 'campy.graphics.gobjects.GOval', 'GOval', (['(20)', '(20)'], {'x': '(175)', 'y': '(12)'}), '(20, 20, x=175, y=12)\n', (6962, 6983), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((7022, 7047), 'campy.graphics.gobjects.GOval', 'GOval', (['(95)', '(85)'], {'x': '(200)', 'y': '(5)'}), '(95, 85, x=200, y=5)\n', (7027, 7047), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((7084, 7113), 'campy.graphics.gobjects.GLabel', 'GLabel', (['"""Python"""'], {'x': '(207)', 'y': '(50)'}), "('Python', x=207, y=50)\n", (7090, 7113), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((7178, 7207), 'campy.graphics.gobjects.GLabel', 'GLabel', (['"""Python"""'], {'x': '(220)', 'y': '(80)'}), "('Python', x=220, y=80)\n", (7184, 7207), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n'), ((7272, 7301), 'campy.graphics.gobjects.GLabel', 'GLabel', (['"""Python"""'], {'x': '(242)', 'y': '(60)'}), "('Python', x=242, y=60)\n", (7278, 7301), False, 'from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc\n')]
from girder.exceptions import ValidationException from girder.utility import setting_utilities class PluginSettings: AUTO_COMPUTE = 'hashsum_download.auto_compute' @setting_utilities.default(PluginSettings.AUTO_COMPUTE) def _defaultAutoCompute(): return False @setting_utilities.validator(PluginSettings.AUTO_COMPUTE) def _validateAutoCompute(doc): if not isinstance(doc['value'], bool): raise ValidationException('Auto-compute hash setting must be true or false.')
[ "girder.exceptions.ValidationException", "girder.utility.setting_utilities.default", "girder.utility.setting_utilities.validator" ]
[((173, 227), 'girder.utility.setting_utilities.default', 'setting_utilities.default', (['PluginSettings.AUTO_COMPUTE'], {}), '(PluginSettings.AUTO_COMPUTE)\n', (198, 227), False, 'from girder.utility import setting_utilities\n'), ((275, 331), 'girder.utility.setting_utilities.validator', 'setting_utilities.validator', (['PluginSettings.AUTO_COMPUTE'], {}), '(PluginSettings.AUTO_COMPUTE)\n', (302, 331), False, 'from girder.utility import setting_utilities\n'), ((420, 491), 'girder.exceptions.ValidationException', 'ValidationException', (['"""Auto-compute hash setting must be true or false."""'], {}), "('Auto-compute hash setting must be true or false.')\n", (439, 491), False, 'from girder.exceptions import ValidationException\n')]
from collections import defaultdict, namedtuple from dataclasses import dataclass import distutils.util import functools import itertools import json import math import operator import os import random import uuid import shutil import logging import time from typing import List, Dict, NamedTuple, Optional from django.db.models import Q from django.http import JsonResponse from django.views.decorators.csrf import csrf_exempt from django.shortcuts import get_object_or_404, get_list_or_404 from django.conf import settings from google.cloud import storage from rest_framework.decorators import api_view import requests from expiringdict import ExpiringDict from .models import ( Dataset, DatasetItem, Category, Mode, User, Annotation, DNNModel, CategoryCount, ) BUILTIN_MODES = ["POSITIVE", "NEGATIVE", "HARD_NEGATIVE", "UNSURE"] logger = logging.getLogger(__name__) @api_view(["POST"]) @csrf_exempt def start_cluster(request): # TODO(mihirg): Remove this setting from Django; it's now managed by Terraform # (or figure out how to set it from the frontend if we need that) r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/start_cluster", ) response_data = r.json() return JsonResponse( { "status": "success", "cluster_id": response_data["cluster_id"], } ) @api_view(["GET"]) @csrf_exempt def get_cluster_status(request, cluster_id): params = {"cluster_id": cluster_id} r = requests.get( settings.EMBEDDING_SERVER_ADDRESS + "/cluster_status", params=params ) response_data = r.json() return JsonResponse(response_data) @api_view(["POST"]) @csrf_exempt def stop_cluster(request, cluster_id): params = {"cluster_id": cluster_id} requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/stop_cluster", json=params, ) return JsonResponse( { "status": "success", } ) @api_view(["POST"]) @csrf_exempt def create_model(request, dataset_name, dataset=None): payload = json.loads(request.body) model_name = payload["model_name"] cluster_id = payload["cluster_id"] bucket_name = payload["bucket"] index_id = payload["index_id"] pos_tags = parse_tag_set_from_query_v2(payload["pos_tags"]) neg_tags = parse_tag_set_from_query_v2(payload["neg_tags"]) val_pos_tags = parse_tag_set_from_query_v2(payload["val_pos_tags"]) val_neg_tags = parse_tag_set_from_query_v2(payload["val_neg_tags"]) augment_negs = bool(payload["augment_negs"]) model_kwargs = payload["model_kwargs"] resume_model_id = payload.get("resume", None) dataset = get_object_or_404(Dataset, name=dataset_name) eligible_images = DatasetItem.objects.filter(dataset=dataset, is_val=False) categories = Category.objects.filter( tag_sets_to_query(pos_tags, neg_tags, val_pos_tags, val_neg_tags) ) annotations = Annotation.objects.filter( dataset_item__in=eligible_images, category__in=categories, ) tags_by_pk = get_tags_from_annotations_v2(annotations) pos_dataset_item_pks = [] neg_dataset_item_pks = [] val_pos_dataset_item_pks = [] val_neg_dataset_item_pks = [] for pk, tags in tags_by_pk.items(): if any(t in pos_tags for t in tags): pos_dataset_item_pks.append(pk) elif any(t in neg_tags for t in tags): neg_dataset_item_pks.append(pk) elif any(t in val_pos_tags for t in tags): val_pos_dataset_item_pks.append(pk) elif any(t in val_neg_tags for t in tags): val_neg_dataset_item_pks.append(pk) # Augment with randomly sampled negatives if requested num_extra_negs = settings.BGSPLIT_NUM_NEGS_MULTIPLIER * len( pos_dataset_item_pks ) - len(neg_dataset_item_pks) if augment_negs and num_extra_negs > 0: # Uses "include" and "exclude" category sets from request all_eligible_pks = filtered_images_v2( request, dataset, exclude_pks=( pos_dataset_item_pks + neg_dataset_item_pks + val_pos_dataset_item_pks + val_neg_dataset_item_pks ), ) sampled_pks = random.sample( all_eligible_pks, min(len(all_eligible_pks), num_extra_negs) ) neg_dataset_item_pks.extend(sampled_pks) pos_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=pos_dataset_item_pks).values_list( "identifier", flat=True ) ) neg_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=neg_dataset_item_pks).values_list( "identifier", flat=True ) ) val_pos_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=val_pos_dataset_item_pks).values_list( "identifier", flat=True ) ) val_neg_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=val_neg_dataset_item_pks).values_list( "identifier", flat=True ) ) if resume_model_id: resume_model = get_object_or_404(DNNModel, model_id=resume_model_id) resume_model_path = resume_model.checkpoint_path else: resume_model = None resume_model_path = None params = { "pos_identifiers": pos_dataset_item_internal_identifiers, "neg_identifiers": neg_dataset_item_internal_identifiers, "val_pos_identifiers": val_pos_dataset_item_internal_identifiers, "val_neg_identifiers": val_neg_dataset_item_internal_identifiers, "augment_negs": augment_negs, "model_kwargs": model_kwargs, "model_name": model_name, "bucket": bucket_name, "cluster_id": cluster_id, "index_id": index_id, "resume_from": resume_model_path, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/start_bgsplit_job", json=params, ) response_data = r.json() if r.status_code != 200: return JsonResponse( {"status": "failure", "reason": response_data.get("reason", "")}, status=r.status_code, ) m = DNNModel( dataset=dataset, name=model_name, model_id=response_data["model_id"], category_spec={ "augment_negs": augment_negs, "pos_tags": payload["pos_tags"], "neg_tags": payload["neg_tags"], "augment_negs_include": payload.get("include", []) if augment_negs else [], "augment_negs_exclude": payload.get("exclude", []) if augment_negs else [], }, ) model_epoch = -1 + model_kwargs.get("epochs_to_run", 1) if resume_model_id: m.resume_model_id = resume_model_id if model_kwargs.get("resume_training", False): model_epoch += resume_model.epoch + 1 m.epoch = model_epoch m.save() return JsonResponse( { "status": "success", "model_id": response_data["model_id"], } ) @api_view(["GET"]) @csrf_exempt def get_model_status(request, model_id): params = {"model_id": model_id} r = requests.get( settings.EMBEDDING_SERVER_ADDRESS + "/bgsplit_job_status", params=params ) response_data = r.json() if response_data["has_model"]: # Index has been successfully created & uploaded -> persist m = get_object_or_404(DNNModel, model_id=model_id) m.checkpoint_path = response_data["checkpoint_path"] m.save() return JsonResponse(response_data) @api_view(["POST"]) @csrf_exempt def update_model_v2(request): payload = json.loads(request.body) # user = payload["user"] old_model_name = payload["old_model_name"] new_model_name = payload["new_model_name"] models = get_list_or_404(DNNModel, name=old_model_name) for m in models: m.name = new_model_name m.save() return JsonResponse({"success": True}) @api_view(["POST"]) @csrf_exempt def delete_model_v2(request): payload = json.loads(request.body) model_name = payload["model_name"] # cluster_id = payload['cluster_id'] models = get_list_or_404(DNNModel, name=model_name) for m in models: # TODO(fpoms): delete model data stored on NFS? # shutil.rmtree(os.path.join(m.checkpoint_path, '..')) shutil.rmtree(m.output_directory, ignore_errors=True) m.delete() return JsonResponse({"success": True}) @api_view(["POST"]) @csrf_exempt def run_model_inference(request, dataset_name, dataset=None): payload = json.loads(request.body) model_id = payload["model_id"] cluster_id = payload["cluster_id"] bucket_name = payload["bucket"] index_id = payload["index_id"] dataset = get_object_or_404(Dataset, name=dataset_name) model_checkpoint_path = get_object_or_404( DNNModel, model_id=model_id ).checkpoint_path if model_checkpoint_path is None or len(model_checkpoint_path) == 0: return JsonResponse( { "status": "failure", "reason": f"Model {model_id} does not have a model checkpoint.", }, status=400, ) params = { "bucket": bucket_name, "model_id": model_id, "checkpoint_path": model_checkpoint_path, "cluster_id": cluster_id, "index_id": index_id, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/start_bgsplit_inference_job", json=params, ) response_data = r.json() return JsonResponse( { "status": "success", "job_id": response_data["job_id"], } ) @api_view(["GET"]) @csrf_exempt def get_model_inference_status(request, job_id): params = {"job_id": job_id} r = requests.get( settings.EMBEDDING_SERVER_ADDRESS + "/bgsplit_inference_job_status", params=params, ) response_data = r.json() if response_data["has_output"]: model_id = response_data["model_id"] # Index has been successfully created & uploaded -> persist m = get_object_or_404(DNNModel, model_id=model_id) m.output_directory = response_data["output_dir"] m.save() return JsonResponse(response_data) @api_view(["POST"]) @csrf_exempt def stop_model_inference(request, job_id): params = {"job_id": job_id} r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/stop_bgsplit_inference_job", json=params ) response_data = r.json() return JsonResponse(response_data, status=r.status_code) # # V2 ENDPOINTS # TODO(mihirg): Make these faster # Tag = namedtuple("Tag", "category value") # type: NamedTuple[str, str] Box = namedtuple( "Box", "category value x1 y1 x2 y2" ) # type: NamedTuple[str, str, float, float, float, float] PkType = int @dataclass class ResultSet: type: str ranking: List[PkType] distances: List[float] model: Optional[str] # TODO(fpoms): this needs to be wrapped in a lock so that # updates are atomic across concurrent requests current_result_sets = ExpiringDict( max_age_seconds=30 * 60, max_len=50, ) # type: Dict[str, ResultSet] def parse_tag_set_from_query_v2(s): if isinstance(s, list): parts = s elif isinstance(s, str) and s: parts = s.split(",") else: parts = [] ts = set() for part in parts: if not part: continue category, value_str = part.split(":") ts.add(Tag(category, value_str)) return ts def tag_sets_to_query(*tagsets): merged = set().union(*tagsets) if not merged: return Q() return Q( annotation__in=Annotation.objects.filter( functools.reduce( operator.or_, [Q(category__name=t.category, mode__name=t.value) for t in merged], ) ) ) def serialize_tag_set_for_client_v2(ts): return [{"category": t.category, "value": t.value} for t in sorted(list(ts))] def serialize_boxes_for_client_v2(bs): return [ { "category": b.category, "value": b.value, "x1": b.x1, "y1": b.y1, "x2": b.x2, "y2": b.y2, } for b in sorted(list(bs)) ] def get_tags_from_annotations_v2(annotations): tags_by_pk = defaultdict(list) annotations = annotations.filter(is_box=False) ann_dicts = annotations.values("dataset_item__pk", "category__name", "mode__name") for ann in ann_dicts: pk = ann["dataset_item__pk"] category = ann["category__name"] mode = ann["mode__name"] tags_by_pk[pk].append(Tag(category, mode)) return tags_by_pk def get_boxes_from_annotations_v2(annotations): boxes_by_pk = defaultdict(list) annotations = annotations.filter(is_box=True) ann_dicts = annotations.values( "dataset_item__pk", "category__name", "mode__name", "bbox_x1", "bbox_y1", "bbox_x2", "bbox_y2", ) for ann in ann_dicts: pk = ann["dataset_item__pk"] category = ann["category__name"] mode = ann["mode__name"] box = (ann["bbox_x1"], ann["bbox_y1"], ann["bbox_x2"], ann["bbox_y2"]) boxes_by_pk[pk].append(Box(category, mode, *box)) return boxes_by_pk def filtered_images_v2(request, dataset, exclude_pks=None) -> List[PkType]: filt_start = time.time() if request.method == "POST": payload = json.loads(request.body) include_tags = parse_tag_set_from_query_v2(payload.get("include")) exclude_tags = parse_tag_set_from_query_v2(payload.get("exclude")) pks = [i for i in payload.get("subset", []) if i] split = payload.get("split", "train") offset_to_return = int(payload.get("offset", 0)) num_to_return = int(payload.get("num", -1)) else: include_tags = parse_tag_set_from_query_v2(request.GET.get("include")) exclude_tags = parse_tag_set_from_query_v2(request.GET.get("exclude")) pks = [i for i in request.GET.get("subset", "").split(",") if i] split = request.GET.get("split", "train") offset_to_return = int(request.GET.get("offset", 0)) num_to_return = int(request.GET.get("num", -1)) end_to_return = None if num_to_return == -1 else offset_to_return + num_to_return dataset_items = None is_val = split == "val" db_start = time.time() # Get pks for dataset items of interest if pks and exclude_pks: # Get specific pks - excluded pks if requested exclude_pks = set(exclude_pks) pks = [pk for pk in pks if pk not in exclude_pks] elif not pks: # Otherwise get all dataset items - exclude pks dataset_items = DatasetItem.objects.filter(dataset=dataset, is_val=is_val) if exclude_pks: dataset_items = dataset_items.exclude(pk__in=exclude_pks) pks = dataset_items.values_list("pk", flat=True) db_end = time.time() result = None db_tag_start = time.time() if not include_tags and not exclude_tags: # If no tags specified, just return retrieved pks result = pks else: # Otherwise, filter using include and exclude tags if dataset_items is None: dataset_items = DatasetItem.objects.filter(pk__in=pks) if include_tags: dataset_items = dataset_items.filter(tag_sets_to_query(include_tags)) if exclude_tags: dataset_items = dataset_items.exclude(tag_sets_to_query(exclude_tags)) result = dataset_items.values_list("pk", flat=True) db_tag_end = time.time() result = list(result[offset_to_return:end_to_return]) filt_end = time.time() print( f"filtered_images_v2: tot: {filt_end-filt_start}, " f"db ({len(result)} items): {db_end-db_start}, db tag: {db_tag_end-db_tag_start}" ) return result def process_image_query_results_v2(request, dataset, query_response): filtered_pks = filtered_images_v2(request, dataset) # TODO(mihirg): Eliminate this database call by directly returning pks from backend dataset_items = DatasetItem.objects.filter(pk__in=filtered_pks) dataset_items_by_path = {di.path: di for di in dataset_items} distances = [] ordered_pks = [] for r in query_response["results"]: if r["label"] in dataset_items_by_path: ordered_pks.append(dataset_items_by_path[r["label"]].pk) distances.append(r["dist"]) return dict( pks=ordered_pks, distances=distances, ) def create_result_set_v2(results, type, model=None): pks = results["pks"] distances = results["distances"] result_set_id = str(uuid.uuid4()) current_result_sets[result_set_id] = ResultSet( type=type, ranking=pks, distances=distances, model=model ) return { "id": result_set_id, "num_results": len(pks), "type": type, } @api_view(["GET"]) @csrf_exempt def get_results_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) index_id = request.GET["index_id"] result_set_id = request.GET["result_set_id"] offset_to_return = int(request.GET.get("offset", 0)) num_to_return = int(request.GET.get("num", 500)) clustering_model = request.GET.get("clustering_model", None) result_set = current_result_sets[result_set_id] pks = result_set.ranking[offset_to_return : offset_to_return + num_to_return] distances = result_set.distances[ offset_to_return : offset_to_return + num_to_return ] dataset_items_by_pk = DatasetItem.objects.in_bulk(pks) dataset_items = [dataset_items_by_pk[pk] for pk in pks] # preserve order bucket_name = dataset.train_directory[len("gs://") :].split("/")[0] path_template = "https://storage.googleapis.com/{:s}/".format(bucket_name) + "{:s}" internal_identifiers = [di.identifier for di in dataset_items] params = { "index_id": index_id, "identifiers": internal_identifiers, } if clustering_model: params["model"] = clustering_model r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/perform_clustering", json=params, ) clustering_data = r.json() dataset_item_paths = [ (di.path if di.path.find("http") != -1 else path_template.format(di.path)) for di in dataset_items ] dataset_item_identifiers = [di.pk for di in dataset_items] return JsonResponse( { "paths": dataset_item_paths, "identifiers": dataset_item_identifiers, "distances": distances, "clustering": clustering_data["clustering"], } ) @api_view(["POST"]) @csrf_exempt def keep_alive_v2(request): requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/keep_alive", ) return JsonResponse({"status": "success"}) @api_view(["POST"]) @csrf_exempt def generate_embedding_v2(request): payload = json.loads(request.body) image_id = payload.get("image_id") if image_id: payload["identifier"] = DatasetItem.objects.get(pk=image_id).identifier r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/generate_embedding", json=payload, ) return JsonResponse(r.json()) @api_view(["POST"]) @csrf_exempt def generate_text_embedding_v2(request): payload = json.loads(request.body) r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/generate_text_embedding", json=payload, ) return JsonResponse(r.json()) @api_view(["POST"]) @csrf_exempt def query_knn_v2(request, dataset_name): payload = json.loads(request.body) index_id = payload["index_id"] embeddings = payload["embeddings"] use_full_image = bool(payload.get("use_full_image", True)) use_dot_product = bool(payload.get("use_dot_product", False)) model = payload.get("model", "imagenet") dataset = get_object_or_404(Dataset, name=dataset_name) query_knn_start = time.time() params = { "index_id": index_id, "embeddings": embeddings, "use_full_image": use_full_image, "use_dot_product": use_dot_product, "model": model, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/query_knn_v2", json=params, ) response_data = r.json() query_knn_end = time.time() logger.debug("query_knn_v2 time: {:f}".format(query_knn_end - query_knn_start)) results = process_image_query_results_v2( request, dataset, response_data, ) return JsonResponse(create_result_set_v2(results, "knn", model=model)) @api_view(["GET"]) @csrf_exempt def train_svm_v2(request, dataset_name): index_id = request.GET["index_id"] model = request.GET.get("model", "imagenet") pos_tags = parse_tag_set_from_query_v2(request.GET["pos_tags"]) neg_tags = parse_tag_set_from_query_v2(request.GET.get("neg_tags")) augment_negs = bool( distutils.util.strtobool(request.GET.get("augment_negs", "false")) ) dataset = get_object_or_404(Dataset, name=dataset_name) pos_dataset_items = DatasetItem.objects.filter( tag_sets_to_query(pos_tags), dataset=dataset, is_val=False, ) pos_dataset_item_pks = list(pos_dataset_items.values_list("pk", flat=True)) if neg_tags: neg_dataset_items = DatasetItem.objects.filter( tag_sets_to_query(neg_tags), dataset=dataset, is_val=False, ).difference(pos_dataset_items) neg_dataset_item_pks = list(neg_dataset_items.values_list("pk", flat=True)) else: neg_dataset_item_pks = [] # Augment with randomly sampled negatives if requested num_extra_negs = settings.SVM_NUM_NEGS_MULTIPLIER * len(pos_dataset_item_pks) - len( neg_dataset_item_pks ) if augment_negs and num_extra_negs > 0: # Uses "include" and "exclude" category sets from GET request all_eligible_pks = filtered_images_v2( request, dataset, exclude_pks=pos_dataset_item_pks + neg_dataset_item_pks ) sampled_pks = random.sample( all_eligible_pks, min(len(all_eligible_pks), num_extra_negs) ) neg_dataset_item_pks.extend(sampled_pks) pos_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=pos_dataset_item_pks).values_list( "identifier", flat=True ) ) neg_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=neg_dataset_item_pks).values_list( "identifier", flat=True ) ) params = { "index_id": index_id, "pos_identifiers": pos_dataset_item_internal_identifiers, "neg_identifiers": neg_dataset_item_internal_identifiers, "model": model, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/train_svm_v2", json=params, ) return JsonResponse(r.json()) # {"svm_vector": base64-encoded string} @api_view(["POST"]) @csrf_exempt def query_svm_v2(request, dataset_name): payload = json.loads(request.body) index_id = payload["index_id"] svm_vector = payload["svm_vector"] score_min = float(payload.get("score_min", 0.0)) score_max = float(payload.get("score_max", 1.0)) model = payload.get("model", "imagenet") dataset = get_object_or_404(Dataset, name=dataset_name) params = { "index_id": index_id, "svm_vector": svm_vector, "score_min": score_min, "score_max": score_max, "model": model, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/query_svm_v2", json=params, ) response_data = r.json() # TODO(mihirg, jeremye): Consider some smarter pagination/filtering scheme to avoid # running a separate query over the index every single time the user adjusts score # thresholds results = process_image_query_results_v2( request, dataset, response_data, ) return JsonResponse(create_result_set_v2(results, "svm")) @api_view(["POST"]) @csrf_exempt def query_ranking_v2(request, dataset_name): payload = json.loads(request.body) index_id = payload["index_id"] score_min = float(payload.get("score_min", 0.0)) score_max = float(payload.get("score_max", 1.0)) model = payload["model"] dataset = get_object_or_404(Dataset, name=dataset_name) params = { "index_id": index_id, "score_min": score_min, "score_max": score_max, "model": model, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/query_ranking_v2", json=params, ) response_data = r.json() # TODO(mihirg, jeremye): Consider some smarter pagination/filtering scheme to avoid # running a separate query over the index every single time the user adjusts score # thresholds results = process_image_query_results_v2( request, dataset, response_data, ) return JsonResponse(create_result_set_v2(results, "ranking", model=model)) @api_view(["POST"]) @csrf_exempt def query_images_v2(request, dataset_name): query_start = time.time() dataset = get_object_or_404(Dataset, name=dataset_name) payload = json.loads(request.body) order = payload.get("order", "id") filter_start = time.time() result_pks = filtered_images_v2(request, dataset) filter_end = time.time() if order == "random": random.shuffle(result_pks) elif order == "id": result_pks.sort() results = {"pks": result_pks, "distances": [-1 for _ in result_pks]} resp = JsonResponse(create_result_set_v2(results, "query")) query_end = time.time() print( f"query_images_v2: tot: {query_end-query_start}, " f"filter: {filter_end-filter_start}" ) return resp # # ACTIVE VALIDATION # VAL_NEGATIVE_TYPE = "model_val_negative" def get_val_examples_v2(dataset, model_id): # Get positive and negative categories model = get_object_or_404(DNNModel, model_id=model_id) pos_tags = parse_tag_set_from_query_v2(model.category_spec["pos_tags"]) neg_tags = parse_tag_set_from_query_v2(model.category_spec["neg_tags"]) augment_negs = model.category_spec.get("augment_negs", False) augment_negs_include = ( parse_tag_set_from_query_v2(model.category_spec.get("augment_negs_include", [])) if augment_negs else set() ) # Limit to validation set eligible_dataset_items = DatasetItem.objects.filter( dataset=dataset, is_val=True, ) # Get positives and negatives matching these categories categories = Category.objects.filter( tag_sets_to_query(pos_tags, neg_tags, augment_negs_include) ) annotations = Annotation.objects.filter( dataset_item__in=eligible_dataset_items, category__in=categories, ) tags_by_pk = get_tags_from_annotations_v2(annotations) pos_dataset_item_pks = [] neg_dataset_item_pks = [] for pk, tags in tags_by_pk.items(): if any(t in pos_tags for t in tags): pos_dataset_item_pks.append(pk) elif any(t in neg_tags or t in augment_negs_include for t in tags): neg_dataset_item_pks.append(pk) # Get extra negatives if augment_negs: annotations = Annotation.objects.filter( dataset_item__in=eligible_dataset_items, label_category=model_id, label_type=VAL_NEGATIVE_TYPE, ) neg_dataset_item_pks.extend(ann.dataset_item.pk for ann in annotations) return pos_dataset_item_pks, neg_dataset_item_pks @api_view(["POST"]) def query_metrics_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) payload = json.loads(request.body) model_id = payload["model"] index_id = payload["index_id"] internal_identifiers_to_weights = payload["weights"] # type: Dict[str, int] pos_dataset_item_pks, neg_dataset_item_pks = get_val_examples_v2(dataset, model_id) # Construct identifiers, labels, and weights dataset_items_by_pk = DatasetItem.objects.in_bulk( pos_dataset_item_pks + neg_dataset_item_pks ) identifiers = [] labels = [] weights = [] for pk, label in itertools.chain( ((pk, True) for pk in pos_dataset_item_pks), ((pk, False) for pk in neg_dataset_item_pks), ): di = dataset_items_by_pk[pk] identifier = di.identifier weight = internal_identifiers_to_weights.get(identifier) if weight is None: continue identifiers.append(identifier) labels.append(label) weights.append(weight) # TODO(mihirg): Parse false positives and false negatives params = { "index_id": index_id, "model": model_id, "identifiers": identifiers, "labels": labels, "weights": weights, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/query_metrics", json=params, ) response_data = r.json() return JsonResponse(response_data) @api_view(["POST"]) def query_active_validation_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) payload = json.loads(request.body) model_id = payload["model"] index_id = payload["index_id"] current_f1 = payload.get("current_f1") if current_f1 is None: current_f1 = 0.5 pos_dataset_item_pks, neg_dataset_item_pks = get_val_examples_v2(dataset, model_id) # Construct paths, identifiers, and labels dataset_items_by_pk = DatasetItem.objects.in_bulk( pos_dataset_item_pks + neg_dataset_item_pks ) identifiers = [] labels = [] for pk, label in itertools.chain( ((pk, True) for pk in pos_dataset_item_pks), ((pk, False) for pk in neg_dataset_item_pks), ): di = dataset_items_by_pk[pk] identifiers.append(di.identifier) labels.append(label) params = { "index_id": index_id, "model": model_id, "identifiers": identifiers, "labels": labels, "current_f1": current_f1, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/query_active_validation", json=params, ) response_data = r.json() if response_data["identifiers"]: pks_and_paths = list( DatasetItem.objects.filter( dataset=dataset, identifier__in=response_data["identifiers"], is_val=True, ).values_list("pk", "path") ) random.shuffle(pks_and_paths) pks, paths = zip(*pks_and_paths) else: pks, paths = [], [] bucket_name = dataset.val_directory[len("gs://") :].split("/")[0] path_template = "https://storage.googleapis.com/{:s}/".format(bucket_name) + "{:s}" paths = [path_template.format(p) for p in paths] return JsonResponse( { "paths": paths, "identifiers": pks, "weights": response_data["weights"], } ) @api_view(["POST"]) def add_val_annotations_v2(request): payload = json.loads(request.body) annotations = payload["annotations"] user_email = payload["user"] model = payload["model"] anns = [] cat_modes = defaultdict(int) dataset = None for ann_payload in annotations: image_pk = ann_payload["identifier"] is_other_negative = ann_payload.get("is_other_negative", False) mode_str = "NEGATIVE" if is_other_negative else ann_payload["mode"] category_name = ( "active:" + model if is_other_negative else ann_payload["category"] ) user, _ = User.objects.get_or_create(email=user_email) category, _ = Category.objects.get_or_create(name=category_name) mode, _ = Mode.objects.get_or_create(name=mode_str) di = DatasetItem.objects.get(pk=image_pk) dataset = di.dataset assert di.is_val ann = Annotation( dataset_item=di, user=user, category=category, mode=mode, misc_data={"created_by": "active_val"}, ) cat_modes[(category, mode)] += 1 anns.append(ann) Annotation.objects.bulk_create(anns) for (cat, mode), c in cat_modes.items(): category_count, _ = CategoryCount.objects.get_or_create( dataset=dataset, category=cat, mode=mode ) category_count.count += c category_count.save() return JsonResponse({"created": len(anns)}) # DATASET INFO @api_view(["GET"]) @csrf_exempt def get_datasets_v2(request): datasets = Dataset.objects.filter(hidden=False) dataset_names = list(datasets.values_list("name", flat=True)) return JsonResponse({"dataset_names": dataset_names}) @api_view(["GET"]) @csrf_exempt def get_dataset_info_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) num_train = dataset.datasetitem_set.filter(is_val=False).count() num_val = dataset.datasetitem_set.filter(is_val=True).count() return JsonResponse( { "index_id": dataset.index_id, "num_train": num_train, "num_val": num_val, } ) @api_view(["GET"]) @csrf_exempt def get_models_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) model_objs = DNNModel.objects.filter( dataset=dataset, checkpoint_path__isnull=False, ).order_by("-last_updated") model_names = set() latest = {} with_output = {} for model in model_objs: model_names.add(model.name) if model.name not in latest: latest[model.name] = model if model.output_directory and model.name not in with_output: with_output[model.name] = model models = [ { "name": model_name, "latest": model_info(latest[model_name]), "with_output": model_info(with_output.get(model_name)), } for model_name in model_names ] return JsonResponse({"models": models}) def model_info(model): if model is None: return None pos_tags = parse_tag_set_from_query_v2(model.category_spec.get("pos_tags", [])) neg_tags = parse_tag_set_from_query_v2(model.category_spec.get("neg_tags", [])) augment_negs_include = parse_tag_set_from_query_v2( model.category_spec.get("augment_negs_include", []) ) return { "model_id": model.model_id, "timestamp": model.last_updated, "has_checkpoint": model.checkpoint_path is not None, "has_output": model.output_directory is not None, "pos_tags": serialize_tag_set_for_client_v2(pos_tags), "neg_tags": serialize_tag_set_for_client_v2(neg_tags | augment_negs_include), "augment_negs": model.category_spec.get("augment_negs", False), "epoch": model.epoch, } @api_view(["POST"]) @csrf_exempt def create_dataset_v2(request): payload = json.loads(request.body) name = payload["dataset"] train_directory = payload["train_path"] val_directory = payload["val_path"] index_id = payload["index_id"] assert all(d.startswith("gs://") for d in (train_directory, val_directory)) # Download index on index server params = {"index_id": index_id} requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/download_index", json=params, ) client = storage.Client() all_blobs = [] for d, is_val in ((train_directory, False), (val_directory, True)): split_dir = d[len("gs://") :].split("/") bucket_name = split_dir[0] bucket_path = "/".join(split_dir[1:]) all_blobs.extend( (blob, is_val) for blob in client.list_blobs(bucket_name, prefix=bucket_path) ) dataset = Dataset( name=name, train_directory=train_directory, val_directory=val_directory, index_id=index_id, ) dataset.save() # Create all the DatasetItems for this dataset items = [ DatasetItem( dataset=dataset, identifier=os.path.splitext(os.path.basename(blob.name))[0], path=blob.name, is_val=is_val, ) for blob, is_val in all_blobs if ( blob.name.endswith(".jpg") or blob.name.endswith(".jpeg") or blob.name.endswith(".png") ) ] DatasetItem.objects.bulk_create(items, batch_size=10000) return JsonResponse({"status": "success"}) @api_view(["POST"]) @csrf_exempt def get_annotations_v2(request): payload = json.loads(request.body) image_pks = [i for i in payload["identifiers"] if i] if not image_pks: return JsonResponse({}) annotations = Annotation.objects.filter( dataset_item__in=DatasetItem.objects.filter(pk__in=image_pks), ) tags_by_pk = get_tags_from_annotations_v2(annotations) boxes_by_pk = get_boxes_from_annotations_v2(annotations) annotations_by_pk = defaultdict(lambda: {"tags": [], "boxes": []}) for pk, tags in tags_by_pk.items(): annotations_by_pk[pk]["tags"] = serialize_tag_set_for_client_v2(tags) for pk, boxes in boxes_by_pk.items(): annotations_by_pk[pk]["boxes"] = serialize_boxes_for_client_v2(boxes) return JsonResponse(annotations_by_pk) @api_view(["POST"]) @csrf_exempt def add_annotations_v2(request): payload = json.loads(request.body) image_pks = payload["identifiers"] images = DatasetItem.objects.filter(pk__in=image_pks) num_created = bulk_add_single_tag_annotations_v2(payload, images) return JsonResponse({"created": num_created}) @api_view(["POST"]) @csrf_exempt def add_annotations_multi_v2(request): payload = json.loads(request.body) num_created = bulk_add_multi_annotations_v2(payload) return JsonResponse({"created": num_created}) @api_view(["POST"]) @csrf_exempt def add_annotations_by_internal_identifiers_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) payload = json.loads(request.body) image_identifiers = payload["identifiers"] images = DatasetItem.objects.filter( dataset=dataset, identifier__in=image_identifiers ) num_created = bulk_add_single_tag_annotations_v2(payload, images) return JsonResponse({"created": num_created}) @api_view(["POST"]) @csrf_exempt def add_annotations_to_result_set_v2(request): payload = json.loads(request.body) result_set_id = payload["result_set_id"] lower_bound = float(payload["from"]) upper_bound = float(payload["to"]) result_set = current_result_sets[result_set_id] result_ranking = result_set.ranking # e.g., lower_bound=0.0, upper_bound=0.5 -> second half of the result set start_index = math.ceil(len(result_ranking) * (1.0 - upper_bound)) end_index = math.floor(len(result_ranking) * (1.0 - lower_bound)) image_pks = result_ranking[start_index:end_index] images = DatasetItem.objects.filter(pk__in=image_pks) num_created = bulk_add_single_tag_annotations_v2(payload, images) return JsonResponse({"created": num_created}) def bulk_add_single_tag_annotations_v2(payload, images): '''Adds annotations for a single tag to many dataset items''' if not images: return 0 user_email = payload["user"] category_name = payload["category"] mode_name = payload["mode"] created_by = payload.get("created_by", "tag" if len(images) == 1 else "tag-bulk") dataset = None if len(images) > 0: dataset = images[0].dataset user, _ = User.objects.get_or_create(email=user_email) category, _ = Category.objects.get_or_create(name=category_name) mode, _ = Mode.objects.get_or_create(name=mode_name) Annotation.objects.filter( dataset_item__in=images, category=category, is_box=False).delete() # TODO: Add an actual endpoint to delete annotations (probably by pk); don't rely # on this hacky "TOMBSTONE" string annotations = [ Annotation( dataset_item=di, user=user, category=category, mode=mode, is_box=False, misc_data={"created_by": created_by}, ) for di in images ] bulk_add_annotations_v2(dataset, annotations) return len(annotations) def bulk_add_multi_annotations_v2(payload : Dict): '''Adds multiple annotations for the same dataset and user to the database at once''' dataset_name = payload["dataset"] dataset = get_object_or_404(Dataset, name=dataset_name) user_email = payload["user"] user, _ = User.objects.get_or_create(email=user_email) created_by = payload.get("created_by", "tag" if len(payload["annotations"]) == 1 else "tag-bulk") # Get pks idents = [ann['identifier'] for ann in payload["annotations"] if 'identifier' in ann] di_pks = list(DatasetItem.objects.filter( dataset=dataset, identifier__in=idents ).values_list("pk", "identifier")) ident_to_pk = {ident: pk for pk, ident in di_pks} cats = {} modes = {} to_delete = defaultdict(set) annotations = [] for ann in payload["annotations"]: db_ann = Annotation() category_name = ann["category"] mode_name = ann["mode"] if category_name not in cats: cats[category_name] = Category.objects.get_or_create( name=category_name)[0] if mode_name not in modes: modes[mode_name] = Mode.objects.get_or_create( name=mode_name)[0] if "identifier" in ann: pk = ident_to_pk[ann["identifier"]] else: pk = ann["pk"] db_ann.dataset_item_id = pk db_ann.user = user db_ann.category = cats[category_name] db_ann.mode = modes[mode_name] db_ann.is_box = ann.get("is_box", False) if db_ann.is_box: db_ann.bbox_x1 = ann["x1"] db_ann.bbox_y1 = ann["y1"] db_ann.bbox_x2 = ann["x2"] db_ann.bbox_y2 = ann["y2"] else: to_delete[db_ann.category].add(pk) db_ann.misc_data={"created_by": created_by} annotations.append(db_ann) for cat, pks in to_delete.items(): # Delete per-frame annotations for the category if they exist since # we should only have on mode per image Annotation.objects.filter( category=cat, dataset_item_id__in=pks, is_box=False).delete() # TODO: Add an actual endpoint to delete annotations (probably by pk); don't rely # on this hacky "TOMBSTONE" string bulk_add_annotations_v2(dataset, annotations) return len(annotations) def bulk_add_annotations_v2(dataset, annotations): '''Handles book keeping for adding many annotations at once''' Annotation.objects.bulk_create(annotations) counts = defaultdict(int) for ann in annotations: counts[(ann.category, ann.mode)] += 1 for (cat, mode), count in counts.items(): category_count, _ = CategoryCount.objects.get_or_create( dataset=dataset, category=cat, mode=mode ) category_count.count += count category_count.save() @api_view(["POST"]) @csrf_exempt def delete_category_v2(request): payload = json.loads(request.body) category = payload["category"] category = Category.objects.get(name=category) category.delete() return JsonResponse({"status": "success"}) @api_view(["POST"]) @csrf_exempt def update_category_v2(request): payload = json.loads(request.body) old_category_name = payload["oldCategory"] new_category_name = payload["newCategory"] category = Category.objects.get(name=old_category_name) category.name = new_category_name category.save() return JsonResponse({"status": "success"}) @api_view(["GET"]) @csrf_exempt def get_category_counts_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) counts = CategoryCount.objects.filter(dataset=dataset).values( "category__name", "mode__name", "count" ) n_labeled = defaultdict(dict) for c in counts: category = c["category__name"] mode = c["mode__name"] count = c["count"] n_labeled[category][mode] = count return JsonResponse(n_labeled)
[ "logging.getLogger", "itertools.chain", "requests.post", "expiringdict.ExpiringDict", "django.shortcuts.get_list_or_404", "django.shortcuts.get_object_or_404", "rest_framework.decorators.api_view", "json.loads", "collections.namedtuple", "random.shuffle", "django.http.JsonResponse", "requests.get", "uuid.uuid4", "time.time", "google.cloud.storage.Client", "collections.defaultdict", "os.path.basename", "shutil.rmtree", "django.db.models.Q" ]
[((879, 906), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (896, 906), False, 'import logging\n'), ((909, 927), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (917, 927), False, 'from rest_framework.decorators import api_view\n'), ((1384, 1401), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (1392, 1401), False, 'from rest_framework.decorators import api_view\n'), ((1676, 1694), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (1684, 1694), False, 'from rest_framework.decorators import api_view\n'), ((1981, 1999), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (1989, 1999), False, 'from rest_framework.decorators import api_view\n'), ((7145, 7162), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (7153, 7162), False, 'from rest_framework.decorators import api_view\n'), ((7674, 7692), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (7682, 7692), False, 'from rest_framework.decorators import api_view\n'), ((8076, 8094), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (8084, 8094), False, 'from rest_framework.decorators import api_view\n'), ((8581, 8599), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (8589, 8599), False, 'from rest_framework.decorators import api_view\n'), ((9795, 9812), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (9803, 9812), False, 'from rest_framework.decorators import api_view\n'), ((10389, 10407), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (10397, 10407), False, 'from rest_framework.decorators import api_view\n'), ((10765, 10800), 'collections.namedtuple', 'namedtuple', (['"""Tag"""', '"""category value"""'], {}), "('Tag', 'category value')\n", (10775, 10800), False, 'from collections import defaultdict, namedtuple\n'), ((10837, 10884), 'collections.namedtuple', 'namedtuple', (['"""Box"""', '"""category value x1 y1 x2 y2"""'], {}), "('Box', 'category value x1 y1 x2 y2')\n", (10847, 10884), False, 'from collections import defaultdict, namedtuple\n'), ((11214, 11263), 'expiringdict.ExpiringDict', 'ExpiringDict', ([], {'max_age_seconds': '(30 * 60)', 'max_len': '(50)'}), '(max_age_seconds=30 * 60, max_len=50)\n', (11226, 11263), False, 'from expiringdict import ExpiringDict\n'), ((17121, 17138), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (17129, 17138), False, 'from rest_framework.decorators import api_view\n'), ((18892, 18910), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (18900, 18910), False, 'from rest_framework.decorators import api_view\n'), ((19086, 19104), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (19094, 19104), False, 'from rest_framework.decorators import api_view\n'), ((19485, 19503), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (19493, 19503), False, 'from rest_framework.decorators import api_view\n'), ((19757, 19775), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (19765, 19775), False, 'from rest_framework.decorators import api_view\n'), ((20852, 20869), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (20860, 20869), False, 'from rest_framework.decorators import api_view\n'), ((23246, 23264), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (23254, 23264), False, 'from rest_framework.decorators import api_view\n'), ((24325, 24343), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (24333, 24343), False, 'from rest_framework.decorators import api_view\n'), ((25340, 25358), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (25348, 25358), False, 'from rest_framework.decorators import api_view\n'), ((27914, 27932), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (27922, 27932), False, 'from rest_framework.decorators import api_view\n'), ((29382, 29400), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (29390, 29400), False, 'from rest_framework.decorators import api_view\n'), ((31364, 31382), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (31372, 31382), False, 'from rest_framework.decorators import api_view\n'), ((32883, 32900), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (32891, 32900), False, 'from rest_framework.decorators import api_view\n'), ((33123, 33140), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (33131, 33140), False, 'from rest_framework.decorators import api_view\n'), ((33562, 33579), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (33570, 33579), False, 'from rest_framework.decorators import api_view\n'), ((35255, 35273), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (35263, 35273), False, 'from rest_framework.decorators import api_view\n'), ((36893, 36911), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (36901, 36911), False, 'from rest_framework.decorators import api_view\n'), ((37706, 37724), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (37714, 37724), False, 'from rest_framework.decorators import api_view\n'), ((38030, 38048), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (38038, 38048), False, 'from rest_framework.decorators import api_view\n'), ((38250, 38268), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (38258, 38268), False, 'from rest_framework.decorators import api_view\n'), ((38728, 38746), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (38736, 38746), False, 'from rest_framework.decorators import api_view\n'), ((43711, 43729), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (43719, 43729), False, 'from rest_framework.decorators import api_view\n'), ((43975, 43993), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (43983, 43993), False, 'from rest_framework.decorators import api_view\n'), ((44344, 44361), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (44352, 44361), False, 'from rest_framework.decorators import api_view\n'), ((1130, 1197), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/start_cluster')"], {}), "(settings.EMBEDDING_SERVER_ADDRESS + '/start_cluster')\n", (1143, 1197), False, 'import requests\n'), ((1253, 1331), 'django.http.JsonResponse', 'JsonResponse', (["{'status': 'success', 'cluster_id': response_data['cluster_id']}"], {}), "({'status': 'success', 'cluster_id': response_data['cluster_id']})\n", (1265, 1331), False, 'from django.http import JsonResponse\n'), ((1508, 1595), 'requests.get', 'requests.get', (["(settings.EMBEDDING_SERVER_ADDRESS + '/cluster_status')"], {'params': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/cluster_status', params=\n params)\n", (1520, 1595), False, 'import requests\n'), ((1645, 1672), 'django.http.JsonResponse', 'JsonResponse', (['response_data'], {}), '(response_data)\n', (1657, 1672), False, 'from django.http import JsonResponse\n'), ((1791, 1870), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/stop_cluster')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/stop_cluster', json=params)\n", (1804, 1870), False, 'import requests\n'), ((1905, 1940), 'django.http.JsonResponse', 'JsonResponse', (["{'status': 'success'}"], {}), "({'status': 'success'})\n", (1917, 1940), False, 'from django.http import JsonResponse\n'), ((2082, 2106), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (2092, 2106), False, 'import json\n'), ((2685, 2730), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (2702, 2730), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((5954, 6042), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/start_bgsplit_job')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/start_bgsplit_job',\n json=params)\n", (5967, 6042), False, 'import requests\n'), ((7018, 7092), 'django.http.JsonResponse', 'JsonResponse', (["{'status': 'success', 'model_id': response_data['model_id']}"], {}), "({'status': 'success', 'model_id': response_data['model_id']})\n", (7030, 7092), False, 'from django.http import JsonResponse\n'), ((7261, 7351), 'requests.get', 'requests.get', (["(settings.EMBEDDING_SERVER_ADDRESS + '/bgsplit_job_status')"], {'params': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/bgsplit_job_status',\n params=params)\n", (7273, 7351), False, 'import requests\n'), ((7643, 7670), 'django.http.JsonResponse', 'JsonResponse', (['response_data'], {}), '(response_data)\n', (7655, 7670), False, 'from django.http import JsonResponse\n'), ((7750, 7774), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (7760, 7774), False, 'import json\n'), ((7912, 7958), 'django.shortcuts.get_list_or_404', 'get_list_or_404', (['DNNModel'], {'name': 'old_model_name'}), '(DNNModel, name=old_model_name)\n', (7927, 7958), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((8041, 8072), 'django.http.JsonResponse', 'JsonResponse', (["{'success': True}"], {}), "({'success': True})\n", (8053, 8072), False, 'from django.http import JsonResponse\n'), ((8152, 8176), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (8162, 8176), False, 'import json\n'), ((8270, 8312), 'django.shortcuts.get_list_or_404', 'get_list_or_404', (['DNNModel'], {'name': 'model_name'}), '(DNNModel, name=model_name)\n', (8285, 8312), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((8546, 8577), 'django.http.JsonResponse', 'JsonResponse', (["{'success': True}"], {}), "({'success': True})\n", (8558, 8577), False, 'from django.http import JsonResponse\n'), ((8689, 8713), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (8699, 8713), False, 'import json\n'), ((8874, 8919), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (8891, 8919), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((9513, 9611), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/start_bgsplit_inference_job')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS +\n '/start_bgsplit_inference_job', json=params)\n", (9526, 9611), False, 'import requests\n'), ((9672, 9742), 'django.http.JsonResponse', 'JsonResponse', (["{'status': 'success', 'job_id': response_data['job_id']}"], {}), "({'status': 'success', 'job_id': response_data['job_id']})\n", (9684, 9742), False, 'from django.http import JsonResponse\n'), ((9915, 10015), 'requests.get', 'requests.get', (["(settings.EMBEDDING_SERVER_ADDRESS + '/bgsplit_inference_job_status')"], {'params': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS +\n '/bgsplit_inference_job_status', params=params)\n", (9927, 10015), False, 'import requests\n'), ((10358, 10385), 'django.http.JsonResponse', 'JsonResponse', (['response_data'], {}), '(response_data)\n', (10370, 10385), False, 'from django.http import JsonResponse\n'), ((10504, 10601), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/stop_bgsplit_inference_job')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS +\n '/stop_bgsplit_inference_job', json=params)\n", (10517, 10601), False, 'import requests\n'), ((10652, 10701), 'django.http.JsonResponse', 'JsonResponse', (['response_data'], {'status': 'r.status_code'}), '(response_data, status=r.status_code)\n', (10664, 10701), False, 'from django.http import JsonResponse\n'), ((12477, 12494), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (12488, 12494), False, 'from collections import defaultdict, namedtuple\n'), ((12911, 12928), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (12922, 12928), False, 'from collections import defaultdict, namedtuple\n'), ((13565, 13576), 'time.time', 'time.time', ([], {}), '()\n', (13574, 13576), False, 'import time\n'), ((14581, 14592), 'time.time', 'time.time', ([], {}), '()\n', (14590, 14592), False, 'import time\n'), ((15138, 15149), 'time.time', 'time.time', ([], {}), '()\n', (15147, 15149), False, 'import time\n'), ((15188, 15199), 'time.time', 'time.time', ([], {}), '()\n', (15197, 15199), False, 'import time\n'), ((15790, 15801), 'time.time', 'time.time', ([], {}), '()\n', (15799, 15801), False, 'import time\n'), ((15875, 15886), 'time.time', 'time.time', ([], {}), '()\n', (15884, 15886), False, 'import time\n'), ((17209, 17254), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (17226, 17254), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((18298, 18387), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/perform_clustering')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/perform_clustering',\n json=params)\n", (18311, 18387), False, 'import requests\n'), ((18662, 18823), 'django.http.JsonResponse', 'JsonResponse', (["{'paths': dataset_item_paths, 'identifiers': dataset_item_identifiers,\n 'distances': distances, 'clustering': clustering_data['clustering']}"], {}), "({'paths': dataset_item_paths, 'identifiers':\n dataset_item_identifiers, 'distances': distances, 'clustering':\n clustering_data['clustering']})\n", (18674, 18823), False, 'from django.http import JsonResponse\n'), ((18956, 19020), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/keep_alive')"], {}), "(settings.EMBEDDING_SERVER_ADDRESS + '/keep_alive')\n", (18969, 19020), False, 'import requests\n'), ((19047, 19082), 'django.http.JsonResponse', 'JsonResponse', (["{'status': 'success'}"], {}), "({'status': 'success'})\n", (19059, 19082), False, 'from django.http import JsonResponse\n'), ((19168, 19192), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (19178, 19192), False, 'import json\n'), ((19338, 19428), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/generate_embedding')"], {'json': 'payload'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/generate_embedding',\n json=payload)\n", (19351, 19428), False, 'import requests\n'), ((19572, 19596), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (19582, 19596), False, 'import json\n'), ((19605, 19700), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/generate_text_embedding')"], {'json': 'payload'}), "(settings.EMBEDDING_SERVER_ADDRESS +\n '/generate_text_embedding', json=payload)\n", (19618, 19700), False, 'import requests\n'), ((19844, 19868), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (19854, 19868), False, 'import json\n'), ((20132, 20177), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (20149, 20177), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((20201, 20212), 'time.time', 'time.time', ([], {}), '()\n', (20210, 20212), False, 'import time\n'), ((20416, 20495), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/query_knn_v2')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/query_knn_v2', json=params)\n", (20429, 20495), False, 'import requests\n'), ((20568, 20579), 'time.time', 'time.time', ([], {}), '()\n', (20577, 20579), False, 'import time\n'), ((21273, 21318), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (21290, 21318), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((23065, 23144), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/train_svm_v2')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/train_svm_v2', json=params)\n", (23078, 23144), False, 'import requests\n'), ((23333, 23357), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (23343, 23357), False, 'import json\n'), ((23598, 23643), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (23615, 23643), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((23826, 23905), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/query_svm_v2')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/query_svm_v2', json=params)\n", (23839, 23905), False, 'import requests\n'), ((24416, 24440), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (24426, 24440), False, 'import json\n'), ((24626, 24671), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (24643, 24671), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((24820, 24908), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/query_ranking_v2')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/query_ranking_v2', json\n =params)\n", (24833, 24908), False, 'import requests\n'), ((25434, 25445), 'time.time', 'time.time', ([], {}), '()\n', (25443, 25445), False, 'import time\n'), ((25461, 25506), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (25478, 25506), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((25521, 25545), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (25531, 25545), False, 'import json\n'), ((25605, 25616), 'time.time', 'time.time', ([], {}), '()\n', (25614, 25616), False, 'import time\n'), ((25688, 25699), 'time.time', 'time.time', ([], {}), '()\n', (25697, 25699), False, 'import time\n'), ((25966, 25977), 'time.time', 'time.time', ([], {}), '()\n', (25975, 25977), False, 'import time\n'), ((26285, 26331), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['DNNModel'], {'model_id': 'model_id'}), '(DNNModel, model_id=model_id)\n', (26302, 26331), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((27992, 28037), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (28009, 28037), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((28052, 28076), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (28062, 28076), False, 'import json\n'), ((28552, 28662), 'itertools.chain', 'itertools.chain', (['((pk, True) for pk in pos_dataset_item_pks)', '((pk, False) for pk in neg_dataset_item_pks)'], {}), '(((pk, True) for pk in pos_dataset_item_pks), ((pk, False) for\n pk in neg_dataset_item_pks))\n', (28567, 28662), False, 'import itertools\n'), ((29207, 29292), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/query_metrics')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/query_metrics', json=params\n )\n", (29220, 29292), False, 'import requests\n'), ((29351, 29378), 'django.http.JsonResponse', 'JsonResponse', (['response_data'], {}), '(response_data)\n', (29363, 29378), False, 'from django.http import JsonResponse\n'), ((29470, 29515), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (29487, 29515), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((29530, 29554), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (29540, 29554), False, 'import json\n'), ((30025, 30135), 'itertools.chain', 'itertools.chain', (['((pk, True) for pk in pos_dataset_item_pks)', '((pk, False) for pk in neg_dataset_item_pks)'], {}), '(((pk, True) for pk in pos_dataset_item_pks), ((pk, False) for\n pk in neg_dataset_item_pks))\n', (30040, 30135), False, 'import itertools\n'), ((30447, 30541), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/query_active_validation')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS +\n '/query_active_validation', json=params)\n", (30460, 30541), False, 'import requests\n'), ((31212, 31304), 'django.http.JsonResponse', 'JsonResponse', (["{'paths': paths, 'identifiers': pks, 'weights': response_data['weights']}"], {}), "({'paths': paths, 'identifiers': pks, 'weights': response_data[\n 'weights']})\n", (31224, 31304), False, 'from django.http import JsonResponse\n'), ((31434, 31458), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (31444, 31458), False, 'import json\n'), ((31593, 31609), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (31604, 31609), False, 'from collections import defaultdict, namedtuple\n'), ((33073, 33119), 'django.http.JsonResponse', 'JsonResponse', (["{'dataset_names': dataset_names}"], {}), "({'dataset_names': dataset_names})\n", (33085, 33119), False, 'from django.http import JsonResponse\n'), ((33216, 33261), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (33233, 33261), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((33409, 33501), 'django.http.JsonResponse', 'JsonResponse', (["{'index_id': dataset.index_id, 'num_train': num_train, 'num_val': num_val}"], {}), "({'index_id': dataset.index_id, 'num_train': num_train,\n 'num_val': num_val})\n", (33421, 33501), False, 'from django.http import JsonResponse\n'), ((33649, 33694), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (33666, 33694), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((34395, 34427), 'django.http.JsonResponse', 'JsonResponse', (["{'models': models}"], {}), "({'models': models})\n", (34407, 34427), False, 'from django.http import JsonResponse\n'), ((35333, 35357), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (35343, 35357), False, 'import json\n'), ((35666, 35752), 'requests.post', 'requests.post', (["(settings.EMBEDDING_SERVER_ADDRESS + '/download_index')"], {'json': 'params'}), "(settings.EMBEDDING_SERVER_ADDRESS + '/download_index', json=\n params)\n", (35679, 35752), False, 'import requests\n'), ((35785, 35801), 'google.cloud.storage.Client', 'storage.Client', ([], {}), '()\n', (35799, 35801), False, 'from google.cloud import storage\n'), ((36854, 36889), 'django.http.JsonResponse', 'JsonResponse', (["{'status': 'success'}"], {}), "({'status': 'success'})\n", (36866, 36889), False, 'from django.http import JsonResponse\n'), ((36972, 36996), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (36982, 36996), False, 'import json\n'), ((37375, 37422), 'collections.defaultdict', 'defaultdict', (["(lambda : {'tags': [], 'boxes': []})"], {}), "(lambda : {'tags': [], 'boxes': []})\n", (37386, 37422), False, 'from collections import defaultdict, namedtuple\n'), ((37671, 37702), 'django.http.JsonResponse', 'JsonResponse', (['annotations_by_pk'], {}), '(annotations_by_pk)\n', (37683, 37702), False, 'from django.http import JsonResponse\n'), ((37785, 37809), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (37795, 37809), False, 'import json\n'), ((37988, 38026), 'django.http.JsonResponse', 'JsonResponse', (["{'created': num_created}"], {}), "({'created': num_created})\n", (38000, 38026), False, 'from django.http import JsonResponse\n'), ((38115, 38139), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (38125, 38139), False, 'import json\n'), ((38208, 38246), 'django.http.JsonResponse', 'JsonResponse', (["{'created': num_created}"], {}), "({'created': num_created})\n", (38220, 38246), False, 'from django.http import JsonResponse\n'), ((38367, 38412), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (38384, 38412), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((38428, 38452), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (38438, 38452), False, 'import json\n'), ((38686, 38724), 'django.http.JsonResponse', 'JsonResponse', (["{'created': num_created}"], {}), "({'created': num_created})\n", (38698, 38724), False, 'from django.http import JsonResponse\n'), ((38821, 38845), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (38831, 38845), False, 'import json\n'), ((39477, 39515), 'django.http.JsonResponse', 'JsonResponse', (["{'created': num_created}"], {}), "({'created': num_created})\n", (39489, 39515), False, 'from django.http import JsonResponse\n'), ((40938, 40983), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (40955, 40983), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((41587, 41603), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (41598, 41603), False, 'from collections import defaultdict, namedtuple\n'), ((43350, 43366), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (43361, 43366), False, 'from collections import defaultdict, namedtuple\n'), ((43790, 43814), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (43800, 43814), False, 'import json\n'), ((43936, 43971), 'django.http.JsonResponse', 'JsonResponse', (["{'status': 'success'}"], {}), "({'status': 'success'})\n", (43948, 43971), False, 'from django.http import JsonResponse\n'), ((44054, 44078), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (44064, 44078), False, 'import json\n'), ((44305, 44340), 'django.http.JsonResponse', 'JsonResponse', (["{'status': 'success'}"], {}), "({'status': 'success'})\n", (44317, 44340), False, 'from django.http import JsonResponse\n'), ((44440, 44485), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Dataset'], {'name': 'dataset_name'}), '(Dataset, name=dataset_name)\n', (44457, 44485), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((44623, 44640), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (44634, 44640), False, 'from collections import defaultdict, namedtuple\n'), ((44813, 44836), 'django.http.JsonResponse', 'JsonResponse', (['n_labeled'], {}), '(n_labeled)\n', (44825, 44836), False, 'from django.http import JsonResponse\n'), ((5215, 5268), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['DNNModel'], {'model_id': 'resume_model_id'}), '(DNNModel, model_id=resume_model_id)\n', (5232, 5268), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((7506, 7552), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['DNNModel'], {'model_id': 'model_id'}), '(DNNModel, model_id=model_id)\n', (7523, 7552), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((8461, 8514), 'shutil.rmtree', 'shutil.rmtree', (['m.output_directory'], {'ignore_errors': '(True)'}), '(m.output_directory, ignore_errors=True)\n', (8474, 8514), False, 'import shutil\n'), ((8948, 8994), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['DNNModel'], {'model_id': 'model_id'}), '(DNNModel, model_id=model_id)\n', (8965, 8994), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((9113, 9229), 'django.http.JsonResponse', 'JsonResponse', (["{'status': 'failure', 'reason':\n f'Model {model_id} does not have a model checkpoint.'}"], {'status': '(400)'}), "({'status': 'failure', 'reason':\n f'Model {model_id} does not have a model checkpoint.'}, status=400)\n", (9125, 9229), False, 'from django.http import JsonResponse\n'), ((10225, 10271), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['DNNModel'], {'model_id': 'model_id'}), '(DNNModel, model_id=model_id)\n', (10242, 10271), False, 'from django.shortcuts import get_object_or_404, get_list_or_404\n'), ((11767, 11770), 'django.db.models.Q', 'Q', ([], {}), '()\n', (11768, 11770), False, 'from django.db.models import Q\n'), ((13628, 13652), 'json.loads', 'json.loads', (['request.body'], {}), '(request.body)\n', (13638, 13652), False, 'import json\n'), ((16878, 16890), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (16888, 16890), False, 'import uuid\n'), ((25735, 25761), 'random.shuffle', 'random.shuffle', (['result_pks'], {}), '(result_pks)\n', (25749, 25761), False, 'import random\n'), ((30879, 30908), 'random.shuffle', 'random.shuffle', (['pks_and_paths'], {}), '(pks_and_paths)\n', (30893, 30908), False, 'import random\n'), ((37091, 37107), 'django.http.JsonResponse', 'JsonResponse', (['{}'], {}), '({})\n', (37103, 37107), False, 'from django.http import JsonResponse\n'), ((11913, 11961), 'django.db.models.Q', 'Q', ([], {'category__name': 't.category', 'mode__name': 't.value'}), '(category__name=t.category, mode__name=t.value)\n', (11914, 11961), False, 'from django.db.models import Q\n'), ((36492, 36519), 'os.path.basename', 'os.path.basename', (['blob.name'], {}), '(blob.name)\n', (36508, 36519), False, 'import os\n')]
from __future__ import absolute_import import os import yaml from ccmlib import common, extension, repository from ccmlib.cluster import Cluster from ccmlib.dse_cluster import DseCluster from ccmlib.node import Node from distutils.version import LooseVersion #pylint: disable=import-error, no-name-in-module class ClusterFactory(): @staticmethod def load(path, name): cluster_path = os.path.join(path, name) filename = os.path.join(cluster_path, 'cluster.conf') with open(filename, 'r') as f: data = yaml.safe_load(f) try: install_dir = None if 'install_dir' in data: install_dir = data['install_dir'] repository.validate(install_dir) if install_dir is None and 'cassandra_dir' in data: install_dir = data['cassandra_dir'] repository.validate(install_dir) cassandra_version = None if 'cassandra_version' in data: cassandra_version = LooseVersion(data['cassandra_version']) if common.isDse(install_dir): cluster = DseCluster(path, data['name'], install_dir=install_dir, create_directory=False, derived_cassandra_version=cassandra_version) else: cluster = Cluster(path, data['name'], install_dir=install_dir, create_directory=False, derived_cassandra_version=cassandra_version) node_list = data['nodes'] seed_list = data['seeds'] if 'partitioner' in data: cluster.partitioner = data['partitioner'] if 'config_options' in data: cluster._config_options = data['config_options'] if 'dse_config_options' in data: cluster._dse_config_options = data['dse_config_options'] if 'misc_config_options' in data: cluster._misc_config_options = data['misc_config_options'] if 'log_level' in data: cluster.__log_level = data['log_level'] if 'use_vnodes' in data: cluster.use_vnodes = data['use_vnodes'] if 'datadirs' in data: cluster.data_dir_count = int(data['datadirs']) extension.load_from_cluster_config(cluster, data) except KeyError as k: raise common.LoadError("Error Loading " + filename + ", missing property:" + k) for node_name in node_list: cluster.nodes[node_name] = Node.load(cluster_path, node_name, cluster) for seed in seed_list: cluster.seeds.append(seed) return cluster
[ "distutils.version.LooseVersion", "ccmlib.repository.validate", "os.path.join", "ccmlib.common.LoadError", "ccmlib.dse_cluster.DseCluster", "yaml.safe_load", "ccmlib.extension.load_from_cluster_config", "ccmlib.common.isDse", "ccmlib.node.Node.load", "ccmlib.cluster.Cluster" ]
[((407, 431), 'os.path.join', 'os.path.join', (['path', 'name'], {}), '(path, name)\n', (419, 431), False, 'import os\n'), ((451, 493), 'os.path.join', 'os.path.join', (['cluster_path', '"""cluster.conf"""'], {}), "(cluster_path, 'cluster.conf')\n", (463, 493), False, 'import os\n'), ((552, 569), 'yaml.safe_load', 'yaml.safe_load', (['f'], {}), '(f)\n', (566, 569), False, 'import yaml\n'), ((1090, 1115), 'ccmlib.common.isDse', 'common.isDse', (['install_dir'], {}), '(install_dir)\n', (1102, 1115), False, 'from ccmlib import common, extension, repository\n'), ((2246, 2295), 'ccmlib.extension.load_from_cluster_config', 'extension.load_from_cluster_config', (['cluster', 'data'], {}), '(cluster, data)\n', (2280, 2295), False, 'from ccmlib import common, extension, repository\n'), ((2494, 2537), 'ccmlib.node.Node.load', 'Node.load', (['cluster_path', 'node_name', 'cluster'], {}), '(cluster_path, node_name, cluster)\n', (2503, 2537), False, 'from ccmlib.node import Node\n'), ((718, 750), 'ccmlib.repository.validate', 'repository.validate', (['install_dir'], {}), '(install_dir)\n', (737, 750), False, 'from ccmlib import common, extension, repository\n'), ((883, 915), 'ccmlib.repository.validate', 'repository.validate', (['install_dir'], {}), '(install_dir)\n', (902, 915), False, 'from ccmlib import common, extension, repository\n'), ((1034, 1073), 'distutils.version.LooseVersion', 'LooseVersion', (["data['cassandra_version']"], {}), "(data['cassandra_version'])\n", (1046, 1073), False, 'from distutils.version import LooseVersion\n'), ((1143, 1272), 'ccmlib.dse_cluster.DseCluster', 'DseCluster', (['path', "data['name']"], {'install_dir': 'install_dir', 'create_directory': '(False)', 'derived_cassandra_version': 'cassandra_version'}), "(path, data['name'], install_dir=install_dir, create_directory=\n False, derived_cassandra_version=cassandra_version)\n", (1153, 1272), False, 'from ccmlib.dse_cluster import DseCluster\n'), ((1312, 1437), 'ccmlib.cluster.Cluster', 'Cluster', (['path', "data['name']"], {'install_dir': 'install_dir', 'create_directory': '(False)', 'derived_cassandra_version': 'cassandra_version'}), "(path, data['name'], install_dir=install_dir, create_directory=False,\n derived_cassandra_version=cassandra_version)\n", (1319, 1437), False, 'from ccmlib.cluster import Cluster\n'), ((2344, 2417), 'ccmlib.common.LoadError', 'common.LoadError', (["('Error Loading ' + filename + ', missing property:' + k)"], {}), "('Error Loading ' + filename + ', missing property:' + k)\n", (2360, 2417), False, 'from ccmlib import common, extension, repository\n')]
# Copyright 2019-2020 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. """ ``causalnex.pytorch.dist_type._base`` defines the distribution type class interface and default behavior. """ import itertools from abc import ABCMeta, abstractmethod from copy import deepcopy from typing import Dict, List, Tuple import numpy as np import torch from causalnex.structure.structuremodel import StructureModel class DistTypeBase(metaclass=ABCMeta): """Base class defining the distribution default behavior and interface""" def __init__(self, idx: int): """ Default constructor for the DistTypeBase class. Unless overridden, provides default behavior to all subclasses. Args: idx: Positional index in data passed to the NOTEARS algorithm which correspond to this datatype. """ self.idx = idx def get_columns( self, X: np.ndarray, ) -> np.ndarray: """ Gets the column(s) associated with the instantiated DistType. Args: X: Full dataset to be selected from. Returns: 1d or 2d np.ndarray of columns. """ return X[:, self.idx] # pylint: disable=no-self-use # pylint: disable=unused-argument def preprocess_X(self, X: np.ndarray, fit_transform: bool = True) -> np.ndarray: """ Overload this method to perform any required preprocessing of the data matrix. This can include data conversion, column expansion etc. Changes to the tabu parameters should also be done here. **WARN** This preprocessing CANNOT reorder the columns of X. Args: X: The original passed-in data. fit_transform: Whether the class first fits then transforms the data, or just transforms. Just transforming is used to preprocess new data after the initial NOTEARS fit. Returns: Preprocessed X """ return X # pylint: disable=no-self-use def preprocess_tabu_edges( self, tabu_edges: List[Tuple[int, int]] ) -> List[Tuple[int, int]]: """ Overload this method to perform any required preprocessing of the tabu_edges. Args: tabu_edges: The original tabu_edges. Returns: Preprocessed tabu_edges. """ return tabu_edges # pylint: disable=no-self-use def preprocess_tabu_nodes(self, tabu_nodes: List[int]) -> List[int]: """ Overload this method to perform any required preprocessing of the tabu_nodes. Args: tabu_nodes: The original tabu_nodes. Returns: Preprocessed tabu_nodes. """ return tabu_nodes # pylint: disable=no-self-use def update_idx_col(self, idx_col: Dict[int, str]) -> Dict[int, str]: """ Overload this method to update the idx_col dict with expanded colnames. Args: idx_col: The original index to column mapping. Returns: Updated index to column mapping. """ return idx_col def add_to_node(self, sm: StructureModel) -> StructureModel: """ Adds self to a node of a structure model corresponding to self.idx. Args: sm: The input StructureModel Returns: Updated StructureModel """ sm.nodes[self.idx]["dist_type"] = self return sm # pylint: disable=no-self-use def modify_h(self, square_weight_mat: torch.Tensor) -> torch.Tensor: """ Overload this method to apply updates to the W matrix in h(W). Typically used to prevent spurious cycles when using expended columns. Args: square_weight_mat: The weight matrix used in h(W). Returns: Updated weight matrix used in h(W). """ return square_weight_mat # pylint: disable=no-self-use def collapse_adj(self, adj: np.ndarray) -> np.ndarray: """ Overload this method to apply updates to collapse the W matrix of a multi-parameter distribution Likely has the same impact as modify_h. Args: adj: The adjacency matrix. Returns: Updated adjacency matrix. """ return adj @abstractmethod def loss(self, X: torch.Tensor, X_hat: torch.Tensor) -> torch.Tensor: """ Args: X: The original data passed into NOTEARS (i.e. the reconstruction target). X_hat: The reconstructed data. Returns: Scalar pytorch tensor of the reconstruction loss between X and X_hat. """ raise NotImplementedError("Must implement the loss() method") @abstractmethod def inverse_link_function(self, X_hat: torch.Tensor) -> torch.Tensor: """ Convert the transformed data from the latent space to the original dtype using the inverse link function. Args: X_hat: Reconstructed data in the latent space. Returns: Modified X_hat. MUST be same shape as passed in data. Projects the self.idx column from the latent space to the dist_type space. """ raise NotImplementedError("Must implement the inverse_link_function() method") class ExpandColumnsMixin: """ Mixin class providing convenience methods for column expansion. """ @staticmethod def _expand_columns(X: np.ndarray, new_columns: np.ndarray) -> np.ndarray: """ Expands the data matrix columns without reordering the indices. Args: X: Base dataset to expand. new_columns: The columns to expand the dataset by. Returns: Expanded dataset. """ return np.hstack([X, new_columns]) @staticmethod def update_tabu_edges( idx_group: List[int], tabu_edges: List[Tuple[int, int]], tabu_idx_group: bool, ) -> List[Tuple[int, int]]: """ Tabu edges are: 1. all user defined connections to original feature column 2. all inter-feature connections (optional) Args: idx_group: The group of indices which correspond to a single expanded column. tabu_edges: The list of tabu_edges to be updated. tabu_idx_group: Whether inter-group edges should also be considered tabu. I.e if a result of a column expansion, often want to prevent edges being learned between parameters. Returns: Updated tabu_edges """ if tabu_edges is None: tabu_edges = [] # copy to prevent mutations tabu_edges = deepcopy(tabu_edges) # handle 1. new_tabu_edges = [] # for each original tabu pair for (i, j) in tabu_edges: # idx_group[0] is the original column index if i == idx_group[0]: new_tabu_edges += [(idx, j) for idx in idx_group[1:]] elif j == idx_group[0]: new_tabu_edges += [(i, idx) for idx in idx_group[1:]] # all new edges added to tabu_edges tabu_edges += new_tabu_edges # handle 2. if tabu_idx_group: # add on all pairwise permutations of particular feature group # NOTE: permutations are needed for edge directionality tabu_edges += list(itertools.permutations(idx_group, 2)) return tabu_edges @staticmethod def update_tabu_nodes( idx_group: List[int], tabu_nodes: List[int] ) -> List[Tuple[int, int]]: """ Tabu nodes are: 1. all user defined connections to original feature column Args: idx_group: The group of indices which correspond to a single expanded column. tabu_nodes: The list of tabu_nodes to be updated. Returns: Updated tabu_nodes """ if tabu_nodes is None: return tabu_nodes # copy to prevent mutations tabu_nodes = deepcopy(tabu_nodes) new_tabu_nodes = [] for i in tabu_nodes: # NOTE: the first element in the idx_group is guaranteed as self.idx if i == idx_group[0]: new_tabu_nodes += idx_group[1:] # add on the new tabu nodes tabu_nodes += new_tabu_nodes return tabu_nodes
[ "itertools.permutations", "copy.deepcopy", "numpy.hstack" ]
[((7215, 7242), 'numpy.hstack', 'np.hstack', (['[X, new_columns]'], {}), '([X, new_columns])\n', (7224, 7242), True, 'import numpy as np\n'), ((8158, 8178), 'copy.deepcopy', 'deepcopy', (['tabu_edges'], {}), '(tabu_edges)\n', (8166, 8178), False, 'from copy import deepcopy\n'), ((9531, 9551), 'copy.deepcopy', 'deepcopy', (['tabu_nodes'], {}), '(tabu_nodes)\n', (9539, 9551), False, 'from copy import deepcopy\n'), ((8869, 8905), 'itertools.permutations', 'itertools.permutations', (['idx_group', '(2)'], {}), '(idx_group, 2)\n', (8891, 8905), False, 'import itertools\n')]
"""Module for BlameInteractionGraph plots.""" import typing as tp from datetime import datetime from pathlib import Path import click import matplotlib.pyplot as plt import networkx as nx import pandas as pd import plotly.offline as offply from matplotlib import style from varats.data.reports.blame_interaction_graph import ( create_blame_interaction_graph, CIGNodeAttrs, CIGEdgeAttrs, AIGNodeAttrs, CAIGNodeAttrs, ) from varats.data.reports.blame_report import BlameReport from varats.mapping.commit_map import get_commit_map from varats.paper_mgmt.case_study import ( newest_processed_revision_for_case_study, ) from varats.plot.plot import Plot, PlotDataEmpty from varats.plot.plots import ( PlotGenerator, REQUIRE_CASE_STUDY, REQUIRE_REVISION, ) from varats.plots.chord_plot_utils import ( make_chord_plot, make_arc_plot, NodeTy, ChordPlotNodeInfo, ChordPlotEdgeInfo, ArcPlotEdgeInfo, ArcPlotNodeInfo, ) from varats.ts_utils.cli_util import CLIOptionTy, make_cli_option from varats.utils.git_util import ( CommitRepoPair, create_commit_lookup_helper, UNCOMMITTED_COMMIT_HASH, FullCommitHash, ShortCommitHash, ) class CommitInteractionGraphPlot(Plot, plot_name='cig_plot'): """Creates a dot file for a commit interaction graph.""" def plot(self, view_mode: bool) -> None: # Nothing to do here. pass def save(self, plot_dir: Path, filetype: str = 'svg') -> None: project_name = self.plot_kwargs["project"] revision = self.plot_kwargs["revision"] cig = create_blame_interaction_graph(project_name, revision ).commit_interaction_graph() nx.set_node_attributes( cig, {node: cig.nodes[node]["commit_hash"] for node in cig.nodes}, "label" ) # pylint: disable=import-outside-toplevel from networkx.drawing.nx_agraph import write_dot write_dot(cig, plot_dir / self.plot_file_name("dot")) def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class CommitInteractionGraphPlotGenerator( PlotGenerator, generator_name="cig-plot", options=[REQUIRE_CASE_STUDY, REQUIRE_REVISION] ): """Plot a commit interaction graph.""" def generate(self) -> tp.List[Plot]: return [ CommitInteractionGraphPlot(self.plot_config, **self.plot_kwargs) ] NodeInfoTy = tp.TypeVar("NodeInfoTy", ChordPlotNodeInfo, ArcPlotNodeInfo) EdgeInfoTy = tp.TypeVar("EdgeInfoTy", ChordPlotEdgeInfo, ArcPlotEdgeInfo) def _prepare_cig_plotly( project_name: str, revision: FullCommitHash, create_node_info: tp.Callable[[NodeTy, CommitRepoPair, nx.DiGraph], NodeInfoTy], create_edge_info: tp.Callable[[CommitRepoPair, CommitRepoPair, int], EdgeInfoTy] ) -> tp.Tuple[tp.List[tp.Tuple[NodeTy, NodeInfoTy]], tp.List[tp.Tuple[ NodeTy, NodeTy, EdgeInfoTy]]]: commit_lookup = create_commit_lookup_helper(project_name) cig = create_blame_interaction_graph(project_name, revision).commit_interaction_graph() def filter_nodes(node: CommitRepoPair) -> bool: if node.commit_hash == UNCOMMITTED_COMMIT_HASH: return False commit = commit_lookup(node) if not commit: return False # make filter configurable return datetime.utcfromtimestamp(commit.commit_time ) >= datetime(2015, 1, 1) nodes: tp.List[tp.Tuple[NodeTy, NodeInfoTy]] = [] node_meta: tp.Dict[NodeTy, CommitRepoPair] = {} for node in cig.nodes: node_attrs = tp.cast(CIGNodeAttrs, cig.nodes[node]) commit = node_attrs["commit"] if not filter_nodes(commit): continue node_meta[node] = commit nodes.append((node, create_node_info(node, commit, cig))) nodes = sorted( nodes, key=lambda x: int(commit_lookup(node_meta[x[0]]).commit_time) ) edges: tp.List[tp.Tuple[NodeTy, NodeTy, EdgeInfoTy]] = [] for source, sink in cig.edges: amount = tp.cast(CIGEdgeAttrs, cig[source][sink])["amount"] source_commit = tp.cast(CIGNodeAttrs, cig.nodes[source])["commit"] sink_commit = tp.cast(CIGNodeAttrs, cig.nodes[sink])["commit"] if not filter_nodes(source_commit) or not filter_nodes(sink_commit): continue edges.append(( source, sink, create_edge_info(source_commit, sink_commit, amount) )) return nodes, edges class CommitInteractionGraphChordPlot(Plot, plot_name='cig_chord_plot'): """Chord plot for a commit interaction graph.""" def plot(self, view_mode: bool) -> None: project_name: str = self.plot_kwargs["case_study"].project_name revision = get_commit_map(project_name).convert_to_full_or_warn( ShortCommitHash(self.plot_kwargs["revision"]) ) def create_node_data( node: NodeTy, commit: CommitRepoPair, cig: nx.DiGraph ) -> ChordPlotNodeInfo: del node del cig return {"info": commit.commit_hash.short_hash, "color": 1} def create_edge_data( source_commit: CommitRepoPair, sink_commit: CommitRepoPair, amount: int ) -> ChordPlotEdgeInfo: return { "size": amount, "color": 1, "info": f"{source_commit.commit_hash.short_hash} " f"--{{{amount}}}--> " f"{sink_commit.commit_hash.short_hash}" } nodes, edges = _prepare_cig_plotly( project_name, revision, create_node_data, create_edge_data ) figure = make_chord_plot(nodes, edges, "Commit Interaction Graph") if view_mode: figure.show() else: offply.plot(figure, filename=self.plot_file_name("html")) def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class CIGChordPlotGenerator( PlotGenerator, generator_name="cig-chord-plot", options=[REQUIRE_CASE_STUDY, REQUIRE_REVISION] ): """Generates a chord plot for a commit interaction graph.""" def generate(self) -> tp.List[Plot]: return [ CommitInteractionGraphChordPlot( self.plot_config, **self.plot_kwargs ) ] class CommitInteractionGraphArcPlot(Plot, plot_name='cig_arc_plot'): """Arc plot for a commit interaction graph.""" def plot(self, view_mode: bool) -> None: project_name: str = self.plot_kwargs["case_study"].project_name revision = get_commit_map(project_name).convert_to_full_or_warn( ShortCommitHash(self.plot_kwargs["revision"]) ) def create_node_data( node: NodeTy, commit: CommitRepoPair, cig: nx.DiGraph ) -> ArcPlotNodeInfo: return { "info": commit.commit_hash.short_hash, "size": cig.degree(node), "fill_color": cig.out_degree(node), "line_color": cig.in_degree(node) } def create_edge_data( source_commit: CommitRepoPair, sink_commit: CommitRepoPair, amount: int ) -> ArcPlotEdgeInfo: return { "size": amount, "color": amount, "info": f"{source_commit.commit_hash.short_hash} " f"--{{{amount}}}--> " f"{sink_commit.commit_hash.short_hash}" } nodes, edges = _prepare_cig_plotly( project_name, revision, create_node_data, create_edge_data ) figure = make_arc_plot(nodes, edges, "Commit Interaction Graph") if view_mode: figure.show() else: offply.plot(figure, filename=self.plot_file_name("html")) def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class CIGArcPlotGenerator( PlotGenerator, generator_name="cig-arc-plot", options=[REQUIRE_CASE_STUDY, REQUIRE_REVISION] ): """Generates an arc plot for a commit interaction graph.""" def generate(self) -> tp.List[Plot]: return [ CommitInteractionGraphArcPlot(self.plot_config, **self.plot_kwargs) ] OPTIONAL_SORT_METHOD: CLIOptionTy = make_cli_option( "--sort-by", type=click.Choice(["degree", "time"]), default="degree", required=False, help="Sort method for commit interaction graph nodes." ) class CommitInteractionGraphNodeDegreePlot(Plot, plot_name='cig_node_degrees'): """ Plot node degrees of a commit interaction graph. Additional arguments: - sort: criteria to sort the revisions [degree, time] """ def plot(self, view_mode: bool) -> None: sort = self.plot_kwargs["sort"] case_study = self.plot_kwargs["plot_case_study"] style.use(self.plot_config.style()) fig, axes = plt.subplots(1, 1, sharey="all") fig.subplots_adjust(hspace=0.5) fig.suptitle("Commit Interaction Graph - Node Degrees") axes.set_title(case_study.project_name) axes.set_ylabel("Degree") xlabel = "" if sort == "time": xlabel = "Time (old to new)" elif sort == "degree": xlabel = "Commits" axes.set_xlabel(xlabel) revision = newest_processed_revision_for_case_study( case_study, BlameReport ) if not revision: raise PlotDataEmpty() cig = create_blame_interaction_graph(case_study.project_name, revision ).commit_interaction_graph() commit_lookup = create_commit_lookup_helper(case_study.project_name) def filter_nodes(node: CommitRepoPair) -> bool: if node.commit_hash == UNCOMMITTED_COMMIT_HASH: return False return bool(commit_lookup(node)) def commit_time(node: CommitRepoPair) -> datetime: return datetime.utcfromtimestamp(commit_lookup(node).commit_time) nodes: tp.List[tp.Dict[str, tp.Any]] = [] for node in cig.nodes: node_attrs = tp.cast(CIGNodeAttrs, cig.nodes[node]) commit = node_attrs["commit"] if not filter_nodes(commit): continue nodes.append(({ "commit_hash": commit.commit_hash, "commit_time": commit_time(commit), "node_degree": cig.degree(node), "node_out_degree": cig.out_degree(node), "node_in_degree": cig.in_degree(node), })) data = pd.DataFrame(nodes) if sort == "time": data.sort_values(by="commit_time", inplace=True) node_degrees = data.loc[:, ["commit_hash", "node_degree"]] node_out_degrees = data.loc[:, ["commit_hash", "node_out_degree"]] node_in_degrees = data.loc[:, ["commit_hash", "node_in_degree"]] if sort == "degree": node_degrees.sort_values(by="node_degree", inplace=True) node_out_degrees.sort_values(by="node_out_degree", inplace=True) node_in_degrees.sort_values(by="node_in_degree", inplace=True) axes.plot(node_degrees["node_degree"].values, label="degree") axes.plot( node_out_degrees["node_out_degree"].values, label="out_degree" ) axes.plot(node_in_degrees["node_in_degree"].values, label="in_degree") axes.legend() def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class CIGNodeDegreePlotGenerator( PlotGenerator, generator_name="cig-node-degrees", options=[REQUIRE_CASE_STUDY, OPTIONAL_SORT_METHOD] ): """Generates a plot of node degrees of a commit interaction graph.""" def generate(self) -> tp.List[Plot]: return [ CommitInteractionGraphNodeDegreePlot( self.plot_config, **self.plot_kwargs ) ] class AuthorInteractionGraphNodeDegreePlot(Plot, plot_name='aig_node_degrees'): """Plot node degrees of a author interaction graph.""" def plot(self, view_mode: bool) -> None: case_study = self.plot_kwargs["plot_case_study"] style.use(self.plot_config.style()) fig, axes = plt.subplots(1, 1, sharey="all") fig.subplots_adjust(hspace=0.5) fig.suptitle("Author Interaction Graph - Node Degrees") axes.set_title(case_study.project_name) axes.set_ylabel("Degree") axes.set_xlabel("Authors") project_name = case_study.project_name revision = newest_processed_revision_for_case_study( case_study, BlameReport ) if not revision: raise PlotDataEmpty() aig = create_blame_interaction_graph(project_name, revision ).author_interaction_graph() nodes: tp.List[tp.Dict[str, tp.Any]] = [] for node in aig.nodes: node_attrs = tp.cast(AIGNodeAttrs, aig.nodes[node]) author = node_attrs["author"] nodes.append(({ "author": author, "node_degree": aig.degree(node), "node_out_degree": aig.out_degree(node), "node_in_degree": aig.in_degree(node), })) data = pd.DataFrame(nodes) node_degrees = data.loc[:, ["author", "node_degree"]] node_out_degrees = data.loc[:, ["author", "node_out_degree"]] node_in_degrees = data.loc[:, ["author", "node_in_degree"]] node_degrees.sort_values(by="node_degree", inplace=True) node_out_degrees.sort_values(by="node_out_degree", inplace=True) node_in_degrees.sort_values(by="node_in_degree", inplace=True) axes.plot(node_degrees["node_degree"].values, label="degree") axes.plot( node_out_degrees["node_out_degree"].values, label="out_degree" ) axes.plot(node_in_degrees["node_in_degree"].values, label="in_degree") axes.legend() def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class AIGNodeDegreePlotGenerator( PlotGenerator, generator_name="aig-node-degrees", options=[REQUIRE_CASE_STUDY] ): """Generates a plot of node degrees of a author interaction graph.""" def generate(self) -> tp.List[Plot]: return [ AuthorInteractionGraphNodeDegreePlot( self.plot_config, **self.plot_kwargs ) ] class CommitAuthorInteractionGraphNodeDegreePlot( Plot, plot_name='caig_node_degrees' ): """Plot node degrees of commits in a commit-author interaction graph.""" def plot(self, view_mode: bool) -> None: case_study = self.plot_kwargs["plot_case_study"] style.use(self.plot_config.style()) fig, axes = plt.subplots(1, 1, sharey="all") fig.subplots_adjust(hspace=0.5) fig.suptitle("Commit-Author Interaction Graph - # Interacting Authors") axes.set_title(case_study.project_name) axes.set_ylabel("Authors") axes.set_xlabel("Commits") project_name = case_study.project_name revision = newest_processed_revision_for_case_study( case_study, BlameReport ) if not revision: raise PlotDataEmpty() caig = create_blame_interaction_graph(project_name, revision ).commit_author_interaction_graph() nodes: tp.List[tp.Dict[str, tp.Any]] = [] for node in caig.nodes: node_attrs = tp.cast(CAIGNodeAttrs, caig.nodes[node]) commit = node_attrs["commit"] if commit: nodes.append(({ "commit": commit.commit_hash, "num_authors": caig.degree(node) })) data = pd.DataFrame(nodes) num_authors = data.loc[:, ["commit", "num_authors"]] num_authors.sort_values(by="num_authors", inplace=True) axes.plot(num_authors["num_authors"].values) def calc_missing_revisions( self, boundary_gradient: float ) -> tp.Set[FullCommitHash]: raise NotImplementedError class CAIGNodeDegreePlotGenerator( PlotGenerator, generator_name="caig-node-degrees", options=[ REQUIRE_CASE_STUDY, ] ): """Generates a plot of node degrees of a commit-author interaction graph.""" def generate(self) -> tp.List[Plot]: return [ CommitAuthorInteractionGraphNodeDegreePlot( self.plot_config, **self.plot_kwargs ) ]
[ "varats.data.reports.blame_interaction_graph.create_blame_interaction_graph", "click.Choice", "datetime.datetime.utcfromtimestamp", "datetime.datetime", "varats.utils.git_util.create_commit_lookup_helper", "varats.plots.chord_plot_utils.make_arc_plot", "varats.paper_mgmt.case_study.newest_processed_revision_for_case_study", "varats.plots.chord_plot_utils.make_chord_plot", "networkx.set_node_attributes", "matplotlib.pyplot.subplots", "varats.mapping.commit_map.get_commit_map", "pandas.DataFrame", "varats.plot.plot.PlotDataEmpty", "varats.utils.git_util.ShortCommitHash", "typing.cast", "typing.TypeVar" ]
[((2528, 2588), 'typing.TypeVar', 'tp.TypeVar', (['"""NodeInfoTy"""', 'ChordPlotNodeInfo', 'ArcPlotNodeInfo'], {}), "('NodeInfoTy', ChordPlotNodeInfo, ArcPlotNodeInfo)\n", (2538, 2588), True, 'import typing as tp\n'), ((2602, 2662), 'typing.TypeVar', 'tp.TypeVar', (['"""EdgeInfoTy"""', 'ChordPlotEdgeInfo', 'ArcPlotEdgeInfo'], {}), "('EdgeInfoTy', ChordPlotEdgeInfo, ArcPlotEdgeInfo)\n", (2612, 2662), True, 'import typing as tp\n'), ((3103, 3144), 'varats.utils.git_util.create_commit_lookup_helper', 'create_commit_lookup_helper', (['project_name'], {}), '(project_name)\n', (3130, 3144), False, 'from varats.utils.git_util import CommitRepoPair, create_commit_lookup_helper, UNCOMMITTED_COMMIT_HASH, FullCommitHash, ShortCommitHash\n'), ((1733, 1835), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['cig', "{node: cig.nodes[node]['commit_hash'] for node in cig.nodes}", '"""label"""'], {}), "(cig, {node: cig.nodes[node]['commit_hash'] for node in\n cig.nodes}, 'label')\n", (1755, 1835), True, 'import networkx as nx\n'), ((3813, 3851), 'typing.cast', 'tp.cast', (['CIGNodeAttrs', 'cig.nodes[node]'], {}), '(CIGNodeAttrs, cig.nodes[node])\n', (3820, 3851), True, 'import typing as tp\n'), ((5913, 5970), 'varats.plots.chord_plot_utils.make_chord_plot', 'make_chord_plot', (['nodes', 'edges', '"""Commit Interaction Graph"""'], {}), "(nodes, edges, 'Commit Interaction Graph')\n", (5928, 5970), False, 'from varats.plots.chord_plot_utils import make_chord_plot, make_arc_plot, NodeTy, ChordPlotNodeInfo, ChordPlotEdgeInfo, ArcPlotEdgeInfo, ArcPlotNodeInfo\n'), ((7961, 8016), 'varats.plots.chord_plot_utils.make_arc_plot', 'make_arc_plot', (['nodes', 'edges', '"""Commit Interaction Graph"""'], {}), "(nodes, edges, 'Commit Interaction Graph')\n", (7974, 8016), False, 'from varats.plots.chord_plot_utils import make_chord_plot, make_arc_plot, NodeTy, ChordPlotNodeInfo, ChordPlotEdgeInfo, ArcPlotEdgeInfo, ArcPlotNodeInfo\n'), ((8720, 8752), 'click.Choice', 'click.Choice', (["['degree', 'time']"], {}), "(['degree', 'time'])\n", (8732, 8752), False, 'import click\n'), ((9303, 9335), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'sharey': '"""all"""'}), "(1, 1, sharey='all')\n", (9315, 9335), True, 'import matplotlib.pyplot as plt\n'), ((9725, 9790), 'varats.paper_mgmt.case_study.newest_processed_revision_for_case_study', 'newest_processed_revision_for_case_study', (['case_study', 'BlameReport'], {}), '(case_study, BlameReport)\n', (9765, 9790), False, 'from varats.paper_mgmt.case_study import newest_processed_revision_for_case_study\n'), ((10049, 10101), 'varats.utils.git_util.create_commit_lookup_helper', 'create_commit_lookup_helper', (['case_study.project_name'], {}), '(case_study.project_name)\n', (10076, 10101), False, 'from varats.utils.git_util import CommitRepoPair, create_commit_lookup_helper, UNCOMMITTED_COMMIT_HASH, FullCommitHash, ShortCommitHash\n'), ((11009, 11028), 'pandas.DataFrame', 'pd.DataFrame', (['nodes'], {}), '(nodes)\n', (11021, 11028), True, 'import pandas as pd\n'), ((12722, 12754), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'sharey': '"""all"""'}), "(1, 1, sharey='all')\n", (12734, 12754), True, 'import matplotlib.pyplot as plt\n'), ((13044, 13109), 'varats.paper_mgmt.case_study.newest_processed_revision_for_case_study', 'newest_processed_revision_for_case_study', (['case_study', 'BlameReport'], {}), '(case_study, BlameReport)\n', (13084, 13109), False, 'from varats.paper_mgmt.case_study import newest_processed_revision_for_case_study\n'), ((13776, 13795), 'pandas.DataFrame', 'pd.DataFrame', (['nodes'], {}), '(nodes)\n', (13788, 13795), True, 'import pandas as pd\n'), ((15352, 15384), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'sharey': '"""all"""'}), "(1, 1, sharey='all')\n", (15364, 15384), True, 'import matplotlib.pyplot as plt\n'), ((15691, 15756), 'varats.paper_mgmt.case_study.newest_processed_revision_for_case_study', 'newest_processed_revision_for_case_study', (['case_study', 'BlameReport'], {}), '(case_study, BlameReport)\n', (15731, 15756), False, 'from varats.paper_mgmt.case_study import newest_processed_revision_for_case_study\n'), ((16375, 16394), 'pandas.DataFrame', 'pd.DataFrame', (['nodes'], {}), '(nodes)\n', (16387, 16394), True, 'import pandas as pd\n'), ((3155, 3209), 'varats.data.reports.blame_interaction_graph.create_blame_interaction_graph', 'create_blame_interaction_graph', (['project_name', 'revision'], {}), '(project_name, revision)\n', (3185, 3209), False, 'from varats.data.reports.blame_interaction_graph import create_blame_interaction_graph, CIGNodeAttrs, CIGEdgeAttrs, AIGNodeAttrs, CAIGNodeAttrs\n'), ((3547, 3592), 'datetime.datetime.utcfromtimestamp', 'datetime.utcfromtimestamp', (['commit.commit_time'], {}), '(commit.commit_time)\n', (3572, 3592), False, 'from datetime import datetime\n'), ((3637, 3657), 'datetime.datetime', 'datetime', (['(2015)', '(1)', '(1)'], {}), '(2015, 1, 1)\n', (3645, 3657), False, 'from datetime import datetime\n'), ((4266, 4306), 'typing.cast', 'tp.cast', (['CIGEdgeAttrs', 'cig[source][sink]'], {}), '(CIGEdgeAttrs, cig[source][sink])\n', (4273, 4306), True, 'import typing as tp\n'), ((4341, 4381), 'typing.cast', 'tp.cast', (['CIGNodeAttrs', 'cig.nodes[source]'], {}), '(CIGNodeAttrs, cig.nodes[source])\n', (4348, 4381), True, 'import typing as tp\n'), ((4414, 4452), 'typing.cast', 'tp.cast', (['CIGNodeAttrs', 'cig.nodes[sink]'], {}), '(CIGNodeAttrs, cig.nodes[sink])\n', (4421, 4452), True, 'import typing as tp\n'), ((5030, 5075), 'varats.utils.git_util.ShortCommitHash', 'ShortCommitHash', (["self.plot_kwargs['revision']"], {}), "(self.plot_kwargs['revision'])\n", (5045, 5075), False, 'from varats.utils.git_util import CommitRepoPair, create_commit_lookup_helper, UNCOMMITTED_COMMIT_HASH, FullCommitHash, ShortCommitHash\n'), ((6955, 7000), 'varats.utils.git_util.ShortCommitHash', 'ShortCommitHash', (["self.plot_kwargs['revision']"], {}), "(self.plot_kwargs['revision'])\n", (6970, 7000), False, 'from varats.utils.git_util import CommitRepoPair, create_commit_lookup_helper, UNCOMMITTED_COMMIT_HASH, FullCommitHash, ShortCommitHash\n'), ((9856, 9871), 'varats.plot.plot.PlotDataEmpty', 'PlotDataEmpty', ([], {}), '()\n', (9869, 9871), False, 'from varats.plot.plot import Plot, PlotDataEmpty\n'), ((10538, 10576), 'typing.cast', 'tp.cast', (['CIGNodeAttrs', 'cig.nodes[node]'], {}), '(CIGNodeAttrs, cig.nodes[node])\n', (10545, 10576), True, 'import typing as tp\n'), ((13175, 13190), 'varats.plot.plot.PlotDataEmpty', 'PlotDataEmpty', ([], {}), '()\n', (13188, 13190), False, 'from varats.plot.plot import Plot, PlotDataEmpty\n'), ((13440, 13478), 'typing.cast', 'tp.cast', (['AIGNodeAttrs', 'aig.nodes[node]'], {}), '(AIGNodeAttrs, aig.nodes[node])\n', (13447, 13478), True, 'import typing as tp\n'), ((15822, 15837), 'varats.plot.plot.PlotDataEmpty', 'PlotDataEmpty', ([], {}), '()\n', (15835, 15837), False, 'from varats.plot.plot import Plot, PlotDataEmpty\n'), ((16097, 16137), 'typing.cast', 'tp.cast', (['CAIGNodeAttrs', 'caig.nodes[node]'], {}), '(CAIGNodeAttrs, caig.nodes[node])\n', (16104, 16137), True, 'import typing as tp\n'), ((1598, 1652), 'varats.data.reports.blame_interaction_graph.create_blame_interaction_graph', 'create_blame_interaction_graph', (['project_name', 'revision'], {}), '(project_name, revision)\n', (1628, 1652), False, 'from varats.data.reports.blame_interaction_graph import create_blame_interaction_graph, CIGNodeAttrs, CIGEdgeAttrs, AIGNodeAttrs, CAIGNodeAttrs\n'), ((4964, 4992), 'varats.mapping.commit_map.get_commit_map', 'get_commit_map', (['project_name'], {}), '(project_name)\n', (4978, 4992), False, 'from varats.mapping.commit_map import get_commit_map\n'), ((6889, 6917), 'varats.mapping.commit_map.get_commit_map', 'get_commit_map', (['project_name'], {}), '(project_name)\n', (6903, 6917), False, 'from varats.mapping.commit_map import get_commit_map\n'), ((9887, 9952), 'varats.data.reports.blame_interaction_graph.create_blame_interaction_graph', 'create_blame_interaction_graph', (['case_study.project_name', 'revision'], {}), '(case_study.project_name, revision)\n', (9917, 9952), False, 'from varats.data.reports.blame_interaction_graph import create_blame_interaction_graph, CIGNodeAttrs, CIGEdgeAttrs, AIGNodeAttrs, CAIGNodeAttrs\n'), ((13206, 13260), 'varats.data.reports.blame_interaction_graph.create_blame_interaction_graph', 'create_blame_interaction_graph', (['project_name', 'revision'], {}), '(project_name, revision)\n', (13236, 13260), False, 'from varats.data.reports.blame_interaction_graph import create_blame_interaction_graph, CIGNodeAttrs, CIGEdgeAttrs, AIGNodeAttrs, CAIGNodeAttrs\n'), ((15854, 15908), 'varats.data.reports.blame_interaction_graph.create_blame_interaction_graph', 'create_blame_interaction_graph', (['project_name', 'revision'], {}), '(project_name, revision)\n', (15884, 15908), False, 'from varats.data.reports.blame_interaction_graph import create_blame_interaction_graph, CIGNodeAttrs, CIGEdgeAttrs, AIGNodeAttrs, CAIGNodeAttrs\n')]
import re class Rule: def __init__(self, line): line = line.strip().split(" contain ") line[1] = line[1].strip(".").split(", ") self.contents = {} for item in line[1]: # Grab that number out in front regex = re.compile(r"[0-9]+") # If we didn't find one that means it's no bags inside if match := regex.match(item): quantity = int(item[match.span()[0]:match.span()[1]]) # The +1 deals with the space bag_type = item[match.span()[1] + 1:] if quantity > 1: # This gets rid of the s if it's plural bag_type = bag_type[:-1] self.contents[bag_type] = quantity # The s makes things irritating so I want it gone self.bag_type = line[0][:-1] def contains_directly(self, bag_type: str): return bag_type in self.contents # Warning: recursive def contains(self, bag_type: str, rule_dict: dict): if self.contains_directly(bag_type): return True else: for bag in self.contents: if bag in rule_dict: if rule_dict[bag].contains(bag_type, rule_dict): return True else: print("An unexpected bag was discovered!") return False def count_internal_bags(self, rule_dict: dict): internal_bags = 0 for bag in self.contents: # count these bags... internal_bags += self.contents[bag] # recall that this value represents the quantity # ...and count the bags inside of it internal_bags += rule_dict[bag].count_internal_bags(rule_dict) * self.contents[bag] return internal_bags def parse_input(filename: str): with open(filename, "r") as file: rules = {} for line in file: rule = Rule(line) print(f"{rule.bag_type} contains {rule.contents}") rules[rule.bag_type] = rule return rules def main(): rule_dict = parse_input("input.txt") shiny_gold = 0 for rule_entry in rule_dict.keys(): rule = rule_dict[rule_entry] if rule.contains("shiny gold bag", rule_dict): print(f"Found {rule.contents} in {rule.bag_type}") shiny_gold += 1 print("\n") print(f"Found {shiny_gold} bags containing at least one shiny gold bag.") print(f"A shiny gold bag contains {rule_dict['shiny gold bag'].count_internal_bags(rule_dict)} bags.") if __name__ == "__main__": main()
[ "re.compile" ]
[((270, 290), 're.compile', 're.compile', (['"""[0-9]+"""'], {}), "('[0-9]+')\n", (280, 290), False, 'import re\n')]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * __all__ = [ 'ApiKeyStageKey', 'ApiKeyTag', 'ClientCertificateTag', 'DeploymentAccessLogSetting', 'DeploymentCanarySetting', 'DeploymentCanarySettings', 'DeploymentMethodSetting', 'DeploymentStageDescription', 'DeploymentTag', 'DocumentationPartLocation', 'DomainNameEndpointConfiguration', 'DomainNameMutualTlsAuthentication', 'DomainNameTag', 'MethodIntegration', 'MethodIntegrationResponse', 'MethodResponse', 'RestApiEndpointConfiguration', 'RestApiS3Location', 'RestApiTag', 'StageAccessLogSetting', 'StageCanarySetting', 'StageMethodSetting', 'StageTag', 'UsagePlanApiStage', 'UsagePlanQuotaSettings', 'UsagePlanTag', 'UsagePlanThrottleSettings', 'VpcLinkTag', ] @pulumi.output_type class ApiKeyStageKey(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "restApiId": suggest = "rest_api_id" elif key == "stageName": suggest = "stage_name" if suggest: pulumi.log.warn(f"Key '{key}' not found in ApiKeyStageKey. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ApiKeyStageKey.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ApiKeyStageKey.__key_warning(key) return super().get(key, default) def __init__(__self__, *, rest_api_id: Optional[str] = None, stage_name: Optional[str] = None): """ :param str rest_api_id: The ID of a RestApi resource that includes the stage with which you want to associate the API key. :param str stage_name: The name of the stage with which to associate the API key. The stage must be included in the RestApi resource that you specified in the RestApiId property. """ if rest_api_id is not None: pulumi.set(__self__, "rest_api_id", rest_api_id) if stage_name is not None: pulumi.set(__self__, "stage_name", stage_name) @property @pulumi.getter(name="restApiId") def rest_api_id(self) -> Optional[str]: """ The ID of a RestApi resource that includes the stage with which you want to associate the API key. """ return pulumi.get(self, "rest_api_id") @property @pulumi.getter(name="stageName") def stage_name(self) -> Optional[str]: """ The name of the stage with which to associate the API key. The stage must be included in the RestApi resource that you specified in the RestApiId property. """ return pulumi.get(self, "stage_name") @pulumi.output_type class ApiKeyTag(dict): def __init__(__self__, *, key: str, value: str): """ :param str key: The key name of the tag. You can specify a value that is 1 to 128 Unicode characters in length and cannot be prefixed with aws:. You can use any of the following characters: the set of Unicode letters, digits, whitespace, _, ., /, =, +, and -. :param str value: The value for the tag. You can specify a value that is 0 to 256 Unicode characters in length and cannot be prefixed with aws:. You can use any of the following characters: the set of Unicode letters, digits, whitespace, _, ., /, =, +, and -. """ pulumi.set(__self__, "key", key) pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> str: """ The key name of the tag. You can specify a value that is 1 to 128 Unicode characters in length and cannot be prefixed with aws:. You can use any of the following characters: the set of Unicode letters, digits, whitespace, _, ., /, =, +, and -. """ return pulumi.get(self, "key") @property @pulumi.getter def value(self) -> str: """ The value for the tag. You can specify a value that is 0 to 256 Unicode characters in length and cannot be prefixed with aws:. You can use any of the following characters: the set of Unicode letters, digits, whitespace, _, ., /, =, +, and -. """ return pulumi.get(self, "value") @pulumi.output_type class ClientCertificateTag(dict): def __init__(__self__, *, key: str, value: str): pulumi.set(__self__, "key", key) pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> str: return pulumi.get(self, "key") @property @pulumi.getter def value(self) -> str: return pulumi.get(self, "value") @pulumi.output_type class DeploymentAccessLogSetting(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "destinationArn": suggest = "destination_arn" if suggest: pulumi.log.warn(f"Key '{key}' not found in DeploymentAccessLogSetting. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DeploymentAccessLogSetting.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DeploymentAccessLogSetting.__key_warning(key) return super().get(key, default) def __init__(__self__, *, destination_arn: Optional[str] = None, format: Optional[str] = None): """ :param str destination_arn: The Amazon Resource Name (ARN) of the CloudWatch Logs log group or Kinesis Data Firehose delivery stream to receive access logs. If you specify a Kinesis Data Firehose delivery stream, the stream name must begin with amazon-apigateway-. :param str format: A single line format of the access logs of data, as specified by selected $context variables. The format must include at least $context.requestId. """ if destination_arn is not None: pulumi.set(__self__, "destination_arn", destination_arn) if format is not None: pulumi.set(__self__, "format", format) @property @pulumi.getter(name="destinationArn") def destination_arn(self) -> Optional[str]: """ The Amazon Resource Name (ARN) of the CloudWatch Logs log group or Kinesis Data Firehose delivery stream to receive access logs. If you specify a Kinesis Data Firehose delivery stream, the stream name must begin with amazon-apigateway-. """ return pulumi.get(self, "destination_arn") @property @pulumi.getter def format(self) -> Optional[str]: """ A single line format of the access logs of data, as specified by selected $context variables. The format must include at least $context.requestId. """ return pulumi.get(self, "format") @pulumi.output_type class DeploymentCanarySetting(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "percentTraffic": suggest = "percent_traffic" elif key == "stageVariableOverrides": suggest = "stage_variable_overrides" elif key == "useStageCache": suggest = "use_stage_cache" if suggest: pulumi.log.warn(f"Key '{key}' not found in DeploymentCanarySetting. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DeploymentCanarySetting.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DeploymentCanarySetting.__key_warning(key) return super().get(key, default) def __init__(__self__, *, percent_traffic: Optional[float] = None, stage_variable_overrides: Optional[Any] = None, use_stage_cache: Optional[bool] = None): """ :param float percent_traffic: The percent (0-100) of traffic diverted to a canary deployment. :param Any stage_variable_overrides: Stage variables overridden for a canary release deployment, including new stage variables introduced in the canary. These stage variables are represented as a string-to-string map between stage variable names and their values. :param bool use_stage_cache: Whether the canary deployment uses the stage cache or not. """ if percent_traffic is not None: pulumi.set(__self__, "percent_traffic", percent_traffic) if stage_variable_overrides is not None: pulumi.set(__self__, "stage_variable_overrides", stage_variable_overrides) if use_stage_cache is not None: pulumi.set(__self__, "use_stage_cache", use_stage_cache) @property @pulumi.getter(name="percentTraffic") def percent_traffic(self) -> Optional[float]: """ The percent (0-100) of traffic diverted to a canary deployment. """ return pulumi.get(self, "percent_traffic") @property @pulumi.getter(name="stageVariableOverrides") def stage_variable_overrides(self) -> Optional[Any]: """ Stage variables overridden for a canary release deployment, including new stage variables introduced in the canary. These stage variables are represented as a string-to-string map between stage variable names and their values. """ return pulumi.get(self, "stage_variable_overrides") @property @pulumi.getter(name="useStageCache") def use_stage_cache(self) -> Optional[bool]: """ Whether the canary deployment uses the stage cache or not. """ return pulumi.get(self, "use_stage_cache") @pulumi.output_type class DeploymentCanarySettings(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "percentTraffic": suggest = "percent_traffic" elif key == "stageVariableOverrides": suggest = "stage_variable_overrides" elif key == "useStageCache": suggest = "use_stage_cache" if suggest: pulumi.log.warn(f"Key '{key}' not found in DeploymentCanarySettings. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DeploymentCanarySettings.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DeploymentCanarySettings.__key_warning(key) return super().get(key, default) def __init__(__self__, *, percent_traffic: Optional[float] = None, stage_variable_overrides: Optional[Any] = None, use_stage_cache: Optional[bool] = None): """ :param float percent_traffic: The percentage (0-100) of traffic diverted to a canary deployment. :param Any stage_variable_overrides: Stage variables overridden for a canary release deployment, including new stage variables introduced in the canary. These stage variables are represented as a string-to-string map between stage variable names and their values. Duplicates are not allowed. :param bool use_stage_cache: Whether the canary deployment uses the stage cache. """ if percent_traffic is not None: pulumi.set(__self__, "percent_traffic", percent_traffic) if stage_variable_overrides is not None: pulumi.set(__self__, "stage_variable_overrides", stage_variable_overrides) if use_stage_cache is not None: pulumi.set(__self__, "use_stage_cache", use_stage_cache) @property @pulumi.getter(name="percentTraffic") def percent_traffic(self) -> Optional[float]: """ The percentage (0-100) of traffic diverted to a canary deployment. """ return pulumi.get(self, "percent_traffic") @property @pulumi.getter(name="stageVariableOverrides") def stage_variable_overrides(self) -> Optional[Any]: """ Stage variables overridden for a canary release deployment, including new stage variables introduced in the canary. These stage variables are represented as a string-to-string map between stage variable names and their values. Duplicates are not allowed. """ return pulumi.get(self, "stage_variable_overrides") @property @pulumi.getter(name="useStageCache") def use_stage_cache(self) -> Optional[bool]: """ Whether the canary deployment uses the stage cache. """ return pulumi.get(self, "use_stage_cache") @pulumi.output_type class DeploymentMethodSetting(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "cacheDataEncrypted": suggest = "cache_data_encrypted" elif key == "cacheTtlInSeconds": suggest = "cache_ttl_in_seconds" elif key == "cachingEnabled": suggest = "caching_enabled" elif key == "dataTraceEnabled": suggest = "data_trace_enabled" elif key == "httpMethod": suggest = "http_method" elif key == "loggingLevel": suggest = "logging_level" elif key == "metricsEnabled": suggest = "metrics_enabled" elif key == "resourcePath": suggest = "resource_path" elif key == "throttlingBurstLimit": suggest = "throttling_burst_limit" elif key == "throttlingRateLimit": suggest = "throttling_rate_limit" if suggest: pulumi.log.warn(f"Key '{key}' not found in DeploymentMethodSetting. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DeploymentMethodSetting.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DeploymentMethodSetting.__key_warning(key) return super().get(key, default) def __init__(__self__, *, cache_data_encrypted: Optional[bool] = None, cache_ttl_in_seconds: Optional[int] = None, caching_enabled: Optional[bool] = None, data_trace_enabled: Optional[bool] = None, http_method: Optional[str] = None, logging_level: Optional[str] = None, metrics_enabled: Optional[bool] = None, resource_path: Optional[str] = None, throttling_burst_limit: Optional[int] = None, throttling_rate_limit: Optional[float] = None): """ :param bool cache_data_encrypted: Indicates whether the cached responses are encrypted :param int cache_ttl_in_seconds: The time-to-live (TTL) period, in seconds, that specifies how long API Gateway caches responses. :param bool caching_enabled: Indicates whether responses are cached and returned for requests. You must enable a cache cluster on the stage to cache responses. :param bool data_trace_enabled: Indicates whether data trace logging is enabled for methods in the stage. API Gateway pushes these logs to Amazon CloudWatch Logs. :param str http_method: The HTTP method. :param str logging_level: The logging level for this method. For valid values, see the loggingLevel property of the Stage resource in the Amazon API Gateway API Reference. :param bool metrics_enabled: Indicates whether Amazon CloudWatch metrics are enabled for methods in the stage. :param str resource_path: The resource path for this method. Forward slashes (/) are encoded as ~1 and the initial slash must include a forward slash. :param int throttling_burst_limit: The number of burst requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. :param float throttling_rate_limit: The number of steady-state requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. """ if cache_data_encrypted is not None: pulumi.set(__self__, "cache_data_encrypted", cache_data_encrypted) if cache_ttl_in_seconds is not None: pulumi.set(__self__, "cache_ttl_in_seconds", cache_ttl_in_seconds) if caching_enabled is not None: pulumi.set(__self__, "caching_enabled", caching_enabled) if data_trace_enabled is not None: pulumi.set(__self__, "data_trace_enabled", data_trace_enabled) if http_method is not None: pulumi.set(__self__, "http_method", http_method) if logging_level is not None: pulumi.set(__self__, "logging_level", logging_level) if metrics_enabled is not None: pulumi.set(__self__, "metrics_enabled", metrics_enabled) if resource_path is not None: pulumi.set(__self__, "resource_path", resource_path) if throttling_burst_limit is not None: pulumi.set(__self__, "throttling_burst_limit", throttling_burst_limit) if throttling_rate_limit is not None: pulumi.set(__self__, "throttling_rate_limit", throttling_rate_limit) @property @pulumi.getter(name="cacheDataEncrypted") def cache_data_encrypted(self) -> Optional[bool]: """ Indicates whether the cached responses are encrypted """ return pulumi.get(self, "cache_data_encrypted") @property @pulumi.getter(name="cacheTtlInSeconds") def cache_ttl_in_seconds(self) -> Optional[int]: """ The time-to-live (TTL) period, in seconds, that specifies how long API Gateway caches responses. """ return pulumi.get(self, "cache_ttl_in_seconds") @property @pulumi.getter(name="cachingEnabled") def caching_enabled(self) -> Optional[bool]: """ Indicates whether responses are cached and returned for requests. You must enable a cache cluster on the stage to cache responses. """ return pulumi.get(self, "caching_enabled") @property @pulumi.getter(name="dataTraceEnabled") def data_trace_enabled(self) -> Optional[bool]: """ Indicates whether data trace logging is enabled for methods in the stage. API Gateway pushes these logs to Amazon CloudWatch Logs. """ return pulumi.get(self, "data_trace_enabled") @property @pulumi.getter(name="httpMethod") def http_method(self) -> Optional[str]: """ The HTTP method. """ return pulumi.get(self, "http_method") @property @pulumi.getter(name="loggingLevel") def logging_level(self) -> Optional[str]: """ The logging level for this method. For valid values, see the loggingLevel property of the Stage resource in the Amazon API Gateway API Reference. """ return pulumi.get(self, "logging_level") @property @pulumi.getter(name="metricsEnabled") def metrics_enabled(self) -> Optional[bool]: """ Indicates whether Amazon CloudWatch metrics are enabled for methods in the stage. """ return pulumi.get(self, "metrics_enabled") @property @pulumi.getter(name="resourcePath") def resource_path(self) -> Optional[str]: """ The resource path for this method. Forward slashes (/) are encoded as ~1 and the initial slash must include a forward slash. """ return pulumi.get(self, "resource_path") @property @pulumi.getter(name="throttlingBurstLimit") def throttling_burst_limit(self) -> Optional[int]: """ The number of burst requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. """ return pulumi.get(self, "throttling_burst_limit") @property @pulumi.getter(name="throttlingRateLimit") def throttling_rate_limit(self) -> Optional[float]: """ The number of steady-state requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. """ return pulumi.get(self, "throttling_rate_limit") @pulumi.output_type class DeploymentStageDescription(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "accessLogSetting": suggest = "access_log_setting" elif key == "cacheClusterEnabled": suggest = "cache_cluster_enabled" elif key == "cacheClusterSize": suggest = "cache_cluster_size" elif key == "cacheDataEncrypted": suggest = "cache_data_encrypted" elif key == "cacheTtlInSeconds": suggest = "cache_ttl_in_seconds" elif key == "cachingEnabled": suggest = "caching_enabled" elif key == "canarySetting": suggest = "canary_setting" elif key == "clientCertificateId": suggest = "client_certificate_id" elif key == "dataTraceEnabled": suggest = "data_trace_enabled" elif key == "documentationVersion": suggest = "documentation_version" elif key == "loggingLevel": suggest = "logging_level" elif key == "methodSettings": suggest = "method_settings" elif key == "metricsEnabled": suggest = "metrics_enabled" elif key == "throttlingBurstLimit": suggest = "throttling_burst_limit" elif key == "throttlingRateLimit": suggest = "throttling_rate_limit" elif key == "tracingEnabled": suggest = "tracing_enabled" if suggest: pulumi.log.warn(f"Key '{key}' not found in DeploymentStageDescription. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DeploymentStageDescription.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DeploymentStageDescription.__key_warning(key) return super().get(key, default) def __init__(__self__, *, access_log_setting: Optional['outputs.DeploymentAccessLogSetting'] = None, cache_cluster_enabled: Optional[bool] = None, cache_cluster_size: Optional[str] = None, cache_data_encrypted: Optional[bool] = None, cache_ttl_in_seconds: Optional[int] = None, caching_enabled: Optional[bool] = None, canary_setting: Optional['outputs.DeploymentCanarySetting'] = None, client_certificate_id: Optional[str] = None, data_trace_enabled: Optional[bool] = None, description: Optional[str] = None, documentation_version: Optional[str] = None, logging_level: Optional[str] = None, method_settings: Optional[Sequence['outputs.DeploymentMethodSetting']] = None, metrics_enabled: Optional[bool] = None, tags: Optional[Sequence['outputs.DeploymentTag']] = None, throttling_burst_limit: Optional[int] = None, throttling_rate_limit: Optional[float] = None, tracing_enabled: Optional[bool] = None, variables: Optional[Any] = None): """ :param 'DeploymentAccessLogSetting' access_log_setting: Specifies settings for logging access in this stage. :param bool cache_cluster_enabled: Indicates whether cache clustering is enabled for the stage. :param str cache_cluster_size: The size of the stage's cache cluster. :param bool cache_data_encrypted: The time-to-live (TTL) period, in seconds, that specifies how long API Gateway caches responses. :param int cache_ttl_in_seconds: The time-to-live (TTL) period, in seconds, that specifies how long API Gateway caches responses. :param bool caching_enabled: Indicates whether responses are cached and returned for requests. You must enable a cache cluster on the stage to cache responses. :param 'DeploymentCanarySetting' canary_setting: Specifies settings for the canary deployment in this stage. :param str client_certificate_id: The identifier of the client certificate that API Gateway uses to call your integration endpoints in the stage. :param bool data_trace_enabled: Indicates whether data trace logging is enabled for methods in the stage. API Gateway pushes these logs to Amazon CloudWatch Logs. :param str description: A description of the purpose of the stage. :param str documentation_version: The version identifier of the API documentation snapshot. :param str logging_level: The logging level for this method. For valid values, see the loggingLevel property of the Stage resource in the Amazon API Gateway API Reference. :param Sequence['DeploymentMethodSetting'] method_settings: Configures settings for all of the stage's methods. :param bool metrics_enabled: Indicates whether Amazon CloudWatch metrics are enabled for methods in the stage. :param Sequence['DeploymentTag'] tags: An array of arbitrary tags (key-value pairs) to associate with the stage. :param int throttling_burst_limit: The number of burst requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. :param float throttling_rate_limit: The number of steady-state requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. :param bool tracing_enabled: Specifies whether active tracing with X-ray is enabled for this stage. :param Any variables: A map that defines the stage variables. Variable names must consist of alphanumeric characters, and the values must match the following regular expression: [A-Za-z0-9-._~:/?#&=,]+. """ if access_log_setting is not None: pulumi.set(__self__, "access_log_setting", access_log_setting) if cache_cluster_enabled is not None: pulumi.set(__self__, "cache_cluster_enabled", cache_cluster_enabled) if cache_cluster_size is not None: pulumi.set(__self__, "cache_cluster_size", cache_cluster_size) if cache_data_encrypted is not None: pulumi.set(__self__, "cache_data_encrypted", cache_data_encrypted) if cache_ttl_in_seconds is not None: pulumi.set(__self__, "cache_ttl_in_seconds", cache_ttl_in_seconds) if caching_enabled is not None: pulumi.set(__self__, "caching_enabled", caching_enabled) if canary_setting is not None: pulumi.set(__self__, "canary_setting", canary_setting) if client_certificate_id is not None: pulumi.set(__self__, "client_certificate_id", client_certificate_id) if data_trace_enabled is not None: pulumi.set(__self__, "data_trace_enabled", data_trace_enabled) if description is not None: pulumi.set(__self__, "description", description) if documentation_version is not None: pulumi.set(__self__, "documentation_version", documentation_version) if logging_level is not None: pulumi.set(__self__, "logging_level", logging_level) if method_settings is not None: pulumi.set(__self__, "method_settings", method_settings) if metrics_enabled is not None: pulumi.set(__self__, "metrics_enabled", metrics_enabled) if tags is not None: pulumi.set(__self__, "tags", tags) if throttling_burst_limit is not None: pulumi.set(__self__, "throttling_burst_limit", throttling_burst_limit) if throttling_rate_limit is not None: pulumi.set(__self__, "throttling_rate_limit", throttling_rate_limit) if tracing_enabled is not None: pulumi.set(__self__, "tracing_enabled", tracing_enabled) if variables is not None: pulumi.set(__self__, "variables", variables) @property @pulumi.getter(name="accessLogSetting") def access_log_setting(self) -> Optional['outputs.DeploymentAccessLogSetting']: """ Specifies settings for logging access in this stage. """ return pulumi.get(self, "access_log_setting") @property @pulumi.getter(name="cacheClusterEnabled") def cache_cluster_enabled(self) -> Optional[bool]: """ Indicates whether cache clustering is enabled for the stage. """ return pulumi.get(self, "cache_cluster_enabled") @property @pulumi.getter(name="cacheClusterSize") def cache_cluster_size(self) -> Optional[str]: """ The size of the stage's cache cluster. """ return pulumi.get(self, "cache_cluster_size") @property @pulumi.getter(name="cacheDataEncrypted") def cache_data_encrypted(self) -> Optional[bool]: """ The time-to-live (TTL) period, in seconds, that specifies how long API Gateway caches responses. """ return pulumi.get(self, "cache_data_encrypted") @property @pulumi.getter(name="cacheTtlInSeconds") def cache_ttl_in_seconds(self) -> Optional[int]: """ The time-to-live (TTL) period, in seconds, that specifies how long API Gateway caches responses. """ return pulumi.get(self, "cache_ttl_in_seconds") @property @pulumi.getter(name="cachingEnabled") def caching_enabled(self) -> Optional[bool]: """ Indicates whether responses are cached and returned for requests. You must enable a cache cluster on the stage to cache responses. """ return pulumi.get(self, "caching_enabled") @property @pulumi.getter(name="canarySetting") def canary_setting(self) -> Optional['outputs.DeploymentCanarySetting']: """ Specifies settings for the canary deployment in this stage. """ return pulumi.get(self, "canary_setting") @property @pulumi.getter(name="clientCertificateId") def client_certificate_id(self) -> Optional[str]: """ The identifier of the client certificate that API Gateway uses to call your integration endpoints in the stage. """ return pulumi.get(self, "client_certificate_id") @property @pulumi.getter(name="dataTraceEnabled") def data_trace_enabled(self) -> Optional[bool]: """ Indicates whether data trace logging is enabled for methods in the stage. API Gateway pushes these logs to Amazon CloudWatch Logs. """ return pulumi.get(self, "data_trace_enabled") @property @pulumi.getter def description(self) -> Optional[str]: """ A description of the purpose of the stage. """ return pulumi.get(self, "description") @property @pulumi.getter(name="documentationVersion") def documentation_version(self) -> Optional[str]: """ The version identifier of the API documentation snapshot. """ return pulumi.get(self, "documentation_version") @property @pulumi.getter(name="loggingLevel") def logging_level(self) -> Optional[str]: """ The logging level for this method. For valid values, see the loggingLevel property of the Stage resource in the Amazon API Gateway API Reference. """ return pulumi.get(self, "logging_level") @property @pulumi.getter(name="methodSettings") def method_settings(self) -> Optional[Sequence['outputs.DeploymentMethodSetting']]: """ Configures settings for all of the stage's methods. """ return pulumi.get(self, "method_settings") @property @pulumi.getter(name="metricsEnabled") def metrics_enabled(self) -> Optional[bool]: """ Indicates whether Amazon CloudWatch metrics are enabled for methods in the stage. """ return pulumi.get(self, "metrics_enabled") @property @pulumi.getter def tags(self) -> Optional[Sequence['outputs.DeploymentTag']]: """ An array of arbitrary tags (key-value pairs) to associate with the stage. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="throttlingBurstLimit") def throttling_burst_limit(self) -> Optional[int]: """ The number of burst requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. """ return pulumi.get(self, "throttling_burst_limit") @property @pulumi.getter(name="throttlingRateLimit") def throttling_rate_limit(self) -> Optional[float]: """ The number of steady-state requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. """ return pulumi.get(self, "throttling_rate_limit") @property @pulumi.getter(name="tracingEnabled") def tracing_enabled(self) -> Optional[bool]: """ Specifies whether active tracing with X-ray is enabled for this stage. """ return pulumi.get(self, "tracing_enabled") @property @pulumi.getter def variables(self) -> Optional[Any]: """ A map that defines the stage variables. Variable names must consist of alphanumeric characters, and the values must match the following regular expression: [A-Za-z0-9-._~:/?#&=,]+. """ return pulumi.get(self, "variables") @pulumi.output_type class DeploymentTag(dict): def __init__(__self__, *, key: str, value: str): """ :param str key: The key name of the tag :param str value: The value for the tag """ pulumi.set(__self__, "key", key) pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> str: """ The key name of the tag """ return pulumi.get(self, "key") @property @pulumi.getter def value(self) -> str: """ The value for the tag """ return pulumi.get(self, "value") @pulumi.output_type class DocumentationPartLocation(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "statusCode": suggest = "status_code" if suggest: pulumi.log.warn(f"Key '{key}' not found in DocumentationPartLocation. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DocumentationPartLocation.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DocumentationPartLocation.__key_warning(key) return super().get(key, default) def __init__(__self__, *, method: Optional[str] = None, name: Optional[str] = None, path: Optional[str] = None, status_code: Optional[str] = None, type: Optional[str] = None): if method is not None: pulumi.set(__self__, "method", method) if name is not None: pulumi.set(__self__, "name", name) if path is not None: pulumi.set(__self__, "path", path) if status_code is not None: pulumi.set(__self__, "status_code", status_code) if type is not None: pulumi.set(__self__, "type", type) @property @pulumi.getter def method(self) -> Optional[str]: return pulumi.get(self, "method") @property @pulumi.getter def name(self) -> Optional[str]: return pulumi.get(self, "name") @property @pulumi.getter def path(self) -> Optional[str]: return pulumi.get(self, "path") @property @pulumi.getter(name="statusCode") def status_code(self) -> Optional[str]: return pulumi.get(self, "status_code") @property @pulumi.getter def type(self) -> Optional[str]: return pulumi.get(self, "type") @pulumi.output_type class DomainNameEndpointConfiguration(dict): def __init__(__self__, *, types: Optional[Sequence[str]] = None): if types is not None: pulumi.set(__self__, "types", types) @property @pulumi.getter def types(self) -> Optional[Sequence[str]]: return pulumi.get(self, "types") @pulumi.output_type class DomainNameMutualTlsAuthentication(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "truststoreUri": suggest = "truststore_uri" elif key == "truststoreVersion": suggest = "truststore_version" if suggest: pulumi.log.warn(f"Key '{key}' not found in DomainNameMutualTlsAuthentication. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DomainNameMutualTlsAuthentication.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DomainNameMutualTlsAuthentication.__key_warning(key) return super().get(key, default) def __init__(__self__, *, truststore_uri: Optional[str] = None, truststore_version: Optional[str] = None): if truststore_uri is not None: pulumi.set(__self__, "truststore_uri", truststore_uri) if truststore_version is not None: pulumi.set(__self__, "truststore_version", truststore_version) @property @pulumi.getter(name="truststoreUri") def truststore_uri(self) -> Optional[str]: return pulumi.get(self, "truststore_uri") @property @pulumi.getter(name="truststoreVersion") def truststore_version(self) -> Optional[str]: return pulumi.get(self, "truststore_version") @pulumi.output_type class DomainNameTag(dict): def __init__(__self__, *, key: Optional[str] = None, value: Optional[str] = None): if key is not None: pulumi.set(__self__, "key", key) if value is not None: pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> Optional[str]: return pulumi.get(self, "key") @property @pulumi.getter def value(self) -> Optional[str]: return pulumi.get(self, "value") @pulumi.output_type class MethodIntegration(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "cacheKeyParameters": suggest = "cache_key_parameters" elif key == "cacheNamespace": suggest = "cache_namespace" elif key == "connectionId": suggest = "connection_id" elif key == "connectionType": suggest = "connection_type" elif key == "contentHandling": suggest = "content_handling" elif key == "integrationHttpMethod": suggest = "integration_http_method" elif key == "integrationResponses": suggest = "integration_responses" elif key == "passthroughBehavior": suggest = "passthrough_behavior" elif key == "requestParameters": suggest = "request_parameters" elif key == "requestTemplates": suggest = "request_templates" elif key == "timeoutInMillis": suggest = "timeout_in_millis" if suggest: pulumi.log.warn(f"Key '{key}' not found in MethodIntegration. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: MethodIntegration.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: MethodIntegration.__key_warning(key) return super().get(key, default) def __init__(__self__, *, type: 'MethodIntegrationType', cache_key_parameters: Optional[Sequence[str]] = None, cache_namespace: Optional[str] = None, connection_id: Optional[str] = None, connection_type: Optional['MethodIntegrationConnectionType'] = None, content_handling: Optional['MethodIntegrationContentHandling'] = None, credentials: Optional[str] = None, integration_http_method: Optional[str] = None, integration_responses: Optional[Sequence['outputs.MethodIntegrationResponse']] = None, passthrough_behavior: Optional['MethodIntegrationPassthroughBehavior'] = None, request_parameters: Optional[Any] = None, request_templates: Optional[Any] = None, timeout_in_millis: Optional[int] = None, uri: Optional[str] = None): """ :param 'MethodIntegrationType' type: The type of backend that your method is running. :param Sequence[str] cache_key_parameters: A list of request parameters whose values API Gateway caches. :param str cache_namespace: An API-specific tag group of related cached parameters. :param str connection_id: The ID of the VpcLink used for the integration when connectionType=VPC_LINK, otherwise undefined. :param 'MethodIntegrationConnectionType' connection_type: The type of the network connection to the integration endpoint. :param 'MethodIntegrationContentHandling' content_handling: Specifies how to handle request payload content type conversions. :param str credentials: The credentials that are required for the integration. :param str integration_http_method: The integration's HTTP method type. :param Sequence['MethodIntegrationResponse'] integration_responses: The response that API Gateway provides after a method's backend completes processing a request. :param 'MethodIntegrationPassthroughBehavior' passthrough_behavior: Indicates when API Gateway passes requests to the targeted backend. :param Any request_parameters: The request parameters that API Gateway sends with the backend request. :param Any request_templates: A map of Apache Velocity templates that are applied on the request payload. :param int timeout_in_millis: Custom timeout between 50 and 29,000 milliseconds. :param str uri: The Uniform Resource Identifier (URI) for the integration. """ pulumi.set(__self__, "type", type) if cache_key_parameters is not None: pulumi.set(__self__, "cache_key_parameters", cache_key_parameters) if cache_namespace is not None: pulumi.set(__self__, "cache_namespace", cache_namespace) if connection_id is not None: pulumi.set(__self__, "connection_id", connection_id) if connection_type is not None: pulumi.set(__self__, "connection_type", connection_type) if content_handling is not None: pulumi.set(__self__, "content_handling", content_handling) if credentials is not None: pulumi.set(__self__, "credentials", credentials) if integration_http_method is not None: pulumi.set(__self__, "integration_http_method", integration_http_method) if integration_responses is not None: pulumi.set(__self__, "integration_responses", integration_responses) if passthrough_behavior is not None: pulumi.set(__self__, "passthrough_behavior", passthrough_behavior) if request_parameters is not None: pulumi.set(__self__, "request_parameters", request_parameters) if request_templates is not None: pulumi.set(__self__, "request_templates", request_templates) if timeout_in_millis is not None: pulumi.set(__self__, "timeout_in_millis", timeout_in_millis) if uri is not None: pulumi.set(__self__, "uri", uri) @property @pulumi.getter def type(self) -> 'MethodIntegrationType': """ The type of backend that your method is running. """ return pulumi.get(self, "type") @property @pulumi.getter(name="cacheKeyParameters") def cache_key_parameters(self) -> Optional[Sequence[str]]: """ A list of request parameters whose values API Gateway caches. """ return pulumi.get(self, "cache_key_parameters") @property @pulumi.getter(name="cacheNamespace") def cache_namespace(self) -> Optional[str]: """ An API-specific tag group of related cached parameters. """ return pulumi.get(self, "cache_namespace") @property @pulumi.getter(name="connectionId") def connection_id(self) -> Optional[str]: """ The ID of the VpcLink used for the integration when connectionType=VPC_LINK, otherwise undefined. """ return pulumi.get(self, "connection_id") @property @pulumi.getter(name="connectionType") def connection_type(self) -> Optional['MethodIntegrationConnectionType']: """ The type of the network connection to the integration endpoint. """ return pulumi.get(self, "connection_type") @property @pulumi.getter(name="contentHandling") def content_handling(self) -> Optional['MethodIntegrationContentHandling']: """ Specifies how to handle request payload content type conversions. """ return pulumi.get(self, "content_handling") @property @pulumi.getter def credentials(self) -> Optional[str]: """ The credentials that are required for the integration. """ return pulumi.get(self, "credentials") @property @pulumi.getter(name="integrationHttpMethod") def integration_http_method(self) -> Optional[str]: """ The integration's HTTP method type. """ return pulumi.get(self, "integration_http_method") @property @pulumi.getter(name="integrationResponses") def integration_responses(self) -> Optional[Sequence['outputs.MethodIntegrationResponse']]: """ The response that API Gateway provides after a method's backend completes processing a request. """ return pulumi.get(self, "integration_responses") @property @pulumi.getter(name="passthroughBehavior") def passthrough_behavior(self) -> Optional['MethodIntegrationPassthroughBehavior']: """ Indicates when API Gateway passes requests to the targeted backend. """ return pulumi.get(self, "passthrough_behavior") @property @pulumi.getter(name="requestParameters") def request_parameters(self) -> Optional[Any]: """ The request parameters that API Gateway sends with the backend request. """ return pulumi.get(self, "request_parameters") @property @pulumi.getter(name="requestTemplates") def request_templates(self) -> Optional[Any]: """ A map of Apache Velocity templates that are applied on the request payload. """ return pulumi.get(self, "request_templates") @property @pulumi.getter(name="timeoutInMillis") def timeout_in_millis(self) -> Optional[int]: """ Custom timeout between 50 and 29,000 milliseconds. """ return pulumi.get(self, "timeout_in_millis") @property @pulumi.getter def uri(self) -> Optional[str]: """ The Uniform Resource Identifier (URI) for the integration. """ return pulumi.get(self, "uri") @pulumi.output_type class MethodIntegrationResponse(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "statusCode": suggest = "status_code" elif key == "contentHandling": suggest = "content_handling" elif key == "responseParameters": suggest = "response_parameters" elif key == "responseTemplates": suggest = "response_templates" elif key == "selectionPattern": suggest = "selection_pattern" if suggest: pulumi.log.warn(f"Key '{key}' not found in MethodIntegrationResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: MethodIntegrationResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: MethodIntegrationResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, status_code: str, content_handling: Optional['MethodIntegrationResponseContentHandling'] = None, response_parameters: Optional[Any] = None, response_templates: Optional[Any] = None, selection_pattern: Optional[str] = None): """ :param str status_code: The status code that API Gateway uses to map the integration response to a MethodResponse status code. :param 'MethodIntegrationResponseContentHandling' content_handling: Specifies how to handle request payload content type conversions. :param Any response_parameters: The response parameters from the backend response that API Gateway sends to the method response. :param Any response_templates: The templates that are used to transform the integration response body. Specify templates as key-value pairs (string-to-string mappings), with a content type as the key and a template as the value. :param str selection_pattern: A regular expression that specifies which error strings or status codes from the backend map to the integration response. """ pulumi.set(__self__, "status_code", status_code) if content_handling is not None: pulumi.set(__self__, "content_handling", content_handling) if response_parameters is not None: pulumi.set(__self__, "response_parameters", response_parameters) if response_templates is not None: pulumi.set(__self__, "response_templates", response_templates) if selection_pattern is not None: pulumi.set(__self__, "selection_pattern", selection_pattern) @property @pulumi.getter(name="statusCode") def status_code(self) -> str: """ The status code that API Gateway uses to map the integration response to a MethodResponse status code. """ return pulumi.get(self, "status_code") @property @pulumi.getter(name="contentHandling") def content_handling(self) -> Optional['MethodIntegrationResponseContentHandling']: """ Specifies how to handle request payload content type conversions. """ return pulumi.get(self, "content_handling") @property @pulumi.getter(name="responseParameters") def response_parameters(self) -> Optional[Any]: """ The response parameters from the backend response that API Gateway sends to the method response. """ return pulumi.get(self, "response_parameters") @property @pulumi.getter(name="responseTemplates") def response_templates(self) -> Optional[Any]: """ The templates that are used to transform the integration response body. Specify templates as key-value pairs (string-to-string mappings), with a content type as the key and a template as the value. """ return pulumi.get(self, "response_templates") @property @pulumi.getter(name="selectionPattern") def selection_pattern(self) -> Optional[str]: """ A regular expression that specifies which error strings or status codes from the backend map to the integration response. """ return pulumi.get(self, "selection_pattern") @pulumi.output_type class MethodResponse(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "statusCode": suggest = "status_code" elif key == "responseModels": suggest = "response_models" elif key == "responseParameters": suggest = "response_parameters" if suggest: pulumi.log.warn(f"Key '{key}' not found in MethodResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: MethodResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: MethodResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, status_code: str, response_models: Optional[Any] = None, response_parameters: Optional[Any] = None): """ :param str status_code: The method response's status code, which you map to an IntegrationResponse. :param Any response_models: The resources used for the response's content type. Specify response models as key-value pairs (string-to-string maps), with a content type as the key and a Model resource name as the value. :param Any response_parameters: Response parameters that API Gateway sends to the client that called a method. Specify response parameters as key-value pairs (string-to-Boolean maps), with a destination as the key and a Boolean as the value. """ pulumi.set(__self__, "status_code", status_code) if response_models is not None: pulumi.set(__self__, "response_models", response_models) if response_parameters is not None: pulumi.set(__self__, "response_parameters", response_parameters) @property @pulumi.getter(name="statusCode") def status_code(self) -> str: """ The method response's status code, which you map to an IntegrationResponse. """ return pulumi.get(self, "status_code") @property @pulumi.getter(name="responseModels") def response_models(self) -> Optional[Any]: """ The resources used for the response's content type. Specify response models as key-value pairs (string-to-string maps), with a content type as the key and a Model resource name as the value. """ return pulumi.get(self, "response_models") @property @pulumi.getter(name="responseParameters") def response_parameters(self) -> Optional[Any]: """ Response parameters that API Gateway sends to the client that called a method. Specify response parameters as key-value pairs (string-to-Boolean maps), with a destination as the key and a Boolean as the value. """ return pulumi.get(self, "response_parameters") @pulumi.output_type class RestApiEndpointConfiguration(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "vpcEndpointIds": suggest = "vpc_endpoint_ids" if suggest: pulumi.log.warn(f"Key '{key}' not found in RestApiEndpointConfiguration. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: RestApiEndpointConfiguration.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: RestApiEndpointConfiguration.__key_warning(key) return super().get(key, default) def __init__(__self__, *, types: Optional[Sequence[str]] = None, vpc_endpoint_ids: Optional[Sequence[str]] = None): if types is not None: pulumi.set(__self__, "types", types) if vpc_endpoint_ids is not None: pulumi.set(__self__, "vpc_endpoint_ids", vpc_endpoint_ids) @property @pulumi.getter def types(self) -> Optional[Sequence[str]]: return pulumi.get(self, "types") @property @pulumi.getter(name="vpcEndpointIds") def vpc_endpoint_ids(self) -> Optional[Sequence[str]]: return pulumi.get(self, "vpc_endpoint_ids") @pulumi.output_type class RestApiS3Location(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "eTag": suggest = "e_tag" if suggest: pulumi.log.warn(f"Key '{key}' not found in RestApiS3Location. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: RestApiS3Location.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: RestApiS3Location.__key_warning(key) return super().get(key, default) def __init__(__self__, *, bucket: Optional[str] = None, e_tag: Optional[str] = None, key: Optional[str] = None, version: Optional[str] = None): if bucket is not None: pulumi.set(__self__, "bucket", bucket) if e_tag is not None: pulumi.set(__self__, "e_tag", e_tag) if key is not None: pulumi.set(__self__, "key", key) if version is not None: pulumi.set(__self__, "version", version) @property @pulumi.getter def bucket(self) -> Optional[str]: return pulumi.get(self, "bucket") @property @pulumi.getter(name="eTag") def e_tag(self) -> Optional[str]: return pulumi.get(self, "e_tag") @property @pulumi.getter def key(self) -> Optional[str]: return pulumi.get(self, "key") @property @pulumi.getter def version(self) -> Optional[str]: return pulumi.get(self, "version") @pulumi.output_type class RestApiTag(dict): def __init__(__self__, *, key: str, value: str): pulumi.set(__self__, "key", key) pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> str: return pulumi.get(self, "key") @property @pulumi.getter def value(self) -> str: return pulumi.get(self, "value") @pulumi.output_type class StageAccessLogSetting(dict): """ Specifies settings for logging access in this stage. """ @staticmethod def __key_warning(key: str): suggest = None if key == "destinationArn": suggest = "destination_arn" if suggest: pulumi.log.warn(f"Key '{key}' not found in StageAccessLogSetting. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: StageAccessLogSetting.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: StageAccessLogSetting.__key_warning(key) return super().get(key, default) def __init__(__self__, *, destination_arn: Optional[str] = None, format: Optional[str] = None): """ Specifies settings for logging access in this stage. :param str destination_arn: The Amazon Resource Name (ARN) of the CloudWatch Logs log group or Kinesis Data Firehose delivery stream to receive access logs. If you specify a Kinesis Data Firehose delivery stream, the stream name must begin with amazon-apigateway-. This parameter is required to enable access logging. :param str format: A single line format of the access logs of data, as specified by selected $context variables (https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html#context-variable-reference). The format must include at least $context.requestId. This parameter is required to enable access logging. """ if destination_arn is not None: pulumi.set(__self__, "destination_arn", destination_arn) if format is not None: pulumi.set(__self__, "format", format) @property @pulumi.getter(name="destinationArn") def destination_arn(self) -> Optional[str]: """ The Amazon Resource Name (ARN) of the CloudWatch Logs log group or Kinesis Data Firehose delivery stream to receive access logs. If you specify a Kinesis Data Firehose delivery stream, the stream name must begin with amazon-apigateway-. This parameter is required to enable access logging. """ return pulumi.get(self, "destination_arn") @property @pulumi.getter def format(self) -> Optional[str]: """ A single line format of the access logs of data, as specified by selected $context variables (https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html#context-variable-reference). The format must include at least $context.requestId. This parameter is required to enable access logging. """ return pulumi.get(self, "format") @pulumi.output_type class StageCanarySetting(dict): """ Specifies settings for the canary deployment in this stage. """ @staticmethod def __key_warning(key: str): suggest = None if key == "deploymentId": suggest = "deployment_id" elif key == "percentTraffic": suggest = "percent_traffic" elif key == "stageVariableOverrides": suggest = "stage_variable_overrides" elif key == "useStageCache": suggest = "use_stage_cache" if suggest: pulumi.log.warn(f"Key '{key}' not found in StageCanarySetting. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: StageCanarySetting.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: StageCanarySetting.__key_warning(key) return super().get(key, default) def __init__(__self__, *, deployment_id: Optional[str] = None, percent_traffic: Optional[float] = None, stage_variable_overrides: Optional[Any] = None, use_stage_cache: Optional[bool] = None): """ Specifies settings for the canary deployment in this stage. :param str deployment_id: The identifier of the deployment that the stage points to. :param float percent_traffic: The percentage (0-100) of traffic diverted to a canary deployment. :param Any stage_variable_overrides: Stage variables overridden for a canary release deployment, including new stage variables introduced in the canary. These stage variables are represented as a string-to-string map between stage variable names and their values. :param bool use_stage_cache: Whether the canary deployment uses the stage cache or not. """ if deployment_id is not None: pulumi.set(__self__, "deployment_id", deployment_id) if percent_traffic is not None: pulumi.set(__self__, "percent_traffic", percent_traffic) if stage_variable_overrides is not None: pulumi.set(__self__, "stage_variable_overrides", stage_variable_overrides) if use_stage_cache is not None: pulumi.set(__self__, "use_stage_cache", use_stage_cache) @property @pulumi.getter(name="deploymentId") def deployment_id(self) -> Optional[str]: """ The identifier of the deployment that the stage points to. """ return pulumi.get(self, "deployment_id") @property @pulumi.getter(name="percentTraffic") def percent_traffic(self) -> Optional[float]: """ The percentage (0-100) of traffic diverted to a canary deployment. """ return pulumi.get(self, "percent_traffic") @property @pulumi.getter(name="stageVariableOverrides") def stage_variable_overrides(self) -> Optional[Any]: """ Stage variables overridden for a canary release deployment, including new stage variables introduced in the canary. These stage variables are represented as a string-to-string map between stage variable names and their values. """ return pulumi.get(self, "stage_variable_overrides") @property @pulumi.getter(name="useStageCache") def use_stage_cache(self) -> Optional[bool]: """ Whether the canary deployment uses the stage cache or not. """ return pulumi.get(self, "use_stage_cache") @pulumi.output_type class StageMethodSetting(dict): """ Configures settings for all methods in a stage. """ @staticmethod def __key_warning(key: str): suggest = None if key == "cacheDataEncrypted": suggest = "cache_data_encrypted" elif key == "cacheTtlInSeconds": suggest = "cache_ttl_in_seconds" elif key == "cachingEnabled": suggest = "caching_enabled" elif key == "dataTraceEnabled": suggest = "data_trace_enabled" elif key == "httpMethod": suggest = "http_method" elif key == "loggingLevel": suggest = "logging_level" elif key == "metricsEnabled": suggest = "metrics_enabled" elif key == "resourcePath": suggest = "resource_path" elif key == "throttlingBurstLimit": suggest = "throttling_burst_limit" elif key == "throttlingRateLimit": suggest = "throttling_rate_limit" if suggest: pulumi.log.warn(f"Key '{key}' not found in StageMethodSetting. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: StageMethodSetting.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: StageMethodSetting.__key_warning(key) return super().get(key, default) def __init__(__self__, *, cache_data_encrypted: Optional[bool] = None, cache_ttl_in_seconds: Optional[int] = None, caching_enabled: Optional[bool] = None, data_trace_enabled: Optional[bool] = None, http_method: Optional[str] = None, logging_level: Optional[str] = None, metrics_enabled: Optional[bool] = None, resource_path: Optional[str] = None, throttling_burst_limit: Optional[int] = None, throttling_rate_limit: Optional[float] = None): """ Configures settings for all methods in a stage. :param bool cache_data_encrypted: Indicates whether the cached responses are encrypted. :param int cache_ttl_in_seconds: The time-to-live (TTL) period, in seconds, that specifies how long API Gateway caches responses. :param bool caching_enabled: Indicates whether responses are cached and returned for requests. You must enable a cache cluster on the stage to cache responses. :param bool data_trace_enabled: Indicates whether data trace logging is enabled for methods in the stage. API Gateway pushes these logs to Amazon CloudWatch Logs. :param str http_method: The HTTP method. You can use an asterisk (*) as a wildcard to apply method settings to multiple methods. :param str logging_level: The logging level for this method. For valid values, see the loggingLevel property of the Stage (https://docs.aws.amazon.com/apigateway/api-reference/resource/stage/#loggingLevel) resource in the Amazon API Gateway API Reference. :param bool metrics_enabled: Indicates whether Amazon CloudWatch metrics are enabled for methods in the stage. :param str resource_path: The resource path for this method. Forward slashes (/) are encoded as ~1 and the initial slash must include a forward slash. For example, the path value /resource/subresource must be encoded as /~1resource~1subresource. To specify the root path, use only a slash (/). You can use an asterisk (*) as a wildcard to apply method settings to multiple methods. :param int throttling_burst_limit: The number of burst requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. :param float throttling_rate_limit: The number of steady-state requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. """ if cache_data_encrypted is not None: pulumi.set(__self__, "cache_data_encrypted", cache_data_encrypted) if cache_ttl_in_seconds is not None: pulumi.set(__self__, "cache_ttl_in_seconds", cache_ttl_in_seconds) if caching_enabled is not None: pulumi.set(__self__, "caching_enabled", caching_enabled) if data_trace_enabled is not None: pulumi.set(__self__, "data_trace_enabled", data_trace_enabled) if http_method is not None: pulumi.set(__self__, "http_method", http_method) if logging_level is not None: pulumi.set(__self__, "logging_level", logging_level) if metrics_enabled is not None: pulumi.set(__self__, "metrics_enabled", metrics_enabled) if resource_path is not None: pulumi.set(__self__, "resource_path", resource_path) if throttling_burst_limit is not None: pulumi.set(__self__, "throttling_burst_limit", throttling_burst_limit) if throttling_rate_limit is not None: pulumi.set(__self__, "throttling_rate_limit", throttling_rate_limit) @property @pulumi.getter(name="cacheDataEncrypted") def cache_data_encrypted(self) -> Optional[bool]: """ Indicates whether the cached responses are encrypted. """ return pulumi.get(self, "cache_data_encrypted") @property @pulumi.getter(name="cacheTtlInSeconds") def cache_ttl_in_seconds(self) -> Optional[int]: """ The time-to-live (TTL) period, in seconds, that specifies how long API Gateway caches responses. """ return pulumi.get(self, "cache_ttl_in_seconds") @property @pulumi.getter(name="cachingEnabled") def caching_enabled(self) -> Optional[bool]: """ Indicates whether responses are cached and returned for requests. You must enable a cache cluster on the stage to cache responses. """ return pulumi.get(self, "caching_enabled") @property @pulumi.getter(name="dataTraceEnabled") def data_trace_enabled(self) -> Optional[bool]: """ Indicates whether data trace logging is enabled for methods in the stage. API Gateway pushes these logs to Amazon CloudWatch Logs. """ return pulumi.get(self, "data_trace_enabled") @property @pulumi.getter(name="httpMethod") def http_method(self) -> Optional[str]: """ The HTTP method. You can use an asterisk (*) as a wildcard to apply method settings to multiple methods. """ return pulumi.get(self, "http_method") @property @pulumi.getter(name="loggingLevel") def logging_level(self) -> Optional[str]: """ The logging level for this method. For valid values, see the loggingLevel property of the Stage (https://docs.aws.amazon.com/apigateway/api-reference/resource/stage/#loggingLevel) resource in the Amazon API Gateway API Reference. """ return pulumi.get(self, "logging_level") @property @pulumi.getter(name="metricsEnabled") def metrics_enabled(self) -> Optional[bool]: """ Indicates whether Amazon CloudWatch metrics are enabled for methods in the stage. """ return pulumi.get(self, "metrics_enabled") @property @pulumi.getter(name="resourcePath") def resource_path(self) -> Optional[str]: """ The resource path for this method. Forward slashes (/) are encoded as ~1 and the initial slash must include a forward slash. For example, the path value /resource/subresource must be encoded as /~1resource~1subresource. To specify the root path, use only a slash (/). You can use an asterisk (*) as a wildcard to apply method settings to multiple methods. """ return pulumi.get(self, "resource_path") @property @pulumi.getter(name="throttlingBurstLimit") def throttling_burst_limit(self) -> Optional[int]: """ The number of burst requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. """ return pulumi.get(self, "throttling_burst_limit") @property @pulumi.getter(name="throttlingRateLimit") def throttling_rate_limit(self) -> Optional[float]: """ The number of steady-state requests per second that API Gateway permits across all APIs, stages, and methods in your AWS account. """ return pulumi.get(self, "throttling_rate_limit") @pulumi.output_type class StageTag(dict): """ Identify and categorize resources. """ def __init__(__self__, *, key: str, value: str): """ Identify and categorize resources. :param str key: The key name of the tag. You can specify a value that is 1 to 128 Unicode characters in length and cannot be prefixed with aws:. :param str value: The value for the tag. You can specify a value that is 0 to 256 Unicode characters in length and cannot be prefixed with aws:. """ pulumi.set(__self__, "key", key) pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> str: """ The key name of the tag. You can specify a value that is 1 to 128 Unicode characters in length and cannot be prefixed with aws:. """ return pulumi.get(self, "key") @property @pulumi.getter def value(self) -> str: """ The value for the tag. You can specify a value that is 0 to 256 Unicode characters in length and cannot be prefixed with aws:. """ return pulumi.get(self, "value") @pulumi.output_type class UsagePlanApiStage(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "apiId": suggest = "api_id" if suggest: pulumi.log.warn(f"Key '{key}' not found in UsagePlanApiStage. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: UsagePlanApiStage.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: UsagePlanApiStage.__key_warning(key) return super().get(key, default) def __init__(__self__, *, api_id: Optional[str] = None, stage: Optional[str] = None, throttle: Optional[Any] = None): """ :param str api_id: The ID of an API that is in the specified Stage property that you want to associate with the usage plan. :param str stage: The name of the stage to associate with the usage plan. :param Any throttle: Map containing method-level throttling information for an API stage in a usage plan. The key for the map is the path and method for which to configure custom throttling, for example, '/pets/GET'. Duplicates are not allowed. """ if api_id is not None: pulumi.set(__self__, "api_id", api_id) if stage is not None: pulumi.set(__self__, "stage", stage) if throttle is not None: pulumi.set(__self__, "throttle", throttle) @property @pulumi.getter(name="apiId") def api_id(self) -> Optional[str]: """ The ID of an API that is in the specified Stage property that you want to associate with the usage plan. """ return pulumi.get(self, "api_id") @property @pulumi.getter def stage(self) -> Optional[str]: """ The name of the stage to associate with the usage plan. """ return pulumi.get(self, "stage") @property @pulumi.getter def throttle(self) -> Optional[Any]: """ Map containing method-level throttling information for an API stage in a usage plan. The key for the map is the path and method for which to configure custom throttling, for example, '/pets/GET'. Duplicates are not allowed. """ return pulumi.get(self, "throttle") @pulumi.output_type class UsagePlanQuotaSettings(dict): def __init__(__self__, *, limit: Optional[int] = None, offset: Optional[int] = None, period: Optional[str] = None): """ :param int limit: The maximum number of requests that users can make within the specified time period. :param int offset: For the initial time period, the number of requests to subtract from the specified limit. When you first implement a usage plan, the plan might start in the middle of the week or month. With this property, you can decrease the limit for this initial time period. :param str period: The time period for which the maximum limit of requests applies, such as DAY or WEEK. For valid values, see the period property for the UsagePlan resource in the Amazon API Gateway REST API Reference. """ if limit is not None: pulumi.set(__self__, "limit", limit) if offset is not None: pulumi.set(__self__, "offset", offset) if period is not None: pulumi.set(__self__, "period", period) @property @pulumi.getter def limit(self) -> Optional[int]: """ The maximum number of requests that users can make within the specified time period. """ return pulumi.get(self, "limit") @property @pulumi.getter def offset(self) -> Optional[int]: """ For the initial time period, the number of requests to subtract from the specified limit. When you first implement a usage plan, the plan might start in the middle of the week or month. With this property, you can decrease the limit for this initial time period. """ return pulumi.get(self, "offset") @property @pulumi.getter def period(self) -> Optional[str]: """ The time period for which the maximum limit of requests applies, such as DAY or WEEK. For valid values, see the period property for the UsagePlan resource in the Amazon API Gateway REST API Reference. """ return pulumi.get(self, "period") @pulumi.output_type class UsagePlanTag(dict): def __init__(__self__, *, key: str, value: str): """ :param str key: The key name of the tag. You can specify a value that is 1 to 128 Unicode characters in length and cannot be prefixed with aws:. You can use any of the following characters: the set of Unicode letters, digits, whitespace, _, ., /, =, +, and -. :param str value: The value for the tag. You can specify a value that is 0 to 256 Unicode characters in length and cannot be prefixed with aws:. You can use any of the following characters: the set of Unicode letters, digits, whitespace, _, ., /, =, +, and -. """ pulumi.set(__self__, "key", key) pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> str: """ The key name of the tag. You can specify a value that is 1 to 128 Unicode characters in length and cannot be prefixed with aws:. You can use any of the following characters: the set of Unicode letters, digits, whitespace, _, ., /, =, +, and -. """ return pulumi.get(self, "key") @property @pulumi.getter def value(self) -> str: """ The value for the tag. You can specify a value that is 0 to 256 Unicode characters in length and cannot be prefixed with aws:. You can use any of the following characters: the set of Unicode letters, digits, whitespace, _, ., /, =, +, and -. """ return pulumi.get(self, "value") @pulumi.output_type class UsagePlanThrottleSettings(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "burstLimit": suggest = "burst_limit" elif key == "rateLimit": suggest = "rate_limit" if suggest: pulumi.log.warn(f"Key '{key}' not found in UsagePlanThrottleSettings. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: UsagePlanThrottleSettings.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: UsagePlanThrottleSettings.__key_warning(key) return super().get(key, default) def __init__(__self__, *, burst_limit: Optional[int] = None, rate_limit: Optional[float] = None): """ :param int burst_limit: The maximum API request rate limit over a time ranging from one to a few seconds. The maximum API request rate limit depends on whether the underlying token bucket is at its full capacity. :param float rate_limit: The API request steady-state rate limit (average requests per second over an extended period of time). """ if burst_limit is not None: pulumi.set(__self__, "burst_limit", burst_limit) if rate_limit is not None: pulumi.set(__self__, "rate_limit", rate_limit) @property @pulumi.getter(name="burstLimit") def burst_limit(self) -> Optional[int]: """ The maximum API request rate limit over a time ranging from one to a few seconds. The maximum API request rate limit depends on whether the underlying token bucket is at its full capacity. """ return pulumi.get(self, "burst_limit") @property @pulumi.getter(name="rateLimit") def rate_limit(self) -> Optional[float]: """ The API request steady-state rate limit (average requests per second over an extended period of time). """ return pulumi.get(self, "rate_limit") @pulumi.output_type class VpcLinkTag(dict): def __init__(__self__, *, key: str, value: str): pulumi.set(__self__, "key", key) pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> str: return pulumi.get(self, "key") @property @pulumi.getter def value(self) -> str: return pulumi.get(self, "value")
[ "pulumi.getter", "pulumi.log.warn", "pulumi.set", "pulumi.get" ]
[((2507, 2538), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""restApiId"""'}), "(name='restApiId')\n", (2520, 2538), False, 'import pulumi\n'), ((2781, 2812), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""stageName"""'}), "(name='stageName')\n", (2794, 2812), False, 'import pulumi\n'), ((6540, 6576), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""destinationArn"""'}), "(name='destinationArn')\n", (6553, 6576), False, 'import pulumi\n'), ((9149, 9185), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""percentTraffic"""'}), "(name='percentTraffic')\n", (9162, 9185), False, 'import pulumi\n'), ((9403, 9447), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""stageVariableOverrides"""'}), "(name='stageVariableOverrides')\n", (9416, 9447), False, 'import pulumi\n'), ((9845, 9880), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""useStageCache"""'}), "(name='useStageCache')\n", (9858, 9880), False, 'import pulumi\n'), ((12007, 12043), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""percentTraffic"""'}), "(name='percentTraffic')\n", (12020, 12043), False, 'import pulumi\n'), ((12264, 12308), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""stageVariableOverrides"""'}), "(name='stageVariableOverrides')\n", (12277, 12308), False, 'import pulumi\n'), ((12733, 12768), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""useStageCache"""'}), "(name='useStageCache')\n", (12746, 12768), False, 'import pulumi\n'), ((17567, 17607), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cacheDataEncrypted"""'}), "(name='cacheDataEncrypted')\n", (17580, 17607), False, 'import pulumi\n'), ((17823, 17862), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cacheTtlInSeconds"""'}), "(name='cacheTtlInSeconds')\n", (17836, 17862), False, 'import pulumi\n'), ((18122, 18158), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cachingEnabled"""'}), "(name='cachingEnabled')\n", (18135, 18158), False, 'import pulumi\n'), ((18442, 18480), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""dataTraceEnabled"""'}), "(name='dataTraceEnabled')\n", (18455, 18480), False, 'import pulumi\n'), ((18771, 18803), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""httpMethod"""'}), "(name='httpMethod')\n", (18784, 18803), False, 'import pulumi\n'), ((18964, 18998), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""loggingLevel"""'}), "(name='loggingLevel')\n", (18977, 18998), False, 'import pulumi\n'), ((19293, 19329), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""metricsEnabled"""'}), "(name='metricsEnabled')\n", (19306, 19329), False, 'import pulumi\n'), ((19564, 19598), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""resourcePath"""'}), "(name='resourcePath')\n", (19577, 19598), False, 'import pulumi\n'), ((19872, 19914), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""throttlingBurstLimit"""'}), "(name='throttlingBurstLimit')\n", (19885, 19914), False, 'import pulumi\n'), ((20203, 20244), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""throttlingRateLimit"""'}), "(name='throttlingRateLimit')\n", (20216, 20244), False, 'import pulumi\n'), ((28463, 28501), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""accessLogSetting"""'}), "(name='accessLogSetting')\n", (28476, 28501), False, 'import pulumi\n'), ((28745, 28786), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cacheClusterEnabled"""'}), "(name='cacheClusterEnabled')\n", (28758, 28786), False, 'import pulumi\n'), ((29012, 29050), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cacheClusterSize"""'}), "(name='cacheClusterSize')\n", (29025, 29050), False, 'import pulumi\n'), ((29247, 29287), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cacheDataEncrypted"""'}), "(name='cacheDataEncrypted')\n", (29260, 29287), False, 'import pulumi\n'), ((29548, 29587), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cacheTtlInSeconds"""'}), "(name='cacheTtlInSeconds')\n", (29561, 29587), False, 'import pulumi\n'), ((29847, 29883), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cachingEnabled"""'}), "(name='cachingEnabled')\n", (29860, 29883), False, 'import pulumi\n'), ((30167, 30202), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""canarySetting"""'}), "(name='canarySetting')\n", (30180, 30202), False, 'import pulumi\n'), ((30442, 30483), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""clientCertificateId"""'}), "(name='clientCertificateId')\n", (30455, 30483), False, 'import pulumi\n'), ((30760, 30798), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""dataTraceEnabled"""'}), "(name='dataTraceEnabled')\n", (30773, 30798), False, 'import pulumi\n'), ((31289, 31331), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""documentationVersion"""'}), "(name='documentationVersion')\n", (31302, 31331), False, 'import pulumi\n'), ((31553, 31587), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""loggingLevel"""'}), "(name='loggingLevel')\n", (31566, 31587), False, 'import pulumi\n'), ((31882, 31918), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""methodSettings"""'}), "(name='methodSettings')\n", (31895, 31918), False, 'import pulumi\n'), ((32162, 32198), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""metricsEnabled"""'}), "(name='metricsEnabled')\n", (32175, 32198), False, 'import pulumi\n'), ((32680, 32722), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""throttlingBurstLimit"""'}), "(name='throttlingBurstLimit')\n", (32693, 32722), False, 'import pulumi\n'), ((33011, 33052), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""throttlingRateLimit"""'}), "(name='throttlingRateLimit')\n", (33024, 33052), False, 'import pulumi\n'), ((33348, 33384), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""tracingEnabled"""'}), "(name='tracingEnabled')\n", (33361, 33384), False, 'import pulumi\n'), ((36262, 36294), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""statusCode"""'}), "(name='statusCode')\n", (36275, 36294), False, 'import pulumi\n'), ((38020, 38055), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""truststoreUri"""'}), "(name='truststoreUri')\n", (38033, 38055), False, 'import pulumi\n'), ((38173, 38212), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""truststoreVersion"""'}), "(name='truststoreVersion')\n", (38186, 38212), False, 'import pulumi\n'), ((44623, 44663), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cacheKeyParameters"""'}), "(name='cacheKeyParameters')\n", (44636, 44663), False, 'import pulumi\n'), ((44897, 44933), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cacheNamespace"""'}), "(name='cacheNamespace')\n", (44910, 44933), False, 'import pulumi\n'), ((45141, 45175), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""connectionId"""'}), "(name='connectionId')\n", (45154, 45175), False, 'import pulumi\n'), ((45421, 45457), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""connectionType"""'}), "(name='connectionType')\n", (45434, 45457), False, 'import pulumi\n'), ((45703, 45740), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""contentHandling"""'}), "(name='contentHandling')\n", (45716, 45740), False, 'import pulumi\n'), ((46203, 46246), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""integrationHttpMethod"""'}), "(name='integrationHttpMethod')\n", (46216, 46246), False, 'import pulumi\n'), ((46450, 46492), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""integrationResponses"""'}), "(name='integrationResponses')\n", (46463, 46492), False, 'import pulumi\n'), ((46794, 46835), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""passthroughBehavior"""'}), "(name='passthroughBehavior')\n", (46807, 46835), False, 'import pulumi\n'), ((47100, 47139), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""requestParameters"""'}), "(name='requestParameters')\n", (47113, 47139), False, 'import pulumi\n'), ((47369, 47407), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""requestTemplates"""'}), "(name='requestTemplates')\n", (47382, 47407), False, 'import pulumi\n'), ((47639, 47676), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""timeoutInMillis"""'}), "(name='timeoutInMillis')\n", (47652, 47676), False, 'import pulumi\n'), ((50768, 50800), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""statusCode"""'}), "(name='statusCode')\n", (50781, 50800), False, 'import pulumi\n'), ((51037, 51074), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""contentHandling"""'}), "(name='contentHandling')\n", (51050, 51074), False, 'import pulumi\n'), ((51333, 51373), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""responseParameters"""'}), "(name='responseParameters')\n", (51346, 51373), False, 'import pulumi\n'), ((51630, 51669), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""responseTemplates"""'}), "(name='responseTemplates')\n", (51643, 51669), False, 'import pulumi\n'), ((52025, 52063), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""selectionPattern"""'}), "(name='selectionPattern')\n", (52038, 52063), False, 'import pulumi\n'), ((54195, 54227), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""statusCode"""'}), "(name='statusCode')\n", (54208, 54227), False, 'import pulumi\n'), ((54437, 54473), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""responseModels"""'}), "(name='responseModels')\n", (54450, 54473), False, 'import pulumi\n'), ((54816, 54856), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""responseParameters"""'}), "(name='responseParameters')\n", (54829, 54856), False, 'import pulumi\n'), ((56371, 56407), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""vpcEndpointIds"""'}), "(name='vpcEndpointIds')\n", (56384, 56407), False, 'import pulumi\n'), ((57801, 57827), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""eTag"""'}), "(name='eTag')\n", (57814, 57827), False, 'import pulumi\n'), ((60392, 60428), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""destinationArn"""'}), "(name='destinationArn')\n", (60405, 60428), False, 'import pulumi\n'), ((63693, 63727), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""deploymentId"""'}), "(name='deploymentId')\n", (63706, 63727), False, 'import pulumi\n'), ((63934, 63970), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""percentTraffic"""'}), "(name='percentTraffic')\n", (63947, 63970), False, 'import pulumi\n'), ((64191, 64235), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""stageVariableOverrides"""'}), "(name='stageVariableOverrides')\n", (64204, 64235), False, 'import pulumi\n'), ((64632, 64667), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""useStageCache"""'}), "(name='useStageCache')\n", (64645, 64667), False, 'import pulumi\n'), ((69977, 70017), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cacheDataEncrypted"""'}), "(name='cacheDataEncrypted')\n", (69990, 70017), False, 'import pulumi\n'), ((70234, 70273), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cacheTtlInSeconds"""'}), "(name='cacheTtlInSeconds')\n", (70247, 70273), False, 'import pulumi\n'), ((70532, 70568), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""cachingEnabled"""'}), "(name='cachingEnabled')\n", (70545, 70568), False, 'import pulumi\n'), ((70852, 70890), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""dataTraceEnabled"""'}), "(name='dataTraceEnabled')\n", (70865, 70890), False, 'import pulumi\n'), ((71180, 71212), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""httpMethod"""'}), "(name='httpMethod')\n", (71193, 71212), False, 'import pulumi\n'), ((71461, 71495), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""loggingLevel"""'}), "(name='loggingLevel')\n", (71474, 71495), False, 'import pulumi\n'), ((71873, 71909), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""metricsEnabled"""'}), "(name='metricsEnabled')\n", (71886, 71909), False, 'import pulumi\n'), ((72144, 72178), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""resourcePath"""'}), "(name='resourcePath')\n", (72157, 72178), False, 'import pulumi\n'), ((72682, 72724), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""throttlingBurstLimit"""'}), "(name='throttlingBurstLimit')\n", (72695, 72724), False, 'import pulumi\n'), ((73013, 73054), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""throttlingRateLimit"""'}), "(name='throttlingRateLimit')\n", (73026, 73054), False, 'import pulumi\n'), ((76044, 76071), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""apiId"""'}), "(name='apiId')\n", (76057, 76071), False, 'import pulumi\n'), ((81964, 81996), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""burstLimit"""'}), "(name='burstLimit')\n", (81977, 81996), False, 'import pulumi\n'), ((82329, 82360), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""rateLimit"""'}), "(name='rateLimit')\n", (82342, 82360), False, 'import pulumi\n'), ((2729, 2760), 'pulumi.get', 'pulumi.get', (['self', '"""rest_api_id"""'], {}), "(self, 'rest_api_id')\n", (2739, 2760), False, 'import pulumi\n'), ((3060, 3090), 'pulumi.get', 'pulumi.get', (['self', '"""stage_name"""'], {}), "(self, 'stage_name')\n", (3070, 3090), False, 'import pulumi\n'), ((3792, 3824), 'pulumi.set', 'pulumi.set', (['__self__', '"""key"""', 'key'], {}), "(__self__, 'key', key)\n", (3802, 3824), False, 'import pulumi\n'), ((3833, 3869), 'pulumi.set', 'pulumi.set', (['__self__', '"""value"""', 'value'], {}), "(__self__, 'value', value)\n", (3843, 3869), False, 'import pulumi\n'), ((4221, 4244), 'pulumi.get', 'pulumi.get', (['self', '"""key"""'], {}), "(self, 'key')\n", (4231, 4244), False, 'import pulumi\n'), ((4597, 4622), 'pulumi.get', 'pulumi.get', (['self', '"""value"""'], {}), "(self, 'value')\n", (4607, 4622), False, 'import pulumi\n'), ((4774, 4806), 'pulumi.set', 'pulumi.set', (['__self__', '"""key"""', 'key'], {}), "(__self__, 'key', key)\n", (4784, 4806), False, 'import pulumi\n'), ((4815, 4851), 'pulumi.set', 'pulumi.set', (['__self__', '"""value"""', 'value'], {}), "(__self__, 'value', value)\n", (4825, 4851), False, 'import pulumi\n'), ((4927, 4950), 'pulumi.get', 'pulumi.get', (['self', '"""key"""'], {}), "(self, 'key')\n", (4937, 4950), False, 'import pulumi\n'), ((5028, 5053), 'pulumi.get', 'pulumi.get', (['self', '"""value"""'], {}), "(self, 'value')\n", (5038, 5053), False, 'import pulumi\n'), ((6910, 6945), 'pulumi.get', 'pulumi.get', (['self', '"""destination_arn"""'], {}), "(self, 'destination_arn')\n", (6920, 6945), False, 'import pulumi\n'), ((7214, 7240), 'pulumi.get', 'pulumi.get', (['self', '"""format"""'], {}), "(self, 'format')\n", (7224, 7240), False, 'import pulumi\n'), ((9347, 9382), 'pulumi.get', 'pulumi.get', (['self', '"""percent_traffic"""'], {}), "(self, 'percent_traffic')\n", (9357, 9382), False, 'import pulumi\n'), ((9780, 9824), 'pulumi.get', 'pulumi.get', (['self', '"""stage_variable_overrides"""'], {}), "(self, 'stage_variable_overrides')\n", (9790, 9824), False, 'import pulumi\n'), ((10036, 10071), 'pulumi.get', 'pulumi.get', (['self', '"""use_stage_cache"""'], {}), "(self, 'use_stage_cache')\n", (10046, 10071), False, 'import pulumi\n'), ((12208, 12243), 'pulumi.get', 'pulumi.get', (['self', '"""percent_traffic"""'], {}), "(self, 'percent_traffic')\n", (12218, 12243), False, 'import pulumi\n'), ((12668, 12712), 'pulumi.get', 'pulumi.get', (['self', '"""stage_variable_overrides"""'], {}), "(self, 'stage_variable_overrides')\n", (12678, 12712), False, 'import pulumi\n'), ((12917, 12952), 'pulumi.get', 'pulumi.get', (['self', '"""use_stage_cache"""'], {}), "(self, 'use_stage_cache')\n", (12927, 12952), False, 'import pulumi\n'), ((17762, 17802), 'pulumi.get', 'pulumi.get', (['self', '"""cache_data_encrypted"""'], {}), "(self, 'cache_data_encrypted')\n", (17772, 17802), False, 'import pulumi\n'), ((18061, 18101), 'pulumi.get', 'pulumi.get', (['self', '"""cache_ttl_in_seconds"""'], {}), "(self, 'cache_ttl_in_seconds')\n", (18071, 18101), False, 'import pulumi\n'), ((18386, 18421), 'pulumi.get', 'pulumi.get', (['self', '"""caching_enabled"""'], {}), "(self, 'caching_enabled')\n", (18396, 18421), False, 'import pulumi\n'), ((18712, 18750), 'pulumi.get', 'pulumi.get', (['self', '"""data_trace_enabled"""'], {}), "(self, 'data_trace_enabled')\n", (18722, 18750), False, 'import pulumi\n'), ((18912, 18943), 'pulumi.get', 'pulumi.get', (['self', '"""http_method"""'], {}), "(self, 'http_method')\n", (18922, 18943), False, 'import pulumi\n'), ((19239, 19272), 'pulumi.get', 'pulumi.get', (['self', '"""logging_level"""'], {}), "(self, 'logging_level')\n", (19249, 19272), False, 'import pulumi\n'), ((19508, 19543), 'pulumi.get', 'pulumi.get', (['self', '"""metrics_enabled"""'], {}), "(self, 'metrics_enabled')\n", (19518, 19543), False, 'import pulumi\n'), ((19818, 19851), 'pulumi.get', 'pulumi.get', (['self', '"""resource_path"""'], {}), "(self, 'resource_path')\n", (19828, 19851), False, 'import pulumi\n'), ((20140, 20182), 'pulumi.get', 'pulumi.get', (['self', '"""throttling_burst_limit"""'], {}), "(self, 'throttling_burst_limit')\n", (20150, 20182), False, 'import pulumi\n'), ((20478, 20519), 'pulumi.get', 'pulumi.get', (['self', '"""throttling_rate_limit"""'], {}), "(self, 'throttling_rate_limit')\n", (20488, 20519), False, 'import pulumi\n'), ((28686, 28724), 'pulumi.get', 'pulumi.get', (['self', '"""access_log_setting"""'], {}), "(self, 'access_log_setting')\n", (28696, 28724), False, 'import pulumi\n'), ((28950, 28991), 'pulumi.get', 'pulumi.get', (['self', '"""cache_cluster_enabled"""'], {}), "(self, 'cache_cluster_enabled')\n", (28960, 28991), False, 'import pulumi\n'), ((29188, 29226), 'pulumi.get', 'pulumi.get', (['self', '"""cache_cluster_size"""'], {}), "(self, 'cache_cluster_size')\n", (29198, 29226), False, 'import pulumi\n'), ((29487, 29527), 'pulumi.get', 'pulumi.get', (['self', '"""cache_data_encrypted"""'], {}), "(self, 'cache_data_encrypted')\n", (29497, 29527), False, 'import pulumi\n'), ((29786, 29826), 'pulumi.get', 'pulumi.get', (['self', '"""cache_ttl_in_seconds"""'], {}), "(self, 'cache_ttl_in_seconds')\n", (29796, 29826), False, 'import pulumi\n'), ((30111, 30146), 'pulumi.get', 'pulumi.get', (['self', '"""caching_enabled"""'], {}), "(self, 'caching_enabled')\n", (30121, 30146), False, 'import pulumi\n'), ((30387, 30421), 'pulumi.get', 'pulumi.get', (['self', '"""canary_setting"""'], {}), "(self, 'canary_setting')\n", (30397, 30421), False, 'import pulumi\n'), ((30698, 30739), 'pulumi.get', 'pulumi.get', (['self', '"""client_certificate_id"""'], {}), "(self, 'client_certificate_id')\n", (30708, 30739), False, 'import pulumi\n'), ((31030, 31068), 'pulumi.get', 'pulumi.get', (['self', '"""data_trace_enabled"""'], {}), "(self, 'data_trace_enabled')\n", (31040, 31068), False, 'import pulumi\n'), ((31237, 31268), 'pulumi.get', 'pulumi.get', (['self', '"""description"""'], {}), "(self, 'description')\n", (31247, 31268), False, 'import pulumi\n'), ((31491, 31532), 'pulumi.get', 'pulumi.get', (['self', '"""documentation_version"""'], {}), "(self, 'documentation_version')\n", (31501, 31532), False, 'import pulumi\n'), ((31828, 31861), 'pulumi.get', 'pulumi.get', (['self', '"""logging_level"""'], {}), "(self, 'logging_level')\n", (31838, 31861), False, 'import pulumi\n'), ((32106, 32141), 'pulumi.get', 'pulumi.get', (['self', '"""method_settings"""'], {}), "(self, 'method_settings')\n", (32116, 32141), False, 'import pulumi\n'), ((32377, 32412), 'pulumi.get', 'pulumi.get', (['self', '"""metrics_enabled"""'], {}), "(self, 'metrics_enabled')\n", (32387, 32412), False, 'import pulumi\n'), ((32635, 32659), 'pulumi.get', 'pulumi.get', (['self', '"""tags"""'], {}), "(self, 'tags')\n", (32645, 32659), False, 'import pulumi\n'), ((32948, 32990), 'pulumi.get', 'pulumi.get', (['self', '"""throttling_burst_limit"""'], {}), "(self, 'throttling_burst_limit')\n", (32958, 32990), False, 'import pulumi\n'), ((33286, 33327), 'pulumi.get', 'pulumi.get', (['self', '"""throttling_rate_limit"""'], {}), "(self, 'throttling_rate_limit')\n", (33296, 33327), False, 'import pulumi\n'), ((33552, 33587), 'pulumi.get', 'pulumi.get', (['self', '"""tracing_enabled"""'], {}), "(self, 'tracing_enabled')\n", (33562, 33587), False, 'import pulumi\n'), ((33893, 33922), 'pulumi.get', 'pulumi.get', (['self', '"""variables"""'], {}), "(self, 'variables')\n", (33903, 33922), False, 'import pulumi\n'), ((34187, 34219), 'pulumi.set', 'pulumi.set', (['__self__', '"""key"""', 'key'], {}), "(__self__, 'key', key)\n", (34197, 34219), False, 'import pulumi\n'), ((34228, 34264), 'pulumi.set', 'pulumi.set', (['__self__', '"""value"""', 'value'], {}), "(__self__, 'value', value)\n", (34238, 34264), False, 'import pulumi\n'), ((34396, 34419), 'pulumi.get', 'pulumi.get', (['self', '"""key"""'], {}), "(self, 'key')\n", (34406, 34419), False, 'import pulumi\n'), ((34551, 34576), 'pulumi.get', 'pulumi.get', (['self', '"""value"""'], {}), "(self, 'value')\n", (34561, 34576), False, 'import pulumi\n'), ((35993, 36019), 'pulumi.get', 'pulumi.get', (['self', '"""method"""'], {}), "(self, 'method')\n", (36003, 36019), False, 'import pulumi\n'), ((36106, 36130), 'pulumi.get', 'pulumi.get', (['self', '"""name"""'], {}), "(self, 'name')\n", (36116, 36130), False, 'import pulumi\n'), ((36217, 36241), 'pulumi.get', 'pulumi.get', (['self', '"""path"""'], {}), "(self, 'path')\n", (36227, 36241), False, 'import pulumi\n'), ((36354, 36385), 'pulumi.get', 'pulumi.get', (['self', '"""status_code"""'], {}), "(self, 'status_code')\n", (36364, 36385), False, 'import pulumi\n'), ((36472, 36496), 'pulumi.get', 'pulumi.get', (['self', '"""type"""'], {}), "(self, 'type')\n", (36482, 36496), False, 'import pulumi\n'), ((36827, 36852), 'pulumi.get', 'pulumi.get', (['self', '"""types"""'], {}), "(self, 'types')\n", (36837, 36852), False, 'import pulumi\n'), ((38118, 38152), 'pulumi.get', 'pulumi.get', (['self', '"""truststore_uri"""'], {}), "(self, 'truststore_uri')\n", (38128, 38152), False, 'import pulumi\n'), ((38279, 38317), 'pulumi.get', 'pulumi.get', (['self', '"""truststore_version"""'], {}), "(self, 'truststore_version')\n", (38289, 38317), False, 'import pulumi\n'), ((38725, 38748), 'pulumi.get', 'pulumi.get', (['self', '"""key"""'], {}), "(self, 'key')\n", (38735, 38748), False, 'import pulumi\n'), ((38836, 38861), 'pulumi.get', 'pulumi.get', (['self', '"""value"""'], {}), "(self, 'value')\n", (38846, 38861), False, 'import pulumi\n'), ((42907, 42941), 'pulumi.set', 'pulumi.set', (['__self__', '"""type"""', 'type'], {}), "(__self__, 'type', type)\n", (42917, 42941), False, 'import pulumi\n'), ((44578, 44602), 'pulumi.get', 'pulumi.get', (['self', '"""type"""'], {}), "(self, 'type')\n", (44588, 44602), False, 'import pulumi\n'), ((44836, 44876), 'pulumi.get', 'pulumi.get', (['self', '"""cache_key_parameters"""'], {}), "(self, 'cache_key_parameters')\n", (44846, 44876), False, 'import pulumi\n'), ((45085, 45120), 'pulumi.get', 'pulumi.get', (['self', '"""cache_namespace"""'], {}), "(self, 'cache_namespace')\n", (45095, 45120), False, 'import pulumi\n'), ((45367, 45400), 'pulumi.get', 'pulumi.get', (['self', '"""connection_id"""'], {}), "(self, 'connection_id')\n", (45377, 45400), False, 'import pulumi\n'), ((45647, 45682), 'pulumi.get', 'pulumi.get', (['self', '"""connection_type"""'], {}), "(self, 'connection_type')\n", (45657, 45682), False, 'import pulumi\n'), ((45934, 45970), 'pulumi.get', 'pulumi.get', (['self', '"""content_handling"""'], {}), "(self, 'content_handling')\n", (45944, 45970), False, 'import pulumi\n'), ((46151, 46182), 'pulumi.get', 'pulumi.get', (['self', '"""credentials"""'], {}), "(self, 'credentials')\n", (46161, 46182), False, 'import pulumi\n'), ((46386, 46429), 'pulumi.get', 'pulumi.get', (['self', '"""integration_http_method"""'], {}), "(self, 'integration_http_method')\n", (46396, 46429), False, 'import pulumi\n'), ((46732, 46773), 'pulumi.get', 'pulumi.get', (['self', '"""integration_responses"""'], {}), "(self, 'integration_responses')\n", (46742, 46773), False, 'import pulumi\n'), ((47039, 47079), 'pulumi.get', 'pulumi.get', (['self', '"""passthrough_behavior"""'], {}), "(self, 'passthrough_behavior')\n", (47049, 47079), False, 'import pulumi\n'), ((47310, 47348), 'pulumi.get', 'pulumi.get', (['self', '"""request_parameters"""'], {}), "(self, 'request_parameters')\n", (47320, 47348), False, 'import pulumi\n'), ((47581, 47618), 'pulumi.get', 'pulumi.get', (['self', '"""request_templates"""'], {}), "(self, 'request_templates')\n", (47591, 47618), False, 'import pulumi\n'), ((47825, 47862), 'pulumi.get', 'pulumi.get', (['self', '"""timeout_in_millis"""'], {}), "(self, 'timeout_in_millis')\n", (47835, 47862), False, 'import pulumi\n'), ((48039, 48062), 'pulumi.get', 'pulumi.get', (['self', '"""uri"""'], {}), "(self, 'uri')\n", (48049, 48062), False, 'import pulumi\n'), ((50233, 50281), 'pulumi.set', 'pulumi.set', (['__self__', '"""status_code"""', 'status_code'], {}), "(__self__, 'status_code', status_code)\n", (50243, 50281), False, 'import pulumi\n'), ((50985, 51016), 'pulumi.get', 'pulumi.get', (['self', '"""status_code"""'], {}), "(self, 'status_code')\n", (50995, 51016), False, 'import pulumi\n'), ((51276, 51312), 'pulumi.get', 'pulumi.get', (['self', '"""content_handling"""'], {}), "(self, 'content_handling')\n", (51286, 51312), False, 'import pulumi\n'), ((51570, 51609), 'pulumi.get', 'pulumi.get', (['self', '"""response_parameters"""'], {}), "(self, 'response_parameters')\n", (51580, 51609), False, 'import pulumi\n'), ((51966, 52004), 'pulumi.get', 'pulumi.get', (['self', '"""response_templates"""'], {}), "(self, 'response_templates')\n", (51976, 52004), False, 'import pulumi\n'), ((52283, 52320), 'pulumi.get', 'pulumi.get', (['self', '"""selection_pattern"""'], {}), "(self, 'selection_pattern')\n", (52293, 52320), False, 'import pulumi\n'), ((53896, 53944), 'pulumi.set', 'pulumi.set', (['__self__', '"""status_code"""', 'status_code'], {}), "(__self__, 'status_code', status_code)\n", (53906, 53944), False, 'import pulumi\n'), ((54385, 54416), 'pulumi.get', 'pulumi.get', (['self', '"""status_code"""'], {}), "(self, 'status_code')\n", (54395, 54416), False, 'import pulumi\n'), ((54760, 54795), 'pulumi.get', 'pulumi.get', (['self', '"""response_models"""'], {}), "(self, 'response_models')\n", (54770, 54795), False, 'import pulumi\n'), ((55166, 55205), 'pulumi.get', 'pulumi.get', (['self', '"""response_parameters"""'], {}), "(self, 'response_parameters')\n", (55176, 55205), False, 'import pulumi\n'), ((56325, 56350), 'pulumi.get', 'pulumi.get', (['self', '"""types"""'], {}), "(self, 'types')\n", (56335, 56350), False, 'import pulumi\n'), ((56482, 56518), 'pulumi.get', 'pulumi.get', (['self', '"""vpc_endpoint_ids"""'], {}), "(self, 'vpc_endpoint_ids')\n", (56492, 56518), False, 'import pulumi\n'), ((57754, 57780), 'pulumi.get', 'pulumi.get', (['self', '"""bucket"""'], {}), "(self, 'bucket')\n", (57764, 57780), False, 'import pulumi\n'), ((57881, 57906), 'pulumi.get', 'pulumi.get', (['self', '"""e_tag"""'], {}), "(self, 'e_tag')\n", (57891, 57906), False, 'import pulumi\n'), ((57992, 58015), 'pulumi.get', 'pulumi.get', (['self', '"""key"""'], {}), "(self, 'key')\n", (58002, 58015), False, 'import pulumi\n'), ((58105, 58132), 'pulumi.get', 'pulumi.get', (['self', '"""version"""'], {}), "(self, 'version')\n", (58115, 58132), False, 'import pulumi\n'), ((58274, 58306), 'pulumi.set', 'pulumi.set', (['__self__', '"""key"""', 'key'], {}), "(__self__, 'key', key)\n", (58284, 58306), False, 'import pulumi\n'), ((58315, 58351), 'pulumi.set', 'pulumi.set', (['__self__', '"""value"""', 'value'], {}), "(__self__, 'value', value)\n", (58325, 58351), False, 'import pulumi\n'), ((58427, 58450), 'pulumi.get', 'pulumi.get', (['self', '"""key"""'], {}), "(self, 'key')\n", (58437, 58450), False, 'import pulumi\n'), ((58528, 58553), 'pulumi.get', 'pulumi.get', (['self', '"""value"""'], {}), "(self, 'value')\n", (58538, 58553), False, 'import pulumi\n'), ((60814, 60849), 'pulumi.get', 'pulumi.get', (['self', '"""destination_arn"""'], {}), "(self, 'destination_arn')\n", (60824, 60849), False, 'import pulumi\n'), ((61304, 61330), 'pulumi.get', 'pulumi.get', (['self', '"""format"""'], {}), "(self, 'format')\n", (61314, 61330), False, 'import pulumi\n'), ((63880, 63913), 'pulumi.get', 'pulumi.get', (['self', '"""deployment_id"""'], {}), "(self, 'deployment_id')\n", (63890, 63913), False, 'import pulumi\n'), ((64135, 64170), 'pulumi.get', 'pulumi.get', (['self', '"""percent_traffic"""'], {}), "(self, 'percent_traffic')\n", (64145, 64170), False, 'import pulumi\n'), ((64567, 64611), 'pulumi.get', 'pulumi.get', (['self', '"""stage_variable_overrides"""'], {}), "(self, 'stage_variable_overrides')\n", (64577, 64611), False, 'import pulumi\n'), ((64823, 64858), 'pulumi.get', 'pulumi.get', (['self', '"""use_stage_cache"""'], {}), "(self, 'use_stage_cache')\n", (64833, 64858), False, 'import pulumi\n'), ((70173, 70213), 'pulumi.get', 'pulumi.get', (['self', '"""cache_data_encrypted"""'], {}), "(self, 'cache_data_encrypted')\n", (70183, 70213), False, 'import pulumi\n'), ((70471, 70511), 'pulumi.get', 'pulumi.get', (['self', '"""cache_ttl_in_seconds"""'], {}), "(self, 'cache_ttl_in_seconds')\n", (70481, 70511), False, 'import pulumi\n'), ((70796, 70831), 'pulumi.get', 'pulumi.get', (['self', '"""caching_enabled"""'], {}), "(self, 'caching_enabled')\n", (70806, 70831), False, 'import pulumi\n'), ((71121, 71159), 'pulumi.get', 'pulumi.get', (['self', '"""data_trace_enabled"""'], {}), "(self, 'data_trace_enabled')\n", (71131, 71159), False, 'import pulumi\n'), ((71409, 71440), 'pulumi.get', 'pulumi.get', (['self', '"""http_method"""'], {}), "(self, 'http_method')\n", (71419, 71440), False, 'import pulumi\n'), ((71819, 71852), 'pulumi.get', 'pulumi.get', (['self', '"""logging_level"""'], {}), "(self, 'logging_level')\n", (71829, 71852), False, 'import pulumi\n'), ((72088, 72123), 'pulumi.get', 'pulumi.get', (['self', '"""metrics_enabled"""'], {}), "(self, 'metrics_enabled')\n", (72098, 72123), False, 'import pulumi\n'), ((72628, 72661), 'pulumi.get', 'pulumi.get', (['self', '"""resource_path"""'], {}), "(self, 'resource_path')\n", (72638, 72661), False, 'import pulumi\n'), ((72950, 72992), 'pulumi.get', 'pulumi.get', (['self', '"""throttling_burst_limit"""'], {}), "(self, 'throttling_burst_limit')\n", (72960, 72992), False, 'import pulumi\n'), ((73288, 73329), 'pulumi.get', 'pulumi.get', (['self', '"""throttling_rate_limit"""'], {}), "(self, 'throttling_rate_limit')\n", (73298, 73329), False, 'import pulumi\n'), ((73897, 73929), 'pulumi.set', 'pulumi.set', (['__self__', '"""key"""', 'key'], {}), "(__self__, 'key', key)\n", (73907, 73929), False, 'import pulumi\n'), ((73938, 73974), 'pulumi.set', 'pulumi.set', (['__self__', '"""value"""', 'value'], {}), "(__self__, 'value', value)\n", (73948, 73974), False, 'import pulumi\n'), ((74211, 74234), 'pulumi.get', 'pulumi.get', (['self', '"""key"""'], {}), "(self, 'key')\n", (74221, 74234), False, 'import pulumi\n'), ((74471, 74496), 'pulumi.get', 'pulumi.get', (['self', '"""value"""'], {}), "(self, 'value')\n", (74481, 74496), False, 'import pulumi\n'), ((76263, 76289), 'pulumi.get', 'pulumi.get', (['self', '"""api_id"""'], {}), "(self, 'api_id')\n", (76273, 76289), False, 'import pulumi\n'), ((76465, 76490), 'pulumi.get', 'pulumi.get', (['self', '"""stage"""'], {}), "(self, 'stage')\n", (76475, 76490), False, 'import pulumi\n'), ((76837, 76865), 'pulumi.get', 'pulumi.get', (['self', '"""throttle"""'], {}), "(self, 'throttle')\n", (76847, 76865), False, 'import pulumi\n'), ((78195, 78220), 'pulumi.get', 'pulumi.get', (['self', '"""limit"""'], {}), "(self, 'limit')\n", (78205, 78220), False, 'import pulumi\n'), ((78604, 78630), 'pulumi.get', 'pulumi.get', (['self', '"""offset"""'], {}), "(self, 'offset')\n", (78614, 78630), False, 'import pulumi\n'), ((78952, 78978), 'pulumi.get', 'pulumi.get', (['self', '"""period"""'], {}), "(self, 'period')\n", (78962, 78978), False, 'import pulumi\n'), ((79682, 79714), 'pulumi.set', 'pulumi.set', (['__self__', '"""key"""', 'key'], {}), "(__self__, 'key', key)\n", (79692, 79714), False, 'import pulumi\n'), ((79723, 79759), 'pulumi.set', 'pulumi.set', (['__self__', '"""value"""', 'value'], {}), "(__self__, 'value', value)\n", (79733, 79759), False, 'import pulumi\n'), ((80111, 80134), 'pulumi.get', 'pulumi.get', (['self', '"""key"""'], {}), "(self, 'key')\n", (80121, 80134), False, 'import pulumi\n'), ((80486, 80511), 'pulumi.get', 'pulumi.get', (['self', '"""value"""'], {}), "(self, 'value')\n", (80496, 80511), False, 'import pulumi\n'), ((82277, 82308), 'pulumi.get', 'pulumi.get', (['self', '"""burst_limit"""'], {}), "(self, 'burst_limit')\n", (82287, 82308), False, 'import pulumi\n'), ((82556, 82586), 'pulumi.get', 'pulumi.get', (['self', '"""rate_limit"""'], {}), "(self, 'rate_limit')\n", (82566, 82586), False, 'import pulumi\n'), ((82728, 82760), 'pulumi.set', 'pulumi.set', (['__self__', '"""key"""', 'key'], {}), "(__self__, 'key', key)\n", (82738, 82760), False, 'import pulumi\n'), ((82769, 82805), 'pulumi.set', 'pulumi.set', (['__self__', '"""value"""', 'value'], {}), "(__self__, 'value', value)\n", (82779, 82805), False, 'import pulumi\n'), ((82881, 82904), 'pulumi.get', 'pulumi.get', (['self', '"""key"""'], {}), "(self, 'key')\n", (82891, 82904), False, 'import pulumi\n'), ((82982, 83007), 'pulumi.get', 'pulumi.get', (['self', '"""value"""'], {}), "(self, 'value')\n", (82992, 83007), False, 'import pulumi\n'), ((1432, 1564), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in ApiKeyStageKey. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in ApiKeyStageKey. Access the value via the \'{suggest}\' property getter instead."\n )\n', (1447, 1564), False, 'import pulumi\n'), ((2344, 2392), 'pulumi.set', 'pulumi.set', (['__self__', '"""rest_api_id"""', 'rest_api_id'], {}), "(__self__, 'rest_api_id', rest_api_id)\n", (2354, 2392), False, 'import pulumi\n'), ((2440, 2486), 'pulumi.set', 'pulumi.set', (['__self__', '"""stage_name"""', 'stage_name'], {}), "(__self__, 'stage_name', stage_name)\n", (2450, 2486), False, 'import pulumi\n'), ((5299, 5443), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in DeploymentAccessLogSetting. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in DeploymentAccessLogSetting. Access the value via the \'{suggest}\' property getter instead."\n )\n', (5314, 5443), False, 'import pulumi\n'), ((6381, 6437), 'pulumi.set', 'pulumi.set', (['__self__', '"""destination_arn"""', 'destination_arn'], {}), "(__self__, 'destination_arn', destination_arn)\n", (6391, 6437), False, 'import pulumi\n'), ((6481, 6519), 'pulumi.set', 'pulumi.set', (['__self__', '"""format"""', 'format'], {}), "(__self__, 'format', format)\n", (6491, 6519), False, 'import pulumi\n'), ((7655, 7796), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in DeploymentCanarySetting. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in DeploymentCanarySetting. Access the value via the \'{suggest}\' property getter instead."\n )\n', (7670, 7796), False, 'import pulumi\n'), ((8827, 8883), 'pulumi.set', 'pulumi.set', (['__self__', '"""percent_traffic"""', 'percent_traffic'], {}), "(__self__, 'percent_traffic', percent_traffic)\n", (8837, 8883), False, 'import pulumi\n'), ((8945, 9019), 'pulumi.set', 'pulumi.set', (['__self__', '"""stage_variable_overrides"""', 'stage_variable_overrides'], {}), "(__self__, 'stage_variable_overrides', stage_variable_overrides)\n", (8955, 9019), False, 'import pulumi\n'), ((9072, 9128), 'pulumi.set', 'pulumi.set', (['__self__', '"""use_stage_cache"""', 'use_stage_cache'], {}), "(__self__, 'use_stage_cache', use_stage_cache)\n", (9082, 9128), False, 'import pulumi\n'), ((10487, 10629), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in DeploymentCanarySettings. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in DeploymentCanarySettings. Access the value via the \'{suggest}\' property getter instead."\n )\n', (10502, 10629), False, 'import pulumi\n'), ((11685, 11741), 'pulumi.set', 'pulumi.set', (['__self__', '"""percent_traffic"""', 'percent_traffic'], {}), "(__self__, 'percent_traffic', percent_traffic)\n", (11695, 11741), False, 'import pulumi\n'), ((11803, 11877), 'pulumi.set', 'pulumi.set', (['__self__', '"""stage_variable_overrides"""', 'stage_variable_overrides'], {}), "(__self__, 'stage_variable_overrides', stage_variable_overrides)\n", (11813, 11877), False, 'import pulumi\n'), ((11930, 11986), 'pulumi.set', 'pulumi.set', (['__self__', '"""use_stage_cache"""', 'use_stage_cache'], {}), "(__self__, 'use_stage_cache', use_stage_cache)\n", (11940, 11986), False, 'import pulumi\n'), ((13927, 14068), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in DeploymentMethodSetting. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in DeploymentMethodSetting. Access the value via the \'{suggest}\' property getter instead."\n )\n', (13942, 14068), False, 'import pulumi\n'), ((16460, 16526), 'pulumi.set', 'pulumi.set', (['__self__', '"""cache_data_encrypted"""', 'cache_data_encrypted'], {}), "(__self__, 'cache_data_encrypted', cache_data_encrypted)\n", (16470, 16526), False, 'import pulumi\n'), ((16584, 16650), 'pulumi.set', 'pulumi.set', (['__self__', '"""cache_ttl_in_seconds"""', 'cache_ttl_in_seconds'], {}), "(__self__, 'cache_ttl_in_seconds', cache_ttl_in_seconds)\n", (16594, 16650), False, 'import pulumi\n'), ((16703, 16759), 'pulumi.set', 'pulumi.set', (['__self__', '"""caching_enabled"""', 'caching_enabled'], {}), "(__self__, 'caching_enabled', caching_enabled)\n", (16713, 16759), False, 'import pulumi\n'), ((16815, 16877), 'pulumi.set', 'pulumi.set', (['__self__', '"""data_trace_enabled"""', 'data_trace_enabled'], {}), "(__self__, 'data_trace_enabled', data_trace_enabled)\n", (16825, 16877), False, 'import pulumi\n'), ((16926, 16974), 'pulumi.set', 'pulumi.set', (['__self__', '"""http_method"""', 'http_method'], {}), "(__self__, 'http_method', http_method)\n", (16936, 16974), False, 'import pulumi\n'), ((17025, 17077), 'pulumi.set', 'pulumi.set', (['__self__', '"""logging_level"""', 'logging_level'], {}), "(__self__, 'logging_level', logging_level)\n", (17035, 17077), False, 'import pulumi\n'), ((17130, 17186), 'pulumi.set', 'pulumi.set', (['__self__', '"""metrics_enabled"""', 'metrics_enabled'], {}), "(__self__, 'metrics_enabled', metrics_enabled)\n", (17140, 17186), False, 'import pulumi\n'), ((17237, 17289), 'pulumi.set', 'pulumi.set', (['__self__', '"""resource_path"""', 'resource_path'], {}), "(__self__, 'resource_path', resource_path)\n", (17247, 17289), False, 'import pulumi\n'), ((17349, 17419), 'pulumi.set', 'pulumi.set', (['__self__', '"""throttling_burst_limit"""', 'throttling_burst_limit'], {}), "(__self__, 'throttling_burst_limit', throttling_burst_limit)\n", (17359, 17419), False, 'import pulumi\n'), ((17478, 17546), 'pulumi.set', 'pulumi.set', (['__self__', '"""throttling_rate_limit"""', 'throttling_rate_limit'], {}), "(__self__, 'throttling_rate_limit', throttling_rate_limit)\n", (17488, 17546), False, 'import pulumi\n'), ((22019, 22163), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in DeploymentStageDescription. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in DeploymentStageDescription. Access the value via the \'{suggest}\' property getter instead."\n )\n', (22034, 22163), False, 'import pulumi\n'), ((26349, 26411), 'pulumi.set', 'pulumi.set', (['__self__', '"""access_log_setting"""', 'access_log_setting'], {}), "(__self__, 'access_log_setting', access_log_setting)\n", (26359, 26411), False, 'import pulumi\n'), ((26470, 26538), 'pulumi.set', 'pulumi.set', (['__self__', '"""cache_cluster_enabled"""', 'cache_cluster_enabled'], {}), "(__self__, 'cache_cluster_enabled', cache_cluster_enabled)\n", (26480, 26538), False, 'import pulumi\n'), ((26594, 26656), 'pulumi.set', 'pulumi.set', (['__self__', '"""cache_cluster_size"""', 'cache_cluster_size'], {}), "(__self__, 'cache_cluster_size', cache_cluster_size)\n", (26604, 26656), False, 'import pulumi\n'), ((26714, 26780), 'pulumi.set', 'pulumi.set', (['__self__', '"""cache_data_encrypted"""', 'cache_data_encrypted'], {}), "(__self__, 'cache_data_encrypted', cache_data_encrypted)\n", (26724, 26780), False, 'import pulumi\n'), ((26838, 26904), 'pulumi.set', 'pulumi.set', (['__self__', '"""cache_ttl_in_seconds"""', 'cache_ttl_in_seconds'], {}), "(__self__, 'cache_ttl_in_seconds', cache_ttl_in_seconds)\n", (26848, 26904), False, 'import pulumi\n'), ((26957, 27013), 'pulumi.set', 'pulumi.set', (['__self__', '"""caching_enabled"""', 'caching_enabled'], {}), "(__self__, 'caching_enabled', caching_enabled)\n", (26967, 27013), False, 'import pulumi\n'), ((27065, 27119), 'pulumi.set', 'pulumi.set', (['__self__', '"""canary_setting"""', 'canary_setting'], {}), "(__self__, 'canary_setting', canary_setting)\n", (27075, 27119), False, 'import pulumi\n'), ((27178, 27246), 'pulumi.set', 'pulumi.set', (['__self__', '"""client_certificate_id"""', 'client_certificate_id'], {}), "(__self__, 'client_certificate_id', client_certificate_id)\n", (27188, 27246), False, 'import pulumi\n'), ((27302, 27364), 'pulumi.set', 'pulumi.set', (['__self__', '"""data_trace_enabled"""', 'data_trace_enabled'], {}), "(__self__, 'data_trace_enabled', data_trace_enabled)\n", (27312, 27364), False, 'import pulumi\n'), ((27413, 27461), 'pulumi.set', 'pulumi.set', (['__self__', '"""description"""', 'description'], {}), "(__self__, 'description', description)\n", (27423, 27461), False, 'import pulumi\n'), ((27520, 27588), 'pulumi.set', 'pulumi.set', (['__self__', '"""documentation_version"""', 'documentation_version'], {}), "(__self__, 'documentation_version', documentation_version)\n", (27530, 27588), False, 'import pulumi\n'), ((27639, 27691), 'pulumi.set', 'pulumi.set', (['__self__', '"""logging_level"""', 'logging_level'], {}), "(__self__, 'logging_level', logging_level)\n", (27649, 27691), False, 'import pulumi\n'), ((27744, 27800), 'pulumi.set', 'pulumi.set', (['__self__', '"""method_settings"""', 'method_settings'], {}), "(__self__, 'method_settings', method_settings)\n", (27754, 27800), False, 'import pulumi\n'), ((27853, 27909), 'pulumi.set', 'pulumi.set', (['__self__', '"""metrics_enabled"""', 'metrics_enabled'], {}), "(__self__, 'metrics_enabled', metrics_enabled)\n", (27863, 27909), False, 'import pulumi\n'), ((27951, 27985), 'pulumi.set', 'pulumi.set', (['__self__', '"""tags"""', 'tags'], {}), "(__self__, 'tags', tags)\n", (27961, 27985), False, 'import pulumi\n'), ((28045, 28115), 'pulumi.set', 'pulumi.set', (['__self__', '"""throttling_burst_limit"""', 'throttling_burst_limit'], {}), "(__self__, 'throttling_burst_limit', throttling_burst_limit)\n", (28055, 28115), False, 'import pulumi\n'), ((28174, 28242), 'pulumi.set', 'pulumi.set', (['__self__', '"""throttling_rate_limit"""', 'throttling_rate_limit'], {}), "(__self__, 'throttling_rate_limit', throttling_rate_limit)\n", (28184, 28242), False, 'import pulumi\n'), ((28295, 28351), 'pulumi.set', 'pulumi.set', (['__self__', '"""tracing_enabled"""', 'tracing_enabled'], {}), "(__self__, 'tracing_enabled', tracing_enabled)\n", (28305, 28351), False, 'import pulumi\n'), ((28398, 28442), 'pulumi.set', 'pulumi.set', (['__self__', '"""variables"""', 'variables'], {}), "(__self__, 'variables', variables)\n", (28408, 28442), False, 'import pulumi\n'), ((34813, 34956), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in DocumentationPartLocation. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in DocumentationPartLocation. Access the value via the \'{suggest}\' property getter instead."\n )\n', (34828, 34956), False, 'import pulumi\n'), ((35541, 35579), 'pulumi.set', 'pulumi.set', (['__self__', '"""method"""', 'method'], {}), "(__self__, 'method', method)\n", (35551, 35579), False, 'import pulumi\n'), ((35621, 35655), 'pulumi.set', 'pulumi.set', (['__self__', '"""name"""', 'name'], {}), "(__self__, 'name', name)\n", (35631, 35655), False, 'import pulumi\n'), ((35697, 35731), 'pulumi.set', 'pulumi.set', (['__self__', '"""path"""', 'path'], {}), "(__self__, 'path', path)\n", (35707, 35731), False, 'import pulumi\n'), ((35780, 35828), 'pulumi.set', 'pulumi.set', (['__self__', '"""status_code"""', 'status_code'], {}), "(__self__, 'status_code', status_code)\n", (35790, 35828), False, 'import pulumi\n'), ((35870, 35904), 'pulumi.set', 'pulumi.set', (['__self__', '"""type"""', 'type'], {}), "(__self__, 'type', type)\n", (35880, 35904), False, 'import pulumi\n'), ((36693, 36729), 'pulumi.set', 'pulumi.set', (['__self__', '"""types"""', 'types'], {}), "(__self__, 'types', types)\n", (36703, 36729), False, 'import pulumi\n'), ((37187, 37338), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in DomainNameMutualTlsAuthentication. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in DomainNameMutualTlsAuthentication. Access the value via the \'{suggest}\' property getter instead."\n )\n', (37202, 37338), False, 'import pulumi\n'), ((37827, 37881), 'pulumi.set', 'pulumi.set', (['__self__', '"""truststore_uri"""', 'truststore_uri'], {}), "(__self__, 'truststore_uri', truststore_uri)\n", (37837, 37881), False, 'import pulumi\n'), ((37937, 37999), 'pulumi.set', 'pulumi.set', (['__self__', '"""truststore_version"""', 'truststore_version'], {}), "(__self__, 'truststore_version', truststore_version)\n", (37947, 37999), False, 'import pulumi\n'), ((38528, 38560), 'pulumi.set', 'pulumi.set', (['__self__', '"""key"""', 'key'], {}), "(__self__, 'key', key)\n", (38538, 38560), False, 'import pulumi\n'), ((38603, 38639), 'pulumi.set', 'pulumi.set', (['__self__', '"""value"""', 'value'], {}), "(__self__, 'value', value)\n", (38613, 38639), False, 'import pulumi\n'), ((39935, 40070), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in MethodIntegration. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in MethodIntegration. Access the value via the \'{suggest}\' property getter instead."\n )\n', (39950, 40070), False, 'import pulumi\n'), ((42999, 43065), 'pulumi.set', 'pulumi.set', (['__self__', '"""cache_key_parameters"""', 'cache_key_parameters'], {}), "(__self__, 'cache_key_parameters', cache_key_parameters)\n", (43009, 43065), False, 'import pulumi\n'), ((43118, 43174), 'pulumi.set', 'pulumi.set', (['__self__', '"""cache_namespace"""', 'cache_namespace'], {}), "(__self__, 'cache_namespace', cache_namespace)\n", (43128, 43174), False, 'import pulumi\n'), ((43225, 43277), 'pulumi.set', 'pulumi.set', (['__self__', '"""connection_id"""', 'connection_id'], {}), "(__self__, 'connection_id', connection_id)\n", (43235, 43277), False, 'import pulumi\n'), ((43330, 43386), 'pulumi.set', 'pulumi.set', (['__self__', '"""connection_type"""', 'connection_type'], {}), "(__self__, 'connection_type', connection_type)\n", (43340, 43386), False, 'import pulumi\n'), ((43440, 43498), 'pulumi.set', 'pulumi.set', (['__self__', '"""content_handling"""', 'content_handling'], {}), "(__self__, 'content_handling', content_handling)\n", (43450, 43498), False, 'import pulumi\n'), ((43547, 43595), 'pulumi.set', 'pulumi.set', (['__self__', '"""credentials"""', 'credentials'], {}), "(__self__, 'credentials', credentials)\n", (43557, 43595), False, 'import pulumi\n'), ((43656, 43728), 'pulumi.set', 'pulumi.set', (['__self__', '"""integration_http_method"""', 'integration_http_method'], {}), "(__self__, 'integration_http_method', integration_http_method)\n", (43666, 43728), False, 'import pulumi\n'), ((43787, 43855), 'pulumi.set', 'pulumi.set', (['__self__', '"""integration_responses"""', 'integration_responses'], {}), "(__self__, 'integration_responses', integration_responses)\n", (43797, 43855), False, 'import pulumi\n'), ((43913, 43979), 'pulumi.set', 'pulumi.set', (['__self__', '"""passthrough_behavior"""', 'passthrough_behavior'], {}), "(__self__, 'passthrough_behavior', passthrough_behavior)\n", (43923, 43979), False, 'import pulumi\n'), ((44035, 44097), 'pulumi.set', 'pulumi.set', (['__self__', '"""request_parameters"""', 'request_parameters'], {}), "(__self__, 'request_parameters', request_parameters)\n", (44045, 44097), False, 'import pulumi\n'), ((44152, 44212), 'pulumi.set', 'pulumi.set', (['__self__', '"""request_templates"""', 'request_templates'], {}), "(__self__, 'request_templates', request_templates)\n", (44162, 44212), False, 'import pulumi\n'), ((44267, 44327), 'pulumi.set', 'pulumi.set', (['__self__', '"""timeout_in_millis"""', 'timeout_in_millis'], {}), "(__self__, 'timeout_in_millis', timeout_in_millis)\n", (44277, 44327), False, 'import pulumi\n'), ((44368, 44400), 'pulumi.set', 'pulumi.set', (['__self__', '"""uri"""', 'uri'], {}), "(__self__, 'uri', uri)\n", (44378, 44400), False, 'import pulumi\n'), ((48631, 48774), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in MethodIntegrationResponse. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in MethodIntegrationResponse. Access the value via the \'{suggest}\' property getter instead."\n )\n', (48646, 48774), False, 'import pulumi\n'), ((50335, 50393), 'pulumi.set', 'pulumi.set', (['__self__', '"""content_handling"""', 'content_handling'], {}), "(__self__, 'content_handling', content_handling)\n", (50345, 50393), False, 'import pulumi\n'), ((50450, 50514), 'pulumi.set', 'pulumi.set', (['__self__', '"""response_parameters"""', 'response_parameters'], {}), "(__self__, 'response_parameters', response_parameters)\n", (50460, 50514), False, 'import pulumi\n'), ((50570, 50632), 'pulumi.set', 'pulumi.set', (['__self__', '"""response_templates"""', 'response_templates'], {}), "(__self__, 'response_templates', response_templates)\n", (50580, 50632), False, 'import pulumi\n'), ((50687, 50747), 'pulumi.set', 'pulumi.set', (['__self__', '"""selection_pattern"""', 'selection_pattern'], {}), "(__self__, 'selection_pattern', selection_pattern)\n", (50697, 50747), False, 'import pulumi\n'), ((52710, 52842), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in MethodResponse. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in MethodResponse. Access the value via the \'{suggest}\' property getter instead."\n )\n', (52725, 52842), False, 'import pulumi\n'), ((53997, 54053), 'pulumi.set', 'pulumi.set', (['__self__', '"""response_models"""', 'response_models'], {}), "(__self__, 'response_models', response_models)\n", (54007, 54053), False, 'import pulumi\n'), ((54110, 54174), 'pulumi.set', 'pulumi.set', (['__self__', '"""response_parameters"""', 'response_parameters'], {}), "(__self__, 'response_parameters', response_parameters)\n", (54120, 54174), False, 'import pulumi\n'), ((55454, 55600), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in RestApiEndpointConfiguration. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in RestApiEndpointConfiguration. Access the value via the \'{suggest}\' property getter instead."\n )\n', (55469, 55600), False, 'import pulumi\n'), ((56079, 56115), 'pulumi.set', 'pulumi.set', (['__self__', '"""types"""', 'types'], {}), "(__self__, 'types', types)\n", (56089, 56115), False, 'import pulumi\n'), ((56169, 56227), 'pulumi.set', 'pulumi.set', (['__self__', '"""vpc_endpoint_ids"""', 'vpc_endpoint_ids'], {}), "(__self__, 'vpc_endpoint_ids', vpc_endpoint_ids)\n", (56179, 56227), False, 'import pulumi\n'), ((56735, 56870), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in RestApiS3Location. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in RestApiS3Location. Access the value via the \'{suggest}\' property getter instead."\n )\n', (56750, 56870), False, 'import pulumi\n'), ((57390, 57428), 'pulumi.set', 'pulumi.set', (['__self__', '"""bucket"""', 'bucket'], {}), "(__self__, 'bucket', bucket)\n", (57400, 57428), False, 'import pulumi\n'), ((57471, 57507), 'pulumi.set', 'pulumi.set', (['__self__', '"""e_tag"""', 'e_tag'], {}), "(__self__, 'e_tag', e_tag)\n", (57481, 57507), False, 'import pulumi\n'), ((57548, 57580), 'pulumi.set', 'pulumi.set', (['__self__', '"""key"""', 'key'], {}), "(__self__, 'key', key)\n", (57558, 57580), False, 'import pulumi\n'), ((57625, 57665), 'pulumi.set', 'pulumi.set', (['__self__', '"""version"""', 'version'], {}), "(__self__, 'version', version)\n", (57635, 57665), False, 'import pulumi\n'), ((58867, 59006), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in StageAccessLogSetting. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in StageAccessLogSetting. Access the value via the \'{suggest}\' property getter instead."\n )\n', (58882, 59006), False, 'import pulumi\n'), ((60233, 60289), 'pulumi.set', 'pulumi.set', (['__self__', '"""destination_arn"""', 'destination_arn'], {}), "(__self__, 'destination_arn', destination_arn)\n", (60243, 60289), False, 'import pulumi\n'), ((60333, 60371), 'pulumi.set', 'pulumi.set', (['__self__', '"""format"""', 'format'], {}), "(__self__, 'format', format)\n", (60343, 60371), False, 'import pulumi\n'), ((61894, 62030), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in StageCanarySetting. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in StageCanarySetting. Access the value via the \'{suggest}\' property getter instead."\n )\n', (61909, 62030), False, 'import pulumi\n'), ((63266, 63318), 'pulumi.set', 'pulumi.set', (['__self__', '"""deployment_id"""', 'deployment_id'], {}), "(__self__, 'deployment_id', deployment_id)\n", (63276, 63318), False, 'import pulumi\n'), ((63371, 63427), 'pulumi.set', 'pulumi.set', (['__self__', '"""percent_traffic"""', 'percent_traffic'], {}), "(__self__, 'percent_traffic', percent_traffic)\n", (63381, 63427), False, 'import pulumi\n'), ((63489, 63563), 'pulumi.set', 'pulumi.set', (['__self__', '"""stage_variable_overrides"""', 'stage_variable_overrides'], {}), "(__self__, 'stage_variable_overrides', stage_variable_overrides)\n", (63499, 63563), False, 'import pulumi\n'), ((63616, 63672), 'pulumi.set', 'pulumi.set', (['__self__', '"""use_stage_cache"""', 'use_stage_cache'], {}), "(__self__, 'use_stage_cache', use_stage_cache)\n", (63626, 63672), False, 'import pulumi\n'), ((65896, 66032), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in StageMethodSetting. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in StageMethodSetting. Access the value via the \'{suggest}\' property getter instead."\n )\n', (65911, 66032), False, 'import pulumi\n'), ((68870, 68936), 'pulumi.set', 'pulumi.set', (['__self__', '"""cache_data_encrypted"""', 'cache_data_encrypted'], {}), "(__self__, 'cache_data_encrypted', cache_data_encrypted)\n", (68880, 68936), False, 'import pulumi\n'), ((68994, 69060), 'pulumi.set', 'pulumi.set', (['__self__', '"""cache_ttl_in_seconds"""', 'cache_ttl_in_seconds'], {}), "(__self__, 'cache_ttl_in_seconds', cache_ttl_in_seconds)\n", (69004, 69060), False, 'import pulumi\n'), ((69113, 69169), 'pulumi.set', 'pulumi.set', (['__self__', '"""caching_enabled"""', 'caching_enabled'], {}), "(__self__, 'caching_enabled', caching_enabled)\n", (69123, 69169), False, 'import pulumi\n'), ((69225, 69287), 'pulumi.set', 'pulumi.set', (['__self__', '"""data_trace_enabled"""', 'data_trace_enabled'], {}), "(__self__, 'data_trace_enabled', data_trace_enabled)\n", (69235, 69287), False, 'import pulumi\n'), ((69336, 69384), 'pulumi.set', 'pulumi.set', (['__self__', '"""http_method"""', 'http_method'], {}), "(__self__, 'http_method', http_method)\n", (69346, 69384), False, 'import pulumi\n'), ((69435, 69487), 'pulumi.set', 'pulumi.set', (['__self__', '"""logging_level"""', 'logging_level'], {}), "(__self__, 'logging_level', logging_level)\n", (69445, 69487), False, 'import pulumi\n'), ((69540, 69596), 'pulumi.set', 'pulumi.set', (['__self__', '"""metrics_enabled"""', 'metrics_enabled'], {}), "(__self__, 'metrics_enabled', metrics_enabled)\n", (69550, 69596), False, 'import pulumi\n'), ((69647, 69699), 'pulumi.set', 'pulumi.set', (['__self__', '"""resource_path"""', 'resource_path'], {}), "(__self__, 'resource_path', resource_path)\n", (69657, 69699), False, 'import pulumi\n'), ((69759, 69829), 'pulumi.set', 'pulumi.set', (['__self__', '"""throttling_burst_limit"""', 'throttling_burst_limit'], {}), "(__self__, 'throttling_burst_limit', throttling_burst_limit)\n", (69769, 69829), False, 'import pulumi\n'), ((69888, 69956), 'pulumi.set', 'pulumi.set', (['__self__', '"""throttling_rate_limit"""', 'throttling_rate_limit'], {}), "(__self__, 'throttling_rate_limit', throttling_rate_limit)\n", (69898, 69956), False, 'import pulumi\n'), ((74715, 74850), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in UsagePlanApiStage. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in UsagePlanApiStage. Access the value via the \'{suggest}\' property getter instead."\n )\n', (74730, 74850), False, 'import pulumi\n'), ((75818, 75856), 'pulumi.set', 'pulumi.set', (['__self__', '"""api_id"""', 'api_id'], {}), "(__self__, 'api_id', api_id)\n", (75828, 75856), False, 'import pulumi\n'), ((75899, 75935), 'pulumi.set', 'pulumi.set', (['__self__', '"""stage"""', 'stage'], {}), "(__self__, 'stage', stage)\n", (75909, 75935), False, 'import pulumi\n'), ((75981, 76023), 'pulumi.set', 'pulumi.set', (['__self__', '"""throttle"""', 'throttle'], {}), "(__self__, 'throttle', throttle)\n", (75991, 76023), False, 'import pulumi\n'), ((77790, 77826), 'pulumi.set', 'pulumi.set', (['__self__', '"""limit"""', 'limit'], {}), "(__self__, 'limit', limit)\n", (77800, 77826), False, 'import pulumi\n'), ((77870, 77908), 'pulumi.set', 'pulumi.set', (['__self__', '"""offset"""', 'offset'], {}), "(__self__, 'offset', offset)\n", (77880, 77908), False, 'import pulumi\n'), ((77952, 77990), 'pulumi.set', 'pulumi.set', (['__self__', '"""period"""', 'period'], {}), "(__self__, 'period', period)\n", (77962, 77990), False, 'import pulumi\n'), ((80816, 80959), 'pulumi.log.warn', 'pulumi.log.warn', (['f"""Key \'{key}\' not found in UsagePlanThrottleSettings. Access the value via the \'{suggest}\' property getter instead."""'], {}), '(\n f"Key \'{key}\' not found in UsagePlanThrottleSettings. Access the value via the \'{suggest}\' property getter instead."\n )\n', (80831, 80959), False, 'import pulumi\n'), ((81801, 81849), 'pulumi.set', 'pulumi.set', (['__self__', '"""burst_limit"""', 'burst_limit'], {}), "(__self__, 'burst_limit', burst_limit)\n", (81811, 81849), False, 'import pulumi\n'), ((81897, 81943), 'pulumi.set', 'pulumi.set', (['__self__', '"""rate_limit"""', 'rate_limit'], {}), "(__self__, 'rate_limit', rate_limit)\n", (81907, 81943), False, 'import pulumi\n')]
# ------------------------------------------------------------------------------ # Project: legohdl # Script: workspace.py # Author: <NAME> # Description: # The Workspace class. A Workspace object has a path and a list of available # vendors. This is what the user keeps their work's scope within for a given # "organization". # ------------------------------------------------------------------------------ import os, shutil, glob import logging as log from datetime import datetime from .vendor import Vendor from .apparatus import Apparatus as apt from .cfg import Cfg, Section, Key from .map import Map from .git import Git from .block import Block class Workspace: #store all workspaces in dictionary Jar = Map() #active-workspace is a workspace object _ActiveWorkspace = None DIR = apt.fs(apt.HIDDEN+"workspaces/") LOG_FILE = "refresh.log" MIN_RATE = -1 MAX_RATE = 1440 def __init__(self, name, path, vendors=[], ask=True): ''' Create a workspace instance. Parameters: name (str): the identity for the workspace path (str): the local path where blocks will be looked for vendors ([str]): the list of vendors that are tied to this workspace ask (bool): will ask user if wishing to enter workspace path Returns: None ''' self._name = name #do not create workspace if the name is already taken if(self.getName().lower() in self.Jar.keys()): log.error("Skipping workspace "+self.getName()+" due to duplicate naming conflict.") return #set the path self._path = '' self.setPath(path) #do not create workspace if the path is empty if(self.getPath() == ''): if(ask == False): log.error("Skipping workspace "+self.getName()+" due to empty local path.") return else: #keep asking to set path until one is decided/input try: path = input("Enter path for workspace "+self.getName()+": ") except KeyboardInterrupt: apt.CFG.remove('workspace.'+self.getName()) Workspace.save(inc_active=False) print() exit(log.info("Workspace not created.")) while(self.setPath(path) == False): try: path = input("Enter path for workspace "+self.getName()+": ") except KeyboardInterrupt: apt.CFG.remove('workspace.'+self.getName()) Workspace.save(inc_active=False) print() exit(log.info("Workspace not created.")) self._ws_dir = apt.fs(self.DIR+self.getName()+"/") #ensure all workspace hidden directories exist if(os.path.isdir(self.getDir()) == False): log.info("Setting up workspace "+self.getName()+"...") os.makedirs(self.getDir(), exist_ok=True) #create workspace's cache where installed blocks will be stored os.makedirs(self.getDir()+"cache", exist_ok=True) #create the refresh log if DNE if(os.path.isfile(self.getDir()+self.LOG_FILE) == False): open(self.getDir()+self.LOG_FILE, 'w').close() self._vendors = [] #find all vendor objects by name and store in list for vndr in vendors: if(vndr.lower() in Vendor.Jar.keys()): self._vendors += [Vendor.Jar[vndr]] else: log.warning("Could not link unknown vendor "+vndr+" to "+self.getName()+".") pass #add to class Jar self.Jar[self.getName()] = self pass def setPath(self, p): ''' Set the workspace's local path to a new value. Will ask user if okay to create the path if DNE. Parameters: p (str): the path string Returns: (bool): true if successfully changed the path attribute ''' #cannot set an empty path if(p == '' or p == None): log.info("Local path for workspace "+self.getName()+" cannot be empty.") return False p = apt.fs(p) #create the workspace's local path if it does not exist if(os.path.exists(p) == False): #prompt user carry_on = apt.confirmation("Workspace "+self.getName()+"'s local path does not exist. Create "+p+"?") if(carry_on): os.makedirs(p, exist_ok=True) self._path = p return True else: log.info("Did not set "+p+" as local path.") return False else: self._path = p return True def setName(self, n): ''' Change the workspace's name if the name is not already taken. Parameters: n (str): new name for workspace Returns: (bool): true if name successfully altered and updated in Jar ''' if(n == '' or n == None): log.error("Workspace name cannot be empty.") return False if(n.lower() in self.Jar.keys()): log.error("Cannot rename workspace to "+n+" due to name conflict.") return False else: #remove old name from Jar if(self.getName().lower() in self.Jar.keys()): del self.Jar[self.getName()] #rename hidden directory if exists new_dir = apt.fs(self.DIR+n+"/") if(hasattr(self, "_ws_dir")): os.rename(self.getDir(), new_dir) #set the hidden workspace directory self._ws_dir = new_dir #change to new name self._name = n #update the Jar self.Jar[self.getName()] = self return True def remove(self): ''' Removes the workspace object from the Jar and its hidden directory. Parameters: None Returns: None ''' log.info("Removing workspace "+self.getName()+"...") #delete the hidden workspace directory shutil.rmtree(self.getDir(), onerror=apt.rmReadOnly) #remove from class Jar del self.Jar[self.getName()] #remove from cfg file apt.CFG.remove('workspace.'+self.getName()) apt.CFG.write() pass def linkVendor(self, vndr): ''' Attempts to add a vendor to the workspace's vendor list. Parameters: vndr (str): name of the vendor to add Returns: (bool): true if the vendor list was modified (successful add) ''' if(vndr.lower() in Vendor.Jar.keys()): vndr_obj = Vendor.Jar[vndr] if(vndr_obj in self.getVendors()): log.info("Vendor "+vndr_obj.getName()+" is already linked to this workspace.") return False else: log.info("Linking vendor "+vndr_obj.getName()+" to the workspace...") self._vendors += [vndr_obj] return True else: log.warning("Could not link unknown vendor "+vndr+" to "+self.getName()+".") return False def setVendors(self, vndrs): ''' Overrides entire _vendors attr by setting it equal to 'vndrs'. Parameters: vndrs ([str]): list of vendors Returns: (bool): success if all vendors listed were added ''' #reset vendors list self._vendors = [] success = True #iterate through every given vendor for vndr in vndrs: #verify the vendor exists if(vndr.lower() in Vendor.Jar.keys()): vndr_obj = Vendor.Jar[vndr] #check if the vendor has already been linked if(vndr_obj in self.getVendors()): log.info("Vendor "+vndr_obj.getName()+" is already linked to this workspace.") #link the vendor to this workspace else: log.info("Linking vendor "+vndr_obj.getName()+" to the workspace...") self._vendors += [vndr_obj] else: log.warning("Could not link unknown vendor "+vndr+" to "+self.getName()+".") sucess = False return success def unlinkVendor(self, vndr): ''' Attempts to remove a vendor from the workspace's vendor list. Parameters: vndr (str): name of the vendor to remove Returns: (bool): true if the vendor list was modified (successful remove) ''' if(vndr.lower() in Vendor.Jar.keys()): vndr_obj = Vendor.Jar[vndr] if(vndr_obj not in self.getVendors()): log.info("Vendor "+vndr_obj.getName()+" is already unlinked from the workspace.") return False else: log.info("Unlinking vendor "+vndr_obj.getName()+" from the workspace...") self._vendors.remove(vndr_obj) return True else: log.warning("Could not unlink unknown vendor "+vndr+" from "+self.getName()+".") return False def loadBlocks(self, id_dsgns=False): ''' Loads all blocks found at all levels: dnld (workspace path), instl (workspace cache), avail (workspace vendors). When id_dsgns is True, this method uses the 'multi-develop' setting to determine which level has precedence in loadHDL(). 'multi-develop' set to False will only loadHDL() from cache. 'multi-develop' set to True will first try to loadHDL() from dnld, and if DNE, then try to loadHDL() from block's cache. Either way, if inside a current block, that block's HDL will be loaded over its cache. Dynamically creates _visible_blocks ([Block]) attribute to be reused. Parameters: id_dsgns (bool): identify design units (loadHDL) from blocks Returns: _visible_blocks ([Block]): list of all block objects in cache or path ''' if(hasattr(self, "_visible_blocks")): return self._visible_blocks self._visible_blocks = [] #read the setting for multi-develop mult_dev = apt.getMultiDevelop() #1. Search for downloaded blocks #glob on the local workspace path #print("Local Blocks on:",self.getPath()) marker_files = glob.glob(self.getPath()+"**/*/"+apt.MARKER, recursive=True) #iterate through all found downloads for mf in marker_files: b = Block(mf, self, Block.Level.DNLD) #if the user is within a current block, load the HDL from its DNLD level (not INSTL) if(mult_dev == True or Block.getCurrent(bypass=True) == b): self._visible_blocks += [b] if(id_dsgns): b.loadHDL() pass #2. Search for installed blocks #glob on the workspace cache path #print("Cache Blocks on:",self.getCachePath()) marker_files = glob.glob(self.getCachePath()+"**/*/"+apt.MARKER, recursive=True) #iterate through all found installations for mf in marker_files: #the block must also have a valid git repository at its root root,_ = os.path.split(mf) #note: only the head installation has the git repository if(Git.isValidRepo(root, remote=False)): b = Block(mf, self, Block.Level.INSTL) #get the spot for this block's download dnld_b = Block.Inventory[b.M()][b.L()][b.N()][Block.Level.DNLD.value] #add this block if a download DNE or the dnld does not match current when #not in multi-develop mode if(dnld_b == None or (mult_dev == False and Block.getCurrent(bypass=True) != dnld_b)): self._visible_blocks += [b] if(id_dsgns): b.loadHDL() pass #3. Search for available blocks #glob on each vendor path marker_files = [] #find all marker files in each of the workspace's vendors for vndr in self.getVendors(): marker_files += glob.glob(vndr.getVendorDir()+"**/*/"+apt.MARKER, recursive=True) #iterate through all found availables for mf in marker_files: b = Block(mf, self, Block.Level.AVAIL) #do not add this block to list of visible blocks because it has no #units associated with it, only metadata pass #4. ID all specific version blocks if identifying designs (except current block) spec_vers_blocks = [] for vis_block in self._visible_blocks: if(vis_block == Block.getCurrent(bypass=True)): continue for spec_block in vis_block.getInstalls().values(): spec_vers_blocks += [spec_block] if(id_dsgns): spec_block.loadHDL() pass pass self._visible_blocks += spec_vers_blocks return self._visible_blocks def shortcut(self, title, req_entity=False, visibility=True, ref_current=True): ''' Returns the Block from a shortened title. If title is empty and 'ref_current' is set, then tries to refer to the current block. Sometimes an entity is required for certain commands; so it can be assumed entity (instead of block name) if only thing given. Parameters: title (str): partial or full M.L.N with optional E attached req_entity (bool): determine if only thing given then it is an entity visibility (bool): determine if to only look for visible blocks ref_current (bool): determine if to try to assign empty title to current block Returns: (Block): the identified block from the shortened title ''' if(title == None): title = '' #split into pieces pieces = title.split('.') sects = ['']*3 diff = 3 - len(pieces) for i in range(len(pieces)-1, -1, -1): sects[diff+i] = pieces[i] #check final piece if it has an entity attached entity = '' if(sects[2].count(apt.ENTITY_DELIM)): i = sects[2].find(apt.ENTITY_DELIM) entity = sects[2][i+1:] sects[2] = sects[2][:i] #assume only name given is actually the entity elif(req_entity): entity = sects[2] sects[2] = '' # [!] load all necessary blocks before searching blocks = self.loadBlocks() #use all blocks when visibility is off :todo: is this design intent? if(visibility == False): blocks = Block.getAllBlocks() #track list of possible blocks as moving up the chain possible_blocks = [] #search for an entity if(len(entity)): #collect list of all entities reg = Map() reg[entity] = [] #iterate through every block and create a mapping for their entity names for bk in blocks: #get the entity names from this block es = bk.loadHDL(returnnames=True) #print(es) #create mappings of entity names to their block owners for e in es: if(e.lower() not in reg.keys()): reg[e] = [] reg[e] += [bk] #see how many blocks were fit to entity name's mapping num_blocks = len(reg[entity]) #algorithm only detected one possible solution if(num_blocks == 1): #make sure rest of sections are correct before returning result potential = reg[entity][0] title = potential.getTitle(index=2, dist=2) #verify each part of block identifier matches what was requested for i in range(len(sects)): #print(sects[i]) if(len(sects[i]) and sects[i].lower() != title[i].lower()): return None pass return potential #algorithm detected multiple possible solutions (cannot infer) elif(num_blocks > 1): possible_blocks = reg[entity] #only was given an entity name, algorithm cannot solve requested entity if(len(sects[2]) == 0): log.info("Ambiguous unit; conflicts with") #display the units/titles that conflict with input for bk in reg[entity]: print('\t '+bk.getFull()+":"+entity) print() exit() #no blocks matched the entity name being passed else: return None pass #search through all block names for start in range(len(sects)-1, -1, -1): term = sects[start] #exit loop if next term is empty if(len(term) == 0): break reg = Map() reg[term] = [] for bk in blocks: t = bk.getTitle(index=start, dist=0)[0] #store the block under the given section name if(t.lower() not in reg.keys()): reg[t] = [] reg[t] += [bk] #count how many blocks occupy this same name num_blocks = len(reg[term]) #algorithm only detected one possible solution if(num_blocks == 1): #make sure rest of sections are correct before returning result potential = reg[term][0] title = potential.getTitle(index=2, dist=2) #verify each part of block identifier matches what was requested for i in range(len(sects)): #print(sects[i]) if(len(sects[i]) and sects[i].lower() != title[i].lower()): return None pass return potential #algorithm detected multiple solutions (cannot infer on this step) elif(num_blocks > 1): #compare with blocks for a match and dwindle down choices next_blocks = [] for bk in reg[term]: if(bk in possible_blocks or (start == len(sects)-1 and entity == '')): next_blocks += [bk] #dwindled down to a single block if(len(next_blocks) == 1): #print("FOUND:",next_blocks[0].getTitle(index=2, dist=2)) return next_blocks[0] #carry on to using next title section if(len(sects[start-1])): #continue to using next term possible_blocks = next_blocks continue else: #ran out of guesses...report the conflicting titles/units if(req_entity): log.info("Ambiguous unit; conflicts with") else: log.info("Ambiguous title; conflicts with") for bk in reg[term]: if(req_entity): print('\t '+bk.getFull()+":"+entity) else: print('\t '+bk.getFull()) exit(print()) pass #using the current block if title is empty string if(ref_current and (title == '' or title == None)): return Block.getCurrent() #return None if all attempts have failed and not returned anything yet return None def decodeUnits(self): ''' Decodes every available unit to get the complete graphing data structure. Parameters: None Returns: None ''' blocks = self.loadBlocks() #print(blocks) log.info("Collecting all unit data...") for b in blocks: us = b.loadHDL() for u in us.values(): u.getLanguageFile().decode(u, recursive=False) log.info("done.") pass def listBlocks(self, title, alpha=False, instl=False, dnld=False, avail=False): ''' Print a formatted table of the available blocks. Parameters: title (str): block title to be broken into parts for searching alpha (bool): determine if to alphabetize the block list order (L.N.V) instl (bool): determine if to capture only blocks that are installed dnld (bool): determine if to capture only blocks that are downloaded avail (bool): determine if to capture blocks available from vendor Returns: None ''' #[!] load the necessary blocks self.loadBlocks() #collect if multi-develop is on mult_dev = apt.getMultiDevelop() #split the title into parts M,L,N,_ = Block.snapTitle(title, inc_ent=False) #get all blocks from the catalog #store each block's text line in a map to sort keys for alpha flag catalog = Map() #iterate through every vendor for vndr_k,vndrs in Block.Inventory.items(): if(vndr_k.startswith(M.lower()) == False): continue #iterate through every library for lib_k,libs in vndrs.items(): if(lib_k.startswith(L.lower()) == False): continue #iterate through every block for blk_k,lvls in libs.items(): if(blk_k.startswith(N.lower()) == False): continue downloaded = installed = available = ' ' disp_d = disp_i = disp_a = False #if none were set on command-line default to display everything if((dnld or instl or avail) == False): dnld = instl = avail = True #with each lower level, overwrite the block object to print if(lvls[Block.Level.AVAIL.value] != None): bk = lvls[Block.Level.AVAIL.value] available = 'A' disp_a = True if(lvls[Block.Level.INSTL.value] != None): bk = lvls[Block.Level.INSTL.value] installed = 'I' disp_i = True if(lvls[Block.Level.DNLD.value] != None): if(dnld): bk = lvls[Block.Level.DNLD.value] downloaded = 'D' # if(mult_dev): # downloaded = 'D' # installed = installed.lower() disp_d = True #one condition pair must be true to display the block if((disp_a and avail) or (disp_i and instl) or (disp_d and dnld)): pass else: continue #character to separate different status bits spacer = ' ' #format the status column's data sts = downloaded + spacer + installed + spacer + available #leave version empty if its been unreleased v = '' if(bk.getVersion() == '0.0.0') else bk.getVersion() #check if can be updated #prioritize installation level for checking updates instllr = bk.getLvlBlock(Block.Level.INSTL) cmp_v = instllr.getVersion() if(instllr != None and mult_dev == False) else bk.getVersion() #a '^' is an update symbol indicating the latest referenced version (dnld or instl) is not the actually the latest version found if(Block.cmpVer(bk.getHighestAvailVersion(), cmp_v) != cmp_v): sts = sts+' ^' v = cmp_v #format the data to print to the console and store in catalog (L.N.V str format) catalog[bk.L()+'.'+bk.N()+'.'+bk.M()] = '{:<16}'.format(bk.L())+' '+'{:<20}'.format(bk.N())+' '+'{:<8}'.format(sts)+' '+'{:<10}'.format(v)+' '+'{:<16}'.format(bk.M()) pass pass keys = list(catalog.keys()) #check if to sort by alphabet if(alpha): keys.sort() #print(keys) print('{:<16}'.format("Library"),'{:<20}'.format("Block"),'{:<8}'.format("Status"+("*"*int(mult_dev))),'{:<10}'.format("Version"),'{:<16}'.format("Vendor")) print("-"*16+" "+"-"*20+" "+"-"*8+" "+"-"*10+" "+"-"*16) #iterate through catalog and print each textline for k in keys: print(catalog[k]) pass def listUnits(self, title, alpha=False, usable=False, ignore_tb=False): ''' Print a formatted table of all the design units. Parameters: title (str): block title to be broken into parts for searching alpha (bool): determine if to alphabetize the block list order (E.V.L.N) usable (bool): determine if to display units that can be used ignore_tb (bool): determine if to ignore testbench files Returns: None ''' #[!] load blocks into inventory visible = self.loadBlocks() #:todo: add flag to print 'variations' of an entity/unit (what specific version names exist) #todo: print status of the unit and which status is usable (D or I) M,L,N,V,E = Block.snapTitle(title, inc_ent=True) #print(M,L,N,V,E) #store each entity's print line in map (key = <unit>:<block-id>) to ensure uniqueness catalog = Map() for bk in Block.getAllBlocks(): #for lvl in Block.Inventory[bk.M()][bk.L()][bk.N()]: block_title = bk.getFull(inc_ver=False) if(bk.M().lower().startswith(M.lower()) == False): continue if(bk.L().lower().startswith(L.lower()) == False): continue if(bk.N().lower().startswith(N.lower()) == False): continue #collect all units if(apt.getMultiDevelop() == False): if(bk.getLvlBlock(Block.Level.INSTL) != None): bk = bk.getLvlBlock(Block.Level.INSTL) #skip this block if only displaying usable units and multi-develop off elif(usable): continue units = bk.loadHDL(returnnames=False).values() for u in units: if(len(E) and u.E().lower().startswith(E.lower()) == False): continue if(ignore_tb and u.isTb()): continue #format if unit is visible/usable vis = '-' if(bk in visible): vis = 'yes' #format design unit name according to its natural language dsgn = u.getDesign().name.lower() if(u.getLang() == u.Language.VERILOG and dsgn == 'entity'): dsgn = 'module' catalog[u.E()+':'+block_title] = '{:<22}'.format(u.E())+' '+'{:<7}'.format(vis)+' '+'{:<10}'.format(dsgn)+' '+'{:<38}'.format(block_title) pass pass keys = list(catalog.keys()) #check if to sort by alphabet if(alpha): keys.sort() #print to console print('{:<22}'.format("Unit"),'{:<7}'.format("Usable"),'{:<10}'.format("Type"),'{:<38}'.format("Block")) print("-"*22+" "+"-"*7+" "+"-"*10+" "+"-"*38) for k in keys: print(catalog[k]) pass pass @classmethod def tidy(cls): ''' Removes any stale hidden workspace directories that aren't mapped to a workspace found in the class Jar container. Parameters: None Returns: None ''' #list all hidden workspace directories hidden_dirs = os.listdir(cls.DIR) for hd in hidden_dirs: if(hd.lower() not in cls.Jar.keys()): log.info("Removing stale workspace data for "+hd+"...") if(os.path.isdir(cls.DIR+hd)): shutil.rmtree(cls.DIR+hd, onerror=apt.rmReadOnly) #remove all files from workspace directory else: os.remove(cls.DIR+hd) pass def autoRefresh(self, rate): ''' Automatically refreshes all vendors for the given workspace. Reads its log file to determine if past next interval for refresh. Parameters: rate (int): how often to ask a refresh within a 24-hour period Returns: None ''' def timeToFloat(prt): ''' Converts a time object into a float type. Parameters: prt (datetime): iso format of current time Returns: (float): 0.00 (inclusive) - 24.00 (exclusive) ''' time_stamp = str(prt).split(' ')[1] time_sects = time_stamp.split(':') hrs = int(time_sects[0]) #convert to 'hours'.'minutes' time_fmt = (float(hrs)+(float(float(time_sects[1])/60))) return time_fmt refresh = False last_punch = None stage = 1 cur_time = datetime.now() #do not perform refresh if the rate is 0 if(rate == 0): return #always refresh if the rate is set below 0 (-1) elif(rate <= self.MIN_RATE): refresh = True #divide the 24 hour period into even checkpoints max_hours = float(24) spacing = float(max_hours / rate) intervals = [] for i in range(rate): intervals += [spacing*i] #ensure log file exists if(os.path.exists(self.getDir()+self.LOG_FILE) == False): open(self.getDir()+self.LOG_FILE, 'w').close() #read log file #read when the last refresh time occurred with open(self.getDir()+self.LOG_FILE, 'r') as log_file: #read the latest date data = log_file.readlines() #no refreshes have occurred so automatically need a refresh if(len(data) == 0): last_punch = cur_time refresh = True else: last_punch = datetime.fromisoformat(data[0]) #determine if its time to refresh #get latest time that was punched last_time_fmt = timeToFloat(last_punch) #determine the next checkpoint available for today next_checkpoint = max_hours for i in range(len(intervals)): if(last_time_fmt < intervals[i]): next_checkpoint = intervals[i] stage = i + 1 break #print('next checkpoint',next_checkpoint) cur_time_fmt = timeToFloat(cur_time) #check if the time has occurred on a previous day, (automatically update because its a new day) next_day = cur_time.year > last_punch.year or cur_time.month > last_punch.month or cur_time.day > last_punch.day #print(next_day) #print("currently",cur_time_fmt) #determine if the current time has passed the next checkpoint or if its a new day if(next_day or cur_time_fmt >= next_checkpoint): last_punch = cur_time refresh = True log_file.close() #determine if its time to refresh if(refresh): #display what interval is being refreshed on the day infoo = "("+str(stage)+"/"+str(rate)+")" if(rate > 0) else '' log.info("Automatically refreshing workspace "+self.getName()+" vendors... "+infoo) #refresh all vendors attached to this workspace for vndr in self.getVendors(): vndr.refresh() pass #write updated time value to log file with open(self.getDir()+self.LOG_FILE, 'w') as lf: lf.write(str(cur_time)) pass @classmethod def load(cls): '''Load all workspaces from settings.''' wspcs = apt.CFG.get('workspace', dtype=Section) for ws in wspcs.keys(): #skip over immediate keys if(isinstance(wspcs[ws], Section) == False): continue path = '' vendors = '()' #verify that a path key and vendors key exists under each workspace apt.CFG.set('workspace.'+ws+'.path', path, override=False) apt.CFG.set('workspace.'+ws+'.vendors', vendors, override=False) #retrieve path and vendors keys if('path' in wspcs[ws].keys()): path = wspcs[ws]['path']._val if('vendors' in wspcs[ws].keys()): vendors = Cfg.castList(wspcs[ws]['vendors']._val) #create Workspace objects Workspace(wspcs[ws]._name, path, vendors) pass #save if made any changes if(apt.CFG._modified): apt.CFG.write() pass @classmethod def save(cls, inc_active=True): ''' Serializes the Workspace objects and saves them to the settings dictionary. Parameters: inc_active (bool): determine if to save the active workspace to settings Returns: None ''' serialized = {} #serialize the Workspace objects into dictionary format for settings for ws in cls.Jar.values(): #do not save any workspace that has no path if(ws.getPath() == ''): continue serialized[ws.getName()] = {} serialized[ws.getName()]['path'] = ws.getPath() serialized[ws.getName()]['vendors'] = Cfg.castStr(ws.getVendors(returnnames=True, lowercase=False), tab_cnt=2, drop_list=False) #update settings dictionary apt.CFG.set('workspace', Section(serialized), override=True) #update active workspace if(inc_active): if(cls.getActive() != None): apt.CFG.set('general.active-workspace', cls.getActive().getName()) else: apt.CFG.set('general.active-workspace', '') apt.save() pass @classmethod def inWorkspace(cls): ''' Determine if an active workspace is selected. Parameters: None Returns: (bool): true if ActiveWorkspace is not None ''' return cls._ActiveWorkspace != None @classmethod def setActiveWorkspace(cls, ws): ''' Set the active workspace after initializing all workspaces into Jar. If the input name is invalid, it will set the first workspace in the Jar as active if one is not already assigned. Parameters: ws (str): workspace name Returns: (bool): true if active-workspace was set ''' #properly set the active workspace from one found in Jar if(ws != None and ws.lower() in cls.Jar.keys()): re_assign = (cls._ActiveWorkspace != None) #set the active workspace obj from found workspace cls._ActiveWorkspace = cls.Jar[ws] #only give prompt if reassigning the active-workspace if(re_assign): log.info("Assigning workspace "+cls._ActiveWorkspace.getName()+" as active workspace...") return True #try to randomly assign active workspace if not already assigned. elif(len(cls.Jar.keys()) and cls._ActiveWorkspace == None): random_ws = list(cls.Jar.keys())[0] cls._ActiveWorkspace = cls.Jar[random_ws] msgi = "No active workspace set." if(ws != ''): msgi = "Workspace "+ws+" does not exist." log.info(msgi+" Auto-assigning active workspace to "+cls._ActiveWorkspace.getName()+"...") return True #still was not able to set the active workspace with the given argument elif(cls._ActiveWorkspace != None): log.info("Workspace "+ws+" does not exist. Keeping "+cls._ActiveWorkspace.getName()+" as active.") else: log.error("No workspace set as active.") return False def isLinked(self): '''Returns if any vendors are tied to this workspace (bool).''' return len(self.getVendors()) def getPath(self): '''Returns the local path where downloaded blocks are located (str).''' return self._path def getDir(self): '''Returns the base hidden directory where the workspace data is kept (str).''' return self._ws_dir def getCachePath(self): '''Returns the hidden directory where workspace installations are kept. (str).''' return self.getDir()+"cache/" def getName(self): '''Returns the workspace's identifier (str).''' return self._name def isActive(self): '''Returns is this workspace is the active workspace (bool).''' return self == self.getActive() def getVendors(self, returnnames=False, lowercase=True): ''' Return the vendor objects associated with the given workspace. Parameters: returnnames (bool): true will return vendor names lowercase (bool): true will return lower-case names if returnnames is enabled Returns: ([Vendor]) or ([str]): list of available vendors ''' if(returnnames): vndr_names = [] for vndr in self._vendors: name = vndr.getName() if(lowercase): name = name.lower() vndr_names += [name] return vndr_names else: return self._vendors @classmethod def printList(cls): ''' Prints formatted list for workspaces with vendor availability and which is active. Parameters: None Returns: None ''' print('{:<16}'.format("Workspace"),'{:<6}'.format("Active"),'{:<40}'.format("Path"),'{:<14}'.format("Vendors")) print("-"*16+" "+"-"*6+" "+"-"*40+" "+"-"*14+" ") for ws in cls.Jar.values(): vndrs = apt.listToStr(ws.getVendors(returnnames=True)) act = 'yes' if(ws == cls.getActive()) else '-' print('{:<16}'.format(ws.getName()),'{:<6}'.format(act),'{:<40}'.format(ws.getPath()),'{:<14}'.format(vndrs)) pass pass @classmethod def printAll(cls): for key,ws in cls.Jar.items(): print('key:',key) print(ws) @classmethod def getActive(cls): '''Returns the active workspace and will exit on error (Workspace).''' if(cls._ActiveWorkspace == None): exit(log.error("Not in a workspace!")) return cls._ActiveWorkspace # uncomment to use for debugging # def __str__(self): # return f''' # ID: {hex(id(self))} # Name: {self.getName()} # Path: {self.getPath()} # Active: {self.isActive()} # Hidden directory: {self.getDir()} # Linked to: {self.isLinked()} # Vendors: {self.getVendors(returnnames=True)} # ''' pass
[ "os.path.exists", "os.listdir", "os.makedirs", "os.path.split", "datetime.datetime.now", "os.path.isdir", "datetime.datetime.fromisoformat", "shutil.rmtree", "logging.info", "logging.error", "os.remove" ]
[((20508, 20547), 'logging.info', 'log.info', (['"""Collecting all unit data..."""'], {}), "('Collecting all unit data...')\n", (20516, 20547), True, 'import logging as log\n'), ((20707, 20724), 'logging.info', 'log.info', (['"""done."""'], {}), "('done.')\n", (20715, 20724), True, 'import logging as log\n'), ((28845, 28864), 'os.listdir', 'os.listdir', (['cls.DIR'], {}), '(cls.DIR)\n', (28855, 28864), False, 'import os, shutil, glob\n'), ((30250, 30264), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (30262, 30264), False, 'from datetime import datetime\n'), ((4420, 4437), 'os.path.exists', 'os.path.exists', (['p'], {}), '(p)\n', (4434, 4437), False, 'import os, shutil, glob\n'), ((5216, 5260), 'logging.error', 'log.error', (['"""Workspace name cannot be empty."""'], {}), "('Workspace name cannot be empty.')\n", (5225, 5260), True, 'import logging as log\n'), ((5341, 5412), 'logging.error', 'log.error', (["('Cannot rename workspace to ' + n + ' due to name conflict.')"], {}), "('Cannot rename workspace to ' + n + ' due to name conflict.')\n", (5350, 5412), True, 'import logging as log\n'), ((11614, 11631), 'os.path.split', 'os.path.split', (['mf'], {}), '(mf)\n', (11627, 11631), False, 'import os, shutil, glob\n'), ((4631, 4660), 'os.makedirs', 'os.makedirs', (['p'], {'exist_ok': '(True)'}), '(p, exist_ok=True)\n', (4642, 4660), False, 'import os, shutil, glob\n'), ((4754, 4802), 'logging.info', 'log.info', (["('Did not set ' + p + ' as local path.')"], {}), "('Did not set ' + p + ' as local path.')\n", (4762, 4802), True, 'import logging as log\n'), ((28962, 29021), 'logging.info', 'log.info', (["('Removing stale workspace data for ' + hd + '...')"], {}), "('Removing stale workspace data for ' + hd + '...')\n", (28970, 29021), True, 'import logging as log\n'), ((29038, 29065), 'os.path.isdir', 'os.path.isdir', (['(cls.DIR + hd)'], {}), '(cls.DIR + hd)\n', (29051, 29065), False, 'import os, shutil, glob\n'), ((31296, 31327), 'datetime.datetime.fromisoformat', 'datetime.fromisoformat', (['data[0]'], {}), '(data[0])\n', (31318, 31327), False, 'from datetime import datetime\n'), ((40022, 40054), 'logging.error', 'log.error', (['"""Not in a workspace!"""'], {}), "('Not in a workspace!')\n", (40031, 40054), True, 'import logging as log\n'), ((29086, 29137), 'shutil.rmtree', 'shutil.rmtree', (['(cls.DIR + hd)'], {'onerror': 'apt.rmReadOnly'}), '(cls.DIR + hd, onerror=apt.rmReadOnly)\n', (29099, 29137), False, 'import os, shutil, glob\n'), ((29237, 29260), 'os.remove', 'os.remove', (['(cls.DIR + hd)'], {}), '(cls.DIR + hd)\n', (29246, 29260), False, 'import os, shutil, glob\n'), ((37372, 37412), 'logging.error', 'log.error', (['"""No workspace set as active."""'], {}), "('No workspace set as active.')\n", (37381, 37412), True, 'import logging as log\n'), ((16924, 16966), 'logging.info', 'log.info', (['"""Ambiguous unit; conflicts with"""'], {}), "('Ambiguous unit; conflicts with')\n", (16932, 16966), True, 'import logging as log\n'), ((2345, 2379), 'logging.info', 'log.info', (['"""Workspace not created."""'], {}), "('Workspace not created.')\n", (2353, 2379), True, 'import logging as log\n'), ((19558, 19600), 'logging.info', 'log.info', (['"""Ambiguous unit; conflicts with"""'], {}), "('Ambiguous unit; conflicts with')\n", (19566, 19600), True, 'import logging as log\n'), ((19651, 19694), 'logging.info', 'log.info', (['"""Ambiguous title; conflicts with"""'], {}), "('Ambiguous title; conflicts with')\n", (19659, 19694), True, 'import logging as log\n'), ((2776, 2810), 'logging.info', 'log.info', (['"""Workspace not created."""'], {}), "('Workspace not created.')\n", (2784, 2810), True, 'import logging as log\n')]
import os from PIL import Image import seaborn as sn import matplotlib.pyplot as plt import torch import torch.nn.functional as F from sidechainnet.utils.sequence import ProteinVocabulary from einops import rearrange # general functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def broadcat(tensors, dim = -1): num_tensors = len(tensors) shape_lens = set(list(map(lambda t: len(t.shape), tensors))) assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions' shape_len = list(shape_lens)[0] dim = (dim + shape_len) if dim < 0 else dim dims = list(zip(*map(lambda t: list(t.shape), tensors))) expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation' max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) expanded_dims.insert(dim, (dim, dims[dim])) expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) return torch.cat(tensors, dim = dim) # singleton msa transformer msa_instances = None def get_msa_transformer(): global msa_instances if not exists(msa_instances): msa_model, alphabet = torch.hub.load("facebookresearch/esm", "esm_msa1_t12_100M_UR50S") batch_converter = alphabet.get_batch_converter() return msa_model, batch_converter return msa_instances # MSA embedding related functions VOCAB = ProteinVocabulary() def ids_to_aa_str(x): assert isinstance(x, list), 'input must be a list' id2aa = VOCAB._int2char is_char = lambda c: isinstance(c, str) and len(c) == 1 out = [] for el in x: if isinstance(el, list): out.append(ids_to_aa_str(el)) elif isinstance(el, int): out.append(id2aa[el]) else: raise TypeError('type must be either list or character') if all(map(is_char, out)): return ''.join(out) return out def aa_str_to_embed_input(x): assert isinstance(x, list), 'input must be a list' out = [] for el in x: if isinstance(el, list): out.append(aa_str_to_embed_input(el)) elif isinstance(el, str): out.append((None, el)) else: raise TypeError('type must be either list or string') return out def apc(x): a1 = x.sum(-1, keepdims=True) a2 = x.sum(-2, keepdims=True) a12 = x.sum((-1, -2), keepdims=True) avg = a1 * a2 avg.div_(a12) normalized = x - avg return normalized def symmetrize(x): return x + x.transpose(-1, -2) def pad_image_to(tensor, size, value = 0.): remainder = size - tensor.shape[-1] tensor = F.pad(tensor, (0, remainder, 0, remainder), value = value) return tensor # getting a single MSA attention embedding, with caching CACHE_PATH = default(os.getenv('CACHE_PATH'), os.path.expanduser('~/.cache.ddpm-proteins')) FETCH_FROM_CACHE = not exists(os.getenv('CLEAR_CACHE')) os.makedirs(CACHE_PATH, exist_ok = True) @torch.no_grad() def get_msa_attention_embedding( model, batch_converter, aa_str, id, fetch_msas_fn = lambda t: [], cache = True ): device = next(model.parameters()).device cache_full_path = os.path.join(CACHE_PATH, f'{id}.pt') if cache and FETCH_FROM_CACHE and os.path.exists(cache_full_path): try: loaded = torch.load(cache_full_path).to(device) except: loaded = None if exists(loaded): return loaded msas = default(fetch_msas_fn(aa_str), []) seq_with_msas = [aa_str, *msas] embed_inputs = aa_str_to_embed_input(seq_with_msas) _, _, msa_batch_tokens = batch_converter(embed_inputs) results = model(msa_batch_tokens.to(device), need_head_weights = True) attentions = results['row_attentions'] attentions = attentions[..., 1:, 1:] attentions = rearrange(attentions, 'b l h m n -> b (l h) m n') attentions = apc(symmetrize(attentions)) if cache: print(f'caching to {cache_full_path}') torch.save(attentions, cache_full_path) return attentions def get_msa_attention_embeddings( model, batch_converter, seqs, ids, fetch_msas_fn = lambda t: [], cache = True ): n = seqs.shape[1] seqs = rearrange(seqs, 'b n -> b () n') aa_strs = ids_to_aa_str(seqs.cpu().tolist()) embeds_list = [get_msa_attention_embedding(model, batch_converter, aa, seq_id, cache = cache) for aa, seq_id in zip(aa_strs, ids)] embeds_list = [pad_image_to(embed, n) for embed in embeds_list] embeds = torch.cat(embeds_list, dim = 0) return embeds # training utils def cycle(loader, thres = 256): while True: for data in loader: if data.seqs.shape[1] <= thres: yield data def save_heatmap(tensor, filepath, dpi = 200, return_image = False): heatmap = sn.heatmap(tensor.cpu().numpy()) figure = heatmap.get_figure() figure.savefig(filepath, dpi = dpi) plt.clf() if not return_image: return return Image.open(filepath)
[ "os.path.expanduser", "os.path.exists", "PIL.Image.open", "torch.hub.load", "os.makedirs", "os.getenv", "sidechainnet.utils.sequence.ProteinVocabulary", "torch.load", "matplotlib.pyplot.clf", "os.path.join", "einops.rearrange", "torch.save", "torch.nn.functional.pad", "torch.no_grad", "torch.cat" ]
[((1710, 1729), 'sidechainnet.utils.sequence.ProteinVocabulary', 'ProteinVocabulary', ([], {}), '()\n', (1727, 1729), False, 'from sidechainnet.utils.sequence import ProteinVocabulary\n'), ((3236, 3274), 'os.makedirs', 'os.makedirs', (['CACHE_PATH'], {'exist_ok': '(True)'}), '(CACHE_PATH, exist_ok=True)\n', (3247, 3274), False, 'import os\n'), ((3279, 3294), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3292, 3294), False, 'import torch\n'), ((1278, 1305), 'torch.cat', 'torch.cat', (['tensors'], {'dim': 'dim'}), '(tensors, dim=dim)\n', (1287, 1305), False, 'import torch\n'), ((2951, 3007), 'torch.nn.functional.pad', 'F.pad', (['tensor', '(0, remainder, 0, remainder)'], {'value': 'value'}), '(tensor, (0, remainder, 0, remainder), value=value)\n', (2956, 3007), True, 'import torch.nn.functional as F\n'), ((3108, 3131), 'os.getenv', 'os.getenv', (['"""CACHE_PATH"""'], {}), "('CACHE_PATH')\n", (3117, 3131), False, 'import os\n'), ((3133, 3177), 'os.path.expanduser', 'os.path.expanduser', (['"""~/.cache.ddpm-proteins"""'], {}), "('~/.cache.ddpm-proteins')\n", (3151, 3177), False, 'import os\n'), ((3502, 3538), 'os.path.join', 'os.path.join', (['CACHE_PATH', 'f"""{id}.pt"""'], {}), "(CACHE_PATH, f'{id}.pt')\n", (3514, 3538), False, 'import os\n'), ((4156, 4205), 'einops.rearrange', 'rearrange', (['attentions', '"""b l h m n -> b (l h) m n"""'], {}), "(attentions, 'b l h m n -> b (l h) m n')\n", (4165, 4205), False, 'from einops import rearrange\n'), ((4557, 4589), 'einops.rearrange', 'rearrange', (['seqs', '"""b n -> b () n"""'], {}), "(seqs, 'b n -> b () n')\n", (4566, 4589), False, 'from einops import rearrange\n'), ((4855, 4884), 'torch.cat', 'torch.cat', (['embeds_list'], {'dim': '(0)'}), '(embeds_list, dim=0)\n', (4864, 4884), False, 'import torch\n'), ((5270, 5279), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (5277, 5279), True, 'import matplotlib.pyplot as plt\n'), ((5332, 5352), 'PIL.Image.open', 'Image.open', (['filepath'], {}), '(filepath)\n', (5342, 5352), False, 'from PIL import Image\n'), ((1476, 1541), 'torch.hub.load', 'torch.hub.load', (['"""facebookresearch/esm"""', '"""esm_msa1_t12_100M_UR50S"""'], {}), "('facebookresearch/esm', 'esm_msa1_t12_100M_UR50S')\n", (1490, 1541), False, 'import torch\n'), ((3209, 3233), 'os.getenv', 'os.getenv', (['"""CLEAR_CACHE"""'], {}), "('CLEAR_CACHE')\n", (3218, 3233), False, 'import os\n'), ((3577, 3608), 'os.path.exists', 'os.path.exists', (['cache_full_path'], {}), '(cache_full_path)\n', (3591, 3608), False, 'import os\n'), ((4321, 4360), 'torch.save', 'torch.save', (['attentions', 'cache_full_path'], {}), '(attentions, cache_full_path)\n', (4331, 4360), False, 'import torch\n'), ((3644, 3671), 'torch.load', 'torch.load', (['cache_full_path'], {}), '(cache_full_path)\n', (3654, 3671), False, 'import torch\n')]
from adam_visual_perception import LandmarkDetector from adam_visual_perception.utility import * import numpy as np import math import cv2 import os import sys class HeadGazeEstimator: """ A class for estimating gaze ray from facial landmarks """ def __init__(self, write_video=False): # 3D model points. self.model_points = np.array( [ (0.0, 0.0, 0.0), # Nose tip (0.0, -330.0, -65.0), # Chin (-225.0, 170.0, -135.0), # Left eye left corner (225.0, 170.0, -135.0), # Right eye right corne (-150.0, -150.0, -125.0), # Left Mouth corner (150.0, -150.0, -125.0), # Right mouth corner ] ) self.dist_coeffs = np.zeros((4, 1)) # Assuming no lens distortion """ Parameters ---------- write_video : bool, optional Write the resulting OpenCV video """ self.write_video = write_video self.landmark_detector = LandmarkDetector(write_video=False) def get_gaze_rays(self, filename, bbox_history=None, show=True): """ Get the gaze rays for the given video file """ # Get the landmarks for the entire video landmark_map = self.landmark_detector.detect(filename, show=False) # Capture the video cap = cv2.VideoCapture(filename) frame_no = 0 gaze_angles = {} # Loop over the frames from the video stream while True: success, frame = cap.read() if not success: if frame_no == 0: print("Failed to read video") sys.exit(1) else: break if frame_no == 0: # Camera internals size = frame.shape focal_length = size[1] center = (size[1] / 2, size[0] / 2) camera_matrix = np.array( [ [focal_length, 0, center[0]], [0, focal_length, center[1]], [0, 0, 1], ], dtype="double", ) if self.write_video: # Initialize our video writer fourcc = cv2.VideoWriter_fourcc(*"mp4v") par_path = os.path.abspath(os.path.join(filename, os.pardir)) dir_path = par_path + "_pnp" if not os.path.isdir(dir_path): os.makedirs(dir_path) video_path = os.path.join(dir_path, os.path.basename(filename)) writer = cv2.VideoWriter( video_path, fourcc, 30, (frame.shape[1], frame.shape[0]), True ) if frame_no in landmark_map: # 2D image points. image_points = np.array( [ landmark_map[frame_no][33], # Nose tip landmark_map[frame_no][8], # Chin landmark_map[frame_no][36], # Left eye left corner landmark_map[frame_no][45], # Right eye right corne landmark_map[frame_no][48], # Left Mouth corner landmark_map[frame_no][54], # Right mouth corner ], dtype="double", ) # We use this to draw a line sticking out of the nose success, rotation_vector, translation_vector = cv2.solvePnP( self.model_points, image_points, camera_matrix, self.dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE, ) nose_end_point2D, jacobian = cv2.projectPoints( np.array([(0.0, 0.0, 1000.0)]), rotation_vector, translation_vector, camera_matrix, self.dist_coeffs, ) for p in image_points: cv2.circle(frame, (int(p[0]), int(p[1])), 1, (255, 0, 0), -1) for p in landmark_map[frame_no]: if p in image_points: continue cv2.circle(frame, (int(p[0]), int(p[1])), 1, (0, 0, 255), -1) p1 = (int(image_points[0][0]), int(image_points[0][1])) p2 = (int(nose_end_point2D[0][0][0]), int(nose_end_point2D[0][0][1])) lenAB = math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) length = lenAB * 3 C_x = int(p2[0] + (p2[0] - p1[0]) / lenAB * length) C_y = int(p2[1] + (p2[1] - p1[1]) / lenAB * length) cv2.line(frame, p1, (C_x, C_y), (0, 255, 0), 2) if bbox_history is not None and (self.write_video or show): bboxes = bbox_history[frame_no] for i, bbox in enumerate(bboxes): x, y = int(bbox[0]), int(bbox[1]) w, h = int(bbox[2]), int(bbox[3]) cv2.circle( frame, (int(x + w / 2), int(y + h / 2)), 5, (0, 0, 255), -1 ) # Store in the return dictionary gaze_angles[frame_no] = (p1, p2) # Show the frame if the flag is on if show: cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # Write the video if the flag is on if self.write_video: writer.write(frame) frame_no += 1 # Cleanup cv2.destroyAllWindows() if self.write_video: writer.release() return gaze_angles
[ "os.makedirs", "cv2.line", "math.sqrt", "os.path.join", "cv2.imshow", "cv2.VideoWriter", "numpy.array", "numpy.zeros", "cv2.solvePnP", "cv2.destroyAllWindows", "adam_visual_perception.LandmarkDetector", "cv2.VideoCapture", "sys.exit", "cv2.VideoWriter_fourcc", "os.path.isdir", "os.path.basename", "cv2.waitKey" ]
[((352, 506), 'numpy.array', 'np.array', (['[(0.0, 0.0, 0.0), (0.0, -330.0, -65.0), (-225.0, 170.0, -135.0), (225.0, \n 170.0, -135.0), (-150.0, -150.0, -125.0), (150.0, -150.0, -125.0)]'], {}), '([(0.0, 0.0, 0.0), (0.0, -330.0, -65.0), (-225.0, 170.0, -135.0), (\n 225.0, 170.0, -135.0), (-150.0, -150.0, -125.0), (150.0, -150.0, -125.0)])\n', (360, 506), True, 'import numpy as np\n'), ((774, 790), 'numpy.zeros', 'np.zeros', (['(4, 1)'], {}), '((4, 1))\n', (782, 790), True, 'import numpy as np\n'), ((1039, 1074), 'adam_visual_perception.LandmarkDetector', 'LandmarkDetector', ([], {'write_video': '(False)'}), '(write_video=False)\n', (1055, 1074), False, 'from adam_visual_perception import LandmarkDetector\n'), ((1387, 1413), 'cv2.VideoCapture', 'cv2.VideoCapture', (['filename'], {}), '(filename)\n', (1403, 1413), False, 'import cv2\n'), ((5829, 5852), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5850, 5852), False, 'import cv2\n'), ((1992, 2093), 'numpy.array', 'np.array', (['[[focal_length, 0, center[0]], [0, focal_length, center[1]], [0, 0, 1]]'], {'dtype': '"""double"""'}), "([[focal_length, 0, center[0]], [0, focal_length, center[1]], [0, 0,\n 1]], dtype='double')\n", (2000, 2093), True, 'import numpy as np\n'), ((2969, 3171), 'numpy.array', 'np.array', (['[landmark_map[frame_no][33], landmark_map[frame_no][8], landmark_map[\n frame_no][36], landmark_map[frame_no][45], landmark_map[frame_no][48],\n landmark_map[frame_no][54]]'], {'dtype': '"""double"""'}), "([landmark_map[frame_no][33], landmark_map[frame_no][8],\n landmark_map[frame_no][36], landmark_map[frame_no][45], landmark_map[\n frame_no][48], landmark_map[frame_no][54]], dtype='double')\n", (2977, 3171), True, 'import numpy as np\n'), ((3635, 3748), 'cv2.solvePnP', 'cv2.solvePnP', (['self.model_points', 'image_points', 'camera_matrix', 'self.dist_coeffs'], {'flags': 'cv2.SOLVEPNP_ITERATIVE'}), '(self.model_points, image_points, camera_matrix, self.\n dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE)\n', (3647, 3748), False, 'import cv2\n'), ((4661, 4715), 'math.sqrt', 'math.sqrt', (['((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)'], {}), '((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)\n', (4670, 4715), False, 'import math\n'), ((4904, 4951), 'cv2.line', 'cv2.line', (['frame', 'p1', '(C_x, C_y)', '(0, 255, 0)', '(2)'], {}), '(frame, p1, (C_x, C_y), (0, 255, 0), 2)\n', (4912, 4951), False, 'import cv2\n'), ((5586, 5612), 'cv2.imshow', 'cv2.imshow', (['"""Frame"""', 'frame'], {}), "('Frame', frame)\n", (5596, 5612), False, 'import cv2\n'), ((1708, 1719), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1716, 1719), False, 'import sys\n'), ((2361, 2392), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'mp4v'"], {}), "(*'mp4v')\n", (2383, 2392), False, 'import cv2\n'), ((2735, 2814), 'cv2.VideoWriter', 'cv2.VideoWriter', (['video_path', 'fourcc', '(30)', '(frame.shape[1], frame.shape[0])', '(True)'], {}), '(video_path, fourcc, 30, (frame.shape[1], frame.shape[0]), True)\n', (2750, 2814), False, 'import cv2\n'), ((3948, 3978), 'numpy.array', 'np.array', (['[(0.0, 0.0, 1000.0)]'], {}), '([(0.0, 0.0, 1000.0)])\n', (3956, 3978), True, 'import numpy as np\n'), ((5635, 5649), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (5646, 5649), False, 'import cv2\n'), ((2440, 2473), 'os.path.join', 'os.path.join', (['filename', 'os.pardir'], {}), '(filename, os.pardir)\n', (2452, 2473), False, 'import os\n'), ((2551, 2574), 'os.path.isdir', 'os.path.isdir', (['dir_path'], {}), '(dir_path)\n', (2564, 2574), False, 'import os\n'), ((2600, 2621), 'os.makedirs', 'os.makedirs', (['dir_path'], {}), '(dir_path)\n', (2611, 2621), False, 'import os\n'), ((2678, 2704), 'os.path.basename', 'os.path.basename', (['filename'], {}), '(filename)\n', (2694, 2704), False, 'import os\n')]
# -*- coding: utf-8 -*- import disnake from disnake.ext import commands from pypoca.config import COLOR, URLS from pypoca.database import Server from pypoca.ext import ALL, DEFAULT, Choice, Option class General(commands.Cog): def __init__(self, bot: commands.Bot): self.bot = bot @commands.slash_command(name="ping", description=DEFAULT["COMMAND_PING_DESC"]) async def slash_ping(self, inter: disnake.ApplicationCommandInteraction, hide: Choice.boolean = Option.hide): server = Server.get_by_id(inter.guild.id) locale = ALL[server.language] if server else DEFAULT latency = int(self.bot.latency * 1000) description = locale["COMMAND_PING_REPLY"] + f": {latency}ms" embed = disnake.Embed(description=description, color=COLOR) await inter.send(embed=embed, ephemeral=hide) @commands.slash_command(name="help", description=DEFAULT["COMMAND_HELP_DESC"]) async def slash_help(self, inter: disnake.ApplicationCommandInteraction, hide: Choice.boolean = Option.hide): server = Server.get_by_id(inter.guild.id) locale = ALL[server.language] if server else DEFAULT BLANK = "<:blank:914183315056111627>" description = f""" **/movie** {BLANK} **discover** {locale["COMMAND_MOVIE_DISCOVER_DESC"]} {BLANK} **find** {locale["COMMAND_MOVIE_FIND_DESC"]} {BLANK} **popular** {locale["COMMAND_MOVIE_POPULAR_DESC"]} {BLANK} **search** {locale["COMMAND_MOVIE_SEARCH_DESC"]} {BLANK} **top** {locale["COMMAND_MOVIE_TOP_DESC"]} {BLANK} **trending** {locale["COMMAND_MOVIE_TRENDING_DESC"]} {BLANK} **upcoming** {locale["COMMAND_MOVIE_UPCOMING_DESC"]} **/tv** {BLANK} **discover** {locale["COMMAND_TV_DISCOVER_DESC"]} {BLANK} **popular** {locale["COMMAND_TV_POPULAR_DESC"]} {BLANK} **search** {locale["COMMAND_TV_SEARCH_DESC"]} {BLANK} **top** {locale["COMMAND_TV_TOP_DESC"]} {BLANK} **trending** {locale["COMMAND_TV_TRENDING_DESC"]} {BLANK} **upcoming** {locale["COMMAND_TV_UPCOMING_DESC"]} **/people** {BLANK} **popular** {locale["COMMAND_PERSON_POPULAR_DESC"]} {BLANK} **search** {locale["COMMAND_PERSON_SEARCH_DESC"]} {BLANK} **trending** {locale["COMMAND_PERSON_TRENDING_DESC"]} **/game** {BLANK} **frame** {locale["COMMAND_GAME_FRAME_DESC"]} {BLANK} **higher** {locale["COMMAND_GAME_HIGHER_DESC"]} **/setting** {BLANK} **language** {locale["COMMAND_LANGUAGE_DESC"]} """ buttons = [ {"style": 5, "label": locale["COMMAND_HELP_BUTTON_INVITE"], "url": URLS["invite"]}, {"style": 5, "label": locale["COMMAND_HELP_BUTTON_VOTE"], "url": URLS["vote"]}, {"style": 5, "label": locale["COMMAND_HELP_BUTTON_SERVER"], "url": URLS["server"]}, {"style": 5, "label": locale["COMMAND_HELP_BUTTON_SITE"], "url": URLS["site"]}, ] embed = disnake.Embed(description=description, color=COLOR) view = disnake.ui.View() [view.add_item(disnake.ui.Button(**button)) for button in buttons] await inter.send(embed=embed, view=view, ephemeral=hide) def setup(bot: commands.Bot) -> None: bot.add_cog(General(bot))
[ "disnake.Embed", "disnake.ui.View", "pypoca.database.Server.get_by_id", "disnake.ext.commands.slash_command", "disnake.ui.Button" ]
[((301, 378), 'disnake.ext.commands.slash_command', 'commands.slash_command', ([], {'name': '"""ping"""', 'description': "DEFAULT['COMMAND_PING_DESC']"}), "(name='ping', description=DEFAULT['COMMAND_PING_DESC'])\n", (323, 378), False, 'from disnake.ext import commands\n'), ((859, 936), 'disnake.ext.commands.slash_command', 'commands.slash_command', ([], {'name': '"""help"""', 'description': "DEFAULT['COMMAND_HELP_DESC']"}), "(name='help', description=DEFAULT['COMMAND_HELP_DESC'])\n", (881, 936), False, 'from disnake.ext import commands\n'), ((510, 542), 'pypoca.database.Server.get_by_id', 'Server.get_by_id', (['inter.guild.id'], {}), '(inter.guild.id)\n', (526, 542), False, 'from pypoca.database import Server\n'), ((747, 798), 'disnake.Embed', 'disnake.Embed', ([], {'description': 'description', 'color': 'COLOR'}), '(description=description, color=COLOR)\n', (760, 798), False, 'import disnake\n'), ((1068, 1100), 'pypoca.database.Server.get_by_id', 'Server.get_by_id', (['inter.guild.id'], {}), '(inter.guild.id)\n', (1084, 1100), False, 'from pypoca.database import Server\n'), ((3093, 3144), 'disnake.Embed', 'disnake.Embed', ([], {'description': 'description', 'color': 'COLOR'}), '(description=description, color=COLOR)\n', (3106, 3144), False, 'import disnake\n'), ((3160, 3177), 'disnake.ui.View', 'disnake.ui.View', ([], {}), '()\n', (3175, 3177), False, 'import disnake\n'), ((3201, 3228), 'disnake.ui.Button', 'disnake.ui.Button', ([], {}), '(**button)\n', (3218, 3228), False, 'import disnake\n')]
import time from collections import deque import gym import numpy as np from stable_baselines import logger, PPO2 from stable_baselines.a2c.utils import total_episode_reward_logger from stable_baselines.common import explained_variance, TensorboardWriter from stable_baselines.common.runners import AbstractEnvRunner from stable_baselines.ppo2.ppo2 import get_schedule_fn, safe_mean, swap_and_flatten class PPO2WithVAE(PPO2): """ Custom PPO2 version. Notable changes: - optimization is done after each episode and not after n steps """ def learn(self, total_timesteps, callback=None, log_interval=1, tb_log_name="PPO2"): # Transform to callable if needed self.learning_rate = get_schedule_fn(self.learning_rate) self.cliprange = get_schedule_fn(self.cliprange) with TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name) as writer: self._setup_learn() runner = Runner(env=self.env, model=self, n_steps=self.n_steps, gamma=self.gamma, lam=self.lam) self.episode_reward = np.zeros((self.n_envs,)) ep_info_buf = deque(maxlen=100) t_first_start = time.time() n_timesteps = 0 # nupdates = total_timesteps // self.n_batch for timestep in range(1, total_timesteps + 1): assert self.n_batch % self.nminibatches == 0 batch_size = self.n_batch // self.nminibatches t_start = time.time() frac = 1.0 - timestep / total_timesteps lr_now = self.learning_rate(frac) cliprangenow = self.cliprange(frac) # true_reward is the reward without discount obs, returns, masks, actions, values, neglogpacs, states, ep_infos, true_reward = runner.run() n_timesteps += len(obs) ep_info_buf.extend(ep_infos) mb_loss_vals = [] if states is None: # nonrecurrent version inds = np.arange(self.n_batch) for epoch_num in range(self.noptepochs): np.random.shuffle(inds) for start in range(0, self.n_batch, batch_size): # timestep = ((update * self.noptepochs * self.n_batch + epoch_num * self.n_batch + start) // # batch_size) end = start + batch_size mbinds = inds[start:end] slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mb_loss_vals.append(self._train_step(lr_now, cliprangenow, *slices, writer=writer, update=n_timesteps)) else: # recurrent version assert self.n_envs % self.nminibatches == 0 env_indices = np.arange(self.n_envs) flat_indices = np.arange(self.n_envs * self.n_steps).reshape(self.n_envs, self.n_steps) envs_per_batch = batch_size // self.n_steps for epoch_num in range(self.noptepochs): np.random.shuffle(env_indices) for stan_timestepsrt in range(0, self.n_envs, envs_per_batch): # timestep = ((update * self.noptepochs * self.n_envs + epoch_num * self.n_envs + start) // # envs_per_batch) end = start + envs_per_batch mb_env_inds = env_indices[start:end] mb_flat_inds = flat_indices[mb_env_inds].ravel() slices = (arr[mb_flat_inds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mb_states = states[mb_env_inds] mb_loss_vals.append(self._train_step(lr_now, cliprangenow, *slices, update=n_timesteps, writer=writer, states=mb_states)) loss_vals = np.mean(mb_loss_vals, axis=0) t_now = time.time() fps = int(self.n_batch / (t_now - t_start)) if writer is not None: self.episode_reward = total_episode_reward_logger(self.episode_reward, true_reward.reshape((self.n_envs, self.n_steps)), masks.reshape((self.n_envs, self.n_steps)), writer, n_timesteps) if self.verbose >= 1 and (timestep % log_interval == 0 or timestep == 1): explained_var = explained_variance(values, returns) logger.logkv("total_timesteps", n_timesteps) logger.logkv("fps", fps) logger.logkv("explained_variance", float(explained_var)) logger.logkv('ep_rewmean', safe_mean([ep_info['r'] for ep_info in ep_info_buf])) logger.logkv('eplenmean', safe_mean([ep_info['l'] for ep_info in ep_info_buf])) logger.logkv('time_elapsed', t_start - t_first_start) for (loss_val, loss_name) in zip(loss_vals, self.loss_names): logger.logkv(loss_name, loss_val) logger.dumpkvs() if callback is not None: # Only stop training if return value is False, not when it is None. This is for backwards # compatibility with callbacks that have no return statement. if callback(locals(), globals()) is False: break if n_timesteps > total_timesteps: break return self class Runner(AbstractEnvRunner): def __init__(self, *, env, model, n_steps, gamma, lam): """ A runner to learn the policy of an environment for a model :param env: (Gym environment) The environment to learn from :param model: (Model) The model to learn :param n_steps: (int) The number of steps to run for each environment :param gamma: (float) Discount factor :param lam: (float) Factor for trade-off of bias vs variance for Generalized Advantage Estimator """ super().__init__(env=env, model=model, n_steps=n_steps) self.lam = lam self.gamma = gamma def run(self): """ Run a learning step of the model :return: - observations: (np.ndarray) the observations - rewards: (np.ndarray) the rewards - masks: (numpy bool) whether an episode is over or not - actions: (np.ndarray) the actions - values: (np.ndarray) the value function output - negative log probabilities: (np.ndarray) - states: (np.ndarray) the internal states of the recurrent policies - infos: (dict) the extra information of the model """ # mb stands for minibatch mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [], [], [], [], [], [] mb_states = self.states ep_infos = [] while True: actions, values, self.states, neglogpacs = self.model.step(self.obs, self.states, self.dones) mb_obs.append(self.obs.copy()) mb_actions.append(actions) mb_values.append(values) mb_neglogpacs.append(neglogpacs) mb_dones.append(self.dones) clipped_actions = actions # Clip the actions to avoid out of bound error if isinstance(self.env.action_space, gym.spaces.Box): clipped_actions = np.clip(actions, self.env.action_space.low, self.env.action_space.high) self.obs[:], rewards, self.dones, infos = self.env.step(clipped_actions) for info in infos: maybe_ep_info = info.get('episode') if maybe_ep_info is not None: ep_infos.append(maybe_ep_info) mb_rewards.append(rewards) if self.dones: print("Episode finished. Reward: {:.2f} {} Steps".format(np.sum(mb_rewards), len(mb_rewards))) if len(mb_rewards) >= self.n_steps: break # batch of steps to batch of rollouts mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype) mb_rewards = np.asarray(mb_rewards, dtype=np.float32) mb_actions = np.asarray(mb_actions) mb_values = np.asarray(mb_values, dtype=np.float32) mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32) mb_dones = np.asarray(mb_dones, dtype=np.bool) last_values = self.model.value(self.obs, self.states, self.dones) # discount/bootstrap off value fn mb_advs = np.zeros_like(mb_rewards) true_reward = np.copy(mb_rewards) last_gae_lam = 0 for step in reversed(range(self.n_steps)): if step == self.n_steps - 1: nextnonterminal = 1.0 - self.dones nextvalues = last_values else: nextnonterminal = 1.0 - mb_dones[step + 1] nextvalues = mb_values[step + 1] delta = mb_rewards[step] + self.gamma * nextvalues * nextnonterminal - mb_values[step] mb_advs[step] = last_gae_lam = delta + self.gamma * self.lam * nextnonterminal * last_gae_lam mb_returns = mb_advs + mb_values mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, true_reward = \ map(swap_and_flatten, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, true_reward)) return mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_states, ep_infos, true_reward
[ "numpy.clip", "numpy.copy", "numpy.mean", "stable_baselines.logger.logkv", "collections.deque", "stable_baselines.common.explained_variance", "time.time", "numpy.asarray", "numpy.sum", "numpy.zeros", "stable_baselines.common.TensorboardWriter", "stable_baselines.ppo2.ppo2.safe_mean", "stable_baselines.ppo2.ppo2.get_schedule_fn", "stable_baselines.logger.dumpkvs", "numpy.zeros_like", "numpy.arange", "numpy.random.shuffle" ]
[((724, 759), 'stable_baselines.ppo2.ppo2.get_schedule_fn', 'get_schedule_fn', (['self.learning_rate'], {}), '(self.learning_rate)\n', (739, 759), False, 'from stable_baselines.ppo2.ppo2 import get_schedule_fn, safe_mean, swap_and_flatten\n'), ((785, 816), 'stable_baselines.ppo2.ppo2.get_schedule_fn', 'get_schedule_fn', (['self.cliprange'], {}), '(self.cliprange)\n', (800, 816), False, 'from stable_baselines.ppo2.ppo2 import get_schedule_fn, safe_mean, swap_and_flatten\n'), ((8585, 8625), 'numpy.asarray', 'np.asarray', (['mb_obs'], {'dtype': 'self.obs.dtype'}), '(mb_obs, dtype=self.obs.dtype)\n', (8595, 8625), True, 'import numpy as np\n'), ((8647, 8687), 'numpy.asarray', 'np.asarray', (['mb_rewards'], {'dtype': 'np.float32'}), '(mb_rewards, dtype=np.float32)\n', (8657, 8687), True, 'import numpy as np\n'), ((8709, 8731), 'numpy.asarray', 'np.asarray', (['mb_actions'], {}), '(mb_actions)\n', (8719, 8731), True, 'import numpy as np\n'), ((8752, 8791), 'numpy.asarray', 'np.asarray', (['mb_values'], {'dtype': 'np.float32'}), '(mb_values, dtype=np.float32)\n', (8762, 8791), True, 'import numpy as np\n'), ((8816, 8859), 'numpy.asarray', 'np.asarray', (['mb_neglogpacs'], {'dtype': 'np.float32'}), '(mb_neglogpacs, dtype=np.float32)\n', (8826, 8859), True, 'import numpy as np\n'), ((8879, 8914), 'numpy.asarray', 'np.asarray', (['mb_dones'], {'dtype': 'np.bool'}), '(mb_dones, dtype=np.bool)\n', (8889, 8914), True, 'import numpy as np\n'), ((9049, 9074), 'numpy.zeros_like', 'np.zeros_like', (['mb_rewards'], {}), '(mb_rewards)\n', (9062, 9074), True, 'import numpy as np\n'), ((9097, 9116), 'numpy.copy', 'np.copy', (['mb_rewards'], {}), '(mb_rewards)\n', (9104, 9116), True, 'import numpy as np\n'), ((831, 895), 'stable_baselines.common.TensorboardWriter', 'TensorboardWriter', (['self.graph', 'self.tensorboard_log', 'tb_log_name'], {}), '(self.graph, self.tensorboard_log, tb_log_name)\n', (848, 895), False, 'from stable_baselines.common import explained_variance, TensorboardWriter\n'), ((1082, 1106), 'numpy.zeros', 'np.zeros', (['(self.n_envs,)'], {}), '((self.n_envs,))\n', (1090, 1106), True, 'import numpy as np\n'), ((1134, 1151), 'collections.deque', 'deque', ([], {'maxlen': '(100)'}), '(maxlen=100)\n', (1139, 1151), False, 'from collections import deque\n'), ((1180, 1191), 'time.time', 'time.time', ([], {}), '()\n', (1189, 1191), False, 'import time\n'), ((1486, 1497), 'time.time', 'time.time', ([], {}), '()\n', (1495, 1497), False, 'import time\n'), ((4170, 4199), 'numpy.mean', 'np.mean', (['mb_loss_vals'], {'axis': '(0)'}), '(mb_loss_vals, axis=0)\n', (4177, 4199), True, 'import numpy as np\n'), ((4224, 4235), 'time.time', 'time.time', ([], {}), '()\n', (4233, 4235), False, 'import time\n'), ((7929, 8000), 'numpy.clip', 'np.clip', (['actions', 'self.env.action_space.low', 'self.env.action_space.high'], {}), '(actions, self.env.action_space.low, self.env.action_space.high)\n', (7936, 8000), True, 'import numpy as np\n'), ((2033, 2056), 'numpy.arange', 'np.arange', (['self.n_batch'], {}), '(self.n_batch)\n', (2042, 2056), True, 'import numpy as np\n'), ((2972, 2994), 'numpy.arange', 'np.arange', (['self.n_envs'], {}), '(self.n_envs)\n', (2981, 2994), True, 'import numpy as np\n'), ((4879, 4914), 'stable_baselines.common.explained_variance', 'explained_variance', (['values', 'returns'], {}), '(values, returns)\n', (4897, 4914), False, 'from stable_baselines.common import explained_variance, TensorboardWriter\n'), ((4935, 4979), 'stable_baselines.logger.logkv', 'logger.logkv', (['"""total_timesteps"""', 'n_timesteps'], {}), "('total_timesteps', n_timesteps)\n", (4947, 4979), False, 'from stable_baselines import logger, PPO2\n'), ((5000, 5024), 'stable_baselines.logger.logkv', 'logger.logkv', (['"""fps"""', 'fps'], {}), "('fps', fps)\n", (5012, 5024), False, 'from stable_baselines import logger, PPO2\n'), ((5323, 5376), 'stable_baselines.logger.logkv', 'logger.logkv', (['"""time_elapsed"""', '(t_start - t_first_start)'], {}), "('time_elapsed', t_start - t_first_start)\n", (5335, 5376), False, 'from stable_baselines import logger, PPO2\n'), ((5537, 5553), 'stable_baselines.logger.dumpkvs', 'logger.dumpkvs', ([], {}), '()\n', (5551, 5553), False, 'from stable_baselines import logger, PPO2\n'), ((2142, 2165), 'numpy.random.shuffle', 'np.random.shuffle', (['inds'], {}), '(inds)\n', (2159, 2165), True, 'import numpy as np\n'), ((3252, 3282), 'numpy.random.shuffle', 'np.random.shuffle', (['env_indices'], {}), '(env_indices)\n', (3269, 3282), True, 'import numpy as np\n'), ((5149, 5201), 'stable_baselines.ppo2.ppo2.safe_mean', 'safe_mean', (["[ep_info['r'] for ep_info in ep_info_buf]"], {}), "([ep_info['r'] for ep_info in ep_info_buf])\n", (5158, 5201), False, 'from stable_baselines.ppo2.ppo2 import get_schedule_fn, safe_mean, swap_and_flatten\n'), ((5249, 5301), 'stable_baselines.ppo2.ppo2.safe_mean', 'safe_mean', (["[ep_info['l'] for ep_info in ep_info_buf]"], {}), "([ep_info['l'] for ep_info in ep_info_buf])\n", (5258, 5301), False, 'from stable_baselines.ppo2.ppo2 import get_schedule_fn, safe_mean, swap_and_flatten\n'), ((5483, 5516), 'stable_baselines.logger.logkv', 'logger.logkv', (['loss_name', 'loss_val'], {}), '(loss_name, loss_val)\n', (5495, 5516), False, 'from stable_baselines import logger, PPO2\n'), ((8405, 8423), 'numpy.sum', 'np.sum', (['mb_rewards'], {}), '(mb_rewards)\n', (8411, 8423), True, 'import numpy as np\n'), ((3030, 3067), 'numpy.arange', 'np.arange', (['(self.n_envs * self.n_steps)'], {}), '(self.n_envs * self.n_steps)\n', (3039, 3067), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ fillRasterwithPatches.py *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = '<NAME>' __date__ = '2020-09-01' __copyright__ = '(C) 2020, <NAME>' from PyQt5.QtCore import QCoreApplication, QVariant from qgis.core import (QgsProcessing, QgsFeatureSink, QgsWkbTypes, QgsFields, QgsField, QgsFeature, QgsPointXY, QgsGeometry, QgsProcessingException, QgsProcessingAlgorithm, QgsProcessingParameterString, QgsProcessingParameterField, QgsProcessingParameterBoolean, QgsProcessingParameterCrs, QgsProcessingParameterEnum, QgsFeatureRequest, QgsExpression, QgsProcessingParameterFeatureSource, QgsProcessingParameterFeatureSink, QgsProcessingParameterFileDestination, QgsProcessingParameterMultipleLayers, QgsProcessingParameterRasterLayer, QgsProcessingParameterRasterDestination, QgsApplication, QgsProject, QgsRasterLayer, QgsCoordinateTransform, QgsCoordinateReferenceSystem) from osgeo import osr, gdal_array, gdal #https://gdal.org/python/ from math import floor, ceil import numpy as np from lftools.geocapt.dip import Interpolar from lftools.geocapt.imgs import Imgs import os from qgis.PyQt.QtGui import QIcon class FillRasterwithPatches(QgsProcessingAlgorithm): LOC = QgsApplication.locale()[:2] def translate(self, string): return QCoreApplication.translate('Processing', string) def tr(self, *string): # Traduzir para o portugês: arg[0] - english (translate), arg[1] - português if self.LOC == 'pt': if len(string) == 2: return string[1] else: return self.translate(string[0]) else: return self.translate(string[0]) def createInstance(self): return FillRasterwithPatches() def name(self): return 'fillrasterwithpatches' def displayName(self): return self.tr('Fill with patches', 'Remendar vazios de raster') def group(self): return self.tr('Raster') def groupId(self): return 'raster' def tags(self): return self.tr('fill,hole,raster,cloud,remove,drone,patch').split(',') def icon(self): return QIcon(os.path.join(os.path.dirname(os.path.dirname(__file__)), 'images/raster.png')) txt_en = 'Fills Raster null pixels (no data) with data obtained from other smaller raster layers (Patches).' txt_pt = 'Preenche vazios de Raster (pixels nulos) com dados obtidos de outras camadas raster menores (Remendos).' figure = 'images/tutorial/raster_fill_holes.jpg' def shortHelpString(self): social_BW = Imgs().social_BW footer = '''<div align="center"> <img src="'''+ os.path.join(os.path.dirname(os.path.dirname(__file__)), self.figure) +'''"> </div> <div align="right"> <p align="right"> <b>'''+self.tr('Author: <NAME>', 'Autor: <NAME>')+'''</b> </p>'''+ social_BW + '''</div> </div>''' return self.tr(self.txt_en, self.txt_pt) + footer RasterIN ='RasterIN' PATCHES = 'PATCHES' RESAMPLING = 'RESAMPLING' RasterOUT = 'RasterOUT' OPEN = 'OPEN' def initAlgorithm(self, config=None): # INPUT self.addParameter( QgsProcessingParameterRasterLayer( self.RasterIN, self.tr('Input Raster', 'Raster de Entrada'), [QgsProcessing.TypeRaster] ) ) self.addParameter( QgsProcessingParameterMultipleLayers( self.PATCHES, self.tr('Patch Layers', 'Rasters de Remendo'), layerType = QgsProcessing.TypeRaster ) ) interp = [self.tr('Nearest neighbor', 'Vizinho mais próximo'), self.tr('Bilinear'), self.tr('Bicubic', 'Bicúbica')] self.addParameter( QgsProcessingParameterEnum( self.RESAMPLING, self.tr('Interpolation', 'Interpolação'), options = interp, defaultValue= 0 ) ) # OUTPUT self.addParameter( QgsProcessingParameterFileDestination( self.RasterOUT, self.tr('Patched Image', 'Imagem Remendada'), fileFilter = 'GeoTIFF (*.tif)' ) ) self.addParameter( QgsProcessingParameterBoolean( self.OPEN, self.tr('Load patched Image', 'Carregar Imagem Remendada'), defaultValue= True ) ) def processAlgorithm(self, parameters, context, feedback): RasterIN = self.parameterAsRasterLayer( parameters, self.RasterIN, context ) if RasterIN is None: raise QgsProcessingException(self.invalidSourceError(parameters, self.RasterIN)) RasterIN = RasterIN.dataProvider().dataSourceUri() PatchesLayers = self.parameterAsLayerList( parameters, self.PATCHES, context ) reamostragem = self.parameterAsEnum( parameters, self.RESAMPLING, context ) reamostragem = ['nearest','bilinear','bicubic'][reamostragem] RGB_Output = self.parameterAsFileOutput( parameters, self.RasterOUT, context ) Carregar = self.parameterAsBool( parameters, self.OPEN, context ) limiar = 240 # Abrir Raster layer como array image = gdal.Open(RasterIN) prj=image.GetProjection() CRS=osr.SpatialReference(wkt=prj) geotransform = image.GetGeoTransform() n_bands = image.RasterCount # Número de bandas cols = image.RasterXSize # Number of columns rows = image.RasterYSize # Number of rows # Origem e resolucao da imagem ulx, xres, xskew, uly, yskew, yres = geotransform origem = (ulx, uly) resol_X = abs(xres) resol_Y = abs(yres) if n_bands ==1: feedback.pushInfo(self.tr('Opening raster band...', 'Abrindo banda do raster...')) band1 = image.GetRasterBand(1).ReadAsArray() if n_bands >=3: feedback.pushInfo(self.tr('Opening Band R...', 'Abrindo Banda R...')) band1 = image.GetRasterBand(1).ReadAsArray() feedback.pushInfo(self.tr('Opening Band G...', 'Abrindo Banda G...')) band2 = image.GetRasterBand(2).ReadAsArray() feedback.pushInfo(self.tr('Opening Band B...', 'Abrindo Banda B...')) band3 = image.GetRasterBand(3).ReadAsArray() # Transparência if n_bands == 4: feedback.pushInfo(self.tr('Opening Band Alpha...', 'Abrindo Banda Alfa...')) band4 = image.GetRasterBand(4).ReadAsArray() Pixel_Nulo = image.GetRasterBand(1).GetNoDataValue() if Pixel_Nulo == None: Pixel_Nulo = 0 image=None # Fechar imagem # Número de pixels para processamento TAM = 0 for Remendo in PatchesLayers: Rem_Path = Remendo.dataProvider().dataSourceUri() Rem = gdal.Open(Rem_Path) # Rem_cols = Rem.RasterXSize # Number of columns Rem_rows = Rem.RasterYSize # Number of rows TAM += Rem_rows # Remendos total = 100.0 / TAM cont = 0 for Remendo in PatchesLayers: feedback.pushInfo((self.tr('Processing Layer: {}', 'Processando Camada: {}')).format(Remendo)) Rem_Path = Remendo.dataProvider().dataSourceUri() Rem = gdal.Open(Rem_Path) ulx, xres, xskew, uly, yskew, yres = Rem.GetGeoTransform() Rem_origem = (ulx, uly) Rem_resol_X = abs(xres) Rem_resol_Y = abs(yres) Rem_cols = Rem.RasterXSize # Number of columns Rem_rows = Rem.RasterYSize # Number of rows lrx = ulx + (Rem_cols * xres) lry = uly + (Rem_rows * yres) bbox = [ulx, lrx, lry, uly] Rem_nulo = Rem.GetRasterBand(1).GetNoDataValue() if Rem_nulo == None: Rem_nulo = 0 Rem_band1 = Rem.GetRasterBand(1).ReadAsArray() if n_bands >1: Rem_band2 = Rem.GetRasterBand(2).ReadAsArray() Rem_band3 = Rem.GetRasterBand(3).ReadAsArray() # Limites de Varredura row_ini = int(round((origem[1]-uly)/resol_Y - 0.5)) row_fim = int(round((origem[1]-lry)/resol_Y - 0.5)) col_ini = int(round((ulx - origem[0])/resol_X - 0.5)) col_fim = int(round((lrx - origem[0])/resol_X - 0.5)) # Varrer Raster if n_bands == 4: for lin in range(row_ini, row_fim): for col in range(col_ini, col_fim): px_value = band4[lin][col] if px_value == 0 or band1[lin][col] > limiar: # Verificar Limiar X = origem[0] + resol_X*(col + 0.5) Y = origem[1] - resol_Y*(lin + 0.5) band1[lin][col] = Interpolar(X, Y, Rem_band1, Rem_origem, Rem_resol_X, Rem_resol_Y, reamostragem, Rem_nulo) band2[lin][col] = Interpolar(X, Y, Rem_band2, Rem_origem, Rem_resol_X, Rem_resol_Y, reamostragem, Rem_nulo) band3[lin][col] = Interpolar(X, Y, Rem_band3, Rem_origem, Rem_resol_X, Rem_resol_Y, reamostragem, Rem_nulo) cont += 1 feedback.setProgress(int(cont * total)) if feedback.isCanceled(): break elif n_bands == 3: for lin in range(row_ini, row_fim): for col in range(col_ini, col_fim): px_value = band1[lin][col] if px_value == Pixel_Nulo or band1[lin][col] > limiar: # Verificar Limiar X = origem[0] + resol_X*(col + 0.5) Y = origem[1] - resol_Y*(lin + 0.5) band1[lin][col] = Interpolar(X, Y, Rem_band1, Rem_origem, Rem_resol_X, Rem_resol_Y, reamostragem, Rem_nulo) band2[lin][col] = Interpolar(X, Y, Rem_band2, Rem_origem, Rem_resol_X, Rem_resol_Y, reamostragem, Rem_nulo) band3[lin][col] = Interpolar(X, Y, Rem_band3, Rem_origem, Rem_resol_X, Rem_resol_Y, reamostragem, Rem_nulo) cont += 1 feedback.setProgress(int(cont * total)) if feedback.isCanceled(): break elif n_bands == 1: for lin in range(row_ini, row_fim): for col in range(col_ini, col_fim): px_value = band1[lin][col] if px_value == Pixel_Nulo or band1[lin][col] > limiar: # Verificar Limiar X = origem[0] + resol_X*(col + 0.5) Y = origem[1] - resol_Y*(lin + 0.5) band1[lin][col] = Interpolar(X, Y, Rem_band1, Rem_origem, Rem_resol_X, Rem_resol_Y, reamostragem, Rem_nulo) cont += 1 feedback.setProgress(int(cont * total)) if feedback.isCanceled(): break Rem = None # Fechar imagem # Criar imagem RGB feedback.pushInfo(self.tr('Saving Raster...', 'Salvando Raster...')) GDT = gdal_array.NumericTypeCodeToGDALTypeCode(band1.dtype) if n_bands ==1: RASTER = gdal.GetDriverByName('GTiff').Create(RGB_Output, cols, rows, 1, GDT) else: RASTER = gdal.GetDriverByName('GTiff').Create(RGB_Output, cols, rows, 3, GDT) RASTER.SetGeoTransform(geotransform) # specify coords RASTER.SetProjection(CRS.ExportToWkt()) # export coords to file if n_bands ==1: feedback.pushInfo(self.tr('Writing rater band...', 'Escrevendo banda do raster...')) banda = RASTER.GetRasterBand(1) banda.WriteArray(band1) banda.SetNoDataValue(Pixel_Nulo) else: feedback.pushInfo(self.tr('Writing Band R...', 'Escrevendo Banda R...')) bandaR = RASTER.GetRasterBand(1) bandaR.WriteArray(band1) feedback.pushInfo(self.tr('Writing Band G...', 'Escrevendo Banda G...')) bandaG = RASTER.GetRasterBand(2) bandaG.WriteArray(band2) feedback.pushInfo(self.tr('Writing Band B...', 'Escrevendo Banda B...')) bandaB = RASTER.GetRasterBand(3) bandaB.WriteArray(band3) feedback.pushInfo(self.tr('Saving raster...', 'Salvando raster...')) RASTER.FlushCache() # Escrever no disco RASTER = None # Salvar e fechar feedback.pushInfo(self.tr('Operation completed successfully!', 'Operação finalizada com sucesso!')) feedback.pushInfo(self.tr('<NAME> - Cartographic Engineer', '<NAME> - Eng Cart')) self.CAMINHO = RGB_Output self.CARREGAR = Carregar return {self.RasterOUT: RGB_Output} # Carregamento de arquivo de saída CAMINHO = '' CARREGAR = True def postProcessAlgorithm(self, context, feedback): if self.CARREGAR: rlayer = QgsRasterLayer(self.CAMINHO, self.tr('Patched Image', 'Imagem Remendada')) QgsProject.instance().addMapLayer(rlayer) return {}
[ "osgeo.gdal.Open", "PyQt5.QtCore.QCoreApplication.translate", "osgeo.osr.SpatialReference", "qgis.core.QgsApplication.locale", "lftools.geocapt.dip.Interpolar", "os.path.dirname", "qgis.core.QgsProject.instance", "lftools.geocapt.imgs.Imgs", "osgeo.gdal_array.NumericTypeCodeToGDALTypeCode", "osgeo.gdal.GetDriverByName" ]
[((2401, 2424), 'qgis.core.QgsApplication.locale', 'QgsApplication.locale', ([], {}), '()\n', (2422, 2424), False, 'from qgis.core import QgsProcessing, QgsFeatureSink, QgsWkbTypes, QgsFields, QgsField, QgsFeature, QgsPointXY, QgsGeometry, QgsProcessingException, QgsProcessingAlgorithm, QgsProcessingParameterString, QgsProcessingParameterField, QgsProcessingParameterBoolean, QgsProcessingParameterCrs, QgsProcessingParameterEnum, QgsFeatureRequest, QgsExpression, QgsProcessingParameterFeatureSource, QgsProcessingParameterFeatureSink, QgsProcessingParameterFileDestination, QgsProcessingParameterMultipleLayers, QgsProcessingParameterRasterLayer, QgsProcessingParameterRasterDestination, QgsApplication, QgsProject, QgsRasterLayer, QgsCoordinateTransform, QgsCoordinateReferenceSystem\n'), ((2478, 2526), 'PyQt5.QtCore.QCoreApplication.translate', 'QCoreApplication.translate', (['"""Processing"""', 'string'], {}), "('Processing', string)\n", (2504, 2526), False, 'from PyQt5.QtCore import QCoreApplication, QVariant\n'), ((6852, 6871), 'osgeo.gdal.Open', 'gdal.Open', (['RasterIN'], {}), '(RasterIN)\n', (6861, 6871), False, 'from osgeo import osr, gdal_array, gdal\n'), ((6918, 6947), 'osgeo.osr.SpatialReference', 'osr.SpatialReference', ([], {'wkt': 'prj'}), '(wkt=prj)\n', (6938, 6947), False, 'from osgeo import osr, gdal_array, gdal\n'), ((12880, 12933), 'osgeo.gdal_array.NumericTypeCodeToGDALTypeCode', 'gdal_array.NumericTypeCodeToGDALTypeCode', (['band1.dtype'], {}), '(band1.dtype)\n', (12920, 12933), False, 'from osgeo import osr, gdal_array, gdal\n'), ((3754, 3760), 'lftools.geocapt.imgs.Imgs', 'Imgs', ([], {}), '()\n', (3758, 3760), False, 'from lftools.geocapt.imgs import Imgs\n'), ((8483, 8502), 'osgeo.gdal.Open', 'gdal.Open', (['Rem_Path'], {}), '(Rem_Path)\n', (8492, 8502), False, 'from osgeo import osr, gdal_array, gdal\n'), ((8937, 8956), 'osgeo.gdal.Open', 'gdal.Open', (['Rem_Path'], {}), '(Rem_Path)\n', (8946, 8956), False, 'from osgeo import osr, gdal_array, gdal\n'), ((3366, 3391), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3381, 3391), False, 'import os\n'), ((12979, 13008), 'osgeo.gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""GTiff"""'], {}), "('GTiff')\n", (12999, 13008), False, 'from osgeo import osr, gdal_array, gdal\n'), ((13083, 13112), 'osgeo.gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""GTiff"""'], {}), "('GTiff')\n", (13103, 13112), False, 'from osgeo import osr, gdal_array, gdal\n'), ((14796, 14817), 'qgis.core.QgsProject.instance', 'QgsProject.instance', ([], {}), '()\n', (14815, 14817), False, 'from qgis.core import QgsProcessing, QgsFeatureSink, QgsWkbTypes, QgsFields, QgsField, QgsFeature, QgsPointXY, QgsGeometry, QgsProcessingException, QgsProcessingAlgorithm, QgsProcessingParameterString, QgsProcessingParameterField, QgsProcessingParameterBoolean, QgsProcessingParameterCrs, QgsProcessingParameterEnum, QgsFeatureRequest, QgsExpression, QgsProcessingParameterFeatureSource, QgsProcessingParameterFeatureSink, QgsProcessingParameterFileDestination, QgsProcessingParameterMultipleLayers, QgsProcessingParameterRasterLayer, QgsProcessingParameterRasterDestination, QgsApplication, QgsProject, QgsRasterLayer, QgsCoordinateTransform, QgsCoordinateReferenceSystem\n'), ((10486, 10579), 'lftools.geocapt.dip.Interpolar', 'Interpolar', (['X', 'Y', 'Rem_band1', 'Rem_origem', 'Rem_resol_X', 'Rem_resol_Y', 'reamostragem', 'Rem_nulo'], {}), '(X, Y, Rem_band1, Rem_origem, Rem_resol_X, Rem_resol_Y,\n reamostragem, Rem_nulo)\n', (10496, 10579), False, 'from lftools.geocapt.dip import Interpolar\n'), ((10622, 10715), 'lftools.geocapt.dip.Interpolar', 'Interpolar', (['X', 'Y', 'Rem_band2', 'Rem_origem', 'Rem_resol_X', 'Rem_resol_Y', 'reamostragem', 'Rem_nulo'], {}), '(X, Y, Rem_band2, Rem_origem, Rem_resol_X, Rem_resol_Y,\n reamostragem, Rem_nulo)\n', (10632, 10715), False, 'from lftools.geocapt.dip import Interpolar\n'), ((10758, 10851), 'lftools.geocapt.dip.Interpolar', 'Interpolar', (['X', 'Y', 'Rem_band3', 'Rem_origem', 'Rem_resol_X', 'Rem_resol_Y', 'reamostragem', 'Rem_nulo'], {}), '(X, Y, Rem_band3, Rem_origem, Rem_resol_X, Rem_resol_Y,\n reamostragem, Rem_nulo)\n', (10768, 10851), False, 'from lftools.geocapt.dip import Interpolar\n'), ((11476, 11569), 'lftools.geocapt.dip.Interpolar', 'Interpolar', (['X', 'Y', 'Rem_band1', 'Rem_origem', 'Rem_resol_X', 'Rem_resol_Y', 'reamostragem', 'Rem_nulo'], {}), '(X, Y, Rem_band1, Rem_origem, Rem_resol_X, Rem_resol_Y,\n reamostragem, Rem_nulo)\n', (11486, 11569), False, 'from lftools.geocapt.dip import Interpolar\n'), ((11612, 11705), 'lftools.geocapt.dip.Interpolar', 'Interpolar', (['X', 'Y', 'Rem_band2', 'Rem_origem', 'Rem_resol_X', 'Rem_resol_Y', 'reamostragem', 'Rem_nulo'], {}), '(X, Y, Rem_band2, Rem_origem, Rem_resol_X, Rem_resol_Y,\n reamostragem, Rem_nulo)\n', (11622, 11705), False, 'from lftools.geocapt.dip import Interpolar\n'), ((11748, 11841), 'lftools.geocapt.dip.Interpolar', 'Interpolar', (['X', 'Y', 'Rem_band3', 'Rem_origem', 'Rem_resol_X', 'Rem_resol_Y', 'reamostragem', 'Rem_nulo'], {}), '(X, Y, Rem_band3, Rem_origem, Rem_resol_X, Rem_resol_Y,\n reamostragem, Rem_nulo)\n', (11758, 11841), False, 'from lftools.geocapt.dip import Interpolar\n'), ((12466, 12559), 'lftools.geocapt.dip.Interpolar', 'Interpolar', (['X', 'Y', 'Rem_band1', 'Rem_origem', 'Rem_resol_X', 'Rem_resol_Y', 'reamostragem', 'Rem_nulo'], {}), '(X, Y, Rem_band1, Rem_origem, Rem_resol_X, Rem_resol_Y,\n reamostragem, Rem_nulo)\n', (12476, 12559), False, 'from lftools.geocapt.dip import Interpolar\n'), ((3878, 3903), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3893, 3903), False, 'import os\n')]
from PyQt5.QtWidgets import QDialog from PyQt5.QtGui import QFont from PyQt5.QtCore import Qt from dockwina import Ui_Form as docka class Dialog(QDialog, docka): def __init__(self): super(Dialog, self).__init__() QDialog.__init__(self) self.setupUi(self) self.setWindowFlag(Qt.FramelessWindowHint) self.font1 = QFont("Tajawal", 9) self.label2.setFont(self.font1) self.label7.setFont(self.font1) self.label3.setFont(self.font1) self.label5.setFont(self.font1) self.label6.setFont(self.font1) self.label.setFont(self.font1)
[ "PyQt5.QtWidgets.QDialog.__init__", "PyQt5.QtGui.QFont" ]
[((242, 264), 'PyQt5.QtWidgets.QDialog.__init__', 'QDialog.__init__', (['self'], {}), '(self)\n', (258, 264), False, 'from PyQt5.QtWidgets import QDialog\n'), ((367, 386), 'PyQt5.QtGui.QFont', 'QFont', (['"""Tajawal"""', '(9)'], {}), "('Tajawal', 9)\n", (372, 386), False, 'from PyQt5.QtGui import QFont\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals import os, sys, warnings parent = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, parent) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "test_project.settings") import django from django.core.management import execute_from_command_line if django.VERSION < (1, 6): default_test_apps = [ 'sortedm2m_tests', 'test_south_support', ] else: default_test_apps = [ 'sortedm2m_tests', ] # Only test south support for Django 1.6 and lower. if django.VERSION < (1, 7): default_test_apps += [ 'test_south_support', ] def runtests(*args): if django.VERSION > (1, 8): warnings.simplefilter("error", Warning) warnings.filterwarnings("ignore", module="distutils") try: warnings.filterwarnings("ignore", category=ResourceWarning) except NameError: pass warnings.filterwarnings("ignore", "invalid escape sequence", DeprecationWarning) # Ignore a python 3.6 DeprecationWarning in ModelBase.__new__ that isn't # fixed in Django 1.x if sys.version_info > (3, 6) and django.VERSION < (2,): warnings.filterwarnings( "ignore", "__class__ not set defining", DeprecationWarning) test_apps = list(args or default_test_apps) execute_from_command_line([sys.argv[0], 'test', '--verbosity=1'] + test_apps) if __name__ == '__main__': runtests(*sys.argv[1:])
[ "os.environ.setdefault", "sys.path.insert", "django.core.management.execute_from_command_line", "warnings.simplefilter", "os.path.abspath", "warnings.filterwarnings" ]
[((166, 192), 'sys.path.insert', 'sys.path.insert', (['(0)', 'parent'], {}), '(0, parent)\n', (181, 192), False, 'import os, sys, warnings\n'), ((193, 265), 'os.environ.setdefault', 'os.environ.setdefault', (['"""DJANGO_SETTINGS_MODULE"""', '"""test_project.settings"""'], {}), "('DJANGO_SETTINGS_MODULE', 'test_project.settings')\n", (214, 265), False, 'import os, sys, warnings\n'), ((138, 163), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (153, 163), False, 'import os, sys, warnings\n'), ((1414, 1491), 'django.core.management.execute_from_command_line', 'execute_from_command_line', (["([sys.argv[0], 'test', '--verbosity=1'] + test_apps)"], {}), "([sys.argv[0], 'test', '--verbosity=1'] + test_apps)\n", (1439, 1491), False, 'from django.core.management import execute_from_command_line\n'), ((754, 793), 'warnings.simplefilter', 'warnings.simplefilter', (['"""error"""', 'Warning'], {}), "('error', Warning)\n", (775, 793), False, 'import os, sys, warnings\n'), ((802, 855), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'module': '"""distutils"""'}), "('ignore', module='distutils')\n", (825, 855), False, 'import os, sys, warnings\n'), ((992, 1077), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""', '"""invalid escape sequence"""', 'DeprecationWarning'], {}), "('ignore', 'invalid escape sequence', DeprecationWarning\n )\n", (1015, 1077), False, 'import os, sys, warnings\n'), ((881, 940), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'ResourceWarning'}), "('ignore', category=ResourceWarning)\n", (904, 940), False, 'import os, sys, warnings\n'), ((1260, 1347), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""', '"""__class__ not set defining"""', 'DeprecationWarning'], {}), "('ignore', '__class__ not set defining',\n DeprecationWarning)\n", (1283, 1347), False, 'import os, sys, warnings\n')]
#!/usr/bin/env python3 import concurrent.futures import logging import requests from sys import argv, exit from urllib.parse import urlparse logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) HEADERS = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.30 Safari/537.36' } MIN_RESPONSE_LENGTH = 100 NUM_WORKERS = 50 urls = [] if len(argv) < 2: exit("Please specify a URLs file.") with open(argv[1]) as f: urls = [line.rstrip() for line in f] def check(url): # Issue a GET request r = requests.get(url, timeout=5, allow_redirects=False, headers=HEADERS) response_size = len(r.text) if r.status_code != 200 or response_size < MIN_RESPONSE_LENGTH: logging.debug("Ignoring %s: response %d, response size %d.", url, r.status_code, response_size) return None # Issue a second request to check for stability (200 + same response size) r = requests.get(url, timeout=5, allow_redirects=False, headers=HEADERS) if r.status_code != 200 or response_size != len(r.text): logging.debug("URL %s is unstable.", url) return None logging.info("URL %s is stable.", url) # If the URL is stable, try adding a same-origin Origin header parsed_url = urlparse(r.url) origin = parsed_url.scheme + '://' + parsed_url.netloc logging.debug('Sending same-origin Origin %s for %s...', origin, url) result = { 'url': url, 'SAMEORIGIN_OK': False, 'CROSSORIGIN_OK': False, 'SAMEORIGIN_KO_STATUS': False, 'SAMEORIGIN_KO_RESPONSE': False, 'CROSSORIGIN_KO_STATUS': False, 'CROSSORIGIN_KO_RESPONSE': False } r = requests.get(url, timeout=5, allow_redirects=False, headers={**HEADERS, **{'Origin': origin}}) if r.status_code != 200: logging.info( "[SAME ORIGIN] URL %s changed status code to %d.", url, r.status_code) result['SAMEORIGIN_KO_STATUS'] = r.status_code return result if response_size != len(r.text): logging.info( "[SAME ORIGIN] URL %s changed response size to %d.", url, len(r.text)) result['SAMEORIGIN_KO_RESPONSE'] = True return result result['SAMEORIGIN_OK'] = True # If same-origin Origin header is OK, try a cross-origin one. logging.debug('Sending cross-origin Origin for URL %s.', url) r = requests.get(url, timeout=5, allow_redirects=False, headers={ **HEADERS, **{'Origin': 'https://example.org'}}) if r.status_code != 200: logging.info( "[CROSS ORIGIN] URL %s changed status code to %d.", url, r.status_code) result['CROSSORIGIN_KO_STATUS'] = r.status_code return result if response_size != len(r.text): logging.info( "[CROSS ORIGIN] URL %s changed response size to %d.", url, len(r.text)) result['CROSSORIGIN_KO_RESPONSE'] = True return result result['CROSSORIGIN_OK'] = True return result with open('results.csv', 'w') as w: print('url,SAMEORIGIN_OK,CROSSORIGIN_OK,SAMEORIGIN_KO_STATUS,SAMEORIGIN_KO_RESPONSE,CROSSORIGIN_KO_STATUS,CROSSORIGIN_KO_RESPONSE', file=w) with concurrent.futures.ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor: future_to_result = {executor.submit(check, url): url for url in urls} for future in concurrent.futures.as_completed(future_to_result): try: result = future.result() except: continue else: if result: print('{},{},{},{},{},{},{}'.format(result['url'], int(result['SAMEORIGIN_OK']), int(result['CROSSORIGIN_OK']), int(result['SAMEORIGIN_KO_STATUS']), int(result['SAMEORIGIN_KO_RESPONSE']), int(result['CROSSORIGIN_KO_STATUS']), int(result['CROSSORIGIN_KO_RESPONSE']) ), file=w)
[ "logging.basicConfig", "logging.getLogger", "urllib.parse.urlparse", "logging.debug", "requests.get", "sys.exit", "logging.info" ]
[((142, 182), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (161, 182), False, 'import logging\n'), ((192, 219), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (209, 219), False, 'import logging\n'), ((457, 492), 'sys.exit', 'exit', (['"""Please specify a URLs file."""'], {}), "('Please specify a URLs file.')\n", (461, 492), False, 'from sys import argv, exit\n'), ((612, 680), 'requests.get', 'requests.get', (['url'], {'timeout': '(5)', 'allow_redirects': '(False)', 'headers': 'HEADERS'}), '(url, timeout=5, allow_redirects=False, headers=HEADERS)\n', (624, 680), False, 'import requests\n'), ((1015, 1083), 'requests.get', 'requests.get', (['url'], {'timeout': '(5)', 'allow_redirects': '(False)', 'headers': 'HEADERS'}), '(url, timeout=5, allow_redirects=False, headers=HEADERS)\n', (1027, 1083), False, 'import requests\n'), ((1219, 1257), 'logging.info', 'logging.info', (['"""URL %s is stable."""', 'url'], {}), "('URL %s is stable.', url)\n", (1231, 1257), False, 'import logging\n'), ((1343, 1358), 'urllib.parse.urlparse', 'urlparse', (['r.url'], {}), '(r.url)\n', (1351, 1358), False, 'from urllib.parse import urlparse\n'), ((1422, 1491), 'logging.debug', 'logging.debug', (['"""Sending same-origin Origin %s for %s..."""', 'origin', 'url'], {}), "('Sending same-origin Origin %s for %s...', origin, url)\n", (1435, 1491), False, 'import logging\n'), ((1769, 1868), 'requests.get', 'requests.get', (['url'], {'timeout': '(5)', 'allow_redirects': '(False)', 'headers': "{**HEADERS, **{'Origin': origin}}"}), "(url, timeout=5, allow_redirects=False, headers={**HEADERS, **{\n 'Origin': origin}})\n", (1781, 1868), False, 'import requests\n'), ((2414, 2475), 'logging.debug', 'logging.debug', (['"""Sending cross-origin Origin for URL %s."""', 'url'], {}), "('Sending cross-origin Origin for URL %s.', url)\n", (2427, 2475), False, 'import logging\n'), ((2484, 2598), 'requests.get', 'requests.get', (['url'], {'timeout': '(5)', 'allow_redirects': '(False)', 'headers': "{**HEADERS, **{'Origin': 'https://example.org'}}"}), "(url, timeout=5, allow_redirects=False, headers={**HEADERS, **{\n 'Origin': 'https://example.org'}})\n", (2496, 2598), False, 'import requests\n'), ((789, 889), 'logging.debug', 'logging.debug', (['"""Ignoring %s: response %d, response size %d."""', 'url', 'r.status_code', 'response_size'], {}), "('Ignoring %s: response %d, response size %d.', url, r.\n status_code, response_size)\n", (802, 889), False, 'import logging\n'), ((1153, 1194), 'logging.debug', 'logging.debug', (['"""URL %s is unstable."""', 'url'], {}), "('URL %s is unstable.', url)\n", (1166, 1194), False, 'import logging\n'), ((1922, 2010), 'logging.info', 'logging.info', (['"""[SAME ORIGIN] URL %s changed status code to %d."""', 'url', 'r.status_code'], {}), "('[SAME ORIGIN] URL %s changed status code to %d.', url, r.\n status_code)\n", (1934, 2010), False, 'import logging\n'), ((2653, 2742), 'logging.info', 'logging.info', (['"""[CROSS ORIGIN] URL %s changed status code to %d."""', 'url', 'r.status_code'], {}), "('[CROSS ORIGIN] URL %s changed status code to %d.', url, r.\n status_code)\n", (2665, 2742), False, 'import logging\n')]
#!/usr/bin/env python # coding: utf-8 """ Multi-Sensor Moving Platform Simulation Example =============================================== This example looks at how multiple sensors can be mounted on a single moving platform and exploiting a defined moving platform as a sensor target. """ # %% # Building a Simulated Multi-Sensor Moving Platform # ------------------------------------------------- # The focus of this example is to show how to setup and configure a simulation environment in order to provide a # multi-sensor moving platform, as such the application of a tracker will not be covered in detail. For more information # about trackers and how to configure them review of the tutorials and demonstrations is recommended. # # This example makes use of Stone Soup :class:`~.MovingPlatform`, :class:`~.MultiTransitionMovingPlatform` and # :class:`~.Sensor` objects. # # In order to configure platforms, sensors and the simulation we will need to import some specific Stone Soup objects. # As these have been introduced in previous tutorials they are imported upfront. New functionality within this example # will be imported at the relevant point in order to draw attention to the new features. # Some general imports and set up from datetime import datetime from datetime import timedelta from matplotlib import pyplot as plt import numpy as np # Stone Soup imports: from stonesoup.types.state import State, GaussianState from stonesoup.types.array import StateVector from stonesoup.types.array import CovarianceMatrix from stonesoup.models.transition.linear import ( CombinedLinearGaussianTransitionModel, ConstantVelocity) from stonesoup.predictor.particle import ParticlePredictor from stonesoup.resampler.particle import SystematicResampler from stonesoup.updater.particle import ParticleUpdater from stonesoup.measures import Mahalanobis from stonesoup.hypothesiser.distance import DistanceHypothesiser from stonesoup.dataassociator.neighbour import GNNWith2DAssignment from stonesoup.tracker.simple import SingleTargetTracker # Define the simulation start time start_time = datetime.now() # %% # Create a multi-sensor platform # ------------------------------ # We have previously demonstrated how to create a :class:`~.FixedPlatform` which exploited a # :class:`~.RadarRangeBearingElevation` *Sensor* in order to detect and track targets generated within a # :class:`~.MultiTargetGroundTruthSimulator`. # # In this example we are going to create a moving platform which will be mounted with a pair of sensors and moves within # a 6 dimensional state space according to the following :math:`\mathbf{x}`. # # .. math:: # \mathbf{x} = \begin{bmatrix} # x\\ \dot{x}\\ y\\ \dot{y}\\ z\\ \dot{z} \end{bmatrix} # = \begin{bmatrix} # 0\\ 0\\ 0\\ 50\\ 8000\\ 0 \end{bmatrix} # # The platform will be initiated with a near constant velocity model which has been parameterised to have zero noise. # Therefore the platform location at time :math:`k` is given by :math:`F_{k}x_{k-1}` where :math:`F_{k}` is given by: # # .. math:: # F_{k} = \begin{bmatrix} # 1 & \triangle k & 0 & 0 & 0 & 0\\ # 0 & 1 & 0 & 0 & 0 & 0\\ # 0 & 0 & 1 & \triangle k & 0 & 0\\ # 0 & 0 & 0 & 1 & 0 & 0\\ # 0 & 0 & 0 & 0 & 1 & \triangle k \\ # 0 & 0 & 0 & 0 & 0 & 1\\ # \end{bmatrix} # First import the Moving platform from stonesoup.platform.base import MovingPlatform # Define the initial platform position, in this case the origin initial_loc = StateVector([[0], [0], [0], [50], [8000], [0]]) initial_state = State(initial_loc, start_time) # Define transition model and position for 3D platform transition_model = CombinedLinearGaussianTransitionModel( [ConstantVelocity(0.), ConstantVelocity(0.), ConstantVelocity(0.)]) # create our fixed platform sensor_platform = MovingPlatform(states=initial_state, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), transition_model=transition_model) # %% # With our platform generated we now need to build a set of sensors which will be mounted onto the platform. In this # case we will exploit a :class:`~.RadarElevationBearingRangeRate` and a :class:`~.PassiveElevationBearing` sensor # (e.g. an optical sensor, which has no capability to directly measure range). # # First we will create a radar which is capable of measuring bearing (:math:`\phi`), elevation (:math:`\theta`), range # (:math:`r`) and range-rate (:math:`\dot{r}`) of the target platform. # Import a range rate bearing elevation capable radar from stonesoup.sensor.radar.radar import RadarElevationBearingRangeRate # Create a radar sensor radar_noise_covar = CovarianceMatrix(np.diag( np.array([np.deg2rad(3), # Elevation np.deg2rad(3), # Bearing 100., # Range 25.]))) # Range Rate # radar mountings radar_mounting_offsets = StateVector([10, 0, 0]) # e.g. nose cone radar_rotation_offsets = StateVector([0, 0, 0]) # Mount the radar onto the platform radar = RadarElevationBearingRangeRate(ndim_state=6, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), noise_covar=radar_noise_covar, mounting_offset=radar_mounting_offsets, rotation_offset=radar_rotation_offsets, ) sensor_platform.add_sensor(radar) # %% # Our second sensor is a passive sensor, capable of measuring the bearing (:math:`\phi`) and elevation (:math:`\theta`) # of the target platform. For the purposes of this example we will assume that the passive sensor is an imager. # The imager sensor model is described by the following equations: # # .. math:: # \mathbf{z}_k = h(\mathbf{x}_k, \dot{\mathbf{x}}_k) # # where: # # * :math:`\mathbf{z}_k` is a measurement vector of the form: # # .. math:: # \mathbf{z}_k = \begin{bmatrix} \theta \\ \phi \end{bmatrix} # # * :math:`h` is a non - linear model function of the form: # # .. math:: # h(\mathbf{x}_k,\dot{\mathbf{x}}_k) = \begin{bmatrix} # \arcsin(\mathcal{z} /\sqrt{\mathcal{x} ^ 2 + \mathcal{y} ^ 2 +\mathcal{z} ^ 2}) \\ # \arctan(\mathcal{y},\mathcal{x}) \ \ # \end{bmatrix} + \dot{\mathbf{x}}_k # # * :math:`\mathbf{z}_k` is Gaussian distributed with covariance :math:`R`, i.e.: # # .. math:: # \mathbf{z}_k \sim \mathcal{N}(0, R) # # .. math:: # R = \begin{bmatrix} # \sigma_{\theta}^2 & 0 \\ # 0 & \sigma_{\phi}^2 \\ # \end{bmatrix} # Import a passive sensor capability from stonesoup.sensor.passive import PassiveElevationBearing imager_noise_covar = CovarianceMatrix(np.diag(np.array([np.deg2rad(0.05), # Elevation np.deg2rad(0.05)]))) # Bearing # imager mounting offset imager_mounting_offsets = StateVector([0, 8, -1]) # e.g. wing mounted imaging pod imager_rotation_offsets = StateVector([0, 0, 0]) # Mount the imager onto the platform imager = PassiveElevationBearing(ndim_state=6, mapping=(0, 2, 4), noise_covar=imager_noise_covar, mounting_offset=imager_mounting_offsets, rotation_offset=imager_rotation_offsets, ) sensor_platform.add_sensor(imager) # %% # Notice that we have added sensors to specific locations on the aircraft, defined by the mounting_offset parameter. # The values in this array are defined in the platforms local coordinate frame of reference. So in this case an offset # of :math:`[0, 8, -1]` means the sensor is located 8 meters to the right and 1 meter below the center point of the # platform. # # Now that we have mounted the two sensors we can see that the platform object has both associated with it: sensor_platform.sensors # %% # Create a Target Platform # ------------------------ # There are two ways of generating a target in Stone Soup. Firstly, we can use the inbuilt ground-truth generator # functionality within Stone Soup, which we demonstrated in the previous example, and creates a random target based on # our selected parameters. The second method provides a means to generate a target which will perform specific # behaviours, this is the approach we will take here. # # In order to create a target which moves in pre-defined sequences we exploit the fact that platforms can be used as # sensor targets within a simulation, coupled with the :class:`~.MultiTransitionMovingPlatform` which enables a platform # to be provided with a pre-defined list of transition models and transition times. The platform will continue to loop # over the transition sequence provided until the simulation ends. # # When simulating sensor platforms it is important to note that within the simulation Stone Soup treats all platforms as # potential targets. Therefore if we created multiple sensor platforms they would each *sense* all other platforms # within the simulation (sensor-target geometry dependant). # # For this example we will create an air target which will fly a sequence of straight and level followed by a # coordinated turn in the :math:`x-y` plane. This is configured such that the target will perform each manoeuvre for 8 # seconds, and it will turn through 45 degrees over the course of the turn manoeuvre. # Import a Constant Turn model to enable target to perform basic manoeuvre from stonesoup.models.transition.linear import ConstantTurn straight_level = CombinedLinearGaussianTransitionModel( [ConstantVelocity(0.), ConstantVelocity(0.), ConstantVelocity(0.)]) # Configure the aircraft turn behaviour turn_noise_diff_coeffs = np.array([0., 0.]) turn_rate = np.pi/32 # specified in radians per seconds... turn_model = ConstantTurn(turn_noise_diff_coeffs=turn_noise_diff_coeffs, turn_rate=turn_rate) # Configure turn model to maintain current altitude turning = CombinedLinearGaussianTransitionModel( [turn_model, ConstantVelocity(0.)]) manoeuvre_list = [straight_level, turning] manoeuvre_times = [timedelta(seconds=8), timedelta(seconds=8)] # %% # Now that we have created a list of manoeuvre behaviours and durations we can build our multi-transition moving # platform. Because we intend for this platform to be a target we do not need to attach any sensors to it. # Import a multi-transition moving platform from stonesoup.platform.base import MultiTransitionMovingPlatform initial_target_location = StateVector([[0], [-40], [1800], [0], [8000], [0]]) initial_target_state = State(initial_target_location, start_time) target = MultiTransitionMovingPlatform(transition_models=manoeuvre_list, transition_times=manoeuvre_times, states=initial_target_state, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), sensors=None) # %% # Creating the simulator # ---------------------- # Now that we have build our sensor platform and a target platform we need to wrap them in a simulator. Because we do # not want any additional ground truth objects, which is how most simulators work in Stone Soup, we need to use a # :class:`~.DummyGroundTruthSimulator` which returns a set of empty ground truth paths with timestamps. These are then # feed into a :class:`~.PlatformDetectionSimulator` with the two platforms we have already built. # Import the required simulators from stonesoup.simulator.simple import DummyGroundTruthSimulator from stonesoup.simulator.platform import PlatformDetectionSimulator # %% # We now need to create an array of timestamps which starts at *datetime.now()* and enable the simulator to run for # 25 seconds. times = np.arange(0, 24, 1) # 25 seconds timestamps = [start_time + timedelta(seconds=float(elapsed_time)) for elapsed_time in times] truths = DummyGroundTruthSimulator(times=timestamps) sim = PlatformDetectionSimulator(groundtruth=truths, platforms=[sensor_platform, target]) # %% # Create a Tracker # ------------------------------------ # Now that we have setup our sensor platform, target and simulation we need to create a tracker. For this example we # will use a Particle Filter as this enables us to handle the non-linear nature of the imaging sensor. In this example # we will use an inflated constant noise model to account for target motion uncertainty. # # Note that we don't add a measurement model to the updater, this is because each sensor adds their measurement model to # each detection they generate. The tracker handles this internally by checking for a measurement model with each # detection it receives and applying only the relevant measurement model. target_transition_model = CombinedLinearGaussianTransitionModel( [ConstantVelocity(5), ConstantVelocity(5), ConstantVelocity(1)]) # First add a Particle Predictor predictor = ParticlePredictor(target_transition_model) # Now create a resampler and particle updater resampler = SystematicResampler() updater = ParticleUpdater(measurement_model=None, resampler=resampler) # Create a particle initiator from stonesoup.initiator.simple import GaussianParticleInitiator, SinglePointInitiator single_point_initiator = SinglePointInitiator( GaussianState([[0], [-40], [2000], [0], [8000], [0]], np.diag([10000, 1000, 10000, 1000, 10000, 1000])), None) initiator = GaussianParticleInitiator(number_particles=500, initiator=single_point_initiator) hypothesiser = DistanceHypothesiser(predictor, updater, measure=Mahalanobis(), missed_distance=np.inf) data_associator = GNNWith2DAssignment(hypothesiser) from stonesoup.deleter.time import UpdateTimeStepsDeleter deleter = UpdateTimeStepsDeleter(time_steps_since_update=10) # Create a Kalman single-target tracker tracker = SingleTargetTracker( initiator=initiator, deleter=deleter, detector=sim, data_associator=data_associator, updater=updater ) # %% # The final step is to iterate our tracker over the simulation and plot out the results. Because we have a bearing # only sensor it does not make sense to plot out the detections without animating the resulting plot. This # animation shows the sensor platform (blue) moving towards the true target position (red). The estimated target # position is shown in black, radar detections are shown in yellow while the bearing only imager detections are # coloured green. from matplotlib import animation import matplotlib matplotlib.rcParams['animation.html'] = 'jshtml' from stonesoup.models.measurement.nonlinear import CartesianToElevationBearingRangeRate from stonesoup.functions import sphere2cart fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(1, 1, 1) frames = [] for time, ctracks in tracker: artists = [] ax.set_xlabel("$East$") ax.set_ylabel("$North$") ax.set_ylim(0, 2250) ax.set_xlim(-1000, 1000) X = [state.state_vector[0] for state in sensor_platform] Y = [state.state_vector[2] for state in sensor_platform] artists.extend(ax.plot(X, Y, color='b')) for detection in sim.detections: if isinstance(detection.measurement_model, CartesianToElevationBearingRangeRate): x, y = detection.measurement_model.inverse_function(detection)[[0, 2]] color = 'y' else: r = 10000000 # extract the platform rotation offsets _, el_offset, az_offset = sensor_platform.orientation # obtain measurement angles and map to cartesian e, a = detection.state_vector x, y, _ = sphere2cart(r, a + az_offset, e + el_offset) color = 'g' X = [sensor_platform.state_vector[0], x] Y = [sensor_platform.state_vector[2], y] artists.extend(ax.plot(X, Y, color=color)) X = [state.state_vector[0] for state in target] Y = [state.state_vector[2] for state in target] artists.extend(ax.plot(X, Y, color='r')) for track in ctracks: X = [state.state_vector[0] for state in track] Y = [state.state_vector[2] for state in track] artists.extend(ax.plot(X, Y, color='k')) frames.append(artists) animation.ArtistAnimation(fig, frames) # %% # To increase your confidence with simulated platform targets it would be good practice to modify the target to fly # pre-defined shapes, a race track oval for example. You could also experiment with different sensor performance levels # in order to see at what point the tracker is no longer able to generate a reasonable estimate of the target location. # %% # Key points # ---------- # 1. Platforms, static or moving, can be used as targets for sensor platforms. # 2. Simulations can be built with only known platform behaviours when you want to test specific scenarios. # 3. A tracker can be configured to exploit all sensor data created in a simulation.
[ "stonesoup.updater.particle.ParticleUpdater", "stonesoup.platform.base.MovingPlatform", "stonesoup.simulator.simple.DummyGroundTruthSimulator", "stonesoup.measures.Mahalanobis", "stonesoup.functions.sphere2cart", "numpy.array", "datetime.timedelta", "stonesoup.simulator.platform.PlatformDetectionSimulator", "numpy.arange", "stonesoup.sensor.radar.radar.RadarElevationBearingRangeRate", "stonesoup.models.transition.linear.ConstantVelocity", "stonesoup.types.array.StateVector", "stonesoup.models.transition.linear.ConstantTurn", "stonesoup.resampler.particle.SystematicResampler", "stonesoup.dataassociator.neighbour.GNNWith2DAssignment", "stonesoup.types.state.State", "numpy.deg2rad", "stonesoup.sensor.passive.PassiveElevationBearing", "stonesoup.deleter.time.UpdateTimeStepsDeleter", "numpy.diag", "datetime.datetime.now", "matplotlib.pyplot.figure", "matplotlib.animation.ArtistAnimation", "stonesoup.tracker.simple.SingleTargetTracker", "stonesoup.predictor.particle.ParticlePredictor", "stonesoup.initiator.simple.GaussianParticleInitiator", "stonesoup.platform.base.MultiTransitionMovingPlatform" ]
[((2101, 2115), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2113, 2115), False, 'from datetime import datetime\n'), ((3612, 3659), 'stonesoup.types.array.StateVector', 'StateVector', (['[[0], [0], [0], [50], [8000], [0]]'], {}), '([[0], [0], [0], [50], [8000], [0]])\n', (3623, 3659), False, 'from stonesoup.types.array import StateVector\n'), ((3676, 3706), 'stonesoup.types.state.State', 'State', (['initial_loc', 'start_time'], {}), '(initial_loc, start_time)\n', (3681, 3706), False, 'from stonesoup.types.state import State, GaussianState\n'), ((3940, 4071), 'stonesoup.platform.base.MovingPlatform', 'MovingPlatform', ([], {'states': 'initial_state', 'position_mapping': '(0, 2, 4)', 'velocity_mapping': '(1, 3, 5)', 'transition_model': 'transition_model'}), '(states=initial_state, position_mapping=(0, 2, 4),\n velocity_mapping=(1, 3, 5), transition_model=transition_model)\n', (3954, 4071), False, 'from stonesoup.platform.base import MovingPlatform\n'), ((5065, 5088), 'stonesoup.types.array.StateVector', 'StateVector', (['[10, 0, 0]'], {}), '([10, 0, 0])\n', (5076, 5088), False, 'from stonesoup.types.array import StateVector\n'), ((5132, 5154), 'stonesoup.types.array.StateVector', 'StateVector', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (5143, 5154), False, 'from stonesoup.types.array import StateVector\n'), ((5201, 5425), 'stonesoup.sensor.radar.radar.RadarElevationBearingRangeRate', 'RadarElevationBearingRangeRate', ([], {'ndim_state': '(6)', 'position_mapping': '(0, 2, 4)', 'velocity_mapping': '(1, 3, 5)', 'noise_covar': 'radar_noise_covar', 'mounting_offset': 'radar_mounting_offsets', 'rotation_offset': 'radar_rotation_offsets'}), '(ndim_state=6, position_mapping=(0, 2, 4),\n velocity_mapping=(1, 3, 5), noise_covar=radar_noise_covar,\n mounting_offset=radar_mounting_offsets, rotation_offset=\n radar_rotation_offsets)\n', (5231, 5425), False, 'from stonesoup.sensor.radar.radar import RadarElevationBearingRangeRate\n'), ((7195, 7218), 'stonesoup.types.array.StateVector', 'StateVector', (['[0, 8, -1]'], {}), '([0, 8, -1])\n', (7206, 7218), False, 'from stonesoup.types.array import StateVector\n'), ((7278, 7300), 'stonesoup.types.array.StateVector', 'StateVector', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (7289, 7300), False, 'from stonesoup.types.array import StateVector\n'), ((7348, 7527), 'stonesoup.sensor.passive.PassiveElevationBearing', 'PassiveElevationBearing', ([], {'ndim_state': '(6)', 'mapping': '(0, 2, 4)', 'noise_covar': 'imager_noise_covar', 'mounting_offset': 'imager_mounting_offsets', 'rotation_offset': 'imager_rotation_offsets'}), '(ndim_state=6, mapping=(0, 2, 4), noise_covar=\n imager_noise_covar, mounting_offset=imager_mounting_offsets,\n rotation_offset=imager_rotation_offsets)\n', (7371, 7527), False, 'from stonesoup.sensor.passive import PassiveElevationBearing\n'), ((10056, 10076), 'numpy.array', 'np.array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (10064, 10076), True, 'import numpy as np\n'), ((10150, 10235), 'stonesoup.models.transition.linear.ConstantTurn', 'ConstantTurn', ([], {'turn_noise_diff_coeffs': 'turn_noise_diff_coeffs', 'turn_rate': 'turn_rate'}), '(turn_noise_diff_coeffs=turn_noise_diff_coeffs, turn_rate=turn_rate\n )\n', (10162, 10235), False, 'from stonesoup.models.transition.linear import ConstantTurn\n'), ((10863, 10914), 'stonesoup.types.array.StateVector', 'StateVector', (['[[0], [-40], [1800], [0], [8000], [0]]'], {}), '([[0], [-40], [1800], [0], [8000], [0]])\n', (10874, 10914), False, 'from stonesoup.types.array import StateVector\n'), ((10938, 10980), 'stonesoup.types.state.State', 'State', (['initial_target_location', 'start_time'], {}), '(initial_target_location, start_time)\n', (10943, 10980), False, 'from stonesoup.types.state import State, GaussianState\n'), ((10990, 11194), 'stonesoup.platform.base.MultiTransitionMovingPlatform', 'MultiTransitionMovingPlatform', ([], {'transition_models': 'manoeuvre_list', 'transition_times': 'manoeuvre_times', 'states': 'initial_target_state', 'position_mapping': '(0, 2, 4)', 'velocity_mapping': '(1, 3, 5)', 'sensors': 'None'}), '(transition_models=manoeuvre_list,\n transition_times=manoeuvre_times, states=initial_target_state,\n position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), sensors=None)\n', (11019, 11194), False, 'from stonesoup.platform.base import MultiTransitionMovingPlatform\n'), ((12201, 12220), 'numpy.arange', 'np.arange', (['(0)', '(24)', '(1)'], {}), '(0, 24, 1)\n', (12210, 12220), True, 'import numpy as np\n'), ((12339, 12382), 'stonesoup.simulator.simple.DummyGroundTruthSimulator', 'DummyGroundTruthSimulator', ([], {'times': 'timestamps'}), '(times=timestamps)\n', (12364, 12382), False, 'from stonesoup.simulator.simple import DummyGroundTruthSimulator\n'), ((12389, 12476), 'stonesoup.simulator.platform.PlatformDetectionSimulator', 'PlatformDetectionSimulator', ([], {'groundtruth': 'truths', 'platforms': '[sensor_platform, target]'}), '(groundtruth=truths, platforms=[sensor_platform,\n target])\n', (12415, 12476), False, 'from stonesoup.simulator.platform import PlatformDetectionSimulator\n'), ((13354, 13396), 'stonesoup.predictor.particle.ParticlePredictor', 'ParticlePredictor', (['target_transition_model'], {}), '(target_transition_model)\n', (13371, 13396), False, 'from stonesoup.predictor.particle import ParticlePredictor\n'), ((13456, 13477), 'stonesoup.resampler.particle.SystematicResampler', 'SystematicResampler', ([], {}), '()\n', (13475, 13477), False, 'from stonesoup.resampler.particle import SystematicResampler\n'), ((13488, 13548), 'stonesoup.updater.particle.ParticleUpdater', 'ParticleUpdater', ([], {'measurement_model': 'None', 'resampler': 'resampler'}), '(measurement_model=None, resampler=resampler)\n', (13503, 13548), False, 'from stonesoup.updater.particle import ParticleUpdater\n'), ((13872, 13958), 'stonesoup.initiator.simple.GaussianParticleInitiator', 'GaussianParticleInitiator', ([], {'number_particles': '(500)', 'initiator': 'single_point_initiator'}), '(number_particles=500, initiator=\n single_point_initiator)\n', (13897, 13958), False, 'from stonesoup.initiator.simple import GaussianParticleInitiator, SinglePointInitiator\n'), ((14114, 14147), 'stonesoup.dataassociator.neighbour.GNNWith2DAssignment', 'GNNWith2DAssignment', (['hypothesiser'], {}), '(hypothesiser)\n', (14133, 14147), False, 'from stonesoup.dataassociator.neighbour import GNNWith2DAssignment\n'), ((14217, 14267), 'stonesoup.deleter.time.UpdateTimeStepsDeleter', 'UpdateTimeStepsDeleter', ([], {'time_steps_since_update': '(10)'}), '(time_steps_since_update=10)\n', (14239, 14267), False, 'from stonesoup.deleter.time import UpdateTimeStepsDeleter\n'), ((14319, 14444), 'stonesoup.tracker.simple.SingleTargetTracker', 'SingleTargetTracker', ([], {'initiator': 'initiator', 'deleter': 'deleter', 'detector': 'sim', 'data_associator': 'data_associator', 'updater': 'updater'}), '(initiator=initiator, deleter=deleter, detector=sim,\n data_associator=data_associator, updater=updater)\n', (14338, 14444), False, 'from stonesoup.tracker.simple import SingleTargetTracker\n'), ((15175, 15202), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (15185, 15202), True, 'from matplotlib import pyplot as plt\n'), ((16673, 16711), 'matplotlib.animation.ArtistAnimation', 'animation.ArtistAnimation', (['fig', 'frames'], {}), '(fig, frames)\n', (16698, 16711), False, 'from matplotlib import animation\n'), ((10436, 10456), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(8)'}), '(seconds=8)\n', (10445, 10456), False, 'from datetime import timedelta\n'), ((10477, 10497), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(8)'}), '(seconds=8)\n', (10486, 10497), False, 'from datetime import timedelta\n'), ((3826, 3847), 'stonesoup.models.transition.linear.ConstantVelocity', 'ConstantVelocity', (['(0.0)'], {}), '(0.0)\n', (3842, 3847), False, 'from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity\n'), ((3848, 3869), 'stonesoup.models.transition.linear.ConstantVelocity', 'ConstantVelocity', (['(0.0)'], {}), '(0.0)\n', (3864, 3869), False, 'from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity\n'), ((3870, 3891), 'stonesoup.models.transition.linear.ConstantVelocity', 'ConstantVelocity', (['(0.0)'], {}), '(0.0)\n', (3886, 3891), False, 'from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity\n'), ((9923, 9944), 'stonesoup.models.transition.linear.ConstantVelocity', 'ConstantVelocity', (['(0.0)'], {}), '(0.0)\n', (9939, 9944), False, 'from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity\n'), ((9945, 9966), 'stonesoup.models.transition.linear.ConstantVelocity', 'ConstantVelocity', (['(0.0)'], {}), '(0.0)\n', (9961, 9966), False, 'from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity\n'), ((9967, 9988), 'stonesoup.models.transition.linear.ConstantVelocity', 'ConstantVelocity', (['(0.0)'], {}), '(0.0)\n', (9983, 9988), False, 'from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity\n'), ((10350, 10371), 'stonesoup.models.transition.linear.ConstantVelocity', 'ConstantVelocity', (['(0.0)'], {}), '(0.0)\n', (10366, 10371), False, 'from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity\n'), ((13244, 13263), 'stonesoup.models.transition.linear.ConstantVelocity', 'ConstantVelocity', (['(5)'], {}), '(5)\n', (13260, 13263), False, 'from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity\n'), ((13265, 13284), 'stonesoup.models.transition.linear.ConstantVelocity', 'ConstantVelocity', (['(5)'], {}), '(5)\n', (13281, 13284), False, 'from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity\n'), ((13286, 13305), 'stonesoup.models.transition.linear.ConstantVelocity', 'ConstantVelocity', (['(1)'], {}), '(1)\n', (13302, 13305), False, 'from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity\n'), ((13798, 13846), 'numpy.diag', 'np.diag', (['[10000, 1000, 10000, 1000, 10000, 1000]'], {}), '([10000, 1000, 10000, 1000, 10000, 1000])\n', (13805, 13846), True, 'import numpy as np\n'), ((14057, 14070), 'stonesoup.measures.Mahalanobis', 'Mahalanobis', ([], {}), '()\n', (14068, 14070), False, 'from stonesoup.measures import Mahalanobis\n'), ((16090, 16134), 'stonesoup.functions.sphere2cart', 'sphere2cart', (['r', '(a + az_offset)', '(e + el_offset)'], {}), '(r, a + az_offset, e + el_offset)\n', (16101, 16134), False, 'from stonesoup.functions import sphere2cart\n'), ((4888, 4901), 'numpy.deg2rad', 'np.deg2rad', (['(3)'], {}), '(3)\n', (4898, 4901), True, 'import numpy as np\n'), ((4930, 4943), 'numpy.deg2rad', 'np.deg2rad', (['(3)'], {}), '(3)\n', (4940, 4943), True, 'import numpy as np\n'), ((7024, 7040), 'numpy.deg2rad', 'np.deg2rad', (['(0.05)'], {}), '(0.05)\n', (7034, 7040), True, 'import numpy as np\n'), ((7111, 7127), 'numpy.deg2rad', 'np.deg2rad', (['(0.05)'], {}), '(0.05)\n', (7121, 7127), True, 'import numpy as np\n')]
#!/usr/bin/env python # # This program shows how to use MPI_Alltoall. Each processor # send/rec a different random number to/from other processors. # # numpy is required import numpy from numpy import * # mpi4py module from mpi4py import MPI import sys def myquit(mes): MPI.Finalize() print(mes) sys.exit() # Initialize MPI and print out hello comm=MPI.COMM_WORLD myid=comm.Get_rank() numprocs=comm.Get_size() print("hello from ",myid," of ",numprocs) # We are going to send/recv a single value to/from # each processor. Here we allocate arrays s_vals=zeros(numprocs,"i") r_vals=zeros(numprocs,"i") # Fill the send arrays with random numbers random.seed(myid) for i in range(0, numprocs): s_vals[i]=random.randint(1,10) print("myid=",myid,"s_vals=",s_vals) # Send/recv to/from all comm.Alltoall(s_vals, r_vals) print("myid=",myid,"r_vals=",r_vals) MPI.Finalize() # Note, the sent values and the recv values are # like a transpose of each other # # mpiexec -n 4 ./P_ex07.py | grep s_v | sort # myid= 0 s_vals= [6 1 4 4] # myid= 1 s_vals= [6 9 6 1] # myid= 2 s_vals= [9 9 7 3] # myid= 3 s_vals= [9 4 9 9] # mpiexec -n 4 ./P_ex07.py | grep r_v | sort # myid= 0 r_vals= [6 6 9 9] # myid= 1 r_vals= [1 9 9 4] # myid= 2 r_vals= [4 6 7 9] # myid= 3 r_vals= [4 1 3 9]
[ "mpi4py.MPI.Finalize", "sys.exit" ]
[((895, 909), 'mpi4py.MPI.Finalize', 'MPI.Finalize', ([], {}), '()\n', (907, 909), False, 'from mpi4py import MPI\n'), ((284, 298), 'mpi4py.MPI.Finalize', 'MPI.Finalize', ([], {}), '()\n', (296, 298), False, 'from mpi4py import MPI\n'), ((326, 336), 'sys.exit', 'sys.exit', ([], {}), '()\n', (334, 336), False, 'import sys\n')]
""" render_fmo.py renders obj file to rgb image with fmo model Aviable function: - clear_mash: delete all the mesh in the secene - scene_setting_init: set scene configurations - node_setting_init: set node configurations - render: render rgb image for one obj file and one viewpoint - render_obj: wrapper function for render() render - init_all: a wrapper function, initialize all configurations = set_image_path: reset defualt image output folder author baiyu modified by rozumden """ import sys import os import random import pickle import bpy import glob import numpy as np from mathutils import Vector from mathutils import Euler import cv2 from PIL import Image from skimage.draw import line_aa from scipy import signal from skimage.measure import regionprops # import moviepy.editor as mpy from array2gif import write_gif abs_path = os.path.abspath(__file__) sys.path.append(os.path.dirname(abs_path)) from render_helper import * from settings import * import settings import pdb def renderTraj(pars, H): ## Input: pars is either 2x2 (line) or 2x3 (parabola) if pars.shape[1] == 2: pars = np.concatenate( (pars, np.zeros((2,1))),1) ns = 2 else: ns = 5 ns = np.max([2, ns]) rangeint = np.linspace(0,1,ns) for timeinst in range(rangeint.shape[0]-1): ti0 = rangeint[timeinst] ti1 = rangeint[timeinst+1] start = pars[:,0] + pars[:,1]*ti0 + pars[:,2]*(ti0*ti0) end = pars[:,0] + pars[:,1]*ti1 + pars[:,2]*(ti1*ti1) start = np.round(start).astype(np.int32) end = np.round(end).astype(np.int32) rr, cc, val = line_aa(start[0], start[1], end[0], end[1]) valid = np.logical_and(np.logical_and(rr < H.shape[0], cc < H.shape[1]), np.logical_and(rr > 0, cc > 0)) rr = rr[valid] cc = cc[valid] val = val[valid] if len(H.shape) > 2: H[rr, cc, 0] = 0 H[rr, cc, 1] = 0 H[rr, cc, 2] = val else: H[rr, cc] = val return H def open_log(temp_folder = g_temp): # redirect output to log file logfile = os.path.join(temp_folder,'blender_render.log') try: os.remove(logfile) except OSError: pass open(logfile, 'a').close() old = os.dup(1) sys.stdout.flush() os.close(1) os.open(logfile, os.O_WRONLY) return old def close_log(old): # disable output redirection os.close(1) os.dup(old) os.close(old) def clear_mesh(): """ clear all meshes in the secene """ bpy.ops.object.select_all(action='DESELECT') for obj in bpy.data.objects: if obj.type == 'MESH': obj.select = True bpy.ops.object.delete() for block in bpy.data.meshes: if block.users == 0: bpy.data.meshes.remove(block) for block in bpy.data.materials: if block.users == 0: bpy.data.materials.remove(block) for block in bpy.data.textures: if block.users == 0: bpy.data.textures.remove(block) for block in bpy.data.images: if block.users == 0: bpy.data.images.remove(block) def scene_setting_init(use_gpu): """initialize blender setting configurations """ sce = bpy.context.scene.name bpy.data.scenes[sce].render.engine = g_engine_type bpy.data.scenes[sce].cycles.film_transparent = g_use_film_transparent #output bpy.data.scenes[sce].render.image_settings.color_mode = g_rgb_color_mode bpy.data.scenes[sce].render.image_settings.color_depth = g_rgb_color_depth bpy.data.scenes[sce].render.image_settings.file_format = g_rgb_file_format bpy.data.scenes[sce].render.use_overwrite = g_depth_use_overwrite bpy.data.scenes[sce].render.use_file_extension = g_depth_use_file_extension if g_ambient_light: world = bpy.data.worlds['World'] world.use_nodes = True bg = world.node_tree.nodes['Background'] bg.inputs[0].default_value[:3] = g_bg_color bg.inputs[1].default_value = 1.0 #dimensions bpy.data.scenes[sce].render.resolution_x = g_resolution_x bpy.data.scenes[sce].render.resolution_y = g_resolution_y bpy.data.scenes[sce].render.resolution_percentage = g_resolution_percentage if use_gpu: bpy.data.scenes[sce].render.engine = 'CYCLES' #only cycles engine can use gpu bpy.data.scenes[sce].render.tile_x = g_hilbert_spiral bpy.data.scenes[sce].render.tile_x = g_hilbert_spiral bpy.context.user_preferences.addons['cycles'].preferences.devices[0].use = False bpy.context.user_preferences.addons['cycles'].preferences.devices[1].use = True ndev = len(bpy.context.user_preferences.addons['cycles'].preferences.devices) print('Number of devices {}'.format(ndev)) for ki in range(2,ndev): bpy.context.user_preferences.addons['cycles'].preferences.devices[ki].use = False bpy.context.user_preferences.addons['cycles'].preferences.compute_device_type = 'CUDA' # bpy.types.CyclesRenderSettings.device = 'GPU' bpy.data.scenes[sce].cycles.device = 'GPU' def node_setting_init(): bpy.context.scene.use_nodes = True tree = bpy.context.scene.node_tree links = tree.links for node in tree.nodes: tree.nodes.remove(node) render_layer_node = tree.nodes.new('CompositorNodeRLayers') image_output_node = tree.nodes.new('CompositorNodeOutputFile') image_output_node.base_path = g_syn_rgb_folder links.new(render_layer_node.outputs[0], image_output_node.inputs[0]) # image_output_node = bpy.context.scene.node_tree.nodes[1] image_output_node.base_path = g_temp image_output_node.file_slots[0].path = 'image-######.png' # blender placeholder # def render(obj_path, viewpoint, temp_folder): """render rbg image render a object rgb image by a given camera viewpoint and choose random image as background, only render one image at a time. Args: obj_path: a string variable indicate the obj file path viewpoint: a vp parameter(contains azimuth,elevation,tilt angles and distance) """ vp = viewpoint cam_location = camera_location(vp.azimuth, vp.elevation, vp.distance) cam_rot = camera_rot_XYZEuler(vp.azimuth, vp.elevation, vp.tilt) cam_obj = bpy.data.objects['Camera'] cam_obj.location[0] = cam_location[0] cam_obj.location[1] = cam_location[1] cam_obj.location[2] = cam_location[2] cam_obj.rotation_euler[0] = cam_rot[0] cam_obj.rotation_euler[1] = cam_rot[1] cam_obj.rotation_euler[2] = cam_rot[2] if not os.path.exists(g_syn_rgb_folder): os.mkdir(g_syn_rgb_folder) obj = bpy.data.objects['model_normalized'] ni = g_fmo_steps maxlen = 0.5 maxrot = 1.57/6 tri = 0 # rot_base = np.array([math.pi/2,0,0]) while tri <= g_max_trials: do_repeat = False tri += 1 if not g_apply_texture: for oi in range(len(bpy.data.objects)): if bpy.data.objects[oi].type == 'CAMERA' or bpy.data.objects[oi].type == 'LAMP': continue for tempi in range(len(bpy.data.objects[oi].data.materials)): if bpy.data.objects[oi].data.materials[tempi].alpha != 1.0: return True, True ## transparent object los_start = Vector((random.uniform(-maxlen/10, maxlen/10), random.uniform(-maxlen, maxlen), random.uniform(-maxlen, maxlen))) loc_step = Vector((random.uniform(-maxlen/10, maxlen/10), random.uniform(-maxlen, maxlen), random.uniform(-maxlen, maxlen)))/ni rot_base = np.array((random.uniform(0, 2*math.pi), random.uniform(0, 2*math.pi), random.uniform(0, 2*math.pi))) rot_step = np.array((random.uniform(-maxrot, maxrot), random.uniform(-maxrot, maxrot), random.uniform(-maxrot, maxrot)))/ni old = open_log(temp_folder) for ki in [0, ni-1]+list(range(1,ni-1)): for oi in range(len(bpy.data.objects)): if bpy.data.objects[oi].type == 'CAMERA' or bpy.data.objects[oi].type == 'LAMP': continue bpy.data.objects[oi].location = los_start + loc_step*ki bpy.data.objects[oi].rotation_euler = Euler(rot_base + (rot_step*ki)) bpy.context.scene.frame_set(ki + 1) bpy.ops.render.render(write_still=True) #start rendering if ki == 0 or ki == (ni-1): Mt = cv2.imread(os.path.join(bpy.context.scene.node_tree.nodes[1].base_path,'image-{:06d}.png'.format(ki+1)),cv2.IMREAD_UNCHANGED)[:,:,-1] > 0 is_border = ((Mt[0,:].sum()+Mt[-1,:].sum()+Mt[:,0].sum()+Mt[:,-1].sum()) > 0) or Mt.sum()==0 if is_border: if ki == 0: close_log(old) return False, True ## sample different starting viewpoint else: do_repeat = True ## just sample another motion direction if do_repeat: break close_log(old) if do_repeat == False: break if do_repeat: ## sample different starting viewpoint return False, True return False, False def make_fmo(path, gt_path, video_path): n_im = 5 background_images = os.listdir(g_background_image_path) seq_name = random.choice(background_images) seq_images = glob.glob(os.path.join(g_background_image_path,seq_name,"*.jpg")) if len(seq_images) <= n_im: seq_images = glob.glob(os.path.join(g_background_image_path,seq_name,"*.png")) seq_images.sort() bgri = random.randint(n_im,len(seq_images)-1) bgr_path = seq_images[bgri] B0 = cv2.imread(bgr_path)/255 B = cv2.resize(B0, dsize=(int(g_resolution_x*g_resolution_percentage/100), int(g_resolution_y*g_resolution_percentage/100)), interpolation=cv2.INTER_CUBIC) B[B > 1] = 1 B[B < 0] = 0 FH = np.zeros(B.shape) MH = np.zeros(B.shape[:2]) pars = np.array([[(B.shape[0]-1)/2-1, (B.shape[1]-1)/2-1], [1.0, 1.0]]).T FM = np.zeros(B.shape[:2]+(4,g_fmo_steps,)) centroids = np.zeros((2,g_fmo_steps)) for ki in range(g_fmo_steps): FM[:,:,:,ki] = cv2.imread(os.path.join(gt_path,'image-{:06d}.png'.format(ki+1)),cv2.IMREAD_UNCHANGED)/g_rgb_color_max props = regionprops((FM[:,:,-1,ki]>0).astype(int)) if len(props) != 1: return False centroids[:,ki] = props[0].centroid for ki in range(g_fmo_steps): F = FM[:,:,:-1,ki]*FM[:,:,-1:,ki] M = FM[:,:,-1,ki] if ki < g_fmo_steps-1: pars[:,1] = centroids[:,ki+1] - centroids[:,ki] H = renderTraj(pars, np.zeros(B.shape[:2])) H /= H.sum()*g_fmo_steps for kk in range(3): FH[:,:,kk] += signal.fftconvolve(H, F[:,:,kk], mode='same') MH += signal.fftconvolve(H, M, mode='same') Im = FH + (1 - MH)[:,:,np.newaxis]*B Im[Im > 1] = 1 Im[Im < 0] = 0 if g_skip_low_contrast: Diff = np.sum(np.abs(Im - B),2) meanval = np.mean(Diff[MH > 0.05]) print("Contrast {}".format(meanval)) if meanval < 0.2: return False if g_skip_small: sizeper = np.sum(MH > 0.01)/(MH.shape[0]*MH.shape[1]) print("Size percentage {}".format(sizeper)) if sizeper < 0.05: return False Im = Im[:,:,[2,1,0]] Ims = Image.fromarray((Im * 255).astype(np.uint8)) Ims.save(path) Ball = np.zeros(B.shape+(n_im,)) Ball[:,:,:,0] = B for ki in range(1,n_im): bgrki_path = seq_images[bgri-ki] Ball[:,:,:,ki] = cv2.resize(cv2.imread(bgrki_path)/255, dsize=(int(g_resolution_x*g_resolution_percentage/100), int(g_resolution_y*g_resolution_percentage/100)), interpolation=cv2.INTER_CUBIC) Ball[Ball > 1] = 1 Ball[Ball < 0] = 0 Bmed = np.median(Ball,3) Image.fromarray((B[:,:,[2,1,0]] * 255).astype(np.uint8)).save(os.path.join(gt_path,'bgr.png')) Image.fromarray((Bmed[:,:,[2,1,0]] * 255).astype(np.uint8)).save(os.path.join(gt_path,'bgr_med.png')) # Ims.save(os.path.join(g_temp,"I.png")) # Image.fromarray((FH * 255)[:,:,[2,1,0]].astype(np.uint8)).save(os.path.join(g_temp,"FH.png")) # Image.fromarray((MH * 255).astype(np.uint8)).save(os.path.join(g_temp,"MH.png")) # Image.fromarray((M * 255).astype(np.uint8)).save(os.path.join(g_temp,"M.png")) # Image.fromarray((F * 255)[:,:,[2,1,0]].astype(np.uint8)).save(os.path.join(g_temp,"F.png")) # Image.fromarray((B0 * 255)[:,:,[2,1,0]].astype(np.uint8)).save(os.path.join(g_temp,"B.png")) if False: Fwr = FM[:,:,:-1,:] * FM[:,:,-1:,:] + 1 * (1 - FM[:,:,-1:,:]) Fwr = (Fwr * 255).astype(np.uint8) # Fwr[np.repeat(FM[:,:,-1:,:]==0,3,2)]=255 out = cv2.VideoWriter(video_path,cv2.VideoWriter_fourcc(*"MJPG"), 6, (F.shape[1],F.shape[0]),True) for ki in range(g_fmo_steps): out.write(Fwr[:,:,:,ki]) out.release() return True def render_obj(obj_path, path, objid, obj_name, temp_folder): """ render one obj file by a given viewpoint list a wrapper function for render() Args: obj_path: a string variable indicate the obj file path """ vps_path = random.sample(g_view_point_file, 1)[0] vps = list(load_viewpoint(vps_path)) random.shuffle(vps) save_path = os.path.join(path,"{}_{:04d}.png".format(obj_name,objid)) gt_path = os.path.join(path,"GT","{}_{:04d}".format(obj_name,objid)) video_path = os.path.join(path,"{}_{:04d}.avi".format(obj_name,objid)) if not os.path.exists(gt_path): os.mkdir(gt_path) image_output_node = bpy.context.scene.node_tree.nodes[1] image_output_node.base_path = gt_path for imt in bpy.data.images: bpy.data.images.remove(imt) if g_apply_texture: for oi in range(len(bpy.data.objects)): if bpy.data.objects[oi].type == 'CAMERA' or bpy.data.objects[oi].type == 'LAMP': continue bpy.context.scene.objects.active = bpy.data.objects[oi] # pdb.set_trace() # for m in bpy.data.materials: # bpy.data.materials.remove(m) # bpy.ops.object.material_slot_remove() bpy.ops.object.editmode_toggle() bpy.ops.uv.cube_project() bpy.ops.object.editmode_toggle() texture_images = os.listdir(g_texture_path) texture = random.choice(texture_images) tex_path = os.path.join(g_texture_path,texture) # mat = bpy.data.materials.new(texture) # mat.use_nodes = True # nt = mat.node_tree # nodes = nt.nodes # links = nt.links # # Image Texture # textureNode = nodes.new("ShaderNodeTexImage") # textureNode.image = bpy.data.images.load(tex_path) # links.new(nodes['Diffuse BSDF'].inputs['Color'], textureNode.outputs['Color']) # mat.specular_intensity = 0 # bpy.data.objects[oi].active_material = mat # print(bpy.data.objects[oi].active_material) for mat in bpy.data.materials: nodes = mat.node_tree.nodes links = mat.node_tree.links textureNode = nodes.new("ShaderNodeTexImage") textureNode.image = bpy.data.images.load(tex_path) links.new(nodes['Diffuse BSDF'].inputs['Color'], textureNode.outputs['Color']) # print(bpy.data.objects[oi].active_material) tri = 0 while tri <= g_max_trials: tri += 1 vp = random.sample(vps, 1)[0] sample_different_object, sample_different_vp = render(obj_path, vp, temp_folder) if sample_different_vp: if sample_different_object: print('Transparent object!') return False print('Rendering failed, repeating') continue success = make_fmo(save_path, gt_path, video_path) if success: return True print('Making FMO failed, repeating') return False def init_all(): """init everything we need for rendering an image """ scene_setting_init(g_gpu_render_enable) node_setting_init() cam_obj = bpy.data.objects['Camera'] cam_obj.rotation_mode = g_rotation_mode if g_render_light: bpy.data.objects['Lamp'].data.energy = 50 bpy.ops.object.lamp_add(type='SUN') bpy.data.objects['Sun'].data.energy = 5 ### YOU CAN WRITE YOUR OWN IMPLEMENTATION TO GENERATE DATA init_all() argv = sys.argv argv = argv[argv.index("--") + 1:] start_index = int(argv[0]) step_index = int(argv[1]) print('Start index {}, step index {}'.format(start_index, step_index)) temp_folder = g_syn_rgb_folder+g_render_objs[start_index]+'/' for obj_name in g_render_objs[start_index:(start_index+step_index)]: print("Processing object {}".format(obj_name)) obj_folder = os.path.join(g_syn_rgb_folder, obj_name) if not os.path.exists(obj_folder): os.makedirs(obj_folder) if not os.path.exists(os.path.join(obj_folder,"GT")): os.mkdir(os.path.join(obj_folder,"GT")) num = g_shapenet_categlory_pair[obj_name] search_path = os.path.join(g_shapenet_path, num, '**','*.obj') pathes = glob.glob(search_path, recursive=True) random.shuffle(pathes) objid = 1 tri = 0 while objid <= g_number_per_category: print(" instance {}".format(objid)) clear_mesh() path = random.sample(pathes, 1)[0] old = open_log(temp_folder) bpy.ops.import_scene.obj(filepath=path, axis_forward='-Z', axis_up='Y', filter_glob="*.obj;*.mtl", use_split_groups=False, use_split_objects=True) # bpy.ops.import_scene.obj(filepath=path) close_log(old) #combine_objects() #scale_objects(0.5) result = render_obj(path, obj_folder, objid, obj_name, temp_folder) if result: objid += 1 tri = 0 else: print('Error! Rendering another object from the category!') tri += 1 if tri > g_max_trials: print('No object find in the category!!!!!!!!!') break
[ "os.open", "numpy.array", "bpy.data.images.load", "bpy.data.images.remove", "os.remove", "bpy.ops.object.delete", "os.path.exists", "numpy.mean", "os.listdir", "scipy.signal.fftconvolve", "bpy.data.textures.remove", "numpy.max", "os.dup", "numpy.linspace", "bpy.ops.object.lamp_add", "os.mkdir", "bpy.data.materials.remove", "cv2.VideoWriter_fourcc", "sys.stdout.flush", "glob.glob", "numpy.round", "numpy.abs", "random.sample", "random.choice", "bpy.data.meshes.remove", "random.shuffle", "random.uniform", "os.close", "bpy.ops.object.select_all", "os.path.dirname", "cv2.imread", "bpy.ops.object.editmode_toggle", "mathutils.Euler", "numpy.median", "os.makedirs", "numpy.logical_and", "os.path.join", "skimage.draw.line_aa", "bpy.context.scene.frame_set", "numpy.sum", "numpy.zeros", "bpy.ops.import_scene.obj", "bpy.ops.render.render", "os.path.abspath", "bpy.ops.uv.cube_project" ]
[((869, 894), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (884, 894), False, 'import os\n'), ((911, 936), 'os.path.dirname', 'os.path.dirname', (['abs_path'], {}), '(abs_path)\n', (926, 936), False, 'import os\n'), ((1235, 1250), 'numpy.max', 'np.max', (['[2, ns]'], {}), '([2, ns])\n', (1241, 1250), True, 'import numpy as np\n'), ((1266, 1287), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'ns'], {}), '(0, 1, ns)\n', (1277, 1287), True, 'import numpy as np\n'), ((2127, 2174), 'os.path.join', 'os.path.join', (['temp_folder', '"""blender_render.log"""'], {}), "(temp_folder, 'blender_render.log')\n", (2139, 2174), False, 'import os\n'), ((2284, 2293), 'os.dup', 'os.dup', (['(1)'], {}), '(1)\n', (2290, 2293), False, 'import os\n'), ((2298, 2316), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (2314, 2316), False, 'import sys\n'), ((2321, 2332), 'os.close', 'os.close', (['(1)'], {}), '(1)\n', (2329, 2332), False, 'import os\n'), ((2337, 2366), 'os.open', 'os.open', (['logfile', 'os.O_WRONLY'], {}), '(logfile, os.O_WRONLY)\n', (2344, 2366), False, 'import os\n'), ((2436, 2447), 'os.close', 'os.close', (['(1)'], {}), '(1)\n', (2444, 2447), False, 'import os\n'), ((2452, 2463), 'os.dup', 'os.dup', (['old'], {}), '(old)\n', (2458, 2463), False, 'import os\n'), ((2468, 2481), 'os.close', 'os.close', (['old'], {}), '(old)\n', (2476, 2481), False, 'import os\n'), ((2553, 2597), 'bpy.ops.object.select_all', 'bpy.ops.object.select_all', ([], {'action': '"""DESELECT"""'}), "(action='DESELECT')\n", (2578, 2597), False, 'import bpy\n'), ((2696, 2719), 'bpy.ops.object.delete', 'bpy.ops.object.delete', ([], {}), '()\n', (2717, 2719), False, 'import bpy\n'), ((9367, 9402), 'os.listdir', 'os.listdir', (['g_background_image_path'], {}), '(g_background_image_path)\n', (9377, 9402), False, 'import os\n'), ((9418, 9450), 'random.choice', 'random.choice', (['background_images'], {}), '(background_images)\n', (9431, 9450), False, 'import random\n'), ((9995, 10012), 'numpy.zeros', 'np.zeros', (['B.shape'], {}), '(B.shape)\n', (10003, 10012), True, 'import numpy as np\n'), ((10022, 10043), 'numpy.zeros', 'np.zeros', (['B.shape[:2]'], {}), '(B.shape[:2])\n', (10030, 10043), True, 'import numpy as np\n'), ((10131, 10171), 'numpy.zeros', 'np.zeros', (['(B.shape[:2] + (4, g_fmo_steps))'], {}), '(B.shape[:2] + (4, g_fmo_steps))\n', (10139, 10171), True, 'import numpy as np\n'), ((10186, 10212), 'numpy.zeros', 'np.zeros', (['(2, g_fmo_steps)'], {}), '((2, g_fmo_steps))\n', (10194, 10212), True, 'import numpy as np\n'), ((11548, 11575), 'numpy.zeros', 'np.zeros', (['(B.shape + (n_im,))'], {}), '(B.shape + (n_im,))\n', (11556, 11575), True, 'import numpy as np\n'), ((11924, 11942), 'numpy.median', 'np.median', (['Ball', '(3)'], {}), '(Ball, 3)\n', (11933, 11942), True, 'import numpy as np\n'), ((13405, 13424), 'random.shuffle', 'random.shuffle', (['vps'], {}), '(vps)\n', (13419, 13424), False, 'import random\n'), ((17094, 17134), 'os.path.join', 'os.path.join', (['g_syn_rgb_folder', 'obj_name'], {}), '(g_syn_rgb_folder, obj_name)\n', (17106, 17134), False, 'import os\n'), ((17377, 17426), 'os.path.join', 'os.path.join', (['g_shapenet_path', 'num', '"""**"""', '"""*.obj"""'], {}), "(g_shapenet_path, num, '**', '*.obj')\n", (17389, 17426), False, 'import os\n'), ((17439, 17477), 'glob.glob', 'glob.glob', (['search_path'], {'recursive': '(True)'}), '(search_path, recursive=True)\n', (17448, 17477), False, 'import glob\n'), ((17482, 17504), 'random.shuffle', 'random.shuffle', (['pathes'], {}), '(pathes)\n', (17496, 17504), False, 'import random\n'), ((1644, 1687), 'skimage.draw.line_aa', 'line_aa', (['start[0]', 'start[1]', 'end[0]', 'end[1]'], {}), '(start[0], start[1], end[0], end[1])\n', (1651, 1687), False, 'from skimage.draw import line_aa\n'), ((2191, 2209), 'os.remove', 'os.remove', (['logfile'], {}), '(logfile)\n', (2200, 2209), False, 'import os\n'), ((6634, 6666), 'os.path.exists', 'os.path.exists', (['g_syn_rgb_folder'], {}), '(g_syn_rgb_folder)\n', (6648, 6666), False, 'import os\n'), ((6676, 6702), 'os.mkdir', 'os.mkdir', (['g_syn_rgb_folder'], {}), '(g_syn_rgb_folder)\n', (6684, 6702), False, 'import os\n'), ((9478, 9534), 'os.path.join', 'os.path.join', (['g_background_image_path', 'seq_name', '"""*.jpg"""'], {}), "(g_background_image_path, seq_name, '*.jpg')\n", (9490, 9534), False, 'import os\n'), ((9767, 9787), 'cv2.imread', 'cv2.imread', (['bgr_path'], {}), '(bgr_path)\n', (9777, 9787), False, 'import cv2\n'), ((10055, 10131), 'numpy.array', 'np.array', (['[[(B.shape[0] - 1) / 2 - 1, (B.shape[1] - 1) / 2 - 1], [1.0, 1.0]]'], {}), '([[(B.shape[0] - 1) / 2 - 1, (B.shape[1] - 1) / 2 - 1], [1.0, 1.0]])\n', (10063, 10131), True, 'import numpy as np\n'), ((10921, 10958), 'scipy.signal.fftconvolve', 'signal.fftconvolve', (['H', 'M'], {'mode': '"""same"""'}), "(H, M, mode='same')\n", (10939, 10958), False, 'from scipy import signal\n'), ((11124, 11148), 'numpy.mean', 'np.mean', (['Diff[MH > 0.05]'], {}), '(Diff[MH > 0.05])\n', (11131, 11148), True, 'import numpy as np\n'), ((12008, 12040), 'os.path.join', 'os.path.join', (['gt_path', '"""bgr.png"""'], {}), "(gt_path, 'bgr.png')\n", (12020, 12040), False, 'import os\n'), ((12110, 12146), 'os.path.join', 'os.path.join', (['gt_path', '"""bgr_med.png"""'], {}), "(gt_path, 'bgr_med.png')\n", (12122, 12146), False, 'import os\n'), ((13321, 13356), 'random.sample', 'random.sample', (['g_view_point_file', '(1)'], {}), '(g_view_point_file, 1)\n', (13334, 13356), False, 'import random\n'), ((13658, 13681), 'os.path.exists', 'os.path.exists', (['gt_path'], {}), '(gt_path)\n', (13672, 13681), False, 'import os\n'), ((13691, 13708), 'os.mkdir', 'os.mkdir', (['gt_path'], {}), '(gt_path)\n', (13699, 13708), False, 'import os\n'), ((13853, 13880), 'bpy.data.images.remove', 'bpy.data.images.remove', (['imt'], {}), '(imt)\n', (13875, 13880), False, 'import bpy\n'), ((16555, 16590), 'bpy.ops.object.lamp_add', 'bpy.ops.object.lamp_add', ([], {'type': '"""SUN"""'}), "(type='SUN')\n", (16578, 16590), False, 'import bpy\n'), ((17146, 17172), 'os.path.exists', 'os.path.exists', (['obj_folder'], {}), '(obj_folder)\n', (17160, 17172), False, 'import os\n'), ((17182, 17205), 'os.makedirs', 'os.makedirs', (['obj_folder'], {}), '(obj_folder)\n', (17193, 17205), False, 'import os\n'), ((17735, 17885), 'bpy.ops.import_scene.obj', 'bpy.ops.import_scene.obj', ([], {'filepath': 'path', 'axis_forward': '"""-Z"""', 'axis_up': '"""Y"""', 'filter_glob': '"""*.obj;*.mtl"""', 'use_split_groups': '(False)', 'use_split_objects': '(True)'}), "(filepath=path, axis_forward='-Z', axis_up='Y',\n filter_glob='*.obj;*.mtl', use_split_groups=False, use_split_objects=True)\n", (17759, 17885), False, 'import bpy\n'), ((1719, 1767), 'numpy.logical_and', 'np.logical_and', (['(rr < H.shape[0])', '(cc < H.shape[1])'], {}), '(rr < H.shape[0], cc < H.shape[1])\n', (1733, 1767), True, 'import numpy as np\n'), ((1769, 1799), 'numpy.logical_and', 'np.logical_and', (['(rr > 0)', '(cc > 0)'], {}), '(rr > 0, cc > 0)\n', (1783, 1799), True, 'import numpy as np\n'), ((2795, 2824), 'bpy.data.meshes.remove', 'bpy.data.meshes.remove', (['block'], {}), '(block)\n', (2817, 2824), False, 'import bpy\n'), ((2904, 2936), 'bpy.data.materials.remove', 'bpy.data.materials.remove', (['block'], {}), '(block)\n', (2929, 2936), False, 'import bpy\n'), ((3015, 3046), 'bpy.data.textures.remove', 'bpy.data.textures.remove', (['block'], {}), '(block)\n', (3039, 3046), False, 'import bpy\n'), ((3123, 3152), 'bpy.data.images.remove', 'bpy.data.images.remove', (['block'], {}), '(block)\n', (3145, 3152), False, 'import bpy\n'), ((8349, 8384), 'bpy.context.scene.frame_set', 'bpy.context.scene.frame_set', (['(ki + 1)'], {}), '(ki + 1)\n', (8376, 8384), False, 'import bpy\n'), ((8397, 8436), 'bpy.ops.render.render', 'bpy.ops.render.render', ([], {'write_still': '(True)'}), '(write_still=True)\n', (8418, 8436), False, 'import bpy\n'), ((9597, 9653), 'os.path.join', 'os.path.join', (['g_background_image_path', 'seq_name', '"""*.png"""'], {}), "(g_background_image_path, seq_name, '*.png')\n", (9609, 9653), False, 'import os\n'), ((10750, 10771), 'numpy.zeros', 'np.zeros', (['B.shape[:2]'], {}), '(B.shape[:2])\n', (10758, 10771), True, 'import numpy as np\n'), ((10861, 10908), 'scipy.signal.fftconvolve', 'signal.fftconvolve', (['H', 'F[:, :, kk]'], {'mode': '"""same"""'}), "(H, F[:, :, kk], mode='same')\n", (10879, 10908), False, 'from scipy import signal\n'), ((11088, 11102), 'numpy.abs', 'np.abs', (['(Im - B)'], {}), '(Im - B)\n', (11094, 11102), True, 'import numpy as np\n'), ((11284, 11301), 'numpy.sum', 'np.sum', (['(MH > 0.01)'], {}), '(MH > 0.01)\n', (11290, 11301), True, 'import numpy as np\n'), ((12883, 12914), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'MJPG'"], {}), "(*'MJPG')\n", (12905, 12914), False, 'import cv2\n'), ((14338, 14370), 'bpy.ops.object.editmode_toggle', 'bpy.ops.object.editmode_toggle', ([], {}), '()\n', (14368, 14370), False, 'import bpy\n'), ((14383, 14408), 'bpy.ops.uv.cube_project', 'bpy.ops.uv.cube_project', ([], {}), '()\n', (14406, 14408), False, 'import bpy\n'), ((14421, 14453), 'bpy.ops.object.editmode_toggle', 'bpy.ops.object.editmode_toggle', ([], {}), '()\n', (14451, 14453), False, 'import bpy\n'), ((14484, 14510), 'os.listdir', 'os.listdir', (['g_texture_path'], {}), '(g_texture_path)\n', (14494, 14510), False, 'import os\n'), ((14533, 14562), 'random.choice', 'random.choice', (['texture_images'], {}), '(texture_images)\n', (14546, 14562), False, 'import random\n'), ((14586, 14623), 'os.path.join', 'os.path.join', (['g_texture_path', 'texture'], {}), '(g_texture_path, texture)\n', (14598, 14623), False, 'import os\n'), ((15731, 15752), 'random.sample', 'random.sample', (['vps', '(1)'], {}), '(vps, 1)\n', (15744, 15752), False, 'import random\n'), ((17232, 17262), 'os.path.join', 'os.path.join', (['obj_folder', '"""GT"""'], {}), "(obj_folder, 'GT')\n", (17244, 17262), False, 'import os\n'), ((17281, 17311), 'os.path.join', 'os.path.join', (['obj_folder', '"""GT"""'], {}), "(obj_folder, 'GT')\n", (17293, 17311), False, 'import os\n'), ((17663, 17687), 'random.sample', 'random.sample', (['pathes', '(1)'], {}), '(pathes, 1)\n', (17676, 17687), False, 'import random\n'), ((1166, 1182), 'numpy.zeros', 'np.zeros', (['(2, 1)'], {}), '((2, 1))\n', (1174, 1182), True, 'import numpy as np\n'), ((1544, 1559), 'numpy.round', 'np.round', (['start'], {}), '(start)\n', (1552, 1559), True, 'import numpy as np\n'), ((1591, 1604), 'numpy.round', 'np.round', (['end'], {}), '(end)\n', (1599, 1604), True, 'import numpy as np\n'), ((7405, 7446), 'random.uniform', 'random.uniform', (['(-maxlen / 10)', '(maxlen / 10)'], {}), '(-maxlen / 10, maxlen / 10)\n', (7419, 7446), False, 'import random\n'), ((7444, 7475), 'random.uniform', 'random.uniform', (['(-maxlen)', 'maxlen'], {}), '(-maxlen, maxlen)\n', (7458, 7475), False, 'import random\n'), ((7477, 7508), 'random.uniform', 'random.uniform', (['(-maxlen)', 'maxlen'], {}), '(-maxlen, maxlen)\n', (7491, 7508), False, 'import random\n'), ((7685, 7715), 'random.uniform', 'random.uniform', (['(0)', '(2 * math.pi)'], {}), '(0, 2 * math.pi)\n', (7699, 7715), False, 'import random\n'), ((7715, 7745), 'random.uniform', 'random.uniform', (['(0)', '(2 * math.pi)'], {}), '(0, 2 * math.pi)\n', (7729, 7745), False, 'import random\n'), ((7745, 7775), 'random.uniform', 'random.uniform', (['(0)', '(2 * math.pi)'], {}), '(0, 2 * math.pi)\n', (7759, 7775), False, 'import random\n'), ((8305, 8336), 'mathutils.Euler', 'Euler', (['(rot_base + rot_step * ki)'], {}), '(rot_base + rot_step * ki)\n', (8310, 8336), False, 'from mathutils import Euler\n'), ((11702, 11724), 'cv2.imread', 'cv2.imread', (['bgrki_path'], {}), '(bgrki_path)\n', (11712, 11724), False, 'import cv2\n'), ((15459, 15489), 'bpy.data.images.load', 'bpy.data.images.load', (['tex_path'], {}), '(tex_path)\n', (15479, 15489), False, 'import bpy\n'), ((7538, 7579), 'random.uniform', 'random.uniform', (['(-maxlen / 10)', '(maxlen / 10)'], {}), '(-maxlen / 10, maxlen / 10)\n', (7552, 7579), False, 'import random\n'), ((7577, 7608), 'random.uniform', 'random.uniform', (['(-maxlen)', 'maxlen'], {}), '(-maxlen, maxlen)\n', (7591, 7608), False, 'import random\n'), ((7610, 7641), 'random.uniform', 'random.uniform', (['(-maxlen)', 'maxlen'], {}), '(-maxlen, maxlen)\n', (7624, 7641), False, 'import random\n'), ((7805, 7836), 'random.uniform', 'random.uniform', (['(-maxrot)', 'maxrot'], {}), '(-maxrot, maxrot)\n', (7819, 7836), False, 'import random\n'), ((7838, 7869), 'random.uniform', 'random.uniform', (['(-maxrot)', 'maxrot'], {}), '(-maxrot, maxrot)\n', (7852, 7869), False, 'import random\n'), ((7871, 7902), 'random.uniform', 'random.uniform', (['(-maxrot)', 'maxrot'], {}), '(-maxrot, maxrot)\n', (7885, 7902), False, 'import random\n')]
# coding=utf-8 import sys import argparse import os from tensorflow.python.platform import gfile import numpy as np import tensorflow as tf from tensorflow.python.layers.core import Dense from utils.data_manager import load_data, load_data_one from collections import defaultdict from argparse import ArgumentParser from decode_helper import decode_one import sys reload(sys) sys.setdefaultencoding('utf8') os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from tf_helper import train, evaluate, decode_data, decode_data_recover from model1 import construct_graph def init_args(): arg_parser = argparse.ArgumentParser() arg_parser.add_argument( '--data_path', default=os.path.dirname(os.path.abspath(__file__)) + '/data', type=str, help='Data path.') arg_parser.add_argument( '--load_data', default=False, type=bool, help='Load data.') arg_parser.add_argument( '--data', choices=['wikisql', 'spider', 'overnight', 'overnight_set'], default='wikisql', help='data to train & test') #arg_parser.add_argument('--tran_data', choices=['wikisql', 'spider', 'overnight'], default='overnight', help='data to transfer') arg_parser.add_argument( '--subset', choices=['all'], default='all', help='Subset of data.') arg_parser.add_argument( '--maxlen', default=60, type=int, help='Data record max length.') arg_parser.add_argument( '--annotation_path', default=os.path.dirname(os.path.abspath(__file__)) + '/data/DATA/wiki/', type=str, help='Data annotation path.') arg_parser.add_argument( '--mode', choices=['train', 'infer', 'transfer','txt'], default='infer', help='Run mode') #### Model configuration #### arg_parser.add_argument( '--cell', choices=['gru'], default='gru', help='Type of cell used, currently only standard GRU cell is supported' ) arg_parser.add_argument( '--output_vocab_size', default=20637, #default=20452, type=int, help='Output vocabulary size.') # Embedding sizes arg_parser.add_argument( '--embedding_dim', default=300, type=int, help='Size of word embeddings') #Hidden sizes arg_parser.add_argument( '--dim', default=400, type=int, help='Size of GRU hidden states') arg_parser.add_argument( '--hidden_size', default=256, type=int, help='Size of LSTM hidden states') arg_parser.add_argument( '--no_copy', default=False, action='store_true', help='Do not use copy mechanism') #### Training #### arg_parser.add_argument( '--vocab', type=str, help='Path of the serialized vocabulary') arg_parser.add_argument( '--glove_embed_path', default=None, type=str, help='Path to pretrained Glove mebedding') arg_parser.add_argument( '--batch_size', default=128, type=int, help='Batch size') arg_parser.add_argument( '--in_drop', default=0., type=float, help='In dropout rate') arg_parser.add_argument( '--out_drop', default=0., type=float, help='Out dropout rate') # training details arg_parser.add_argument( '--valid_epoch_interval', default=1, type=int, help='Perform validation every x epoch') arg_parser.add_argument( '--clip_grad', default=5., type=float, help='Clip gradients') arg_parser.add_argument( '--total_epochs', default=40, type=int, help='# of training epoches') arg_parser.add_argument( '--epochs', default=1, type=int, help='Record per x epoches') arg_parser.add_argument( '--lr', default=0.0001, type=float, help='Learning rate') arg_parser.add_argument( '--lr_decay', default=0.5, type=float, help='decay learning rate if the validation performance drops') #### decoding/validation/testing #### arg_parser.add_argument( '--load_model', default=False, type=bool, help='Whether to load model') arg_parser.add_argument( '--beam_width', default=5, type=int, help='Beam size for beam search') arg_parser.add_argument( '--decode_max_time_step', default=100, type=int, help='Maximum number of time steps used ' 'in decoding and sampling') args = arg_parser.parse_args() return args def model(args, train_env, infer_env): tf.reset_default_graph() train_graph = tf.Graph() infer_graph = tf.Graph() with train_graph.as_default(): train_env.x = tf.placeholder( tf.int32, shape=[None, args.maxlen], name='x') train_env.y = tf.placeholder(tf.int32, (None, args.maxlen), name='y') train_env.training = tf.placeholder_with_default( False, (), name='train_mode') train_env.train_op, train_env.loss, train_env.acc, sample_ids, logits = construct_graph( "train", train_env, args) train_env.saver = tf.train.Saver() #[print(n.name) for n in tf.get_default_graph().as_graph_def().node if 'xxxxx' in n.name] with infer_graph.as_default(): infer_env.x = tf.placeholder( tf.int32, shape=[None, args.maxlen], name='x') infer_env.y = tf.placeholder(tf.int32, (None, args.maxlen), name='y') infer_env.training = tf.placeholder_with_default( False, (), name='train_mode') _, infer_env.loss, infer_env.acc, infer_env.pred_ids, _ = construct_graph( "infer", infer_env, args) infer_env.infer_saver = tf.train.Saver() return train_graph, infer_graph def inferrence(args): args.load_model = True class Dummy: pass train_env = Dummy() infer_env = Dummy() _, infer_graph = model(args, train_env, infer_env) args.data = 'wikisql' args.load_data = True X_train, y_train = load_data(maxlen=args.maxlen,load=args.load_data, s='train') X_test, y_test = load_data(maxlen=args.maxlen,load=args.load_data, s='test') X_dev, y_dev = load_data(maxlen=args.maxlen,load=args.load_data, s='dev') #X_train, y_train, X_test, y_test, X_dev, y_dev = load_data(args) model2load = 'model/{}'.format(args.subset) sess = tf.InteractiveSession(graph=infer_graph) infer_env.infer_saver.restore(sess, model2load) print('===========dev set============') decode_data(sess, infer_env, X_dev, y_dev) em = decode_data_recover(sess, infer_env, X_dev, y_dev, 'dev') print('==========test set===========') decode_data(sess, infer_env, X_test, y_test) test_em = decode_data_recover(sess, infer_env, X_test, y_test, 'test') return def infer_one(args): args.load_model = True class Dummy: pass train_env = Dummy() infer_env = Dummy() _, infer_graph = model(args, train_env, infer_env) args.data = 'wikisql' args.load_data = True model2load = 'model/{}'.format(args.subset) sess = tf.InteractiveSession(graph=infer_graph) infer_env.infer_saver.restore(sess, model2load) print('===========decode============') X_one = load_data_one(args.maxlen, 'qs.txt') decode_one(sess, infer_env, X_one) return def train_model(args): class Dummy: pass train_env = Dummy() infer_env = Dummy() train_graph, infer_graph = model(args, train_env, infer_env) args.data = 'wikisql' args.load_data = True args.load_model = False X_train, y_train = load_data(maxlen=args.maxlen,load=args.load_data, s='train') X_test, y_test = load_data(maxlen=args.maxlen,load=args.load_data, s='test') X_dev, y_dev = load_data(maxlen=args.maxlen,load=args.load_data, s='dev') #X_train, y_train, X_test, y_test, X_dev, y_dev = load_data(args) model2load = 'model/{}'.format(args.subset) max_em, global_test_em, best_base = -1, -1, -1 acc = 0 sess1 = tf.InteractiveSession(graph=train_graph) sess1.run(tf.global_variables_initializer()) sess1.run(tf.local_variables_initializer()) sess2 = tf.InteractiveSession(graph=infer_graph) sess2.run(tf.global_variables_initializer()) sess2.run(tf.global_variables_initializer()) for base in range(args.total_epochs / args.epochs): print('\nIteration: %d (%d epochs)' % (base, args.epochs)) model2load = train( sess1, train_env, X_train, y_train, epochs=args.epochs, load=args.load_model, name=args.subset, batch_size=args.batch_size, base=base, model2Bload=model2load) args.load_model = True infer_env.infer_saver.restore(sess2, model2load) print('===========dev set============') dev_em = decode_data(sess2, infer_env, X_dev, y_dev) dev_em = decode_data_recover(sess2, infer_env, X_dev, y_dev, 'dev') print('==========test set===========') test_em = decode_data(sess2, infer_env, X_test, y_test) test_em = decode_data_recover(sess2, infer_env, X_test, y_test, 'test') if dev_em > max_em: max_em = dev_em global_test_em = test_em best_base = base print('\n Saving model for best testing') train_env.saver.save(sess1, 'best_model/{0}-{1}-{2:.2f}'.format(args.subset, base, max_em)) print('Max EM acc: %.4f during %d iteration.' % (max_em, best_base)) print('test EM acc: %.4f ' % global_test_em) return def transfer(args): load_model = args.load_model if args.mode == 'train' else True class Dummy: pass train_env = Dummy() infer_env = Dummy() _, infer_graph = model(args, train_env, infer_env) args.data = 'overnight' args.load_data = True #X_tran, y_tran = load_data(args) X_tran, y_tran = load_data(maxlen=args.maxlen,load=args.load_data, s='overnight') args.data = 'overnight_set' #tran_sets = load_data(args) tran_sets = load_data(maxlen=args.maxlen,load=args.load_data, s='overnight_set') model2load = 'model/{}'.format(args.subset) sess = tf.InteractiveSession(graph=infer_graph) infer_env.infer_saver.restore(sess, model2load) print('========subset transfer set========') subsets = ['basketball', 'calendar', 'housing', 'recipes', 'restaurants'] for subset, (X_tran_subset, y_tran_subset) in zip(subsets, tran_sets): print('---------' + subset + '---------') tran_em = decode_data( sess, infer_env, X_tran_subset, y_tran_subset, filename=str(subset + '.txt')) print('===========transfer set============') tran_em = decode_data(sess, infer_env, X_tran, y_tran) return if __name__ == '__main__': args = init_args() print(args) if args.mode == 'train': print('\nTrain model.') train_model(args) elif args.mode == 'infer': print('\nInference.') inferrence(args) elif args.mode == 'txt': print('\nInference from txt.') infer_one(args) elif args.mode == 'transfer': print('\nTransfer.') transfer(args)
[ "tensorflow.local_variables_initializer", "tensorflow.Graph", "sys.setdefaultencoding", "tensorflow.reset_default_graph", "tensorflow.InteractiveSession", "argparse.ArgumentParser", "utils.data_manager.load_data", "tensorflow.placeholder", "tf_helper.decode_data_recover", "tensorflow.train.Saver", "tf_helper.train", "decode_helper.decode_one", "tensorflow.global_variables_initializer", "tensorflow.placeholder_with_default", "model1.construct_graph", "utils.data_manager.load_data_one", "os.path.abspath", "tf_helper.decode_data" ]
[((378, 408), 'sys.setdefaultencoding', 'sys.setdefaultencoding', (['"""utf8"""'], {}), "('utf8')\n", (400, 408), False, 'import sys\n'), ((594, 619), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (617, 619), False, 'import argparse\n'), ((4551, 4575), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (4573, 4575), True, 'import tensorflow as tf\n'), ((4594, 4604), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (4602, 4604), True, 'import tensorflow as tf\n'), ((4623, 4633), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (4631, 4633), True, 'import tensorflow as tf\n'), ((6001, 6062), 'utils.data_manager.load_data', 'load_data', ([], {'maxlen': 'args.maxlen', 'load': 'args.load_data', 's': '"""train"""'}), "(maxlen=args.maxlen, load=args.load_data, s='train')\n", (6010, 6062), False, 'from utils.data_manager import load_data, load_data_one\n'), ((6083, 6143), 'utils.data_manager.load_data', 'load_data', ([], {'maxlen': 'args.maxlen', 'load': 'args.load_data', 's': '"""test"""'}), "(maxlen=args.maxlen, load=args.load_data, s='test')\n", (6092, 6143), False, 'from utils.data_manager import load_data, load_data_one\n'), ((6162, 6221), 'utils.data_manager.load_data', 'load_data', ([], {'maxlen': 'args.maxlen', 'load': 'args.load_data', 's': '"""dev"""'}), "(maxlen=args.maxlen, load=args.load_data, s='dev')\n", (6171, 6221), False, 'from utils.data_manager import load_data, load_data_one\n'), ((6352, 6392), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {'graph': 'infer_graph'}), '(graph=infer_graph)\n', (6373, 6392), True, 'import tensorflow as tf\n'), ((6493, 6535), 'tf_helper.decode_data', 'decode_data', (['sess', 'infer_env', 'X_dev', 'y_dev'], {}), '(sess, infer_env, X_dev, y_dev)\n', (6504, 6535), False, 'from tf_helper import train, evaluate, decode_data, decode_data_recover\n'), ((6545, 6602), 'tf_helper.decode_data_recover', 'decode_data_recover', (['sess', 'infer_env', 'X_dev', 'y_dev', '"""dev"""'], {}), "(sess, infer_env, X_dev, y_dev, 'dev')\n", (6564, 6602), False, 'from tf_helper import train, evaluate, decode_data, decode_data_recover\n'), ((6650, 6694), 'tf_helper.decode_data', 'decode_data', (['sess', 'infer_env', 'X_test', 'y_test'], {}), '(sess, infer_env, X_test, y_test)\n', (6661, 6694), False, 'from tf_helper import train, evaluate, decode_data, decode_data_recover\n'), ((6709, 6769), 'tf_helper.decode_data_recover', 'decode_data_recover', (['sess', 'infer_env', 'X_test', 'y_test', '"""test"""'], {}), "(sess, infer_env, X_test, y_test, 'test')\n", (6728, 6769), False, 'from tf_helper import train, evaluate, decode_data, decode_data_recover\n'), ((7113, 7153), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {'graph': 'infer_graph'}), '(graph=infer_graph)\n', (7134, 7153), True, 'import tensorflow as tf\n'), ((7261, 7297), 'utils.data_manager.load_data_one', 'load_data_one', (['args.maxlen', '"""qs.txt"""'], {}), "(args.maxlen, 'qs.txt')\n", (7274, 7297), False, 'from utils.data_manager import load_data, load_data_one\n'), ((7302, 7336), 'decode_helper.decode_one', 'decode_one', (['sess', 'infer_env', 'X_one'], {}), '(sess, infer_env, X_one)\n', (7312, 7336), False, 'from decode_helper import decode_one\n'), ((7622, 7683), 'utils.data_manager.load_data', 'load_data', ([], {'maxlen': 'args.maxlen', 'load': 'args.load_data', 's': '"""train"""'}), "(maxlen=args.maxlen, load=args.load_data, s='train')\n", (7631, 7683), False, 'from utils.data_manager import load_data, load_data_one\n'), ((7704, 7764), 'utils.data_manager.load_data', 'load_data', ([], {'maxlen': 'args.maxlen', 'load': 'args.load_data', 's': '"""test"""'}), "(maxlen=args.maxlen, load=args.load_data, s='test')\n", (7713, 7764), False, 'from utils.data_manager import load_data, load_data_one\n'), ((7783, 7842), 'utils.data_manager.load_data', 'load_data', ([], {'maxlen': 'args.maxlen', 'load': 'args.load_data', 's': '"""dev"""'}), "(maxlen=args.maxlen, load=args.load_data, s='dev')\n", (7792, 7842), False, 'from utils.data_manager import load_data, load_data_one\n'), ((8036, 8076), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {'graph': 'train_graph'}), '(graph=train_graph)\n', (8057, 8076), True, 'import tensorflow as tf\n'), ((8186, 8226), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {'graph': 'infer_graph'}), '(graph=infer_graph)\n', (8207, 8226), True, 'import tensorflow as tf\n'), ((10057, 10122), 'utils.data_manager.load_data', 'load_data', ([], {'maxlen': 'args.maxlen', 'load': 'args.load_data', 's': '"""overnight"""'}), "(maxlen=args.maxlen, load=args.load_data, s='overnight')\n", (10066, 10122), False, 'from utils.data_manager import load_data, load_data_one\n'), ((10203, 10272), 'utils.data_manager.load_data', 'load_data', ([], {'maxlen': 'args.maxlen', 'load': 'args.load_data', 's': '"""overnight_set"""'}), "(maxlen=args.maxlen, load=args.load_data, s='overnight_set')\n", (10212, 10272), False, 'from utils.data_manager import load_data, load_data_one\n'), ((10332, 10372), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {'graph': 'infer_graph'}), '(graph=infer_graph)\n', (10353, 10372), True, 'import tensorflow as tf\n'), ((10910, 10954), 'tf_helper.decode_data', 'decode_data', (['sess', 'infer_env', 'X_tran', 'y_tran'], {}), '(sess, infer_env, X_tran, y_tran)\n', (10921, 10954), False, 'from tf_helper import train, evaluate, decode_data, decode_data_recover\n'), ((4692, 4753), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, args.maxlen]', 'name': '"""x"""'}), "(tf.int32, shape=[None, args.maxlen], name='x')\n", (4706, 4753), True, 'import tensorflow as tf\n'), ((4789, 4844), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', '(None, args.maxlen)'], {'name': '"""y"""'}), "(tf.int32, (None, args.maxlen), name='y')\n", (4803, 4844), True, 'import tensorflow as tf\n'), ((4874, 4931), 'tensorflow.placeholder_with_default', 'tf.placeholder_with_default', (['(False)', '()'], {'name': '"""train_mode"""'}), "(False, (), name='train_mode')\n", (4901, 4931), True, 'import tensorflow as tf\n'), ((5025, 5066), 'model1.construct_graph', 'construct_graph', (['"""train"""', 'train_env', 'args'], {}), "('train', train_env, args)\n", (5040, 5066), False, 'from model1 import construct_graph\n'), ((5106, 5122), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (5120, 5122), True, 'import tensorflow as tf\n'), ((5279, 5340), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, args.maxlen]', 'name': '"""x"""'}), "(tf.int32, shape=[None, args.maxlen], name='x')\n", (5293, 5340), True, 'import tensorflow as tf\n'), ((5376, 5431), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', '(None, args.maxlen)'], {'name': '"""y"""'}), "(tf.int32, (None, args.maxlen), name='y')\n", (5390, 5431), True, 'import tensorflow as tf\n'), ((5461, 5518), 'tensorflow.placeholder_with_default', 'tf.placeholder_with_default', (['(False)', '()'], {'name': '"""train_mode"""'}), "(False, (), name='train_mode')\n", (5488, 5518), True, 'import tensorflow as tf\n'), ((5598, 5639), 'model1.construct_graph', 'construct_graph', (['"""infer"""', 'infer_env', 'args'], {}), "('infer', infer_env, args)\n", (5613, 5639), False, 'from model1 import construct_graph\n'), ((5685, 5701), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (5699, 5701), True, 'import tensorflow as tf\n'), ((8091, 8124), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8122, 8124), True, 'import tensorflow as tf\n'), ((8140, 8172), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (8170, 8172), True, 'import tensorflow as tf\n'), ((8241, 8274), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8272, 8274), True, 'import tensorflow as tf\n'), ((8290, 8323), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8321, 8323), True, 'import tensorflow as tf\n'), ((8469, 8642), 'tf_helper.train', 'train', (['sess1', 'train_env', 'X_train', 'y_train'], {'epochs': 'args.epochs', 'load': 'args.load_model', 'name': 'args.subset', 'batch_size': 'args.batch_size', 'base': 'base', 'model2Bload': 'model2load'}), '(sess1, train_env, X_train, y_train, epochs=args.epochs, load=args.\n load_model, name=args.subset, batch_size=args.batch_size, base=base,\n model2Bload=model2load)\n', (8474, 8642), False, 'from tf_helper import train, evaluate, decode_data, decode_data_recover\n'), ((8909, 8952), 'tf_helper.decode_data', 'decode_data', (['sess2', 'infer_env', 'X_dev', 'y_dev'], {}), '(sess2, infer_env, X_dev, y_dev)\n', (8920, 8952), False, 'from tf_helper import train, evaluate, decode_data, decode_data_recover\n'), ((8970, 9028), 'tf_helper.decode_data_recover', 'decode_data_recover', (['sess2', 'infer_env', 'X_dev', 'y_dev', '"""dev"""'], {}), "(sess2, infer_env, X_dev, y_dev, 'dev')\n", (8989, 9028), False, 'from tf_helper import train, evaluate, decode_data, decode_data_recover\n'), ((9131, 9176), 'tf_helper.decode_data', 'decode_data', (['sess2', 'infer_env', 'X_test', 'y_test'], {}), '(sess2, infer_env, X_test, y_test)\n', (9142, 9176), False, 'from tf_helper import train, evaluate, decode_data, decode_data_recover\n'), ((9195, 9256), 'tf_helper.decode_data_recover', 'decode_data_recover', (['sess2', 'infer_env', 'X_test', 'y_test', '"""test"""'], {}), "(sess2, infer_env, X_test, y_test, 'test')\n", (9214, 9256), False, 'from tf_helper import train, evaluate, decode_data, decode_data_recover\n'), ((705, 730), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (720, 730), False, 'import os\n'), ((1498, 1523), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1513, 1523), False, 'import os\n')]
"""CD SEM structures.""" from functools import partial from typing import Optional, Tuple from gdsfactory.cell import cell from gdsfactory.component import Component from gdsfactory.components.straight import straight as straight_function from gdsfactory.components.text_rectangular import text_rectangular from gdsfactory.cross_section import strip from gdsfactory.grid import grid from gdsfactory.types import ComponentFactory, CrossSectionFactory text_rectangular_mini = partial(text_rectangular, size=1) LINE_LENGTH = 420.0 @cell def cdsem_straight( widths: Tuple[float, ...] = (0.4, 0.45, 0.5, 0.6, 0.8, 1.0), length: float = LINE_LENGTH, cross_section: CrossSectionFactory = strip, text: Optional[ComponentFactory] = text_rectangular_mini, spacing: float = 3, ) -> Component: """Returns straight waveguide lines width sweep. Args: widths: for the sweep length: for the line cross_section: for the lines text: optional text for labels spacing: edge to edge spacing """ lines = [] for width in widths: cross_section = partial(cross_section, width=width) line = straight_function(length=length, cross_section=cross_section) if text: line = line.copy() t = line << text(str(int(width * 1e3))) t.xmin = line.xmax + 5 t.y = 0 lines.append(line) return grid(lines, spacing=(0, spacing)) if __name__ == "__main__": c = cdsem_straight() c.show()
[ "functools.partial", "gdsfactory.components.straight.straight", "gdsfactory.grid.grid" ]
[((476, 509), 'functools.partial', 'partial', (['text_rectangular'], {'size': '(1)'}), '(text_rectangular, size=1)\n', (483, 509), False, 'from functools import partial\n'), ((1424, 1457), 'gdsfactory.grid.grid', 'grid', (['lines'], {'spacing': '(0, spacing)'}), '(lines, spacing=(0, spacing))\n', (1428, 1457), False, 'from gdsfactory.grid import grid\n'), ((1117, 1152), 'functools.partial', 'partial', (['cross_section'], {'width': 'width'}), '(cross_section, width=width)\n', (1124, 1152), False, 'from functools import partial\n'), ((1168, 1229), 'gdsfactory.components.straight.straight', 'straight_function', ([], {'length': 'length', 'cross_section': 'cross_section'}), '(length=length, cross_section=cross_section)\n', (1185, 1229), True, 'from gdsfactory.components.straight import straight as straight_function\n')]
#!/usr/bin/env python3 # Copyright 2019-2022 <NAME>, <NAME>, <NAME> # # This file is part of WarpX. # # License: BSD-3-Clause-LBNL # This script tests the reduced particle diagnostics. # The setup is a uniform plasma with electrons, protons and photons. # Various particle and field quantities are written to file using the reduced diagnostics # and compared with the corresponding quantities computed from the data in the plotfiles. import os import sys import numpy as np import openpmd_api as io from scipy.constants import c from scipy.constants import epsilon_0 as eps0 from scipy.constants import m_e, m_p from scipy.constants import mu_0 as mu0 import yt sys.path.insert(1, '../../../../warpx/Regression/Checksum/') import checksumAPI def do_analysis(single_precision = False): fn = sys.argv[1] ds = yt.load(fn) ad = ds.all_data() ad0 = ds.covering_grid(level=0, left_edge=ds.domain_left_edge, dims=ds.domain_dimensions) opmd = io.Series('diags/openpmd/openpmd_%T.h5', io.Access.read_only) opmd_i = opmd.iterations[200] #-------------------------------------------------------------------------------------------------- # Part 1: get results from plotfiles (label '_yt') #-------------------------------------------------------------------------------------------------- # Quantities computed from plotfiles values_yt = dict() domain_size = ds.domain_right_edge.value - ds.domain_left_edge.value dx = domain_size / ds.domain_dimensions # Electrons x = ad['electrons', 'particle_position_x'].to_ndarray() y = ad['electrons', 'particle_position_y'].to_ndarray() z = ad['electrons', 'particle_position_z'].to_ndarray() uz = ad['electrons', 'particle_momentum_z'].to_ndarray() / m_e / c w = ad['electrons', 'particle_weight'].to_ndarray() filt = uz < 0 x_ind = ((x - ds.domain_left_edge[0].value) / dx[0]).astype(int) y_ind = ((y - ds.domain_left_edge[1].value) / dx[1]).astype(int) z_ind = ((z - ds.domain_left_edge[2].value) / dx[2]).astype(int) zavg = np.zeros(ds.domain_dimensions) uzavg = np.zeros(ds.domain_dimensions) zuzavg = np.zeros(ds.domain_dimensions) wavg = np.zeros(ds.domain_dimensions) uzavg_filt = np.zeros(ds.domain_dimensions) wavg_filt = np.zeros(ds.domain_dimensions) for i_p in range(len(x)): zavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * w[i_p] uzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] zuzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * uz[i_p] * w[i_p] wavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] uzavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] * filt[i_p] wavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] * filt[i_p] wavg_adj = np.where(wavg == 0, 1, wavg) wavg_filt_adj = np.where(wavg_filt == 0, 1, wavg_filt) values_yt['electrons: zavg'] = zavg / wavg_adj values_yt['electrons: uzavg'] = uzavg / wavg_adj values_yt['electrons: zuzavg'] = zuzavg / wavg_adj values_yt['electrons: uzavg_filt'] = uzavg_filt / wavg_filt_adj # protons x = ad['protons', 'particle_position_x'].to_ndarray() y = ad['protons', 'particle_position_y'].to_ndarray() z = ad['protons', 'particle_position_z'].to_ndarray() uz = ad['protons', 'particle_momentum_z'].to_ndarray() / m_p / c w = ad['protons', 'particle_weight'].to_ndarray() filt = uz < 0 x_ind = ((x - ds.domain_left_edge[0].value) / dx[0]).astype(int) y_ind = ((y - ds.domain_left_edge[1].value) / dx[1]).astype(int) z_ind = ((z - ds.domain_left_edge[2].value) / dx[2]).astype(int) zavg = np.zeros(ds.domain_dimensions) uzavg = np.zeros(ds.domain_dimensions) zuzavg = np.zeros(ds.domain_dimensions) wavg = np.zeros(ds.domain_dimensions) uzavg_filt = np.zeros(ds.domain_dimensions) wavg_filt = np.zeros(ds.domain_dimensions) for i_p in range(len(x)): zavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * w[i_p] uzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] zuzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * uz[i_p] * w[i_p] wavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] uzavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] * filt[i_p] wavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] * filt[i_p] wavg_adj = np.where(wavg == 0, 1, wavg) wavg_filt_adj = np.where(wavg_filt == 0, 1, wavg_filt) values_yt['protons: zavg'] = zavg / wavg_adj values_yt['protons: uzavg'] = uzavg / wavg_adj values_yt['protons: zuzavg'] = zuzavg / wavg_adj values_yt['protons: uzavg_filt'] = uzavg_filt / wavg_filt_adj # Photons (momentum in units of m_e c) x = ad['photons', 'particle_position_x'].to_ndarray() y = ad['photons', 'particle_position_y'].to_ndarray() z = ad['photons', 'particle_position_z'].to_ndarray() uz = ad['photons', 'particle_momentum_z'].to_ndarray() / m_e / c w = ad['photons', 'particle_weight'].to_ndarray() filt = uz < 0 x_ind = ((x - ds.domain_left_edge[0].value) / dx[0]).astype(int) y_ind = ((y - ds.domain_left_edge[1].value) / dx[1]).astype(int) z_ind = ((z - ds.domain_left_edge[2].value) / dx[2]).astype(int) zavg = np.zeros(ds.domain_dimensions) uzavg = np.zeros(ds.domain_dimensions) zuzavg = np.zeros(ds.domain_dimensions) wavg = np.zeros(ds.domain_dimensions) uzavg_filt = np.zeros(ds.domain_dimensions) wavg_filt = np.zeros(ds.domain_dimensions) for i_p in range(len(x)): zavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * w[i_p] uzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] zuzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * uz[i_p] * w[i_p] wavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] uzavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] * filt[i_p] wavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] * filt[i_p] wavg_adj = np.where(wavg == 0, 1, wavg) wavg_filt_adj = np.where(wavg_filt == 0, 1, wavg_filt) values_yt['photons: zavg'] = zavg / wavg_adj values_yt['photons: uzavg'] = uzavg / wavg_adj values_yt['photons: zuzavg'] = zuzavg / wavg_adj values_yt['photons: uzavg_filt'] = uzavg_filt / wavg_filt_adj values_rd = dict() # Load reduced particle diagnostic data from plotfiles values_rd['electrons: zavg'] = ad0[('boxlib','z_electrons')] values_rd['protons: zavg'] = ad0[('boxlib','z_protons')] values_rd['photons: zavg'] = ad0[('boxlib','z_photons')] values_rd['electrons: uzavg'] = ad0[('boxlib','uz_electrons')] values_rd['protons: uzavg'] = ad0[('boxlib','uz_protons')] values_rd['photons: uzavg'] = ad0[('boxlib','uz_photons')] values_rd['electrons: zuzavg'] = ad0[('boxlib','zuz_electrons')] values_rd['protons: zuzavg'] = ad0[('boxlib','zuz_protons')] values_rd['photons: zuzavg'] = ad0[('boxlib','zuz_photons')] values_rd['electrons: uzavg_filt'] = ad0[('boxlib','uz_filt_electrons')] values_rd['protons: uzavg_filt'] = ad0[('boxlib','uz_filt_protons')] values_rd['photons: uzavg_filt'] = ad0[('boxlib','uz_filt_photons')] values_opmd = dict() # Load reduced particle diagnostic data from OPMD output values_opmd['electrons: zavg'] = opmd_i.meshes['z_electrons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['protons: zavg'] = opmd_i.meshes['z_protons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['photons: zavg'] = opmd_i.meshes['z_photons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['electrons: uzavg'] = opmd_i.meshes['uz_electrons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['protons: uzavg'] = opmd_i.meshes['uz_protons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['photons: uzavg'] = opmd_i.meshes['uz_photons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['electrons: zuzavg'] = opmd_i.meshes['zuz_electrons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['protons: zuzavg'] = opmd_i.meshes['zuz_protons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['photons: zuzavg'] = opmd_i.meshes['zuz_photons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['electrons: uzavg_filt'] = opmd_i.meshes['uz_filt_electrons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['protons: uzavg_filt'] = opmd_i.meshes['uz_filt_protons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['photons: uzavg_filt'] = opmd_i.meshes['uz_filt_photons'][io.Mesh_Record_Component.SCALAR].load_chunk() opmd.flush() del opmd #-------------------------------------------------------------------------------------------------- # Part 3: compare values from plotfiles and diagnostics and print output #-------------------------------------------------------------------------------------------------- error_plt = dict() error_opmd = dict() tolerance = 5e-3 if single_precision else 1e-12 # if single precision, increase tolerance from default value check_tolerance = 5e-3 if single_precision else 1e-9 for k in values_yt.keys(): # check that the zeros line up, since we'll be ignoring them in the error calculation assert(np.all((values_yt[k] == 0) == (values_rd[k] == 0))) error_plt[k] = np.max(abs(values_yt[k] - values_rd[k])[values_yt[k] != 0] / abs(values_yt[k])[values_yt[k] != 0]) print(k, 'relative error plotfile = ', error_plt[k]) assert(error_plt[k] < tolerance) assert(np.all((values_yt[k] == 0) == (values_opmd[k].T == 0))) error_opmd[k] = np.max(abs(values_yt[k] - values_opmd[k].T)[values_yt[k] != 0] / abs(values_yt[k])[values_yt[k] != 0]) assert(error_opmd[k] < tolerance) print(k, 'relative error openPMD = ', error_opmd[k]) test_name = os.path.split(os.getcwd())[1] checksumAPI.evaluate_checksum(test_name, fn, rtol=check_tolerance)
[ "sys.path.insert", "numpy.where", "openpmd_api.Series", "os.getcwd", "checksumAPI.evaluate_checksum", "numpy.zeros", "yt.load", "numpy.all" ]
[((667, 727), 'sys.path.insert', 'sys.path.insert', (['(1)', '"""../../../../warpx/Regression/Checksum/"""'], {}), "(1, '../../../../warpx/Regression/Checksum/')\n", (682, 727), False, 'import sys\n'), ((823, 834), 'yt.load', 'yt.load', (['fn'], {}), '(fn)\n', (830, 834), False, 'import yt\n'), ((964, 1025), 'openpmd_api.Series', 'io.Series', (['"""diags/openpmd/openpmd_%T.h5"""', 'io.Access.read_only'], {}), "('diags/openpmd/openpmd_%T.h5', io.Access.read_only)\n", (973, 1025), True, 'import openpmd_api as io\n'), ((2070, 2100), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (2078, 2100), True, 'import numpy as np\n'), ((2113, 2143), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (2121, 2143), True, 'import numpy as np\n'), ((2157, 2187), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (2165, 2187), True, 'import numpy as np\n'), ((2199, 2229), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (2207, 2229), True, 'import numpy as np\n'), ((2247, 2277), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (2255, 2277), True, 'import numpy as np\n'), ((2294, 2324), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (2302, 2324), True, 'import numpy as np\n'), ((2800, 2828), 'numpy.where', 'np.where', (['(wavg == 0)', '(1)', 'wavg'], {}), '(wavg == 0, 1, wavg)\n', (2808, 2828), True, 'import numpy as np\n'), ((2849, 2887), 'numpy.where', 'np.where', (['(wavg_filt == 0)', '(1)', 'wavg_filt'], {}), '(wavg_filt == 0, 1, wavg_filt)\n', (2857, 2887), True, 'import numpy as np\n'), ((3666, 3696), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (3674, 3696), True, 'import numpy as np\n'), ((3709, 3739), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (3717, 3739), True, 'import numpy as np\n'), ((3753, 3783), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (3761, 3783), True, 'import numpy as np\n'), ((3795, 3825), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (3803, 3825), True, 'import numpy as np\n'), ((3843, 3873), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (3851, 3873), True, 'import numpy as np\n'), ((3890, 3920), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (3898, 3920), True, 'import numpy as np\n'), ((4396, 4424), 'numpy.where', 'np.where', (['(wavg == 0)', '(1)', 'wavg'], {}), '(wavg == 0, 1, wavg)\n', (4404, 4424), True, 'import numpy as np\n'), ((4445, 4483), 'numpy.where', 'np.where', (['(wavg_filt == 0)', '(1)', 'wavg_filt'], {}), '(wavg_filt == 0, 1, wavg_filt)\n', (4453, 4483), True, 'import numpy as np\n'), ((5283, 5313), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (5291, 5313), True, 'import numpy as np\n'), ((5326, 5356), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (5334, 5356), True, 'import numpy as np\n'), ((5370, 5400), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (5378, 5400), True, 'import numpy as np\n'), ((5412, 5442), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (5420, 5442), True, 'import numpy as np\n'), ((5460, 5490), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (5468, 5490), True, 'import numpy as np\n'), ((5507, 5537), 'numpy.zeros', 'np.zeros', (['ds.domain_dimensions'], {}), '(ds.domain_dimensions)\n', (5515, 5537), True, 'import numpy as np\n'), ((6013, 6041), 'numpy.where', 'np.where', (['(wavg == 0)', '(1)', 'wavg'], {}), '(wavg == 0, 1, wavg)\n', (6021, 6041), True, 'import numpy as np\n'), ((6062, 6100), 'numpy.where', 'np.where', (['(wavg_filt == 0)', '(1)', 'wavg_filt'], {}), '(wavg_filt == 0, 1, wavg_filt)\n', (6070, 6100), True, 'import numpy as np\n'), ((9973, 10039), 'checksumAPI.evaluate_checksum', 'checksumAPI.evaluate_checksum', (['test_name', 'fn'], {'rtol': 'check_tolerance'}), '(test_name, fn, rtol=check_tolerance)\n', (10002, 10039), False, 'import checksumAPI\n'), ((9344, 9394), 'numpy.all', 'np.all', (['((values_yt[k] == 0) == (values_rd[k] == 0))'], {}), '((values_yt[k] == 0) == (values_rd[k] == 0))\n', (9350, 9394), True, 'import numpy as np\n'), ((9635, 9689), 'numpy.all', 'np.all', (['((values_yt[k] == 0) == (values_opmd[k].T == 0))'], {}), '((values_yt[k] == 0) == (values_opmd[k].T == 0))\n', (9641, 9689), True, 'import numpy as np\n'), ((9953, 9964), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (9962, 9964), False, 'import os\n')]
""" The MIT License (MIT) Copyright (c) 2017 <NAME> Copyright (c) 2017 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from ..scrabTask import FileTask import os name = "LanguageDetector" version = "1.1.1" class LanguageDetector(FileTask): cpp_extensions = ['.cpp', '.c++', '.cc', '.cxx', '.c', '.h', '.hpp', '.hxx'] c_extensions = ['.c', '.h'] rust_extensions = ['.rs'] ruby_extensions = ['.rb'] java_extensions = ['.java'] go_extensions = ['.go'] php_extensions = ['.php', '.phtml', '.php3', '.php4', '.php5', '.php7', '.phps'] js_extensions = ['.js'] objective_c_extensions = ['.h', '.m', '.mm', '.C'] swift_extensions = ['.swift'] c_sharp_extensions = ['.cs'] python_extensions = ['.py'] """ Tries to detect the programming language of a library based on the file extension Example: LanguageDetector: main_language: C languages: - C - C++ - Python :param task_params: Parameter given explicitly for this task, for all projects, defined in the task.yaml :param global_args: Arguments that will be passed to all tasks. They _might_ contain something that is useful for the task, but the task has to check if it is _there_ as these are user provided. If they are needed to work that check should happen in the argHandler. """ def __init__(self, parameter, global_args): super(LanguageDetector, self).__init__(name, version, parameter, global_args) # dictionary containing the common file extensions # for each of the languages self.__language_extensions = self.__get_language_extensions() self.__report = self.__get_files_per_language() def __get_language_extensions(self): """ :returns: A directory of the considered language extensions """ return { 'C++': self.cpp_extensions, 'C': self.c_extensions, 'Rust': self.rust_extensions, 'Ruby': self.ruby_extensions, 'Java': self.java_extensions, 'Go': self.go_extensions, 'PHP': self.php_extensions, 'JavaScript': self.js_extensions, 'Objective-C': self.objective_c_extensions, 'Swift': self.swift_extensions, 'C#': self.c_sharp_extensions, 'Python': self.python_extensions } def __get_files_per_language(self): """ :returns: A default directory of the considered languages, their extensions and the amount of files that have that extension (default=0) """ return { 'C++': {extension: 0 for extension in self.cpp_extensions}, 'C': {extension: 0 for extension in self.c_extensions}, 'Rust': {extension: 0 for extension in self.rust_extensions}, 'Ruby': {extension: 0 for extension in self.ruby_extensions}, 'Java': {extension: 0 for extension in self.java_extensions}, 'Go': {extension: 0 for extension in self.go_extensions}, 'PHP': {extension: 0 for extension in self.php_extensions}, 'JavaScript': {extension: 0 for extension in self.js_extensions}, 'Objective-C': {extension: 0 for extension in self.objective_c_extensions}, 'Swift': {extension: 0 for extension in self.swift_extensions}, 'C#': {extension: 0 for extension in self.c_sharp_extensions}, 'Python': {extension: 0 for extension in self.python_extensions}, } def __decide_h_extension(self): """ Decides which language 'owns' how many .h files :returns: The report with divided header files """ report = self.__report h_files = report['C']['.h'] if h_files > 0: c_files = (sum(report['C'].values()) - h_files) cpp_files = (sum(report['C++'].values()) - h_files - report['C++']['.c']) oc_files = ( sum(report['Objective-C'].values()) - h_files) lang_fiels = c_files + cpp_files + oc_files # Header only libraries are 'common' in C and C++ # the benefit of doubt goes to C if lang_fiels == 0: report['C']['.h'] = 1 report['C++']['.h'] = 0 report['Objective-C']['.h'] = 0 else: report['C']['.h'] = (h_files * c_files / lang_fiels) report['C++']['.h'] = (h_files * cpp_files / lang_fiels) report['Objective-C']['.h'] = (h_files * oc_files / lang_fiels) return report def __calculate_main_language(self, report): """ Calculates the main language (maximum of files extensions) :param report: The report :returns: The main language. """ max_files = 0 max_lang = None for language in report: lang_fiels = sum(report[language].values()) if max_files < lang_fiels: max_lang = language max_files = lang_fiels return max_lang def __calculate_used_languages(self, report): """ Calculates the used languages by throwing away the extension counts and collapsing them to the language. Only languages that have at least one file extension are kept and will appear in the report :param report: The report :returns: The used languages. """ languages = {} for language in report: total_files = sum(report[language].values()) if total_files > 0: languages[language] = total_files return sorted(languages, key=languages.get, reverse=True) def scrab(self, project, filepath, file): """ Counts the files that have an extension of one of the languages :param project: The project that the scrab task shall analyse :param filepath: The filepath to the file that can be analysed :param file: The file as string that can be analysed :returns: Report that contains the scrabbed information of *this* file - the extensions have either a count of 0 or 1 """ filename, file_extension = os.path.splitext(filepath) for language in self.__language_extensions: if file_extension in self.__language_extensions[language]: self.__report[language][file_extension] += 1 def report(self): """ Decides which headers files are (probable) from which language, calculates the main language and removes redundant / unnecessary detailed information from the report :param report: The complete report this task created :returns: Report that contains all scrabbed information eg.: LanguageDetector: main_language: C languages: - C - C++ - Python """ pre_report = self.__decide_h_extension() main_language = self.__calculate_main_language(pre_report) # write the result to the report report = {} report['main_language'] = main_language report['languages'] = self.__calculate_used_languages(pre_report) return report
[ "os.path.splitext" ]
[((8112, 8138), 'os.path.splitext', 'os.path.splitext', (['filepath'], {}), '(filepath)\n', (8128, 8138), False, 'import os\n')]
import json import kfp.dsl as _kfp_dsl import kfp.components as _kfp_components from collections import OrderedDict from kubernetes import client as k8s_client def step1(): from kale.common import mlmdutils as _kale_mlmdutils _kale_mlmdutils.init_metadata() from kale.marshal.decorator import marshal as _kale_marshal from kale.common.runutils import link_artifacts as _kale_link_artifacts _kale_pipeline_parameters = {} @_kale_marshal([], ['_b', '_a'], _kale_pipeline_parameters, "/marshal") def step1(): a = 1 b = 2 return a, b step1() _kale_artifacts = {} _kale_link_artifacts(_kale_artifacts) _kale_mlmdutils.call("mark_execution_complete") def step2(): from kale.common import mlmdutils as _kale_mlmdutils _kale_mlmdutils.init_metadata() from kale.common.runutils import ttl as _kale_ttl from kale.marshal.decorator import marshal as _kale_marshal from kale.common.runutils import link_artifacts as _kale_link_artifacts _kale_pipeline_parameters = {} @_kale_ttl(5) @_kale_marshal(['_b', '_a'], ['_c'], _kale_pipeline_parameters, "/marshal") def step2(a, b): c = a + b print(c) return c step2() _kale_artifacts = {} _kale_link_artifacts(_kale_artifacts) _kale_mlmdutils.call("mark_execution_complete") def step3(): from kale.common import mlmdutils as _kale_mlmdutils _kale_mlmdutils.init_metadata() from kale.marshal.decorator import marshal as _kale_marshal from kale.common.runutils import link_artifacts as _kale_link_artifacts _kale_pipeline_parameters = {} @_kale_marshal(['_a', '_c'], [], _kale_pipeline_parameters, "/marshal") def step3(a, c): d = c + a print(d) step3() _kale_artifacts = {} _kale_link_artifacts(_kale_artifacts) _kale_mlmdutils.call("mark_execution_complete") _kale_step1_op = _kfp_components.func_to_container_op(step1) _kale_step2_op = _kfp_components.func_to_container_op(step2) _kale_step3_op = _kfp_components.func_to_container_op(step3) @_kfp_dsl.pipeline( name='test', description='' ) def auto_generated_pipeline(): _kale_pvolumes_dict = OrderedDict() _kale_volume_step_names = [] _kale_volume_name_parameters = [] _kale_marshal_vop = _kfp_dsl.VolumeOp( name="kale-marshal-volume", resource_name="kale-marshal-pvc", modes=['ReadWriteMany'], size="1Gi" ) _kale_volume_step_names.append(_kale_marshal_vop.name) _kale_volume_name_parameters.append( _kale_marshal_vop.outputs["name"].full_name) _kale_pvolumes_dict['/marshal'] = _kale_marshal_vop.volume _kale_volume_step_names.sort() _kale_volume_name_parameters.sort() _kale_step1_task = _kale_step1_op()\ .add_pvolumes(_kale_pvolumes_dict)\ .after() _kale_step_labels = {'common-label': 'true'} for _kale_k, _kale_v in _kale_step_labels.items(): _kale_step1_task.add_pod_label(_kale_k, _kale_v) _kale_step_limits = {'amd/gpu': '1'} for _kale_k, _kale_v in _kale_step_limits.items(): _kale_step1_task.container.add_resource_limit(_kale_k, _kale_v) _kale_step1_task.container.working_dir = "/test" _kale_step1_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) _kale_output_artifacts = {} _kale_step1_task.output_artifact_paths.update(_kale_output_artifacts) _kale_step1_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") _kale_dep_names = (_kale_step1_task.dependent_names + _kale_volume_step_names) _kale_step1_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(_kale_dep_names)) if _kale_volume_name_parameters: _kale_step1_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(_kale_volume_name_parameters)) _kale_step2_task = _kale_step2_op()\ .add_pvolumes(_kale_pvolumes_dict)\ .after(_kale_step1_task) _kale_step_labels = {'common-label': 'true'} for _kale_k, _kale_v in _kale_step_labels.items(): _kale_step2_task.add_pod_label(_kale_k, _kale_v) _kale_step2_task.set_retry_strategy( num_retries=5, retry_policy="Always", backoff_duration="20", backoff_factor=2, backoff_max_duration=None) _kale_step2_task.container.working_dir = "/test" _kale_step2_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) _kale_output_artifacts = {} _kale_step2_task.output_artifact_paths.update(_kale_output_artifacts) _kale_step2_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") _kale_dep_names = (_kale_step2_task.dependent_names + _kale_volume_step_names) _kale_step2_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(_kale_dep_names)) if _kale_volume_name_parameters: _kale_step2_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(_kale_volume_name_parameters)) _kale_step3_task = _kale_step3_op()\ .add_pvolumes(_kale_pvolumes_dict)\ .after(_kale_step2_task, _kale_step1_task) _kale_step_annotations = {'step3-annotation': 'test'} for _kale_k, _kale_v in _kale_step_annotations.items(): _kale_step3_task.add_pod_annotation(_kale_k, _kale_v) _kale_step_labels = {'common-label': 'true'} for _kale_k, _kale_v in _kale_step_labels.items(): _kale_step3_task.add_pod_label(_kale_k, _kale_v) _kale_step3_task.container.working_dir = "/test" _kale_step3_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) _kale_output_artifacts = {} _kale_step3_task.output_artifact_paths.update(_kale_output_artifacts) _kale_step3_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") _kale_dep_names = (_kale_step3_task.dependent_names + _kale_volume_step_names) _kale_step3_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(_kale_dep_names)) if _kale_volume_name_parameters: _kale_step3_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(_kale_volume_name_parameters)) if __name__ == "__main__": pipeline_func = auto_generated_pipeline pipeline_filename = pipeline_func.__name__ + '.pipeline.tar.gz' import kfp.compiler as compiler compiler.Compiler().compile(pipeline_func, pipeline_filename) # Get or create an experiment and submit a pipeline run import kfp client = kfp.Client() experiment = client.create_experiment('test') # Submit a pipeline run from kale.common import kfputils pipeline_id, version_id = kfputils.upload_pipeline( pipeline_filename, "test") run_result = kfputils.run_pipeline( experiment_name=experiment.name, pipeline_id=pipeline_id, version_id=version_id)
[ "kale.common.kfputils.run_pipeline", "kfp.components.func_to_container_op", "kale.common.runutils.ttl", "collections.OrderedDict", "kfp.dsl.VolumeOp", "kfp.Client", "kubernetes.client.V1SecurityContext", "json.dumps", "kale.common.mlmdutils.init_metadata", "kfp.dsl.pipeline", "kale.common.mlmdutils.call", "kfp.compiler.Compiler", "kale.marshal.decorator.marshal", "kale.common.runutils.link_artifacts", "kale.common.kfputils.upload_pipeline" ]
[((1939, 1982), 'kfp.components.func_to_container_op', '_kfp_components.func_to_container_op', (['step1'], {}), '(step1)\n', (1975, 1982), True, 'import kfp.components as _kfp_components\n'), ((2002, 2045), 'kfp.components.func_to_container_op', '_kfp_components.func_to_container_op', (['step2'], {}), '(step2)\n', (2038, 2045), True, 'import kfp.components as _kfp_components\n'), ((2065, 2108), 'kfp.components.func_to_container_op', '_kfp_components.func_to_container_op', (['step3'], {}), '(step3)\n', (2101, 2108), True, 'import kfp.components as _kfp_components\n'), ((2112, 2158), 'kfp.dsl.pipeline', '_kfp_dsl.pipeline', ([], {'name': '"""test"""', 'description': '""""""'}), "(name='test', description='')\n", (2129, 2158), True, 'import kfp.dsl as _kfp_dsl\n'), ((238, 269), 'kale.common.mlmdutils.init_metadata', '_kale_mlmdutils.init_metadata', ([], {}), '()\n', (267, 269), True, 'from kale.common import mlmdutils as _kale_mlmdutils\n'), ((453, 523), 'kale.marshal.decorator.marshal', '_kale_marshal', (['[]', "['_b', '_a']", '_kale_pipeline_parameters', '"""/marshal"""'], {}), "([], ['_b', '_a'], _kale_pipeline_parameters, '/marshal')\n", (466, 523), True, 'from kale.marshal.decorator import marshal as _kale_marshal\n'), ((633, 670), 'kale.common.runutils.link_artifacts', '_kale_link_artifacts', (['_kale_artifacts'], {}), '(_kale_artifacts)\n', (653, 670), True, 'from kale.common.runutils import link_artifacts as _kale_link_artifacts\n'), ((675, 722), 'kale.common.mlmdutils.call', '_kale_mlmdutils.call', (['"""mark_execution_complete"""'], {}), "('mark_execution_complete')\n", (695, 722), True, 'from kale.common import mlmdutils as _kale_mlmdutils\n'), ((799, 830), 'kale.common.mlmdutils.init_metadata', '_kale_mlmdutils.init_metadata', ([], {}), '()\n', (828, 830), True, 'from kale.common import mlmdutils as _kale_mlmdutils\n'), ((1068, 1080), 'kale.common.runutils.ttl', '_kale_ttl', (['(5)'], {}), '(5)\n', (1077, 1080), True, 'from kale.common.runutils import ttl as _kale_ttl\n'), ((1086, 1160), 'kale.marshal.decorator.marshal', '_kale_marshal', (["['_b', '_a']", "['_c']", '_kale_pipeline_parameters', '"""/marshal"""'], {}), "(['_b', '_a'], ['_c'], _kale_pipeline_parameters, '/marshal')\n", (1099, 1160), True, 'from kale.marshal.decorator import marshal as _kale_marshal\n'), ((1278, 1315), 'kale.common.runutils.link_artifacts', '_kale_link_artifacts', (['_kale_artifacts'], {}), '(_kale_artifacts)\n', (1298, 1315), True, 'from kale.common.runutils import link_artifacts as _kale_link_artifacts\n'), ((1320, 1367), 'kale.common.mlmdutils.call', '_kale_mlmdutils.call', (['"""mark_execution_complete"""'], {}), "('mark_execution_complete')\n", (1340, 1367), True, 'from kale.common import mlmdutils as _kale_mlmdutils\n'), ((1444, 1475), 'kale.common.mlmdutils.init_metadata', '_kale_mlmdutils.init_metadata', ([], {}), '()\n', (1473, 1475), True, 'from kale.common import mlmdutils as _kale_mlmdutils\n'), ((1659, 1729), 'kale.marshal.decorator.marshal', '_kale_marshal', (["['_a', '_c']", '[]', '_kale_pipeline_parameters', '"""/marshal"""'], {}), "(['_a', '_c'], [], _kale_pipeline_parameters, '/marshal')\n", (1672, 1729), True, 'from kale.marshal.decorator import marshal as _kale_marshal\n'), ((1830, 1867), 'kale.common.runutils.link_artifacts', '_kale_link_artifacts', (['_kale_artifacts'], {}), '(_kale_artifacts)\n', (1850, 1867), True, 'from kale.common.runutils import link_artifacts as _kale_link_artifacts\n'), ((1872, 1919), 'kale.common.mlmdutils.call', '_kale_mlmdutils.call', (['"""mark_execution_complete"""'], {}), "('mark_execution_complete')\n", (1892, 1919), True, 'from kale.common import mlmdutils as _kale_mlmdutils\n'), ((2226, 2239), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (2237, 2239), False, 'from collections import OrderedDict\n'), ((2336, 2457), 'kfp.dsl.VolumeOp', '_kfp_dsl.VolumeOp', ([], {'name': '"""kale-marshal-volume"""', 'resource_name': '"""kale-marshal-pvc"""', 'modes': "['ReadWriteMany']", 'size': '"""1Gi"""'}), "(name='kale-marshal-volume', resource_name=\n 'kale-marshal-pvc', modes=['ReadWriteMany'], size='1Gi')\n", (2353, 2457), True, 'import kfp.dsl as _kfp_dsl\n'), ((6823, 6835), 'kfp.Client', 'kfp.Client', ([], {}), '()\n', (6833, 6835), False, 'import kfp\n'), ((6982, 7033), 'kale.common.kfputils.upload_pipeline', 'kfputils.upload_pipeline', (['pipeline_filename', '"""test"""'], {}), "(pipeline_filename, 'test')\n", (7006, 7033), False, 'from kale.common import kfputils\n'), ((7060, 7167), 'kale.common.kfputils.run_pipeline', 'kfputils.run_pipeline', ([], {'experiment_name': 'experiment.name', 'pipeline_id': 'pipeline_id', 'version_id': 'version_id'}), '(experiment_name=experiment.name, pipeline_id=\n pipeline_id, version_id=version_id)\n', (7081, 7167), False, 'from kale.common import kfputils\n'), ((3329, 3372), 'kubernetes.client.V1SecurityContext', 'k8s_client.V1SecurityContext', ([], {'run_as_user': '(0)'}), '(run_as_user=0)\n', (3357, 3372), True, 'from kubernetes import client as k8s_client\n'), ((3771, 3798), 'json.dumps', 'json.dumps', (['_kale_dep_names'], {}), '(_kale_dep_names)\n', (3781, 3798), False, 'import json\n'), ((4573, 4616), 'kubernetes.client.V1SecurityContext', 'k8s_client.V1SecurityContext', ([], {'run_as_user': '(0)'}), '(run_as_user=0)\n', (4601, 4616), True, 'from kubernetes import client as k8s_client\n'), ((5015, 5042), 'json.dumps', 'json.dumps', (['_kale_dep_names'], {}), '(_kale_dep_names)\n', (5025, 5042), False, 'import json\n'), ((5828, 5871), 'kubernetes.client.V1SecurityContext', 'k8s_client.V1SecurityContext', ([], {'run_as_user': '(0)'}), '(run_as_user=0)\n', (5856, 5871), True, 'from kubernetes import client as k8s_client\n'), ((6270, 6297), 'json.dumps', 'json.dumps', (['_kale_dep_names'], {}), '(_kale_dep_names)\n', (6280, 6297), False, 'import json\n'), ((3950, 3990), 'json.dumps', 'json.dumps', (['_kale_volume_name_parameters'], {}), '(_kale_volume_name_parameters)\n', (3960, 3990), False, 'import json\n'), ((5194, 5234), 'json.dumps', 'json.dumps', (['_kale_volume_name_parameters'], {}), '(_kale_volume_name_parameters)\n', (5204, 5234), False, 'import json\n'), ((6449, 6489), 'json.dumps', 'json.dumps', (['_kale_volume_name_parameters'], {}), '(_kale_volume_name_parameters)\n', (6459, 6489), False, 'import json\n'), ((6672, 6691), 'kfp.compiler.Compiler', 'compiler.Compiler', ([], {}), '()\n', (6689, 6691), True, 'import kfp.compiler as compiler\n')]
from django.urls import path from . import views urlpatterns = [ path('list', views.list_view), path('add', views.add_view), ]
[ "django.urls.path" ]
[((70, 99), 'django.urls.path', 'path', (['"""list"""', 'views.list_view'], {}), "('list', views.list_view)\n", (74, 99), False, 'from django.urls import path\n'), ((105, 132), 'django.urls.path', 'path', (['"""add"""', 'views.add_view'], {}), "('add', views.add_view)\n", (109, 132), False, 'from django.urls import path\n')]
import json import logging import socket from roombapy.roomba_info import RoombaInfo class RoombaDiscovery: udp_bind_address = "" udp_address = "<broadcast>" udp_port = 5678 roomba_message = "irobotmcs" amount_of_broadcasted_messages = 5 server_socket = None log = None def __init__(self): """Init discovery.""" self.server_socket = _get_socket() self.log = logging.getLogger(__name__) def find(self, ip=None): if ip is not None: return self.get(ip) return self.get_all() def get_all(self): self._start_server() self._broadcast_message(self.amount_of_broadcasted_messages) robots = set() while True: response = self._get_response() if response: robots.add(response) else: break return robots def get(self, ip): self._start_server() self._send_message(ip) return self._get_response(ip) def _get_response(self, ip=None): try: while True: raw_response, addr = self.server_socket.recvfrom(1024) if ip is not None and addr[0] != ip: continue self.log.debug( "Received response: %s, address: %s", raw_response, addr ) data = raw_response.decode() if self._is_from_irobot(data): return _decode_data(data) except socket.timeout: self.log.info("Socket timeout") return None def _is_from_irobot(self, data): if data == self.roomba_message: return False json_response = json.loads(data) if ( "Roomba" in json_response["hostname"] or "iRobot" in json_response["hostname"] ): return True return False def _broadcast_message(self, amount): for i in range(amount): self.server_socket.sendto( self.roomba_message.encode(), (self.udp_address, self.udp_port) ) self.log.debug("Broadcast message sent: " + str(i)) def _send_message(self, udp_address): self.server_socket.sendto( self.roomba_message.encode(), (udp_address, self.udp_port) ) self.log.debug("Message sent") def _start_server(self): self.server_socket.bind((self.udp_bind_address, self.udp_port)) self.log.debug("Socket server started, port %s", self.udp_port) def _decode_data(data): json_response = json.loads(data) return RoombaInfo( hostname=json_response["hostname"], robot_name=json_response["robotname"], ip=json_response["ip"], mac=json_response["mac"], firmware=json_response["sw"], sku=json_response["sku"], capabilities=json_response["cap"], ) def _get_socket(): server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) server_socket.settimeout(5) return server_socket
[ "logging.getLogger", "json.loads", "roombapy.roomba_info.RoombaInfo", "socket.socket" ]
[((2621, 2637), 'json.loads', 'json.loads', (['data'], {}), '(data)\n', (2631, 2637), False, 'import json\n'), ((2649, 2889), 'roombapy.roomba_info.RoombaInfo', 'RoombaInfo', ([], {'hostname': "json_response['hostname']", 'robot_name': "json_response['robotname']", 'ip': "json_response['ip']", 'mac': "json_response['mac']", 'firmware': "json_response['sw']", 'sku': "json_response['sku']", 'capabilities': "json_response['cap']"}), "(hostname=json_response['hostname'], robot_name=json_response[\n 'robotname'], ip=json_response['ip'], mac=json_response['mac'],\n firmware=json_response['sw'], sku=json_response['sku'], capabilities=\n json_response['cap'])\n", (2659, 2889), False, 'from roombapy.roomba_info import RoombaInfo\n'), ((2980, 3028), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (2993, 3028), False, 'import socket\n'), ((418, 445), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (435, 445), False, 'import logging\n'), ((1741, 1757), 'json.loads', 'json.loads', (['data'], {}), '(data)\n', (1751, 1757), False, 'import json\n')]
import warnings warnings.simplefilter("ignore", category=FutureWarning) from pmaf.biome.essentials._metakit import EssentialFeatureMetabase from pmaf.biome.essentials._base import EssentialBackboneBase from pmaf.internal._constants import ( AVAIL_TAXONOMY_NOTATIONS, jRegexGG, jRegexQIIME, BIOM_TAXONOMY_NAMES, VALID_RANKS, ) from pmaf.internal._shared import ( generate_lineages_from_taxa, get_rank_upto, indentify_taxon_notation, validate_ranks, extract_valid_ranks, cols2ranks, ) from collections import defaultdict from os import path import pandas as pd import numpy as np import biom from typing import Union, Sequence, Tuple, Any, Optional from pmaf.internal._typing import AnyGenericIdentifier, Mapper class RepTaxonomy(EssentialBackboneBase, EssentialFeatureMetabase): """An `essential` class for handling taxonomy data.""" def __init__( self, taxonomy: Union[pd.DataFrame, pd.Series, str], taxonomy_columns: Union[str, int, Sequence[Union[int, str]]] = None, **kwargs: Any ) -> None: """Constructor for :class:`.RepTaxonomy` Parameters ---------- taxonomy Data containing feature taxonomy taxonomy_columns Column(s) containing taxonomy data kwargs Passed to :func:`~pandas.read_csv` or :mod:`biome` loader. """ tmp_metadata = kwargs.pop("metadata", {}) self.__avail_ranks = [] self.__internal_taxonomy = None if isinstance(taxonomy, pd.DataFrame): if taxonomy.shape[0] > 0: if taxonomy.shape[1] > 1: if validate_ranks(list(taxonomy.columns.values), VALID_RANKS): tmp_taxonomy = taxonomy else: raise ValueError( "Provided `taxonomy` Datafame has invalid ranks." ) else: tmp_taxonomy = taxonomy.iloc[:, 0] else: raise ValueError("Provided `taxonomy` Datafame is invalid.") elif isinstance(taxonomy, pd.Series): if taxonomy.shape[0] > 0: tmp_taxonomy = taxonomy else: raise ValueError("Provided `taxonomy` Series is invalid.") elif isinstance(taxonomy, str): if path.isfile(taxonomy): file_extension = path.splitext(taxonomy)[-1].lower() if file_extension in [".csv", ".tsv"]: if taxonomy_columns is None: tmp_taxonomy = pd.read_csv( taxonomy, sep=kwargs.pop("sep", ","), header=kwargs.pop("header", "infer"), index_col=kwargs.pop("index_col", None), ) else: if isinstance(taxonomy_columns, int): tmp_taxonomy = pd.read_csv( taxonomy, sep=kwargs.pop("sep", ","), header=kwargs.pop("header", "infer"), index_col=kwargs.pop("index_col", None), ).iloc[:, taxonomy_columns] else: tmp_taxonomy = pd.read_csv( taxonomy, sep=kwargs.pop("sep", ","), header=kwargs.pop("header", "infer"), index_col=kwargs.pop("index_col", None), ).loc[:, taxonomy_columns] elif file_extension in [".biom", ".biome"]: tmp_taxonomy, new_metadata = self.__load_biom(taxonomy, **kwargs) tmp_metadata.update({"biom": new_metadata}) else: raise NotImplementedError("File type is not supported.") else: raise FileNotFoundError("Provided `taxonomy` file path is invalid.") else: raise TypeError("Provided `taxonomy` has invalid type.") self.__init_internal_taxonomy(tmp_taxonomy, **kwargs) super().__init__(metadata=tmp_metadata, **kwargs) @classmethod def from_csv( cls, filepath: str, taxonomy_columns: Union[str, int, Sequence[Union[int, str]]] = None, **kwargs: Any ) -> "RepTaxonomy": """Factory method to construct a :class:`.RepTaxonomy` from CSV file. Parameters ---------- filepath Path to .csv File taxonomy_columns Column(s) containing taxonomy data kwargs Passed to the constructor. filepath: Returns ------- Instance of class:`.RepTaxonomy` """ if taxonomy_columns is None: tmp_taxonomy = pd.read_csv(filepath, **kwargs) else: if isinstance(taxonomy_columns, int): tmp_taxonomy = pd.read_csv(filepath, **kwargs).iloc[:, taxonomy_columns] else: tmp_taxonomy = pd.read_csv(filepath, **kwargs).loc[:, taxonomy_columns] tmp_metadata = kwargs.pop("metadata", {}) tmp_metadata.update({"filepath": path.abspath(filepath)}) return cls(taxonomy=tmp_taxonomy, metadata=tmp_metadata, **kwargs) @classmethod def from_biom(cls, filepath: str, **kwargs: Any) -> "RepTaxonomy": """Factory method to construct a :class:`.RepTaxonomy` from :mod:`biom` file. Parameters ---------- filepath :mod:`biom` file path. kwargs Passed to the constructor. Returns ------- Instance of class:`.RepTaxonomy` """ taxonomy_frame, new_metadata = cls.__load_biom(filepath, **kwargs) tmp_metadata = kwargs.pop("metadata", {}) tmp_metadata.update({"biom": new_metadata}) return cls(taxonomy=taxonomy_frame, metadata=tmp_metadata, **kwargs) @classmethod def __load_biom(cls, filepath: str, **kwargs: Any) -> Tuple[pd.DataFrame, dict]: """Actual private method to process :mod:`biom` file. Parameters ---------- filepath :mod:`biom` file path. kwargs Compatibility """ biom_file = biom.load_table(filepath) if biom_file.metadata(axis="observation") is not None: obs_data = biom_file.metadata_to_dataframe("observation") col_names = list(obs_data.columns.values) col_names_low = [col.lower() for col in col_names] avail_col_names = [ colname for tax_name in BIOM_TAXONOMY_NAMES for colname in col_names_low if colname[::-1].find(tax_name[::-1]) < 3 and colname[::-1].find(tax_name[::-1]) > -1 ] metadata_cols = [ col for col in col_names if col.lower() not in avail_col_names ] if len(avail_col_names) == 1: tmp_col_index = col_names_low.index(avail_col_names[0]) taxonomy_frame = obs_data[col_names[tmp_col_index]] else: taxonomy_frame = obs_data tmp_metadata = obs_data.loc[:, metadata_cols].to_dict() return taxonomy_frame, tmp_metadata else: raise ValueError("Biom file does not contain observation metadata.") def _remove_features_by_id( self, ids: AnyGenericIdentifier, **kwargs: Any ) -> Optional[AnyGenericIdentifier]: """Remove features by features ids and ratify action. Parameters ---------- ids Feature identifiers kwargs Compatibility """ tmp_ids = np.asarray(ids, dtype=self.__internal_taxonomy.index.dtype) if len(tmp_ids) > 0: self.__internal_taxonomy.drop(tmp_ids, inplace=True) return self._ratify_action("_remove_features_by_id", ids, **kwargs) def _merge_features_by_map( self, map_dict: Mapper, done: bool = False, **kwargs: Any ) -> Optional[Mapper]: """Merge features and ratify action. Parameters ---------- map_dict Map to use for merging done Whether merging was completed or not. Compatibility. kwargs Compatibility """ if not done: raise NotImplementedError if map_dict: return self._ratify_action( "_merge_features_by_map", map_dict, _annotations=self.__internal_taxonomy.loc[:, "lineage"].to_dict(), **kwargs ) def drop_feature_by_id( self, ids: AnyGenericIdentifier, **kwargs: Any ) -> Optional[AnyGenericIdentifier]: """Remove features by feature `ids`. Parameters ---------- ids Feature identifiers kwargs Compatibility """ target_ids = np.asarray(ids) if self.xrid.isin(target_ids).sum() == len(target_ids): return self._remove_features_by_id(target_ids, **kwargs) else: raise ValueError("Invalid feature ids are provided.") def get_taxonomy_by_id( self, ids: Optional[AnyGenericIdentifier] = None ) -> pd.DataFrame: """Get taxonomy :class:`~pandas.DataFrame` by feature `ids`. Parameters ---------- ids Either feature indices or None for all. Returns ------- class:`pandas.DataFrame` with taxonomy data """ if ids is None: target_ids = self.xrid else: target_ids = np.asarray(ids) if self.xrid.isin(target_ids).sum() <= len(target_ids): return self.__internal_taxonomy.loc[target_ids, self.__avail_ranks] else: raise ValueError("Invalid feature ids are provided.") def get_lineage_by_id( self, ids: Optional[AnyGenericIdentifier] = None, missing_rank: bool = False, desired_ranks: Union[bool, Sequence[str]] = False, drop_ranks: Union[bool, Sequence[str]] = False, **kwargs: Any ) -> pd.Series: """Get taxonomy lineages by feature `ids`. Parameters ---------- ids Either feature indices or None for all. missing_rank If True will generate prefix like `s__` or `d__` desired_ranks List of desired ranks to generate. If False then will generate all main ranks drop_ranks List of ranks to drop from desired ranks. This parameter only useful if `missing_rank` is True kwargs Compatibility. Returns ------- class:`pandas.Series` with consensus lineages and corresponding IDs """ if ids is None: target_ids = self.xrid else: target_ids = np.asarray(ids) tmp_desired_ranks = VALID_RANKS if desired_ranks is False else desired_ranks total_valid_rids = self.xrid.isin(target_ids).sum() if total_valid_rids == len(target_ids): return generate_lineages_from_taxa( self.__internal_taxonomy.loc[target_ids], missing_rank, tmp_desired_ranks, drop_ranks, ) elif total_valid_rids < len(target_ids): return generate_lineages_from_taxa( self.__internal_taxonomy.loc[np.unique(target_ids)], missing_rank, tmp_desired_ranks, drop_ranks, ) else: raise ValueError("Invalid feature ids are provided.") def find_features_by_pattern( self, pattern_str: str, case_sensitive: bool = False, regex: bool = False ) -> np.ndarray: """Searches for features with taxa that matches `pattern_str` Parameters ---------- pattern_str Pattern to search for case_sensitive Case sensitive mode regex Use regular expressions Returns ------- class:`~numpy.ndarray` with indices """ return self.__internal_taxonomy[ self.__internal_taxonomy.loc[:, "lineage"].str.contains( pattern_str, case=case_sensitive, regex=regex ) ].index.values def drop_features_without_taxa( self, **kwargs: Any ) -> Optional[AnyGenericIdentifier]: """Remove features that do not contain taxonomy. Parameters ---------- kwargs Compatibility """ ids_to_drop = self.find_features_without_taxa() return self._remove_features_by_id(ids_to_drop, **kwargs) def drop_features_without_ranks( self, ranks: Sequence[str], any: bool = False, **kwargs: Any ) -> Optional[AnyGenericIdentifier]: # Done """Remove features that do not contain `ranks` Parameters ---------- ranks Ranks to look for any If True removes feature with single occurrence of missing rank. If False all `ranks` must be missing. kwargs Compatibility """ target_ranks = np.asarray(ranks) if self.__internal_taxonomy.columns.isin(target_ranks).sum() == len( target_ranks ): no_rank_mask = self.__internal_taxonomy.loc[:, ranks].isna() no_rank_mask_adjusted = ( no_rank_mask.any(axis=1) if any else no_rank_mask.all(axis=1) ) ids_to_drop = self.__internal_taxonomy.loc[no_rank_mask_adjusted].index return self._remove_features_by_id(ids_to_drop, **kwargs) else: raise ValueError("Invalid ranks are provided.") def merge_duplicated_features(self, **kwargs: Any) -> Optional[Mapper]: """Merge features with duplicated taxonomy. Parameters ---------- kwargs Compatibility """ ret = {} groupby = self.__internal_taxonomy.groupby("lineage") if any([len(group) > 1 for group in groupby.groups.values()]): tmp_feature_lineage = [] tmp_groups = [] group_indices = list(range(len(groupby.groups))) for lineage, feature_ids in groupby.groups.items(): tmp_feature_lineage.append(lineage) tmp_groups.append(list(feature_ids)) self.__init_internal_taxonomy( pd.Series(data=tmp_feature_lineage, index=group_indices) ) ret = dict(zip(group_indices, tmp_groups)) return self._merge_features_by_map(ret, True, **kwargs) def merge_features_by_rank(self, level: str, **kwargs: Any) -> Optional[Mapper]: """Merge features by taxonomic rank/level. Parameters ---------- level Taxonomic rank/level to use for merging. kwargs Compatibility """ ret = {} if not isinstance(level, str): raise TypeError("`rank` must have str type.") if level in self.__avail_ranks: target_ranks = get_rank_upto(self.avail_ranks, level, True) if target_ranks: tmp_lineages = generate_lineages_from_taxa( self.__internal_taxonomy, False, target_ranks, False ) groups = tmp_lineages.groupby(tmp_lineages) if len(groups.groups) > 1: tmp_feature_lineage = [] tmp_groups = [] group_indices = list(range(len(groups.groups))) for lineage, feature_ids in groups.groups.items(): tmp_feature_lineage.append(lineage) tmp_groups.append(list(feature_ids)) self.__init_internal_taxonomy( pd.Series(data=tmp_feature_lineage, index=group_indices) ) ret = dict(zip(group_indices, tmp_groups)) else: raise ValueError("Invalid rank are provided.") return self._merge_features_by_map(ret, True, **kwargs) def find_features_without_taxa(self) -> np.ndarray: """Find features without taxa. Returns ------- class:`~numpy.ndarray` with feature indices. """ return self.__internal_taxonomy.loc[ self.__internal_taxonomy.loc[:, VALID_RANKS].agg( lambda rank: len("".join(map(lambda x: (str(x or "")), rank))), axis=1 ) < 1 ].index.values def get_subset( self, rids: Optional[AnyGenericIdentifier] = None, *args, **kwargs: Any ) -> "RepTaxonomy": """Get subset of the :class:`.RepTaxonomy`. Parameters ---------- rids Feature identifiers. args Compatibility kwargs Compatibility Returns ------- class:`.RepTaxonomy` """ if rids is None: target_rids = self.xrid else: target_rids = np.asarray(rids).astype(self.__internal_taxonomy.index.dtype) if not self.xrid.isin(target_rids).sum() == len(target_rids): raise ValueError("Invalid feature ids are provided.") return type(self)( taxonomy=self.__internal_taxonomy.loc[target_rids, "lineage"], metadata=self.metadata, name=self.name, ) def _export( self, taxlike: str = "lineage", ascending: bool = True, **kwargs: Any ) -> Tuple[pd.Series, dict]: """Creates taxonomy for export. Parameters ---------- taxlike Generate taxonomy in format(currently only `lineage` is supported.) ascending Sorting kwargs Compatibility """ if taxlike == "lineage": return ( self.get_lineage_by_id(**kwargs).sort_values(ascending=ascending), kwargs, ) else: raise NotImplemented def export( self, output_fp: str, *args, _add_ext: bool = False, sep: str = ",", **kwargs: Any ) -> None: """Exports the taxonomy into the specified file. Parameters ---------- output_fp Export filepath args Compatibility _add_ext Add file extension or not. sep Delimiter kwargs Compatibility """ tmp_export, rkwarg = self._export(*args, **kwargs) if _add_ext: tmp_export.to_csv("{}.csv".format(output_fp), sep=sep) else: tmp_export.to_csv(output_fp, sep=sep) def copy(self) -> "RepTaxonomy": """Copy of the instance.""" return type(self)( taxonomy=self.__internal_taxonomy.loc[:, "lineage"], metadata=self.metadata, name=self.name, ) def __fix_taxon_names(self) -> None: """Fix invalid taxon names.""" def taxon_fixer(taxon): if taxon is not None and pd.notna(taxon): tmp_taxon_trimmed = taxon.lower().strip() if len(tmp_taxon_trimmed) > 0: if tmp_taxon_trimmed[0] == "[": tmp_taxon_trimmed = tmp_taxon_trimmed[1:] if tmp_taxon_trimmed[-1] == "]": tmp_taxon_trimmed = tmp_taxon_trimmed[:-1] return tmp_taxon_trimmed.capitalize() else: return None else: return None self.__internal_taxonomy.loc[:, VALID_RANKS] = self.__internal_taxonomy.loc[ :, VALID_RANKS ].applymap(taxon_fixer) def __reconstruct_internal_lineages(self) -> None: """Reconstruct the internal lineages.""" self.__internal_taxonomy.loc[:, "lineage"] = generate_lineages_from_taxa( self.__internal_taxonomy, True, self.__avail_ranks, False ) def __init_internal_taxonomy( self, taxonomy_data: Union[pd.Series, pd.DataFrame], taxonomy_notation: Optional[str] = "greengenes", order_ranks: Optional[Sequence[str]] = None, **kwargs: Any ) -> None: """Main method to initialize taxonomy. Parameters ---------- taxonomy_data Incoming parsed taxonomy data taxonomy_notation Taxonomy lineage notation style. Can be one of :const:`pmaf.internals._constants.AVAIL_TAXONOMY_NOTATIONS` order_ranks List with the target rank order. Default is set to None. The 'silva' notation require `order_ranks`. kwargs Compatibility """ if isinstance(taxonomy_data, pd.Series): new_taxonomy = self.__init_taxonomy_from_lineages( taxonomy_data, taxonomy_notation, order_ranks ) elif isinstance(taxonomy_data, pd.DataFrame): if taxonomy_data.shape[1] == 1: taxonomy_data_series = pd.Series( data=taxonomy_data.iloc[:, 0], index=taxonomy_data.index ) new_taxonomy = self.__init_taxonomy_from_lineages( taxonomy_data_series, taxonomy_notation, order_ranks ) else: new_taxonomy = self.__init_taxonomy_from_frame( taxonomy_data, taxonomy_notation, order_ranks ) else: raise RuntimeError( "`taxonomy_data` must be either pd.Series or pd.Dataframe" ) if new_taxonomy is None: raise ValueError("Provided taxonomy is invalid.") # Assign newly constructed taxonomy to the self.__internal_taxonomy self.__internal_taxonomy = new_taxonomy self.__fix_taxon_names() # Fix incorrect taxa tmp_avail_ranks = [rank for rank in VALID_RANKS if rank in new_taxonomy.columns] self.__avail_ranks = [ rank for rank in tmp_avail_ranks if new_taxonomy.loc[:, rank].notna().any() ] # Reconstruct internal lineages for default greengenes notation self.__reconstruct_internal_lineages() self._init_state = True def __init_taxonomy_from_lineages( self, taxonomy_series: pd.Series, taxonomy_notation: Optional[str], order_ranks: Optional[Sequence[str]], ) -> pd.DataFrame: # Done """Main method that produces taxonomy dataframe from lineages. Parameters ---------- taxonomy_series :class:`pandas.Series` with taxonomy lineages taxonomy_notation Taxonomy lineage notation style. Can be one of :const:`pmaf.internals._constants.AVAIL_TAXONOMY_NOTATIONS` order_ranks List with the target rank order. Default is set to None. The 'silva' notation require `order_ranks`. """ # Check if taxonomy is known and is available for parsing. Otherwise indentify_taxon_notation() will try to identify notation if taxonomy_notation in AVAIL_TAXONOMY_NOTATIONS: notation = taxonomy_notation else: # Get first lineage _sample for notation testing assuming the rest have the the same notations sample_taxon = taxonomy_series.iloc[0] # Identify notation of the lineage string notation = indentify_taxon_notation(sample_taxon) if order_ranks is not None: if all([rank in VALID_RANKS for rank in order_ranks]): target_order_ranks = order_ranks else: raise NotImplementedError else: target_order_ranks = VALID_RANKS if notation == "greengenes": lineages = taxonomy_series.reset_index().values.tolist() ordered_taxa_list = [] ordered_indices_list = [elem[0] for elem in lineages] for lineage in lineages: tmp_lineage = jRegexGG.findall(lineage[1]) tmp_taxa_dict = { elem[0]: elem[1] for elem in tmp_lineage if elem[0] in VALID_RANKS } for rank in VALID_RANKS: if rank not in tmp_taxa_dict.keys(): tmp_taxa_dict.update({rank: None}) tmp_taxa_ordered = [tmp_taxa_dict[rank] for rank in VALID_RANKS] ordered_taxa_list.append([None] + tmp_taxa_ordered) taxonomy = pd.DataFrame( index=ordered_indices_list, data=ordered_taxa_list, columns=["lineage"] + VALID_RANKS, ) return taxonomy elif notation == "qiime": lineages = taxonomy_series.reset_index().values.tolist() tmp_taxa_dict_list = [] tmp_ranks = set() for lineage in lineages: tmp_lineage = jRegexQIIME.findall(lineage[1]) tmp_lineage.sort(key=lambda x: x[0]) tmp_taxa_dict = defaultdict(None) tmp_taxa_dict[None] = lineage[0] for rank, taxon in tmp_lineage: tmp_taxa_dict[rank] = taxon tmp_ranks.add(rank) tmp_taxa_dict_list.append(dict(tmp_taxa_dict)) tmp_taxonomy_df = pd.DataFrame.from_records(tmp_taxa_dict_list) tmp_taxonomy_df.set_index(None, inplace=True) tmp_taxonomy_df = tmp_taxonomy_df.loc[:, sorted(list(tmp_ranks))] tmp_taxonomy_df.columns = [ rank for rank in target_order_ranks[::-1][: len(tmp_ranks)] ][::-1] for rank in VALID_RANKS: if rank not in tmp_taxonomy_df.columns: tmp_taxonomy_df.loc[:, rank] = None return tmp_taxonomy_df elif notation == "silva": lineages = taxonomy_series.reset_index().values.tolist() tmp_taxa_dict_list = [] tmp_ranks = set() for lineage in lineages: tmp_lineage = lineage[1].split(";") tmp_taxa_dict = defaultdict(None) tmp_taxa_dict[None] = lineage[0] for rank_i, taxon in enumerate(tmp_lineage): rank = target_order_ranks[rank_i] tmp_taxa_dict[rank] = taxon tmp_ranks.add(rank) tmp_taxa_dict_list.append(dict(tmp_taxa_dict)) tmp_taxonomy_df = pd.DataFrame.from_records(tmp_taxa_dict_list) tmp_taxonomy_df.set_index(None, inplace=True) tmp_rank_ordered = [ rank for rank in target_order_ranks if rank in VALID_RANKS ] tmp_taxonomy_df = tmp_taxonomy_df.loc[:, tmp_rank_ordered] tmp_taxonomy_df.columns = [ rank for rank in target_order_ranks[::-1][: len(tmp_ranks)] ][::-1] for rank in VALID_RANKS: if rank not in tmp_taxonomy_df.columns: tmp_taxonomy_df.loc[:, rank] = None return tmp_taxonomy_df else: raise NotImplementedError def __init_taxonomy_from_frame( self, taxonomy_dataframe: pd.DataFrame, taxonomy_notation: Optional[str], order_ranks: Optional[Sequence[str]], ) -> pd.DataFrame: # Done # For now only pass to _init_taxonomy_from_series """Main method that produces taxonomy sheet from dataframe. Parameters ---------- taxonomy_dataframe :class:`~pandas.DataFrame` with taxa split by ranks. taxonomy_notation Taxonomy lineage notation style. Can be one of :const:`pmaf.internals._constants.AVAIL_TAXONOMY_NOTATIONS` order_ranks List with the target rank order. Default is set to None. The 'silva' notation require `order_ranks`. Returns ------- :class:`~pandas.DataFrame` """ valid_ranks = extract_valid_ranks(taxonomy_dataframe.columns, VALID_RANKS) if valid_ranks is not None: if len(valid_ranks) > 0: return pd.concat( [ taxonomy_dataframe, pd.DataFrame( data="", index=taxonomy_dataframe.index, columns=[ rank for rank in VALID_RANKS if rank not in valid_ranks ], ), ], axis=1, ) else: taxonomy_series = taxonomy_dataframe.apply( lambda taxa: ";".join(taxa.values.tolist()), axis=1 ) return self.__init_taxonomy_from_lineages( taxonomy_series, taxonomy_notation, order_ranks ) else: valid_ranks = cols2ranks(taxonomy_dataframe.columns) taxonomy_dataframe.columns = valid_ranks taxonomy_series = taxonomy_dataframe.apply( lambda taxa: ";".join([(t if isinstance(t,str) else '') for t in taxa.values]), axis=1 ) return self.__init_taxonomy_from_lineages( taxonomy_series, taxonomy_notation, order_ranks ) @property def avail_ranks(self) -> Sequence[str]: """List of available taxonomic ranks.""" return self.__avail_ranks @property def duplicated(self) -> pd.Index: """List of duplicated feature indices.""" return self.__internal_taxonomy.index[ self.__internal_taxonomy["lineage"].duplicated(keep=False) ] @property def data(self) -> pd.DataFrame: """Actual data representation as pd.DataFrame.""" return self.__internal_taxonomy @property def xrid(self) -> pd.Index: """Feature indices as pd.Index.""" return self.__internal_taxonomy.index
[ "pmaf.internal._shared.generate_lineages_from_taxa", "pandas.read_csv", "pmaf.internal._shared.indentify_taxon_notation", "pmaf.internal._shared.extract_valid_ranks", "pmaf.internal._shared.get_rank_upto", "biom.load_table", "numpy.asarray", "pandas.DataFrame", "warnings.simplefilter", "pandas.notna", "os.path.splitext", "pmaf.internal._constants.jRegexGG.findall", "os.path.isfile", "pmaf.internal._constants.jRegexQIIME.findall", "pandas.Series", "pandas.DataFrame.from_records", "pmaf.internal._shared.cols2ranks", "numpy.unique", "collections.defaultdict", "os.path.abspath" ]
[((17, 72), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {'category': 'FutureWarning'}), "('ignore', category=FutureWarning)\n", (38, 72), False, 'import warnings\n'), ((6508, 6533), 'biom.load_table', 'biom.load_table', (['filepath'], {}), '(filepath)\n', (6523, 6533), False, 'import biom\n'), ((7990, 8049), 'numpy.asarray', 'np.asarray', (['ids'], {'dtype': 'self.__internal_taxonomy.index.dtype'}), '(ids, dtype=self.__internal_taxonomy.index.dtype)\n', (8000, 8049), True, 'import numpy as np\n'), ((9250, 9265), 'numpy.asarray', 'np.asarray', (['ids'], {}), '(ids)\n', (9260, 9265), True, 'import numpy as np\n'), ((13618, 13635), 'numpy.asarray', 'np.asarray', (['ranks'], {}), '(ranks)\n', (13628, 13635), True, 'import numpy as np\n'), ((20462, 20553), 'pmaf.internal._shared.generate_lineages_from_taxa', 'generate_lineages_from_taxa', (['self.__internal_taxonomy', '(True)', 'self.__avail_ranks', '(False)'], {}), '(self.__internal_taxonomy, True, self.\n __avail_ranks, False)\n', (20489, 20553), False, 'from pmaf.internal._shared import generate_lineages_from_taxa, get_rank_upto, indentify_taxon_notation, validate_ranks, extract_valid_ranks, cols2ranks\n'), ((28635, 28695), 'pmaf.internal._shared.extract_valid_ranks', 'extract_valid_ranks', (['taxonomy_dataframe.columns', 'VALID_RANKS'], {}), '(taxonomy_dataframe.columns, VALID_RANKS)\n', (28654, 28695), False, 'from pmaf.internal._shared import generate_lineages_from_taxa, get_rank_upto, indentify_taxon_notation, validate_ranks, extract_valid_ranks, cols2ranks\n'), ((5017, 5048), 'pandas.read_csv', 'pd.read_csv', (['filepath'], {}), '(filepath, **kwargs)\n', (5028, 5048), True, 'import pandas as pd\n'), ((9959, 9974), 'numpy.asarray', 'np.asarray', (['ids'], {}), '(ids)\n', (9969, 9974), True, 'import numpy as np\n'), ((11249, 11264), 'numpy.asarray', 'np.asarray', (['ids'], {}), '(ids)\n', (11259, 11264), True, 'import numpy as np\n'), ((11477, 11595), 'pmaf.internal._shared.generate_lineages_from_taxa', 'generate_lineages_from_taxa', (['self.__internal_taxonomy.loc[target_ids]', 'missing_rank', 'tmp_desired_ranks', 'drop_ranks'], {}), '(self.__internal_taxonomy.loc[target_ids],\n missing_rank, tmp_desired_ranks, drop_ranks)\n', (11504, 11595), False, 'from pmaf.internal._shared import generate_lineages_from_taxa, get_rank_upto, indentify_taxon_notation, validate_ranks, extract_valid_ranks, cols2ranks\n'), ((15572, 15616), 'pmaf.internal._shared.get_rank_upto', 'get_rank_upto', (['self.avail_ranks', 'level', '(True)'], {}), '(self.avail_ranks, level, True)\n', (15585, 15616), False, 'from pmaf.internal._shared import generate_lineages_from_taxa, get_rank_upto, indentify_taxon_notation, validate_ranks, extract_valid_ranks, cols2ranks\n'), ((24044, 24082), 'pmaf.internal._shared.indentify_taxon_notation', 'indentify_taxon_notation', (['sample_taxon'], {}), '(sample_taxon)\n', (24068, 24082), False, 'from pmaf.internal._shared import generate_lineages_from_taxa, get_rank_upto, indentify_taxon_notation, validate_ranks, extract_valid_ranks, cols2ranks\n'), ((25125, 25229), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'ordered_indices_list', 'data': 'ordered_taxa_list', 'columns': "(['lineage'] + VALID_RANKS)"}), "(index=ordered_indices_list, data=ordered_taxa_list, columns=[\n 'lineage'] + VALID_RANKS)\n", (25137, 25229), True, 'import pandas as pd\n'), ((29610, 29648), 'pmaf.internal._shared.cols2ranks', 'cols2ranks', (['taxonomy_dataframe.columns'], {}), '(taxonomy_dataframe.columns)\n', (29620, 29648), False, 'from pmaf.internal._shared import generate_lineages_from_taxa, get_rank_upto, indentify_taxon_notation, validate_ranks, extract_valid_ranks, cols2ranks\n'), ((5399, 5421), 'os.path.abspath', 'path.abspath', (['filepath'], {}), '(filepath)\n', (5411, 5421), False, 'from os import path\n'), ((14905, 14961), 'pandas.Series', 'pd.Series', ([], {'data': 'tmp_feature_lineage', 'index': 'group_indices'}), '(data=tmp_feature_lineage, index=group_indices)\n', (14914, 14961), True, 'import pandas as pd\n'), ((15677, 15763), 'pmaf.internal._shared.generate_lineages_from_taxa', 'generate_lineages_from_taxa', (['self.__internal_taxonomy', '(False)', 'target_ranks', '(False)'], {}), '(self.__internal_taxonomy, False, target_ranks, \n False)\n', (15704, 15763), False, 'from pmaf.internal._shared import generate_lineages_from_taxa, get_rank_upto, indentify_taxon_notation, validate_ranks, extract_valid_ranks, cols2ranks\n'), ((19641, 19656), 'pandas.notna', 'pd.notna', (['taxon'], {}), '(taxon)\n', (19649, 19656), True, 'import pandas as pd\n'), ((24628, 24656), 'pmaf.internal._constants.jRegexGG.findall', 'jRegexGG.findall', (['lineage[1]'], {}), '(lineage[1])\n', (24644, 24656), False, 'from pmaf.internal._constants import AVAIL_TAXONOMY_NOTATIONS, jRegexGG, jRegexQIIME, BIOM_TAXONOMY_NAMES, VALID_RANKS\n'), ((25965, 26010), 'pandas.DataFrame.from_records', 'pd.DataFrame.from_records', (['tmp_taxa_dict_list'], {}), '(tmp_taxa_dict_list)\n', (25990, 26010), True, 'import pandas as pd\n'), ((2403, 2424), 'os.path.isfile', 'path.isfile', (['taxonomy'], {}), '(taxonomy)\n', (2414, 2424), False, 'from os import path\n'), ((17561, 17577), 'numpy.asarray', 'np.asarray', (['rids'], {}), '(rids)\n', (17571, 17577), True, 'import numpy as np\n'), ((21661, 21728), 'pandas.Series', 'pd.Series', ([], {'data': 'taxonomy_data.iloc[:, 0]', 'index': 'taxonomy_data.index'}), '(data=taxonomy_data.iloc[:, 0], index=taxonomy_data.index)\n', (21670, 21728), True, 'import pandas as pd\n'), ((25552, 25583), 'pmaf.internal._constants.jRegexQIIME.findall', 'jRegexQIIME.findall', (['lineage[1]'], {}), '(lineage[1])\n', (25571, 25583), False, 'from pmaf.internal._constants import AVAIL_TAXONOMY_NOTATIONS, jRegexGG, jRegexQIIME, BIOM_TAXONOMY_NAMES, VALID_RANKS\n'), ((25669, 25686), 'collections.defaultdict', 'defaultdict', (['None'], {}), '(None)\n', (25680, 25686), False, 'from collections import defaultdict\n'), ((27120, 27165), 'pandas.DataFrame.from_records', 'pd.DataFrame.from_records', (['tmp_taxa_dict_list'], {}), '(tmp_taxa_dict_list)\n', (27145, 27165), True, 'import pandas as pd\n'), ((5144, 5175), 'pandas.read_csv', 'pd.read_csv', (['filepath'], {}), '(filepath, **kwargs)\n', (5155, 5175), True, 'import pandas as pd\n'), ((5251, 5282), 'pandas.read_csv', 'pd.read_csv', (['filepath'], {}), '(filepath, **kwargs)\n', (5262, 5282), True, 'import pandas as pd\n'), ((11813, 11834), 'numpy.unique', 'np.unique', (['target_ids'], {}), '(target_ids)\n', (11822, 11834), True, 'import numpy as np\n'), ((16316, 16372), 'pandas.Series', 'pd.Series', ([], {'data': 'tmp_feature_lineage', 'index': 'group_indices'}), '(data=tmp_feature_lineage, index=group_indices)\n', (16325, 16372), True, 'import pandas as pd\n'), ((26757, 26774), 'collections.defaultdict', 'defaultdict', (['None'], {}), '(None)\n', (26768, 26774), False, 'from collections import defaultdict\n'), ((28893, 29017), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': '""""""', 'index': 'taxonomy_dataframe.index', 'columns': '[rank for rank in VALID_RANKS if rank not in valid_ranks]'}), "(data='', index=taxonomy_dataframe.index, columns=[rank for\n rank in VALID_RANKS if rank not in valid_ranks])\n", (28905, 29017), True, 'import pandas as pd\n'), ((2459, 2482), 'os.path.splitext', 'path.splitext', (['taxonomy'], {}), '(taxonomy)\n', (2472, 2482), False, 'from os import path\n')]
from typing import List import numpy as np def mask_nan(arrays: List[np.ndarray]) -> List[np.ndarray]: """ Drop indices from equal-sized arrays if the element at that index is NaN in any of the input arrays. Parameters ---------- arrays : List[np.ndarray] list of ndarrays containing NaNs, to be masked Returns ------- List[np.ndarray] masked arrays (free of NaNs) Notes ----- This function find the indices where one or more elements is NaN in one or more of the input arrays, then drops those indices from all arrays. For example: >> a = np.array([0, 1, np.nan, 3]) >> b = np.array([np.nan, 5, np.nan, 7]) >> c = np.array([8, 9, 10, 11]) >> mask_nan([a, b, c]) [array([ 1., 3.]), array([ 5., 7.]), array([ 9, 11])] """ n = arrays[0].size assert all(a.size == n for a in arrays[1:]) mask = np.array([False] * n) for arr in arrays: mask = np.logical_or(mask, np.isnan(arr)) return [arr[np.where(~mask)[0]] for arr in arrays]
[ "numpy.where", "numpy.array", "numpy.isnan" ]
[((908, 929), 'numpy.array', 'np.array', (['([False] * n)'], {}), '([False] * n)\n', (916, 929), True, 'import numpy as np\n'), ((988, 1001), 'numpy.isnan', 'np.isnan', (['arr'], {}), '(arr)\n', (996, 1001), True, 'import numpy as np\n'), ((1019, 1034), 'numpy.where', 'np.where', (['(~mask)'], {}), '(~mask)\n', (1027, 1034), True, 'import numpy as np\n')]
# Generated by Django 3.1.1 on 2020-09-08 18:18 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('grocery', '0003_auto_20200908_1417'), ] operations = [ migrations.AlterField( model_name='item', name='list', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='item', to='grocery.list'), ), migrations.AlterField( model_name='list', name='user', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='list', to=settings.AUTH_USER_MODEL), ), ]
[ "django.db.migrations.swappable_dependency", "django.db.models.ForeignKey" ]
[((227, 284), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (258, 284), False, 'from django.db import migrations, models\n'), ((465, 582), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""item"""', 'to': '"""grocery.list"""'}), "(null=True, on_delete=django.db.models.deletion.CASCADE,\n related_name='item', to='grocery.list')\n", (482, 582), False, 'from django.db import migrations, models\n'), ((696, 823), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""list"""', 'to': 'settings.AUTH_USER_MODEL'}), "(null=True, on_delete=django.db.models.deletion.CASCADE,\n related_name='list', to=settings.AUTH_USER_MODEL)\n", (713, 823), False, 'from django.db import migrations, models\n')]
from os import getenv from typing import Optional, Dict from flask import Flask TestConfig = Optional[Dict[str, bool]] def create_app(test_config: TestConfig = None) -> Flask: """ App factory method to initialize the application with given configuration """ app: Flask = Flask(__name__) if test_config is not None: app.config.from_mapping(test_config) @app.route("/") def index() -> str: # pylint: disable=unused-variable return "My Hello World App is working..." @app.route("/version") def version() -> str: # pylint: disable=unused-variable """ DOCKER_IMAGE_TAG is passed in the app from Dockerfile as ARG. It should be setup in docker build task.. It is used in .gitlab-ci.yaml to pass the hash of the latest commit as docker image tag. E.g. docker build --build-arg docker_image_tag="my-version" -t my-image-name:my-version . """ return getenv("DOCKER_IMAGE_TAG") or "DOCKER_IMAGE_TAG haven't been setup" return app
[ "os.getenv", "flask.Flask" ]
[((284, 299), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (289, 299), False, 'from flask import Flask\n'), ((951, 977), 'os.getenv', 'getenv', (['"""DOCKER_IMAGE_TAG"""'], {}), "('DOCKER_IMAGE_TAG')\n", (957, 977), False, 'from os import getenv\n')]
# coding=utf-8 """ This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base import deserialize from twilio.base import values from twilio.base.instance_context import InstanceContext from twilio.base.instance_resource import InstanceResource from twilio.base.list_resource import ListResource from twilio.base.page import Page class FeedbackList(ListResource): def __init__(self, version, account_sid, call_sid): """ Initialize the FeedbackList :param Version version: Version that contains the resource :param account_sid: The account_sid :param call_sid: A 34 character string that uniquely identifies this resource. :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackList :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackList """ super(FeedbackList, self).__init__(version) # Path Solution self._solution = { 'account_sid': account_sid, 'call_sid': call_sid, } def get(self): """ Constructs a FeedbackContext :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackContext :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackContext """ return FeedbackContext( self._version, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def __call__(self): """ Constructs a FeedbackContext :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackContext :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackContext """ return FeedbackContext( self._version, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.FeedbackList>' class FeedbackPage(Page): def __init__(self, version, response, solution): """ Initialize the FeedbackPage :param Version version: Version that contains the resource :param Response response: Response from the API :param account_sid: The account_sid :param call_sid: A 34 character string that uniquely identifies this resource. :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackPage :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackPage """ super(FeedbackPage, self).__init__(version, response) # Path Solution self._solution = solution def get_instance(self, payload): """ Build an instance of FeedbackInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ return FeedbackInstance( self._version, payload, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.FeedbackPage>' class FeedbackContext(InstanceContext): def __init__(self, version, account_sid, call_sid): """ Initialize the FeedbackContext :param Version version: Version that contains the resource :param account_sid: The account_sid :param call_sid: The call sid that uniquely identifies the call :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackContext :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackContext """ super(FeedbackContext, self).__init__(version) # Path Solution self._solution = { 'account_sid': account_sid, 'call_sid': call_sid, } self._uri = '/Accounts/{account_sid}/Calls/{call_sid}/Feedback.json'.format(**self._solution) def create(self, quality_score, issue=values.unset): """ Create a new FeedbackInstance :param unicode quality_score: The quality_score :param FeedbackInstance.Issues issue: The issue :returns: Newly created FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ data = values.of({ 'QualityScore': quality_score, 'Issue': issue, }) payload = self._version.create( 'POST', self._uri, data=data, ) return FeedbackInstance( self._version, payload, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def fetch(self): """ Fetch a FeedbackInstance :returns: Fetched FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ params = values.of({}) payload = self._version.fetch( 'GET', self._uri, params=params, ) return FeedbackInstance( self._version, payload, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def update(self, quality_score, issue=values.unset): """ Update the FeedbackInstance :param unicode quality_score: An integer from 1 to 5 :param FeedbackInstance.Issues issue: Issues experienced during the call :returns: Updated FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ data = values.of({ 'QualityScore': quality_score, 'Issue': issue, }) payload = self._version.update( 'POST', self._uri, data=data, ) return FeedbackInstance( self._version, payload, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Api.V2010.FeedbackContext {}>'.format(context) class FeedbackInstance(InstanceResource): class Issues(object): AUDIO_LATENCY = "audio-latency" DIGITS_NOT_CAPTURED = "digits-not-captured" DROPPED_CALL = "dropped-call" IMPERFECT_AUDIO = "imperfect-audio" INCORRECT_CALLER_ID = "incorrect-caller-id" ONE_WAY_AUDIO = "one-way-audio" POST_DIAL_DELAY = "post-dial-delay" UNSOLICITED_CALL = "unsolicited-call" def __init__(self, version, payload, account_sid, call_sid): """ Initialize the FeedbackInstance :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ super(FeedbackInstance, self).__init__(version) # Marshaled Properties self._properties = { 'account_sid': payload['account_sid'], 'date_created': deserialize.rfc2822_datetime(payload['date_created']), 'date_updated': deserialize.rfc2822_datetime(payload['date_updated']), 'issues': payload['issues'], 'quality_score': deserialize.integer(payload['quality_score']), 'sid': payload['sid'], } # Context self._context = None self._solution = { 'account_sid': account_sid, 'call_sid': call_sid, } @property def _proxy(self): """ Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: FeedbackContext for this FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackContext """ if self._context is None: self._context = FeedbackContext( self._version, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) return self._context @property def account_sid(self): """ :returns: The account_sid :rtype: unicode """ return self._properties['account_sid'] @property def date_created(self): """ :returns: The date_created :rtype: datetime """ return self._properties['date_created'] @property def date_updated(self): """ :returns: The date_updated :rtype: datetime """ return self._properties['date_updated'] @property def issues(self): """ :returns: The issues :rtype: FeedbackInstance.Issues """ return self._properties['issues'] @property def quality_score(self): """ :returns: 1 to 5 quality score :rtype: unicode """ return self._properties['quality_score'] @property def sid(self): """ :returns: The sid :rtype: unicode """ return self._properties['sid'] def create(self, quality_score, issue=values.unset): """ Create a new FeedbackInstance :param unicode quality_score: The quality_score :param FeedbackInstance.Issues issue: The issue :returns: Newly created FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ return self._proxy.create( quality_score, issue=issue, ) def fetch(self): """ Fetch a FeedbackInstance :returns: Fetched FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ return self._proxy.fetch() def update(self, quality_score, issue=values.unset): """ Update the FeedbackInstance :param unicode quality_score: An integer from 1 to 5 :param FeedbackInstance.Issues issue: Issues experienced during the call :returns: Updated FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ return self._proxy.update( quality_score, issue=issue, ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Api.V2010.FeedbackInstance {}>'.format(context)
[ "twilio.base.deserialize.integer", "twilio.base.deserialize.rfc2822_datetime", "twilio.base.values.of" ]
[((4678, 4736), 'twilio.base.values.of', 'values.of', (["{'QualityScore': quality_score, 'Issue': issue}"], {}), "({'QualityScore': quality_score, 'Issue': issue})\n", (4687, 4736), False, 'from twilio.base import values\n'), ((5302, 5315), 'twilio.base.values.of', 'values.of', (['{}'], {}), '({})\n', (5311, 5315), False, 'from twilio.base import values\n'), ((6028, 6086), 'twilio.base.values.of', 'values.of', (["{'QualityScore': quality_score, 'Issue': issue}"], {}), "({'QualityScore': quality_score, 'Issue': issue})\n", (6037, 6086), False, 'from twilio.base import values\n'), ((7662, 7715), 'twilio.base.deserialize.rfc2822_datetime', 'deserialize.rfc2822_datetime', (["payload['date_created']"], {}), "(payload['date_created'])\n", (7690, 7715), False, 'from twilio.base import deserialize\n'), ((7745, 7798), 'twilio.base.deserialize.rfc2822_datetime', 'deserialize.rfc2822_datetime', (["payload['date_updated']"], {}), "(payload['date_updated'])\n", (7773, 7798), False, 'from twilio.base import deserialize\n'), ((7870, 7915), 'twilio.base.deserialize.integer', 'deserialize.integer', (["payload['quality_score']"], {}), "(payload['quality_score'])\n", (7889, 7915), False, 'from twilio.base import deserialize\n')]
from calendar import timegm from datetime import datetime from typing import Any, Dict from fastapi import HTTPException from pydantic import BaseModel, Field from starlette import status from .base import UserInfoAuth from .messages import NOT_VERIFIED from .verification import JWKS, ExtraVerifier class FirebaseClaims(BaseModel): user_id: str = Field(alias="user_id") email: str = Field(None, alias="email") class FirebaseCurrentUser(UserInfoAuth): """ Verify ID token and get user info of Firebase """ user_info = FirebaseClaims firebase_keys_url = "https://www.googleapis.com/robot/v1/metadata/x509/securetoken@system.gserviceaccount.com" def __init__(self, project_id: str, *args: Any, **kwargs: Any): self._key_refresh_locked = False jwks = JWKS.firebase(self.firebase_keys_url) super().__init__( jwks, *args, user_info=self.user_info, audience=project_id, issuer=f"https://securetoken.google.com/{project_id}", extra=FirebaseExtraVerifier(project_id=project_id), **kwargs, ) async def refresh_keys(self) -> None: if not self._key_refresh_locked: # Ensure only one key refresh can happen at once. # This prevents a dogpile of requests the second the keys expire # from causing a bunch of refreshes (each one is an http request). self._key_refresh_locked = True # Re-query the keys from firebase. # NOTE: The expires comes from an http header which is supposed to # be set to a time long before the keys are no longer in use. # This allows gradual roll-out of the keys and should prevent any # request from failing. # The only scenario which will result in failing requests is if # there are zero requests for the entire duration of the roll-out # (observed to be around 1 week), followed by a burst of multiple # requests at once. jwks = JWKS.firebase(self.firebase_keys_url) # Reset the keys and the expiry date. self._verifier._jwks_to_key = jwks.keys self._keys_expire = jwks.expires # Remove the lock. self._key_refresh_locked = False class FirebaseExtraVerifier(ExtraVerifier): def __init__(self, project_id: str): self._pjt_id = project_id def __call__(self, claims: Dict[str, str], auto_error: bool = True) -> bool: # auth_time must be past time if claims.get("auth_time"): auth_time = int(claims["auth_time"]) now = timegm(datetime.utcnow().utctimetuple()) if now < auth_time: if auto_error: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail=NOT_VERIFIED ) return False return True
[ "pydantic.Field", "fastapi.HTTPException", "datetime.datetime.utcnow" ]
[((356, 378), 'pydantic.Field', 'Field', ([], {'alias': '"""user_id"""'}), "(alias='user_id')\n", (361, 378), False, 'from pydantic import BaseModel, Field\n'), ((396, 422), 'pydantic.Field', 'Field', (['None'], {'alias': '"""email"""'}), "(None, alias='email')\n", (401, 422), False, 'from pydantic import BaseModel, Field\n'), ((2821, 2897), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': 'status.HTTP_401_UNAUTHORIZED', 'detail': 'NOT_VERIFIED'}), '(status_code=status.HTTP_401_UNAUTHORIZED, detail=NOT_VERIFIED)\n', (2834, 2897), False, 'from fastapi import HTTPException\n'), ((2698, 2715), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (2713, 2715), False, 'from datetime import datetime\n')]
import sqlite3 import mock import opbeat.instrumentation.control from tests.helpers import get_tempstoreclient from tests.utils.compat import TestCase class InstrumentSQLiteTest(TestCase): def setUp(self): self.client = get_tempstoreclient() opbeat.instrumentation.control.instrument() @mock.patch("opbeat.traces.RequestsStore.should_collect") def test_connect(self, should_collect): should_collect.return_value = False self.client.begin_transaction("transaction.test") conn = sqlite3.connect(":memory:") cursor = conn.cursor() cursor.execute("""CREATE TABLE testdb (id integer, username text)""") cursor.execute("""INSERT INTO testdb VALUES (1, "Ron")""") cursor.execute("""DROP TABLE testdb""") self.client.end_transaction("MyView") transactions, traces = self.client.instrumentation_store.get_all() expected_signatures = ['transaction', 'sqlite3.connect :memory:', 'CREATE TABLE', 'INSERT INTO testdb', 'DROP TABLE'] self.assertEqual(set([t['signature'] for t in traces]), set(expected_signatures)) # Reorder according to the kinds list so we can just test them sig_dict = dict([(t['signature'], t) for t in traces]) traces = [sig_dict[k] for k in expected_signatures] self.assertEqual(traces[0]['signature'], 'transaction') self.assertEqual(traces[0]['kind'], 'transaction') self.assertEqual(traces[0]['transaction'], 'MyView') self.assertEqual(traces[1]['signature'], 'sqlite3.connect :memory:') self.assertEqual(traces[1]['kind'], 'db.sqlite.connect') self.assertEqual(traces[1]['transaction'], 'MyView') self.assertEqual(traces[2]['signature'], 'CREATE TABLE') self.assertEqual(traces[2]['kind'], 'db.sqlite.sql') self.assertEqual(traces[2]['transaction'], 'MyView') self.assertEqual(traces[3]['signature'], 'INSERT INTO testdb') self.assertEqual(traces[3]['kind'], 'db.sqlite.sql') self.assertEqual(traces[3]['transaction'], 'MyView') self.assertEqual(traces[4]['signature'], 'DROP TABLE') self.assertEqual(traces[4]['kind'], 'db.sqlite.sql') self.assertEqual(traces[4]['transaction'], 'MyView') self.assertEqual(len(traces), 5)
[ "sqlite3.connect", "mock.patch", "tests.helpers.get_tempstoreclient" ]
[((316, 372), 'mock.patch', 'mock.patch', (['"""opbeat.traces.RequestsStore.should_collect"""'], {}), "('opbeat.traces.RequestsStore.should_collect')\n", (326, 372), False, 'import mock\n'), ((236, 257), 'tests.helpers.get_tempstoreclient', 'get_tempstoreclient', ([], {}), '()\n', (255, 257), False, 'from tests.helpers import get_tempstoreclient\n'), ((535, 562), 'sqlite3.connect', 'sqlite3.connect', (['""":memory:"""'], {}), "(':memory:')\n", (550, 562), False, 'import sqlite3\n')]
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='This MLOps project aims to use the Transformers framework from Hugging Face in order to tweak a pre-trained NLP model to accurately gauge the sentiment of an Amazon review (being able to guess the whether the rating of a product is positive or negative given only the text in a review).', author='group9 DTU MLops', license='MIT', )
[ "setuptools.find_packages" ]
[((81, 96), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (94, 96), False, 'from setuptools import find_packages, setup\n')]
import sys import io input_txt = """ 44 """ sys.stdin = io.StringIO(input_txt) tmp = input() # copy the below part and paste to the submission form. # ---------function------------ def fibonacci(n): if n <= 1: return 1 fib_array = [1] * 45 for i in range(2, n+1): fib_array[i] = fib_array[i-1] + fib_array[i-2] return fib_array[n] def main(): n = int(input()) fib = fibonacci(n) print(fib) return main() # ----------------------------- sys.stdin = sys.__stdin__
[ "io.StringIO" ]
[((65, 87), 'io.StringIO', 'io.StringIO', (['input_txt'], {}), '(input_txt)\n', (76, 87), False, 'import io\n')]
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import numpy as np # continuously differentiable fn_dict_cdiff = {'2dpoly': 1, 'sigmoid': 2, 'sin': 3, 'frequent_sin': 4, '3dpoly': 7, 'linear': 8} # continuous but not differentiable fn_dict_cont = {'abs': 0, 'abs_sqrt': 5, 'rand_pw': 9, 'abspos': 10, 'sqrpos': 11, 'pwlinear': 15} # discontinuous fn_dict_disc = {'step': 6, 'band': 12, 'invband': 13, 'steplinear': 14} # monotone fn_dict_monotone = {'sigmoid': 2, 'step': 6, 'linear': 8, 'abspos': 10, 'sqrpos': 11, 'pwlinear': 15} # convex fn_dict_convex = {'abs': 0, '2dpoly': 1, 'linear': 8, 'abspos': 10, 'sqrpos': 11} # all functions fn_dict = {'abs': 0, '2dpoly': 1, 'sigmoid': 2, 'sin': 3, 'frequent_sin': 4, 'abs_sqrt': 5, 'step': 6, '3dpoly': 7, 'linear': 8, 'rand_pw': 9, 'abspos': 10, 'sqrpos': 11, 'band': 12, 'invband': 13, 'steplinear': 14, 'pwlinear': 15} def generate_random_pw_linear(lb=-2, ub=2, n_pieces=5): splits = np.random.choice(np.arange(lb, ub, 0.1), n_pieces - 1, replace=False) splits.sort() slopes = np.random.uniform(-4, 4, size=n_pieces) start = [] start.append(np.random.uniform(-1, 1)) for t in range(n_pieces - 1): start.append(start[t] + slopes[t] * (splits[t] - (lb if t == 0 else splits[t - 1]))) return lambda x: [start[ind] + slopes[ind] * (x - (lb if ind == 0 else splits[ind - 1])) for ind in [np.searchsorted(splits, x)]][0] def get_tau_fn(func): def first(x): return x[:, [0]] if len(x.shape) == 2 else x # func describes the relation between response and treatment if func == fn_dict['abs']: def tau_fn(x): return np.abs(first(x)) elif func == fn_dict['2dpoly']: def tau_fn(x): return -1.5 * first(x) + .9 * (first(x)**2) elif func == fn_dict['sigmoid']: def tau_fn(x): return 2 / (1 + np.exp(-2 * first(x))) elif func == fn_dict['sin']: def tau_fn(x): return np.sin(first(x)) elif func == fn_dict['frequent_sin']: def tau_fn(x): return np.sin(3 * first(x)) elif func == fn_dict['abs_sqrt']: def tau_fn(x): return np.sqrt(np.abs(first(x))) elif func == fn_dict['step']: def tau_fn(x): return 1. * (first(x) < 0) + 2.5 * (first(x) >= 0) elif func == fn_dict['3dpoly']: def tau_fn(x): return -1.5 * first(x) + .9 * \ (first(x)**2) + first(x)**3 elif func == fn_dict['linear']: def tau_fn(x): return first(x) elif func == fn_dict['rand_pw']: pw_linear = generate_random_pw_linear() def tau_fn(x): return np.array([pw_linear(x_i) for x_i in first(x).flatten()]).reshape(-1, 1) elif func == fn_dict['abspos']: def tau_fn(x): return np.abs(first(x)) * (first(x) >= 0) elif func == fn_dict['sqrpos']: def tau_fn(x): return (first(x)**2) * (first(x) >= 0) elif func == fn_dict['band']: def tau_fn(x): return 1.0 * (first(x) >= -.75) * (first(x) <= .75) elif func == fn_dict['invband']: def tau_fn(x): return 1. - 1. * (first(x) >= -.75) * (first(x) <= .75) elif func == fn_dict['steplinear']: def tau_fn(x): return 2. * (first(x) >= 0) - first(x) elif func == fn_dict['pwlinear']: def tau_fn(x): q = first(x) return (q + 1) * (q <= -1) + (q - 1) * (q >= 1) else: raise NotImplementedError() return tau_fn def standardize(z, p, y, fn): ym = y.mean() ystd = y.std() y = (y - ym) / ystd def newfn(x): return (fn(x) - ym) / ystd return z, p, y, newfn def get_data(n_samples, n_instruments, iv_strength, tau_fn, dgp_num): # Construct dataset # z:- instruments (features included here, can be high-dimensional) # p :- treatments (features included here as well, can be high-dimensional) # y :- response (is a scalar always) confounder = np.random.normal(0, 1, size=(n_samples, 1)) z = np.random.normal(0, 1, size=(n_samples, n_instruments)) fn = tau_fn if dgp_num == 1: # DGP 1 in the paper p = 2 * z[:, [0]] * (z[:, [0]] > 0) * iv_strength \ + 2 * z[:, [1]] * (z[:, [1]] < 0) * iv_strength \ + 2 * confounder * (1 - iv_strength) + \ np.random.normal(0, .1, size=(n_samples, 1)) y = fn(p) + 2 * confounder + \ np.random.normal(0, .1, size=(n_samples, 1)) elif dgp_num == 2: # DGP 2 in the paper p = 2 * z[:, [0]] * iv_strength \ + 2 * confounder * (1 - iv_strength) + \ np.random.normal(0, .1, size=(n_samples, 1)) y = fn(p) + 2 * confounder + \ np.random.normal(0, .1, size=(n_samples, 1)) elif dgp_num == 3: # DeepIV's DGP - has feature variables as well # z is 3-dimensional: composed of (1) 1D z, (2) t - time unif~(0,10), and (3) s - customer type {1,...,7} # y is related to p and z in a complex non-linear, non separable manner # p is related to z again in a non-separable manner, rho is endogeneity parameter rho = 0.8 psd = 3.7 pmu = 17.779 ysd = 158. ymu = -292.1 z_1 = np.random.normal(0, 1, size=(n_samples, 1)) v = np.random.normal(0, 1, size=(n_samples, 1)) t = np.random.uniform(0, 10, size=(n_samples, 1)) s = np.random.randint(1, 8, size=(n_samples, 1)) e = rho * v + \ np.random.normal(0, np.sqrt(1 - rho**2), size=(n_samples, 1)) def psi(t): return 2 * (np.power(t - 5, 4) / 600 + np.exp(-4 * np.power(t - 5, 2)) + t / 10 - 2) p = 25 + (z_1 + 3) * psi(t) + v p = (p - pmu) / psd g = (10 + p) * s * psi(t) - 2 * p + e y = (g - ymu) / ysd z = np.hstack((z_1, s, t)) p = np.hstack((p, s, t)) def fn(p): return ((10 + p[:, 0]) * p[:, 1] * psi(p[:, 2]) - 2 * p[:, 0] - ymu) / ysd elif dgp_num == 4: # Many weak Instruments DGP - n_instruments can be very large z = np.random.normal(0.5, 1, size=(n_samples, n_instruments)) p = np.amin(z, axis=1).reshape(-1, 1) * iv_strength + confounder * \ (1 - iv_strength) + np.random.normal(0, 0.1, size=(n_samples, 1)) y = fn(p) + 2 * confounder + \ np.random.normal(0, 0.1, size=(n_samples, 1)) else: # Here we have equal number of treatments and instruments and each # instrument affects a separate treatment. Only the first treatment # matters for the outcome. z = np.random.normal(0, 2, size=(n_samples, n_instruments)) U = np.random.normal(0, 2, size=(n_samples, 1)) delta = np.random.normal(0, .1, size=(n_samples, 1)) zeta = np.random.normal(0, .1, size=(n_samples, 1)) p = iv_strength * z + (1 - iv_strength) * U + delta y = fn(p) + U + zeta return standardize(z, p, y, fn)
[ "numpy.random.normal", "numpy.sqrt", "numpy.amin", "numpy.hstack", "numpy.searchsorted", "numpy.power", "numpy.random.randint", "numpy.random.uniform", "numpy.arange" ]
[((1272, 1311), 'numpy.random.uniform', 'np.random.uniform', (['(-4)', '(4)'], {'size': 'n_pieces'}), '(-4, 4, size=n_pieces)\n', (1289, 1311), True, 'import numpy as np\n'), ((4108, 4151), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {'size': '(n_samples, 1)'}), '(0, 1, size=(n_samples, 1))\n', (4124, 4151), True, 'import numpy as np\n'), ((4160, 4215), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {'size': '(n_samples, n_instruments)'}), '(0, 1, size=(n_samples, n_instruments))\n', (4176, 4215), True, 'import numpy as np\n'), ((1158, 1180), 'numpy.arange', 'np.arange', (['lb', 'ub', '(0.1)'], {}), '(lb, ub, 0.1)\n', (1167, 1180), True, 'import numpy as np\n'), ((1344, 1368), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1)'], {}), '(-1, 1)\n', (1361, 1368), True, 'import numpy as np\n'), ((4470, 4515), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)'], {'size': '(n_samples, 1)'}), '(0, 0.1, size=(n_samples, 1))\n', (4486, 4515), True, 'import numpy as np\n'), ((4566, 4611), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)'], {'size': '(n_samples, 1)'}), '(0, 0.1, size=(n_samples, 1))\n', (4582, 4611), True, 'import numpy as np\n'), ((4770, 4815), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)'], {'size': '(n_samples, 1)'}), '(0, 0.1, size=(n_samples, 1))\n', (4786, 4815), True, 'import numpy as np\n'), ((4866, 4911), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)'], {'size': '(n_samples, 1)'}), '(0, 0.1, size=(n_samples, 1))\n', (4882, 4911), True, 'import numpy as np\n'), ((5384, 5427), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {'size': '(n_samples, 1)'}), '(0, 1, size=(n_samples, 1))\n', (5400, 5427), True, 'import numpy as np\n'), ((5440, 5483), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {'size': '(n_samples, 1)'}), '(0, 1, size=(n_samples, 1))\n', (5456, 5483), True, 'import numpy as np\n'), ((5496, 5541), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(10)'], {'size': '(n_samples, 1)'}), '(0, 10, size=(n_samples, 1))\n', (5513, 5541), True, 'import numpy as np\n'), ((5554, 5598), 'numpy.random.randint', 'np.random.randint', (['(1)', '(8)'], {'size': '(n_samples, 1)'}), '(1, 8, size=(n_samples, 1))\n', (5571, 5598), True, 'import numpy as np\n'), ((5989, 6011), 'numpy.hstack', 'np.hstack', (['(z_1, s, t)'], {}), '((z_1, s, t))\n', (5998, 6011), True, 'import numpy as np\n'), ((6024, 6044), 'numpy.hstack', 'np.hstack', (['(p, s, t)'], {}), '((p, s, t))\n', (6033, 6044), True, 'import numpy as np\n'), ((6272, 6329), 'numpy.random.normal', 'np.random.normal', (['(0.5)', '(1)'], {'size': '(n_samples, n_instruments)'}), '(0.5, 1, size=(n_samples, n_instruments))\n', (6288, 6329), True, 'import numpy as np\n'), ((6790, 6845), 'numpy.random.normal', 'np.random.normal', (['(0)', '(2)'], {'size': '(n_samples, n_instruments)'}), '(0, 2, size=(n_samples, n_instruments))\n', (6806, 6845), True, 'import numpy as np\n'), ((6858, 6901), 'numpy.random.normal', 'np.random.normal', (['(0)', '(2)'], {'size': '(n_samples, 1)'}), '(0, 2, size=(n_samples, 1))\n', (6874, 6901), True, 'import numpy as np\n'), ((6918, 6963), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)'], {'size': '(n_samples, 1)'}), '(0, 0.1, size=(n_samples, 1))\n', (6934, 6963), True, 'import numpy as np\n'), ((6978, 7023), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)'], {'size': '(n_samples, 1)'}), '(0, 0.1, size=(n_samples, 1))\n', (6994, 7023), True, 'import numpy as np\n'), ((1647, 1673), 'numpy.searchsorted', 'np.searchsorted', (['splits', 'x'], {}), '(splits, x)\n', (1662, 1673), True, 'import numpy as np\n'), ((5655, 5676), 'numpy.sqrt', 'np.sqrt', (['(1 - rho ** 2)'], {}), '(1 - rho ** 2)\n', (5662, 5676), True, 'import numpy as np\n'), ((6439, 6484), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)'], {'size': '(n_samples, 1)'}), '(0, 0.1, size=(n_samples, 1))\n', (6455, 6484), True, 'import numpy as np\n'), ((6536, 6581), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)'], {'size': '(n_samples, 1)'}), '(0, 0.1, size=(n_samples, 1))\n', (6552, 6581), True, 'import numpy as np\n'), ((5730, 5748), 'numpy.power', 'np.power', (['(t - 5)', '(4)'], {}), '(t - 5, 4)\n', (5738, 5748), True, 'import numpy as np\n'), ((6342, 6360), 'numpy.amin', 'np.amin', (['z'], {'axis': '(1)'}), '(z, axis=1)\n', (6349, 6360), True, 'import numpy as np\n'), ((5801, 5819), 'numpy.power', 'np.power', (['(t - 5)', '(2)'], {}), '(t - 5, 2)\n', (5809, 5819), True, 'import numpy as np\n')]
import argparse import os import pathlib import cv2 import pickle import numpy as np from matplotlib import pyplot as plt from PIL import Image from numpy import genfromtxt def parse_command_line_options(print_options=False): parser = argparse.ArgumentParser() parser.add_argument("-n", type=int, default=-1) parser.add_argument("-d", type=pathlib.Path) parser.add_argument("-s", type=int, choices=[0], default=0) parser.add_argument("-e", type=int, default=0) parser.add_argument("-a", type=str, default="ars") parser.add_argument("-i", type=int, default=100) parser.add_argument("-g", action="store_true") parser.add_argument("-r", action="store_true") args = parser.parse_args() flags = { "itno": args.n, "folder": str(args.d), "spec_num": args.s, "env_num": args.e, "alg": args.a, "num_iter": args.i, "gpu_flag": args.g, "render": args.r } if print_options: print('**** Command Line Options ****') for key in flags: print('{}: {}'.format(key, flags[key])) return flags def open_log_file(itno, folder): ''' Open a log file to periodically flush data. Parameters: itno: int folder: str ''' fname = _get_prefix(folder) + 'log' + _get_suffix(itno) + '.txt' open(fname, 'w').close() file = open(fname, 'a') return file def save_object(name, object, itno, folder): ''' Save any pickle-able object. Parameters: name: str object: Object itno: int folder: str ''' file = open(_get_prefix(folder) + name + _get_suffix(itno) + '.pkl', 'wb') pickle.dump(object, file) file.close() def load_object(name, itno, folder): ''' Load pickled object. Parameters: name: str itno: int folder: str ''' file = open(_get_prefix(folder) + name + _get_suffix(itno) + '.pkl', 'rb') object = pickle.load(file) file.close() return object def save_log_info(log_info, itno, folder): np.save(_get_prefix(folder) + 'log' + _get_suffix(itno) + '.npy', log_info) def load_log_info(itno, folder, csv=False): if csv: return genfromtxt(_get_prefix(folder) + 'log' + _get_suffix(itno) + '.csv', delimiter=',') else: return np.load(_get_prefix(folder) + 'log' + _get_suffix(itno) + '.npy') def log_to_file(file, iter, num_transitions, reward, prob, additional_data={}): ''' Log data to file. Parameters: file: file_handle iter: int num_transitions: int (number of simulation steps in each iter) reward: float prob: float (satisfaction probability) additional_data: dict ''' file.write('**** Iteration Number {} ****\n'.format(iter)) file.write('Environment Steps Taken: {}\n'.format(num_transitions)) file.write('Reward: {}\n'.format(reward)) file.write('Satisfaction Probability: {}\n'.format(prob)) for key in additional_data: file.write('{}: {}\n'.format(key, additional_data[key])) file.write('\n') file.flush() def get_image_dir(itno, folder): image_dir = '{}img{}'.format(_get_prefix(folder), _get_suffix(itno)) if os.path.exists(image_dir) is False: os.mkdir(image_dir) return image_dir def generate_video(env, policy, itno, folder, max_step=10000): image_dir = get_image_dir(itno, folder) done = False state = env.reset() step = 0 while not done: img_arr = env.render(mode='rgb_array') img = Image.fromarray(img_arr) img.save(image_dir + '/' + str(step) + '.png') action = policy.get_action(state) state, _, done, _ = env.step(action) step += 1 if step > max_step: done = True video_name = image_dir + '/' + 'video.avi' images_temp = [img for img in os.listdir(image_dir)] images = [] for i in range(len(images_temp)): for j in images_temp: directory = str(i) + '.png' if directory == j: images.append(j) frame = cv2.imread(os.path.join(image_dir, images_temp[0])) height, width, _ = frame.shape video = cv2.VideoWriter( video_name, cv2.VideoWriter_fourcc(*'XVID'), 20, (width, height)) for image in images: video.write(cv2.imread(os.path.join(image_dir, image))) cv2.destroyAllWindows() video.release() def plot_for_threshold(itno, folders, xs, threshold, color): ys = [] for folder in folders: val = 0 count = 0 for j in range(itno): data = load_log_info(j, folder) for pos in range(len(data)): if data[pos][-1] >= threshold: val += data[pos][0] count += 1 break ys.append(val / count) plt.subplots_adjust(bottom=0.145, left=0.13) plt.rcParams.update({'font.size': 18}) plt.plot(xs, ys, '-ok', label='z = {}'.format(threshold), color=color) def plot_error_bar(x, data, color, label, points=False): ''' Plot the error bar from the data. Parameters: samples_per_iter: int (number of sample rollouts per iteration of the algorithm) data: (3+)-tuple of np.array (curve, lower error bar, upper error bar, ...) color: color of the plot label: string ''' plt.subplots_adjust(bottom=0.126) plt.rcParams.update({'font.size': 18}) if points: plt.errorbar(x, data[0], data[0] - data[1], fmt='--o', color=color, label=label) else: plt.plot(x, data[0], color=color, label=label) plt.fill_between(x, data[1], data[2], color=color, alpha=0.15) def extract_plot_data(folder, column_num, low, up, csv=False): ''' Load and parse log_info to generate error bars Parameters: folder: string (name of folder) column_num: int (column number in log.npy to use) l: int (lower limit on run number) u: int (upper limit on run number) Returns: 4-tuple of numpy arrays (curve, lower error bar, upper error bar, max_over_runs) ''' log_infos = [] min_length = 1000000 for itno in range(low, up): log_info = np.transpose(load_log_info( itno, folder, csv=csv))[column_num] log_info = np.append([0], log_info) min_length = min(min_length, len(log_info)) log_infos.append(log_info) log_infos = [log_info[:min_length] for log_info in log_infos] data = np.array(log_infos) curve = np.mean(data, axis=0) std = np.std(data, axis=0) max_curve = np.amax(data, axis=0) return curve, (curve - std), (curve + std), max_curve # save and render current plot def save_plot(folder, name, show=True, scientific=True): plt.rcParams.update({'font.size': 14}) plt.legend() ax = plt.gca() ax.xaxis.major.formatter._useMathText = True if scientific: plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0)) plt.savefig(_get_prefix(folder) + name + '.pdf', format='pdf') if show: plt.show() # get prefix for file name def _get_prefix(folder): if folder == '': return '' else: return folder + '/' # get suffix from itno def _get_suffix(itno): if itno < 0: return '' else: return str(itno)
[ "matplotlib.pyplot.fill_between", "numpy.array", "cv2.destroyAllWindows", "matplotlib.pyplot.errorbar", "numpy.mean", "os.path.exists", "os.listdir", "argparse.ArgumentParser", "matplotlib.pyplot.plot", "os.mkdir", "cv2.VideoWriter_fourcc", "matplotlib.pyplot.gca", "pickle.load", "numpy.std", "matplotlib.pyplot.legend", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.show", "PIL.Image.fromarray", "pickle.dump", "os.path.join", "numpy.append", "matplotlib.pyplot.rcParams.update", "matplotlib.pyplot.ticklabel_format", "numpy.amax" ]
[((243, 268), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (266, 268), False, 'import argparse\n'), ((1698, 1723), 'pickle.dump', 'pickle.dump', (['object', 'file'], {}), '(object, file)\n', (1709, 1723), False, 'import pickle\n'), ((1986, 2003), 'pickle.load', 'pickle.load', (['file'], {}), '(file)\n', (1997, 2003), False, 'import pickle\n'), ((4414, 4437), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4435, 4437), False, 'import cv2\n'), ((4888, 4932), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'bottom': '(0.145)', 'left': '(0.13)'}), '(bottom=0.145, left=0.13)\n', (4907, 4932), True, 'from matplotlib import pyplot as plt\n'), ((4937, 4975), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'font.size': 18}"], {}), "({'font.size': 18})\n", (4956, 4975), True, 'from matplotlib import pyplot as plt\n'), ((5413, 5446), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'bottom': '(0.126)'}), '(bottom=0.126)\n', (5432, 5446), True, 'from matplotlib import pyplot as plt\n'), ((5451, 5489), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'font.size': 18}"], {}), "({'font.size': 18})\n", (5470, 5489), True, 'from matplotlib import pyplot as plt\n'), ((6545, 6564), 'numpy.array', 'np.array', (['log_infos'], {}), '(log_infos)\n', (6553, 6564), True, 'import numpy as np\n'), ((6577, 6598), 'numpy.mean', 'np.mean', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (6584, 6598), True, 'import numpy as np\n'), ((6609, 6629), 'numpy.std', 'np.std', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (6615, 6629), True, 'import numpy as np\n'), ((6646, 6667), 'numpy.amax', 'np.amax', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (6653, 6667), True, 'import numpy as np\n'), ((6820, 6858), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'font.size': 14}"], {}), "({'font.size': 14})\n", (6839, 6858), True, 'from matplotlib import pyplot as plt\n'), ((6863, 6875), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (6873, 6875), True, 'from matplotlib import pyplot as plt\n'), ((6885, 6894), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6892, 6894), True, 'from matplotlib import pyplot as plt\n'), ((3256, 3281), 'os.path.exists', 'os.path.exists', (['image_dir'], {}), '(image_dir)\n', (3270, 3281), False, 'import os\n'), ((3300, 3319), 'os.mkdir', 'os.mkdir', (['image_dir'], {}), '(image_dir)\n', (3308, 3319), False, 'import os\n'), ((3586, 3610), 'PIL.Image.fromarray', 'Image.fromarray', (['img_arr'], {}), '(img_arr)\n', (3601, 3610), False, 'from PIL import Image\n'), ((4140, 4179), 'os.path.join', 'os.path.join', (['image_dir', 'images_temp[0]'], {}), '(image_dir, images_temp[0])\n', (4152, 4179), False, 'import os\n'), ((4265, 4296), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'XVID'"], {}), "(*'XVID')\n", (4287, 4296), False, 'import cv2\n'), ((5513, 5598), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['x', 'data[0]', '(data[0] - data[1])'], {'fmt': '"""--o"""', 'color': 'color', 'label': 'label'}), "(x, data[0], data[0] - data[1], fmt='--o', color=color, label=label\n )\n", (5525, 5598), True, 'from matplotlib import pyplot as plt\n'), ((5612, 5658), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'data[0]'], {'color': 'color', 'label': 'label'}), '(x, data[0], color=color, label=label)\n', (5620, 5658), True, 'from matplotlib import pyplot as plt\n'), ((5667, 5729), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['x', 'data[1]', 'data[2]'], {'color': 'color', 'alpha': '(0.15)'}), '(x, data[1], data[2], color=color, alpha=0.15)\n', (5683, 5729), True, 'from matplotlib import pyplot as plt\n'), ((6356, 6380), 'numpy.append', 'np.append', (['[0]', 'log_info'], {}), '([0], log_info)\n', (6365, 6380), True, 'import numpy as np\n'), ((6971, 7032), 'matplotlib.pyplot.ticklabel_format', 'plt.ticklabel_format', ([], {'style': '"""sci"""', 'axis': '"""x"""', 'scilimits': '(0, 0)'}), "(style='sci', axis='x', scilimits=(0, 0))\n", (6991, 7032), True, 'from matplotlib import pyplot as plt\n'), ((7121, 7131), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7129, 7131), True, 'from matplotlib import pyplot as plt\n'), ((3905, 3926), 'os.listdir', 'os.listdir', (['image_dir'], {}), '(image_dir)\n', (3915, 3926), False, 'import os\n'), ((4376, 4406), 'os.path.join', 'os.path.join', (['image_dir', 'image'], {}), '(image_dir, image)\n', (4388, 4406), False, 'import os\n')]
from pygments import highlight as _highlight from pygments.lexers import SqlLexer from pygments.formatters import HtmlFormatter def style(): style = HtmlFormatter().get_style_defs() return style def highlight(text): # Generated HTML contains unnecessary newline at the end # before </pre> closing tag. # We need to remove that newline because it's screwing up # QTextEdit formatting and is being displayed # as a non-editable whitespace. highlighted_text = _highlight(text, SqlLexer(), HtmlFormatter()).strip() # Split generated HTML by last newline in it # argument 1 indicates that we only want to split the string # by one specified delimiter from the right. parts = highlighted_text.rsplit("\n", 1) # Glue back 2 split parts to get the HTML without last # unnecessary newline highlighted_text_no_last_newline = "".join(parts) return highlighted_text_no_last_newline
[ "pygments.lexers.SqlLexer", "pygments.formatters.HtmlFormatter" ]
[((155, 170), 'pygments.formatters.HtmlFormatter', 'HtmlFormatter', ([], {}), '()\n', (168, 170), False, 'from pygments.formatters import HtmlFormatter\n'), ((510, 520), 'pygments.lexers.SqlLexer', 'SqlLexer', ([], {}), '()\n', (518, 520), False, 'from pygments.lexers import SqlLexer\n'), ((522, 537), 'pygments.formatters.HtmlFormatter', 'HtmlFormatter', ([], {}), '()\n', (535, 537), False, 'from pygments.formatters import HtmlFormatter\n')]
import numpy as np def histogram_r(r_array,height, width): length = height * width R_rray = [] for i in range(height): for j in range(width): R_rray.append(r_array[i][j]) R_rray.sort() I_min = int(R_rray[int(length / 500)]) I_max = int(R_rray[-int(length / 500)]) array_Global_histogram_stretching = np.zeros((height, width)) for i in range(0, height): for j in range(0, width): if r_array[i][j] < I_min: # p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = I_min elif (r_array[i][j] > I_max): p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = 255 else: p_out = int((r_array[i][j] - I_min) * ((255 - I_min) / (I_max - I_min)))+ I_min array_Global_histogram_stretching[i][j] = p_out return (array_Global_histogram_stretching) def histogram_g(r_array,height, width): length = height * width R_rray = [] for i in range(height): for j in range(width): R_rray.append(r_array[i][j]) R_rray.sort() I_min = int(R_rray[int(length / 500)]) I_max = int(R_rray[-int(length / 500)]) array_Global_histogram_stretching = np.zeros((height, width)) for i in range(0, height): for j in range(0, width): if r_array[i][j] < I_min: p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = 0 elif (r_array[i][j] > I_max): p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = 255 else: p_out = int((r_array[i][j] - I_min) * ((255) / (I_max - I_min)) ) array_Global_histogram_stretching[i][j] = p_out return (array_Global_histogram_stretching) def histogram_b(r_array,height, width): length = height * width R_rray = [] for i in range(height): for j in range(width): R_rray.append(r_array[i][j]) R_rray.sort() I_min = int(R_rray[int(length / 500)]) I_max = int(R_rray[-int(length / 500)]) array_Global_histogram_stretching = np.zeros((height, width)) for i in range(0, height): for j in range(0, width): if r_array[i][j] < I_min: # p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = 0 elif (r_array[i][j] > I_max): # p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = I_max else: p_out = int((r_array[i][j] - I_min) * ((I_max) / (I_max - I_min))) array_Global_histogram_stretching[i][j] = p_out return (array_Global_histogram_stretching) def stretching(img): height = len(img) width = len(img[0]) img[:, :, 2] = histogram_r(img[:, :, 2], height, width) img[:, :, 1] = histogram_g(img[:, :, 1], height, width) img[:, :, 0] = histogram_b(img[:, :, 0], height, width) return img
[ "numpy.zeros" ]
[((349, 374), 'numpy.zeros', 'np.zeros', (['(height, width)'], {}), '((height, width))\n', (357, 374), True, 'import numpy as np\n'), ((1279, 1304), 'numpy.zeros', 'np.zeros', (['(height, width)'], {}), '((height, width))\n', (1287, 1304), True, 'import numpy as np\n'), ((2189, 2214), 'numpy.zeros', 'np.zeros', (['(height, width)'], {}), '((height, width))\n', (2197, 2214), True, 'import numpy as np\n')]
# Copyright 2021 Sony Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import numpy as np import nnabla as nn import nnabla.functions as F import nnabla.parametric_functions as PF def test_show_graph(): try: from nnabla.experimental.tb_graph_writer import TBGraphWriter except: pytest.skip( 'Skip because tensorboardX and tensorflow is not installed.') nn.clear_parameters() x = nn.Variable((2, 3, 4, 4)) with nn.parameter_scope('c1'): h = PF.convolution(x, 8, (3, 3), pad=(1, 1)) h = F.relu(PF.batch_normalization(h)) with nn.parameter_scope('f1'): y = PF.affine(h, 10) with TBGraphWriter(log_dir='log_out') as tb: tb.from_variable(y, output_name="y") def test_show_curve(): try: from nnabla.experimental.tb_graph_writer import TBGraphWriter except: pytest.skip( 'Skip because tensorboardX and tensorflow is not installed.') with TBGraphWriter(log_dir='log_out') as tb: values = [] for i in range(360): s = np.sin(i / 180.0 * np.pi) tb.add_scalar("show_curve/sin", s, i) values.append(s) nd_values = np.array(values) for i in range(10): tb.add_histogram("histogram", nd_values, i) nd_values += 0.05
[ "nnabla.parametric_functions.affine", "nnabla.parametric_functions.convolution", "nnabla.clear_parameters", "nnabla.parametric_functions.batch_normalization", "nnabla.parameter_scope", "numpy.array", "nnabla.Variable", "numpy.sin", "pytest.skip", "nnabla.experimental.tb_graph_writer.TBGraphWriter" ]
[((922, 943), 'nnabla.clear_parameters', 'nn.clear_parameters', ([], {}), '()\n', (941, 943), True, 'import nnabla as nn\n'), ((952, 977), 'nnabla.Variable', 'nn.Variable', (['(2, 3, 4, 4)'], {}), '((2, 3, 4, 4))\n', (963, 977), True, 'import nnabla as nn\n'), ((987, 1011), 'nnabla.parameter_scope', 'nn.parameter_scope', (['"""c1"""'], {}), "('c1')\n", (1005, 1011), True, 'import nnabla as nn\n'), ((1025, 1065), 'nnabla.parametric_functions.convolution', 'PF.convolution', (['x', '(8)', '(3, 3)'], {'pad': '(1, 1)'}), '(x, 8, (3, 3), pad=(1, 1))\n', (1039, 1065), True, 'import nnabla.parametric_functions as PF\n'), ((1121, 1145), 'nnabla.parameter_scope', 'nn.parameter_scope', (['"""f1"""'], {}), "('f1')\n", (1139, 1145), True, 'import nnabla as nn\n'), ((1159, 1175), 'nnabla.parametric_functions.affine', 'PF.affine', (['h', '(10)'], {}), '(h, 10)\n', (1168, 1175), True, 'import nnabla.parametric_functions as PF\n'), ((1186, 1218), 'nnabla.experimental.tb_graph_writer.TBGraphWriter', 'TBGraphWriter', ([], {'log_dir': '"""log_out"""'}), "(log_dir='log_out')\n", (1199, 1218), False, 'from nnabla.experimental.tb_graph_writer import TBGraphWriter\n'), ((1492, 1524), 'nnabla.experimental.tb_graph_writer.TBGraphWriter', 'TBGraphWriter', ([], {'log_dir': '"""log_out"""'}), "(log_dir='log_out')\n", (1505, 1524), False, 'from nnabla.experimental.tb_graph_writer import TBGraphWriter\n'), ((1723, 1739), 'numpy.array', 'np.array', (['values'], {}), '(values)\n', (1731, 1739), True, 'import numpy as np\n'), ((830, 903), 'pytest.skip', 'pytest.skip', (['"""Skip because tensorboardX and tensorflow is not installed."""'], {}), "('Skip because tensorboardX and tensorflow is not installed.')\n", (841, 903), False, 'import pytest\n'), ((1085, 1110), 'nnabla.parametric_functions.batch_normalization', 'PF.batch_normalization', (['h'], {}), '(h)\n', (1107, 1110), True, 'import nnabla.parametric_functions as PF\n'), ((1395, 1468), 'pytest.skip', 'pytest.skip', (['"""Skip because tensorboardX and tensorflow is not installed."""'], {}), "('Skip because tensorboardX and tensorflow is not installed.')\n", (1406, 1468), False, 'import pytest\n'), ((1597, 1622), 'numpy.sin', 'np.sin', (['(i / 180.0 * np.pi)'], {}), '(i / 180.0 * np.pi)\n', (1603, 1622), True, 'import numpy as np\n')]
import json import logging LOGGER = logging.getLogger(__name__) def start(self): self.start_consuming() def on_message(self, channel, method, properties, body): """ Invoked by pika when a message is delivered from the AMQP broker. The channel is passed for convenience. The basic_deliver object that is passed in carries the exchange, routing key, delivery tag and a redelivered flag for the message. The properties passed in is an instance of BasicProperties with the message properties and the body is the message that was sent. :param channel: The channel object. :type channel: pika.channel.Channel :param method: basic_deliver method. :type method: pika.Spec.Basic.Deliver :param properties: The properties. :type properties: pika.Spec.BasicProperties :param body: The message body. :type body: bytes """ try: print('message received') print(properties.correlation_id) if properties.correlation_id == self.correlation_id_reference: print("SUCCEEDEEDRT") self.callback_method(json.loads(body), properties) self.acknowledge_message(method.delivery_tag) self.channel.stop_consuming() except Exception: LOGGER.exception("Synchronous callback method exception:")
[ "logging.getLogger", "json.loads" ]
[((38, 65), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (55, 65), False, 'import logging\n'), ((1110, 1126), 'json.loads', 'json.loads', (['body'], {}), '(body)\n', (1120, 1126), False, 'import json\n')]
import numpy as np import tensorflow as tf from time import perf_counter as timer def main(): x = np.load('data/cifar_test_x.npy') y = np.load('data/cifar_test_y.npy').flatten() interpreter = tf.lite.Interpreter(model_path='data/fbnet.tflite') interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() pred = [] t0 = timer() for i in range(len(x)): interpreter.set_tensor(input_details[0]['index'], x[i:i+1]) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) pred.append(output_data.argmax()) t = timer() - t0 print('total time: {:.2f}s, average: {:.2f}ms'.format(t, t * 1000 / len(x))) print('accuracy: {}/{}'.format(sum(y == pred), len(x))) return output_data if __name__ == '__main__': main()
[ "tensorflow.lite.Interpreter", "numpy.load", "time.perf_counter" ]
[((104, 136), 'numpy.load', 'np.load', (['"""data/cifar_test_x.npy"""'], {}), "('data/cifar_test_x.npy')\n", (111, 136), True, 'import numpy as np\n'), ((207, 258), 'tensorflow.lite.Interpreter', 'tf.lite.Interpreter', ([], {'model_path': '"""data/fbnet.tflite"""'}), "(model_path='data/fbnet.tflite')\n", (226, 258), True, 'import tensorflow as tf\n'), ((425, 432), 'time.perf_counter', 'timer', ([], {}), '()\n', (430, 432), True, 'from time import perf_counter as timer\n'), ((683, 690), 'time.perf_counter', 'timer', ([], {}), '()\n', (688, 690), True, 'from time import perf_counter as timer\n'), ((145, 177), 'numpy.load', 'np.load', (['"""data/cifar_test_y.npy"""'], {}), "('data/cifar_test_y.npy')\n", (152, 177), True, 'import numpy as np\n')]
from panda3d.core import * from direct.showbase.DirectObject import DirectObject from toontown.toonbase.ToonBaseGlobal import * from direct.directnotify import DirectNotifyGlobal from direct.interval.IntervalGlobal import * from toontown.battle.BattleProps import * from toontown.battle import MovieUtil import math class TwoDBattleMgr(DirectObject): notify = DirectNotifyGlobal.directNotify.newCategory('TwoDBattleMgr') def __init__(self, game, toon): self.game = game self.toon = toon self.waterBulletIval = None self.shootTrack = None self.showCollSpheres = False self.WATER_SPRAY_COLOR = Point4(1, 1, 1, 1) self.WATER_BULLET_SCALE = 0.2 self.SHOOT_DISTANCE = 10 self.WATER_BULLET_START_POINT = Point3(0, 1, 3) self.WATER_BULLET_END_POINT = Point3(0, self.WATER_BULLET_START_POINT.getY() + self.SHOOT_DISTANCE, self.WATER_BULLET_START_POINT.getZ()) self.WATER_BULLET_HIDE_POINT = Point3(0, 0, 1.5) self.sprayProp = self.game.assetMgr.sprayProp.copyTo(self.game.assetMgr.world) self.setupPistol() if self.toon == base.localAvatar: self.createShootCollision() return def destroy(self): if self.toon == base.localAvatar: if self.waterBulletIval: self.waterBulletIval.finish() del self.waterBulletIval self.waterBulletIval = None self.ignore('enter' + self.collSphereName) base.localAvatar.controlManager.currentControls.cTrav.removeCollider(self.waterBullet) self.waterBullet.removeNode() del self.waterBullet self.hand_jointpath0.removeNode() MovieUtil.removeProp(self.pistol) if self.shootTrack != None: self.shootTrack.finish() self.shootTrack = None self.game = None self.toon = None return def start(self): pass def stop(self): pass def setupPistol(self): self.pistol = globalPropPool.getProp('water-gun') hands = self.toon.getRightHands() self.hand_jointpath0 = hands[0].attachNewNode('handJoint0-path') pistolPos = Point3(0.28, 0.1, 0.08) pistolHpr = VBase3(85.6, -4.44, 94.43) MovieUtil.showProp(self.pistol, self.hand_jointpath0, pistolPos, pistolHpr) def shoot(self): if not self.shootTrack: self.shootTrack = Parallel(self.getToonShootTrack(), self.getSprayTrack()) if self.toon == base.localAvatar: self.shootTrack.append(Func(self.game.assetMgr.playWatergunSound)) self.shootTrack.append(self.getWaterBulletIval()) self.shootTrack.start() return elif self.shootTrack.isStopped(): self.shootTrack = Parallel(self.getToonShootTrack(), self.getSprayTrack()) if self.toon == base.localAvatar: self.shootTrack.append(Func(self.game.assetMgr.playWatergunSound)) self.shootTrack.append(self.getWaterBulletIval()) self.shootTrack.start() def createShootCollision(self): self.notify.debug('entering createShootCollision') collSphere = CollisionSphere(0, 0, 0, 1) collSphere.setTangible(0) self.collSphereName = self.game.uniqueName('waterBullet') collNode = CollisionNode(self.collSphereName) collNode.setFromCollideMask(ToontownGlobals.WallBitmask) collNode.addSolid(collSphere) self.waterBullet = base.localAvatar.attachNewNode(collNode) self.waterBullet.setPos(self.WATER_BULLET_HIDE_POINT) self.waterBullet.setScale(self.WATER_BULLET_SCALE) self.waterBullet.hide() if self.showCollSpheres: self.waterBullet.show() bulletEvent = CollisionHandlerEvent() bulletEvent.addInPattern('enter%fn') bulletEvent.addOutPattern('exit%fn') cTrav = base.localAvatar.controlManager.currentControls.cTrav cTrav.addCollider(self.waterBullet, bulletEvent) self.accept('enter' + self.collSphereName, self.handleBulletCollision) self.waterBulletIval = Sequence(Wait(0.15)) self.waterBulletIval.append(LerpPosInterval(self.waterBullet, 0.25, pos=Point3(self.WATER_BULLET_END_POINT), startPos=Point3(self.WATER_BULLET_START_POINT), name='waterBulletMoveFront')) self.waterBulletIval.append(Func(self.waterBullet.setPos, self.WATER_BULLET_HIDE_POINT)) def getToonShootTrack(self): def returnToLastAnim(toon): if hasattr(toon, 'playingAnim') and toon.playingAnim: toon.loop(toon.playingAnim) else: toon.loop('neutral') torso = self.toon.getPart('torso', '1000') toonTrack = Sequence(ActorInterval(self.toon, 'water-gun', startFrame=48, endFrame=58, partName='torso'), ActorInterval(self.toon, 'water-gun', startFrame=107, endFrame=126, playRate=2, partName='torso'), Func(returnToLastAnim, self.toon)) return toonTrack def calcSprayStartPos(self): if self.toon: self.toon.update(0) joint = self.pistol.find('**/joint_nozzle') p = joint.getPos(render) self.origin = p def calcSprayEndPos(self): if self.toon: xDirection = -math.sin(self.toon.getH()) else: xDirection = -math.sin(-90) endPos = Point3(self.origin.getX() + self.SHOOT_DISTANCE * xDirection, self.origin.getY(), self.origin.getZ()) self.target = endPos def getSprayTrack(self): dSprayScale = 0.15 dSprayHold = 0.035 color = self.WATER_SPRAY_COLOR parent = render horizScale = 1.0 vertScale = 1.0 def showSpray(sprayScale, sprayRot, sprayProp, parent): sprayRot.reparentTo(parent) sprayRot.clearMat() sprayScale.reparentTo(sprayRot) sprayScale.clearMat() sprayProp.reparentTo(sprayScale) sprayProp.clearMat() sprayRot.setPos(self.origin) sprayRot.lookAt(Point3(self.target)) def calcTargetScale(horizScale = horizScale, vertScale = vertScale): distance = Vec3(self.target - self.origin).length() yScale = distance / MovieUtil.SPRAY_LEN targetScale = Point3(yScale * horizScale, yScale, yScale * vertScale) return targetScale def prepareToShrinkSpray(spray, sprayProp): sprayProp.setPos(Point3(0.0, -MovieUtil.SPRAY_LEN, 0.0)) spray.setPos(self.target) def hideSpray(spray, sprayScale, sprayRot, sprayProp, propPool): sprayProp.detachNode() sprayRot.removeNode() sprayScale.removeNode() sprayProp = self.sprayProp sprayScale = hidden.attachNewNode('spray-parent') sprayRot = hidden.attachNewNode('spray-rotate') spray = sprayRot spray.setColor(color) if color[3] < 1.0: spray.setTransparency(1) track = Sequence(Wait(0.1), Func(self.calcSprayStartPos), Func(self.calcSprayEndPos), Func(showSpray, sprayScale, sprayRot, sprayProp, parent), LerpScaleInterval(sprayScale, dSprayScale, calcTargetScale, startScale=MovieUtil.PNT3_NEARZERO), Wait(dSprayHold), Func(prepareToShrinkSpray, spray, sprayProp), LerpScaleInterval(sprayScale, dSprayScale, MovieUtil.PNT3_NEARZERO), Func(hideSpray, spray, sprayScale, sprayRot, sprayProp, globalPropPool)) return track def handleBulletCollision(self, cevent): if cevent.getIntoNodePath().getName()[:5] == 'Enemy': sectionIndex = int(cevent.getIntoNodePath().getName()[6:8]) enemyIndex = int(cevent.getIntoNodePath().getName()[9:11]) messenger.send('enemyShot', [sectionIndex, enemyIndex]) def clearWaterBulletIval(self): if self.waterBulletIval: self.waterBulletIval.finish() del self.waterBulletIval self.waterBulletIval = None return def getWaterBulletIval(self): if not self.waterBulletIval.isPlaying(): return self.waterBulletIval
[ "direct.directnotify.DirectNotifyGlobal.directNotify.newCategory", "math.sin", "toontown.battle.MovieUtil.showProp", "toontown.battle.MovieUtil.removeProp" ]
[((365, 425), 'direct.directnotify.DirectNotifyGlobal.directNotify.newCategory', 'DirectNotifyGlobal.directNotify.newCategory', (['"""TwoDBattleMgr"""'], {}), "('TwoDBattleMgr')\n", (408, 425), False, 'from direct.directnotify import DirectNotifyGlobal\n'), ((1723, 1756), 'toontown.battle.MovieUtil.removeProp', 'MovieUtil.removeProp', (['self.pistol'], {}), '(self.pistol)\n', (1743, 1756), False, 'from toontown.battle import MovieUtil\n'), ((2299, 2374), 'toontown.battle.MovieUtil.showProp', 'MovieUtil.showProp', (['self.pistol', 'self.hand_jointpath0', 'pistolPos', 'pistolHpr'], {}), '(self.pistol, self.hand_jointpath0, pistolPos, pistolHpr)\n', (2317, 2374), False, 'from toontown.battle import MovieUtil\n'), ((5409, 5422), 'math.sin', 'math.sin', (['(-90)'], {}), '(-90)\n', (5417, 5422), False, 'import math\n')]
from collections import defaultdict from pathlib import Path import re import yaml import json from botok import Text import pyewts conv = pyewts.pyewts() def dictify_text(string, is_split=False, selection_yaml='data/dictionaries/dict_cats.yaml', expandable=True, mode='en_bo'): """ takes segmented text and finds entries from dictionaries :param expandable: will segment definitions into senses if True, not if False :param selection_yaml: add None or "" to prevent selection :param string: segmented text to be processed :return: list of tuples containing the word and a dict containing the definitions(selected or not) and an url """ words = [] if is_split: for w in string: if w: words.append((w, {})) else: string = string.replace('\n', ' ') for w in string.split(' '): if w: words.append((w, {})) dicts = load_dicts() for num, word in enumerate(words): lemma = word[0].rstrip('་') defs = dicts[lemma] # filter if selection_yaml: defs = select_defs(defs, yaml_path=selection_yaml, mode=mode) # split in senses if expandable: if defs and 'en' in defs: entry_en = defs['en'][1] defs['en'][1] = split_in_senses(entry_en, lang='en') if defs and 'bo' in defs: entry_bo = defs['bo'][1] defs['bo'][1] = split_in_senses(entry_bo, lang='bo') words[num][1]['defs'] = defs # url url = gen_link(lemma) words[num][1]['url'] = url return words def load_dicts(): dicts = defaultdict(dict) dict_path = Path(__file__).parent / 'data/dictionaries/converted' dict_other = Path(__file__).parent / 'data/dictionaries/other' dict_files = sorted(list(dict_path.glob('*.txt')) + list(dict_other.glob('*.txt'))) for f in dict_files: name = f.stem if name.startswith('monlam'): name = name[:-2] # remove file number suffix "_1", "_2" and "_3" lines = f.read_text().split('\n') for line in lines: if '|' not in line: continue lemma, entry = line.split('|') dicts[lemma][name] = f'{dicts[lemma][name]} {entry}' if name in dicts[lemma] else entry return dicts def split_in_senses(entry, lang): header_size = 10 # syllables tsikchen_dagsar = r' ([༡༢༣༤༥༦༧༨༩༠]+\.)' tsikchen_dagsar_start = r'(?: |^)([༡༢༣༤༥༦༧༨༩༠]+\.)' tsikchen = r' ([༡༢༣༤༥༦༧༨༩༠]+༽) ' tsikchen_start = r'(?: |^)([༡༢༣༤༥༦༧༨༩༠]+༽) ' monlam = r' ((?:[^་]+་[^་]+ )?[0-9]+\.) ' ry_start = r'^([0-9]+\)) ' # line must start with this pattern ry = r'(?: |^)([0-9]+\)) ' senses = [] if lang == 'bo': if re.findall(monlam, entry): parts = [e for e in re.split(monlam, entry) if e] try: parts = [f'{parts[n]} {parts[n + 1]}' for n in range(0, len(parts), 2)] except IndexError as e: print(entry[:100]) raise SyntaxError(e) for p in parts: t = Text(p).tokenize_chunks_plaintext.split(' ') if len(t) > header_size: header, body = ''.join(t[:header_size]).replace('_', ' '), ''.join(t[header_size:]).replace('_', ' ') senses.append((header, body)) else: senses.append(p) elif re.findall(tsikchen_dagsar, entry): parts = [e for e in re.split(tsikchen_dagsar_start, entry) if e] if not re.findall(r'^[༡༢༣༤༥༦༧༨༩༠]', parts[0]): parts = [f'{parts[0]} {parts[1]}'] + parts[2:] try: parts = [f'{parts[n]}{parts[n + 1]}' for n in range(0, len(parts), 2)] except IndexError as e: print(entry[:100]) raise SyntaxError(e) for p in parts: t = Text(p).tokenize_chunks_plaintext.split(' ') if len(t) > header_size: header, body = ''.join(t[:header_size]).replace('_', ' '), ''.join(t[header_size:]).replace('_', ' ') senses.append((header, body)) else: senses.append(p) elif re.findall(tsikchen, entry): parts = [e for e in re.split(tsikchen_start, entry) if e] if parts[0].startswith('༼'): parts = [f'{parts[0]} {parts[1]}'] + parts[2:] try: parts = [f'{parts[n]} {parts[n + 1]}' for n in range(0, len(parts), 2)] except IndexError as e: print(entry[:100]) raise SyntaxError(e) for p in parts: t = Text(p).tokenize_chunks_plaintext.split(' ') if len(t) > header_size: header, body = ''.join(t[:header_size]).replace('_', ' '), ''.join(t[header_size:]).replace('_', ' ') senses.append((header, body)) else: senses.append(p) else: return entry elif lang == 'en' and re.findall(ry_start, entry): parts = [e for e in re.split(ry, entry) if e] parts = [f'{parts[n]} {parts[n+1]}' for n in range(0, len(parts), 2)] for p in parts: t = p.split(' ') size = header_size - 4 if header_size - 4 > 0 else 0 if len(t) > size: header, body = ' '.join(t[:size]).replace('_', ' '), ' '.join(t[size:]).replace('_', ' ') senses.append((header, body)) else: senses.append(p) else: return entry return senses def select_defs(defs, yaml_path, mode): cats = yaml.safe_load(Path(yaml_path).read_text()) english, tibetan = cats['english']['dictionary'], cats['tibetan']['dictionary'] selected = {} # selecting the first English definition from the list in dict_cats.yaml if 'en' in mode: for full, name in english: if full in defs: selected['en'] = (name, defs[full]) break # selecting the first Tibetan definition from the list in dict_cats.yaml if 'bo' in mode: for full, name in tibetan: if full in defs: selected['bo'] = (name, defs[full]) break # format selected if 'en' in selected and 'bo' in selected: return {'en': [selected['en'][0], selected['en'][1]], 'bo': [selected['bo'][0], selected['bo'][1]]} elif 'en' in selected: return {'en': [selected['en'][0], selected['en'][1]]} elif 'bo' in selected: return {'bo': [selected['bo'][0], selected['bo'][1]]} else: return None def gen_link(word): link_pattern = 'https://dictionary.christian-steinert.de/#%7B%22activeTerm%22%3A%22{word}%22%2C%22' \ 'lang%22%3A%22tib%22%2C%22inputLang%22%3A%22tib%22%2C%22currentListTerm%22%3A%22{word}%22%2C%22' \ 'forceLeftSideVisible%22%3Atrue%2C%22offset%22%3A0%7D' wylie = conv.toWylie(word).replace(' ', '%20') return link_pattern.format(word=wylie) if __name__ == '__main__': for f in Path('input').glob('*.txt'): dump = f.read_text(encoding='utf-8') out = dictify_text(dump, expandable=True) out_f = Path('output') / f.name out_f.write_text(json.dumps(out, ensure_ascii=False, indent=4)) __all__ = [dictify_text]
[ "re.split", "pathlib.Path", "json.dumps", "pyewts.pyewts", "collections.defaultdict", "re.findall", "botok.Text" ]
[((142, 157), 'pyewts.pyewts', 'pyewts.pyewts', ([], {}), '()\n', (155, 157), False, 'import pyewts\n'), ((1689, 1706), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (1700, 1706), False, 'from collections import defaultdict\n'), ((2833, 2858), 're.findall', 're.findall', (['monlam', 'entry'], {}), '(monlam, entry)\n', (2843, 2858), False, 'import re\n'), ((1723, 1737), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (1727, 1737), False, 'from pathlib import Path\n'), ((1794, 1808), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (1798, 1808), False, 'from pathlib import Path\n'), ((3513, 3547), 're.findall', 're.findall', (['tsikchen_dagsar', 'entry'], {}), '(tsikchen_dagsar, entry)\n', (3523, 3547), False, 'import re\n'), ((5184, 5211), 're.findall', 're.findall', (['ry_start', 'entry'], {}), '(ry_start, entry)\n', (5194, 5211), False, 'import re\n'), ((7260, 7273), 'pathlib.Path', 'Path', (['"""input"""'], {}), "('input')\n", (7264, 7273), False, 'from pathlib import Path\n'), ((7400, 7414), 'pathlib.Path', 'Path', (['"""output"""'], {}), "('output')\n", (7404, 7414), False, 'from pathlib import Path\n'), ((7449, 7494), 'json.dumps', 'json.dumps', (['out'], {'ensure_ascii': '(False)', 'indent': '(4)'}), '(out, ensure_ascii=False, indent=4)\n', (7459, 7494), False, 'import json\n'), ((4338, 4365), 're.findall', 're.findall', (['tsikchen', 'entry'], {}), '(tsikchen, entry)\n', (4348, 4365), False, 'import re\n'), ((5814, 5829), 'pathlib.Path', 'Path', (['yaml_path'], {}), '(yaml_path)\n', (5818, 5829), False, 'from pathlib import Path\n'), ((2892, 2915), 're.split', 're.split', (['monlam', 'entry'], {}), '(monlam, entry)\n', (2900, 2915), False, 'import re\n'), ((3645, 3682), 're.findall', 're.findall', (['"""^[༡༢༣༤༥༦༧༨༩༠]"""', 'parts[0]'], {}), "('^[༡༢༣༤༥༦༧༨༩༠]', parts[0])\n", (3655, 3682), False, 'import re\n'), ((5241, 5260), 're.split', 're.split', (['ry', 'entry'], {}), '(ry, entry)\n', (5249, 5260), False, 'import re\n'), ((3581, 3619), 're.split', 're.split', (['tsikchen_dagsar_start', 'entry'], {}), '(tsikchen_dagsar_start, entry)\n', (3589, 3619), False, 'import re\n'), ((3183, 3190), 'botok.Text', 'Text', (['p'], {}), '(p)\n', (3187, 3190), False, 'from botok import Text\n'), ((4399, 4430), 're.split', 're.split', (['tsikchen_start', 'entry'], {}), '(tsikchen_start, entry)\n', (4407, 4430), False, 'import re\n'), ((4008, 4015), 'botok.Text', 'Text', (['p'], {}), '(p)\n', (4012, 4015), False, 'from botok import Text\n'), ((4802, 4809), 'botok.Text', 'Text', (['p'], {}), '(p)\n', (4806, 4809), False, 'from botok import Text\n')]
# coding: utf-8 import pytest from edipy import fields, validators, exceptions @pytest.mark.parametrize('fixed_type, data', [ (fields.Integer(1, validators=[validators.Range(1, 5)]), '1'), (fields.Integer(1, validators=[validators.MaxValue(3)]), '2'), (fields.Integer(1, validators=[validators.MinValue(1)]), '5'), (fields.String(5, validators=[validators.Regex(r"[0-9]+")]), '12345'), (fields.String(12, validators=[validators.Email()]), '<EMAIL>'), ]) def test_using_validators(fixed_type, data): try: fixed_type.encode(data) except exceptions.ValidationError: pytest.fail(u"ValidationError should not be thrown") @pytest.mark.parametrize('fixed_type, data', [ (fields.Integer(1, validators=[validators.Range(1, 5)]), '0'), (fields.Integer(1, validators=[validators.Range(1, 5)]), '6'), ]) def test_validate_range(fixed_type, data): with pytest.raises(exceptions.ValidationError): fixed_type.encode(data) @pytest.mark.parametrize('fixed_type, data', [ (fields.Integer(1, validators=[validators.MaxValue(1)]), '2'), (fields.Integer(1, validators=[validators.MaxValue(5)]), '6'), ]) def test_validate_max_value(fixed_type, data): with pytest.raises(exceptions.ValidationError): fixed_type.encode(data) @pytest.mark.parametrize('fixed_type, data', [ (fields.Integer(1, validators=[validators.MinValue(1)]), '0'), (fields.Integer(1, validators=[validators.MinValue(5)]), '4'), ]) def test_validate_min_value(fixed_type, data): with pytest.raises(exceptions.ValidationError): fixed_type.encode(data) @pytest.mark.parametrize('fixed_type, data', [ (fields.String(5, validators=[validators.Regex(r"[0-9]+")]), 'a123f'), (fields.String(5, validators=[validators.Regex(r"\d")]), 'abcde'), (fields.String(5, validators=[validators.Regex(r"[A-Z]{6}")]), 'ABCDE'), ]) def test_validate_regex(fixed_type, data): with pytest.raises(exceptions.ValidationError): fixed_type.encode(data) def test_throws_exception_when_regex_is_invalid(): with pytest.raises(ValueError): field = fields.String(5, validators=[validators.Regex(")")]) @pytest.mark.parametrize('fixed_type, data', [ (fields.String(11, validators=[validators.Email()]), 'edimail.com'), (fields.String(11, validators=[validators.Email()]), '<EMAIL>'), ]) def test_validate_email(fixed_type, data): with pytest.raises(exceptions.ValidationError): fixed_type.encode(data)
[ "edipy.validators.MaxValue", "edipy.validators.Email", "pytest.fail", "pytest.raises", "edipy.validators.Range", "edipy.validators.Regex", "edipy.validators.MinValue" ]
[((903, 944), 'pytest.raises', 'pytest.raises', (['exceptions.ValidationError'], {}), '(exceptions.ValidationError)\n', (916, 944), False, 'import pytest\n'), ((1220, 1261), 'pytest.raises', 'pytest.raises', (['exceptions.ValidationError'], {}), '(exceptions.ValidationError)\n', (1233, 1261), False, 'import pytest\n'), ((1537, 1578), 'pytest.raises', 'pytest.raises', (['exceptions.ValidationError'], {}), '(exceptions.ValidationError)\n', (1550, 1578), False, 'import pytest\n'), ((1939, 1980), 'pytest.raises', 'pytest.raises', (['exceptions.ValidationError'], {}), '(exceptions.ValidationError)\n', (1952, 1980), False, 'import pytest\n'), ((2076, 2101), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2089, 2101), False, 'import pytest\n'), ((2418, 2459), 'pytest.raises', 'pytest.raises', (['exceptions.ValidationError'], {}), '(exceptions.ValidationError)\n', (2431, 2459), False, 'import pytest\n'), ((611, 663), 'pytest.fail', 'pytest.fail', (['u"""ValidationError should not be thrown"""'], {}), "(u'ValidationError should not be thrown')\n", (622, 663), False, 'import pytest\n'), ((2148, 2169), 'edipy.validators.Regex', 'validators.Regex', (['""")"""'], {}), "(')')\n", (2164, 2169), False, 'from edipy import fields, validators, exceptions\n'), ((165, 187), 'edipy.validators.Range', 'validators.Range', (['(1)', '(5)'], {}), '(1, 5)\n', (181, 187), False, 'from edipy import fields, validators, exceptions\n'), ((232, 254), 'edipy.validators.MaxValue', 'validators.MaxValue', (['(3)'], {}), '(3)\n', (251, 254), False, 'from edipy import fields, validators, exceptions\n'), ((299, 321), 'edipy.validators.MinValue', 'validators.MinValue', (['(1)'], {}), '(1)\n', (318, 321), False, 'from edipy import fields, validators, exceptions\n'), ((365, 391), 'edipy.validators.Regex', 'validators.Regex', (['"""[0-9]+"""'], {}), "('[0-9]+')\n", (381, 391), False, 'from edipy import fields, validators, exceptions\n'), ((441, 459), 'edipy.validators.Email', 'validators.Email', ([], {}), '()\n', (457, 459), False, 'from edipy import fields, validators, exceptions\n'), ((749, 771), 'edipy.validators.Range', 'validators.Range', (['(1)', '(5)'], {}), '(1, 5)\n', (765, 771), False, 'from edipy import fields, validators, exceptions\n'), ((816, 838), 'edipy.validators.Range', 'validators.Range', (['(1)', '(5)'], {}), '(1, 5)\n', (832, 838), False, 'from edipy import fields, validators, exceptions\n'), ((1062, 1084), 'edipy.validators.MaxValue', 'validators.MaxValue', (['(1)'], {}), '(1)\n', (1081, 1084), False, 'from edipy import fields, validators, exceptions\n'), ((1129, 1151), 'edipy.validators.MaxValue', 'validators.MaxValue', (['(5)'], {}), '(5)\n', (1148, 1151), False, 'from edipy import fields, validators, exceptions\n'), ((1379, 1401), 'edipy.validators.MinValue', 'validators.MinValue', (['(1)'], {}), '(1)\n', (1398, 1401), False, 'from edipy import fields, validators, exceptions\n'), ((1446, 1468), 'edipy.validators.MinValue', 'validators.MinValue', (['(5)'], {}), '(5)\n', (1465, 1468), False, 'from edipy import fields, validators, exceptions\n'), ((1695, 1721), 'edipy.validators.Regex', 'validators.Regex', (['"""[0-9]+"""'], {}), "('[0-9]+')\n", (1711, 1721), False, 'from edipy import fields, validators, exceptions\n'), ((1770, 1793), 'edipy.validators.Regex', 'validators.Regex', (['"""\\\\d"""'], {}), "('\\\\d')\n", (1786, 1793), False, 'from edipy import fields, validators, exceptions\n'), ((1841, 1869), 'edipy.validators.Regex', 'validators.Regex', (['"""[A-Z]{6}"""'], {}), "('[A-Z]{6}')\n", (1857, 1869), False, 'from edipy import fields, validators, exceptions\n'), ((2256, 2274), 'edipy.validators.Email', 'validators.Email', ([], {}), '()\n', (2272, 2274), False, 'from edipy import fields, validators, exceptions\n'), ((2329, 2347), 'edipy.validators.Email', 'validators.Email', ([], {}), '()\n', (2345, 2347), False, 'from edipy import fields, validators, exceptions\n')]
################################################################################ # Module: schedule.py # Description: Functions for handling conversion of EnergyPlus schedule objects # License: MIT, see full license in LICENSE.txt # Web: https://github.com/samuelduchesne/archetypal ################################################################################ import functools import io import logging as lg from datetime import datetime, timedelta import archetypal import numpy as np import pandas as pd from archetypal import log class Schedule(object): """An object designed to handle any EnergyPlys schedule object""" def __init__(self, sch_name, idf=None, start_day_of_the_week=0, strict=False, base_year=2018, schType=None, **kwargs): """ Args: idf (IDF): IDF object sch_name (str): The schedule name in the idf file start_day_of_the_week (int): 0-based day of week (Monday=0) strict (bool): if True, schedules that have the Field-Sets such as Holidays and CustomDay will raise an error if they are absent from the IDF file. If False, any missing qualifiers will be ignored. base_year (int): The base year of the schedule. Defaults to 2018 since the first day of that year is a Monday. """ super(Schedule, self).__init__(**kwargs) self.strict = strict self.idf = idf self.schName = sch_name self.startDayOfTheWeek = self.get_sdow(start_day_of_the_week) self.year = base_year self.startDate = self.start_date() self.count = 0 self.startHOY = 1 self.endHOY = 24 self.unit = "unknown" self.index_ = None self.values = None self.schType = schType _type = kwargs.get('Type', None) if _type is None: self.schTypeLimitsName = self.get_schedule_type_limits_name( sch_type=self.schType) else: self.schTypeLimitsName = _type @classmethod def constant_schedule(cls, hourly_value=1, Name='AlwaysOn', **kwargs): idftxt = "VERSION, 8.9;" # Not an emplty string. has just the # version number # we can make a file handle of a string fhandle = io.StringIO(idftxt) # initialize the IDF object with the file handle idf_scratch = archetypal.IDF(fhandle) idf_scratch.add_object(ep_object='Schedule:Constant'.upper(), **dict(Name=Name, Schedule_Type_Limits_Name='', Hourly_Value=hourly_value), save=False) sched = Schedule(sch_name=Name, idf=idf_scratch, **kwargs) return sched @property def all_values(self): """returns the values array""" if self.values is None: self.values = self.get_schedule_values(sch_name=self.schName, sch_type=self.schType) return self.values else: return self.values @property def max(self): return max(self.all_values) @property def min(self): return min(self.all_values) @property def mean(self): return np.mean(self.all_values) @property def series(self): """Returns the schedule values as a pd.Series object with a DateTimeIndex""" index = pd.date_range(start=self.startDate, periods=len( self.all_values), freq='1H') return pd.Series(self.all_values, index=index) def get_schedule_type_limits_name(self, sch_name=None, sch_type=None): """Return the Schedule Type Limits name associated to a schedule name""" if sch_name is None: sch_name = self.schName if sch_type is None: schedule_values = self.idf.get_schedule_data_by_name(sch_name, sch_type=sch_type) try: schedule_limit_name = schedule_values.Schedule_Type_Limits_Name except: return 'unknown' else: return schedule_limit_name def get_schedule_type_limits_data(self, sch_name=None): """Returns Schedule Type Limits data from schedule name""" if sch_name is None: sch_name = self.schName schedule_values = self.idf.get_schedule_data_by_name(sch_name) try: schedule_limit_name = schedule_values.Schedule_Type_Limits_Name except: # this schedule is probably a 'Schedule:Week:Daily' which does # not have a Schedule_Type_Limits_Name field return '', '', '', '' else: lower_limit, upper_limit, numeric_type, unit_type = \ self.idf.get_schedule_type_limits_data_by_name( schedule_limit_name) self.unit = unit_type if self.unit == "unknown": self.unit = numeric_type return lower_limit, upper_limit, numeric_type, unit_type def get_schedule_type(self, sch_name=None): """Return the schedule type""" if sch_name is None: sch_name = self.schName schedule_values = self.idf.get_schedule_data_by_name(sch_name) sch_type = schedule_values.fieldvalues[0] return sch_type def start_date(self): """The start date of the schedule. Satisfies `startDayOfTheWeek`""" import calendar c = calendar.Calendar(firstweekday=self.startDayOfTheWeek) start_date = c.monthdatescalendar(self.year, 1)[0][0] return datetime(start_date.year, start_date.month, start_date.day) def plot(self, slice=None, **kwargs): hourlyvalues = self.all_values index = pd.date_range(self.startDate, periods=len( hourlyvalues), freq='1H') series = pd.Series(hourlyvalues, index=index, dtype=float) if slice is None: slice = pd.IndexSlice[:] elif len(slice) > 1: slice = pd.IndexSlice[slice[0]:slice[1]] ax = series.loc[slice].plot(**kwargs, label=self.schName) return ax def get_interval_day_ep_schedule_values(self, sch_name=None): """'Schedule:Day:Interval""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('Schedule:Day:Interval'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) number_of_day_sch = int((len(values.fieldvalues) - 3) / 2) hourly_values = np.arange(24) start_hour = 0 for i in range(number_of_day_sch): value = float(values['Value_Until_Time_{}'.format(i + 1)]) until_time = [int(s.strip()) for s in values['Time_{}'.format(i + 1)].split(":") if s.strip().isdigit()] end_hour = int(until_time[0] + until_time[1] / 60) for hour in range(start_hour, end_hour): hourly_values[hour] = value start_hour = end_hour if numeric_type.strip().lower() == "discrete": hourly_values = hourly_values.astype(int) return hourly_values def get_hourly_day_ep_schedule_values(self, sch_name=None): """'Schedule:Day:Hourly'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('Schedule:Day:Hourly'.upper(), sch_name) fieldvalues_ = np.array(values.fieldvalues[3:]) return fieldvalues_ def get_compact_weekly_ep_schedule_values(self, sch_name=None, start_date=None, index=None): """'schedule:week:compact'""" if start_date is None: start_date = self.startDate if index is None: idx = pd.date_range(start=start_date, periods=168, freq='1H') slicer_ = pd.Series([False] * (len(idx)), index=idx) else: slicer_ = pd.Series([False] * (len(index)), index=index) if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:week:compact'.upper(), sch_name) weekly_schedules = pd.Series([0] * len(slicer_), index=slicer_.index) # update last day of schedule if self.count == 0: self.schType = values.key self.endHOY = 168 num_of_daily_schedules = int(len(values.fieldvalues[2:]) / 2) for i in range(num_of_daily_schedules): day_type = values['DayType_List_{}'.format(i + 1)].lower() how = self.field_set(day_type, slicer_) if not weekly_schedules.loc[how].empty: # Loop through days and replace with day:schedule values days = [] for name, day in weekly_schedules.loc[how].groupby(pd.Grouper( freq='D')): if not day.empty: ref = values.get_referenced_object( "ScheduleDay_Name_{}".format(i + 1)) day.loc[:] = self.get_schedule_values( sch_name=ref.Name, sch_type=ref.key) days.append(day) new = pd.concat(days) slicer_.update( pd.Series([True] * len(new.index), index=new.index)) slicer_ = slicer_.apply(lambda x: x == True) weekly_schedules.update(new) else: return weekly_schedules.values return weekly_schedules.values def get_daily_weekly_ep_schedule_values(self, sch_name=None): """'schedule:week:daily'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:week:daily'.upper(), sch_name) # 7 list for 7 days of the week hourly_values = [] for day in ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']: ref = values.get_referenced_object( '{}_ScheduleDay_Name'.format(day)) h = self.get_schedule_values(sch_name=ref.Name, sch_type=ref.key) hourly_values.append(h) hourly_values = np.array(hourly_values) # shift days earlier by self.startDayOfTheWeek hourly_values = np.roll(hourly_values, -self.startDayOfTheWeek, axis=0) return hourly_values.ravel() def get_list_day_ep_schedule_values(self, sch_name=None): """'schedule:day:list'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:day:list'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) import pandas as pd freq = int(values['Minutes_per_Item']) # Frequency of the values num_values = values.fieldvalues[5:] # List of values method = values['Interpolate_to_Timestep'] # How to resample # fill a list of available values and pad with zeros (this is safer # but should not occur) all_values = np.arange(int(24 * 60 / freq)) for i in all_values: try: all_values[i] = num_values[i] except: all_values[i] = 0 # create a fake index to help us with the resampling index = pd.date_range(start=self.startDate, periods=(24 * 60) / freq, freq='{}T'.format(freq)) series = pd.Series(all_values, index=index) # resample series to hourly values and apply resampler function series = series.resample('1H').apply(_how(method)) return series.values def get_constant_ep_schedule_values(self, sch_name=None): """'schedule:constant'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:constant'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) hourly_values = np.arange(8760) value = float(values['Hourly_Value']) for hour in hourly_values: hourly_values[hour] = value if numeric_type.strip().lower() == 'discrete': hourly_values = hourly_values.astype(int) return hourly_values def get_file_ep_schedule_values(self, sch_name=None): """'schedule:file'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:file'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) filename = values['File_Name'] column = values['Column_Number'] rows = values['Rows_to_Skip_at_Top'] hours = values['Number_of_Hours_of_Data'] sep = values['Column_Separator'] interp = values['Interpolate_to_Timestep'] import pandas as pd import os idfdir = os.path.dirname(self.idf.idfname) file = os.path.join(idfdir, filename) delimeter = _separator(sep) skip_rows = int(rows) - 1 # We want to keep the column col = [int(column) - 1] # zero-based values = pd.read_csv(file, delimiter=delimeter, skiprows=skip_rows, usecols=col) return values.iloc[:, 0].values def get_compact_ep_schedule_values(self, sch_name=None): """'schedule:compact'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:compact'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) field_sets = ['through', 'for', 'interpolate', 'until', 'value'] fields = values.fieldvalues[3:] index = pd.date_range(start=self.startDate, periods=8760, freq='H') zeros = np.zeros(len(index)) slicer_ = pd.Series([False] * len(index), index=index) series = pd.Series(zeros, index=index) from_day = self.startDate ep_from_day = datetime(self.year, 1, 1) from_time = '00:00' how_interpolate = None for field in fields: if any([spe in field.lower() for spe in field_sets]): f_set, hour, minute, value = self.field_interpreter(field) if f_set.lower() == 'through': # main condition. All sub-conditions must obey a # `Through` condition # First, initialize the slice (all False for now) through_conditions = self.invalidate_condition(series) # reset from_time from_time = '00:00' # Prepare ep_to_day variable ep_to_day = self.date_field_interpretation(value) + \ timedelta(days=1) # Calculate Timedelta in days days = (ep_to_day - ep_from_day).days # Add timedelta to start_date to_day = from_day + timedelta(days=days) + timedelta( hours=-1) # slice the conditions with the range and apply True through_conditions.loc[from_day:to_day] = True from_day = to_day + timedelta(hours=1) ep_from_day = ep_to_day elif f_set.lower() == 'for': # slice specific days # reset from_time from_time = '00:00' for_condition = self.invalidate_condition(series) values = value.split() if len(values) > 1: # if multiple `For`. eg.: For: Weekends Holidays, # Combine both conditions for value in values: if value.lower() == 'allotherdays': # Apply condition to slice how = self.field_set(value, slicer_) # Reset though condition through_conditions = how for_condition = how else: how = self.field_set(value, slicer_) for_condition.loc[how] = True elif value.lower() == 'allotherdays': # Apply condition to slice how = self.field_set(value, slicer_) # Reset though condition through_conditions = how for_condition = how else: # Apply condition to slice how = self.field_set(value) for_condition.loc[how] = True # Combine the for_condition with all_conditions all_conditions = through_conditions & for_condition # update in memory slice # self.sliced_day_.loc[all_conditions] = True elif 'interpolate' in f_set.lower(): # we need to upsample to series to 8760 * 60 values new_idx = pd.date_range(start=self.startDate, periods=525600, closed='left', freq='T') series = series.resample('T').pad() series = series.reindex(new_idx) series.fillna(method='pad', inplace=True) through_conditions = through_conditions.resample('T').pad() through_conditions = through_conditions.reindex(new_idx) through_conditions.fillna(method='pad', inplace=True) for_condition = for_condition.resample('T').pad() for_condition = for_condition.reindex(new_idx) for_condition.fillna(method='pad', inplace=True) how_interpolate = value.lower() elif f_set.lower() == 'until': until_condition = self.invalidate_condition(series) if series.index.freq.name == 'T': # until_time = str(int(hour) - 1) + ':' + minute until_time = timedelta(hours=int(hour), minutes=int(minute)) - timedelta( minutes=1) else: until_time = str(int(hour) - 1) + ':' + minute until_condition.loc[until_condition.between_time(from_time, str( until_time)).index] = True all_conditions = for_condition & through_conditions & \ until_condition from_time = str(int(hour)) + ':' + minute elif f_set.lower() == 'value': # If the therm `Value: ` field is used, we will catch it # here. # update in memory slice slicer_.loc[all_conditions] = True series[all_conditions] = value else: # Do something here before looping to the next Field pass else: # If the term `Value: ` is not used; the variable is simply # passed in the Field value = float(field) series[all_conditions] = value # update in memory slice slicer_.loc[all_conditions] = True if how_interpolate: return series.resample('H').mean().values else: return series.values def field_interpreter(self, field): """dealing with a Field-Set (Through, For, Interpolate, # Until, Value) and return the parsed string""" if 'through' in field.lower(): # deal with through if ':' in field.lower(): # parse colon f_set, statement = field.split(':') hour = None minute = None value = statement.strip() else: msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) elif 'for' in field.lower(): if ':' in field.lower(): # parse colon f_set, statement = field.split(':') value = statement.strip() hour = None minute = None else: # parse without a colon msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) elif 'interpolate' in field.lower(): msg = 'The schedule "{sch}" contains sub-hourly values (' \ 'Field-Set="{field}"). The average over the hour is ' \ 'taken'.format(sch=self.schName, field=field) log(msg, lg.WARNING) f_set, value = field.split(':') hour = None minute = None elif 'until' in field.lower(): if ':' in field.lower(): # parse colon try: f_set, hour, minute = field.split(':') hour = hour.strip() # remove trailing spaces minute = minute.strip() # remove trailing spaces value = None except: f_set = 'until' hour, minute = field.split(':') hour = hour[-2:].strip() minute = minute.strip() value = None else: msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) elif 'value' in field.lower(): if ':' in field.lower(): # parse colon f_set, statement = field.split(':') value = statement.strip() hour = None minute = None else: msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) else: # deal with the data value f_set = field hour = None minute = None value = field[len(field) + 1:].strip() return f_set, hour, minute, value @staticmethod def invalidate_condition(series): index = series.index periods = len(series) return pd.Series([False] * periods, index=index) def get_yearly_ep_schedule_values(self, sch_name=None): """'schedule:year'""" # first week start_date = self.startDate idx = pd.date_range(start=start_date, periods=8760, freq='1H') hourly_values = pd.Series([0] * 8760, index=idx) # update last day of schedule self.endHOY = 8760 if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:year'.upper(), sch_name) # generate weekly schedules num_of_weekly_schedules = int(len(values.fieldvalues[3:]) / 5) for i in range(num_of_weekly_schedules): ref = values.get_referenced_object( 'ScheduleWeek_Name_{}'.format(i + 1)) start_month = values['Start_Month_{}'.format(i + 1)] end_month = values['End_Month_{}'.format(i + 1)] start_day = values['Start_Day_{}'.format(i + 1)] end_day = values['End_Day_{}'.format(i + 1)] start = datetime.strptime( '{}/{}/{}'.format(self.year, start_month, start_day), '%Y/%m/%d') end = datetime.strptime( '{}/{}/{}'.format(self.year, end_month, end_day), '%Y/%m/%d') days = (end - start).days + 1 end_date = start_date + timedelta(days=days) + timedelta(hours=23) how = pd.IndexSlice[start_date:end_date] weeks = [] for name, week in hourly_values.loc[how].groupby( pd.Grouper(freq='168H')): if not week.empty: try: week.loc[:] = self.get_schedule_values( sch_name=ref.Name, start_date=week.index[0], index=week.index, sch_type=ref.key) except ValueError: week.loc[:] = self.get_schedule_values( ref.Name, week.index[0])[0:len(week)] finally: weeks.append(week) new = pd.concat(weeks) hourly_values.update(new) start_date += timedelta(days=days) return hourly_values.values def get_schedule_values(self, sch_name=None, start_date=None, index=None, sch_type=None): """Main function that returns the schedule values Args: sch_type: index: start_date: """ if sch_name is None: sch_name = self.schName if sch_type is None: schedule_values = self.idf.get_schedule_data_by_name(sch_name) self.schType = schedule_values.key.upper() sch_type = self.schType if self.count == 0: # This is the first time, get the schedule type and the type limits. self.schTypeLimitsName = self.get_schedule_type_limits_name() self.count += 1 if sch_type.upper() == "schedule:year".upper(): hourly_values = self.get_yearly_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:day:interval".upper(): hourly_values = self.get_interval_day_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:day:hourly".upper(): hourly_values = self.get_hourly_day_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:day:list".upper(): hourly_values = self.get_list_day_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:week:compact".upper(): hourly_values = self.get_compact_weekly_ep_schedule_values( sch_name, start_date, index) elif sch_type.upper() == "schedule:week:daily".upper(): hourly_values = self.get_daily_weekly_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:constant".upper(): hourly_values = self.get_constant_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:compact".upper(): hourly_values = self.get_compact_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:file".upper(): hourly_values = self.get_file_ep_schedule_values( sch_name) else: log('Archetypal does not support "{}" currently'.format( self.schType), lg.WARNING) hourly_values = [] return hourly_values def is_schedule(self, sch_name): """Returns True if idfobject is one of 'schedule_types'""" if sch_name.upper() in self.idf.schedules_dict: return True else: return False def to_year_week_day(self): """convert a Schedule Class to the 'Schedule:Year', 'Schedule:Week:Daily' and 'Schedule:Day:Hourly' representation Returns: 'Schedule:Year', list of ['Schedule:Week:Daily'], list of ['Schedule:Day:Hourly'] """ full_year = np.array(self.all_values) # array of shape (8760,) values = full_year.reshape(-1, 24) # shape (365, 24) # create unique days unique_days, nds = np.unique(values, axis=0, return_inverse=True) ep_days = [] dict_day = {} count_day = 0 for unique_day in unique_days: name = 'd_' + self.schName + '_' + '%03d' % count_day name, count_day = archetypal.check_unique_name('d', count_day, name, archetypal.settings.unique_schedules, suffix=True) dict_day[name] = unique_day archetypal.settings.unique_schedules.append(name) # Create idf_objects for schedule:day:hourly ep_day = self.idf.add_object( ep_object='Schedule:Day:Hourly'.upper(), save=False, **dict(Name=name, Schedule_Type_Limits_Name=self.schType, **{'Hour_{}'.format(i + 1): unique_day[i] for i in range(24)}) ) ep_days.append(ep_day) # create unique weeks from unique days unique_weeks, nwsi, nws, count = np.unique( full_year[:364 * 24, ...].reshape(-1, 168), return_index=True, axis=0, return_inverse=True, return_counts=True) # Appending unique weeks in dictionary with name and values of weeks as # keys # {'name_week': {'dayName':[]}} dict_week = {} count_week = 0 for unique_week in unique_weeks: week_id = 'w_' + self.schName + '_' + '%03d' % count_week week_id, count_week = archetypal.check_unique_name('w', count_week, week_id, archetypal.settings.unique_schedules, suffix=True) archetypal.settings.unique_schedules.append(week_id) dict_week[week_id] = {} for i in list(range(0, 7)): day_of_week = unique_week[..., i * 24:(i + 1) * 24] for key in dict_day: if (day_of_week == dict_day[key]).all(): dict_week[week_id]['day_{}'.format(i)] = key # Create idf_objects for schedule:week:daily list_day_of_week = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] ordered_day_n = np.array([6, 0, 1, 2, 3, 4, 5]) ordered_day_n = np.roll(ordered_day_n, self.startDayOfTheWeek) ep_weeks = [] for week_id in dict_week: ep_week = self.idf.add_object( ep_object='Schedule:Week:Daily'.upper(), save=False, **dict(Name=week_id, **{'{}_ScheduleDay_Name'.format( weekday): dict_week[week_id][ 'day_{}'.format(i)] for i, weekday in zip(ordered_day_n, list_day_of_week) }, Holiday_ScheduleDay_Name= dict_week[week_id]['day_6'], SummerDesignDay_ScheduleDay_Name= dict_week[week_id]['day_1'], WinterDesignDay_ScheduleDay_Name= dict_week[week_id]['day_1'], CustomDay1_ScheduleDay_Name= dict_week[week_id]['day_2'], CustomDay2_ScheduleDay_Name= dict_week[week_id]['day_5']) ) ep_weeks.append(ep_week) import itertools blocks = {} from_date = datetime(self.year, 1, 1) bincount = [sum(1 for _ in group) for key, group in itertools.groupby(nws + 1) if key] week_order = {i: v for i, v in enumerate(np.array( [key for key, group in itertools.groupby(nws + 1) if key]) - 1)} for i, (week_n, count) in enumerate( zip(week_order, bincount)): week_id = list(dict_week)[week_order[i]] to_date = from_date + timedelta(days=int(count * 7), hours=-1) blocks[i] = {} blocks[i]['week_id'] = week_id blocks[i]['from_day'] = from_date.day blocks[i]['end_day'] = to_date.day blocks[i]['from_month'] = from_date.month blocks[i]['end_month'] = to_date.month from_date = to_date + timedelta(hours=1) # If this is the last block, force end of year if i == len(bincount) - 1: blocks[i]['end_day'] = 31 blocks[i]['end_month'] = 12 new_dict = dict(Name=self.schName + '_', Schedule_Type_Limits_Name=self.schTypeLimitsName) for i in blocks: new_dict.update({"ScheduleWeek_Name_{}".format(i + 1): blocks[i]['week_id'], "Start_Month_{}".format(i + 1): blocks[i]['from_month'], "Start_Day_{}".format(i + 1): blocks[i]['from_day'], "End_Month_{}".format(i + 1): blocks[i]['end_month'], "End_Day_{}".format(i + 1): blocks[i]['end_day']}) ep_year = self.idf.add_object(ep_object='Schedule:Year'.upper(), save=False, **new_dict) return ep_year, ep_weeks, ep_days def date_field_interpretation(self, field): """Date Field Interpretation Args: field (str): The EnergyPlus Field Contents Returns: (datetime): The datetime object Info: See EnergyPlus documentation for more details: 1.6.8.1.2 Field: Start Date (Table 1.4: Date Field Interpretation) """ # < number > Weekday in Month formats = ['%m/%d', '%d %B', '%B %d', '%d %b', '%b %d'] date = None for format_str in formats: # Tru to parse using each defined formats try: date = datetime.strptime(field, format_str) except: pass else: date = datetime(self.year, date.month, date.day) if date is None: # if the defined formats did not work, try the fancy parse try: date = self.parse_fancy_string(field) except: msg = "the schedule '{sch}' contains a " \ "Field that is not understood: '{field}'".format( sch=self.schName, field=field) raise ValueError(msg) else: return date else: return date def parse_fancy_string(self, field): """Will try to parse cases such as `3rd Monday in February` or `Last Weekday In Month` Args: field (str): The EnergyPlus Field Contents Returns: (datetime): The datetime object """ import re # split the string at the term ' in ' time, month = field.lower().split(' in ') month = datetime.strptime(month, '%B').month # split the first part into nth and dayofweek nth, dayofweek = time.split(' ') if 'last' in nth: nth = -1 # Use the last one else: nth = re.findall(r'\d+', nth) # use the nth one nth = int(nth[0]) - 1 # python is zero-based weekday = {'monday': 0, 'tuesday': 1, 'wednesday': 2, 'thursday': 3, 'friday': 4, 'saturday': 5, 'sunday': 6} # parse the dayofweek eg. monday dayofweek = weekday.get(dayofweek, 6) # create list of possible days using Calendar import calendar c = calendar.Calendar(firstweekday=self.startDayOfTheWeek) monthcal = c.monthdatescalendar(self.year, month) # iterate though the month and get the nth weekday date = [day for week in monthcal for day in week if \ day.weekday() == dayofweek and \ day.month == month][nth] return datetime(date.year, date.month, date.day) def field_set(self, field, slicer_=None): """helper function to return the proper slicer depending on the field_set value. Available values are: Weekdays, Weekends, Holidays, Alldays, SummerDesignDay, WinterDesignDay, Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, CustomDay1, CustomDay2, AllOtherDays Args: field (str): The EnergyPlus field set value. slicer_ (pd.Series): The persistent slicer for this schedule Returns: (indexer-like): Returns the appropriate indexer for the series. """ if field.lower() == 'weekdays': # return only days of weeks return lambda x: x.index.dayofweek < 5 elif field.lower() == 'weekends': # return only weekends return lambda x: x.index.dayofweek >= 5 elif field.lower() == 'alldays': log('For schedule "{}", the field-set "AllDays" may be overridden ' 'by the "AllOtherDays" field-set'.format( self.schName), lg.WARNING) # return all days := equivalenet to .loc[:] return pd.IndexSlice[:] elif field.lower() == 'allotherdays': # return unused days (including special days). Uses the global # variable `slicer_` import operator if slicer_ is not None: return _conjunction(*[self.special_day(field, slicer_), ~slicer_], logical=operator.or_) else: raise NotImplementedError elif field.lower() == 'sunday': # return only sundays return lambda x: x.index.dayofweek == 6 elif field.lower() == 'monday': # return only mondays return lambda x: x.index.dayofweek == 0 elif field.lower() == 'tuesday': # return only Tuesdays return lambda x: x.index.dayofweek == 1 elif field.lower() == 'wednesday': # return only Wednesdays return lambda x: x.index.dayofweek == 2 elif field.lower() == 'thursday': # return only Thursdays return lambda x: x.index.dayofweek == 3 elif field.lower() == 'friday': # return only Fridays return lambda x: x.index.dayofweek == 4 elif field.lower() == 'saturday': # return only Saturdays return lambda x: x.index.dayofweek == 5 elif field.lower() == 'summerdesignday': # return design_day(self, field) return None elif field.lower() == 'winterdesignday': # return design_day(self, field) return None elif field.lower() == 'holiday' or field.lower() == 'holidays': field = 'holiday' return self.special_day(field, slicer_) elif not self.strict: # If not strict, ignore missing field-sets such as CustomDay1 return pd.IndexSlice[:] else: raise NotImplementedError( 'Archetypal does not yet support The ' 'Field_set "{}"'.format(field)) def __len__(self): """returns the length of all values of the schedule""" return len(self.all_values) def __eq__(self, other): """Overrides the default implementation""" if isinstance(other, Schedule): return self.all_values == other.all_values else: raise NotImplementedError def __ne__(self, other): return ~(self.__eq__(other)) def __add__(self, other): if isinstance(other, Schedule): return self.all_values + other.all_values elif isinstance(other, list): return self.all_values + other else: raise NotImplementedError def __sub__(self, other): if isinstance(other, Schedule): return self.all_values - other.all_values elif isinstance(other, list): return self.all_values - other else: raise NotImplementedError def __mul__(self, other): if isinstance(other, Schedule): return self.all_values * other.all_values elif isinstance(other, list): return self.all_values * other else: raise NotImplementedError def get_sdow(self, start_day_of_week): """Returns the start day of the week""" if start_day_of_week is None: return self.idf.day_of_week_for_start_day else: return start_day_of_week def special_day(self, field, slicer_): """try to get the RunPeriodControl:SpecialDays for the corresponding Day Type""" sp_slicer_ = slicer_.copy() sp_slicer_.loc[:] = False special_day_types = ['holiday', 'customday1', 'customday2'] dds = self.idf.idfobjects['RunPeriodControl:SpecialDays'.upper()] dd = [dd for dd in dds if dd.Special_Day_Type.lower() == field or dd.Special_Day_Type.lower() in special_day_types] if len(dd) > 0: slice = [] for dd in dd: # can have more than one special day types data = dd.Start_Date ep_start_date = self.date_field_interpretation(data) ep_orig = datetime(self.year, 1, 1) days_to_speciald = (ep_start_date - ep_orig).days duration = int(dd.Duration) from_date = self.startDate + timedelta(days=days_to_speciald) to_date = from_date + timedelta(days=duration) + timedelta( hours=-1) sp_slicer_.loc[from_date:to_date] = True return sp_slicer_ elif not self.strict: return sp_slicer_ else: msg = 'Could not find a "SizingPeriod:DesignDay" object ' \ 'needed for schedule "{}" with Day Type "{}"'.format( self.schName, field.capitalize() ) raise ValueError(msg) def design_day(schedule, field): # try to get the SizingPeriod:DesignDay for the corresponding Day Type dds = schedule.idf.idfobjects['SizingPeriod:DesignDay'.upper()] dd = [dd for dd in dds if dd.Day_Type.lower() == field] if len(dd) > 0: # should have found only one design day matching the Day Type data = [dd[0].Month, dd[0].Day_of_Month] date = '/'.join([str(item).zfill(2) for item in data]) date = schedule.date_field_interpretation(date) return lambda x: x.index == date else: msg = 'Could not find a "SizingPeriod:DesignDay" object ' \ 'needed for schedule "{}" with Day Type "{}"'.format( schedule.schName, field.capitalize() ) raise ValueError(msg) def _conjunction(*conditions, logical=np.logical_and): """Applies a logical function on n conditions""" return functools.reduce(logical, conditions) def _separator(sep): """helper function to return the correct delimiter""" if sep == 'Comma': return ',' elif sep == 'Tab': return '\t' elif sep == 'Fixed': return None elif sep == 'Semicolon': return ';' else: return ',' def _how(how): """Helper function to return the correct resampler""" if how.lower() == 'average': return 'mean' elif how.lower() == 'linear': return 'interpolate' elif how.lower() == 'no': return 'max' else: return 'max'
[ "archetypal.check_unique_name", "pandas.read_csv", "pandas.Grouper", "archetypal.settings.unique_schedules.append", "numpy.array", "datetime.timedelta", "archetypal.log", "pandas.date_range", "numpy.arange", "datetime.datetime", "numpy.mean", "io.StringIO", "functools.reduce", "os.path.dirname", "re.findall", "pandas.Series", "calendar.Calendar", "numpy.roll", "numpy.unique", "itertools.groupby", "datetime.datetime.strptime", "os.path.join", "archetypal.IDF", "pandas.concat" ]
[((44582, 44619), 'functools.reduce', 'functools.reduce', (['logical', 'conditions'], {}), '(logical, conditions)\n', (44598, 44619), False, 'import functools\n'), ((2337, 2356), 'io.StringIO', 'io.StringIO', (['idftxt'], {}), '(idftxt)\n', (2348, 2356), False, 'import io\n'), ((2436, 2459), 'archetypal.IDF', 'archetypal.IDF', (['fhandle'], {}), '(fhandle)\n', (2450, 2459), False, 'import archetypal\n'), ((3372, 3396), 'numpy.mean', 'np.mean', (['self.all_values'], {}), '(self.all_values)\n', (3379, 3396), True, 'import numpy as np\n'), ((3648, 3687), 'pandas.Series', 'pd.Series', (['self.all_values'], {'index': 'index'}), '(self.all_values, index=index)\n', (3657, 3687), True, 'import pandas as pd\n'), ((5639, 5693), 'calendar.Calendar', 'calendar.Calendar', ([], {'firstweekday': 'self.startDayOfTheWeek'}), '(firstweekday=self.startDayOfTheWeek)\n', (5656, 5693), False, 'import calendar\n'), ((5771, 5830), 'datetime.datetime', 'datetime', (['start_date.year', 'start_date.month', 'start_date.day'], {}), '(start_date.year, start_date.month, start_date.day)\n', (5779, 5830), False, 'from datetime import datetime, timedelta\n'), ((6057, 6106), 'pandas.Series', 'pd.Series', (['hourlyvalues'], {'index': 'index', 'dtype': 'float'}), '(hourlyvalues, index=index, dtype=float)\n', (6066, 6106), True, 'import pandas as pd\n'), ((6798, 6811), 'numpy.arange', 'np.arange', (['(24)'], {}), '(24)\n', (6807, 6811), True, 'import numpy as np\n'), ((7721, 7753), 'numpy.array', 'np.array', (['values.fieldvalues[3:]'], {}), '(values.fieldvalues[3:])\n', (7729, 7753), True, 'import numpy as np\n'), ((10508, 10531), 'numpy.array', 'np.array', (['hourly_values'], {}), '(hourly_values)\n', (10516, 10531), True, 'import numpy as np\n'), ((10611, 10666), 'numpy.roll', 'np.roll', (['hourly_values', '(-self.startDayOfTheWeek)'], {'axis': '(0)'}), '(hourly_values, -self.startDayOfTheWeek, axis=0)\n', (10618, 10666), True, 'import numpy as np\n'), ((11845, 11879), 'pandas.Series', 'pd.Series', (['all_values'], {'index': 'index'}), '(all_values, index=index)\n', (11854, 11879), True, 'import pandas as pd\n'), ((12424, 12439), 'numpy.arange', 'np.arange', (['(8760)'], {}), '(8760)\n', (12433, 12439), True, 'import numpy as np\n'), ((13378, 13411), 'os.path.dirname', 'os.path.dirname', (['self.idf.idfname'], {}), '(self.idf.idfname)\n', (13393, 13411), False, 'import os\n'), ((13427, 13457), 'os.path.join', 'os.path.join', (['idfdir', 'filename'], {}), '(idfdir, filename)\n', (13439, 13457), False, 'import os\n'), ((13621, 13692), 'pandas.read_csv', 'pd.read_csv', (['file'], {'delimiter': 'delimeter', 'skiprows': 'skip_rows', 'usecols': 'col'}), '(file, delimiter=delimeter, skiprows=skip_rows, usecols=col)\n', (13632, 13692), True, 'import pandas as pd\n'), ((14249, 14308), 'pandas.date_range', 'pd.date_range', ([], {'start': 'self.startDate', 'periods': '(8760)', 'freq': '"""H"""'}), "(start=self.startDate, periods=8760, freq='H')\n", (14262, 14308), True, 'import pandas as pd\n'), ((14427, 14456), 'pandas.Series', 'pd.Series', (['zeros'], {'index': 'index'}), '(zeros, index=index)\n', (14436, 14456), True, 'import pandas as pd\n'), ((14514, 14539), 'datetime.datetime', 'datetime', (['self.year', '(1)', '(1)'], {}), '(self.year, 1, 1)\n', (14522, 14539), False, 'from datetime import datetime, timedelta\n'), ((23732, 23773), 'pandas.Series', 'pd.Series', (['([False] * periods)'], {'index': 'index'}), '([False] * periods, index=index)\n', (23741, 23773), True, 'import pandas as pd\n'), ((23937, 23993), 'pandas.date_range', 'pd.date_range', ([], {'start': 'start_date', 'periods': '(8760)', 'freq': '"""1H"""'}), "(start=start_date, periods=8760, freq='1H')\n", (23950, 23993), True, 'import pandas as pd\n'), ((24018, 24050), 'pandas.Series', 'pd.Series', (['([0] * 8760)'], {'index': 'idx'}), '([0] * 8760, index=idx)\n', (24027, 24050), True, 'import pandas as pd\n'), ((28886, 28911), 'numpy.array', 'np.array', (['self.all_values'], {}), '(self.all_values)\n', (28894, 28911), True, 'import numpy as np\n'), ((29057, 29103), 'numpy.unique', 'np.unique', (['values'], {'axis': '(0)', 'return_inverse': '(True)'}), '(values, axis=0, return_inverse=True)\n', (29066, 29103), True, 'import numpy as np\n'), ((31640, 31671), 'numpy.array', 'np.array', (['[6, 0, 1, 2, 3, 4, 5]'], {}), '([6, 0, 1, 2, 3, 4, 5])\n', (31648, 31671), True, 'import numpy as np\n'), ((31696, 31742), 'numpy.roll', 'np.roll', (['ordered_day_n', 'self.startDayOfTheWeek'], {}), '(ordered_day_n, self.startDayOfTheWeek)\n', (31703, 31742), True, 'import numpy as np\n'), ((32904, 32929), 'datetime.datetime', 'datetime', (['self.year', '(1)', '(1)'], {}), '(self.year, 1, 1)\n', (32912, 32929), False, 'from datetime import datetime, timedelta\n'), ((37196, 37250), 'calendar.Calendar', 'calendar.Calendar', ([], {'firstweekday': 'self.startDayOfTheWeek'}), '(firstweekday=self.startDayOfTheWeek)\n', (37213, 37250), False, 'import calendar\n'), ((37536, 37577), 'datetime.datetime', 'datetime', (['date.year', 'date.month', 'date.day'], {}), '(date.year, date.month, date.day)\n', (37544, 37577), False, 'from datetime import datetime, timedelta\n'), ((8080, 8135), 'pandas.date_range', 'pd.date_range', ([], {'start': 'start_date', 'periods': '(168)', 'freq': '"""1H"""'}), "(start=start_date, periods=168, freq='1H')\n", (8093, 8135), True, 'import pandas as pd\n'), ((25856, 25872), 'pandas.concat', 'pd.concat', (['weeks'], {}), '(weeks)\n', (25865, 25872), True, 'import pandas as pd\n'), ((25937, 25957), 'datetime.timedelta', 'timedelta', ([], {'days': 'days'}), '(days=days)\n', (25946, 25957), False, 'from datetime import datetime, timedelta\n'), ((29305, 29411), 'archetypal.check_unique_name', 'archetypal.check_unique_name', (['"""d"""', 'count_day', 'name', 'archetypal.settings.unique_schedules'], {'suffix': '(True)'}), "('d', count_day, name, archetypal.settings.\n unique_schedules, suffix=True)\n", (29333, 29411), False, 'import archetypal\n'), ((29637, 29686), 'archetypal.settings.unique_schedules.append', 'archetypal.settings.unique_schedules.append', (['name'], {}), '(name)\n', (29680, 29686), False, 'import archetypal\n'), ((30693, 30803), 'archetypal.check_unique_name', 'archetypal.check_unique_name', (['"""w"""', 'count_week', 'week_id', 'archetypal.settings.unique_schedules'], {'suffix': '(True)'}), "('w', count_week, week_id, archetypal.settings.\n unique_schedules, suffix=True)\n", (30721, 30803), False, 'import archetypal\n'), ((31063, 31115), 'archetypal.settings.unique_schedules.append', 'archetypal.settings.unique_schedules.append', (['week_id'], {}), '(week_id)\n', (31106, 31115), False, 'import archetypal\n'), ((36546, 36576), 'datetime.datetime.strptime', 'datetime.strptime', (['month', '"""%B"""'], {}), "(month, '%B')\n", (36563, 36576), False, 'from datetime import datetime, timedelta\n'), ((36778, 36801), 're.findall', 're.findall', (['"""\\\\d+"""', 'nth'], {}), "('\\\\d+', nth)\n", (36788, 36801), False, 'import re\n'), ((9506, 9521), 'pandas.concat', 'pd.concat', (['days'], {}), '(days)\n', (9515, 9521), True, 'import pandas as pd\n'), ((25131, 25150), 'datetime.timedelta', 'timedelta', ([], {'hours': '(23)'}), '(hours=23)\n', (25140, 25150), False, 'from datetime import datetime, timedelta\n'), ((25310, 25333), 'pandas.Grouper', 'pd.Grouper', ([], {'freq': '"""168H"""'}), "(freq='168H')\n", (25320, 25333), True, 'import pandas as pd\n'), ((33010, 33036), 'itertools.groupby', 'itertools.groupby', (['(nws + 1)'], {}), '(nws + 1)\n', (33027, 33036), False, 'import itertools\n'), ((33704, 33722), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (33713, 33722), False, 'from datetime import datetime, timedelta\n'), ((35454, 35490), 'datetime.datetime.strptime', 'datetime.strptime', (['field', 'format_str'], {}), '(field, format_str)\n', (35471, 35490), False, 'from datetime import datetime, timedelta\n'), ((35573, 35614), 'datetime.datetime', 'datetime', (['self.year', 'date.month', 'date.day'], {}), '(self.year, date.month, date.day)\n', (35581, 35614), False, 'from datetime import datetime, timedelta\n'), ((42965, 42990), 'datetime.datetime', 'datetime', (['self.year', '(1)', '(1)'], {}), '(self.year, 1, 1)\n', (42973, 42990), False, 'from datetime import datetime, timedelta\n'), ((9104, 9124), 'pandas.Grouper', 'pd.Grouper', ([], {'freq': '"""D"""'}), "(freq='D')\n", (9114, 9124), True, 'import pandas as pd\n'), ((21922, 21942), 'archetypal.log', 'log', (['msg', 'lg.WARNING'], {}), '(msg, lg.WARNING)\n', (21925, 21942), False, 'from archetypal import log\n'), ((25108, 25128), 'datetime.timedelta', 'timedelta', ([], {'days': 'days'}), '(days=days)\n', (25117, 25128), False, 'from datetime import datetime, timedelta\n'), ((43146, 43178), 'datetime.timedelta', 'timedelta', ([], {'days': 'days_to_speciald'}), '(days=days_to_speciald)\n', (43155, 43178), False, 'from datetime import datetime, timedelta\n'), ((43244, 43263), 'datetime.timedelta', 'timedelta', ([], {'hours': '(-1)'}), '(hours=-1)\n', (43253, 43263), False, 'from datetime import datetime, timedelta\n'), ((15309, 15326), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (15318, 15326), False, 'from datetime import datetime, timedelta\n'), ((15549, 15568), 'datetime.timedelta', 'timedelta', ([], {'hours': '(-1)'}), '(hours=-1)\n', (15558, 15568), False, 'from datetime import datetime, timedelta\n'), ((15776, 15794), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (15785, 15794), False, 'from datetime import datetime, timedelta\n'), ((43217, 43241), 'datetime.timedelta', 'timedelta', ([], {'days': 'duration'}), '(days=duration)\n', (43226, 43241), False, 'from datetime import datetime, timedelta\n'), ((15526, 15546), 'datetime.timedelta', 'timedelta', ([], {'days': 'days'}), '(days=days)\n', (15535, 15546), False, 'from datetime import datetime, timedelta\n'), ((17753, 17829), 'pandas.date_range', 'pd.date_range', ([], {'start': 'self.startDate', 'periods': '(525600)', 'closed': '"""left"""', 'freq': '"""T"""'}), "(start=self.startDate, periods=525600, closed='left', freq='T')\n", (17766, 17829), True, 'import pandas as pd\n'), ((33139, 33165), 'itertools.groupby', 'itertools.groupby', (['(nws + 1)'], {}), '(nws + 1)\n', (33156, 33165), False, 'import itertools\n'), ((18958, 18978), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(1)'}), '(minutes=1)\n', (18967, 18978), False, 'from datetime import datetime, timedelta\n')]
import os # import torch import argparse import base64 import sys import io import torch import torch.nn as nn from torchvision import transforms from torch.utils.data import DataLoader from torch.utils.data.sampler import SubsetRandomSampler def fullmodel2base64(model): buffer = io.BytesIO() torch.save(model, buffer) bg = buffer.getvalue() return base64.b64encode(bg).decode() def base642fullmodel(modbase64): inputrpc = bytes(modbase64.encode()) inputrpc_ = base64.b64decode(inputrpc) loadmodel = torch.load(io.BytesIO(inputrpc_)) return loadmodel model_list = [] f = open(sys.argv[1], "r") models = f.read().split(",") f.close() print(models) for m in models: model_list.append(base642fullmodel(m)) new_model_state = model_list[0].state_dict() #sum the weight of the model for m in model_list[1:]: state_m = m.state_dict() for key in state_m: new_model_state[key] += state_m[key] #average the model weight for key in new_model_state: new_model_state[key] /= len(model_list) new_model = model_list[0] new_model.load_state_dict(new_model_state) output = fullmodel2base64(new_model) print(output)
[ "base64.b64encode", "io.BytesIO", "base64.b64decode", "torch.save" ]
[((288, 300), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (298, 300), False, 'import io\n'), ((305, 330), 'torch.save', 'torch.save', (['model', 'buffer'], {}), '(model, buffer)\n', (315, 330), False, 'import torch\n'), ((490, 516), 'base64.b64decode', 'base64.b64decode', (['inputrpc'], {}), '(inputrpc)\n', (506, 516), False, 'import base64\n'), ((544, 565), 'io.BytesIO', 'io.BytesIO', (['inputrpc_'], {}), '(inputrpc_)\n', (554, 565), False, 'import io\n'), ((369, 389), 'base64.b64encode', 'base64.b64encode', (['bg'], {}), '(bg)\n', (385, 389), False, 'import base64\n')]
# coding: utf-8 import io import os import shutil import tempfile import unittest from edo_client import WoClient class ContentApi_DownloadTestCase(unittest.TestCase): ''' - Basically this is to ensure all the facilities related to HTTP range headers are working properly; ''' @classmethod def setUpClass(cls): cls.file_size = 10 * (2 ** 20) cls.download_url = 'http://192.168.1.115/docker/unittest/10mb.test' cls.api_url = 'https://httpbin.org/redirect-to?url={}'.format( cls.download_url ) cls.empty_file_url = 'http://19192.168.3.11/docker/unittest/empty_file.bin' # We're just testing some basic util functions, # and don't want a real WoClient instance cls.client = WoClient( cls.api_url + '#', '', '', '', '', account='', instance='' ) cls.tmpdir = tempfile.mkdtemp() @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdir) def test_01_get_download_url(self): self.assertEqual( self.client.content.get_download_url(uid=''), self.download_url, 'Should be able to extract direct download URL from 302 redirect' ) def test_11_download_to_stream_all(self): '''测试:下载完整文件到流''' stream = io.BytesIO() self.client.content.download_to_stream( stream, url=self.download_url ) self.assertEqual( self.file_size, stream.tell(), 'Cursor should be at the end of stream after download' ) stream.seek(0, os.SEEK_SET) self.assertEqual( self.file_size, len(stream.read()), 'File length should be 10240 bytes' ) def test_12_download_stream_first_byte(self): '''测试:下载第一个字节到流''' stream = io.BytesIO() self.client.content.download_to_stream( stream, url=self.download_url, start=0, end=0, ) self.assertEqual(1, stream.tell(), 'Download first byte of file') def test_13_download_stream_head_part(self): '''测试:从头下载一部分到流''' stream = io.BytesIO() self.client.content.download_to_stream( stream, url=self.download_url, start=0, end=(5 * (2 ** 20) - 1), ) self.assertEqual(5 * (2 ** 20), stream.tell()) def test_14_download_stream_tail_part(self): '''测试:从中间开始,下载文件后半部分到流''' stream = io.BytesIO() self.client.content.download_to_stream( stream, url=self.download_url, start=(5 * (2 ** 20)), end=None, ) self.assertEqual(5 * (2 ** 20), stream.tell()) def test_15_download_partial(self): '''测试:从中间开始,下载一部分到流''' stream = io.BytesIO() start, end = 1234, 54321 self.client.content.download_to_stream( stream, url=self.download_url, start=start, end=end, ) self.assertEqual(stream.tell(), end - start + 1) def test_21_get_data_full_size(self): '''测试:完整读取文件内容''' self.assertEqual( self.file_size, len(self.client.content.get_data(url=self.download_url)), '.get_data shoule be able to download the whole file by default', ) def test_22_get_data_first_byte(self): '''测试:读取文件第一个字节''' self.assertEqual( 1, len(self.client.content.get_data(url=self.download_url, size=1)), '.get_data should be able to download the 1st byte of given file', ) def test_23_get_data_head_part(self): '''测试:从头读取文件的一部分内容''' size = 5432 self.assertEqual( size, len(self.client.content.get_data(url=self.download_url, size=size)), # noqa E501 '.get_data should download the first {} bytes'.format(size), ) def test_24_get_data_tail_part(self): '''测试:从中间开始,读取文件后半部分内容''' start = 12345 size = self.file_size - start self.assertEqual( size, len(self.client.content.get_data( url=self.download_url, offset=start, size=size )), '.get_data shoule download last {} bytes'.format(size), ) def test_25_get_data_partial(self): '''测试:从中间开始,读取文件一部分的内容''' start = 23451 size = self.file_size - start self.assertEqual( size, len(self.client.content.get_data( url=self.download_url, offset=start, size=size, )), '.get_data should download {} bytes starting from offset {}'.format(size, start), # noqa E501 ) def test_31_download_to_file(self): '''测试:完整下载文件到本地''' fd, fpath = tempfile.mkstemp(dir=self.tmpdir) os.close(fd) self.client.content.download_to_file(destination=fpath, url=self.download_url) self.assertEqual(self.file_size, os.stat(fpath).st_size) def test_41_download_empty_file(self): '''测试:下载空文件到本地''' fd, fpath = tempfile.mkstemp(dir=self.tmpdir) os.close(fd) self.client.content.download_to_file(destination=fpath, url=self.empty_file_url) self.assertEqual(0, os.stat(fpath).st_size)
[ "os.close", "io.BytesIO", "tempfile.mkdtemp", "edo_client.WoClient", "shutil.rmtree", "os.stat", "tempfile.mkstemp" ]
[((777, 845), 'edo_client.WoClient', 'WoClient', (["(cls.api_url + '#')", '""""""', '""""""', '""""""', '""""""'], {'account': '""""""', 'instance': '""""""'}), "(cls.api_url + '#', '', '', '', '', account='', instance='')\n", (785, 845), False, 'from edo_client import WoClient\n'), ((913, 931), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (929, 931), False, 'import tempfile\n'), ((986, 1011), 'shutil.rmtree', 'shutil.rmtree', (['cls.tmpdir'], {}), '(cls.tmpdir)\n', (999, 1011), False, 'import shutil\n'), ((1346, 1358), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (1356, 1358), False, 'import io\n'), ((1894, 1906), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (1904, 1906), False, 'import io\n'), ((2192, 2204), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2202, 2204), False, 'import io\n'), ((2496, 2508), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2506, 2508), False, 'import io\n'), ((2787, 2799), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2797, 2799), False, 'import io\n'), ((4813, 4846), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {'dir': 'self.tmpdir'}), '(dir=self.tmpdir)\n', (4829, 4846), False, 'import tempfile\n'), ((4855, 4867), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (4863, 4867), False, 'import os\n'), ((5110, 5143), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {'dir': 'self.tmpdir'}), '(dir=self.tmpdir)\n', (5126, 5143), False, 'import tempfile\n'), ((5152, 5164), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (5160, 5164), False, 'import os\n'), ((4996, 5010), 'os.stat', 'os.stat', (['fpath'], {}), '(fpath)\n', (5003, 5010), False, 'import os\n'), ((5282, 5296), 'os.stat', 'os.stat', (['fpath'], {}), '(fpath)\n', (5289, 5296), False, 'import os\n')]
import higher from leap import Leap import numpy as np import os import torch import torch.nn as nn import gc def train(model, source_corpus, char2idx, args, device): model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr_init) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=args.lr_decay, patience=args.patience, threshold=args.threshold) best_valid_cosine = 1 for epoch in np.arange(args.n_epochs): valid_cosine = [] valid_ce = [] model.train() for batch in np.arange(args.n_batch): train_contexts, train_targets, train_vocabs, train_inds = source_corpus.get_batch(args.batch_size, args.n_shot, char2idx, device, fixed=args.fixed_shot, return_inds=True) optimizer.zero_grad() if args.lang_model: pred_emb, pred_ind = model.forward(train_contexts, train_vocabs, lang_model=args.lang_model) loss = nn.functional.cross_entropy(pred_ind, train_inds) loss += -nn.functional.cosine_similarity(pred_emb, train_targets).mean() else: pred_emb = model.forward(train_contexts, train_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, train_targets).mean() loss.backward() optimizer.step() model.eval() with torch.no_grad(): for batch in np.arange(args.n_batch): valid_contexts, valid_targets, valid_vocabs, valid_inds = source_corpus.get_batch(args.batch_size, args.n_shot, char2idx, device, use_valid=True, fixed=args.fixed_shot, return_inds=True) if args.lang_model: pred_emb, pred_ind = model.forward(valid_contexts, valid_vocabs, lang_model=args.lang_model) loss = nn.functional.cross_entropy(pred_ind, valid_inds).mean() valid_ce += [loss.cpu().numpy()] else: pred_emb = model.forward(valid_contexts, valid_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, valid_targets).mean() valid_cosine += [loss.cpu().numpy()] avg_valid = np.average(valid_cosine) lr_scheduler.step(avg_valid) if args.lang_model: avg_ce = np.average(valid_ce) print(f"Average cosine loss: {avg_valid}; Average cross entropy loss: {avg_ce}") else: print(f"Average cosine loss: {avg_valid}") if avg_valid < best_valid_cosine: best_valid_cosine = avg_valid torch.save(model.state_dict(), os.path.join(args.save_dir, 'model.pt')) if optimizer.param_groups[0]['lr'] < args.lr_early_stop: print('LR early stop') break def maml_adapt(model, source_corpus, target_corpus, char2idx, args, device, lang_model_n_words=0): model = model.to(device) meta_optimizer = torch.optim.Adam(model.parameters(), lr=args.maml_meta_lr_init) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(meta_optimizer, factor=args.lr_decay, patience=args.patience, threshold=args.threshold) best_score = 3 for meta_epoch in np.arange(args.n_meta_epochs): gc.collect() source_valid_cosine = [] target_valid_cosine = [] model.train() with torch.backends.cudnn.flags(benchmark=True): for meta_batch in np.arange(args.n_meta_batch): inner_optimizer = torch.optim.Adam(model.parameters(), lr=args.maml_inner_lr_init) meta_optimizer.zero_grad() with higher.innerloop_ctx(model, inner_optimizer, copy_initial_weights=False) as (fmodel, diffopt): for inner_batch in np.arange(args.n_inner_batch): source_train_contexts, source_train_targets, source_train_vocabs = source_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, fixed=args.fixed_shot) pred_emb = fmodel.forward(source_train_contexts, source_train_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, source_train_targets).mean() diffopt.step(loss) target_train_contexts, target_train_targets, target_train_vocabs = target_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, fixed=args.fixed_shot, repeat_ctxs=args.meta_repeat_ctxs) pred_emb = fmodel.forward(target_train_contexts, target_train_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, target_train_targets).mean() loss.backward() meta_optimizer.step() model.eval() with torch.no_grad(): for batch in np.arange(args.n_batch): source_valid_contexts, source_valid_targets, source_valid_vocabs = source_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, use_valid=True, fixed=args.fixed_shot) pred_emb = model.forward(source_valid_contexts, source_valid_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, source_valid_targets).mean() source_valid_cosine += [loss.cpu().numpy()] target_valid_contexts, target_valid_targets, target_valid_vocabs = target_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, use_valid=True, fixed=args.fixed_shot, repeat_ctxs=args.meta_repeat_ctxs) pred_emb = model.forward(target_valid_contexts, target_valid_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, target_valid_targets).mean() target_valid_cosine += [loss.cpu().numpy()] avg_source_valid, avg_target_valid = np.average(source_valid_cosine), np.average(target_valid_cosine) score = avg_target_valid lr_scheduler.step(score) print(f"Average source cosine loss: {avg_source_valid}; Average target cosine loss: {avg_target_valid}") if score < best_score: best_score = score torch.save(model.state_dict(), os.path.join(args.save_dir, 'maml_model.pt')) if meta_optimizer.param_groups[0]['lr'] < args.maml_lr_early_stop: print('LR early stop') break def leap_adapt(model, source_corpus, target_corpus, char2idx, args, device, lang_model_n_words=0): model = model.to(device) leap = Leap(model) meta_optimizer = torch.optim.Adam(leap.parameters(), lr=args.leap_meta_lr_init) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(meta_optimizer, factor=args.lr_decay, patience=args.patience, threshold=args.threshold) best_score = 3 for meta_epoch in np.arange(args.n_meta_epochs): source_valid_cosine = [] target_valid_cosine = [] model.train() for meta_batch in np.arange(args.n_meta_batch): meta_optimizer.zero_grad() leap.init_task() leap.to(model) inner_optimizer = torch.optim.Adam(model.parameters(), lr=args.leap_inner_lr_init) for inner_batch in np.arange(args.n_task_steps): inner_optimizer.zero_grad() source_train_contexts, source_train_targets, source_train_vocabs = source_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, fixed=args.fixed_shot) pred_emb = model.forward(source_train_contexts, source_train_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, source_train_targets).mean() loss.backward() leap.update(loss, model) inner_optimizer.step() leap.init_task() leap.to(model) inner_optimizer = torch.optim.Adam(model.parameters(), lr=args.leap_inner_lr_init) for inner_batch in np.arange(args.n_task_steps): inner_optimizer.zero_grad() target_train_contexts, target_train_targets, target_train_vocabs = target_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, fixed=args.fixed_shot, repeat_ctxs=args.meta_repeat_ctxs) pred_emb = model.forward(target_train_contexts, target_train_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, target_train_targets).mean() loss.backward() leap.update(loss, model) inner_optimizer.step() leap.normalize() meta_optimizer.step() leap.to(model) model.eval() with torch.no_grad(): for batch in np.arange(args.n_batch): source_valid_contexts, source_valid_targets, source_valid_vocabs = source_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, use_valid=True, fixed=args.fixed_shot) pred_emb = model.forward(source_valid_contexts, source_valid_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, source_valid_targets).mean() source_valid_cosine += [loss.cpu().numpy()] target_valid_contexts, target_valid_targets, target_valid_vocabs = target_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, use_valid=True, fixed=args.fixed_shot, repeat_ctxs=args.meta_repeat_ctxs) pred_emb = model.forward(target_valid_contexts, target_valid_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, target_valid_targets).mean() target_valid_cosine += [loss.cpu().numpy()] avg_source_valid, avg_target_valid = np.average(source_valid_cosine), np.average(target_valid_cosine) score = avg_target_valid lr_scheduler.step(score) print(f"Average source cosine loss: {avg_source_valid}; Average target cosine loss: {avg_target_valid}") if score < best_score: best_score = score torch.save(model.state_dict(), os.path.join(args.save_dir, 'leap_model.pt')) if meta_optimizer.param_groups[0]['lr'] < args.leap_lr_early_stop: print('LR early stop') break
[ "higher.innerloop_ctx", "torch.optim.lr_scheduler.ReduceLROnPlateau", "numpy.average", "torch.backends.cudnn.flags", "torch.nn.functional.cosine_similarity", "os.path.join", "gc.collect", "torch.nn.functional.cross_entropy", "torch.no_grad", "leap.Leap", "numpy.arange" ]
[((287, 416), 'torch.optim.lr_scheduler.ReduceLROnPlateau', 'torch.optim.lr_scheduler.ReduceLROnPlateau', (['optimizer'], {'factor': 'args.lr_decay', 'patience': 'args.patience', 'threshold': 'args.threshold'}), '(optimizer, factor=args.lr_decay,\n patience=args.patience, threshold=args.threshold)\n', (329, 416), False, 'import torch\n'), ((519, 543), 'numpy.arange', 'np.arange', (['args.n_epochs'], {}), '(args.n_epochs)\n', (528, 543), True, 'import numpy as np\n'), ((3952, 4087), 'torch.optim.lr_scheduler.ReduceLROnPlateau', 'torch.optim.lr_scheduler.ReduceLROnPlateau', (['meta_optimizer'], {'factor': 'args.lr_decay', 'patience': 'args.patience', 'threshold': 'args.threshold'}), '(meta_optimizer, factor=args.\n lr_decay, patience=args.patience, threshold=args.threshold)\n', (3994, 4087), False, 'import torch\n'), ((4187, 4216), 'numpy.arange', 'np.arange', (['args.n_meta_epochs'], {}), '(args.n_meta_epochs)\n', (4196, 4216), True, 'import numpy as np\n'), ((7560, 7571), 'leap.Leap', 'Leap', (['model'], {}), '(model)\n', (7564, 7571), False, 'from leap import Leap\n'), ((7675, 7810), 'torch.optim.lr_scheduler.ReduceLROnPlateau', 'torch.optim.lr_scheduler.ReduceLROnPlateau', (['meta_optimizer'], {'factor': 'args.lr_decay', 'patience': 'args.patience', 'threshold': 'args.threshold'}), '(meta_optimizer, factor=args.\n lr_decay, patience=args.patience, threshold=args.threshold)\n', (7717, 7810), False, 'import torch\n'), ((7910, 7939), 'numpy.arange', 'np.arange', (['args.n_meta_epochs'], {}), '(args.n_meta_epochs)\n', (7919, 7939), True, 'import numpy as np\n'), ((637, 660), 'numpy.arange', 'np.arange', (['args.n_batch'], {}), '(args.n_batch)\n', (646, 660), True, 'import numpy as np\n'), ((3135, 3159), 'numpy.average', 'np.average', (['valid_cosine'], {}), '(valid_cosine)\n', (3145, 3159), True, 'import numpy as np\n'), ((4226, 4238), 'gc.collect', 'gc.collect', ([], {}), '()\n', (4236, 4238), False, 'import gc\n'), ((8056, 8084), 'numpy.arange', 'np.arange', (['args.n_meta_batch'], {}), '(args.n_meta_batch)\n', (8065, 8084), True, 'import numpy as np\n'), ((1829, 1844), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1842, 1844), False, 'import torch\n'), ((1871, 1894), 'numpy.arange', 'np.arange', (['args.n_batch'], {}), '(args.n_batch)\n', (1880, 1894), True, 'import numpy as np\n'), ((3247, 3267), 'numpy.average', 'np.average', (['valid_ce'], {}), '(valid_ce)\n', (3257, 3267), True, 'import numpy as np\n'), ((4341, 4383), 'torch.backends.cudnn.flags', 'torch.backends.cudnn.flags', ([], {'benchmark': '(True)'}), '(benchmark=True)\n', (4367, 4383), False, 'import torch\n'), ((4415, 4443), 'numpy.arange', 'np.arange', (['args.n_meta_batch'], {}), '(args.n_meta_batch)\n', (4424, 4443), True, 'import numpy as np\n'), ((5805, 5820), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5818, 5820), False, 'import torch\n'), ((5847, 5870), 'numpy.arange', 'np.arange', (['args.n_batch'], {}), '(args.n_batch)\n', (5856, 5870), True, 'import numpy as np\n'), ((6894, 6925), 'numpy.average', 'np.average', (['source_valid_cosine'], {}), '(source_valid_cosine)\n', (6904, 6925), True, 'import numpy as np\n'), ((6927, 6958), 'numpy.average', 'np.average', (['target_valid_cosine'], {}), '(target_valid_cosine)\n', (6937, 6958), True, 'import numpy as np\n'), ((8308, 8336), 'numpy.arange', 'np.arange', (['args.n_task_steps'], {}), '(args.n_task_steps)\n', (8317, 8336), True, 'import numpy as np\n'), ((9065, 9093), 'numpy.arange', 'np.arange', (['args.n_task_steps'], {}), '(args.n_task_steps)\n', (9074, 9093), True, 'import numpy as np\n'), ((9812, 9827), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (9825, 9827), False, 'import torch\n'), ((9854, 9877), 'numpy.arange', 'np.arange', (['args.n_batch'], {}), '(args.n_batch)\n', (9863, 9877), True, 'import numpy as np\n'), ((10901, 10932), 'numpy.average', 'np.average', (['source_valid_cosine'], {}), '(source_valid_cosine)\n', (10911, 10932), True, 'import numpy as np\n'), ((10934, 10965), 'numpy.average', 'np.average', (['target_valid_cosine'], {}), '(target_valid_cosine)\n', (10944, 10965), True, 'import numpy as np\n'), ((1420, 1469), 'torch.nn.functional.cross_entropy', 'nn.functional.cross_entropy', (['pred_ind', 'train_inds'], {}), '(pred_ind, train_inds)\n', (1447, 1469), True, 'import torch.nn as nn\n'), ((3558, 3597), 'os.path.join', 'os.path.join', (['args.save_dir', '"""model.pt"""'], {}), "(args.save_dir, 'model.pt')\n", (3570, 3597), False, 'import os\n'), ((7244, 7288), 'os.path.join', 'os.path.join', (['args.save_dir', '"""maml_model.pt"""'], {}), "(args.save_dir, 'maml_model.pt')\n", (7256, 7288), False, 'import os\n'), ((11251, 11295), 'os.path.join', 'os.path.join', (['args.save_dir', '"""leap_model.pt"""'], {}), "(args.save_dir, 'leap_model.pt')\n", (11263, 11295), False, 'import os\n'), ((4609, 4681), 'higher.innerloop_ctx', 'higher.innerloop_ctx', (['model', 'inner_optimizer'], {'copy_initial_weights': '(False)'}), '(model, inner_optimizer, copy_initial_weights=False)\n', (4629, 4681), False, 'import higher\n'), ((4743, 4772), 'numpy.arange', 'np.arange', (['args.n_inner_batch'], {}), '(args.n_inner_batch)\n', (4752, 4772), True, 'import numpy as np\n'), ((1495, 1551), 'torch.nn.functional.cosine_similarity', 'nn.functional.cosine_similarity', (['pred_emb', 'train_targets'], {}), '(pred_emb, train_targets)\n', (1526, 1551), True, 'import torch.nn as nn\n'), ((1672, 1728), 'torch.nn.functional.cosine_similarity', 'nn.functional.cosine_similarity', (['pred_emb', 'train_targets'], {}), '(pred_emb, train_targets)\n', (1703, 1728), True, 'import torch.nn as nn\n'), ((2765, 2814), 'torch.nn.functional.cross_entropy', 'nn.functional.cross_entropy', (['pred_ind', 'valid_inds'], {}), '(pred_ind, valid_inds)\n', (2792, 2814), True, 'import torch.nn as nn\n'), ((2997, 3053), 'torch.nn.functional.cosine_similarity', 'nn.functional.cosine_similarity', (['pred_emb', 'valid_targets'], {}), '(pred_emb, valid_targets)\n', (3028, 3053), True, 'import torch.nn as nn\n'), ((6201, 6264), 'torch.nn.functional.cosine_similarity', 'nn.functional.cosine_similarity', (['pred_emb', 'source_valid_targets'], {}), '(pred_emb, source_valid_targets)\n', (6232, 6264), True, 'import torch.nn as nn\n'), ((6717, 6780), 'torch.nn.functional.cosine_similarity', 'nn.functional.cosine_similarity', (['pred_emb', 'target_valid_targets'], {}), '(pred_emb, target_valid_targets)\n', (6748, 6780), True, 'import torch.nn as nn\n'), ((8699, 8762), 'torch.nn.functional.cosine_similarity', 'nn.functional.cosine_similarity', (['pred_emb', 'source_train_targets'], {}), '(pred_emb, source_train_targets)\n', (8730, 8762), True, 'import torch.nn as nn\n'), ((9507, 9570), 'torch.nn.functional.cosine_similarity', 'nn.functional.cosine_similarity', (['pred_emb', 'target_train_targets'], {}), '(pred_emb, target_train_targets)\n', (9538, 9570), True, 'import torch.nn as nn\n'), ((10208, 10271), 'torch.nn.functional.cosine_similarity', 'nn.functional.cosine_similarity', (['pred_emb', 'source_valid_targets'], {}), '(pred_emb, source_valid_targets)\n', (10239, 10271), True, 'import torch.nn as nn\n'), ((10724, 10787), 'torch.nn.functional.cosine_similarity', 'nn.functional.cosine_similarity', (['pred_emb', 'target_valid_targets'], {}), '(pred_emb, target_valid_targets)\n', (10755, 10787), True, 'import torch.nn as nn\n'), ((5624, 5687), 'torch.nn.functional.cosine_similarity', 'nn.functional.cosine_similarity', (['pred_emb', 'target_train_targets'], {}), '(pred_emb, target_train_targets)\n', (5655, 5687), True, 'import torch.nn as nn\n'), ((5120, 5183), 'torch.nn.functional.cosine_similarity', 'nn.functional.cosine_similarity', (['pred_emb', 'source_train_targets'], {}), '(pred_emb, source_train_targets)\n', (5151, 5183), True, 'import torch.nn as nn\n')]
""" pyexcel_xlsw ~~~~~~~~~~~~~~~~~~~ The lower level xls file format handler using xlwt :copyright: (c) 2016-2021 by Onni Software Ltd :license: New BSD License """ import datetime import xlrd from xlwt import XFStyle, Workbook from pyexcel_io import constants from pyexcel_io.plugin_api import IWriter, ISheetWriter DEFAULT_DATE_FORMAT = "DD/MM/YY" DEFAULT_TIME_FORMAT = "HH:MM:SS" DEFAULT_LONGTIME_FORMAT = "[HH]:MM:SS" DEFAULT_DATETIME_FORMAT = "%s %s" % (DEFAULT_DATE_FORMAT, DEFAULT_TIME_FORMAT) EMPTY_SHEET_NOT_ALLOWED = "xlwt does not support a book without any sheets" class XLSheetWriter(ISheetWriter): """ xls sheet writer """ def __init__(self, xls_book, xls_sheet, sheet_name): if sheet_name is None: sheet_name = constants.DEFAULT_SHEET_NAME self._xls_book = xls_book self._xls_sheet = xls_sheet self._xls_sheet = self._xls_book.add_sheet(sheet_name) self.current_row = 0 def write_row(self, array): """ write a row into the file """ for i, value in enumerate(array): style = None tmp_array = [] if isinstance(value, datetime.datetime): tmp_array = [ value.year, value.month, value.day, value.hour, value.minute, value.second, ] value = xlrd.xldate.xldate_from_datetime_tuple(tmp_array, 0) style = XFStyle() style.num_format_str = DEFAULT_DATETIME_FORMAT elif isinstance(value, datetime.timedelta): value = value.days + value.seconds / 86_400 style = XFStyle() style.num_format_str = DEFAULT_LONGTIME_FORMAT elif isinstance(value, datetime.date): tmp_array = [value.year, value.month, value.day] value = xlrd.xldate.xldate_from_date_tuple(tmp_array, 0) style = XFStyle() style.num_format_str = DEFAULT_DATE_FORMAT elif isinstance(value, datetime.time): tmp_array = [value.hour, value.minute, value.second] value = xlrd.xldate.xldate_from_time_tuple(tmp_array) style = XFStyle() style.num_format_str = DEFAULT_TIME_FORMAT if style: self._xls_sheet.write(self.current_row, i, value, style) else: self._xls_sheet.write(self.current_row, i, value) self.current_row += 1 def close(self): pass class XLSWriter(IWriter): """ xls writer """ def __init__( self, file_alike_object, _, # file_type not used encoding="ascii", style_compression=2, **keywords, ): self.file_alike_object = file_alike_object self.work_book = Workbook( style_compression=style_compression, encoding=encoding ) def create_sheet(self, name): return XLSheetWriter(self.work_book, None, name) def write(self, incoming_dict): if incoming_dict: IWriter.write(self, incoming_dict) else: raise NotImplementedError(EMPTY_SHEET_NOT_ALLOWED) def close(self): """ This call actually save the file """ self.work_book.save(self.file_alike_object)
[ "xlrd.xldate.xldate_from_time_tuple", "xlwt.XFStyle", "pyexcel_io.plugin_api.IWriter.write", "xlrd.xldate.xldate_from_datetime_tuple", "xlrd.xldate.xldate_from_date_tuple", "xlwt.Workbook" ]
[((2968, 3032), 'xlwt.Workbook', 'Workbook', ([], {'style_compression': 'style_compression', 'encoding': 'encoding'}), '(style_compression=style_compression, encoding=encoding)\n', (2976, 3032), False, 'from xlwt import XFStyle, Workbook\n'), ((3222, 3256), 'pyexcel_io.plugin_api.IWriter.write', 'IWriter.write', (['self', 'incoming_dict'], {}), '(self, incoming_dict)\n', (3235, 3256), False, 'from pyexcel_io.plugin_api import IWriter, ISheetWriter\n'), ((1486, 1538), 'xlrd.xldate.xldate_from_datetime_tuple', 'xlrd.xldate.xldate_from_datetime_tuple', (['tmp_array', '(0)'], {}), '(tmp_array, 0)\n', (1524, 1538), False, 'import xlrd\n'), ((1563, 1572), 'xlwt.XFStyle', 'XFStyle', ([], {}), '()\n', (1570, 1572), False, 'from xlwt import XFStyle, Workbook\n'), ((1776, 1785), 'xlwt.XFStyle', 'XFStyle', ([], {}), '()\n', (1783, 1785), False, 'from xlwt import XFStyle, Workbook\n'), ((1989, 2037), 'xlrd.xldate.xldate_from_date_tuple', 'xlrd.xldate.xldate_from_date_tuple', (['tmp_array', '(0)'], {}), '(tmp_array, 0)\n', (2023, 2037), False, 'import xlrd\n'), ((2062, 2071), 'xlwt.XFStyle', 'XFStyle', ([], {}), '()\n', (2069, 2071), False, 'from xlwt import XFStyle, Workbook\n'), ((2275, 2320), 'xlrd.xldate.xldate_from_time_tuple', 'xlrd.xldate.xldate_from_time_tuple', (['tmp_array'], {}), '(tmp_array)\n', (2309, 2320), False, 'import xlrd\n'), ((2345, 2354), 'xlwt.XFStyle', 'XFStyle', ([], {}), '()\n', (2352, 2354), False, 'from xlwt import XFStyle, Workbook\n')]
# Copyright 2021 <NAME> <EMAIL> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Simple coloring problem (MIP approach) in OR-tools CP-SAT Solver. Inspired by the GLPK:s model color.mod ''' COLOR, Graph Coloring Problem Written in GNU MathProg by <NAME> <<EMAIL>> Given an undirected loopless graph G = (V, E), where V is a set of nodes, E <= V x V is a set of arcs, the Graph Coloring Problem is to find a mapping (coloring) F: V -> C, where C = {1, 2, ... } is a set of colors whose cardinality is as small as possible, such that F(i) != F(j) for every arc (i,j) in E, that is adjacent nodes must be assigned different colors. ''' This is a port of my old OR-tools CP solver coloring_ip.py This model was created by <NAME> (<EMAIL>) Also see my other OR-tols models: http://www.hakank.org/or_tools/ """ from __future__ import print_function from ortools.sat.python import cp_model as cp import math, sys # from cp_sat_utils import * def main(): model = cp.CpModel() # max number of colors # [we know that 4 suffices for normal maps] nc = 5 # number of nodes n = 11 # set of nodes V = list(range(n)) num_edges = 20 # # Neighbours # # This data correspond to the instance myciel3.col from: # http://mat.gsia.cmu.edu/COLOR/instances.html # # Note: 1-based (adjusted below) E = [[1, 2], [1, 4], [1, 7], [1, 9], [2, 3], [2, 6], [2, 8], [3, 5], [3, 7], [3, 10], [4, 5], [4, 6], [4, 10], [5, 8], [5, 9], [6, 11], [7, 11], [8, 11], [9, 11], [10, 11]] # # declare variables # # x[i,c] = 1 means that node i is assigned color c x = {} for v in V: for j in range(nc): x[v, j] = model.NewIntVar(0, 1, 'v[%i,%i]' % (v, j)) # u[c] = 1 means that color c is used, i.e. assigned to some node u = [model.NewIntVar(0, 1, 'u[%i]' % i) for i in range(nc)] # number of colors used, to minimize num_colors = model.NewIntVar(0,nc, "num_colors") model.Add(num_colors == sum(u)) # # constraints # # each node must be assigned exactly one color for i in V: model.Add(sum([x[i, c] for c in range(nc)]) == 1) # adjacent nodes cannot be assigned the same color # (and adjust to 0-based) for i in range(num_edges): for c in range(nc): model.Add(x[E[i][0] - 1, c] + x[E[i][1] - 1, c] <= u[c]) # objective model.Minimize(num_colors) # # solution # solver = cp.CpSolver() status = solver.Solve(model) if status == cp.OPTIMAL: print() print('number of colors:', solver.Value(num_colors)) print('colors used:', [solver.Value(u[i]) for i in range(nc)]) print() for v in V: print('v%i' % v, ' color ', end=' ') for c in range(nc): if solver.Value(x[v, c]) == 1: print(c) print() print('NumConflicts:', solver.NumConflicts()) print('NumBranches:', solver.NumBranches()) print('WallTime:', solver.WallTime()) if __name__ == '__main__': main()
[ "ortools.sat.python.cp_model.CpSolver", "ortools.sat.python.cp_model.CpModel" ]
[((1497, 1509), 'ortools.sat.python.cp_model.CpModel', 'cp.CpModel', ([], {}), '()\n', (1507, 1509), True, 'from ortools.sat.python import cp_model as cp\n'), ((2902, 2915), 'ortools.sat.python.cp_model.CpSolver', 'cp.CpSolver', ([], {}), '()\n', (2913, 2915), True, 'from ortools.sat.python import cp_model as cp\n')]
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # -*- coding: utf-8 -*- """ # @Time : 2019/5/27 # @Author : Jiaqi&Zecheng # @File : sem_utils.py # @Software: PyCharm """ import os import json import re as regex import spacy from nltk.stem import WordNetLemmatizer wordnet_lemmatizer = WordNetLemmatizer() nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner']) def partial_match(query, table_name): query = [token.lemma_ for token in nlp(query)] table_name = [nlp(token)[0].lemma_ for token in table_name] if query in table_name: return True return False def is_partial_match(query, table_names): query = nlp(query)[0].lemma_ table_names = [[token.lemma_ for token in nlp(names)] for names in table_names] same_count = 0 result = None for names in table_names: if query in names: same_count += 1 result = names return result if same_count == 1 else False def multi_option(question, q_ind, names, N): for i in range(q_ind + 1, q_ind + N + 1): if i < len(question): re = is_partial_match(question[i][0], names) if re is not False: return re return False def multi_equal(question, q_ind, names, N): for i in range(q_ind + 1, q_ind + N + 1): if i < len(question): if question[i] == names: return i return False def random_choice(question_arg, question_arg_type, names, ground_col_labels, q_ind, N, origin_name): # first try if there are other table for t_ind, t_val in enumerate(question_arg_type): if t_val == ['table']: return names[origin_name.index(question_arg[t_ind])] for i in range(q_ind + 1, q_ind + N + 1): if i < len(question_arg): if len(ground_col_labels) == 0: for n in names: if partial_match(question_arg[i][0], n) is True: return n else: for n_id, n in enumerate(names): if n_id in ground_col_labels and partial_match(question_arg[i][0], n) is True: return n if len(ground_col_labels) > 0: return names[ground_col_labels[0]] else: return names[0] def alter_column0(datas): """ Attach column * table :return: model_result_replace """ zero_count = 0 count = 0 result = [] for d in datas: if 'C(0)' in d['model_result']: pattern = regex.compile('C\(.*?\) T\(.*?\)') result_pattern = list(set(pattern.findall(d['model_result']))) ground_col_labels = [] for pa in result_pattern: pa = pa.split(' ') if pa[0] != 'C(0)': index = int(pa[1][2:-1]) ground_col_labels.append(index) ground_col_labels = list(set(ground_col_labels)) question_arg_type = d['question_arg_type'] question_arg = d['question_arg'] table_names = [[token.lemma_ for token in nlp(names)] for names in d['table_names']] origin_table_names = [[wordnet_lemmatizer.lemmatize(x.lower()) for x in names.split(' ')] for names in d['table_names']] count += 1 easy_flag = False for q_ind, q in enumerate(d['question_arg']): q_str = " ".join(" ".join(x) for x in d['question_arg']) if 'how many' in q_str or 'number of' in q_str or 'count of' in q_str: easy_flag = True if easy_flag: # check for the last one is a table word for q_ind, q in enumerate(d['question_arg']): if (q_ind > 0 and q == ['many'] and d['question_arg'][q_ind - 1] == ['how']) or ( q_ind > 0 and q == ['of'] and d['question_arg'][q_ind - 1] == ['number']) or ( q_ind > 0 and q == ['of'] and d['question_arg'][q_ind - 1] == ['count']): re = multi_equal(question_arg_type, q_ind, ['table'], 2) if re is not False: # This step work for the number of [table] example table_result = table_names[origin_table_names.index(question_arg[re])] result.append((d['query'], d['question'], table_result, d)) break else: re = multi_option(question_arg, q_ind, d['table_names'], 2) if re is not False: table_result = re result.append((d['query'], d['question'], table_result, d)) pass else: re = multi_equal(question_arg_type, q_ind, ['table'], len(question_arg_type)) if re is not False: # This step work for the number of [table] example table_result = table_names[origin_table_names.index(question_arg[re])] result.append((d['query'], d['question'], table_result, d)) break pass table_result = random_choice(question_arg=question_arg, question_arg_type=question_arg_type, names=table_names, ground_col_labels=ground_col_labels, q_ind=q_ind, N=2, origin_name=origin_table_names) result.append((d['query'], d['question'], table_result, d)) zero_count += 1 break else: M_OP = False for q_ind, q in enumerate(d['question_arg']): if M_OP is False and q in [['than'], ['least'], ['most'], ['msot'], ['fewest']] or \ question_arg_type[q_ind] == ['M_OP']: M_OP = True re = multi_equal(question_arg_type, q_ind, ['table'], 3) if re is not False: # This step work for the number of [table] example table_result = table_names[origin_table_names.index(question_arg[re])] result.append((d['query'], d['question'], table_result, d)) break else: re = multi_option(question_arg, q_ind, d['table_names'], 3) if re is not False: table_result = re # print(table_result) result.append((d['query'], d['question'], table_result, d)) pass else: # zero_count += 1 re = multi_equal(question_arg_type, q_ind, ['table'], len(question_arg_type)) if re is not False: # This step work for the number of [table] example table_result = table_names[origin_table_names.index(question_arg[re])] result.append((d['query'], d['question'], table_result, d)) break table_result = random_choice(question_arg=question_arg, question_arg_type=question_arg_type, names=table_names, ground_col_labels=ground_col_labels, q_ind=q_ind, N=2, origin_name=origin_table_names) result.append((d['query'], d['question'], table_result, d)) pass if M_OP is False: table_result = random_choice(question_arg=question_arg, question_arg_type=question_arg_type, names=table_names, ground_col_labels=ground_col_labels, q_ind=q_ind, N=2, origin_name=origin_table_names) result.append((d['query'], d['question'], table_result, d)) for re in result: table_names = [[token.lemma_ for token in nlp(names)] for names in re[3]['table_names']] origin_table_names = [[x for x in names.split(' ')] for names in re[3]['table_names']] if re[2] in table_names: re[3]['rule_count'] = table_names.index(re[2]) else: re[3]['rule_count'] = origin_table_names.index(re[2]) for data in datas: if 'rule_count' in data: str_replace = 'C(0) T(' + str(data['rule_count']) + ')' replace_result = regex.sub('C\(0\) T\(.\)', str_replace, data['model_result']) data['model_result_replace'] = replace_result else: data['model_result_replace'] = data['model_result']
[ "spacy.load", "re.sub", "nltk.stem.WordNetLemmatizer", "re.compile" ]
[((321, 340), 'nltk.stem.WordNetLemmatizer', 'WordNetLemmatizer', ([], {}), '()\n', (338, 340), False, 'from nltk.stem import WordNetLemmatizer\n'), ((347, 402), 'spacy.load', 'spacy.load', (['"""en_core_web_sm"""'], {'disable': "['parser', 'ner']"}), "('en_core_web_sm', disable=['parser', 'ner'])\n", (357, 402), False, 'import spacy\n'), ((2535, 2573), 're.compile', 'regex.compile', (['"""C\\\\(.*?\\\\) T\\\\(.*?\\\\)"""'], {}), "('C\\\\(.*?\\\\) T\\\\(.*?\\\\)')\n", (2548, 2573), True, 'import re as regex\n'), ((9508, 9573), 're.sub', 'regex.sub', (['"""C\\\\(0\\\\) T\\\\(.\\\\)"""', 'str_replace', "data['model_result']"], {}), "('C\\\\(0\\\\) T\\\\(.\\\\)', str_replace, data['model_result'])\n", (9517, 9573), True, 'import re as regex\n')]
from flask import Blueprint from controllers.show import shows, create_shows, create_show_submission show_bp = Blueprint('show_bp', __name__) show_bp.route('/', methods=['GET'])(shows) show_bp.route('/create', methods=['GET'])(create_shows) show_bp.route('/create', methods=['POST'])(create_show_submission)
[ "flask.Blueprint" ]
[((113, 143), 'flask.Blueprint', 'Blueprint', (['"""show_bp"""', '__name__'], {}), "('show_bp', __name__)\n", (122, 143), False, 'from flask import Blueprint\n')]
#!/usr/bin/python # Copyright (c) 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Module that finds and runs a binary by looking in the likely locations.""" import os import subprocess import sys def run_command(args): """Runs a program from the command line and returns stdout. Args: args: Command line to run, as a list of string parameters. args[0] is the binary to run. Returns: stdout from the program, as a single string. Raises: Exception: the program exited with a nonzero return code. """ proc = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = proc.communicate() if proc.returncode is not 0: raise Exception('command "%s" failed: %s' % (args, stderr)) return stdout def find_path_to_program(program): """Returns path to an existing program binary. Args: program: Basename of the program to find (e.g., 'render_pictures'). Returns: Absolute path to the program binary, as a string. Raises: Exception: unable to find the program binary. """ trunk_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) possible_paths = [os.path.join(trunk_path, 'out', 'Release', program), os.path.join(trunk_path, 'out', 'Debug', program), os.path.join(trunk_path, 'out', 'Release', program + '.exe'), os.path.join(trunk_path, 'out', 'Debug', program + '.exe')] for try_path in possible_paths: if os.path.isfile(try_path): return try_path raise Exception('cannot find %s in paths %s; maybe you need to ' 'build %s?' % (program, possible_paths, program))
[ "os.path.isfile", "subprocess.Popen", "os.path.dirname", "os.path.join" ]
[((652, 722), 'subprocess.Popen', 'subprocess.Popen', (['args'], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE'}), '(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n', (668, 722), False, 'import subprocess\n'), ((1373, 1424), 'os.path.join', 'os.path.join', (['trunk_path', '"""out"""', '"""Release"""', 'program'], {}), "(trunk_path, 'out', 'Release', program)\n", (1385, 1424), False, 'import os\n'), ((1446, 1495), 'os.path.join', 'os.path.join', (['trunk_path', '"""out"""', '"""Debug"""', 'program'], {}), "(trunk_path, 'out', 'Debug', program)\n", (1458, 1495), False, 'import os\n'), ((1517, 1577), 'os.path.join', 'os.path.join', (['trunk_path', '"""out"""', '"""Release"""', "(program + '.exe')"], {}), "(trunk_path, 'out', 'Release', program + '.exe')\n", (1529, 1577), False, 'import os\n'), ((1632, 1690), 'os.path.join', 'os.path.join', (['trunk_path', '"""out"""', '"""Debug"""', "(program + '.exe')"], {}), "(trunk_path, 'out', 'Debug', program + '.exe')\n", (1644, 1690), False, 'import os\n'), ((1766, 1790), 'os.path.isfile', 'os.path.isfile', (['try_path'], {}), '(try_path)\n', (1780, 1790), False, 'import os\n'), ((1270, 1295), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1285, 1295), False, 'import os\n')]
import os import asposewordscloud import asposewordscloud.models.requests from asposewordscloud.rest import ApiException from shutil import copyfile words_api = WordsApi(client_id = '####-####-####-####-####', client_secret = '##################') file_name = 'test_doc.docx' # Upload original document to cloud storage. my_var1 = open(file_name, 'rb') my_var2 = file_name upload_file_request = asposewordscloud.models.requests.UploadFileRequest(file_content=my_var1, path=my_var2) words_api.upload_file(upload_file_request) # Calls AcceptAllRevisions method for document in cloud. my_var3 = file_name request = asposewordscloud.models.requests.AcceptAllRevisionsRequest(name=my_var3) words_api.accept_all_revisions(request)
[ "asposewordscloud.models.requests.UploadFileRequest", "asposewordscloud.models.requests.AcceptAllRevisionsRequest" ]
[((398, 488), 'asposewordscloud.models.requests.UploadFileRequest', 'asposewordscloud.models.requests.UploadFileRequest', ([], {'file_content': 'my_var1', 'path': 'my_var2'}), '(file_content=my_var1,\n path=my_var2)\n', (448, 488), False, 'import asposewordscloud\n'), ((616, 688), 'asposewordscloud.models.requests.AcceptAllRevisionsRequest', 'asposewordscloud.models.requests.AcceptAllRevisionsRequest', ([], {'name': 'my_var3'}), '(name=my_var3)\n', (674, 688), False, 'import asposewordscloud\n')]
# Copyright 2016 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging import logging.handlers log = logging.getLogger('imc') console = logging.StreamHandler() formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') console.setFormatter(formatter) def enable_file_logging(filename="imcsdk.log"): file_handler = logging.handlers.RotatingFileHandler( filename, maxBytes=10*1024*1024, backupCount=5) log.addHandler(file_handler) def set_log_level(level=logging.DEBUG): """ Allows setting log level Args: level: logging level - import logging and pass enums from it(INFO/DEBUG/ERROR/etc..) Returns: None Example: from imcsdk import set_log_level import logging set_log_level(logging.INFO) """ log.setLevel(level) console.setLevel(level) set_log_level(logging.DEBUG) log.addHandler(console) if os.path.exists('/tmp/imcsdk_debug'): enable_file_logging() __author__ = 'Cisco Systems' __email__ = '<EMAIL>' __version__ = '0.9.11'
[ "logging.getLogger", "os.path.exists", "logging.StreamHandler", "logging.Formatter", "logging.handlers.RotatingFileHandler" ]
[((636, 660), 'logging.getLogger', 'logging.getLogger', (['"""imc"""'], {}), "('imc')\n", (653, 660), False, 'import logging\n'), ((671, 694), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (692, 694), False, 'import logging\n'), ((707, 780), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(name)s - %(levelname)s - %(message)s"""'], {}), "('%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n", (724, 780), False, 'import logging\n'), ((1464, 1499), 'os.path.exists', 'os.path.exists', (['"""/tmp/imcsdk_debug"""'], {}), "('/tmp/imcsdk_debug')\n", (1478, 1499), False, 'import os\n'), ((887, 979), 'logging.handlers.RotatingFileHandler', 'logging.handlers.RotatingFileHandler', (['filename'], {'maxBytes': '(10 * 1024 * 1024)', 'backupCount': '(5)'}), '(filename, maxBytes=10 * 1024 * 1024,\n backupCount=5)\n', (923, 979), False, 'import logging\n')]
import gi gi.require_version('Gtk', '3.0') from gi.repository import Gtk from datetime import datetime from api_request import Weather builder = Gtk.Builder() builder.add_from_file('./glade/main.glade') class Handler: def __init__(self, *args, **kwargs): super(Handler, self).__init__(*args, **kwargs) self.weather_instance = Weather() self.entry = builder.get_object('entry') self.btn_search = builder.get_object('btn_search') self.city_name = builder.get_object('city_name') self.city_text = builder.get_object('city_text') self.main_temp = builder.get_object('main_temp') self.which_temp_simbol_is = 'Celsius' self.weekday_name = builder.get_object('weekday_name') self.weekday_name_today = builder.get_object('weekday_name_today') self.temp_today_max = builder.get_object('today_max') self.temp_today_min = builder.get_object('today_min') self.hour_1_now = builder.get_object('hour_1_now') self.hour_1_chance_of_rain = builder.get_object('hour_1_chance_of_rain') self.hour_1_icon = builder.get_object('hour_1_icon') self.hour_1_temp = builder.get_object('hour_1_temp') self.hour_2_clock = builder.get_object('hour_2_clock') self.hour_2_chance_of_rain = builder.get_object('hour_2_chance_of_rain') self.hour_2_icon = builder.get_object('hour_2_icon') self.hour_2_temp = builder.get_object('hour_2_temp') self.hour_3_clock = builder.get_object('hour_3_clock') self.hour_3_chance_of_rain = builder.get_object('hour_3_chance_of_rain') self.hour_3_icon = builder.get_object('hour_3_icon') self.hour_3_temp = builder.get_object('hour_3_temp') self.hour_4_clock = builder.get_object('hour_4_clock') self.hour_4_chance_of_rain = builder.get_object('hour_4_chance_of_rain') self.hour_4_icon = builder.get_object('hour_4_icon') self.hour_4_temp = builder.get_object('hour_4_temp') self.hour_5_clock = builder.get_object('hour_5_clock') self.hour_5_chance_of_rain = builder.get_object('hour_5_chance_of_rain') self.hour_5_icon = builder.get_object('hour_5_icon') self.hour_5_temp = builder.get_object('hour_5_temp') self.day_1_name = builder.get_object('day_1_name') self.day_1_icon = builder.get_object('day_1_icon') self.day_1_temp_max = builder.get_object('day_1_temp_max') self.day_1_temp_min = builder.get_object('day_1_temp_min') self.day_2_name = builder.get_object('day_2_name') self.day_2_icon = builder.get_object('day_2_icon') self.day_2_temp_max = builder.get_object('day_2_temp_max') self.day_2_temp_min = builder.get_object('day_2_temp_min') def onDestroy(self, *args): Gtk.main_quit() def on_button_search_clicked(self, widget): # now.strftime('%A') to know how weekday is import re, unicodedata word = unicodedata.normalize('NFD', self.entry.get_text()) word = re.sub('[\u0300-\u036f]', '', word) try: now = datetime.now() current_hour = int(now.strftime('%H')) current_search = self.weather_instance.get_weather_info(word, current_hour=current_hour) self.city_name.set_text(current_search['location']['name'] + '/' + current_search['location']['region']) self.city_text.set_text(current_search['current']['condition']['text']) self.main_temp.set_text(str(int(current_search['current']['temp_c'])) + '°') weekday = now.strftime('%A') self.weekday_name.set_text(weekday) self.weekday_name_today.set_text('Today') today_max_temp = str(int(current_search['forecast']['forecastday'][0]['day']['maxtemp_c'])) today_min_temp = str(int(current_search['forecast']['forecastday'][0]['day']['mintemp_c'])) self.temp_today_max.set_text(today_max_temp) self.temp_today_min.set_text(today_min_temp) ### Hours informations ###################################################### def is_available(increase: int) -> bool: return not (current_hour + increase > 23) if is_available(0): self.hour_1_now.set_text('Now') if int(chance_of_rain := current_search['forecast']['forecastday'][0]['hour'][current_hour]['chance_of_rain'])>0: self.hour_1_chance_of_rain.set_text(str(chance_of_rain) + '%') self.hour_1_temp.set_text(str(int(current_search['forecast']['forecastday'][0]['hour'][current_hour]['temp_c']))) else: self.hour_1_now.set_text('unavailable') self.hour_1_temp.set_text('tomorrow') self.hour_1_icon.set_from_file('./images/hour_icon/1.png') if is_available(1): self.hour_2_clock.set_text(str(int(now.strftime('%I'))+1) + now.strftime('%p')) if int(chance_of_rain := current_search['forecast']['forecastday'][0]['hour'][current_hour+1]['chance_of_rain'])>0: self.hour_1_chance_of_rain.set_text(str(chance_of_rain) + '%') self.hour_2_temp.set_text(str(int(current_search['forecast']['forecastday'][0]['hour'][current_hour+1]['temp_c']))) else: self.hour_2_clock.set_text('unavailable') self.hour_2_temp.set_text('tomorrow') self.hour_2_icon.set_from_file('./images/hour_icon/2.png') if is_available(2): self.hour_3_clock.set_text(str(int(now.strftime('%I'))+2) + now.strftime('%p')) if int(chance_of_rain := current_search['forecast']['forecastday'][0]['hour'][current_hour+2]['chance_of_rain'])>0: self.hour_3_chance_of_rain.set_text(str(chance_of_rain) + '%') self.hour_3_temp.set_text(str(int(current_search['forecast']['forecastday'][0]['hour'][current_hour+2]['temp_c']))) else: self.hour_3_clock.set_text('unavailable') self.hour_3_temp.set_text('tomorrow') self.hour_3_icon.set_from_file('./images/hour_icon/3.png') if is_available(3): self.hour_4_clock.set_text(str(int(now.strftime('%I'))+3) + now.strftime('%p')) if int(chance_of_rain := current_search['forecast']['forecastday'][0]['hour'][current_hour+3]['chance_of_rain'])>0: self.hour_4_chance_of_rain.set_text(str(chance_of_rain) + '%') self.hour_4_temp.set_text(str(int(current_search['forecast']['forecastday'][0]['hour'][current_hour+3]['temp_c']))) else: self.hour_4_clock.set_text('unavailable') self.hour_4_temp.set_text('tomorrow') self.hour_4_icon.set_from_file('./images/hour_icon/4.png') if is_available(4): self.hour_5_clock.set_text(str(int(now.strftime('%I'))+4) + now.strftime('%p')) if int(chance_of_rain := current_search['forecast']['forecastday'][0]['hour'][current_hour+3]['chance_of_rain'])>0: self.hour_5_chance_of_rain.set_text(str(chance_of_rain) + '%') self.hour_5_temp.set_text(str(int(current_search['forecast']['forecastday'][0]['hour'][current_hour+4]['temp_c']))) else: self.hour_5_clock.set_text('unavailable') self.hour_5_temp.set_text('tomorrow') self.hour_5_icon.set_from_file('./images/hour_icon/5.png') ### days informations ###################################################### self.day_1_name.set_text(datetime.fromisoformat(current_search['forecast']['forecastday'][1]['date']).strftime('%A')) self.day_1_icon.set_from_file('./images/days_icon/1.png') self.day_1_temp_max.set_text(str(int(current_search['forecast']['forecastday'][1]['day']['maxtemp_c']))) self.day_1_temp_min.set_text(str(int(current_search['forecast']['forecastday'][1]['day']['mintemp_c']))) self.day_2_name.set_text(datetime.fromisoformat(current_search['forecast']['forecastday'][2]['date']).strftime('%A')) self.day_2_icon.set_from_file('./images/days_icon/2.png') self.day_2_temp_max.set_text(str(int(current_search['forecast']['forecastday'][2]['day']['maxtemp_c']))) self.day_2_temp_min.set_text(str(int(current_search['forecast']['forecastday'][2]['day']['mintemp_c']))) except Exception as error: print(f'error {error}') builder.connect_signals(Handler()) window = builder.get_object('window') window.show_all() Gtk.main()
[ "gi.repository.Gtk.main_quit", "gi.repository.Gtk.Builder", "api_request.Weather", "gi.require_version", "datetime.datetime.now", "datetime.datetime.fromisoformat", "re.sub", "gi.repository.Gtk.main" ]
[((10, 42), 'gi.require_version', 'gi.require_version', (['"""Gtk"""', '"""3.0"""'], {}), "('Gtk', '3.0')\n", (28, 42), False, 'import gi\n'), ((147, 160), 'gi.repository.Gtk.Builder', 'Gtk.Builder', ([], {}), '()\n', (158, 160), False, 'from gi.repository import Gtk\n'), ((8964, 8974), 'gi.repository.Gtk.main', 'Gtk.main', ([], {}), '()\n', (8972, 8974), False, 'from gi.repository import Gtk\n'), ((363, 372), 'api_request.Weather', 'Weather', ([], {}), '()\n', (370, 372), False, 'from api_request import Weather\n'), ((2916, 2931), 'gi.repository.Gtk.main_quit', 'Gtk.main_quit', ([], {}), '()\n', (2929, 2931), False, 'from gi.repository import Gtk\n'), ((3163, 3188), 're.sub', 're.sub', (['"""[̀-ͯ]"""', '""""""', 'word'], {}), "('[̀-ͯ]', '', word)\n", (3169, 3188), False, 'import re, unicodedata\n'), ((3230, 3244), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3242, 3244), False, 'from datetime import datetime\n'), ((7960, 8036), 'datetime.datetime.fromisoformat', 'datetime.fromisoformat', (["current_search['forecast']['forecastday'][1]['date']"], {}), "(current_search['forecast']['forecastday'][1]['date'])\n", (7982, 8036), False, 'from datetime import datetime\n'), ((8395, 8471), 'datetime.datetime.fromisoformat', 'datetime.fromisoformat', (["current_search['forecast']['forecastday'][2]['date']"], {}), "(current_search['forecast']['forecastday'][2]['date'])\n", (8417, 8471), False, 'from datetime import datetime\n')]
import re from itertools import combinations from utils.solution_base import SolutionBase class Solution(SolutionBase): def solve(self, part_num: int): self.test_runner(part_num) func = getattr(self, f"part{part_num}") result = func(self.data) return result def test_runner(self, part_num): test_inputs = self.get_test_input() test_results = self.get_test_result(part_num) test_counter = 1 func = getattr(self, f"part{part_num}") for i, r in zip(test_inputs, test_results): if len(r): if func(i) == int(r[0]): print(f"test {test_counter} passed") else: print(func(i)) print(r[0]) print(f"test {test_counter} NOT passed") test_counter += 1 print() def part1(self, data): addition = data[0] for i in data[1:]: addition = f"[{addition},{i}]" while (t := self.reduction(addition)) != addition: addition = t return self.calc_magnitude(addition) def reduction(self, s: str): # explode depth = 0 for i, v in enumerate(s): if v.isnumeric() and depth > 4: pair_close_pos = s[i:].index("]") before_pair, pair, after_pair = s[: i - 1], s[i : i + pair_close_pos], s[i + pair_close_pos + 1 :] pair = [*map(int, pair.split(","))] before_pair = self.add_exploded_pair(before_pair, pair, 0) after_pair = self.add_exploded_pair(after_pair, pair, 1) return before_pair + "0" + after_pair else: depth += [1, -1]["[]".index(v)] if v in "[]" else 0 # split large_regulars = [i for i in re.findall(r"\d+", s) if int(i) > 9] if len(large_regulars): reg = large_regulars[0] reg_pos = s.index(reg) before_reg, after_reg = s[:reg_pos], s[reg_pos + len(reg) :] reg = int(reg) elem_left = reg // 2 elem_right = reg - elem_left s = before_reg + f"[{elem_left},{elem_right}]" + after_reg return s def add_exploded_pair(self, line, pair, pair_index): all_regulars = re.findall(r"\d+", line) if len(all_regulars): reg = all_regulars[pair_index - 1] reg_pos = [line.rindex, line.index][pair_index](reg) line = line[:reg_pos] + str(int(reg) + pair[pair_index]) + line[reg_pos + len(reg) :] return line def calc_magnitude(self, s: str): while s.count("["): pairs = re.findall(r"\[(\d+),(\d+)\]", s) for a, b in pairs: s = s.replace(f"[{a},{b}]", str(int(a) * 3 + int(b) * 2)) return int(s) def part2(self, data): return max(max(self.part1(i), self.part1(i[::-1])) for i in combinations(data, 2))
[ "itertools.combinations", "re.findall" ]
[((2333, 2357), 're.findall', 're.findall', (['"""\\\\d+"""', 'line'], {}), "('\\\\d+', line)\n", (2343, 2357), False, 'import re\n'), ((2705, 2741), 're.findall', 're.findall', (['"""\\\\[(\\\\d+),(\\\\d+)\\\\]"""', 's'], {}), "('\\\\[(\\\\d+),(\\\\d+)\\\\]', s)\n", (2715, 2741), False, 'import re\n'), ((1848, 1869), 're.findall', 're.findall', (['"""\\\\d+"""', 's'], {}), "('\\\\d+', s)\n", (1858, 1869), False, 'import re\n'), ((2962, 2983), 'itertools.combinations', 'combinations', (['data', '(2)'], {}), '(data, 2)\n', (2974, 2983), False, 'from itertools import combinations\n')]
import unittest import mock import requests import httpretty import settings from bitfinex.client import Client, TradeClient API_KEY = settings.API_KEY API_SECRET = settings.API_SECRET class BitfinexTest(unittest.TestCase): def setUp(self): self.client = Client() def test_should_have_server(self): self.assertEqual("https://api.bitfinex.com/v1", self.client.server()) def test_should_have_url_for_foo(self): expected = "https://api.bitfinex.com/v1/foo" self.assertEqual(expected, self.client.url_for("foo")) def test_should_have_url_for_path_arg(self): expected = "https://api.bitfinex.com/v1/foo/bar" actual = self.client.url_for('foo/%s', path_arg="bar") self.assertEqual(expected, actual) def test_should_have_url_with_parameters(self): expected = "https://api.bitfinex.com/v1/foo?a=1&b=2" actual = self.client.url_for('foo', parameters={'a': 1, 'b': 2}) self.assertEqual(expected, actual) def test_should_have_url_for(self): expected = self.client.url_for("foo") self.assertEqual("https://api.bitfinex.com/v1/foo", expected) def test_should_have_url_for_with_path_arg(self): expected = "https://api.bitfinex.com/v1/foo/bar" path = "foo/%s" self.assertEqual(expected, self.client.url_for(path, path_arg='bar')) self.assertEqual(expected, self.client.url_for(path, 'bar')) def test_should_have_url_for_with_parameters(self): expected = "https://api.bitfinex.com/v1/foo?a=1" self.assertEqual(expected, self.client.url_for("foo", parameters={'a': 1})) self.assertEqual(expected, self.client.url_for("foo", None, {'a': 1})) def test_should_have_url_for_with_path_arg_and_parameters(self): expected = "https://api.bitfinex.com/v1/foo/bar?a=1" path = "foo/%s" self.assertEqual(expected, self.client.url_for(path, path_arg='bar', parameters={'a': 1})) self.assertEqual(expected, self.client.url_for(path, 'bar', {'a': 1})) @httpretty.activate def test_should_have_symbols(self): # mock out the request mock_body = '["btcusd","ltcusd","ltcbtc"]' url = self.client.url_for('symbols') httpretty.register_uri(httpretty.GET, url, body=mock_body, status=200) expected = ["btcusd","ltcusd","ltcbtc"] self.assertEqual(expected, self.client.symbols()) @httpretty.activate def test_should_have_ticker(self): # mock out the request mock_body = '{"mid":"562.56495","bid":"562.15","ask":"562.9799","last_price":"562.25","timestamp":"1395552658.339936691"}' url = self.client.url_for('ticker/%s', path_arg='btcusd') httpretty.register_uri(httpretty.GET, url, body=mock_body, status=200) expected = { "mid": 562.56495, "bid": 562.15, "ask": 562.9799, "last_price": 562.25, "timestamp": 1395552658.339936691 } self.assertEqual(expected, self.client.ticker('btcusd')) @httpretty.activate def test_should_have_today(self): # mock out the request mock_body = '{"low":"550.09","high":"572.2398","volume":"7305.33119836"}' url = self.client.url_for('today/%s', path_arg='btcusd') httpretty.register_uri(httpretty.GET, url, body=mock_body, status=200) expected = { "low": 550.09, "high": 572.2398, "volume": 7305.33119836 } self.assertEqual(expected, self.client.today('btcusd')) @httpretty.activate def test_should_have_stats(self): # mock out the request mock_body = '[{"period":1,"volume":"7410.27250155"},{"period":7,"volume":"52251.37118006"},{"period":30,"volume":"464505.07753251"}]' url = self.client.url_for('stats/%s', path_arg='btcusd') httpretty.register_uri(httpretty.GET, url, body=mock_body, status=200) expected = [ {"period": 1, "volume": 7410.27250155}, {"period": 7, "volume": 52251.37118006}, {"period": 30,"volume": 464505.07753251} ] self.assertEqual(expected, self.client.stats('btcusd')) @httpretty.activate def test_should_have_lendbook(self): # mock out the request mock_body = '{"bids":[{"rate":"5.475","amount":"15.03894663","period":30,"timestamp":"1395112149.0","frr":"No"},{"rate":"2.409","amount":"14.5121868","period":7,"timestamp":"1395497599.0","frr":"No"}],"asks":[{"rate":"6.351","amount":"15.5180735","period":5,"timestamp":"1395549996.0","frr":"No"},{"rate":"6.3588","amount":"626.94808249","period":30,"timestamp":"1395400654.0","frr":"Yes"}]}' url = self.client.url_for('lendbook/%s', 'btc') httpretty.register_uri(httpretty.GET, url, body=mock_body, status=200) expected = { "bids": [ {"rate": 5.475, "amount": 15.03894663, "period": 30, "timestamp": 1395112149.0, "frr": False}, {"rate": 2.409, "amount": 14.5121868, "period": 7, "timestamp": 1395497599.0, "frr": False} ], "asks": [ {"rate": 6.351, "amount": 15.5180735, "period": 5, "timestamp": 1395549996.0, "frr": False}, {"rate": 6.3588, "amount": 626.94808249, "period": 30, "timestamp": 1395400654.0, "frr": True} ] } self.assertEqual(expected, self.client.lendbook('btc')) @httpretty.activate def test_should_have_lendbook_with_parameters(self): # mock out the request mock_body = '{"bids":[{"rate":"5.475","amount":"15.03894663","period":30,"timestamp":"1395112149.0","frr":"No"},{"rate":"2.409","amount":"14.5121868","period":7,"timestamp":"1395497599.0","frr":"No"}],"asks":[]}' parameters = {'limit_bids': 2, 'limit_asks': 0} url = self.client.url_for('lendbook/%s', 'btc', parameters) httpretty.register_uri(httpretty.GET, url, body=mock_body, status=200) expected = { "bids": [ {"rate": 5.475, "amount": 15.03894663, "period": 30, "timestamp": 1395112149.0, "frr": False}, {"rate": 2.409, "amount": 14.5121868, "period": 7, "timestamp": 1395497599.0, "frr": False} ], "asks": [ ] } self.assertEqual(expected, self.client.lendbook('btc', parameters)) @httpretty.activate def test_should_have_order_book(self): # mock out the request mock_body = '{"bids":[{"price":"562.2601","amount":"0.985","timestamp":"1395567556.0"}],"asks":[{"price":"563.001","amount":"0.3","timestamp":"1395532200.0"}]}' url = self.client.url_for('book/%s', 'btcusd') httpretty.register_uri(httpretty.GET, url, body=mock_body, status=200) expected = { "bids": [ {"price": 562.2601, "amount": 0.985, "timestamp": 1395567556.0} ], "asks": [ {"price": 563.001, "amount": 0.3, "timestamp": 1395532200.0} ] } self.assertEqual(expected, self.client.order_book('btcusd')) @httpretty.activate def test_should_have_order_book_with_parameters(self): # mock out the request mock_body = '{"bids":[{"price":"562.2601","amount":"0.985","timestamp":"1395567556.0"}],"asks":[]}' parameters = {'limit_asks': 0} url = self.client.url_for('book/%s', 'btcusd', parameters) httpretty.register_uri(httpretty.GET, url, body=mock_body, status=200) expected = { "bids": [ {"price": 562.2601, "amount": 0.985, "timestamp": 1395567556.0} ], "asks": [] } self.assertEqual(expected, self.client.order_book('btcusd', parameters)) class TestTradeClient(unittest.TestCase): def setUp(self): self.tc = TradeClient(API_KEY, API_SECRET) def test_instantiate_tradeclient(self): self.assertIsInstance(self.tc, TradeClient) def test_get_active_orders_returns_json(self): ao = self.tc.active_orders() self.assertIsInstance(ao, list) def test_get_active_positions_returns_json(self): ap = self.tc.active_positions() self.assertIsInstance(ap, list) def test_get_full_history(self): ap = self.tc.active_positions() self.assertIsInstance(ap, list)
[ "bitfinex.client.TradeClient", "bitfinex.client.Client", "httpretty.register_uri" ]
[((271, 279), 'bitfinex.client.Client', 'Client', ([], {}), '()\n', (277, 279), False, 'from bitfinex.client import Client, TradeClient\n'), ((2261, 2331), 'httpretty.register_uri', 'httpretty.register_uri', (['httpretty.GET', 'url'], {'body': 'mock_body', 'status': '(200)'}), '(httpretty.GET, url, body=mock_body, status=200)\n', (2283, 2331), False, 'import httpretty\n'), ((2740, 2810), 'httpretty.register_uri', 'httpretty.register_uri', (['httpretty.GET', 'url'], {'body': 'mock_body', 'status': '(200)'}), '(httpretty.GET, url, body=mock_body, status=200)\n', (2762, 2810), False, 'import httpretty\n'), ((3325, 3395), 'httpretty.register_uri', 'httpretty.register_uri', (['httpretty.GET', 'url'], {'body': 'mock_body', 'status': '(200)'}), '(httpretty.GET, url, body=mock_body, status=200)\n', (3347, 3395), False, 'import httpretty\n'), ((3896, 3966), 'httpretty.register_uri', 'httpretty.register_uri', (['httpretty.GET', 'url'], {'body': 'mock_body', 'status': '(200)'}), '(httpretty.GET, url, body=mock_body, status=200)\n', (3918, 3966), False, 'import httpretty\n'), ((4785, 4855), 'httpretty.register_uri', 'httpretty.register_uri', (['httpretty.GET', 'url'], {'body': 'mock_body', 'status': '(200)'}), '(httpretty.GET, url, body=mock_body, status=200)\n', (4807, 4855), False, 'import httpretty\n'), ((5932, 6002), 'httpretty.register_uri', 'httpretty.register_uri', (['httpretty.GET', 'url'], {'body': 'mock_body', 'status': '(200)'}), '(httpretty.GET, url, body=mock_body, status=200)\n', (5954, 6002), False, 'import httpretty\n'), ((6736, 6806), 'httpretty.register_uri', 'httpretty.register_uri', (['httpretty.GET', 'url'], {'body': 'mock_body', 'status': '(200)'}), '(httpretty.GET, url, body=mock_body, status=200)\n', (6758, 6806), False, 'import httpretty\n'), ((7477, 7547), 'httpretty.register_uri', 'httpretty.register_uri', (['httpretty.GET', 'url'], {'body': 'mock_body', 'status': '(200)'}), '(httpretty.GET, url, body=mock_body, status=200)\n', (7499, 7547), False, 'import httpretty\n'), ((7885, 7917), 'bitfinex.client.TradeClient', 'TradeClient', (['API_KEY', 'API_SECRET'], {}), '(API_KEY, API_SECRET)\n', (7896, 7917), False, 'from bitfinex.client import Client, TradeClient\n')]
#!/usr/bin/env python # encoding=utf-8 from inspect import getblock import json import os from os import read from numpy.core.fromnumeric import mean import numpy as np import paddlehub as hub import six import math import random import sys from util import read_file from config import Config # 配置文件 conf = Config() class Vocabulary(object): def __init__(self, meta_file, max_len, allow_unk=0, unk="$UNK$", pad="$PAD$",): self.voc2id = {} self.id2voc = {} self.unk = unk self.pad = pad self.max_len = max_len self.allow_unk = allow_unk with open(meta_file, encoding='utf-8') as f: for i, line in enumerate(f): line = convert_to_unicode(line.strip("\n")) self.voc2id[line] = i self.id2voc[i] = line self.size = len(self.voc2id) self.oov_num = self.size + 1 def fit(self, words_list): """ :param words_list: [[w11, w12, ...], [w21, w22, ...], ...] :return: """ word_lst = [] word_lst_append = word_lst.append for words in words_list: if not isinstance(words, list): print(words) continue for word in words: word = convert_to_unicode(word) word_lst_append(word) word_counts = Counter(word_lst) if self.max_num_word < 0: self.max_num_word = len(word_counts) sorted_voc = [w for w, c in word_counts.most_common(self.max_num_word)] self.max_num_word = len(sorted_voc) self.oov_index = self.max_num_word + 1 self.voc2id = dict(zip(sorted_voc, range(1, self.max_num_word + 1))) return self def _transform2id(self, word): word = convert_to_unicode(word) if word in self.voc2id: return self.voc2id[word] elif self.allow_unk: return self.voc2id[self.unk] else: print(word) raise ValueError("word:{} Not in voc2id, please check".format(word)) def _transform_seq2id(self, words, padding=0): out_ids = [] words = convert_to_unicode(words) if self.max_len: words = words[:self.max_len] for w in words: out_ids.append(self._transform2id(w)) if padding and self.max_len: while len(out_ids) < self.max_len: out_ids.append(0) return out_ids def _transform_intent2ont_hot(self, words, padding=0): # 将多标签意图转为 one_hot out_ids = np.zeros(self.size, dtype=np.float32) words = convert_to_unicode(words) for w in words: out_ids[self._transform2id(w)] = 1.0 return out_ids def _transform_seq2bert_id(self, words, padding=0): out_ids, seq_len = [], 0 words = convert_to_unicode(words) if self.max_len: words = words[:self.max_len] seq_len = len(words) # 插入 [CLS], [SEP] out_ids.append(self._transform2id("[CLS]")) for w in words: out_ids.append(self._transform2id(w)) mask_ids = [1 for _ in out_ids] if padding and self.max_len: while len(out_ids) < self.max_len + 1: out_ids.append(0) mask_ids.append(0) seg_ids = [0 for _ in out_ids] return out_ids, mask_ids, seg_ids, seq_len @staticmethod def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def _transform_2seq2bert_id(self, seq1, seq2, padding=0): out_ids, seg_ids, seq_len = [], [1], 0 seq1 = [x for x in convert_to_unicode(seq1)] seq2 = [x for x in convert_to_unicode(seq2)] # 截断 self._truncate_seq_pair(seq1, seq2, self.max_len - 2) # 插入 [CLS], [SEP] out_ids.append(self._transform2id("[CLS]")) for w in seq1: out_ids.append(self._transform2id(w)) seg_ids.append(0) out_ids.append(self._transform2id("[SEP]")) seg_ids.append(0) for w in seq2: out_ids.append(self._transform2id(w)) seg_ids.append(1) mask_ids = [1 for _ in out_ids] if padding and self.max_len: while len(out_ids) < self.max_len + 1: out_ids.append(0) mask_ids.append(0) seg_ids.append(0) return out_ids, mask_ids, seg_ids, seq_len def transform(self, seq_list, is_bert=0): if is_bert: return [self._transform_seq2bert_id(seq) for seq in seq_list] else: return [self._transform_seq2id(seq) for seq in seq_list] def __len__(self): return len(self.voc2id) def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def gen_word_set(file_path, out_path='./data/words.txt'): word_set = set() with open(file_path, encoding='utf-8') as f: for line in f.readlines(): spline = line.strip().split('\t') if len(spline) < 4: continue prefix, query_pred, title, tag, label = spline if label == '0': continue cur_arr = [prefix, title] query_pred = json.loads(query_pred) for w in prefix: word_set.add(w) for each in query_pred: for w in each: word_set.add(w) with open(word_set, 'w', encoding='utf-8') as o: for w in word_set: o.write(w + '\n') pass def convert_word2id(query, vocab_map): ids = [] for w in query: if w in vocab_map: ids.append(vocab_map[w]) else: ids.append(vocab_map[conf.unk]) while len(ids) < conf.max_seq_len: ids.append(vocab_map[conf.pad]) return ids[:conf.max_seq_len] def convert_seq2bow(query, vocab_map): bow_ids = np.zeros(conf.nwords) for w in query: if w in vocab_map: bow_ids[vocab_map[w]] += 1 else: bow_ids[vocab_map[conf.unk]] += 1 return bow_ids def get_data(file_path): """ gen datasets, convert word into word ids. :param file_path: :return: [[query, pos sample, 4 neg sample]], shape = [n, 6] """ data_map = {'query': [], 'query_len': [], 'doc_pos': [], 'doc_pos_len': [], 'doc_neg': [], 'doc_neg_len': []} with open(file_path, encoding='utf8') as f: for line in f.readlines(): spline = line.strip().split('\t') if len(spline) < 4: continue prefix, query_pred, title, tag, label = spline if label == '0': continue cur_arr, cur_len = [], [] query_pred = json.loads(query_pred) # only 4 negative sample for each in query_pred: if each == title: continue cur_arr.append(convert_word2id(each, conf.vocab_map)) each_len = len(each) if len(each) < conf.max_seq_len else conf.max_seq_len cur_len.append(each_len) if len(cur_arr) >= 4: data_map['query'].append(convert_word2id(prefix, conf.vocab_map)) data_map['query_len'].append(len(prefix) if len(prefix) < conf.max_seq_len else conf.max_seq_len) data_map['doc_pos'].append(convert_word2id(title, conf.vocab_map)) data_map['doc_pos_len'].append(len(title) if len(title) < conf.max_seq_len else conf.max_seq_len) data_map['doc_neg'].extend(cur_arr[:4]) data_map['doc_neg_len'].extend(cur_len[:4]) pass return data_map def get_data_siamese_rnn(file_path): """ gen datasets, convert word into word ids. :param file_path: :return: [[query, pos sample, 4 neg sample]], shape = [n, 6] """ data_arr = [] with open(file_path, encoding='utf8') as f: for line in f.readlines(): spline = line.strip().split('\t') if len(spline) < 4: continue prefix, _, title, tag, label = spline prefix_seq = convert_word2id(prefix, conf.vocab_map) title_seq = convert_word2id(title, conf.vocab_map) data_arr.append([prefix_seq, title_seq, int(label)]) return data_arr def get_data_bow(file_path): """ gen datasets, convert word into word ids. :param file_path: :return: [[query, prefix, label]], shape = [n, 3] """ data_arr = [] with open(file_path, encoding='utf8') as f: for line in f.readlines(): spline = line.strip().split('\t') if len(spline) < 4: continue prefix, _, title, tag, label = spline prefix_ids = convert_seq2bow(prefix, conf.vocab_map) title_ids = convert_seq2bow(title, conf.vocab_map) data_arr.append([prefix_ids, title_ids, int(label)]) return data_arr def trans_lcqmc(dataset): """ 最大长度 """ out_arr, text_len = [], [] for each in dataset: t1, t2, label = each.text_a, each.text_b, int(each.label) t1_ids = convert_word2id(t1, conf.vocab_map) t1_len = conf.max_seq_len if len(t1) > conf.max_seq_len else len(t1) t2_ids = convert_word2id(t2, conf.vocab_map) t2_len = conf.max_seq_len if len(t2) > conf.max_seq_len else len(t2) # t2_len = len(t2) out_arr.append([t1_ids, t1_len, t2_ids, t2_len, label]) # out_arr.append([t1_ids, t1_len, t2_ids, t2_len, label, t1, t2]) text_len.extend([len(t1), len(t2)]) pass print("max len", max(text_len), "avg len", mean(text_len), "cover rate:", np.mean([x <= conf.max_seq_len for x in text_len])) return out_arr def get_lcqmc(): """ 使用LCQMC数据集,并将其转为word_id """ dataset = hub.dataset.LCQMC() train_set = trans_lcqmc(dataset.train_examples) dev_set = trans_lcqmc(dataset.dev_examples) test_set = trans_lcqmc(dataset.test_examples) return train_set, dev_set, test_set # return test_set, test_set, test_set def trans_lcqmc_bert(dataset:list, vocab:Vocabulary, is_merge=0): """ 最大长度 """ out_arr, text_len = [], [] for each in dataset: t1, t2, label = each.text_a, each.text_b, int(each.label) if is_merge: out_ids1, mask_ids1, seg_ids1, seq_len1 = vocab._transform_2seq2bert_id(t1, t2, padding=1) out_arr.append([out_ids1, mask_ids1, seg_ids1, seq_len1, label]) text_len.extend([len(t1) + len(t2)]) else: out_ids1, mask_ids1, seg_ids1, seq_len1 = vocab._transform_seq2bert_id(t1, padding=1) out_ids2, mask_ids2, seg_ids2, seq_len2 = vocab._transform_seq2bert_id(t2, padding=1) out_arr.append([out_ids1, mask_ids1, seg_ids1, seq_len1, out_ids2, mask_ids2, seg_ids2, seq_len2, label]) text_len.extend([len(t1), len(t2)]) pass print("max len", max(text_len), "avg len", mean(text_len), "cover rate:", np.mean([x <= conf.max_seq_len for x in text_len])) return out_arr def get_lcqmc_bert(vocab:Vocabulary, is_merge=0): """ 使用LCQMC数据集,并将每个query其转为word_id, """ dataset = hub.dataset.LCQMC() train_set = trans_lcqmc_bert(dataset.train_examples, vocab, is_merge) dev_set = trans_lcqmc_bert(dataset.dev_examples, vocab, is_merge) test_set = trans_lcqmc_bert(dataset.test_examples, vocab, is_merge) return train_set, dev_set, test_set # test_set = test_set[:100] # return test_set, test_set, test_set def get_test(file_:str, vocab:Vocabulary): test_arr = read_file(file_, '\t') # [[q1, q2],...] out_arr = [] for line in test_arr: if len(line) != 2: print('wrong line size=', len(line)) t1, t2 = line # [t1_ids, t1_len, t2_ids, t2_len, label] t1_ids = vocab._transform_seq2id(t1, padding=1) t1_len = vocab.max_len if len(t1) > vocab.max_len else len(t1) t2_ids = vocab._transform_seq2id(t2, padding=1) t2_len = vocab.max_len if len(t2) > vocab.max_len else len(t2) out_arr.append([t1_ids, t1_len, t2_ids, t2_len]) return out_arr, test_arr def get_test_bert(file_:str, vocab:Vocabulary, is_merge=0): test_arr = read_file(file_, '\t') # [[q1, q2],...] out_arr, _ = get_test_bert_by_arr(test_arr, vocab, is_merge) return out_arr, test_arr def get_test_bert_by_arr(test_arr:list, vocab:Vocabulary, is_merge=0): # test_arr # [[q1, q2],...] out_arr = [] for line in test_arr: if len(line) != 2: print('wrong line size=', len(line)) t1, t2 = line # [t1_ids, t1_len, t2_ids, t2_len, label] if is_merge: out_ids1, mask_ids1, seg_ids1, seq_len1 = vocab._transform_2seq2bert_id(t1, t2, padding=1) out_arr.append([out_ids1, mask_ids1, seg_ids1, seq_len1]) else: out_ids1, mask_ids1, seg_ids1, seq_len1 = vocab._transform_seq2bert_id(t1, padding=1) out_ids2, mask_ids2, seg_ids2, seq_len2 = vocab._transform_seq2bert_id(t2, padding=1) out_arr.append([out_ids1, mask_ids1, seg_ids1, seq_len1, out_ids2, mask_ids2, seg_ids2, seq_len2]) return out_arr, test_arr def get_test_bert_single(file_:str, vocab:Vocabulary, is_merge=0): test_arr = read_file(file_) # [q1,...] out_arr = [] for line in test_arr: t1 = line # [t1_ids, t1_len, t2_ids, t2_len, label] out_ids1, mask_ids1, seg_ids1, seq_len1 = vocab._transform_seq2bert_id(t1, padding=1) out_arr.append([out_ids1, mask_ids1, seg_ids1, seq_len1]) return out_arr, test_arr def get_batch(dataset, batch_size=None, is_test=0): # tf Dataset太难用,不如自己实现 # https://stackoverflow.com/questions/50539342/getting-batches-in-tensorflow # dataset:每个元素是一个特征,[[x1, x2, x3,...], ...], 如果是测试集,可能就没有标签 if not batch_size: batch_size = 32 if not is_test: random.shuffle(dataset) steps = int(math.ceil(float(len(dataset)) / batch_size)) for i in range(steps): idx = i * batch_size cur_set = dataset[idx: idx + batch_size] cur_set = zip(*cur_set) yield cur_set if __name__ == '__main__': # prefix, query_prediction, title, tag, label # query_prediction 为json格式。 file_train = './data/oppo_round1_train_20180929.txt' file_vali = './data/oppo_round1_vali_20180929.txt' # data_train = get_data(file_train) # data_train = get_data(file_vali) # print(len(data_train['query']), len(data_train['doc_pos']), len(data_train['doc_neg'])) dataset = get_lcqmc() print(dataset[1][:3]) for each in get_batch(dataset[1][:3], batch_size=2): t1_ids, t1_len, t2_ids, t2_len, label = each print(each) pass
[ "numpy.mean", "json.loads", "random.shuffle", "util.read_file", "config.Config", "numpy.zeros", "numpy.core.fromnumeric.mean", "paddlehub.dataset.LCQMC" ]
[((308, 316), 'config.Config', 'Config', ([], {}), '()\n', (314, 316), False, 'from config import Config\n'), ((6858, 6879), 'numpy.zeros', 'np.zeros', (['conf.nwords'], {}), '(conf.nwords)\n', (6866, 6879), True, 'import numpy as np\n'), ((10812, 10831), 'paddlehub.dataset.LCQMC', 'hub.dataset.LCQMC', ([], {}), '()\n', (10829, 10831), True, 'import paddlehub as hub\n'), ((12184, 12203), 'paddlehub.dataset.LCQMC', 'hub.dataset.LCQMC', ([], {}), '()\n', (12201, 12203), True, 'import paddlehub as hub\n'), ((12593, 12615), 'util.read_file', 'read_file', (['file_', '"""\t"""'], {}), "(file_, '\\t')\n", (12602, 12615), False, 'from util import read_file\n'), ((13234, 13256), 'util.read_file', 'read_file', (['file_', '"""\t"""'], {}), "(file_, '\\t')\n", (13243, 13256), False, 'from util import read_file\n'), ((14284, 14300), 'util.read_file', 'read_file', (['file_'], {}), '(file_)\n', (14293, 14300), False, 'from util import read_file\n'), ((2577, 2614), 'numpy.zeros', 'np.zeros', (['self.size'], {'dtype': 'np.float32'}), '(self.size, dtype=np.float32)\n', (2585, 2614), True, 'import numpy as np\n'), ((10634, 10648), 'numpy.core.fromnumeric.mean', 'mean', (['text_len'], {}), '(text_len)\n', (10638, 10648), False, 'from numpy.core.fromnumeric import mean\n'), ((10665, 10717), 'numpy.mean', 'np.mean', (['[(x <= conf.max_seq_len) for x in text_len]'], {}), '([(x <= conf.max_seq_len) for x in text_len])\n', (10672, 10717), True, 'import numpy as np\n'), ((11965, 11979), 'numpy.core.fromnumeric.mean', 'mean', (['text_len'], {}), '(text_len)\n', (11969, 11979), False, 'from numpy.core.fromnumeric import mean\n'), ((11996, 12048), 'numpy.mean', 'np.mean', (['[(x <= conf.max_seq_len) for x in text_len]'], {}), '([(x <= conf.max_seq_len) for x in text_len])\n', (12003, 12048), True, 'import numpy as np\n'), ((14906, 14929), 'random.shuffle', 'random.shuffle', (['dataset'], {}), '(dataset)\n', (14920, 14929), False, 'import random\n'), ((6189, 6211), 'json.loads', 'json.loads', (['query_pred'], {}), '(query_pred)\n', (6199, 6211), False, 'import json\n'), ((7697, 7719), 'json.loads', 'json.loads', (['query_pred'], {}), '(query_pred)\n', (7707, 7719), False, 'import json\n')]
import numpy as np import numpy.linalg as la from MdlUtilities import Field, FieldList import MdlUtilities as mdl def get_osaCasing_fields(): OD = Field(2030) ID = Field(2031) Weight = Field(2032) Density = Field(2039) E = Field(2040) osaCasing_fields = FieldList() osaCasing_fields.append( OD ) osaCasing_fields.append( ID ) osaCasing_fields.append( Weight ) osaCasing_fields.append( Density ) osaCasing_fields.append( E ) return osaCasing_fields def get_osaCent_fields(): Type = Field(2049) IPOD = Field(2009) CentOD = Field(2011) #CentID = Field(2012) ResF_SO67 = Field(2018) minResF = Field(2017) SO_minResF = Field(2019) ResF_SO67.set_representation('Res. Force @ SO=67%') minResF.set_representation('minimum Res. Force') SO_minResF.set_representation('StandOff @ min. Res. F.') osaCent_fields = FieldList() osaCent_fields.append( Type ) osaCent_fields.append( IPOD ) osaCent_fields.append( CentOD ) #osaCent_fields.append( CentID ) osaCent_fields.append( ResF_SO67 ) osaCent_fields.append( minResF ) osaCent_fields.append( SO_minResF ) return osaCent_fields def get_osaWellbore_fields(): HoleID = Field(2010) MaxSpan = Field(2061) MudIPDensity = Field(2077) MudOPDensity = Field(2077) HoleID.set_representation('Hole ID') HoleID.set_abbreviation('HoleID') MaxSpan.set_representation('Max span') MaxSpan.set_abbreviation('MaxSpan') MudIPDensity.set_representation('Mud inside pipe') MudIPDensity.set_abbreviation('MudIPDensity') MudOPDensity.set_representation('Mud in annulus') MudOPDensity.set_abbreviation('MudOPDensity') osaWellbore_fields = FieldList() osaWellbore_fields.append( HoleID ) osaWellbore_fields.append( MaxSpan ) osaWellbore_fields.append( MudIPDensity ) osaWellbore_fields.append( MudOPDensity ) return osaWellbore_fields def get_osaOutputdata1_fields(): clearanceA = Field(2073, altBg=True, altFg=True) clearanceB = Field(2073, altBg=True, altFg=True) clearanceM = Field(2073, altBg=True, altFg=True) sideForceA = Field(2074, altBg=True, altFg=True) sideForceB = Field(2074, altBg=True, altFg=True) sideForceM = Field(2074, altBg=True, altFg=True) standoffA = Field(2078, altBg=True, altFg=True) standoffB = Field(2078, altBg=True, altFg=True) standoffM = Field(2078, altBg=True, altFg=True) clearanceA.set_representation('Annular clearance @ cent. A') clearanceA.set_abbreviation('ClearanceA') clearanceB.set_representation('Annular clearance @ cent. B') clearanceB.set_abbreviation('ClearanceB') clearanceM.set_representation('Annular clearance @ mid span') clearanceM.set_abbreviation('ClearanceM') sideForceA.set_representation('Side force @ cent. A') sideForceA.set_abbreviation('SideForceA') sideForceB.set_representation('Side force @ cent. B') sideForceB.set_abbreviation('SideForceB') sideForceM.set_representation('Side force @ mid span') sideForceM.set_abbreviation('SideForceM') standoffA.set_representation('Standoff @ cent. A') standoffA.set_abbreviation('StandoffA') standoffB.set_representation('Standoff @ cent. B') standoffB.set_abbreviation('StandoffB') standoffM.set_representation('Standoff @ mid span') standoffM.set_abbreviation('StandoffM') osaOutputdata1_fields = FieldList() osaOutputdata1_fields.append( clearanceA ) osaOutputdata1_fields.append( clearanceB ) osaOutputdata1_fields.append( clearanceM ) osaOutputdata1_fields.append( sideForceA ) osaOutputdata1_fields.append( sideForceB ) osaOutputdata1_fields.append( sideForceM ) osaOutputdata1_fields.append( standoffA ) osaOutputdata1_fields.append( standoffB ) osaOutputdata1_fields.append( standoffM ) return osaOutputdata1_fields def get_osaOutputdata2_fields(): axialForce = Field(2075, altBg=True, altFg=True) deflection = Field(2076, altBg=True, altFg=True) wClearance = Field(2073, altBg=True, altFg=True) wStandoff = Field(2078, altBg=True, altFg=True) axialForce.set_representation('Axial extra force @ top') axialForce.set_abbreviation('AxialForce') deflection.set_representation('Max. pipe deflection') deflection.set_abbreviation('MaxDeflection') wClearance.set_representation('Mean wellbore clearance') wClearance.set_abbreviation('WellboreClearance') wStandoff.set_representation('Mean wellbore standoff') wStandoff.set_abbreviation('WellboreStandoff') osaOutputdata2_fields = FieldList() osaOutputdata2_fields.append( axialForce ) osaOutputdata2_fields.append( deflection ) osaOutputdata2_fields.append( wClearance ) osaOutputdata2_fields.append( wStandoff ) return osaOutputdata2_fields def get_casingDeflectionCurve(self): # Equation(s) Reference 1: # <NAME>, <NAME>. Casing Deflection and Centralizer Spacing Calculations. # SPE Drilling Engineering (December 1992). # Equation(s) Reference 2: # <NAME>, <NAME>. Discussion of Optimal Spacing for Casing Centralizers. # SPE Drilling Engineering (December 1988). # Equation(s) Reference 3: # <NAME>, <NAME>. Optimizing of Centralizer Distribution. # SPE Latin American Petroleum Engineering Conference (October 1990). self.osaCasing_fields.referenceUnitConvert_fields() self.osaCentA_fields.referenceUnitConvert_fields() self.osaCentB_fields.referenceUnitConvert_fields() self.osaWellbore_fields.referenceUnitConvert_fields() Rot = lambda φ: np.array( [[np.cos(φ),-np.sin(φ)],[np.sin(φ),np.cos(φ)]] ) dH = self.osaWellbore_fields.HoleID[0] L = self.osaWellbore_fields.MaxSpan[0]*self.osaSpacing_slider.sliderPosition()/100 ρe = self.osaWellbore_fields.MudOPDensity[0] ρi = self.osaWellbore_fields.MudIPDensity[0] ρs = self.osaCasing_fields.Density[0] E = self.osaCasing_fields.E[0] w = self.osaCasing_fields.PW[0] D = self.osaCasing_fields.OD[0] d = self.osaCasing_fields.ID[0] Type_A = self.osaCentA_fields.Type[0] F_So67_A = self.osaCentA_fields.ResF_SO67[0] minF_A = self.osaCentA_fields.minResF[0] So_minF_A = self.osaCentA_fields.SO_minResF[0] DA = self.osaCentA_fields.COD[0] dA = self.osaCentA_fields.IPOD[0] Type_B = self.osaCentB_fields.Type[0] F_So67_B = self.osaCentB_fields.ResF_SO67[0] minF_B = self.osaCentB_fields.minResF[0] So_minF_B = self.osaCentB_fields.SO_minResF[0] DB = self.osaCentB_fields.COD[0] dB = self.osaCentB_fields.IPOD[0] #kA = ResFA/(DA/2-0.335*(DA-D)) # Con esto se calculan los coeficientes de los resortes ( 0.335=0.67/2 ) #kB = ResFB/(DB/2-0.335*(DB-D)) for field in self.osaWellbore_fields: if field[0]<0: raise mdl.LogicalError('Every parameter should be greater than zero.') for field in self.osaCasing_fields: if field[0]<0: raise mdl.LogicalError('Every parameter should be greater than zero.') for field in self.osaCentA_fields[1:]: if field[0]<0: raise mdl.LogicalError('Every parameter should be greater than zero.') for field in self.osaCentB_fields[1:]: if field[0]<0: raise mdl.LogicalError('Every parameter should be greater than zero.') if dA!=D or dB!=D or dH<=D: raise mdl.LogicalError('The selected devices are not size-consistent.') θ = np.pi*self.osaInclination_slider.sliderPosition()/180 I = np.pi/64*(D**4-d**4) # [Ref.3] Momento de inercia diferente a momento de inercia polar. F = 30000 # [Ref.1] Radio = L*1e6 aspr = L*0.02 buoyancyFactor = mdl.calculate_buoyancyFactor( OD=D, ID=d, ρs=ρs, ρe=ρe, ρi=ρi ) # [Ref.2] w *= buoyancyFactor fC = w*L*np.sin(θ)/2 if Type_A=='Resin': #mdl.isNoneEntry(ResFA): yA = 0 dA = d else: kA = 2*(F_So67_A-minF_A)/(So_minF_A-0.67)/(DA-dA) yA = fC/kA if (DA<dH) else fC/kA/2 if Type_B=='Resin': #mdl.isNoneEntry(ResFB): yB = 0 dB = d else: kB = 2*(F_So67_B-minF_B)/(So_minF_B-0.67)/(DB-dB) yB = fC/kB if (DB<dH) else fC/kB/2 R = D/2 rH = dH/2 rA_min = R+(DA/2-R)*0.1 rB_min = R+(DB/2-R)*0.1 rA = (DA/2-yA) if (DA<dH) else (rH-yA) rB = (DB/2-yB) if (DB<dH) else (rH-yB) rA = rA_min if (rA<=rA_min) else rA rB = rB_min if (rB<=rB_min) else rB α = np.arctan( (rB-rA)/L ) Lα = L/np.cos(α) x = np.linspace( 0, Lα, 101 ) K = np.sqrt(F/E/I) y = (Lα/2/Radio/K + w*Lα*np.sin(θ)/2/K/F)*( (np.cosh(K*x)-1)/np.tanh(K*Lα/2) + K*x - np.sinh(K*x) ) - w*np.sin(θ)/2/F*x**2 # [Ref.1] Rα = Rot(α) xy = np.array([x,y]) x,y = np.dot(Rα,xy) Δy = rH-rB y += Δy cH = rH-R cA = rA-R cB = rB-R indexes = y>cH y[indexes] = cH indexes = y<-cH y[indexes] =-cH cy = cH-y rM = rH-y[50] if y[50]==cH: fM = fC fC = 0 else: fM = 0 cM = rM-R x -= L/2 yoh = y*0 ohc = np.array([x, yoh]) ohp = np.array([x, (yoh+rH)*aspr]) ohm = np.array([x, (yoh-rH)*aspr]) xyc = np.array([x, y*aspr]) xyp = np.array([x, (y+R)*aspr]) xym = np.array([x, (y-R)*aspr]) φ = θ + np.pi/2 Rφ = Rot(φ) OHc = np.dot(Rφ,ohc) OHp = np.dot(Rφ,ohp) OHm = np.dot(Rφ,ohm) XYc = np.dot(Rφ,xyc) XYp = np.dot(Rφ,xyp) XYm = np.dot(Rφ,xym) SA = cA/cH SB = cB/cH SM = cM/cH Sy = cy/cH δ = (cA+cB)/2-cM self.osaOutputdata1_fields.clear_content() self.osaOutputdata2_fields.clear_content() self.osaOutputdata1_fields.ClearanceA.append( mdl.physicalValue( cA, self.osaOutputdata1_fields.ClearanceA.referenceUnit ) ) self.osaOutputdata1_fields.ClearanceB.append( mdl.physicalValue( cB, self.osaOutputdata1_fields.ClearanceB.referenceUnit ) ) self.osaOutputdata1_fields.ClearanceM.append( mdl.physicalValue( cM, self.osaOutputdata1_fields.ClearanceM.referenceUnit ) ) self.osaOutputdata1_fields.SideForceA.append( mdl.physicalValue( fC, self.osaOutputdata1_fields.SideForceA.referenceUnit ) ) self.osaOutputdata1_fields.SideForceB.append( mdl.physicalValue( fC, self.osaOutputdata1_fields.SideForceB.referenceUnit ) ) self.osaOutputdata1_fields.SideForceM.append( mdl.physicalValue( fM, self.osaOutputdata1_fields.SideForceM.referenceUnit ) ) self.osaOutputdata1_fields.StandoffA.append( mdl.physicalValue( SA, self.osaOutputdata1_fields.StandoffA.referenceUnit ) ) self.osaOutputdata1_fields.StandoffB.append( mdl.physicalValue( SB, self.osaOutputdata1_fields.StandoffB.referenceUnit ) ) self.osaOutputdata1_fields.StandoffM.append( mdl.physicalValue( SM, self.osaOutputdata1_fields.StandoffM.referenceUnit ) ) self.osaOutputdata2_fields.AxialForce.append( mdl.physicalValue( w*L*np.cos(θ), self.osaOutputdata2_fields.AxialForce.referenceUnit ) ) self.osaOutputdata2_fields.MaxDeflection.append( mdl.physicalValue( δ, self.osaOutputdata2_fields.MaxDeflection.referenceUnit ) ) self.osaOutputdata2_fields.WellboreClearance.append( mdl.physicalValue( np.mean(cy), self.osaOutputdata2_fields.WellboreClearance.referenceUnit ) ) self.osaOutputdata2_fields.WellboreStandoff.append( mdl.physicalValue( np.mean(Sy), self.osaOutputdata2_fields.WellboreStandoff.referenceUnit ) ) self.osaCasing_fields.inverseReferenceUnitConvert_fields() self.osaCentA_fields.inverseReferenceUnitConvert_fields() self.osaCentB_fields.inverseReferenceUnitConvert_fields() self.osaWellbore_fields.inverseReferenceUnitConvert_fields() self.osaOutputdata1_fields.inverseReferenceUnitConvert_fields() self.osaOutputdata2_fields.inverseReferenceUnitConvert_fields() lim = L/2*1.05 return OHc, OHp, OHm, XYc, XYp, XYm, lim, rA, rB, rM
[ "MdlUtilities.physicalValue", "numpy.mean", "numpy.sqrt", "MdlUtilities.Field", "MdlUtilities.LogicalError", "numpy.tanh", "numpy.sinh", "numpy.array", "numpy.linspace", "numpy.dot", "MdlUtilities.calculate_buoyancyFactor", "numpy.cos", "numpy.cosh", "numpy.sin", "MdlUtilities.FieldList", "numpy.arctan" ]
[((167, 178), 'MdlUtilities.Field', 'Field', (['(2030)'], {}), '(2030)\n', (172, 178), False, 'from MdlUtilities import Field, FieldList\n'), ((191, 202), 'MdlUtilities.Field', 'Field', (['(2031)'], {}), '(2031)\n', (196, 202), False, 'from MdlUtilities import Field, FieldList\n'), ((215, 226), 'MdlUtilities.Field', 'Field', (['(2032)'], {}), '(2032)\n', (220, 226), False, 'from MdlUtilities import Field, FieldList\n'), ((239, 250), 'MdlUtilities.Field', 'Field', (['(2039)'], {}), '(2039)\n', (244, 250), False, 'from MdlUtilities import Field, FieldList\n'), ((263, 274), 'MdlUtilities.Field', 'Field', (['(2040)'], {}), '(2040)\n', (268, 274), False, 'from MdlUtilities import Field, FieldList\n'), ((296, 307), 'MdlUtilities.FieldList', 'FieldList', ([], {}), '()\n', (305, 307), False, 'from MdlUtilities import Field, FieldList\n'), ((573, 584), 'MdlUtilities.Field', 'Field', (['(2049)'], {}), '(2049)\n', (578, 584), False, 'from MdlUtilities import Field, FieldList\n'), ((602, 613), 'MdlUtilities.Field', 'Field', (['(2009)'], {}), '(2009)\n', (607, 613), False, 'from MdlUtilities import Field, FieldList\n'), ((631, 642), 'MdlUtilities.Field', 'Field', (['(2011)'], {}), '(2011)\n', (636, 642), False, 'from MdlUtilities import Field, FieldList\n'), ((690, 701), 'MdlUtilities.Field', 'Field', (['(2018)'], {}), '(2018)\n', (695, 701), False, 'from MdlUtilities import Field, FieldList\n'), ((719, 730), 'MdlUtilities.Field', 'Field', (['(2017)'], {}), '(2017)\n', (724, 730), False, 'from MdlUtilities import Field, FieldList\n'), ((748, 759), 'MdlUtilities.Field', 'Field', (['(2019)'], {}), '(2019)\n', (753, 759), False, 'from MdlUtilities import Field, FieldList\n'), ((943, 954), 'MdlUtilities.FieldList', 'FieldList', ([], {}), '()\n', (952, 954), False, 'from MdlUtilities import Field, FieldList\n'), ((1304, 1315), 'MdlUtilities.Field', 'Field', (['(2010)'], {}), '(2010)\n', (1309, 1315), False, 'from MdlUtilities import Field, FieldList\n'), ((1334, 1345), 'MdlUtilities.Field', 'Field', (['(2061)'], {}), '(2061)\n', (1339, 1345), False, 'from MdlUtilities import Field, FieldList\n'), ((1364, 1375), 'MdlUtilities.Field', 'Field', (['(2077)'], {}), '(2077)\n', (1369, 1375), False, 'from MdlUtilities import Field, FieldList\n'), ((1394, 1405), 'MdlUtilities.Field', 'Field', (['(2077)'], {}), '(2077)\n', (1399, 1405), False, 'from MdlUtilities import Field, FieldList\n'), ((1784, 1795), 'MdlUtilities.FieldList', 'FieldList', ([], {}), '()\n', (1793, 1795), False, 'from MdlUtilities import Field, FieldList\n'), ((2059, 2094), 'MdlUtilities.Field', 'Field', (['(2073)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2073, altBg=True, altFg=True)\n', (2064, 2094), False, 'from MdlUtilities import Field, FieldList\n'), ((2111, 2146), 'MdlUtilities.Field', 'Field', (['(2073)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2073, altBg=True, altFg=True)\n', (2116, 2146), False, 'from MdlUtilities import Field, FieldList\n'), ((2163, 2198), 'MdlUtilities.Field', 'Field', (['(2073)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2073, altBg=True, altFg=True)\n', (2168, 2198), False, 'from MdlUtilities import Field, FieldList\n'), ((2215, 2250), 'MdlUtilities.Field', 'Field', (['(2074)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2074, altBg=True, altFg=True)\n', (2220, 2250), False, 'from MdlUtilities import Field, FieldList\n'), ((2267, 2302), 'MdlUtilities.Field', 'Field', (['(2074)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2074, altBg=True, altFg=True)\n', (2272, 2302), False, 'from MdlUtilities import Field, FieldList\n'), ((2319, 2354), 'MdlUtilities.Field', 'Field', (['(2074)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2074, altBg=True, altFg=True)\n', (2324, 2354), False, 'from MdlUtilities import Field, FieldList\n'), ((2371, 2406), 'MdlUtilities.Field', 'Field', (['(2078)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2078, altBg=True, altFg=True)\n', (2376, 2406), False, 'from MdlUtilities import Field, FieldList\n'), ((2423, 2458), 'MdlUtilities.Field', 'Field', (['(2078)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2078, altBg=True, altFg=True)\n', (2428, 2458), False, 'from MdlUtilities import Field, FieldList\n'), ((2475, 2510), 'MdlUtilities.Field', 'Field', (['(2078)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2078, altBg=True, altFg=True)\n', (2480, 2510), False, 'from MdlUtilities import Field, FieldList\n'), ((3446, 3457), 'MdlUtilities.FieldList', 'FieldList', ([], {}), '()\n', (3455, 3457), False, 'from MdlUtilities import Field, FieldList\n'), ((3953, 3988), 'MdlUtilities.Field', 'Field', (['(2075)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2075, altBg=True, altFg=True)\n', (3958, 3988), False, 'from MdlUtilities import Field, FieldList\n'), ((4005, 4040), 'MdlUtilities.Field', 'Field', (['(2076)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2076, altBg=True, altFg=True)\n', (4010, 4040), False, 'from MdlUtilities import Field, FieldList\n'), ((4057, 4092), 'MdlUtilities.Field', 'Field', (['(2073)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2073, altBg=True, altFg=True)\n', (4062, 4092), False, 'from MdlUtilities import Field, FieldList\n'), ((4109, 4144), 'MdlUtilities.Field', 'Field', (['(2078)'], {'altBg': '(True)', 'altFg': '(True)'}), '(2078, altBg=True, altFg=True)\n', (4114, 4144), False, 'from MdlUtilities import Field, FieldList\n'), ((4593, 4604), 'MdlUtilities.FieldList', 'FieldList', ([], {}), '()\n', (4602, 4604), False, 'from MdlUtilities import Field, FieldList\n'), ((7541, 7602), 'MdlUtilities.calculate_buoyancyFactor', 'mdl.calculate_buoyancyFactor', ([], {'OD': 'D', 'ID': 'd', 'ρs': 'ρs', 'ρe': 'ρe', 'ρi': 'ρi'}), '(OD=D, ID=d, ρs=ρs, ρe=ρe, ρi=ρi)\n', (7569, 7602), True, 'import MdlUtilities as mdl\n'), ((8246, 8270), 'numpy.arctan', 'np.arctan', (['((rB - rA) / L)'], {}), '((rB - rA) / L)\n', (8255, 8270), True, 'import numpy as np\n'), ((8293, 8316), 'numpy.linspace', 'np.linspace', (['(0)', 'Lα', '(101)'], {}), '(0, Lα, 101)\n', (8304, 8316), True, 'import numpy as np\n'), ((8327, 8345), 'numpy.sqrt', 'np.sqrt', (['(F / E / I)'], {}), '(F / E / I)\n', (8334, 8345), True, 'import numpy as np\n'), ((8498, 8514), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (8506, 8514), True, 'import numpy as np\n'), ((8522, 8536), 'numpy.dot', 'np.dot', (['Rα', 'xy'], {}), '(Rα, xy)\n', (8528, 8536), True, 'import numpy as np\n'), ((8801, 8819), 'numpy.array', 'np.array', (['[x, yoh]'], {}), '([x, yoh])\n', (8809, 8819), True, 'import numpy as np\n'), ((8828, 8860), 'numpy.array', 'np.array', (['[x, (yoh + rH) * aspr]'], {}), '([x, (yoh + rH) * aspr])\n', (8836, 8860), True, 'import numpy as np\n'), ((8865, 8897), 'numpy.array', 'np.array', (['[x, (yoh - rH) * aspr]'], {}), '([x, (yoh - rH) * aspr])\n', (8873, 8897), True, 'import numpy as np\n'), ((8904, 8927), 'numpy.array', 'np.array', (['[x, y * aspr]'], {}), '([x, y * aspr])\n', (8912, 8927), True, 'import numpy as np\n'), ((8934, 8963), 'numpy.array', 'np.array', (['[x, (y + R) * aspr]'], {}), '([x, (y + R) * aspr])\n', (8942, 8963), True, 'import numpy as np\n'), ((8968, 8997), 'numpy.array', 'np.array', (['[x, (y - R) * aspr]'], {}), '([x, (y - R) * aspr])\n', (8976, 8997), True, 'import numpy as np\n'), ((9038, 9053), 'numpy.dot', 'np.dot', (['Rφ', 'ohc'], {}), '(Rφ, ohc)\n', (9044, 9053), True, 'import numpy as np\n'), ((9061, 9076), 'numpy.dot', 'np.dot', (['Rφ', 'ohp'], {}), '(Rφ, ohp)\n', (9067, 9076), True, 'import numpy as np\n'), ((9084, 9099), 'numpy.dot', 'np.dot', (['Rφ', 'ohm'], {}), '(Rφ, ohm)\n', (9090, 9099), True, 'import numpy as np\n'), ((9109, 9124), 'numpy.dot', 'np.dot', (['Rφ', 'xyc'], {}), '(Rφ, xyc)\n', (9115, 9124), True, 'import numpy as np\n'), ((9132, 9147), 'numpy.dot', 'np.dot', (['Rφ', 'xyp'], {}), '(Rφ, xyp)\n', (9138, 9147), True, 'import numpy as np\n'), ((9155, 9170), 'numpy.dot', 'np.dot', (['Rφ', 'xym'], {}), '(Rφ, xym)\n', (9161, 9170), True, 'import numpy as np\n'), ((7244, 7309), 'MdlUtilities.LogicalError', 'mdl.LogicalError', (['"""The selected devices are not size-consistent."""'], {}), "('The selected devices are not size-consistent.')\n", (7260, 7309), True, 'import MdlUtilities as mdl\n'), ((8278, 8287), 'numpy.cos', 'np.cos', (['α'], {}), '(α)\n', (8284, 8287), True, 'import numpy as np\n'), ((9386, 9460), 'MdlUtilities.physicalValue', 'mdl.physicalValue', (['cA', 'self.osaOutputdata1_fields.ClearanceA.referenceUnit'], {}), '(cA, self.osaOutputdata1_fields.ClearanceA.referenceUnit)\n', (9403, 9460), True, 'import MdlUtilities as mdl\n'), ((9513, 9587), 'MdlUtilities.physicalValue', 'mdl.physicalValue', (['cB', 'self.osaOutputdata1_fields.ClearanceB.referenceUnit'], {}), '(cB, self.osaOutputdata1_fields.ClearanceB.referenceUnit)\n', (9530, 9587), True, 'import MdlUtilities as mdl\n'), ((9640, 9714), 'MdlUtilities.physicalValue', 'mdl.physicalValue', (['cM', 'self.osaOutputdata1_fields.ClearanceM.referenceUnit'], {}), '(cM, self.osaOutputdata1_fields.ClearanceM.referenceUnit)\n', (9657, 9714), True, 'import MdlUtilities as mdl\n'), ((9769, 9843), 'MdlUtilities.physicalValue', 'mdl.physicalValue', (['fC', 'self.osaOutputdata1_fields.SideForceA.referenceUnit'], {}), '(fC, self.osaOutputdata1_fields.SideForceA.referenceUnit)\n', (9786, 9843), True, 'import MdlUtilities as mdl\n'), ((9896, 9970), 'MdlUtilities.physicalValue', 'mdl.physicalValue', (['fC', 'self.osaOutputdata1_fields.SideForceB.referenceUnit'], {}), '(fC, self.osaOutputdata1_fields.SideForceB.referenceUnit)\n', (9913, 9970), True, 'import MdlUtilities as mdl\n'), ((10023, 10097), 'MdlUtilities.physicalValue', 'mdl.physicalValue', (['fM', 'self.osaOutputdata1_fields.SideForceM.referenceUnit'], {}), '(fM, self.osaOutputdata1_fields.SideForceM.referenceUnit)\n', (10040, 10097), True, 'import MdlUtilities as mdl\n'), ((10151, 10224), 'MdlUtilities.physicalValue', 'mdl.physicalValue', (['SA', 'self.osaOutputdata1_fields.StandoffA.referenceUnit'], {}), '(SA, self.osaOutputdata1_fields.StandoffA.referenceUnit)\n', (10168, 10224), True, 'import MdlUtilities as mdl\n'), ((10276, 10349), 'MdlUtilities.physicalValue', 'mdl.physicalValue', (['SB', 'self.osaOutputdata1_fields.StandoffB.referenceUnit'], {}), '(SB, self.osaOutputdata1_fields.StandoffB.referenceUnit)\n', (10293, 10349), True, 'import MdlUtilities as mdl\n'), ((10401, 10474), 'MdlUtilities.physicalValue', 'mdl.physicalValue', (['SM', 'self.osaOutputdata1_fields.StandoffM.referenceUnit'], {}), '(SM, self.osaOutputdata1_fields.StandoffM.referenceUnit)\n', (10418, 10474), True, 'import MdlUtilities as mdl\n'), ((10670, 10746), 'MdlUtilities.physicalValue', 'mdl.physicalValue', (['δ', 'self.osaOutputdata2_fields.MaxDeflection.referenceUnit'], {}), '(δ, self.osaOutputdata2_fields.MaxDeflection.referenceUnit)\n', (10687, 10746), True, 'import MdlUtilities as mdl\n'), ((6739, 6803), 'MdlUtilities.LogicalError', 'mdl.LogicalError', (['"""Every parameter should be greater than zero."""'], {}), "('Every parameter should be greater than zero.')\n", (6755, 6803), True, 'import MdlUtilities as mdl\n'), ((6870, 6934), 'MdlUtilities.LogicalError', 'mdl.LogicalError', (['"""Every parameter should be greater than zero."""'], {}), "('Every parameter should be greater than zero.')\n", (6886, 6934), True, 'import MdlUtilities as mdl\n'), ((7004, 7068), 'MdlUtilities.LogicalError', 'mdl.LogicalError', (['"""Every parameter should be greater than zero."""'], {}), "('Every parameter should be greater than zero.')\n", (7020, 7068), True, 'import MdlUtilities as mdl\n'), ((7138, 7202), 'MdlUtilities.LogicalError', 'mdl.LogicalError', (['"""Every parameter should be greater than zero."""'], {}), "('Every parameter should be greater than zero.')\n", (7154, 7202), True, 'import MdlUtilities as mdl\n'), ((7648, 7657), 'numpy.sin', 'np.sin', (['θ'], {}), '(θ)\n', (7654, 7657), True, 'import numpy as np\n'), ((10825, 10836), 'numpy.mean', 'np.mean', (['cy'], {}), '(cy)\n', (10832, 10836), True, 'import numpy as np\n'), ((10974, 10985), 'numpy.mean', 'np.mean', (['Sy'], {}), '(Sy)\n', (10981, 10985), True, 'import numpy as np\n'), ((8433, 8447), 'numpy.sinh', 'np.sinh', (['(K * x)'], {}), '(K * x)\n', (8440, 8447), True, 'import numpy as np\n'), ((10552, 10561), 'numpy.cos', 'np.cos', (['θ'], {}), '(θ)\n', (10558, 10561), True, 'import numpy as np\n'), ((5585, 5594), 'numpy.cos', 'np.cos', (['φ'], {}), '(φ)\n', (5591, 5594), True, 'import numpy as np\n'), ((5610, 5619), 'numpy.sin', 'np.sin', (['φ'], {}), '(φ)\n', (5616, 5619), True, 'import numpy as np\n'), ((5621, 5630), 'numpy.cos', 'np.cos', (['φ'], {}), '(φ)\n', (5627, 5630), True, 'import numpy as np\n'), ((5597, 5606), 'numpy.sin', 'np.sin', (['φ'], {}), '(φ)\n', (5603, 5606), True, 'import numpy as np\n'), ((8408, 8427), 'numpy.tanh', 'np.tanh', (['(K * Lα / 2)'], {}), '(K * Lα / 2)\n', (8415, 8427), True, 'import numpy as np\n'), ((8452, 8461), 'numpy.sin', 'np.sin', (['θ'], {}), '(θ)\n', (8458, 8461), True, 'import numpy as np\n'), ((8392, 8406), 'numpy.cosh', 'np.cosh', (['(K * x)'], {}), '(K * x)\n', (8399, 8406), True, 'import numpy as np\n'), ((8371, 8380), 'numpy.sin', 'np.sin', (['θ'], {}), '(θ)\n', (8377, 8380), True, 'import numpy as np\n')]
"""Test converting an image to a pyramid. """ import numpy as np import napari points = np.random.randint(100, size=(50_000, 2)) with napari.gui_qt(): viewer = napari.view_points(points, face_color='red')
[ "napari.gui_qt", "numpy.random.randint", "napari.view_points" ]
[((90, 129), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(50000, 2)'}), '(100, size=(50000, 2))\n', (107, 129), True, 'import numpy as np\n'), ((137, 152), 'napari.gui_qt', 'napari.gui_qt', ([], {}), '()\n', (150, 152), False, 'import napari\n'), ((167, 211), 'napari.view_points', 'napari.view_points', (['points'], {'face_color': '"""red"""'}), "(points, face_color='red')\n", (185, 211), False, 'import napari\n')]
from unittest import TestCase from mock import patch from .. import constants class mock_service_exeTestCase(TestCase): def setUp(self): super(mock_service_exeTestCase, self).setUp() self.addCleanup(patch.stopall) self.mock_os = patch.object(constants, 'os', autospec=True).start() def test_other(self): self.mock_os.name = 'posix' self.assertEqual(constants.mock_service_exe(), 'pact-mock-service') def test_windows(self): self.mock_os.name = 'nt' self.assertEqual(constants.mock_service_exe(), 'pact-mock-service.bat') class provider_verifier_exeTestCase(TestCase): def setUp(self): super(provider_verifier_exeTestCase, self).setUp() self.addCleanup(patch.stopall) self.mock_os = patch.object(constants, 'os', autospec=True).start() def test_other(self): self.mock_os.name = 'posix' self.assertEqual( constants.provider_verifier_exe(), 'pact-provider-verifier') def test_windows(self): self.mock_os.name = 'nt' self.assertEqual( constants.provider_verifier_exe(), 'pact-provider-verifier.bat')
[ "mock.patch.object" ]
[((261, 305), 'mock.patch.object', 'patch.object', (['constants', '"""os"""'], {'autospec': '(True)'}), "(constants, 'os', autospec=True)\n", (273, 305), False, 'from mock import patch\n'), ((786, 830), 'mock.patch.object', 'patch.object', (['constants', '"""os"""'], {'autospec': '(True)'}), "(constants, 'os', autospec=True)\n", (798, 830), False, 'from mock import patch\n')]
import pytest from array import array from game_map import GameMap from tests.conftest import get_relative_path sample_map_data = tuple( reversed( ( array("I", (0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)), array("I", (0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)), array("I", (1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1)), array("I", (1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1)), array("I", (1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)), array("I", (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)), array("I", (0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)), array("I", (0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)), ) ) ) def test_game_map_from_file(sample_game_map, sample_tiles): assert sample_game_map.map_data == sample_map_data assert sample_game_map.width == 21 assert sample_game_map.height == 21 assert sample_game_map.tile_data == sample_tiles # Assert map is read right-up assert sample_game_map.get(16, 2) == 0 assert sample_game_map.get(16, 18) == 1 def test_game_map_get_out_of_bounds(sample_game_map): with pytest.raises(AssertionError): sample_game_map.get(-1, 0) sample_game_map.get(0, -1) sample_game_map.get(-1, -1) sample_game_map.get(21, 0) sample_game_map.get(0, 21) sample_game_map.get(21, 21) def test_game_map_load_mapfile_nonrectangular(): with pytest.raises(AssertionError): GameMap.load_mapfile(get_relative_path("fixtures/map_nonrectangular.csv")) def test_game_map_traversable(sample_game_map): assert sample_game_map.traversable(2, 2) assert not sample_game_map.traversable(1, 1) assert sample_game_map.traversable(16, 2) assert not sample_game_map.traversable(16, 18)
[ "pytest.raises", "array.array", "tests.conftest.get_relative_path" ]
[((2487, 2516), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (2500, 2516), False, 'import pytest\n'), ((2790, 2819), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (2803, 2819), False, 'import pytest\n'), ((176, 251), 'array.array', 'array', (['"""I"""', '(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)'], {}), "('I', (0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0))\n", (181, 251), False, 'from array import array\n'), ((265, 340), 'array.array', 'array', (['"""I"""', '(0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)'], {}), "('I', (0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0))\n", (270, 340), False, 'from array import array\n'), ((354, 429), 'array.array', 'array', (['"""I"""', '(1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1)'], {}), "('I', (1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1))\n", (359, 429), False, 'from array import array\n'), ((443, 518), 'array.array', 'array', (['"""I"""', '(1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1)'], {}), "('I', (1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1))\n", (448, 518), False, 'from array import array\n'), ((532, 607), 'array.array', 'array', (['"""I"""', '(1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (537, 607), False, 'from array import array\n'), ((621, 696), 'array.array', 'array', (['"""I"""', '(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (626, 696), False, 'from array import array\n'), ((710, 785), 'array.array', 'array', (['"""I"""', '(1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (715, 785), False, 'from array import array\n'), ((799, 874), 'array.array', 'array', (['"""I"""', '(1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (804, 874), False, 'from array import array\n'), ((888, 963), 'array.array', 'array', (['"""I"""', '(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (893, 963), False, 'from array import array\n'), ((977, 1052), 'array.array', 'array', (['"""I"""', '(1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (982, 1052), False, 'from array import array\n'), ((1066, 1141), 'array.array', 'array', (['"""I"""', '(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)'], {}), "('I', (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1))\n", (1071, 1141), False, 'from array import array\n'), ((1155, 1230), 'array.array', 'array', (['"""I"""', '(1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (1160, 1230), False, 'from array import array\n'), ((1244, 1319), 'array.array', 'array', (['"""I"""', '(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (1249, 1319), False, 'from array import array\n'), ((1333, 1408), 'array.array', 'array', (['"""I"""', '(1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (1338, 1408), False, 'from array import array\n'), ((1422, 1497), 'array.array', 'array', (['"""I"""', '(1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (1427, 1497), False, 'from array import array\n'), ((1511, 1586), 'array.array', 'array', (['"""I"""', '(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (1516, 1586), False, 'from array import array\n'), ((1600, 1675), 'array.array', 'array', (['"""I"""', '(1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (1605, 1675), False, 'from array import array\n'), ((1689, 1764), 'array.array', 'array', (['"""I"""', '(1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)'], {}), "('I', (1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))\n", (1694, 1764), False, 'from array import array\n'), ((1778, 1853), 'array.array', 'array', (['"""I"""', '(1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)'], {}), "('I', (1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1))\n", (1783, 1853), False, 'from array import array\n'), ((1867, 1942), 'array.array', 'array', (['"""I"""', '(0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)'], {}), "('I', (0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0))\n", (1872, 1942), False, 'from array import array\n'), ((1956, 2031), 'array.array', 'array', (['"""I"""', '(0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)'], {}), "('I', (0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0))\n", (1961, 2031), False, 'from array import array\n'), ((2850, 2902), 'tests.conftest.get_relative_path', 'get_relative_path', (['"""fixtures/map_nonrectangular.csv"""'], {}), "('fixtures/map_nonrectangular.csv')\n", (2867, 2902), False, 'from tests.conftest import get_relative_path\n')]
# encoding: utf-8 from __future__ import unicode_literals import six from django.db.models import Manager from django.db.models.query import QuerySet from .compat import (ANNOTATION_SELECT_CACHE_NAME, ANNOTATION_TO_AGGREGATE_ATTRIBUTES_MAP, chain_query, chain_queryset, ModelIterable, ValuesQuerySet) from .exceptions import QueryablePropertyDoesNotExist, QueryablePropertyError from .query import QueryablePropertiesQueryMixin from .utils import get_queryable_property from .utils.internal import InjectableMixin, QueryPath, QueryablePropertyReference class QueryablePropertiesIterable(InjectableMixin): """ An iterable that yields the actual results of a queryset while correctly processing columns of queryable properties. It is closely related to Django's BaseIterable and will be used as a mixin for its subclasses in all (recent) Django versions that have it. In all other (older) versions, this class will be used as a standalone iterable instead. """ def __init__(self, queryset, *args, **kwargs): """ Initialize a new iterable for the given queryset. If an iterable is given it will be used to retrieve the model instances before applying queryable properties logic (standalone usage for older Django versions). Otherwise, the __iter__ implementation of the base class is used to get the model instances (usage as mixin). :param QuerySet queryset: The queryset to perform the database query for. :param collections.Iterable iterable: The optional iterable to use for standalone usage. :param args: Positional arguments to pass through to the base class initialization when used as a mixin. :param kwargs: Keyword arguments to pass through to the base class initialization when used as a mixin. :keyword collections.Iterable iterable: The optional iterable to use for standalone usage. """ self.queryset = queryset # Only perform the super call if the class is used as a mixin if self.__class__.__bases__ != (InjectableMixin,): super(QueryablePropertiesIterable, self).__init__(queryset, *args, **kwargs) self.iterable = kwargs.get('iterable') or super(QueryablePropertiesIterable, self).__iter__() self.yields_model_instances = ((ModelIterable is not None and isinstance(self, ModelIterable)) or (ValuesQuerySet is not None and not isinstance(self.queryset, ValuesQuerySet))) def __iter__(self): """ Yield the model objects for the queryset associated with this iterator with their correctly processed selected queryable properties. :return: A generator that yields the model objects. """ original_query = self.queryset.query try: self.queryset.query = chain_query(original_query) final_aliases = self._setup_queryable_properties() for obj in self.iterable: if self.yields_model_instances: # Retrieve the annotation values from each renamed # attribute and use it to populate the cache for the # corresponding queryable property on each object while # removing the weird, renamed attributes. for changed_name, property_ref in six.iteritems(final_aliases): value = getattr(obj, changed_name) delattr(obj, changed_name) if property_ref: property_ref.descriptor.set_cached_value(obj, value) yield obj finally: self.queryset.query = original_query def _setup_queryable_properties(self): """ Perform the required setup to correctly process queryable property values. Change the internal aliases of the annotations that belong to queryable properties in the query of the associated queryset to something unique and return a dictionary mapping the queryable properties to the changed aliases. This is necessary to allow Django to populate the annotation attributes on the resulting model instances, which would otherwise call the setter of the queryable properties. This way, Django can populate attributes with different names and avoid using the setter methods. Also make sure that ordering by queryable properties works in older Django versions. :return: A dictionary mapping the final aliases for queryable properties to the corresponding references to be able to retrieve the values from the DB and apply them to the correct property. The property reference may be None, indicating that the retrieved value should be discarded. :rtype: dict[str, QueryablePropertyReference | None] """ query = self.queryset.query final_aliases = {} select = dict(query.annotation_select) for property_ref in query._queryable_property_annotations: annotation_name = six.text_type(property_ref.full_path) # Older Django versions don't work with the annotation select dict # when it comes to ordering, so queryable property annotations used # for ordering need special treatment. order_by_occurrences = [] if ANNOTATION_TO_AGGREGATE_ATTRIBUTES_MAP: # pragma: no cover order_by_occurrences = [index for index, field_name in enumerate(query.order_by) if field_name in (annotation_name, '-{}'.format(annotation_name))] if order_by_occurrences and annotation_name not in select and annotation_name in query.annotations: select[annotation_name] = query.annotations[annotation_name] final_aliases[annotation_name] = None if not self.yields_model_instances or annotation_name not in select: # The queryable property annotation does not require selection # or no renaming needs to occur since the queryset doesn't # yield model instances. continue # Suffix the original annotation name with the lookup separator to # create a non-clashing name: both model field an queryable # property names are not allowed to contain the separator and a # relation path ending with the separator would be invalid as well. changed_name = six.text_type(property_ref.full_path + '') final_aliases[changed_name] = final_aliases.pop(annotation_name, property_ref) select[changed_name] = select.pop(annotation_name) for index in order_by_occurrences: # pragma: no cover # Apply the changed names to the ORDER BY clause. query.order_by[index] = query.order_by[index].replace(annotation_name, changed_name) # Patch the correct select property on the query with the new names, # since this property is used by the SQL compiler to build the actual # SQL query (which is where the changed names should be used). setattr(query, ANNOTATION_SELECT_CACHE_NAME, select) return final_aliases class QueryablePropertiesQuerySetMixin(InjectableMixin): """ A mixin for Django's :class:`django.db.models.QuerySet` objects that allows to use queryable properties in filters, annotations and update queries. """ def init_injected_attrs(self): # To work correctly, a query using the QueryablePropertiesQueryMixin is # required. If the current query is not using the mixin already, it # will be dynamically injected into the query. That way, other Django # extensions using custom query objects are also supported. class_name = 'QueryableProperties' + self.query.__class__.__name__ self.query = QueryablePropertiesQueryMixin.inject_into_object(chain_query(self.query), class_name) @property def _iterable_class(self): # Override the regular _iterable_class attribute of recent Django # versions with a property that also stores the value in the instance # dict, but automatically mixes the QueryablePropertiesModelIterable # into the base class on getter access if the base class yields model # instances. That way, the queryable properties extensions stays # compatible to custom iterable classes while querysets can still be # pickled due to the base class being in the instance dict. cls = self.__dict__['_iterable_class'] return QueryablePropertiesIterable.mix_with_class(cls, 'QueryableProperties' + cls.__name__) @_iterable_class.setter def _iterable_class(self, value): self.__dict__['_iterable_class'] = value def _clone(self, klass=None, *args, **kwargs): if klass: # pragma: no cover # In older Django versions, the class of the queryset may be # replaced with a dynamically created class based on the current # class and the value of klass while cloning (e.g when using # .values()). Therefore this needs to be re-injected to be on top # of the MRO again to enable queryable properties functionality. klass = QueryablePropertiesQuerySetMixin.mix_with_class(klass, 'QueryableProperties' + klass.__name__) args = (klass,) + args clone = super(QueryablePropertiesQuerySetMixin, self)._clone(*args, **kwargs) # Since the _iterable_class property may return a dynamically created # class, the value of a clone must be reset to the base class. if '_iterable_class' in self.__dict__: clone._iterable_class = self.__dict__['_iterable_class'] return clone def _resolve_update_kwargs(self, **kwargs): """ Look for the names of queryable properties in the given keyword arguments for an update query and correctly resolve them into their actual keyword arguments. :param kwargs: Keyword arguments of an update query. :return: A dictionary containing the resolved arguments. :rtype: dict """ original_names = set(kwargs) for original_name in original_names: try: prop = get_queryable_property(self.model, original_name) except QueryablePropertyDoesNotExist: continue if not prop.get_update_kwargs: raise QueryablePropertyError('Queryable property "{}" does not implement queryset updating.' .format(prop)) # Call the method recursively since queryable properties can build # upon each other. additional_kwargs = self._resolve_update_kwargs( **prop.get_update_kwargs(self.model, kwargs.pop(original_name))) # Make sure that there are no conflicting values after resolving # the update keyword arguments of the queryable properties. for additional_name, value in six.iteritems(additional_kwargs): if additional_name in kwargs and kwargs[additional_name] != value: raise QueryablePropertyError( 'Updating queryable property "{prop}" would change field "{field}", but a conflicting value ' 'was set for this field by another queryable property or explicitly in the update arguments.' .format(prop=prop, field=additional_name) ) kwargs[additional_name] = value return kwargs def select_properties(self, *names): """ Add the annotations of the queryable properties with the specified names to this query. The annotation values will be cached in the properties of resulting model instances, regardless of the regular caching behavior of the queried properties. :param names: Names of queryable properties. :return: A copy of this queryset with the added annotations. :rtype: QuerySet """ queryset = chain_queryset(self) for name in names: property_ref = QueryablePropertyReference(get_queryable_property(self.model, name), self.model, QueryPath()) # A full GROUP BY is required if the query is not limited to # certain fields. Since only certain types of queries had the # _fields attribute in old Django versions, fall back to checking # for existing selection, on which the GROUP BY would be based. full_group_by = not getattr(self, '_fields', self.query.select) with queryset.query._add_queryable_property_annotation(property_ref, full_group_by, select=True): pass return queryset def iterator(self, *args, **kwargs): # Recent Django versions use the associated iterable class for the # iterator() implementation, where the QueryablePropertiesModelIterable # will be already mixed in. In older Django versions, use a standalone # QueryablePropertiesModelIterable instead to perform the queryable # properties processing. iterable = super(QueryablePropertiesQuerySetMixin, self).iterator(*args, **kwargs) if '_iterable_class' not in self.__dict__: # pragma: no cover return iter(QueryablePropertiesIterable(self, iterable=iterable)) return iterable def update(self, **kwargs): # Resolve any queryable properties into their actual update kwargs # before calling the base update method. kwargs = self._resolve_update_kwargs(**kwargs) return super(QueryablePropertiesQuerySetMixin, self).update(**kwargs) class QueryablePropertiesQuerySet(QueryablePropertiesQuerySetMixin, QuerySet): """ A special queryset class that allows to use queryable properties in its filter conditions, annotations and update queries. """ pass if hasattr(Manager, 'from_queryset'): QueryablePropertiesManager = Manager.from_queryset(QueryablePropertiesQuerySet) else: # pragma: no cover class QueryablePropertiesManager(Manager): def get_queryset(self): return QueryablePropertiesQuerySet(self.model, using=self._db) get_query_set = get_queryset def select_properties(self, *names): return self.get_queryset().select_properties(*names)
[ "six.text_type", "six.iteritems", "django.db.models.Manager.from_queryset" ]
[((14474, 14524), 'django.db.models.Manager.from_queryset', 'Manager.from_queryset', (['QueryablePropertiesQuerySet'], {}), '(QueryablePropertiesQuerySet)\n', (14495, 14524), False, 'from django.db.models import Manager\n'), ((5366, 5403), 'six.text_type', 'six.text_type', (['property_ref.full_path'], {}), '(property_ref.full_path)\n', (5379, 5403), False, 'import six\n'), ((6824, 6866), 'six.text_type', 'six.text_type', (["(property_ref.full_path + '')"], {}), "(property_ref.full_path + '')\n", (6837, 6866), False, 'import six\n'), ((11454, 11486), 'six.iteritems', 'six.iteritems', (['additional_kwargs'], {}), '(additional_kwargs)\n', (11467, 11486), False, 'import six\n'), ((3569, 3597), 'six.iteritems', 'six.iteritems', (['final_aliases'], {}), '(final_aliases)\n', (3582, 3597), False, 'import six\n')]
from __future__ import print_function, absolute_import import unittest, math import pandas as pd import numpy as np from . import * class T(base_pandas_extensions_tester.BasePandasExtensionsTester): def test_concat(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2': ['d', 'e', 'f']}) df.engineer('concat(c_1, c_2)') self.assertTrue(np.array_equal(df['c_concat(c_1,c_2)'].values, np.array(['ad', 'be', 'cf'], 'object'))) def test_concat_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'c_3': ['h', 'i', 'j']}) df.engineer('concat(c_3, c_1, c_2)') self.assertTrue(np.array_equal(df['c_concat(c_3,c_1,c_2)'].values, np.array(['had', 'ibe', 'jcf'], 'object'))) def test_concat_with_numerical_col(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3]}) df.engineer('concat(c_1,n_2)') self.assertTrue(np.array_equal(df['c_concat(c_1,n_2)'].values, np.array(['a1', 'b2', 'c3'], 'object'))) def test_concat_with_numerical_col_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6]}) df.engineer('concat(n_3,c_1,n_2)') self.assertTrue(np.array_equal(df['c_concat(n_3,c_1,n_2)'].values, np.array(['4a1', '5b2', '6c3'], 'object'))) def test_multiplication(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('mult(n_2, n_3)') self.assertTrue(np.array_equal(df['n_mult(n_2,n_3)'].values, np.array([4, 10, 18], long))) def test_multiplication_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('mult(n_2, n_3, n_4)') self.assertTrue(np.array_equal(df['n_mult(n_2,n_3,n_4)'].values, np.array([4*7, 80, 18*9], long))) def test_square_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('pow(2)') np.testing.assert_array_equal(df.values, np.array([ ['a', 1, 4, 7, 1*1, 4*4, 7*7], ['b', 2, 5, 8, 2*2, 5*5, 8*8], ['c', 3, 6, 9, 3*3, 6*6, 9*9], ], 'object')) def test_square_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('pow(n_3, 2)') np.testing.assert_array_equal(df.values, np.array([ ['a', 1, 4, 7, 4*4], ['b', 2, 5, 8, 5*5], ['c', 3, 6, 9, 6*6], ], 'object')) def test_log_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('lg()') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.log(1), math.log(4), math.log(7)], ['b', 2, 5, 8, math.log(2), math.log(5), math.log(8)], ['c', 3, 6, 9, math.log(3), math.log(6), math.log(9)], ], 'object'))) def test_log_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('lg(n_3)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.log(4)], ['b', 2, 5, 8, math.log(5)], ['c', 3, 6, 9, math.log(6)], ], 'object'))) def test_sqrt_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('sqrt()') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.sqrt(1), math.sqrt(4), math.sqrt(7)], ['b', 2, 5, 8, math.sqrt(2), math.sqrt(5), math.sqrt(8)], ['c', 3, 6, 9, math.sqrt(3), math.sqrt(6), math.sqrt(9)], ], 'object'))) def test_sqrt_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('sqrt(n_3)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.sqrt(4)], ['b', 2, 5, 8, math.sqrt(5)], ['c', 3, 6, 9, math.sqrt(6)], ], 'object'))) def test_rolling_sum_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_sum(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 35, 40, 30, 29, 48], df['n_' + col]) def test_rolling_mean_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_mean(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16], df['n_' + col], rtol=1e-3) def test_rolling_median_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_median(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 12, 13, 13, 12, 12], df['n_' + col]) def test_rolling_min_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_min(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 10, 12, 2, 2, 2], df['n_' + col]) def test_rolling_max_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_max(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 13, 15, 15, 15, 34], df['n_' + col]) def test_rolling_std_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_std(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 1.528, 1.528, 7, 6.807, 16.371], df['n_' + col], rtol=1e-3) def test_rolling_var_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_var(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 2.333, 2.333, 49, 46.333, 268], df['n_' + col], rtol=1e-3) # Multiple Columns def test_rolling_sum_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_sum(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 35, 40, 30, 29, 48], df['n_rolling_sum(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 6, 10, 10, 9, 8], df['n_rolling_sum(n_2,3)']) def test_rolling_mean_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_mean(3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16], df['n_rolling_mean(n_1,3)'], rtol=1e-3) np.testing.assert_allclose([np.nan, np.nan, 2, 3.333, 3.333, 3, 2.666], df['n_rolling_mean(n_2,3)'], rtol=1e-3) def test_rolling_median_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_median(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 12, 13, 13, 12, 12], df['n_rolling_median(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 2, 3, 3, 2, 2], df['n_rolling_median(n_2,3)']) def test_rolling_min_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_min(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 10, 12, 2, 2, 2], df['n_rolling_min(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 1, 2, 2, 2, 2], df['n_rolling_min(n_2,3)']) def test_rolling_max_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_max(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 13, 15, 15, 15, 34], df['n_rolling_max(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 3, 5, 5, 5, 4], df['n_rolling_max(n_2,3)']) def test_rolling_std_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_std(3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 1.528, 1.528, 7, 6.807, 16.371], df['n_rolling_std(n_1,3)'], rtol=1e-3) np.testing.assert_allclose([np.nan, np.nan, 1, 1.528, 1.528, 1.732, 1.1547], df['n_rolling_std(n_2,3)'], rtol=1e-3) def test_rolling_var_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_var(3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 2.333, 2.333, 49, 46.333, 268], df['n_rolling_var(n_1,3)'], rtol=1e-3) np.testing.assert_allclose([np.nan, np.nan, 1, 2.333, 2.333, 3, 1.333], df['n_rolling_var(n_2,3)'], rtol=1e-3) def test_method_chaining(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2':['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.\ engineer('concat(c_1, c_2)').\ engineer('concat(c_1, n_2)').\ engineer('mult(n_2, n_3)').\ engineer('lg(n_2)').\ engineer('pow(n_3, 2)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 'd', 1, 4, 7, 'ad', 'a1', 4, math.log(1), 4*4], ['b', 'e', 2, 5, 8, 'be', 'b2', 10, math.log(2), 5*5], ['c', 'f', 3, 6, 9, 'cf', 'c3', 18, math.log(3), 6*6] ], 'object'))) def test_chaining_single_call_semi_col_sep(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2':['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('concat(c_1, c_2);concat(c_1, n_2);mult(n_2, n_3);lg(n_2);pow(n_3, 2)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 'd', 1, 4, 7, 'ad', 'a1', 4, math.log(1), 4*4], ['b', 'e', 2, 5, 8, 'be', 'b2', 10, math.log(2), 5*5], ['c', 'f', 3, 6, 9, 'cf', 'c3', 18, math.log(3), 6*6] ], 'object'))) def test_chaining_single_with_arr_arg(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2':['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('concat(c_1, c_2);concat(c_1, n_2);mult(n_2, n_3);lg(n_2);pow(n_3, 2)'.split(';')) self.assertTrue(np.array_equal(df.values, np.array([ ['a', 'd', 1, 4, 7, 'ad', 'a1', 4, math.log(1), 4*4], ['b', 'e', 2, 5, 8, 'be', 'b2', 10, math.log(2), 5*5], ['c', 'f', 3, 6, 9, 'cf', 'c3', 18, math.log(3), 6*6] ], 'object'))) def test_long_method_chains(self): df1 = pd.DataFrame({'n_1': [1, 2, 3], 'n_2': [4, 5, 6]}) df2 = pd.DataFrame({'n_1': [1, 2, 3], 'n_2': [4, 5, 6]}) df1.engineer('mult(lg(mult(n_1, n_2)), lg(pow(n_1, 3)))') df2.engineer('mult(n_1,n_2);pow(n_1,3)') df2.engineer('lg(pow(n_1,3));lg(mult(n_1, n_2))') df2.engineer('mult(lg(mult(n_1,n_2)),lg(pow(n_1, 3)))') np.testing.assert_array_equal(df1.columns.values.sort(), df2.columns.values.sort()); np.testing.assert_array_equal(df1['n_mult(n_1,n_2)'].values, df2['n_mult(n_1,n_2)'].values); np.testing.assert_array_equal(df1['n_pow(n_1,3)'], df2['n_pow(n_1,3)']); np.testing.assert_array_equal(df1['n_lg(pow(n_1,3))'], df2['n_lg(pow(n_1,3))']); np.testing.assert_array_equal(df1['n_lg(mult(n_1,n_2))'], df2['n_lg(mult(n_1,n_2))']); np.testing.assert_array_equal(df1['n_mult(lg(mult(n_1,n_2)),lg(pow(n_1,3)))'], df2['n_mult(lg(mult(n_1,n_2)),lg(pow(n_1,3)))']);
[ "numpy.testing.assert_allclose", "math.sqrt", "math.log", "numpy.array", "pandas.DataFrame", "numpy.testing.assert_array_equal" ]
[((244, 306), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'c_2': ['d', 'e', 'f']}"], {}), "({'c_1': ['a', 'b', 'c'], 'c_2': ['d', 'e', 'f']})\n", (256, 306), True, 'import pandas as pd\n'), ((509, 599), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'c_3': ['h', 'i', 'j']}"], {}), "({'c_1': ['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'c_3': ['h',\n 'i', 'j']})\n", (521, 599), True, 'import pandas as pd\n'), ((822, 878), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3]}"], {}), "({'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3]})\n", (834, 878), True, 'import pandas as pd\n'), ((1099, 1173), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6]}"], {}), "({'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6]})\n", (1111, 1173), True, 'import pandas as pd\n'), ((1387, 1483), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}"], {}), "({'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6],\n 'n_4': [7, 8, 9]})\n", (1399, 1483), True, 'import pandas as pd\n'), ((1675, 1771), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}"], {}), "({'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6],\n 'n_4': [7, 8, 9]})\n", (1687, 1771), True, 'import pandas as pd\n'), ((1981, 2077), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}"], {}), "({'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6],\n 'n_4': [7, 8, 9]})\n", (1993, 2077), True, 'import pandas as pd\n'), ((2358, 2454), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}"], {}), "({'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6],\n 'n_4': [7, 8, 9]})\n", (2370, 2454), True, 'import pandas as pd\n'), ((2719, 2815), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}"], {}), "({'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6],\n 'n_4': [7, 8, 9]})\n", (2731, 2815), True, 'import pandas as pd\n'), ((3165, 3261), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}"], {}), "({'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6],\n 'n_4': [7, 8, 9]})\n", (3177, 3261), True, 'import pandas as pd\n'), ((3549, 3645), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}"], {}), "({'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6],\n 'n_4': [7, 8, 9]})\n", (3561, 3645), True, 'import pandas as pd\n'), ((4007, 4103), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}"], {}), "({'c_1': ['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6],\n 'n_4': [7, 8, 9]})\n", (4019, 4103), True, 'import pandas as pd\n'), ((4397, 4447), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34]})\n", (4409, 4447), True, 'import pandas as pd\n'), ((4507, 4594), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 35, 40, 30, 29, 48]', "df['n_' + col]"], {}), "([np.nan, np.nan, 35, 40, 30, 29, 48], df['n_' +\n col])\n", (4536, 4594), True, 'import numpy as np\n'), ((4649, 4699), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34]})\n", (4661, 4699), True, 'import pandas as pd\n'), ((4760, 4865), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['[np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16]', "df['n_' + col]"], {'rtol': '(0.001)'}), "([np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16], df\n ['n_' + col], rtol=0.001)\n", (4786, 4865), True, 'import numpy as np\n'), ((4920, 4970), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34]})\n", (4932, 4970), True, 'import pandas as pd\n'), ((5033, 5120), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 12, 13, 13, 12, 12]', "df['n_' + col]"], {}), "([np.nan, np.nan, 12, 13, 13, 12, 12], df['n_' +\n col])\n", (5062, 5120), True, 'import numpy as np\n'), ((5174, 5224), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34]})\n", (5186, 5224), True, 'import pandas as pd\n'), ((5284, 5369), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 10, 12, 2, 2, 2]', "df['n_' + col]"], {}), "([np.nan, np.nan, 10, 12, 2, 2, 2], df['n_' + col]\n )\n", (5313, 5369), True, 'import numpy as np\n'), ((5422, 5472), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34]})\n", (5434, 5472), True, 'import pandas as pd\n'), ((5532, 5619), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 13, 15, 15, 15, 34]', "df['n_' + col]"], {}), "([np.nan, np.nan, 13, 15, 15, 15, 34], df['n_' +\n col])\n", (5561, 5619), True, 'import numpy as np\n'), ((5673, 5723), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34]})\n", (5685, 5723), True, 'import pandas as pd\n'), ((5783, 5891), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['[np.nan, np.nan, 1.528, 1.528, 7, 6.807, 16.371]', "df['n_' + col]"], {'rtol': '(0.001)'}), "([np.nan, np.nan, 1.528, 1.528, 7, 6.807, 16.371],\n df['n_' + col], rtol=0.001)\n", (5809, 5891), True, 'import numpy as np\n'), ((5944, 5994), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34]})\n", (5956, 5994), True, 'import pandas as pd\n'), ((6054, 6161), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['[np.nan, np.nan, 2.333, 2.333, 49, 46.333, 268]', "df['n_' + col]"], {'rtol': '(0.001)'}), "([np.nan, np.nan, 2.333, 2.333, 49, 46.333, 268],\n df['n_' + col], rtol=0.001)\n", (6080, 6161), True, 'import numpy as np\n'), ((6238, 6323), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}\n )\n", (6250, 6323), True, 'import pandas as pd\n'), ((6374, 6474), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 35, 40, 30, 29, 48]', "df['n_rolling_sum(n_1,3)']"], {}), "([np.nan, np.nan, 35, 40, 30, 29, 48], df[\n 'n_rolling_sum(n_1,3)'])\n", (6403, 6474), True, 'import numpy as np\n'), ((6475, 6572), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 6, 10, 10, 9, 8]', "df['n_rolling_sum(n_2,3)']"], {}), "([np.nan, np.nan, 6, 10, 10, 9, 8], df[\n 'n_rolling_sum(n_2,3)'])\n", (6504, 6572), True, 'import numpy as np\n'), ((6626, 6711), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}\n )\n", (6638, 6711), True, 'import pandas as pd\n'), ((6763, 6881), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['[np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16]', "df['n_rolling_mean(n_1,3)']"], {'rtol': '(0.001)'}), "([np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16], df\n ['n_rolling_mean(n_1,3)'], rtol=0.001)\n", (6789, 6881), True, 'import numpy as np\n'), ((6881, 6998), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['[np.nan, np.nan, 2, 3.333, 3.333, 3, 2.666]', "df['n_rolling_mean(n_2,3)']"], {'rtol': '(0.001)'}), "([np.nan, np.nan, 2, 3.333, 3.333, 3, 2.666], df[\n 'n_rolling_mean(n_2,3)'], rtol=0.001)\n", (6907, 6998), True, 'import numpy as np\n'), ((7053, 7138), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}\n )\n", (7065, 7138), True, 'import pandas as pd\n'), ((7192, 7295), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 12, 13, 13, 12, 12]', "df['n_rolling_median(n_1,3)']"], {}), "([np.nan, np.nan, 12, 13, 13, 12, 12], df[\n 'n_rolling_median(n_1,3)'])\n", (7221, 7295), True, 'import numpy as np\n'), ((7296, 7394), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 2, 3, 3, 2, 2]', "df['n_rolling_median(n_2,3)']"], {}), "([np.nan, np.nan, 2, 3, 3, 2, 2], df[\n 'n_rolling_median(n_2,3)'])\n", (7325, 7394), True, 'import numpy as np\n'), ((7447, 7532), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}\n )\n", (7459, 7532), True, 'import pandas as pd\n'), ((7583, 7680), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 10, 12, 2, 2, 2]', "df['n_rolling_min(n_1,3)']"], {}), "([np.nan, np.nan, 10, 12, 2, 2, 2], df[\n 'n_rolling_min(n_1,3)'])\n", (7612, 7680), True, 'import numpy as np\n'), ((7681, 7776), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 1, 2, 2, 2, 2]', "df['n_rolling_min(n_2,3)']"], {}), "([np.nan, np.nan, 1, 2, 2, 2, 2], df[\n 'n_rolling_min(n_2,3)'])\n", (7710, 7776), True, 'import numpy as np\n'), ((7829, 7914), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}\n )\n", (7841, 7914), True, 'import pandas as pd\n'), ((7965, 8065), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 13, 15, 15, 15, 34]', "df['n_rolling_max(n_1,3)']"], {}), "([np.nan, np.nan, 13, 15, 15, 15, 34], df[\n 'n_rolling_max(n_1,3)'])\n", (7994, 8065), True, 'import numpy as np\n'), ((8066, 8161), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[np.nan, np.nan, 3, 5, 5, 5, 4]', "df['n_rolling_max(n_2,3)']"], {}), "([np.nan, np.nan, 3, 5, 5, 5, 4], df[\n 'n_rolling_max(n_2,3)'])\n", (8095, 8161), True, 'import numpy as np\n'), ((8214, 8299), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}\n )\n", (8226, 8299), True, 'import pandas as pd\n'), ((8350, 8470), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['[np.nan, np.nan, 1.528, 1.528, 7, 6.807, 16.371]', "df['n_rolling_std(n_1,3)']"], {'rtol': '(0.001)'}), "([np.nan, np.nan, 1.528, 1.528, 7, 6.807, 16.371],\n df['n_rolling_std(n_1,3)'], rtol=0.001)\n", (8376, 8470), True, 'import numpy as np\n'), ((8471, 8591), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['[np.nan, np.nan, 1, 1.528, 1.528, 1.732, 1.1547]', "df['n_rolling_std(n_2,3)']"], {'rtol': '(0.001)'}), "([np.nan, np.nan, 1, 1.528, 1.528, 1.732, 1.1547],\n df['n_rolling_std(n_2,3)'], rtol=0.001)\n", (8497, 8591), True, 'import numpy as np\n'), ((8644, 8729), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}"], {}), "({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}\n )\n", (8656, 8729), True, 'import pandas as pd\n'), ((8780, 8899), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['[np.nan, np.nan, 2.333, 2.333, 49, 46.333, 268]', "df['n_rolling_var(n_1,3)']"], {'rtol': '(0.001)'}), "([np.nan, np.nan, 2.333, 2.333, 49, 46.333, 268],\n df['n_rolling_var(n_1,3)'], rtol=0.001)\n", (8806, 8899), True, 'import numpy as np\n'), ((8900, 9016), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['[np.nan, np.nan, 1, 2.333, 2.333, 3, 1.333]', "df['n_rolling_var(n_2,3)']"], {'rtol': '(0.001)'}), "([np.nan, np.nan, 1, 2.333, 2.333, 3, 1.333], df[\n 'n_rolling_var(n_2,3)'], rtol=0.001)\n", (8926, 9016), True, 'import numpy as np\n'), ((9058, 9178), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [\n 4, 5, 6], 'n_4': [7, 8, 9]}"], {}), "({'c_1': ['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'n_2': [1, 2,\n 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]})\n", (9070, 9178), True, 'import pandas as pd\n'), ((9714, 9834), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [\n 4, 5, 6], 'n_4': [7, 8, 9]}"], {}), "({'c_1': ['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'n_2': [1, 2,\n 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]})\n", (9726, 9834), True, 'import pandas as pd\n'), ((10272, 10392), 'pandas.DataFrame', 'pd.DataFrame', (["{'c_1': ['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [\n 4, 5, 6], 'n_4': [7, 8, 9]}"], {}), "({'c_1': ['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'n_2': [1, 2,\n 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]})\n", (10284, 10392), True, 'import pandas as pd\n'), ((10832, 10882), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [1, 2, 3], 'n_2': [4, 5, 6]}"], {}), "({'n_1': [1, 2, 3], 'n_2': [4, 5, 6]})\n", (10844, 10882), True, 'import pandas as pd\n'), ((10898, 10948), 'pandas.DataFrame', 'pd.DataFrame', (["{'n_1': [1, 2, 3], 'n_2': [4, 5, 6]}"], {}), "({'n_1': [1, 2, 3], 'n_2': [4, 5, 6]})\n", (10910, 10948), True, 'import pandas as pd\n'), ((11275, 11371), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (["df1['n_mult(n_1,n_2)'].values", "df2['n_mult(n_1,n_2)'].values"], {}), "(df1['n_mult(n_1,n_2)'].values, df2[\n 'n_mult(n_1,n_2)'].values)\n", (11304, 11371), True, 'import numpy as np\n'), ((11373, 11444), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (["df1['n_pow(n_1,3)']", "df2['n_pow(n_1,3)']"], {}), "(df1['n_pow(n_1,3)'], df2['n_pow(n_1,3)'])\n", (11402, 11444), True, 'import numpy as np\n'), ((11451, 11530), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (["df1['n_lg(pow(n_1,3))']", "df2['n_lg(pow(n_1,3))']"], {}), "(df1['n_lg(pow(n_1,3))'], df2['n_lg(pow(n_1,3))'])\n", (11480, 11530), True, 'import numpy as np\n'), ((11537, 11627), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (["df1['n_lg(mult(n_1,n_2))']", "df2['n_lg(mult(n_1,n_2))']"], {}), "(df1['n_lg(mult(n_1,n_2))'], df2[\n 'n_lg(mult(n_1,n_2))'])\n", (11566, 11627), True, 'import numpy as np\n'), ((11629, 11766), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (["df1['n_mult(lg(mult(n_1,n_2)),lg(pow(n_1,3)))']", "df2['n_mult(lg(mult(n_1,n_2)),lg(pow(n_1,3)))']"], {}), "(df1[\n 'n_mult(lg(mult(n_1,n_2)),lg(pow(n_1,3)))'], df2[\n 'n_mult(lg(mult(n_1,n_2)),lg(pow(n_1,3)))'])\n", (11658, 11766), True, 'import numpy as np\n'), ((2158, 2293), 'numpy.array', 'np.array', (["[['a', 1, 4, 7, 1 * 1, 4 * 4, 7 * 7], ['b', 2, 5, 8, 2 * 2, 5 * 5, 8 * 8],\n ['c', 3, 6, 9, 3 * 3, 6 * 6, 9 * 9]]", '"""object"""'], {}), "([['a', 1, 4, 7, 1 * 1, 4 * 4, 7 * 7], ['b', 2, 5, 8, 2 * 2, 5 * 5,\n 8 * 8], ['c', 3, 6, 9, 3 * 3, 6 * 6, 9 * 9]], 'object')\n", (2166, 2293), True, 'import numpy as np\n'), ((2540, 2634), 'numpy.array', 'np.array', (["[['a', 1, 4, 7, 4 * 4], ['b', 2, 5, 8, 5 * 5], ['c', 3, 6, 9, 6 * 6]]", '"""object"""'], {}), "([['a', 1, 4, 7, 4 * 4], ['b', 2, 5, 8, 5 * 5], ['c', 3, 6, 9, 6 * \n 6]], 'object')\n", (2548, 2634), True, 'import numpy as np\n'), ((423, 461), 'numpy.array', 'np.array', (["['ad', 'be', 'cf']", '"""object"""'], {}), "(['ad', 'be', 'cf'], 'object')\n", (431, 461), True, 'import numpy as np\n'), ((721, 762), 'numpy.array', 'np.array', (["['had', 'ibe', 'jcf']", '"""object"""'], {}), "(['had', 'ibe', 'jcf'], 'object')\n", (729, 762), True, 'import numpy as np\n'), ((994, 1032), 'numpy.array', 'np.array', (["['a1', 'b2', 'c3']", '"""object"""'], {}), "(['a1', 'b2', 'c3'], 'object')\n", (1002, 1032), True, 'import numpy as np\n'), ((1297, 1338), 'numpy.array', 'np.array', (["['4a1', '5b2', '6c3']", '"""object"""'], {}), "(['4a1', '5b2', '6c3'], 'object')\n", (1305, 1338), True, 'import numpy as np\n'), ((1592, 1619), 'numpy.array', 'np.array', (['[4, 10, 18]', 'long'], {}), '([4, 10, 18], long)\n', (1600, 1619), True, 'import numpy as np\n'), ((1889, 1924), 'numpy.array', 'np.array', (['[4 * 7, 80, 18 * 9]', 'long'], {}), '([4 * 7, 80, 18 * 9], long)\n', (1897, 1924), True, 'import numpy as np\n'), ((2930, 2941), 'math.log', 'math.log', (['(1)'], {}), '(1)\n', (2938, 2941), False, 'import unittest, math\n'), ((2943, 2954), 'math.log', 'math.log', (['(4)'], {}), '(4)\n', (2951, 2954), False, 'import unittest, math\n'), ((2956, 2967), 'math.log', 'math.log', (['(7)'], {}), '(7)\n', (2964, 2967), False, 'import unittest, math\n'), ((2994, 3005), 'math.log', 'math.log', (['(2)'], {}), '(2)\n', (3002, 3005), False, 'import unittest, math\n'), ((3007, 3018), 'math.log', 'math.log', (['(5)'], {}), '(5)\n', (3015, 3018), False, 'import unittest, math\n'), ((3020, 3031), 'math.log', 'math.log', (['(8)'], {}), '(8)\n', (3028, 3031), False, 'import unittest, math\n'), ((3058, 3069), 'math.log', 'math.log', (['(3)'], {}), '(3)\n', (3066, 3069), False, 'import unittest, math\n'), ((3071, 3082), 'math.log', 'math.log', (['(6)'], {}), '(6)\n', (3079, 3082), False, 'import unittest, math\n'), ((3084, 3095), 'math.log', 'math.log', (['(9)'], {}), '(9)\n', (3092, 3095), False, 'import unittest, math\n'), ((3379, 3390), 'math.log', 'math.log', (['(4)'], {}), '(4)\n', (3387, 3390), False, 'import unittest, math\n'), ((3417, 3428), 'math.log', 'math.log', (['(5)'], {}), '(5)\n', (3425, 3428), False, 'import unittest, math\n'), ((3455, 3466), 'math.log', 'math.log', (['(6)'], {}), '(6)\n', (3463, 3466), False, 'import unittest, math\n'), ((3762, 3774), 'math.sqrt', 'math.sqrt', (['(1)'], {}), '(1)\n', (3771, 3774), False, 'import unittest, math\n'), ((3776, 3788), 'math.sqrt', 'math.sqrt', (['(4)'], {}), '(4)\n', (3785, 3788), False, 'import unittest, math\n'), ((3790, 3802), 'math.sqrt', 'math.sqrt', (['(7)'], {}), '(7)\n', (3799, 3802), False, 'import unittest, math\n'), ((3829, 3841), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (3838, 3841), False, 'import unittest, math\n'), ((3843, 3855), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (3852, 3855), False, 'import unittest, math\n'), ((3857, 3869), 'math.sqrt', 'math.sqrt', (['(8)'], {}), '(8)\n', (3866, 3869), False, 'import unittest, math\n'), ((3896, 3908), 'math.sqrt', 'math.sqrt', (['(3)'], {}), '(3)\n', (3905, 3908), False, 'import unittest, math\n'), ((3910, 3922), 'math.sqrt', 'math.sqrt', (['(6)'], {}), '(6)\n', (3919, 3922), False, 'import unittest, math\n'), ((3924, 3936), 'math.sqrt', 'math.sqrt', (['(9)'], {}), '(9)\n', (3933, 3936), False, 'import unittest, math\n'), ((4223, 4235), 'math.sqrt', 'math.sqrt', (['(4)'], {}), '(4)\n', (4232, 4235), False, 'import unittest, math\n'), ((4262, 4274), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (4271, 4274), False, 'import unittest, math\n'), ((4301, 4313), 'math.sqrt', 'math.sqrt', (['(6)'], {}), '(6)\n', (4310, 4313), False, 'import unittest, math\n'), ((9479, 9490), 'math.log', 'math.log', (['(1)'], {}), '(1)\n', (9487, 9490), False, 'import unittest, math\n'), ((9543, 9554), 'math.log', 'math.log', (['(2)'], {}), '(2)\n', (9551, 9554), False, 'import unittest, math\n'), ((9607, 9618), 'math.log', 'math.log', (['(3)'], {}), '(3)\n', (9615, 9618), False, 'import unittest, math\n'), ((10042, 10053), 'math.log', 'math.log', (['(1)'], {}), '(1)\n', (10050, 10053), False, 'import unittest, math\n'), ((10106, 10117), 'math.log', 'math.log', (['(2)'], {}), '(2)\n', (10114, 10117), False, 'import unittest, math\n'), ((10170, 10181), 'math.log', 'math.log', (['(3)'], {}), '(3)\n', (10178, 10181), False, 'import unittest, math\n'), ((10611, 10622), 'math.log', 'math.log', (['(1)'], {}), '(1)\n', (10619, 10622), False, 'import unittest, math\n'), ((10675, 10686), 'math.log', 'math.log', (['(2)'], {}), '(2)\n', (10683, 10686), False, 'import unittest, math\n'), ((10739, 10750), 'math.log', 'math.log', (['(3)'], {}), '(3)\n', (10747, 10750), False, 'import unittest, math\n')]
import numpy as np import math import pyrobot.utils.util as prutil import rospy import habitat_sim.agent as habAgent import habitat_sim.utils as habUtils from habitat_sim.agent.controls import ActuationSpec import habitat_sim.errors import quaternion from tf.transformations import euler_from_quaternion, euler_from_matrix class LoCoBotBase(object): """docstring for SimpleBase""" def __init__(self, configs, simulator): self.configs = configs self.sim = simulator.sim self.agent = self.sim.get_agent(self.configs.COMMON.SIMULATOR.DEFAULT_AGENT_ID) self.transform = None self.init_state = self.get_full_state() def execute_action(self, action_name, actuation): # actions = "turn_right" or "turn_left" or "move_forward" # returns a bool showing if collided or not return self._act(action_name, actuation) def get_full_state(self): # Returns habitat_sim.agent.AgentState return self.agent.get_state() def _rot_matrix(self, habitat_quat): quat_list = [habitat_quat.x, habitat_quat.y, habitat_quat.z, habitat_quat.w] return prutil.quat_to_rot_mat(quat_list) def get_state(self, state_type="odom"): # Returns (x, y, yaw) assert state_type == "odom", "Error: Only Odom state is available" cur_state = self.get_full_state() init_rotation = self._rot_matrix(self.init_state.rotation) # true position here refers to the relative position from # where `self.init_state` is treated as origin true_position = cur_state.position - self.init_state.position true_position = np.matmul(init_rotation.transpose(), true_position, dtype=np.float64) cur_rotation = self._rot_matrix(cur_state.rotation) cur_rotation = np.matmul(init_rotation.transpose(), cur_rotation, dtype=np.float64) (r, pitch, yaw) = euler_from_matrix(cur_rotation, axes="sxzy") # Habitat has y perpendicular to map where as ROS has z perpendicular # to the map. Where as x is same. # Here ROS_X = -1 * habitat_z and ROS_Y = -1*habitat_x return (-1 * true_position[2], -1 * true_position[0], yaw) def stop(self): raise NotImplementedError("Veclocity control is not supported in Habitat-Sim!!") def set_vel(self, fwd_speed, turn_speed, exe_time=1): raise NotImplementedError("Veclocity control is not supported in Habitat-Sim!!") def go_to_relative( self, xyt_position, use_map=False, close_loop=False, smooth=False ): """ Moves the robot to the robot to given goal state relative to its initial pose. :param xyt_position: The relative goal state of the form (x,y,t) :param use_map: When set to "True", ensures that controler is using only free space on the map to move the robot. :param close_loop: When set to "True", ensures that controler is operating in open loop by taking account of odometry. :param smooth: When set to "True", ensures that the motion leading to the goal is a smooth one. :type xyt_position: list :type use_map: bool :type close_loop: bool :type smooth: bool :return: True if successful; False otherwise (timeout, etc.) :rtype: bool """ try: if use_map: raise NotImplementedError( "Using map feature is not yet supported for Habitat-Sim" ) if close_loop: raise NotImplementedError( "Closed-loop postion control is not supported in Habitat-Sim!" ) if smooth: raise NotImplementedError( "Smooth position control feature is not yet for Habitat-Sim" ) except Exception as error: print(error) return False (cur_x, cur_y, cur_yaw) = self.get_state() abs_yaw = cur_yaw + xyt_position[2] return self._go_to_relative_pose(xyt_position[0], xyt_position[1], abs_yaw) def go_to_absolute( self, xyt_position, use_map=False, close_loop=False, smooth=False ): """ Moves the robot to the robot to given goal state in the world frame. :param xyt_position: The goal state of the form (x,y,t) in the world (map) frame. :param use_map: When set to "True", ensures that controler is using only free space on the map to move the robot. :param close_loop: When set to "True", ensures that controler is operating in open loop by taking account of odometry. :param smooth: When set to "True", ensures that the motion leading to the goal is a smooth one. :type xyt_position: list :type use_map: bool :type close_loop: bool :type smooth: bool :return: True if successful; False otherwise (timeout, etc.) :rtype: bool """ try: if use_map: raise NotImplementedError( "Using map feature is not yet supported for Habitat-Sim" ) if close_loop: raise NotImplementedError( "Closed-loop postion control is not supported in Habitat-Sim!" ) if smooth: raise NotImplementedError( "Smooth position control feature is not yet for Habitat-Sim" ) except Exception as error: print(error) return False (cur_x, cur_y, cur_yaw) = self.get_state() rel_X = xyt_position[0] - cur_x rel_Y = xyt_position[1] - cur_y abs_yaw = xyt_position[2] # convert rel_X & rel_Y from global frame to current frame R = np.array([[np.cos(cur_yaw), np.sin(cur_yaw)], [-np.sin(cur_yaw), np.cos(cur_yaw)]]) rel_x, rel_y = np.matmul(R, np.array([rel_X, rel_Y]).reshape(-1,1)) return self._go_to_relative_pose(rel_x[0], rel_y[0], abs_yaw) def _act(self, action_name, actuation): """Take the action specified by action_id :param action_id: ID of the action. Retreives the action from `agent_config.action_space <AgentConfiguration.action_space>` :return: Whether or not the action taken resulted in a collision """ did_collide = False act_spec = ActuationSpec(actuation) did_collide = self.agent.controls.action( self.agent.scene_node, action_name, act_spec, apply_filter=True ) return did_collide def _go_to_relative_pose(self, rel_x, rel_y, abs_yaw): # clip relative movements beyond 10 micrometer precision # this is done to improve determinism, as habitat-sim doesn't # seem to precisely move the robot beyond sub milimeter precision anyways if abs(rel_x) < 1e-5: rel_x = 0 if abs(rel_y) < 1e-5: rel_y = 0 if math.sqrt(rel_x ** 2 + rel_y ** 2) > 0.0: # rotate to point to (x, y) point action_name = "turn_left" if rel_y < 0.0: action_name = "turn_right" v1 = np.asarray([1, 0], dtype=np.float64) v2 = np.asarray([rel_x, rel_y], dtype=np.float64) cosine_angle = np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)) angle = np.arccos(cosine_angle) did_collide = self._act(action_name, math.degrees(angle)) if did_collide: print("Error: Collision accured while 1st rotating!") return False # move to (x,y) point did_collide = self._act("move_forward", math.sqrt(rel_x ** 2 + rel_y ** 2)) if did_collide: print("Error: Collision accured while moving straight!") return False # rotate to match the final yaw! (cur_x, cur_y, cur_yaw) = self.get_state() rel_yaw = abs_yaw - cur_yaw # clip to micro-degree precision to preserve determinism if abs(rel_yaw) < 1e-4: rel_yaw = 0 action_name = "turn_left" if rel_yaw < 0.0: action_name = "turn_right" rel_yaw *= -1 did_collide = self._act(action_name, math.degrees(rel_yaw)) if did_collide: print("Error: Collision accured while rotating!") return False return True def track_trajectory(self, states, controls, close_loop): """ State trajectory that the robot should track. :param states: sequence of (x,y,t) states that the robot should track. :param controls: optionally specify control sequence as well. :param close_loop: whether to close loop on the computed control sequence or not. :type states: list :type controls: list :type close_loop: bool :return: True if successful; False otherwise (timeout, etc.) :rtype: bool """ raise NotImplementedError
[ "numpy.arccos", "tf.transformations.euler_from_matrix", "math.sqrt", "numpy.asarray", "habitat_sim.agent.controls.ActuationSpec", "math.degrees", "numpy.array", "numpy.dot", "numpy.cos", "numpy.linalg.norm", "numpy.sin", "pyrobot.utils.util.quat_to_rot_mat" ]
[((1145, 1178), 'pyrobot.utils.util.quat_to_rot_mat', 'prutil.quat_to_rot_mat', (['quat_list'], {}), '(quat_list)\n', (1167, 1178), True, 'import pyrobot.utils.util as prutil\n'), ((1905, 1949), 'tf.transformations.euler_from_matrix', 'euler_from_matrix', (['cur_rotation'], {'axes': '"""sxzy"""'}), "(cur_rotation, axes='sxzy')\n", (1922, 1949), False, 'from tf.transformations import euler_from_quaternion, euler_from_matrix\n'), ((6431, 6455), 'habitat_sim.agent.controls.ActuationSpec', 'ActuationSpec', (['actuation'], {}), '(actuation)\n', (6444, 6455), False, 'from habitat_sim.agent.controls import ActuationSpec\n'), ((7013, 7047), 'math.sqrt', 'math.sqrt', (['(rel_x ** 2 + rel_y ** 2)'], {}), '(rel_x ** 2 + rel_y ** 2)\n', (7022, 7047), False, 'import math\n'), ((7228, 7264), 'numpy.asarray', 'np.asarray', (['[1, 0]'], {'dtype': 'np.float64'}), '([1, 0], dtype=np.float64)\n', (7238, 7264), True, 'import numpy as np\n'), ((7282, 7326), 'numpy.asarray', 'np.asarray', (['[rel_x, rel_y]'], {'dtype': 'np.float64'}), '([rel_x, rel_y], dtype=np.float64)\n', (7292, 7326), True, 'import numpy as np\n'), ((7433, 7456), 'numpy.arccos', 'np.arccos', (['cosine_angle'], {}), '(cosine_angle)\n', (7442, 7456), True, 'import numpy as np\n'), ((8331, 8352), 'math.degrees', 'math.degrees', (['rel_yaw'], {}), '(rel_yaw)\n', (8343, 8352), False, 'import math\n'), ((7354, 7368), 'numpy.dot', 'np.dot', (['v1', 'v2'], {}), '(v1, v2)\n', (7360, 7368), True, 'import numpy as np\n'), ((7507, 7526), 'math.degrees', 'math.degrees', (['angle'], {}), '(angle)\n', (7519, 7526), False, 'import math\n'), ((7743, 7777), 'math.sqrt', 'math.sqrt', (['(rel_x ** 2 + rel_y ** 2)'], {}), '(rel_x ** 2 + rel_y ** 2)\n', (7752, 7777), False, 'import math\n'), ((5842, 5857), 'numpy.cos', 'np.cos', (['cur_yaw'], {}), '(cur_yaw)\n', (5848, 5857), True, 'import numpy as np\n'), ((5859, 5874), 'numpy.sin', 'np.sin', (['cur_yaw'], {}), '(cur_yaw)\n', (5865, 5874), True, 'import numpy as np\n'), ((5918, 5933), 'numpy.cos', 'np.cos', (['cur_yaw'], {}), '(cur_yaw)\n', (5924, 5933), True, 'import numpy as np\n'), ((5973, 5997), 'numpy.array', 'np.array', (['[rel_X, rel_Y]'], {}), '([rel_X, rel_Y])\n', (5981, 5997), True, 'import numpy as np\n'), ((7372, 7390), 'numpy.linalg.norm', 'np.linalg.norm', (['v1'], {}), '(v1)\n', (7386, 7390), True, 'import numpy as np\n'), ((7393, 7411), 'numpy.linalg.norm', 'np.linalg.norm', (['v2'], {}), '(v2)\n', (7407, 7411), True, 'import numpy as np\n'), ((5901, 5916), 'numpy.sin', 'np.sin', (['cur_yaw'], {}), '(cur_yaw)\n', (5907, 5916), True, 'import numpy as np\n')]
from django.contrib import admin from .models import Chat class ChatAdmin(admin.ModelAdmin): list_display = ("pk",) admin.site.register(Chat, ChatAdmin)
[ "django.contrib.admin.site.register" ]
[((125, 161), 'django.contrib.admin.site.register', 'admin.site.register', (['Chat', 'ChatAdmin'], {}), '(Chat, ChatAdmin)\n', (144, 161), False, 'from django.contrib import admin\n')]
# -*- coding: utf-8 -*- from pythainlp.tokenize import etcc print(etcc.etcc("คืนความสุข")) # /คืน/ความสุข
[ "pythainlp.tokenize.etcc.etcc" ]
[((68, 91), 'pythainlp.tokenize.etcc.etcc', 'etcc.etcc', (['"""คืนความสุข"""'], {}), "('คืนความสุข')\n", (77, 91), False, 'from pythainlp.tokenize import etcc\n')]
""" PyColourChooser Copyright (C) 2002 <NAME> <<EMAIL>> This file is part of PyColourChooser. This version of PyColourChooser is open source; you can redistribute it and/or modify it under the licensed terms. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. """ # 12/14/2003 - <NAME> (<EMAIL>) # # o 2.5 compatibility update. # # 12/21/2003 - <NAME> (<EMAIL>) # # o wxPyColorChooser -> PyColorChooser # o wxPyColourChooser -> PyColourChooser # # Tags: phoenix-port import wx class BitmapBuffer(wx.MemoryDC): """A screen buffer class. This class implements a screen output buffer. Data is meant to be drawn in the buffer class and then blitted directly to the output device, or on-screen window. """ def __init__(self, width, height, colour): """Initialize the empty buffer object.""" wx.MemoryDC.__init__(self) self.width = width self.height = height self.colour = colour self.bitmap = wx.Bitmap(self.width, self.height) self.SelectObject(self.bitmap) # Initialize the buffer to the background colour self.SetBackground(wx.Brush(self.colour, wx.BRUSHSTYLE_SOLID)) self.Clear() # Make each logical unit of the buffer equal to 1 pixel self.SetMapMode(wx.MM_TEXT) def GetBitmap(self): """Returns the internal bitmap for direct drawing.""" return self.bitmap # GetPixel seems to always return (-1, -1, -1, 255) # on OS X so this is a workaround for that issue. def GetPixelColour(self, x, y): """Gets the color value of the pixel at the given cords. """ img = self.GetAsBitmap().ConvertToImage() red = img.GetRed(x, y) green = img.GetGreen(x, y) blue = img.GetBlue(x, y) return wx.Colour(red, green, blue) class Canvas(wx.Window): """A canvas class for arbitrary drawing. The Canvas class implements a window that allows for drawing arbitrary graphics. It implements a double buffer scheme and blits the off-screen buffer to the window during paint calls by the windowing system for speed. Some other methods for determining the canvas colour and size are also provided. """ def __init__(self, parent, id, pos=wx.DefaultPosition, style=wx.SIMPLE_BORDER, forceClientSize=None): """Creates a canvas instance and initializes the off-screen buffer. Also sets the handler for rendering the canvas automatically via size and paint calls from the windowing system.""" wx.Window.__init__(self, parent, id, pos, style=style) if forceClientSize: self.SetMaxClientSize(forceClientSize) self.SetMinClientSize(forceClientSize) # Perform an intial sizing self.ReDraw() # Register event handlers self.Bind(wx.EVT_SIZE, self.onSize) self.Bind(wx.EVT_PAINT, self.onPaint) def MakeNewBuffer(self): size = self.GetClientSize() self.buffer = BitmapBuffer(size[0], size[1], self.GetBackgroundColour()) def onSize(self, event): """Perform actual redraw to off-screen buffer only when the size of the canvas has changed. This saves a lot of computation since the same image can be re-used, provided the canvas size hasn't changed.""" self.MakeNewBuffer() self.DrawBuffer() self.Refresh() def ReDraw(self): """Explicitly tells the canvas to redraw it's contents.""" self.onSize(None) def Refresh(self): """Re-draws the buffer contents on-screen.""" dc = wx.ClientDC(self) self.Blit(dc) def onPaint(self, event): """Renders the off-screen buffer on-screen.""" dc = wx.PaintDC(self) self.Blit(dc) def Blit(self, dc): """Performs the blit of the buffer contents on-screen.""" width, height = self.buffer.GetSize() dc.Blit(0, 0, width, height, self.buffer, 0, 0) def GetBoundingRect(self): """Returns a tuple that contains the co-ordinates of the top-left and bottom-right corners of the canvas.""" x, y = self.GetPosition() w, h = self.GetSize() return(x, y + h, x + w, y) def DrawBuffer(self): """Actual drawing function for drawing into the off-screen buffer. To be overrideen in the implementing class. Do nothing by default.""" pass
[ "wx.MemoryDC.__init__", "wx.Colour", "wx.PaintDC", "wx.Brush", "wx.Bitmap", "wx.Window.__init__", "wx.ClientDC" ]
[((967, 993), 'wx.MemoryDC.__init__', 'wx.MemoryDC.__init__', (['self'], {}), '(self)\n', (987, 993), False, 'import wx\n'), ((1103, 1137), 'wx.Bitmap', 'wx.Bitmap', (['self.width', 'self.height'], {}), '(self.width, self.height)\n', (1112, 1137), False, 'import wx\n'), ((1940, 1967), 'wx.Colour', 'wx.Colour', (['red', 'green', 'blue'], {}), '(red, green, blue)\n', (1949, 1967), False, 'import wx\n'), ((2753, 2807), 'wx.Window.__init__', 'wx.Window.__init__', (['self', 'parent', 'id', 'pos'], {'style': 'style'}), '(self, parent, id, pos, style=style)\n', (2771, 2807), False, 'import wx\n'), ((3855, 3872), 'wx.ClientDC', 'wx.ClientDC', (['self'], {}), '(self)\n', (3866, 3872), False, 'import wx\n'), ((3994, 4010), 'wx.PaintDC', 'wx.PaintDC', (['self'], {}), '(self)\n', (4004, 4010), False, 'import wx\n'), ((1262, 1304), 'wx.Brush', 'wx.Brush', (['self.colour', 'wx.BRUSHSTYLE_SOLID'], {}), '(self.colour, wx.BRUSHSTYLE_SOLID)\n', (1270, 1304), False, 'import wx\n')]
#!/usr/bin/env python """ generate-all-graphs.py python generate-all-graphs.py | gzip -c > all-graphs.gz """ import sys import json import itertools import numpy as np from tqdm import tqdm from nasbench.lib import graph_util from joblib import delayed, Parallel max_vertices = 7 num_ops = 3 max_edges = 9 def make_graphs(vertices, bits): matrix = np.fromfunction(graph_util.gen_is_edge_fn(bits), (vertices, vertices), dtype=np.int8) if graph_util.num_edges(matrix) > max_edges: return [] if not graph_util.is_full_dag(matrix): return [] out = [] for labeling in itertools.product(*[range(num_ops) for _ in range(vertices-2)]): labeling = [-1] + list(labeling) + [-2] out.append({ "hash" : graph_util.hash_module(matrix, labeling), "adj" : matrix.tolist(), "labeling" : labeling, }) return out adjs = [] for vertices in range(2, max_vertices+1): for bits in range(2 ** (vertices * (vertices-1) // 2)): adjs.append((vertices, bits)) adjs = [adjs[i] for i in np.random.permutation(len(adjs))] jobs = [delayed(make_graphs)(*adj) for adj in adjs] res = Parallel(n_jobs=40, backend='multiprocessing', verbose=10)(jobs) for r in res: for rr in r: print(json.dumps(rr))
[ "nasbench.lib.graph_util.is_full_dag", "nasbench.lib.graph_util.num_edges", "nasbench.lib.graph_util.gen_is_edge_fn", "json.dumps", "joblib.Parallel", "nasbench.lib.graph_util.hash_module", "joblib.delayed" ]
[((1197, 1255), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': '(40)', 'backend': '"""multiprocessing"""', 'verbose': '(10)'}), "(n_jobs=40, backend='multiprocessing', verbose=10)\n", (1205, 1255), False, 'from joblib import delayed, Parallel\n'), ((387, 418), 'nasbench.lib.graph_util.gen_is_edge_fn', 'graph_util.gen_is_edge_fn', (['bits'], {}), '(bits)\n', (412, 418), False, 'from nasbench.lib import graph_util\n'), ((469, 497), 'nasbench.lib.graph_util.num_edges', 'graph_util.num_edges', (['matrix'], {}), '(matrix)\n', (489, 497), False, 'from nasbench.lib import graph_util\n'), ((545, 575), 'nasbench.lib.graph_util.is_full_dag', 'graph_util.is_full_dag', (['matrix'], {}), '(matrix)\n', (567, 575), False, 'from nasbench.lib import graph_util\n'), ((1146, 1166), 'joblib.delayed', 'delayed', (['make_graphs'], {}), '(make_graphs)\n', (1153, 1166), False, 'from joblib import delayed, Parallel\n'), ((1302, 1316), 'json.dumps', 'json.dumps', (['rr'], {}), '(rr)\n', (1312, 1316), False, 'import json\n'), ((791, 831), 'nasbench.lib.graph_util.hash_module', 'graph_util.hash_module', (['matrix', 'labeling'], {}), '(matrix, labeling)\n', (813, 831), False, 'from nasbench.lib import graph_util\n')]
from bs4 import BeautifulSoup as soup from selenium import webdriver class Scrapper: def getArticles(self, cryptoName): url = 'https://coinmarketcap.com/currencies/' + cryptoName + '/news/' driver = webdriver.Firefox() driver.get(url) page = driver.page_source page_soup = soup(page, 'html.parser') headers = page_soup.findAll("h3", {"class": "sc-1q9q90x-0", "class": "gEZmSc"}) paragraphs = page_soup.findAll("p", {"class": "sc-1eb5slv-0", "class": "svowul-3", "class": "ddtKCV"}) print('Latest news about', cryptoName.capitalize(), end=':') print() for i in range(0, min(len(headers), len(paragraphs))): print('Article', (i + 1), end=':') print() print(headers[i].text.strip(), '\n', 'More:', paragraphs[i].text.strip(), '\n')
[ "bs4.BeautifulSoup", "selenium.webdriver.Firefox" ]
[((221, 240), 'selenium.webdriver.Firefox', 'webdriver.Firefox', ([], {}), '()\n', (238, 240), False, 'from selenium import webdriver\n'), ((320, 345), 'bs4.BeautifulSoup', 'soup', (['page', '"""html.parser"""'], {}), "(page, 'html.parser')\n", (324, 345), True, 'from bs4 import BeautifulSoup as soup\n')]
#!/usr/bin/python3 """qsubm -- generic queue submission for task-oriented batch scripts Environment variables: MCSCRIPT_DIR should specify the directory in which the mcscript package is installed, i.e., the directory where the file qsubm.py is found. (Note that qsubm uses this information to locate certain auxiliary script files used as part of the job submission process.) MCSCRIPT_RUN_HOME must specify the directory in which job files are found. MCSCRIPT_WORK_HOME should specify the parent directory in which run scratch directories should be made. MCSCRIPT_INSTALL_HOME must specify the directory in which executables are found. MCSCRIPT_LAUNCH_HOME (optional) should specify the parent directory in which run subdirectories for qsub invocation and output logging should be made. Otherwise, this will default to MCSCRIPT_WORK_HOME. MCSCRIPT_PYTHON should give the full qualified filename (i.e., including path) to the Python 3 executable for running run script files. A typical value will simply be "python3", assuming the Python 3 executable is in the shell's command search PATH. However, see note on "Availability of Python" in INSTALL.md. MCSCRIPT_RUN_PREFIX should specify the prefix for run names, e.g., set to "run" if your scripts are to be named run<XXXX>.py. Requires local definitions file config.py to translate options into arguments for local batch server. See directions in readme.txt. Your local definitions might not make use of or support all the parallel environment options. Language: Python 3 <NAME> University of Notre Dame + 3/6/13 (mac): Based on earlier qsubm csh script. + 7/4/13 (mac): Support for multiple cluster flavors via qsubm_local. + 1/22/14 (mac): Python 3 update. + 10/27/14 (mac): Updates to --archive handling. + 5/14/15 (mac): - Insert "future" statements for Python 2 legacy support. - Add --noredirect switch. - Mandatory environment variable QSUBM_PYTHON. + 8/4/15 (mac): Make user environment variable definitions into option. + 6/13/16 (mac): Rename environment variables to MCSCRIPT_*. + 6/22/16 (mac): Update to use config.py for local configuration. + 12/14/16 (mac): Add --here option. + 12/29/16 (mac): - Add --spread option. - Remove --pernode option. - Make --opt option repeatable. + 1/16/17 (mac): Add --serialthreads option. + 2/23/17 (mac): Switch from os.mkdir to mcscript.utils.mkdir. + 3/16/17 (mac): - Add --setup option. - Change environment interface to pass MCSCRIPT_TASK_MODE. + 3/18/17 (mac): - Revise to support updated hybrid run parameters. - Rename option --setup to --prerun. + 5/22/17 (mac): Fix processing of boolean option --redirect. + 10/11/17 (pjf): Add --switchwaittime option. + 01/05/18 (pjf): Sort arguments into groups. + 02/11/18 (pjf): - Pass through MCSCRIPT_INSTALL_HOME. - Use job_environ for submission. + 07/06/18 (pjf): - Pass queue via MCSCRIPT_RUN_QUEUE. - Remove MCSCRIPT_HYBRID_NODESIZE. + 06/04/19 (pjf): - Add hook for individual configurations to add command-line arguments. - Move --switchwaittime option into config-slurm-nersc.py. + 09/11/19 (pjf): Add expert mode argument. """ import argparse import os import shutil import subprocess import sys import mcscript.config # local configuration (usually symlink) import mcscript.utils ################################################################ # argument parsing ################################################################ parser = argparse.ArgumentParser( description="Queue submission for numbered run.", usage= "%(prog)s [option] run queue|RUN wall [var1=val1, ...]\n", formatter_class=argparse.ArgumentDefaultsHelpFormatter, epilog= """Simply omit the queue name and leave off the wall time for a local interactive run. Environment variables for qsubm are described in INSTALL.md. Note that qsubm relies upon code in the local `config.py` configuration file for the system or cluster you are running on, in order to interpret the following arguments and translate them into arguments for your local batch system. Your local configuration file might not make use of or support all the parallel environment options listed below. """ ) # general arguments parser.add_argument("run", help="Run number (e.g., 0000 for run0000)") # latter arguments are made optional to simplify bare-bones syntax for --toc, etc., calls parser.add_argument("queue", nargs='?', help="Submission queue, or RUN for direct interactive run", default="RUN") parser.add_argument("wall", type=int, nargs='?', help="Wall time (minutes)", default=60) ##parser.add_argument("vars", nargs="?", help="Environment variables to pass to script, with optional values, comma delimited (e.g., METHOD2, PARAM=1.0)") parser.add_argument("--here", action="store_true", help="Force run in current working directory") parser.add_argument("--vars", help="Environment variables to pass to script, with optional values, comma delimited (e.g., --vars=METHOD2, PARAM=1.0)") ## parser.add_argument("--stat", action="store_true", help="Display queue status information") parser.add_argument("--num", type=int, default=1, help="Number of repetitions") parser.add_argument("--opt", action="append", help="Additional option arguments to be passed to job submission command (e.g., --opt=\"-m ae\" or --opt=\"--mail-type=END,FAIL\"), may be repeated (e.g., --opt=\"-A acct\" --opt=\"-a 1200\"); beware the spaces may be important to the job submission command") parser.add_argument("--expert", action="store_true", help="Run mcscript in expert mode") # serial run parallelization parameters serial_group = parser.add_argument_group("serial run options (single-node, non-MPI)") serial_group.add_argument("--serialthreads", type=int, default=1, help="OMP threads") # hybrid run parallelization parameters # # Not all local configuration files need necessarily require or # respect all of the following parameters. hybrid_group = parser.add_argument_group("hybrid run options") hybrid_group.add_argument("--nodes", type=int, default=1, help="number of nodes") hybrid_group.add_argument("--ranks", type=int, default=1, help="number of MPI ranks") hybrid_group.add_argument("--threads", type=int, default=1, help="OMP threads per rank)") hybrid_group.add_argument("--nodesize", type=int, default=0, help="logical threads available per node" " (might instead be interpreted physical CPUs depending on local config file)") ##hybrid_group.add_argument("--undersubscription", type=int, default=1, help="undersubscription factor (e.g., spread=2 requests twice the cores needed)") # multi-task interface: invocation modes task_mode_group = parser.add_mutually_exclusive_group() task_mode_group.add_argument("--toc", action="store_true", help="Invoke run script to generate task table of contents") task_mode_group.add_argument("--unlock", action="store_true", help="Delete any .lock or .fail flags for tasks") task_mode_group.add_argument("--archive", action="store_true", help="Invoke archive-generation run") task_mode_group.add_argument("--prerun", action="store_true", help="Invoke prerun mode, for argument validation and file staging only") task_mode_group.add_argument("--offline", action="store_true", help="Invoke offline mode, to create batch scripts for later submission instead of running compute codes") # multi-task interface: task selection task_selection_group = parser.add_argument_group("multi-task run options") task_selection_group.add_argument("--pool", help="Set task pool (or ALL) for task selection") task_selection_group.add_argument("--phase", type=int, default=0, help="Set task phase for task selection") task_selection_group.add_argument("--start", type=int, help="Set starting task number for task selection") task_selection_group.add_argument("--limit", type=int, help="Set task count limit for task selection") task_selection_group.add_argument("--redirect", default="True", choices=["True", "False"], help="Allow redirection of standard" " output/error to file (may want to disable for interactive debugging)") # some special options (deprecated?) ##parser.add_argument("--epar", type=int, default=None, help="Width for embarassingly parallel job") ##parser.add_argument("--nopar", action="store_true", help="Disable parallel resource requests (for use on special serial queues)") # site-local options try: mcscript.config.qsubm_arguments(parser) except AttributeError: # local config doesn't provide arguments, ignore gracefully pass ##parser.print_help() ##print args = parser.parse_args() ##printargs ################################################################ # special mode: status display ################################################################ # TODO # will have to modify argument processing to allow no arguments, local # customization for qstat # @ i = 0 # while (($i == 0) || ($loop)) # @ i++ # clear # echo "****************************************************************" # qstat -u $user # if ($loop) sleep 5 # end ## if (args.stat): ## pass ################################################################ # environment processing ################################################################ if (args.here): run_home = os.environ["PWD"] elif ("MCSCRIPT_RUN_HOME" in os.environ): run_home = os.environ["MCSCRIPT_RUN_HOME"] else: print("MCSCRIPT_RUN_HOME not found in environment") exit(1) if (args.here): work_home = os.environ["PWD"] elif ("MCSCRIPT_WORK_HOME" in os.environ): work_home = os.environ["MCSCRIPT_WORK_HOME"] else: print("MCSCRIPT_WORK_HOME not found in environment") exit(1) if (args.here): launch_home = os.environ["PWD"] elif ("MCSCRIPT_LAUNCH_HOME" in os.environ): launch_home = os.environ["MCSCRIPT_LAUNCH_HOME"] else: launch_home = work_home if ("MCSCRIPT_RUN_PREFIX" in os.environ): run_prefix = os.environ["MCSCRIPT_RUN_PREFIX"] else: print("MCSCRIPT_RUN_PREFIX not found in environment") exit(1) if ("MCSCRIPT_PYTHON" in os.environ): python_executable = os.environ["MCSCRIPT_PYTHON"] else: print("MCSCRIPT_PYTHON not found in environment") exit(1) if ("MCSCRIPT_DIR" in os.environ): qsubm_path = os.environ["MCSCRIPT_DIR"] else: print("MCSCRIPT_DIR not found in environment") exit(1) ################################################################ # argument processing ################################################################ # set run name run = run_prefix + args.run print("Run:", run) # ...and process run file script_extensions = [".py", ".csh"] job_file = None for extension in script_extensions: filename = os.path.join(run_home, run+extension) if (filename): job_file = filename job_extension = extension break print(" Run home:", run_home) # useful to report now, in case job file missing if (job_file is None): print("No job file %s.* found with an extension in the set %s." % (run, script_extensions)) exit(1) print(" Job file:", job_file) # set queue and flag batch or local mode # force local run for task.py toc mode if ((args.queue == "RUN") or args.toc or args.unlock): run_mode = "local" run_queue = "local" print(" Mode:", run_mode) else: run_mode = "batch" run_queue = args.queue print(" Mode:", run_mode, "(%s)" % args.queue) # set wall time wall_time_min = args.wall print(" Wall time (min): {:d}".format(wall_time_min)) wall_time_sec = wall_time_min*60 # environment definitions: general run parameters environment_definitions = [ "MCSCRIPT_RUN={:s}".format(run), "MCSCRIPT_JOB_FILE={:s}".format(job_file), "MCSCRIPT_RUN_MODE={:s}".format(run_mode), "MCSCRIPT_RUN_QUEUE={:s}".format(run_queue), "MCSCRIPT_WALL_SEC={:d}".format(wall_time_sec) ] # environment definitions: serial run parameters environment_definitions += [ "MCSCRIPT_SERIAL_THREADS={:d}".format(args.serialthreads) ] # environment definitions: hybrid run parameters environment_definitions += [ "MCSCRIPT_HYBRID_NODES={:d}".format(args.nodes), "MCSCRIPT_HYBRID_RANKS={:d}".format(args.ranks), "MCSCRIPT_HYBRID_THREADS={:d}".format(args.threads), ] # set multi-task run parameters if (args.toc): task_mode = mcscript.task.TaskMode.kTOC elif (args.unlock): task_mode = mcscript.task.TaskMode.kUnlock elif (args.archive): task_mode = mcscript.task.TaskMode.kArchive elif (args.prerun): task_mode = mcscript.task.TaskMode.kPrerun elif (args.offline): task_mode = mcscript.task.TaskMode.kOffline else: task_mode = mcscript.task.TaskMode.kRun # TODO (mac): neaten up so that these arguments are always provided # (and simplify this code to a simple list += as above) environment_definitions.append("MCSCRIPT_TASK_MODE={:d}".format(task_mode.value)) if (args.pool is not None): environment_definitions.append("MCSCRIPT_TASK_POOL={:s}".format(args.pool)) if (args.phase is not None): environment_definitions.append("MCSCRIPT_TASK_PHASE={:d}".format(args.phase)) if (args.start is not None): environment_definitions.append("MCSCRIPT_TASK_START_INDEX={:d}".format(args.start)) if (args.limit is not None): environment_definitions.append("MCSCRIPT_TASK_COUNT_LIMIT={:d}".format(args.limit)) environment_definitions.append("MCSCRIPT_TASK_REDIRECT={:s}".format(args.redirect)) # pass through install directory if os.environ.get("MCSCRIPT_INSTALL_HOME"): environment_definitions += [ "MCSCRIPT_INSTALL_HOME={:s}".format(os.environ["MCSCRIPT_INSTALL_HOME"]) ] elif os.environ.get("MCSCRIPT_INSTALL_DIR"): # TODO remove deprecated environment variable print("****************************************************************") print("MCSCRIPT_INSTALL_DIR is now MCSCRIPT_INSTALL_HOME.") print("Please update your environment variables.") print("****************************************************************") environment_definitions += [ "MCSCRIPT_INSTALL_HOME={:s}".format(os.environ["MCSCRIPT_INSTALL_DIR"]) ] else: print("MCSCRIPT_INSTALL_HOME not found in environment") exit(1) # include additional environment setup if defined if os.environ.get("MCSCRIPT_SOURCE"): environment_definitions += [ "MCSCRIPT_SOURCE={:s}".format(os.environ["MCSCRIPT_SOURCE"]) ] # set user-specified variable definitions # Note conditional is required since "".split(", ") is [""] rather than []. if (args.vars is None): user_environment_definitions = [] else: user_environment_definitions = args.vars.split(",") print(" User environment definitions:", user_environment_definitions) environment_definitions += user_environment_definitions ################################################################ # directory setup ################################################################ # set up scratch directory (for batch job work) # name is defined here, but creation is left up to job script, # in case scratch is local to the compute note work_dir = os.path.join(work_home, run) ## if ( not os.path.exists(work_dir)): ## mcscript.utils.mkdir(work_dir) environment_definitions.append("MCSCRIPT_WORK_DIR=%s" % work_dir) # set up run launch directory (for batch job output logging) launch_dir_parent = os.path.join(launch_home, run) if ( not os.path.exists(launch_home)): mcscript.utils.mkdir(launch_home) if ( not os.path.exists(launch_dir_parent)): mcscript.utils.mkdir(launch_dir_parent) if (args.archive): # archive mode # launch in archive directory rather than usual batch job output directory # (important since if batch job server directs output to the # regular output directory while tar is archiving that directory, # tar will return with an error code, torpedoing the archive task) launch_dir = os.path.join(launch_home, run, "archive") else: # standard run mode launch_dir = os.path.join(launch_home, run, "batch") if ( not os.path.exists(launch_dir)): mcscript.utils.mkdir(launch_dir) environment_definitions.append("MCSCRIPT_LAUNCH_DIR=%s" % launch_dir) ################################################################ # job environment setup ################################################################ # construct job name job_name = "%s" % run ##job_name += "-w%d" % args.width if (args.pool is not None): job_name += "-%s" % args.pool job_name += "-%s" % args.phase print(" Job name:", job_name) # process environment definitions # regularize environment definitions # Convert all plain variable name definitions "VAR" into definition # as null string "VAR=". Note that "VAR" would be an environment # variable pass-through request to qsub, but it causes trouble with # defining an environment for local execution. So doing this # regularization simplifies further processing and ensures # uniformity of the environment between batch and local runs. for i in range(len(environment_definitions)): if (not "=" in environment_definitions[i]): environment_definitions[i] += "=" print() print("Vars:", ",".join(environment_definitions)) # for local run job_environ=os.environ environment_keyvalues = [ entry.split("=") for entry in environment_definitions ] job_environ.update(dict(environment_keyvalues)) ################################################################ # run invocation ################################################################ # flush script output before invoking job print() sys.stdout.flush() # handle batch run if (run_mode == "batch"): # set local qsub arguments (submission_args, submission_input_string, repetitions) = mcscript.config.submission(job_name, job_file, qsubm_path, environment_definitions, args) # notes: options must come before command on some platforms (e.g., Univa) print(" ".join(submission_args)) print(submission_input_string) print() print("-"*64) for i in range(repetitions): process = subprocess.Popen( submission_args, stdin=subprocess.PIPE, # to take input from communicate stdout=subprocess.PIPE, # to send output to communicate -- default merged stderr env=job_environ, cwd=launch_dir ) stdout_bytes = process.communicate(input=submission_input_string)[0] stdout_string = stdout_bytes.decode("utf-8") print(stdout_string) # handle interactive run # Note: We call interpreter rather than trying to directly execute # job file since this saves us from bothering with execute permissions. # But, beware the interpreter enforced by the script's shebang line might # be different from the version of the interpreter found in the below invocation, # especially in a "module" environment. elif (run_mode == "local"): if (extension == ".py"): popen_args = [python_executable, job_file] elif (extension == ".csh"): popen_args = ["csh", job_file] print() print("-"*64) process = subprocess.Popen(popen_args, cwd=launch_dir, env=job_environ) process.wait()
[ "os.path.exists", "argparse.ArgumentParser", "subprocess.Popen", "os.path.join", "os.environ.get", "sys.stdout.flush" ]
[((3734, 4494), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Queue submission for numbered run."""', 'usage': '"""%(prog)s [option] run queue|RUN wall [var1=val1, ...]\n"""', 'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter', 'epilog': '"""Simply omit the queue name and leave off the wall time for a\n local interactive run.\n\n Environment variables for qsubm are described in INSTALL.md.\n\n Note that qsubm relies upon code in the local `config.py`\n configuration file for the system or cluster you are running on, in\n order to interpret the following arguments and translate them into\n arguments for your local batch system. Your local configuration\n file might not make use of or support all the parallel environment\n options listed below.\n """'}), '(description=\'Queue submission for numbered run.\',\n usage="""%(prog)s [option] run queue|RUN wall [var1=val1, ...]\n""",\n formatter_class=argparse.ArgumentDefaultsHelpFormatter, epilog=\n """Simply omit the queue name and leave off the wall time for a\n local interactive run.\n\n Environment variables for qsubm are described in INSTALL.md.\n\n Note that qsubm relies upon code in the local `config.py`\n configuration file for the system or cluster you are running on, in\n order to interpret the following arguments and translate them into\n arguments for your local batch system. Your local configuration\n file might not make use of or support all the parallel environment\n options listed below.\n """\n )\n', (3757, 4494), False, 'import argparse\n'), ((13722, 13761), 'os.environ.get', 'os.environ.get', (['"""MCSCRIPT_INSTALL_HOME"""'], {}), "('MCSCRIPT_INSTALL_HOME')\n", (13736, 13761), False, 'import os\n'), ((14504, 14537), 'os.environ.get', 'os.environ.get', (['"""MCSCRIPT_SOURCE"""'], {}), "('MCSCRIPT_SOURCE')\n", (14518, 14537), False, 'import os\n'), ((15346, 15374), 'os.path.join', 'os.path.join', (['work_home', 'run'], {}), '(work_home, run)\n', (15358, 15374), False, 'import os\n'), ((15600, 15630), 'os.path.join', 'os.path.join', (['launch_home', 'run'], {}), '(launch_home, run)\n', (15612, 15630), False, 'import os\n'), ((17813, 17831), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (17829, 17831), False, 'import sys\n'), ((10998, 11037), 'os.path.join', 'os.path.join', (['run_home', '(run + extension)'], {}), '(run_home, run + extension)\n', (11010, 11037), False, 'import os\n'), ((13888, 13926), 'os.environ.get', 'os.environ.get', (['"""MCSCRIPT_INSTALL_DIR"""'], {}), "('MCSCRIPT_INSTALL_DIR')\n", (13902, 13926), False, 'import os\n'), ((15640, 15667), 'os.path.exists', 'os.path.exists', (['launch_home'], {}), '(launch_home)\n', (15654, 15667), False, 'import os\n'), ((15717, 15750), 'os.path.exists', 'os.path.exists', (['launch_dir_parent'], {}), '(launch_dir_parent)\n', (15731, 15750), False, 'import os\n'), ((16137, 16178), 'os.path.join', 'os.path.join', (['launch_home', 'run', '"""archive"""'], {}), "(launch_home, run, 'archive')\n", (16149, 16178), False, 'import os\n'), ((16226, 16265), 'os.path.join', 'os.path.join', (['launch_home', 'run', '"""batch"""'], {}), "(launch_home, run, 'batch')\n", (16238, 16265), False, 'import os\n'), ((16275, 16301), 'os.path.exists', 'os.path.exists', (['launch_dir'], {}), '(launch_dir)\n', (16289, 16301), False, 'import os\n'), ((18294, 18412), 'subprocess.Popen', 'subprocess.Popen', (['submission_args'], {'stdin': 'subprocess.PIPE', 'stdout': 'subprocess.PIPE', 'env': 'job_environ', 'cwd': 'launch_dir'}), '(submission_args, stdin=subprocess.PIPE, stdout=subprocess.\n PIPE, env=job_environ, cwd=launch_dir)\n', (18310, 18412), False, 'import subprocess\n'), ((19322, 19383), 'subprocess.Popen', 'subprocess.Popen', (['popen_args'], {'cwd': 'launch_dir', 'env': 'job_environ'}), '(popen_args, cwd=launch_dir, env=job_environ)\n', (19338, 19383), False, 'import subprocess\n')]
from scripts.downloader import * import fiona from shapely.geometry import shape import geopandas as gpd import matplotlib.pyplot as plt from pprint import pprint import requests import json import time import os # Constant variables input_min_lat = 50.751797561 input_min_lon = 5.726110232 input_max_lat = 50.938216069 input_max_lon = 6.121604582 route_search_url = "https://api.routeyou.com/2.0/json/Route/k-9aec2fc1705896b901c3ea17d6223f0a/mapSearch" route_search_headers = {"Accept": "*/*", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "nl,en-US;q=0.7,en;q=0.3", "Connection": "keep-alive", "Content-Length": "331", "Content-Type": "text/plain;charset=UTF-8", "DNT": "1", "Host": "api.routeyou.com", "Origin": "https://www.routeyou.com", "Referer": "https://www.routeyou.com/route/search/2/walking-route-search", "TE": "Trailers", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0"} default_headers = {"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "nl,en-US;q=0.7,en;q=0.3", "Connection": "test", "Cookie": "rtysid=5gf59rik6gf8o7b5an7nalcsh0; " "_ga=GA1.2.1811204879.1553438381; _" "gid=GA1.2.1815573989.1553438381; __" "gads=ID=fab95f7aaf65227e:T=1553438384:S=ALNI_MaIjkdo1dKpYiyQKfWZEymqT7HgUQ", "Host": "download.routeyou.com", "Referer": "https://www.routeyou.com/nl-be/route/view/5653357/wandelroute/" "in-het-spoor-van-napoleon-kasteel-reinhardstein-en-de-stuwdam-van-robertville", "TE": "Trailers", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:65.0) Gecko/20100101 Firefox/65.0"} # # Setup script # bounding_boxes_list = create_bounding_boxes(input_min_lat, input_min_lon, input_max_lat, input_max_lon, # nr_of_rows=12, nr_of_columns=12) # for index, bounding_box in enumerate(bounding_boxes_list): # route_search_data = '{"jsonrpc":"2.0","id":"3","method":"searchAdvanced","params":' \ # '[{"bounds":{"min":{"lat":%s,"lon":%s},"max":{"lat":%s,"lon":%s}},' \ # '"type.id":2,"score.min":0.5,"bounds.comparator":"geometry"},null,100,0,' \ # '{"clusters":false,"addLanguage":"en","media":false,"description":false}]}' \ # % (bounding_box['min_lat'], bounding_box['min_lon'], bounding_box['max_lat'], bounding_box['max_lon']) # response = requests.post(url=route_search_url, headers=route_search_headers, # data=route_search_data) # with open("D:/Wandelroutes/Text/routes_{}.txt".format(index), "wb") as file: # file.write(response.content) # data = json.loads(response.content) # print("Index / routes count / total routes: ", index, "/", len(data['result']['routes']), "/", data['result']['total']) # # for route in data['result']['routes']: # time.sleep(0.5) # route_url = "https://download.routeyou.com/k-9aec2fc1705896b901c3ea17d6223f0a/route/{}.gpx?language=nl".format(route['id']) # filepath = "D:/Wandelroutes/GPX/{}.gpx".format(route['id']) # download_to_file(route_url, default_headers, filepath) dir_filepath = "D:/Wandelroutes/GPX" filenames = os.listdir(dir_filepath) rows_list = [] for filename in filenames: layer = fiona.open(os.path.join(dir_filepath, filename), layer='tracks') geom = layer[0] route_name = geom['properties']['name'] route_geodata = {'type': 'MultiLineString', 'coordinates': geom['geometry']['coordinates']} route_geometry = shape(route_geodata) route_id = os.path.splitext(os.path.basename(filename))[0] route_dict = {'id': str(route_id), 'name': route_name, 'url': "https://www.routeyou.com/nl-nl/route/view/" + str(route_id), 'geometry': route_geometry} rows_list.append(route_dict) routes_gdf = gpd.GeoDataFrame(rows_list) routes_gdf.crs = {'init': 'epsg:4326', 'no_defs': True} routes_gdf.to_file("D:/Wandelroutes/walking_routes.shp")
[ "os.listdir", "os.path.join", "os.path.basename", "shapely.geometry.shape", "geopandas.GeoDataFrame" ]
[((3860, 3884), 'os.listdir', 'os.listdir', (['dir_filepath'], {}), '(dir_filepath)\n', (3870, 3884), False, 'import os\n'), ((4547, 4574), 'geopandas.GeoDataFrame', 'gpd.GeoDataFrame', (['rows_list'], {}), '(rows_list)\n', (4563, 4574), True, 'import geopandas as gpd\n'), ((4206, 4226), 'shapely.geometry.shape', 'shape', (['route_geodata'], {}), '(route_geodata)\n', (4211, 4226), False, 'from shapely.geometry import shape\n'), ((3950, 3986), 'os.path.join', 'os.path.join', (['dir_filepath', 'filename'], {}), '(dir_filepath, filename)\n', (3962, 3986), False, 'import os\n'), ((4259, 4285), 'os.path.basename', 'os.path.basename', (['filename'], {}), '(filename)\n', (4275, 4285), False, 'import os\n')]
import discord.ext.commands as dec import database.song from commands.common import * class Song: """Song insertion, querying and manipulation""" def __init__(self, bot): self._bot = bot self._db = database.song.SongInterface(bot.loop) _help_messages = { 'group': 'Song information, querying and manipulation', 'blacklist': '* Puts the specified song to the blacklist\n\n' 'Song ID can be located in the square brackets just before the title. It is included in the status message ' 'and all the listings.\nThis does not prevent users from including blacklisted song in their playlist, song ' 'is skipped just before playing.', 'deduplicate': '* Marks a song as a duplicate of another song\n\n' 'This is a destructive operation. The duplicate is replaced by the "original" just before playing. All tests ' '(blacklist, length, overplay) are performed on the "original" song.\nThis function is useful for replacing ' 'songs with a bad quality and is necessary for overplay protection to work correctly.\nSong IDs can be located ' 'in the square brackets just before the title. It is included in the status message and all the listings. You ' 'can also use \'search\' command to obtain the IDs.', 'failed_clear': '* Removes the songs from the failed list\n\n' 'Songs marked as duplicates are not affected. Individual songs can be removed by specifying their ID. You can ' 'use the command to fix the automatic playlist after a service outage or bot connection problems.', 'failed_list': 'Lists all the songs that have failed to download\n\n' 'Up to 20 songs are returned. Songs marked as a duplicate are considered resolved and are excluded from the ' 'list. Songs are automatically removed from this list after a successful download, or manually by using ' '\'clear\' subcommand.\n\nSongs that are marked as failed to download are excluded from the automatic ' 'playlist. Bot operators are expected to investigate download issues and provide an alternative source for ' 'the songs if necessary.', 'info': 'Displays information about the song stored in the database\n\n' 'Mainly for debugging purposes, as an aid for the bot operators.', 'permit': '* Removes the specified song from the blacklist\n\n' 'Song ID can be located in the square brackets just before the title. It is included in the status message ' 'and all the listings.', 'rename': '* Changes the title of a specified song\n\n' 'This command can be used to rename the song stored in the database. It does not update the status message; ' 'the new name is used next time the song is played.\nSong ID can be located in the square brackets just before ' 'the title. It is included in the status message and all the listings.', 'search': 'Queries the database for songs\n\n' 'Title and UURI are matched against the specified keywords. All the keywords must match either the title or ' 'UURI. Up to 20 results are returned.\nThis command can be used to lookup song IDs.', 'split': '* Marks a given song as an original\n\n' 'This command can be used to fix duplication status of the song. After this command is issued, the song ' 'specified won\'t be marked as a duplicate anymore.\nThis is the inverse command to the \'deduplicate\'. ' 'Just like the \'deduplicate\', this command does not manipulate with timestamps nor credit counts.\nSong ID ' 'can be located in the square brackets just before the song title. It is included in the status message and ' 'all the listings.' } @dec.group(invoke_without_command=True, aliases=['s'], help=_help_messages['group']) async def song(self, subcommand: str, *arguments: str): raise dec.UserInputError('Command *song* has no subcommand named {}. Please use `{}help song` to list all ' 'the available subcommands.' .format(subcommand, self._bot.config['ddmbot']['delimiter'])) @privileged @song.command(ignore_extra=False, help=_help_messages['blacklist']) async def blacklist(self, song_id: int): await self._db.blacklist(song_id) await self._bot.message('Song [{}] has been blacklisted'.format(song_id)) @privileged @song.command(ignore_extra=False, help=_help_messages['deduplicate']) async def deduplicate(self, which_id: int, target_id: int): await self._db.merge(which_id, target_id) await self._bot.message('Song [{}] has been marked as a duplicate of the song [{}]'.format(which_id, target_id)) @song.group(ignore_extra=False, invoke_without_command=True) async def failed(self): raise dec.UserInputError('You need to provide a subcommand to the *song failed* command') @privileged @failed.command(name='clear', ignore_extra=False, help=_help_messages['failed_clear']) async def failed_clear(self, song_id: int = None): raise dec.UserInputError('You need to provide a subcommand to the *song failed* command') @failed.command(name='list', ignore_extra=False, aliases=['l'], help=_help_messages['failed_list']) async def failed_list(self): items, total = await self._db.list_failed(20) if not items: await self._bot.whisper('There are no songs flagged because of a download failure') return reply = '**{} songs (out of {}) flagged because of a download failure:**\n **>** '.format(len(items), total) + \ '\n **>** '.join(['[{}] {}'.format(*item) for item in items]) await self._bot.whisper(reply) @song.command(ignore_extra=False, aliases=['i'], help=_help_messages['info']) async def info(self, song_id: int): info = await self._db.get_info(song_id) reply = '**Song [{id}] information:**\n' \ ' **Source URL:** [{url}]\n' \ ' **Title:** {title}\n' \ ' **Last played:** {last_played!s}\n' \ ' **Listener count:** {total_listener_count} ({listener_count})\n' \ ' **Skip vote count:** {total_skip_vote_count} ({skip_vote_count})\n' \ ' **Duration:** {duration}s\n' \ ' **Credits remaining:** {credit_count}\n\n' \ ' **Blacklisted:** {is_blacklisted}\n' \ ' **Has failed to download:** {has_failed}\n\n' \ ' **Marked as a duplicate of:** {duplicates}\n' \ ' **Is duplicated by:** {duplicated_by}'.format_map(info) await self._bot.whisper(reply) @privileged @song.command(ignore_extra=False, help=_help_messages['permit']) async def permit(self, song_id: int): await self._db.permit(song_id) await self._bot.message('Song [{}] has been removed from blacklist'.format(song_id)) @privileged @song.command(ignore_extra=False, help=_help_messages['rename']) async def rename(self, song_id: int, new_title: str): await self._db.rename(song_id, new_title) await self._bot.message('Song [{}] has been renamed to "{}"'.format(song_id, new_title)) @song.command(ignore_extra=False, aliases=['s'], help=_help_messages['search']) async def search(self, *keywords: str): items, total = await self._db.search(keywords, 20) if not items: await self._bot.whisper('Search for songs with keywords {} has not returned any result'.format(keywords)) return reply = '**{} songs (out of {}) matching the keywords {}:**\n **>** '.format(len(items), total, keywords) + \ '\n **>** '.join(['[{}] {}'.format(*item) for item in items]) await self._bot.whisper(reply) @privileged @song.command(ignore_extra=False, help=_help_messages['split']) async def split(self, song_id: int): await self._db.merge(song_id, song_id) await self._bot.message('Song [{}] has been marked as unique'.format(song_id))
[ "discord.ext.commands.group", "discord.ext.commands.UserInputError" ]
[((3790, 3878), 'discord.ext.commands.group', 'dec.group', ([], {'invoke_without_command': '(True)', 'aliases': "['s']", 'help': "_help_messages['group']"}), "(invoke_without_command=True, aliases=['s'], help=_help_messages[\n 'group'])\n", (3799, 3878), True, 'import discord.ext.commands as dec\n'), ((4899, 4987), 'discord.ext.commands.UserInputError', 'dec.UserInputError', (['"""You need to provide a subcommand to the *song failed* command"""'], {}), "(\n 'You need to provide a subcommand to the *song failed* command')\n", (4917, 4987), True, 'import discord.ext.commands as dec\n'), ((5160, 5248), 'discord.ext.commands.UserInputError', 'dec.UserInputError', (['"""You need to provide a subcommand to the *song failed* command"""'], {}), "(\n 'You need to provide a subcommand to the *song failed* command')\n", (5178, 5248), True, 'import discord.ext.commands as dec\n')]
""" main.py Main driver for the Linear Error Analysis program. Can be run using `lea.sh`. Can choose which plots to see by toggling on/off `show_fig` param. Author(s): <NAME>, <NAME>, <NAME> """ import os import matplotlib.pyplot as plt import numpy as np import config import libs.gta_xch4 as gta_xch4 import libs.photon_noise as pn from errors import Errors from forward import Forward from isrf import ISRF from optim import Optim if __name__ == "__main__": cfg = config.parse_config() forward = Forward(cfg) surface, molec, atm, sun_lbl = forward.get_atm_params() optics = forward.opt_properties() ( wave_meas, rad_tot, rad_ch4, rad_co2, rad_h2o, d_rad_ch4, d_rad_co2, d_rad_h2o, rad_conv_tot, rad_conv_ch4, rad_conv_co2, rad_conv_h2o, dev_conv_ch4, dev_conv_co2, dev_conv_h2o, ) = forward.plot_transmittance(show_fig=False) state_vector = forward.produce_state_vec() isrf = ISRF(cfg) isrf_func = isrf.define_isrf(show_fig=False) isrf_conv = isrf.convolve_isrf(rad_tot, show_fig=False) lea = Errors(cfg, wave_meas) sys_errors = lea.sys_errors() rand_errors = lea.rand_errors() # sys_nonlinearity = lea.sys_err_vector(1) # sys_stray_light = lea.sys_err_vector(2) # sys_crosstalk = lea.sys_err_vector(3) # sys_flat_field = lea.sys_err_vector(4) # sys_bad_px = lea.sys_err_vector(5) # sys_key_smile = lea.sys_err_vector(6) # sys_striping = lea.sys_err_vector(7) # sys_memory = lea.sys_err_vector(8) ecm = lea.error_covariance() path_root = os.path.dirname(os.path.dirname(__file__)) np.savetxt(os.path.join(path_root, "outputs", "ecm.csv"), ecm, delimiter=",") optim = Optim(cfg, wave_meas) jacobian = optim.jacobian(dev_conv_ch4, dev_conv_co2, dev_conv_h2o, show_fig=False) gain = optim.gain(ecm) modified_meas_vector = optim.modify_meas_vector(state_vector, rad_conv_tot, ecm) spectral_res, snr = optim.state_estimate(ecm, modified_meas_vector, sys_errors) print("Estimated Solution: " + str(spectral_res)) print("Uncertainty of Solution: " + str(snr)) # plot interpolated photon noise # plt.plot(lea.wave_meas, lea.photon_noise_interp) # plt.title("Interpolated Photon Noise") # plt.xlabel("Wavelength (nm)") # plt.ylabel("Photon Noise (UNITS?)") # TODO # plt.show()
[ "errors.Errors", "optim.Optim", "config.parse_config", "os.path.join", "os.path.dirname", "forward.Forward", "isrf.ISRF" ]
[((478, 499), 'config.parse_config', 'config.parse_config', ([], {}), '()\n', (497, 499), False, 'import config\n'), ((515, 527), 'forward.Forward', 'Forward', (['cfg'], {}), '(cfg)\n', (522, 527), False, 'from forward import Forward\n'), ((1040, 1049), 'isrf.ISRF', 'ISRF', (['cfg'], {}), '(cfg)\n', (1044, 1049), False, 'from isrf import ISRF\n'), ((1170, 1192), 'errors.Errors', 'Errors', (['cfg', 'wave_meas'], {}), '(cfg, wave_meas)\n', (1176, 1192), False, 'from errors import Errors\n'), ((1803, 1824), 'optim.Optim', 'Optim', (['cfg', 'wave_meas'], {}), '(cfg, wave_meas)\n', (1808, 1824), False, 'from optim import Optim\n'), ((1681, 1706), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1696, 1706), False, 'import os\n'), ((1723, 1768), 'os.path.join', 'os.path.join', (['path_root', '"""outputs"""', '"""ecm.csv"""'], {}), "(path_root, 'outputs', 'ecm.csv')\n", (1735, 1768), False, 'import os\n')]
import logging import os import re import sublime # external dependencies (see dependencies.json) import jsonschema import yaml # pyyaml # This plugin generates a hidden syntax file containing rules for additional # chainloading commands defined by the user. The syntax is stored in the cache # directory to avoid the possibility of it falling under user version control in # the usual packages directory userSyntaxName = 'execline-user-chainload.sublime-syntax' pkgName = 'execline' settingsName = 'execline.sublime-settings' mainSyntaxPath = 'Packages/{}/execline.sublime-syntax'.format(pkgName) schemaPath = 'Packages/{}/execline.sublime-settings.schema.json'.format(pkgName) ruleNamespaces = { 'keyword': 'keyword.other', 'function': 'support.function', } ruleContexts = { 'argument': { 'generic': 'command-call-common-arg-aside-&pop', 'variable': 'command-call-common-variable-&pop', 'pattern': 'command-call-common-glob-&pop', }, 'block': { 'program': 'block-run-prog', 'arguments': 'block-run-arg', 'trap': 'block-trap', 'multidefine': 'block-multidefine', }, 'options': { 'list': 'command-call-common-opt-list-&pop', 'list-with-args': { 'match': '(?=-[{}])', 'push': 'command-call-common-opt-arg-&pop', 'include': 'command-call-common-opt-list-&pop', }, }, } logging.basicConfig() logger = logging.getLogger(__name__) # Fully resolve the name of a context in the main syntax file def _resolve_context(context): return mainSyntaxPath + '#' + context # Create a match rule describing a command of a certain type, made of a list of # elements def _make_rule(cmd_name, cmd_elements, cmd_type): try: namespace = ruleNamespaces[cmd_type] except KeyError: logger.warning("Ignoring command of unrecognised type '{}'".format(cmd_type)) return rule = {} # Careful to sanitise user input. Only literal command names accepted here rule['match'] = r'{{chain_pre}}' + re.escape(cmd_name) + r'{{chain_post}}' rule['scope'] = ' '.join([ 'meta.function-call.name.execline', '{}.user.{}.execline'.format(namespace, cmd_name), 'meta.string.unquoted.execline', ]) contextSeq = [] for elem in cmd_elements: context = None # Resolve the element into a name and possible argument elemType,elemSubtype = elem[0:2] try: elemArg = elem[2] except IndexError: elemArg = '' # Look up the context named by this element try: contextData = ruleContexts[elemType][elemSubtype] if isinstance(contextData, str): contextData = { 'include': contextData } except KeyError: logger.warning("Ignoring key '{}' not found in context dictionary".format(elem)) continue if len(contextData) > 1 and not elemArg: logger.warning("Ignoring element '{}' with missing data".format(elem)) continue if len(contextData) == 1: # context = _resolve_context(contextData['include']) # Although a basic include could be provided as the target context name # directly to the 'push' list, this can break if there are a mix of other # types of contexts being pushed to the stack. A context containing a sole # include is safe from this context = [ {'include': _resolve_context(contextData['include'])} ] elif elemType == 'options': # Careful to sanitise user input, this must behave as a list of characters matchPattern = contextData['match'].format( re.escape(elemArg) ) context = [ {'match': matchPattern, 'push': _resolve_context(contextData['push'])}, {'include': _resolve_context(contextData['include'])}, ] if context: contextSeq.append(context) # Convert context sequence into context stack if contextSeq: rule['push'] = contextSeq rule['push'].reverse() return rule def _validate_settings(): # Read the schema using Sublime Text's builtin JSON parser try: schema = sublime.decode_value( sublime.load_resource(schemaPath) ) except Exception as ex: logger.error("Failed loading schema: {}".format(ex)) return validSets settings = sublime.load_settings(settingsName) activeSets = settings.get('user_chainload_active') if not activeSets: return [] validSets = [] for setName in activeSets: if not setName: sublime.error_message("Error in {}: Set name cannot be the empty string".format(settingsName)) continue setName = 'user_chainload_set_' + setName setDict = settings.get(setName) if setDict == None: sublime.error_message("Error in {}: Couldn't find expected setting '{}'".format(settingsName, setName)) continue try: jsonschema.validate(setDict, schema) logger.debug("Validation success for {}".format(setName)) validSets.append(setName) except jsonschema.exceptions.SchemaError as ex: # A problem in the schema itself for me as the developer to resolve logger.error("Failed validating schema: {}".format(ex)) break except jsonschema.exceptions.ValidationError as ex: # A problem in the settings file for the user to resolve sublime.error_message("Error in {} in setting '{}': \n{}".format(settingsName, setName, str(ex))) continue return validSets if validSets else None def _write_user_chainload(): # Read settings file and validate settings = sublime.load_settings(settingsName) validSets = _validate_settings() # Prepare output syntax file cacheDir = os.path.join(sublime.cache_path(), pkgName) if not os.path.isdir(cacheDir): os.mkdir(cacheDir) userSyntaxPath = os.path.join(cacheDir, userSyntaxName) userSyntaxExists = os.path.isfile(userSyntaxPath) # Skip writing the syntax if it already exists in a valid form and we don't # have a valid set of rules for regenerating it if userSyntaxExists: if validSets == None: logger.warning("Not regenerating syntax due to lack of any valid settings") return else: logger.info("Regenerating syntax with sets: {}".format(validSets)) else: logger.info("Generating syntax with sets: {}".format(validSets)) userSyntax = open(userSyntaxPath, 'w') # Can't seem to get PyYAML to write a header, so do it manually header = '\n'.join([ r'%YAML 1.2', r'# THIS IS AN AUTOMATICALLY GENERATED FILE.', r'# DO NOT EDIT. CHANGES WILL BE LOST.', r'---', '', ]) userSyntax.write(header) yaml.dump({'hidden': True, 'scope': 'source.shell.execline'}, userSyntax) # Repeat all the variables from the main syntax file, for convenience mainDB = yaml.load(sublime.load_resource(mainSyntaxPath), Loader = yaml.BaseLoader) yaml.dump({'variables': mainDB['variables']}, userSyntax) # Create list of rules from the sets of user settings which are currently # valid rulesList = [] for rule in [r for s in validSets for r in settings.get(s)]: # Schema validation guarantees we can trust all the following inputs # Read a name or list of names cmdNames = rule['name'] if isinstance(cmdNames, str): cmdNames = [cmdNames] # Get type with 'function' being default if not provided cmdType = rule.get('type', 'function') cmdElements = [] for elem in rule['elements']: # Get the sole kv pair, apparently this is most efficient way key,value = next( iter(elem.items()) ) if key in ruleContexts: cmdElements.append( (key,value) ) elif 'options_then_' in key: opts = ''.join( value.get('options_taking_arguments', []) ) if opts: cmdElements.append( ('options', 'list-with-args', opts) ) else: cmdElements.append( ('options', 'list') ) then = key.split('_')[-1] if then == 'end': # Ignore all further elements break else: # Add the block, etc cmdElements.append( (then, value[then]) ) for cmdName in cmdNames: rulesList.append( _make_rule(cmdName, cmdElements, cmdType) ) # Only keep non-empty rules. Sublime doesn't mind if the list of rules ends up # empty content = {'contexts': {'main': [r for r in rulesList if r]}} yaml.dump(content, userSyntax) def plugin_loaded(): settings = sublime.load_settings(settingsName) settings.clear_on_change(__name__) settings.add_on_change(__name__, _write_user_chainload) if settings.get('user_chainload_debugging'): logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.WARNING) _write_user_chainload()
[ "logging.basicConfig", "logging.getLogger", "re.escape", "sublime.cache_path", "yaml.dump", "os.path.join", "os.path.isfile", "os.path.isdir", "jsonschema.validate", "os.mkdir", "sublime.load_resource", "sublime.load_settings" ]
[((1350, 1371), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (1369, 1371), False, 'import logging\n'), ((1381, 1408), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1398, 1408), False, 'import logging\n'), ((4149, 4184), 'sublime.load_settings', 'sublime.load_settings', (['settingsName'], {}), '(settingsName)\n', (4170, 4184), False, 'import sublime\n'), ((5400, 5435), 'sublime.load_settings', 'sublime.load_settings', (['settingsName'], {}), '(settingsName)\n', (5421, 5435), False, 'import sublime\n'), ((5637, 5675), 'os.path.join', 'os.path.join', (['cacheDir', 'userSyntaxName'], {}), '(cacheDir, userSyntaxName)\n', (5649, 5675), False, 'import os\n'), ((5697, 5727), 'os.path.isfile', 'os.path.isfile', (['userSyntaxPath'], {}), '(userSyntaxPath)\n', (5711, 5727), False, 'import os\n'), ((6462, 6535), 'yaml.dump', 'yaml.dump', (["{'hidden': True, 'scope': 'source.shell.execline'}", 'userSyntax'], {}), "({'hidden': True, 'scope': 'source.shell.execline'}, userSyntax)\n", (6471, 6535), False, 'import yaml\n'), ((6701, 6758), 'yaml.dump', 'yaml.dump', (["{'variables': mainDB['variables']}", 'userSyntax'], {}), "({'variables': mainDB['variables']}, userSyntax)\n", (6710, 6758), False, 'import yaml\n'), ((8196, 8226), 'yaml.dump', 'yaml.dump', (['content', 'userSyntax'], {}), '(content, userSyntax)\n', (8205, 8226), False, 'import yaml\n'), ((8263, 8298), 'sublime.load_settings', 'sublime.load_settings', (['settingsName'], {}), '(settingsName)\n', (8284, 8298), False, 'import sublime\n'), ((5529, 5549), 'sublime.cache_path', 'sublime.cache_path', ([], {}), '()\n', (5547, 5549), False, 'import sublime\n'), ((5569, 5592), 'os.path.isdir', 'os.path.isdir', (['cacheDir'], {}), '(cacheDir)\n', (5582, 5592), False, 'import os\n'), ((5598, 5616), 'os.mkdir', 'os.mkdir', (['cacheDir'], {}), '(cacheDir)\n', (5606, 5616), False, 'import os\n'), ((6630, 6667), 'sublime.load_resource', 'sublime.load_resource', (['mainSyntaxPath'], {}), '(mainSyntaxPath)\n', (6651, 6667), False, 'import sublime\n'), ((1975, 1994), 're.escape', 're.escape', (['cmd_name'], {}), '(cmd_name)\n', (1984, 1994), False, 'import re\n'), ((3995, 4028), 'sublime.load_resource', 'sublime.load_resource', (['schemaPath'], {}), '(schemaPath)\n', (4016, 4028), False, 'import sublime\n'), ((4706, 4742), 'jsonschema.validate', 'jsonschema.validate', (['setDict', 'schema'], {}), '(setDict, schema)\n', (4725, 4742), False, 'import jsonschema\n'), ((3485, 3503), 're.escape', 're.escape', (['elemArg'], {}), '(elemArg)\n', (3494, 3503), False, 'import re\n')]
import os import numpy as np import sys sys.path.append("../") for model in ['lenet1', 'lenet4', 'lenet5']: for attack in ['fgsm', 'cw', 'jsma']: for mu_var in ['gf', 'nai', 'ns', 'ws']: os.system('CUDA_VISIBLE_DEVICES=0 python retrain_mu_mnist.py --datasets=mnist --attack=' + attack + ' --model_name=' + model + ' --mu_var=' + mu_var + ' --epochs=50')
[ "os.system", "sys.path.append" ]
[((40, 62), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (55, 62), False, 'import sys\n'), ((212, 392), 'os.system', 'os.system', (["(\n 'CUDA_VISIBLE_DEVICES=0 python retrain_mu_mnist.py --datasets=mnist --attack='\n + attack + ' --model_name=' + model + ' --mu_var=' + mu_var +\n ' --epochs=50')"], {}), "(\n 'CUDA_VISIBLE_DEVICES=0 python retrain_mu_mnist.py --datasets=mnist --attack='\n + attack + ' --model_name=' + model + ' --mu_var=' + mu_var +\n ' --epochs=50')\n", (221, 392), False, 'import os\n')]
#!/usr/bin/env python3 from __future__ import print_function import gzip import json import re import sys # import time from argparse import ArgumentParser # from datetime import datetime class Options: def __init__(self): self.usage = 'characterise_inauthentic_tweets.py -i <file of tweets> [-v|--verbose]' self._init_parser() def _init_parser(self): self.parser = ArgumentParser(usage=self.usage, conflict_handler='resolve') self.parser.add_argument( '-i', '--tweets-file', default='-', required=True, dest='tweets_file', help='Tweets file (default: all)' ) self.parser.add_argument( '-v', '--verbose', action='store_true', default=False, dest='verbose', help='Turn on verbose logging (default: False)' ) def parse(self, args=None): return self.parser.parse_args(args) TWITTER_TS_FORMAT = '%a %b %d %H:%M:%S +0000 %Y' #Tue Apr 26 08:57:55 +0000 2011 # def parse_ts(ts_str, fmt=TWITTER_TS_FORMAT): # try: # time_struct = time.strptime(ts_str, fmt) # except TypeError: # return int(ts_str) # epoch millis # return datetime.fromtimestamp(time.mktime(time_struct)) def extract_text(tweet): """Gets the full text from a tweet if it's short or long (extended).""" def get_available_text(t): if t['truncated'] and 'extended_tweet' in t: # if a tweet is retreived in 'compatible' mode, it may be # truncated _without_ the associated extended_tweet #eprint('#%s' % t['id_str']) return t['extended_tweet']['full_text'] else: return t['text'] if 'text' in t else t['full_text'] if 'retweeted_status' in tweet: rt = tweet['retweeted_status'] return extract_text(rt) # return 'RT @%s: %s' % (rt['user']['screen_name'], extract_text(rt)) # if 'quoted_status' in tweet: # qt = tweet['quoted_status'] # return get_available_text(tweet) + " --> " + extract_text(qt) return get_available_text(tweet) def fetch_lines(file=None): """Gets the lines from the given file or stdin if it's None or '' or '-'.""" if file and file != '-': with gzip.open(file, 'rt') if file[-1] in 'zZ' else open(file, 'r', encoding='utf-8') as f: return [l.strip() for l in f.readlines()] else: return [l.strip() for l in sys.stdin] def extract_tokens(pattern, str): return list( filter( lambda t: len(t) > 0, map( lambda t: t.strip(), re.findall(pattern, str) ) ) ) def count_tokens_starting_with(chars, tokens): return sum([1 for _ in tokens if _[0] in chars]) def eprint(*args, **kwargs): """Print to stderr""" print(*args, file=sys.stderr, **kwargs) DEBUG=False def log(msg): if DEBUG: eprint(msg) if __name__=='__main__': options = Options() opts = options.parse(sys.argv[1:]) DEBUG=opts.verbose tweets_file = opts.tweets_file # pretty = opts.pretty tweets = [json.loads(l) for l in fetch_lines(tweets_file)] log(f'read: {len(tweets)} tweets') hashtags_only = 0 hashtags_plus_url = 0 mentions_plus_hashtags = 0 mentions_hashtags_plus_url = 0 ht_splitter_re = '[a-zA-Z#]+' me_splitter_re = '[a-zA-Z@]+' htme_splitter_re = '[a-zA-Z#@]+' X = 0 for t in tweets: text = extract_text(t) # hashtag(s) only if '#' in text: tokens = extract_tokens(ht_splitter_re, text) if len(tokens) == count_tokens_starting_with('#', tokens): hashtags_only += 1 log(tokens) # hashtag(s) and URL if '#' in text and 'http' in text: tokens = extract_tokens(htme_splitter_re, text[:text.index('http')]) if len(tokens) == count_tokens_starting_with('#', tokens): hashtags_plus_url += 1 # print(tokens) log(text) # mention(s) and hashtag(s) if '#' in text and '@' in text: tokens = extract_tokens(htme_splitter_re, text) if len(tokens) == count_tokens_starting_with('#@', tokens): mentions_plus_hashtags += 1 log(tokens) # mention(s), hashtag(s) and URL if '#' in text and '@' in text and 'http' in text: tokens = extract_tokens(htme_splitter_re, text[:text.index('http')]) if len(tokens) == count_tokens_starting_with('#@', tokens): mentions_hashtags_plus_url += 1 # print(tokens) log(text) print(f'All: {len(tweets):,}') print(f'HT: {hashtags_only:>6} ({float(hashtags_only)/len(tweets):.1%})') print(f'HT+URL: {hashtags_plus_url:>6} ({float(hashtags_plus_url)/len(tweets):.1%})') print(f'@m+HT: {mentions_plus_hashtags:>6} ({float(mentions_plus_hashtags)/len(tweets):.1%})') print(f'@m+HT+URL: {mentions_hashtags_plus_url:>6} ({float(mentions_hashtags_plus_url)/len(tweets):.1%})')
[ "re.findall", "json.loads", "argparse.ArgumentParser", "gzip.open" ]
[((403, 463), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'usage': 'self.usage', 'conflict_handler': '"""resolve"""'}), "(usage=self.usage, conflict_handler='resolve')\n", (417, 463), False, 'from argparse import ArgumentParser\n'), ((3187, 3200), 'json.loads', 'json.loads', (['l'], {}), '(l)\n', (3197, 3200), False, 'import json\n'), ((2312, 2333), 'gzip.open', 'gzip.open', (['file', '"""rt"""'], {}), "(file, 'rt')\n", (2321, 2333), False, 'import gzip\n'), ((2682, 2706), 're.findall', 're.findall', (['pattern', 'str'], {}), '(pattern, str)\n', (2692, 2706), False, 'import re\n')]
# coding=utf-8 from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from bika.lims.browser.bika_listing import BikaListingTable from bika.lims.browser.worksheet.views.analyses import AnalysesView class AnalysesTransposedView(AnalysesView): """ The view for displaying the table of manage_results transposed. Analysis Requests are displayed in columns and analyses in rows. Uses most of the logic provided by BikaListingView through bika.lims.worksheet.views.AnalysesView to generate the items, but renders its own template, which is highly specific for display analysis results. Because of this, some generic BikaListing functionalities, such as sorting, pagination, contextual menus for columns, etc. will not work in this view. """ def contents_table(self, table_only = True): """ Overrides contents_table method from the parent class BikaListingView, using the transposed template instead of the classic template. """ table = AnalysesTransposedTable(bika_listing = self, table_only = True) return table.render(self) class AnalysesTransposedTable(BikaListingTable): """ The BikaListingTable that uses a transposed template for displaying the results. """ render = ViewPageTemplateFile("../templates/analyses_transposed.pt") render_cell = ViewPageTemplateFile("../templates/analyses_transposed_cell.pt") def __init__(self, bika_listing = None, table_only = False): BikaListingTable.__init__(self, bika_listing, True) self.rows_headers = [] self.trans_items = {} self.positions = [] self._transpose_data() def _transpose_data(self): cached = [] index = 0 #ignore = ['Analysis', 'Service', 'Result', 'ResultDM'] include = ['Attachments', 'DetectionLimit', 'DueDate','Pos', 'ResultDM'] for col in self.bika_listing.review_state['columns']: if col == 'Result': # Further interims will be inserted in this position resindex = index if col not in include: continue lcol = self.bika_listing.columns[col] self.rows_headers.append({'id': col, 'title': lcol['title'], 'type': lcol.get('type',''), 'row_type': 'field', 'hidden': not lcol.get('toggle', True), 'input_class': lcol.get('input_class',''), 'input_width': lcol.get('input_width','')}) cached.append(col) index += 1 for item in self.items: if item['Service'] not in cached: self.rows_headers.insert(resindex, {'id': item['Service'], 'title': item['title'], 'type': item.get('type',''), 'row_type': 'analysis', 'index': index}) resindex += 1 cached.append(item['Service']) pos = item['Pos'] if pos in self.trans_items: self.trans_items[pos][item['Service']] = item else: self.trans_items[pos] = {item['Service']: item} if pos not in self.positions: self.positions.append(pos) def rendered_items(self, cat=None, **kwargs): return '' def render_row_cell(self, rowheader, position = ''): self.current_rowhead = rowheader self.current_position = position if rowheader['row_type'] == 'field': # Only the first item for this position contains common # data for all the analyses with the same position its = [i for i in self.items if i['Pos'] == position] self.current_item = its[0] if its else {} elif position in self.trans_items \ and rowheader['id'] in self.trans_items[position]: self.current_item = self.trans_items[position][rowheader['id']] else: return '' return self.render_cell()
[ "bika.lims.browser.bika_listing.BikaListingTable.__init__", "Products.Five.browser.pagetemplatefile.ViewPageTemplateFile" ]
[((1334, 1393), 'Products.Five.browser.pagetemplatefile.ViewPageTemplateFile', 'ViewPageTemplateFile', (['"""../templates/analyses_transposed.pt"""'], {}), "('../templates/analyses_transposed.pt')\n", (1354, 1393), False, 'from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile\n'), ((1412, 1476), 'Products.Five.browser.pagetemplatefile.ViewPageTemplateFile', 'ViewPageTemplateFile', (['"""../templates/analyses_transposed_cell.pt"""'], {}), "('../templates/analyses_transposed_cell.pt')\n", (1432, 1476), False, 'from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile\n'), ((1551, 1602), 'bika.lims.browser.bika_listing.BikaListingTable.__init__', 'BikaListingTable.__init__', (['self', 'bika_listing', '(True)'], {}), '(self, bika_listing, True)\n', (1576, 1602), False, 'from bika.lims.browser.bika_listing import BikaListingTable\n')]
from enum import Enum from typing import Generator, Tuple, Iterable, Dict, List import cv2 import matplotlib.pyplot as plt import numpy as np import seaborn as sns from scipy.ndimage import label, generate_binary_structure from scipy.ndimage.morphology import distance_transform_edt as dist_trans import trainer.lib as lib class ImageNormalizations(Enum): UnitRange = 1 def duplicate_columns(data, minoccur=2): ind = np.lexsort(data) diff = np.any(data.T[ind[1:]] != data.T[ind[:-1]], axis=1) edges = np.where(diff)[0] + 1 result = np.split(ind, edges) result = [group for group in result if len(group) >= minoccur] return result def pad(small_arr: np.ndarray, size=(30, 30)) -> np.ndarray: # if small_arr.shape[0] < size[0] or small_arr.shape[1] < size[1]: size = max(small_arr.shape[0], size[0]), max(small_arr.shape[1], size[1]) res = np.zeros(size, dtype=np.int32) res[:small_arr.shape[0], :small_arr.shape[1]] = small_arr return res # else: # return small_arr # There is no need for padding def split_into_regions(arr: np.ndarray, mode=0) -> List[np.ndarray]: """ Splits an array into its coherent regions. :param mode: 0 for orthogonal connection, 1 for full connection :param arr: Numpy array with shape [W, H] :return: A list with length #NumberOfRegions of arrays with shape [W, H] """ res = [] if mode == 0: rs, num_regions = label(arr) elif mode == 1: rs, num_regions = label(arr, structure=generate_binary_structure(2, 2)) else: raise Exception("Please specify a valid Neighborhood mode for split_into_regions") for i in range(1, num_regions + 1): res.append(rs == i) return res def normalize_im(im: np.ndarray, norm_type=ImageNormalizations.UnitRange) -> np.ndarray: """ Currently just normalizes an image with pixel intensities in range [0, 255] to [-1, 1] :return: The normalized image """ if norm_type == ImageNormalizations.UnitRange: return (im.astype(np.float32) / 127.5) - 1 else: raise Exception("Unknown Normalization type") def distance_transformed(mask: np.ndarray) -> np.ndarray: if mask.dtype != np.bool: mask = mask.astype(np.bool) return dist_trans(np.invert(mask).astype(np.float32)) def one_hot_to_cont(x: np.ndarray) -> np.ndarray: """ Convert a one hot encoded image into the same image with integer representations. :param x: np.ndarray with (C, W, H) :return: np.ndarray with (W, H) """ return np.argmax(x, axis=len(x.shape) - 3) def cont_to_ont_hot(arr: np.ndarray, n_values=-1) -> np.ndarray: if n_values == -1: n_values = np.max(arr) + 1 res = np.zeros((n_values,) + arr.shape) for v in np.unique(arr): res[v, :, :][arr == v] = 1 return res def reduce_by_attention(arr: np.ndarray, att: np.ndarray): """ Reduce an array by a field of attention, such that the result is a rectangle with the empty borders cropped. :param arr: Target array. The last two dimensions need to be of the same shape as the attention field :param att: field of attention :return: cropped array """ assert arr.shape[-2] == att.shape[0] and arr.shape[-1] == att.shape[1] ones = np.argwhere(att) lmost, rmost = np.min(ones[:, 0]), np.max(ones[:, 0]) + 1 bmost, tmost = np.min(ones[:, 1]), np.max(ones[:, 1]) + 1 grid_slice = [slice(None) for _ in range(len(arr.shape) - 2)] grid_slice.extend([slice(lmost, rmost), slice(bmost, tmost)]) return arr[tuple(grid_slice)], att[lmost:rmost, bmost:tmost], (lmost, rmost, bmost, tmost) def pair_augmentation(g: Iterable[Tuple[np.ndarray, np.ndarray]], aug_ls) -> Iterable[Tuple[np.ndarray, np.ndarray]]: import imgaug.augmenters as iaa seq = iaa.Sequential(aug_ls) for im, gt, frame_number in g: im_prep = im[frame_number] if im.shape[3] > 1 else im.squeeze() gt_prep = np.expand_dims(gt, len(gt.shape)) images_aug = seq(images=[im_prep], segmentation_maps=[gt_prep]) yield images_aug[0][0].astype(np.float32), images_aug[1][0][:, :, 0].astype(np.float32), frame_number def insert_np_at(a1: np.ndarray, a2: np.ndarray, pos: Tuple[int, int], filter_arr=None) -> np.ndarray: assert len(a1.shape) == 2 and len(a2.shape) == 2 if filter_arr is None: filter_arr = np.ones_like(a2).astype(np.bool) x, y = pos res = np.copy(a1) a1_x = slice(x, min(x + a2.shape[0], a1.shape[0])) a1_y = slice(y, min(y + a2.shape[1], a1.shape[1])) if x + a2.shape[0] <= a1.shape[0]: a2_x = slice(0, a2.shape[0]) else: a2_x = slice(0, a1.shape[0] - (x + a2.shape[0])) if y + a2.shape[1] <= a1.shape[1]: a2_y = slice(0, a2.shape[1]) else: a2_y = slice(0, a1.shape[1] - (y + a2.shape[1])) item_filter = filter_arr[(a2_x, a2_y)] assert res[(a1_x, a1_y)].shape == a2[(a2_x, a2_y)].shape res[(a1_x, a1_y)][item_filter] = a2[(a2_x, a2_y)][item_filter] return res if __name__ == '__main__': fit = insert_np_at(np.ones((10, 10)), np.ones((3, 3)) * 2, (2, 3)) too_big1 = insert_np_at(np.ones((10, 10)), np.ones((3, 10)) * 2, (2, 3)) too_big = insert_np_at(np.ones((10, 10)), np.ones((10, 10)) * 2, (2, 3)) # def put_array(big_arr: np.ndarray, small_arr: np.ndarray, offset=(0, 0)) -> np.ndarray: # """ # Puts the small array into the big array. Ignores problems and does its best to fulfill the task # """ # b, t = # big_arr[] # big_arr = np.putmask(big_arr, ) # if __name__ == '__main__': # # a = np.zeros((10, 10)) # # b = np.random.random((4, 4)) # # c = put_array(a, b) # # lib.logger.debug_var(c)
[ "numpy.copy", "numpy.ones_like", "numpy.unique", "numpy.ones", "numpy.where", "scipy.ndimage.generate_binary_structure", "scipy.ndimage.label", "numpy.any", "numpy.max", "numpy.invert", "numpy.lexsort", "numpy.split", "numpy.zeros", "numpy.argwhere", "imgaug.augmenters.Sequential", "numpy.min" ]
[((431, 447), 'numpy.lexsort', 'np.lexsort', (['data'], {}), '(data)\n', (441, 447), True, 'import numpy as np\n'), ((459, 510), 'numpy.any', 'np.any', (['(data.T[ind[1:]] != data.T[ind[:-1]])'], {'axis': '(1)'}), '(data.T[ind[1:]] != data.T[ind[:-1]], axis=1)\n', (465, 510), True, 'import numpy as np\n'), ((558, 578), 'numpy.split', 'np.split', (['ind', 'edges'], {}), '(ind, edges)\n', (566, 578), True, 'import numpy as np\n'), ((886, 916), 'numpy.zeros', 'np.zeros', (['size'], {'dtype': 'np.int32'}), '(size, dtype=np.int32)\n', (894, 916), True, 'import numpy as np\n'), ((2739, 2772), 'numpy.zeros', 'np.zeros', (['((n_values,) + arr.shape)'], {}), '((n_values,) + arr.shape)\n', (2747, 2772), True, 'import numpy as np\n'), ((2786, 2800), 'numpy.unique', 'np.unique', (['arr'], {}), '(arr)\n', (2795, 2800), True, 'import numpy as np\n'), ((3297, 3313), 'numpy.argwhere', 'np.argwhere', (['att'], {}), '(att)\n', (3308, 3313), True, 'import numpy as np\n'), ((3831, 3853), 'imgaug.augmenters.Sequential', 'iaa.Sequential', (['aug_ls'], {}), '(aug_ls)\n', (3845, 3853), True, 'import imgaug.augmenters as iaa\n'), ((4459, 4470), 'numpy.copy', 'np.copy', (['a1'], {}), '(a1)\n', (4466, 4470), True, 'import numpy as np\n'), ((1448, 1458), 'scipy.ndimage.label', 'label', (['arr'], {}), '(arr)\n', (1453, 1458), False, 'from scipy.ndimage import label, generate_binary_structure\n'), ((3333, 3351), 'numpy.min', 'np.min', (['ones[:, 0]'], {}), '(ones[:, 0])\n', (3339, 3351), True, 'import numpy as np\n'), ((3395, 3413), 'numpy.min', 'np.min', (['ones[:, 1]'], {}), '(ones[:, 1])\n', (3401, 3413), True, 'import numpy as np\n'), ((5107, 5124), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (5114, 5124), True, 'import numpy as np\n'), ((5183, 5200), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (5190, 5200), True, 'import numpy as np\n'), ((5259, 5276), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (5266, 5276), True, 'import numpy as np\n'), ((523, 537), 'numpy.where', 'np.where', (['diff'], {}), '(diff)\n', (531, 537), True, 'import numpy as np\n'), ((2713, 2724), 'numpy.max', 'np.max', (['arr'], {}), '(arr)\n', (2719, 2724), True, 'import numpy as np\n'), ((3353, 3371), 'numpy.max', 'np.max', (['ones[:, 0]'], {}), '(ones[:, 0])\n', (3359, 3371), True, 'import numpy as np\n'), ((3415, 3433), 'numpy.max', 'np.max', (['ones[:, 1]'], {}), '(ones[:, 1])\n', (3421, 3433), True, 'import numpy as np\n'), ((5126, 5141), 'numpy.ones', 'np.ones', (['(3, 3)'], {}), '((3, 3))\n', (5133, 5141), True, 'import numpy as np\n'), ((5202, 5218), 'numpy.ones', 'np.ones', (['(3, 10)'], {}), '((3, 10))\n', (5209, 5218), True, 'import numpy as np\n'), ((5278, 5295), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (5285, 5295), True, 'import numpy as np\n'), ((2290, 2305), 'numpy.invert', 'np.invert', (['mask'], {}), '(mask)\n', (2299, 2305), True, 'import numpy as np\n'), ((4401, 4417), 'numpy.ones_like', 'np.ones_like', (['a2'], {}), '(a2)\n', (4413, 4417), True, 'import numpy as np\n'), ((1526, 1557), 'scipy.ndimage.generate_binary_structure', 'generate_binary_structure', (['(2)', '(2)'], {}), '(2, 2)\n', (1551, 1557), False, 'from scipy.ndimage import label, generate_binary_structure\n')]
from PyQt5.QtCore import Qt, pyqtSignal, QSize from PyQt5.QtWidgets import ( QLabel, QWidget, QTreeWidgetItem, QHeaderView, QVBoxLayout, QHBoxLayout, ) from .ImageLabel import ImageLabel from .AdaptiveTreeWidget import AdaptiveTreeWidget class ImageDetailArea(QWidget): # signal imageLoaded = pyqtSignal() imageCleared = pyqtSignal() # static strings strings = { 'filename': 'filename: %s (%s)', 'size': 'size: %d x %d', 'component': 'Components (%d in total)', 'quantization': 'Quantization tables (%d in total)', 'huffman': 'Huffman tables (%d for DC, %d for AC)', 'showedComponentsInfo': [ 'dc_tbl_no', 'ac_tbl_no', 'quant_tbl_no', 'h_samp_factor', 'v_samp_factor', ], } def __init__(self, parent=None): super().__init__(parent) self.verticalLayout = QVBoxLayout(self) self.verticalLayout.setObjectName("verticalLayout") # title self.lb_title = QLabel(self) self.lb_title.setAlignment(Qt.AlignCenter) self.lb_title.setObjectName("lb_title") self.verticalLayout.addWidget(self.lb_title) # filename && size self.horizontalLayout = QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.lb_filename = QLabel(self) self.lb_filename.setObjectName("lb_filename") self.horizontalLayout.addWidget(self.lb_filename) self.lb_size = QLabel(self) self.lb_size.setObjectName("lb_size") self.horizontalLayout.addWidget(self.lb_size) self.verticalLayout.addLayout(self.horizontalLayout) # image preview self.lb_image = ImageLabel(self) self.lb_image.setMinimumSize(QSize(250, 250)) self.lb_image.setAlignment(Qt.AlignCenter) self.lb_image.setObjectName("lb_image") self.verticalLayout.addWidget(self.lb_image) # components self.lb_components = QLabel(self) self.lb_components.setObjectName("lb_components") self.verticalLayout.addWidget(self.lb_components) self.treeWidget_components = AdaptiveTreeWidget(self) self.treeWidget_components.setUniformRowHeights(True) self.treeWidget_components.setObjectName("treeWidget_components") self.treeWidget_components.setColumnCount(3) self.treeWidget_components.headerItem().setTextAlignment( 0, Qt.AlignLeft | Qt.AlignVCenter ) self.treeWidget_components.headerItem().setTextAlignment( 1, Qt.AlignLeft | Qt.AlignVCenter ) self.treeWidget_components.headerItem().setText(0, "ID") self.treeWidget_components.headerItem().setText(1, "Property") self.treeWidget_components.headerItem().setText(2, "Value") self.treeWidget_components.header().setSectionResizeMode( QHeaderView.ResizeToContents ) self.verticalLayout.addWidget(self.treeWidget_components) # quant tables self.lb_quantTbls = QLabel(self) self.lb_quantTbls.setObjectName("lb_quantTbls") self.verticalLayout.addWidget(self.lb_quantTbls) self.treeWidget_quantTbls = AdaptiveTreeWidget(self) self.treeWidget_quantTbls.setObjectName("treeWidget_quantTbls") self.treeWidget_quantTbls.setColumnCount(3) self.treeWidget_quantTbls.headerItem().setTextAlignment( 0, Qt.AlignLeft | Qt.AlignVCenter ) self.treeWidget_quantTbls.headerItem().setTextAlignment( 1, Qt.AlignLeft | Qt.AlignVCenter ) self.treeWidget_quantTbls.headerItem().setText(0, "ID") self.treeWidget_quantTbls.headerItem().setText(1, "Property") self.treeWidget_quantTbls.headerItem().setText(2, "Value") self.verticalLayout.addWidget(self.treeWidget_quantTbls) # huffman tables self.lb_huffTbls = QLabel(self) self.lb_huffTbls.setObjectName("lb_huffTbls") self.verticalLayout.addWidget(self.lb_huffTbls) self.treeWidget_huffTbls = AdaptiveTreeWidget(self) self.treeWidget_huffTbls.setObjectName("treeWidget_huffTbls") self.treeWidget_huffTbls.setColumnCount(3) self.treeWidget_huffTbls.headerItem().setTextAlignment( 0, Qt.AlignLeft | Qt.AlignVCenter ) self.treeWidget_huffTbls.headerItem().setTextAlignment( 1, Qt.AlignLeft | Qt.AlignVCenter ) self.treeWidget_huffTbls.headerItem().setText(0, "ID") self.treeWidget_huffTbls.headerItem().setText(1, "Property") self.treeWidget_huffTbls.headerItem().setText(2, "Value") self.verticalLayout.addWidget(self.treeWidget_huffTbls) self.setTitle('( None )') self.clear() def setTitle(self, title): self.lb_title.setText(title) def clear(self): self.image = None self.lb_filename.setText( self.strings['filename'] % ('', 'NO image loaded') ) self.lb_size.setText( self.strings['size'] % (0, 0) ) self.lb_image.clear() self.lb_components.setText( self.strings['component'] % 0 ) self.treeWidget_components.clear() self.lb_quantTbls.setText( self.strings['quantization'] % 0 ) self.treeWidget_quantTbls.clear() self.lb_huffTbls.setText( self.strings['huffman'] % (0, 0) ) self.treeWidget_huffTbls.clear() self.imageCleared.emit() def setImage(self, image): self.clear() self.image = image self.lb_filename.setText( self.strings['filename'] % (image.filename, 'original') ) self.lb_size.setText( self.strings['size'] % image.size ) self.lb_image.setImageMemSrc(image, 300, 300) # components for comp in image.comp_infos: topItem = QTreeWidgetItem( self.treeWidget_components, [str(comp['component_id']), '', ''] ) for key in self.strings['showedComponentsInfo']: QTreeWidgetItem(topItem, ['', key, str(comp[key])]) self.lb_components.setText( self.strings['component'] % len(image.comp_infos) ) # quantization tables self.lb_quantTbls.setText( self.strings['quantization'] % len(image.quant_tbls) ) for i, quant_tbl in enumerate(image.quant_tbls): topItem = QTreeWidgetItem( self.treeWidget_quantTbls, [str(i), '', ''] ) for key in quant_tbl: QTreeWidgetItem(topItem, ['', key, str(quant_tbl[key])]) # huffman tables self.lb_huffTbls.setText( self.strings['huffman'] % ( len(image.dc_huff_tbls), len(image.ac_huff_tbls) ) ) for i, hufftbl in enumerate(image.dc_huff_tbls): topItem = QTreeWidgetItem( self.treeWidget_huffTbls, [str(i), 'type', 'DC'] ) for key in hufftbl: QTreeWidgetItem(topItem, ['', key, str(hufftbl[key])]) for i, hufftbl in enumerate(image.ac_huff_tbls): topItem = QTreeWidgetItem( self.treeWidget_huffTbls, [str(i), 'type', 'AC'] ) for key in hufftbl: QTreeWidgetItem(topItem, ['', key, str(hufftbl[key])]) self.imageLoaded.emit()
[ "PyQt5.QtCore.pyqtSignal", "PyQt5.QtWidgets.QHBoxLayout", "PyQt5.QtWidgets.QLabel", "PyQt5.QtWidgets.QVBoxLayout", "PyQt5.QtCore.QSize" ]
[((313, 325), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', ([], {}), '()\n', (323, 325), False, 'from PyQt5.QtCore import Qt, pyqtSignal, QSize\n'), ((345, 357), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', ([], {}), '()\n', (355, 357), False, 'from PyQt5.QtCore import Qt, pyqtSignal, QSize\n'), ((932, 949), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', (['self'], {}), '(self)\n', (943, 949), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QTreeWidgetItem, QHeaderView, QVBoxLayout, QHBoxLayout\n'), ((1050, 1062), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['self'], {}), '(self)\n', (1056, 1062), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QTreeWidgetItem, QHeaderView, QVBoxLayout, QHBoxLayout\n'), ((1274, 1287), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', ([], {}), '()\n', (1285, 1287), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QTreeWidgetItem, QHeaderView, QVBoxLayout, QHBoxLayout\n'), ((1379, 1391), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['self'], {}), '(self)\n', (1385, 1391), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QTreeWidgetItem, QHeaderView, QVBoxLayout, QHBoxLayout\n'), ((1527, 1539), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['self'], {}), '(self)\n', (1533, 1539), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QTreeWidgetItem, QHeaderView, QVBoxLayout, QHBoxLayout\n'), ((2022, 2034), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['self'], {}), '(self)\n', (2028, 2034), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QTreeWidgetItem, QHeaderView, QVBoxLayout, QHBoxLayout\n'), ((3084, 3096), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['self'], {}), '(self)\n', (3090, 3096), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QTreeWidgetItem, QHeaderView, QVBoxLayout, QHBoxLayout\n'), ((3955, 3967), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['self'], {}), '(self)\n', (3961, 3967), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QTreeWidgetItem, QHeaderView, QVBoxLayout, QHBoxLayout\n'), ((1803, 1818), 'PyQt5.QtCore.QSize', 'QSize', (['(250)', '(250)'], {}), '(250, 250)\n', (1808, 1818), False, 'from PyQt5.QtCore import Qt, pyqtSignal, QSize\n')]
import argparse import data_helper from sklearn.model_selection import train_test_split import re import lstm from lstm import * import time from viterbi import Viterbi xrange = range def simple_cut(text,dh,lm,viterbi): """对一个片段text(标点符号把句子划分为多个片段)进行预测。""" if text: #print("text: %s" %text) text_len = len(text) X_batch = dh.text2ids(text) # 这里每个 batch 是一个样本 fetches = [lm.y_pred] feed_dict = {lm.X_inputs:X_batch, lm.lr:1.0, lm.batch_size:1, lm.keep_prob:1.0} _y_pred = sess.run(fetches, feed_dict)[0][:text_len] # padding填充的部分直接丢弃 nodes = [dict(zip(['s','b','m','e'], each[1:])) for each in _y_pred] #print(type(dh.labels)) #print(dh.labels) tags = viterbi.viterbi(nodes) words = [] for i in range(len(text)): if tags[i] in ['s', 'b']: words.append(text[i]) else: words[-1] += text[i] return words else: return [] def cut_word(sentence,dh,lm,viterbi): """首先将一个sentence根据标点和英文符号/字符串划分成多个片段text,然后对每一个片段分词。""" not_cuts = re.compile(u'([0-9\da-zA-Z ]+)|[。,、?!.\.\?,!]') result = [] start = 0 for seg_sign in not_cuts.finditer(sentence): result.extend(simple_cut(sentence[start:seg_sign.start()],dh,lm,viterbi)) result.append(sentence[seg_sign.start():seg_sign.end()]) start = seg_sign.end() result.extend(simple_cut(sentence[start:],dh,lm,viterbi)) return result def predict(dh,lm,viterbi,sentence): # 例一# 例一 result = cut_word(sentence,dh,lm,viterbi) rss = '' for each in result: rss = rss + each + ' / ' print (rss) def main(): parser = argparse.ArgumentParser(description = "lstm segment args.") parser.add_argument("-a","--action",type=str,default="predict",help="train or predict") parser.add_argument("-c","--corpus",type=str,default="data/msr_train.txt",help="train file") parser.add_argument("-v","--vocab_model",type=str,default="model/vocab_model.pkl",help="vocab model file") parser.add_argument("-m","--lstm_model",type=str,default="model/bi-lstm.ckpt-6",help="lstm model file") args = parser.parse_args() corpus = args.corpus vocab_model = args.vocab_model action = args.action lstm_model = args.lstm_model dh = data_helper.DataHelper(vocab_model) dh.datahander(corpus) #dh.loadmodel(vocab_model) if action == "predict": lm = lstm.LSTM(lstm_model) viterbi = Viterbi(dh.labels) saver = tf.train.Saver() saver.restore(sess, lm.model_path) sentence = u'人们思考问题往往不是从零开始的。就好像你现在阅读这篇文章一样,你对每个词的理解都会依赖于你前面看到的一些词,而不是把你前面看的内容全部抛弃了,忘记了,再去理解这个单词。也就是说,人们的思维总是会有延续性的。' predict(dh,lm,viterbi,sentence) while True: sentence = input("input words for cut .EXIT for exit:\n") if sentence == "EXIT": break predict(dh,lm,viterbi,sentence) if __name__ == "__main__": main()
[ "lstm.LSTM", "viterbi.Viterbi", "argparse.ArgumentParser", "re.compile", "data_helper.DataHelper" ]
[((1117, 1167), 're.compile', 're.compile', (['u"""([0-9\\\\da-zA-Z ]+)|[。,、?!.\\\\.\\\\?,!]"""'], {}), "(u'([0-9\\\\da-zA-Z ]+)|[。,、?!.\\\\.\\\\?,!]')\n", (1127, 1167), False, 'import re\n'), ((1712, 1769), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""lstm segment args."""'}), "(description='lstm segment args.')\n", (1735, 1769), False, 'import argparse\n'), ((2339, 2374), 'data_helper.DataHelper', 'data_helper.DataHelper', (['vocab_model'], {}), '(vocab_model)\n', (2361, 2374), False, 'import data_helper\n'), ((2474, 2495), 'lstm.LSTM', 'lstm.LSTM', (['lstm_model'], {}), '(lstm_model)\n', (2483, 2495), False, 'import lstm\n'), ((2514, 2532), 'viterbi.Viterbi', 'Viterbi', (['dh.labels'], {}), '(dh.labels)\n', (2521, 2532), False, 'from viterbi import Viterbi\n')]
#!/usr/bin/env python ''' Advent of Code 2021 - Day 9: Smoke Basin (Part 1) https://adventofcode.com/2021/day/9 ''' import numpy as np class HeightMap(): def __init__(self) -> None: self._grid = np.array([]) def add_row(self, row): np_row = np.array(row) if self._grid.size != 0: self._grid = np.vstack([self._grid, np_row]) else: self._grid = np_row def find_low_points(self, radius=1): low_points = [] for index, point in np.ndenumerate(self._grid): neighbor_points = self._neighbors(radius, coordinates=index) if point < min(neighbor_points): low_points.append(point) return low_points def _neighbors(self, radius, coordinates=(0, 0)): neighbors = [] row = coordinates[0] column = coordinates[1] # Get UP neighbor value if row >= 1: neighbors.append(self._grid[row - radius, column]) # Get LEFT neighbor value if column >= 1: neighbors.append(self._grid[row, column - radius]) # Get RIGHT neighbor value if column < len(self._grid[0]) - radius: neighbors.append(self._grid[row, column + radius]) # Get DOWN neighbor value if row < len(self._grid) - radius: neighbors.append(self._grid[row + radius, column]) return neighbors def __str__(self) -> str: output = "" for row in self._grid: for elem in row: output = output + f"{elem:>3}" output = output + "\n" return output def calculate_risk(heights): # Risk is 1 plus the height return sum([height + 1 for height in heights]) def main(): filename = input("What is the input file name? ") try: with open(filename, "r") as file: # Create a new board area = HeightMap() # Read the rows and setup the HeightMap for line in file: line = line.strip() input_row = [int(x) for x in str(line)] area.add_row(input_row) print("The input grid: ") print(area) low_points = area.find_low_points() sum_risk_levels = calculate_risk( low_points) if low_points else None if sum_risk_levels: low_points_str = [str(point) for point in low_points] print(f"Number of low points: {len(low_points)}") print(f"Low points: {', '.join(low_points_str)}") print( f"\nThe sum of the risk levels of all low points is: {sum_risk_levels}\n") else: print("The sum of the risk levels of all low points not found.\n") except FileNotFoundError: print(f"No such file or directory: '{filename}'") if __name__ == "__main__": main()
[ "numpy.array", "numpy.vstack", "numpy.ndenumerate" ]
[((211, 223), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (219, 223), True, 'import numpy as np\n'), ((270, 283), 'numpy.array', 'np.array', (['row'], {}), '(row)\n', (278, 283), True, 'import numpy as np\n'), ((514, 540), 'numpy.ndenumerate', 'np.ndenumerate', (['self._grid'], {}), '(self._grid)\n', (528, 540), True, 'import numpy as np\n'), ((342, 373), 'numpy.vstack', 'np.vstack', (['[self._grid, np_row]'], {}), '([self._grid, np_row])\n', (351, 373), True, 'import numpy as np\n')]
# Implementation of Randomised Selection """ Naive Approach --------- Parameters --------- An arry with n distinct numbers --------- Returns --------- i(th) order statistic, i.e: i(th) smallest element of the input array --------- Time Complexity --------- O(n.logn) --------- Test Cases --------- [1, 20, 6, 4, 5] => [1, 4, 5, 6, 20] """ import random def randomised_selection(unsorted_array, length_of_array, i_order_statistic): if length_of_array == 1: return unsorted_array else: # pivot = random.choice(unsorted_array) pivot_range = random.randrange(length_of_array) pivot = unsorted_array[pivot_range] pivot_left = [] pivot_right = [] for value in unsorted_array: if pivot_range == i_order_statistic: return pivot if pivot_range > i_order_statistic: return randomised_selection(unsorted_array[:pivot_range], pivot_range - 1, i_order_statistic) if pivot_range < i_order_statistic: return randomised_selection(unsorted_array[pivot_range + 1:], length_of_array - pivot_range, i_order_statistic - pivot_range) if __name__ == "__main__": # user_input = input("Enter the list of numbers: \n").strip() # unsorted_array = [int(item) for item in user_input.split(",")] print(randomised_selection([1, 23, 3, 43, 5], 5, 3))
[ "random.randrange" ]
[((650, 683), 'random.randrange', 'random.randrange', (['length_of_array'], {}), '(length_of_array)\n', (666, 683), False, 'import random\n')]
#!/usr/bin/env python import cgitb; cgitb.enable() print('Content-type: text/html\n') print( """<html> <head> <title>CGI 4 - CSS</title> <link rel="stylesheet" type="text/css" href="../css/estilo1.css"> </head> <body> <h1>Colocando CSS em um script a parte</h1> <hr> <p>Ola imagens CGI!</p> <div class="wraptocenter"> <img id="imagem" src="../imagens/evil.jpg" border=1 alt="Piadinha idiota" width=350 height=500> </div> <hr> </body> </html> """ )
[ "cgitb.enable" ]
[((36, 50), 'cgitb.enable', 'cgitb.enable', ([], {}), '()\n', (48, 50), False, 'import cgitb\n')]
from __future__ import absolute_import, division, print_function, unicode_literals import braintree from postgres.orm import Model class ExchangeRoute(Model): typname = "exchange_routes" def __bool__(self): return self.error != 'invalidated' __nonzero__ = __bool__ @classmethod def from_id(cls, id): r = cls.db.one(""" SELECT r.*::exchange_routes FROM exchange_routes r WHERE id = %(id)s """, locals()) if r: from gratipay.models.participant import Participant # XXX Red hot hack! r.set_attributes(participant=Participant.from_id(r.participant)) return r @classmethod def from_network(cls, participant, network): participant_id = participant.id r = cls.db.one(""" SELECT r.*::exchange_routes FROM current_exchange_routes r WHERE participant = %(participant_id)s AND network = %(network)s """, locals()) if r: r.set_attributes(participant=participant) return r @classmethod def from_address(cls, participant, network, address): participant_id = participant.id r = cls.db.one(""" SELECT r.*::exchange_routes FROM exchange_routes r WHERE participant = %(participant_id)s AND network = %(network)s AND address = %(address)s """, locals()) if r: r.set_attributes(participant=participant) return r @classmethod def insert(cls, participant, network, address, error='', fee_cap=None, cursor=None): participant_id = participant.id r = (cursor or cls.db).one(""" INSERT INTO exchange_routes (participant, network, address, error, fee_cap) VALUES (%(participant_id)s, %(network)s, %(address)s, %(error)s, %(fee_cap)s) RETURNING exchange_routes.*::exchange_routes """, locals()) if network == 'braintree-cc': participant.update_giving_and_teams() r.set_attributes(participant=participant) return r def invalidate(self): if self.network == 'braintree-cc': braintree.PaymentMethod.delete(self.address) # For Paypal, we remove the record entirely to prevent # an integrity error if the user tries to add the route again if self.network == 'paypal': # XXX This doesn't sound right. Doesn't this corrupt history pages? self.db.run("DELETE FROM exchange_routes WHERE id=%s", (self.id,)) else: self.update_error('invalidated') def update_error(self, new_error): id = self.id old_error = self.error if old_error == 'invalidated': return self.db.run(""" UPDATE exchange_routes SET error = %(new_error)s WHERE id = %(id)s """, locals()) self.set_attributes(error=new_error) # Update cached amounts if requested and necessary if self.network != 'braintree-cc': return if self.participant.is_suspicious or bool(new_error) == bool(old_error): return # XXX *White* hot hack! # ===================== # During payday, participant is a record from a select of # payday_participants (or whatever), *not* an actual Participant # object. We need the real deal so we can use a method on it ... from gratipay.models.participant import Participant participant = Participant.from_username(self.participant.username) participant.update_giving_and_teams()
[ "gratipay.models.participant.Participant.from_username", "braintree.PaymentMethod.delete", "gratipay.models.participant.Participant.from_id" ]
[((3646, 3698), 'gratipay.models.participant.Participant.from_username', 'Participant.from_username', (['self.participant.username'], {}), '(self.participant.username)\n', (3671, 3698), False, 'from gratipay.models.participant import Participant\n'), ((2280, 2324), 'braintree.PaymentMethod.delete', 'braintree.PaymentMethod.delete', (['self.address'], {}), '(self.address)\n', (2310, 2324), False, 'import braintree\n'), ((633, 667), 'gratipay.models.participant.Participant.from_id', 'Participant.from_id', (['r.participant'], {}), '(r.participant)\n', (652, 667), False, 'from gratipay.models.participant import Participant\n')]
import os from os.path import dirname from unittest import TestCase import src.superannotate as sa class TestCloneProject(TestCase): PROJECT_NAME_1 = "test create from full info1" PROJECT_NAME_2 = "test create from full info2" PROJECT_DESCRIPTION = "desc" PROJECT_TYPE = "Vector" TEST_FOLDER_PATH = "data_set/sample_project_vector" @property def folder_path(self): return os.path.join(dirname(dirname(__file__)), self.TEST_FOLDER_PATH) @property def classes_json(self): return f"{self.folder_path}/classes/classes.json" def setUp(self, *args, **kwargs): self.tearDown() self._project_1 = sa.create_project( self.PROJECT_NAME_1, self.PROJECT_DESCRIPTION, self.PROJECT_TYPE ) def tearDown(self) -> None: sa.delete_project(self.PROJECT_NAME_1) sa.delete_project(self.PROJECT_NAME_2) def test_clone_contributors_and_description(self): team_users = sa.search_team_contributors() sa.share_project(self.PROJECT_NAME_1, team_users[0], "QA") first_project_metadata = sa.get_project_metadata( self.PROJECT_NAME_1, include_contributors=True ) first_project_contributors = first_project_metadata["contributors"] sa.clone_project(self.PROJECT_NAME_2, self.PROJECT_NAME_1, "DESCRIPTION", copy_contributors=True) second_project_metadata = sa.get_project_metadata( self.PROJECT_NAME_2, include_contributors=True ) second_project_contributors = second_project_metadata["contributors"] self.assertEqual(first_project_contributors[0]["user_id"], second_project_contributors[0]["user_id"]) self.assertEqual("DESCRIPTION", second_project_metadata["description"])
[ "src.superannotate.clone_project", "os.path.dirname", "src.superannotate.search_team_contributors", "src.superannotate.create_project", "src.superannotate.get_project_metadata", "src.superannotate.share_project", "src.superannotate.delete_project" ]
[((667, 755), 'src.superannotate.create_project', 'sa.create_project', (['self.PROJECT_NAME_1', 'self.PROJECT_DESCRIPTION', 'self.PROJECT_TYPE'], {}), '(self.PROJECT_NAME_1, self.PROJECT_DESCRIPTION, self.\n PROJECT_TYPE)\n', (684, 755), True, 'import src.superannotate as sa\n'), ((814, 852), 'src.superannotate.delete_project', 'sa.delete_project', (['self.PROJECT_NAME_1'], {}), '(self.PROJECT_NAME_1)\n', (831, 852), True, 'import src.superannotate as sa\n'), ((861, 899), 'src.superannotate.delete_project', 'sa.delete_project', (['self.PROJECT_NAME_2'], {}), '(self.PROJECT_NAME_2)\n', (878, 899), True, 'import src.superannotate as sa\n'), ((977, 1006), 'src.superannotate.search_team_contributors', 'sa.search_team_contributors', ([], {}), '()\n', (1004, 1006), True, 'import src.superannotate as sa\n'), ((1015, 1073), 'src.superannotate.share_project', 'sa.share_project', (['self.PROJECT_NAME_1', 'team_users[0]', '"""QA"""'], {}), "(self.PROJECT_NAME_1, team_users[0], 'QA')\n", (1031, 1073), True, 'import src.superannotate as sa\n'), ((1107, 1178), 'src.superannotate.get_project_metadata', 'sa.get_project_metadata', (['self.PROJECT_NAME_1'], {'include_contributors': '(True)'}), '(self.PROJECT_NAME_1, include_contributors=True)\n', (1130, 1178), True, 'import src.superannotate as sa\n'), ((1285, 1386), 'src.superannotate.clone_project', 'sa.clone_project', (['self.PROJECT_NAME_2', 'self.PROJECT_NAME_1', '"""DESCRIPTION"""'], {'copy_contributors': '(True)'}), "(self.PROJECT_NAME_2, self.PROJECT_NAME_1, 'DESCRIPTION',\n copy_contributors=True)\n", (1301, 1386), True, 'import src.superannotate as sa\n'), ((1417, 1488), 'src.superannotate.get_project_metadata', 'sa.get_project_metadata', (['self.PROJECT_NAME_2'], {'include_contributors': '(True)'}), '(self.PROJECT_NAME_2, include_contributors=True)\n', (1440, 1488), True, 'import src.superannotate as sa\n'), ((434, 451), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (441, 451), False, 'from os.path import dirname\n')]
import logging from rhasspy_weather.data_types.request import WeatherRequest from rhasspy_weather.parser import rhasspy_intent from rhasspyhermes.nlu import NluIntent log = logging.getLogger(__name__) def parse_intent_message(intent_message: NluIntent) -> WeatherRequest: """ Parses any of the rhasspy weather intents. Args: intent_message: a Hermes NluIntent Returns: WeatherRequest object """ return rhasspy_intent.parse_intent_message(intent_message.to_rhasspy_dict()) def get_template_values(intent_message: NluIntent) -> dict: return rhasspy_intent.get_template_values(intent_message.to_rhasspy_dict())
[ "logging.getLogger" ]
[((175, 202), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (192, 202), False, 'import logging\n')]
import pytest def vprintf_test(vamos): if vamos.flavor == "agcc": pytest.skip("vprintf not supported") vamos.run_prog_check_data("vprintf")
[ "pytest.skip" ]
[((80, 116), 'pytest.skip', 'pytest.skip', (['"""vprintf not supported"""'], {}), "('vprintf not supported')\n", (91, 116), False, 'import pytest\n')]
#!/usr/bin/env python3 import socket HOST = '127.0.0.1' # 服务器的主机名或者 IP 地址 PORT = 10009 # 服务器使用的端口 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: print(s) s.connect((HOST, PORT)) s.sendall(b'Hello, world') print(s) data = s.recv(1024) print('Received', repr(data))
[ "socket.socket" ]
[((108, 157), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (121, 157), False, 'import socket\n')]
import requests import Mark from colorama import Fore from util.plugins.common import print_slow, getheaders, proxy def StatusChanger(token, Status): #change status CustomStatus = {"custom_status": {"text": Status}} #{"text": Status, "emoji_name": "☢"} if you want to add an emoji to the status try: r = requests.patch("https://discord.com/api/v9/users/@me/settings", proxies={"ftp": f'{proxy()}'}, headers=getheaders(token), json=CustomStatus) print_slow(f"\n{Fore.GREEN}Status changed to {Fore.WHITE}{Status}{Fore.GREEN} ") except Exception as e: print(f"{Fore.RED}Error:\n{e}\nOccurred while trying to change the status :/") print("Enter anything to continue. . . ", end="") input() Mark.main()
[ "util.plugins.common.print_slow", "util.plugins.common.getheaders", "Mark.main", "util.plugins.common.proxy" ]
[((741, 752), 'Mark.main', 'Mark.main', ([], {}), '()\n', (750, 752), False, 'import Mark\n'), ((476, 564), 'util.plugins.common.print_slow', 'print_slow', (['f"""\n{Fore.GREEN}Status changed to {Fore.WHITE}{Status}{Fore.GREEN} """'], {}), '(\n f"""\n{Fore.GREEN}Status changed to {Fore.WHITE}{Status}{Fore.GREEN} """)\n', (486, 564), False, 'from util.plugins.common import print_slow, getheaders, proxy\n'), ((430, 447), 'util.plugins.common.getheaders', 'getheaders', (['token'], {}), '(token)\n', (440, 447), False, 'from util.plugins.common import print_slow, getheaders, proxy\n'), ((410, 417), 'util.plugins.common.proxy', 'proxy', ([], {}), '()\n', (415, 417), False, 'from util.plugins.common import print_slow, getheaders, proxy\n')]
# Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from hashlib import sha256 from recipe_engine import recipe_test_api class CloudBuildHelperTestApi(recipe_test_api.RecipeTestApi): def build_success_output(self, image, target='target', canonical_tag=None): if not image: img = 'example.com/fake-registry/%s' % target digest = 'sha256:'+sha256(target).hexdigest()[:16]+'...' tag = canonical_tag if tag == ':inputs-hash': tag = 'cbh-inputs-deadbead...' else: img = image.image digest = image.digest tag = image.tag out = {'view_build_url': 'https://example.com/build/%s' % target} if img: out['image'] = {'image': img, 'digest': digest, 'tag': tag} out['view_image_url'] = 'https://example.com/image/%s' % target return self.m.json.output(out) def build_error_output(self, message, target='target'): return self.m.json.output({ 'error': message, 'view_build_url': 'https://example.com/build/%s' % target, }) def upload_success_output(self, tarball, target='target', canonical_tag=None): if not tarball: name = 'example/%s' % target digest = sha256(name).hexdigest()[:16]+'...' bucket = 'example' path = 'tarballs/example/%s/%s.tar.gz' % (target, digest) tag = canonical_tag or '11111-deadbeef' else: name = tarball.name digest = tarball.sha256 bucket = tarball.bucket path = tarball.path tag = tarball.version return self.m.json.output({ 'name': name, 'sha256': digest, 'gs': { 'bucket': bucket, 'name': path, }, 'canonical_tag': tag, }) def upload_error_output(self, message): return self.m.json.output({'error': message}) def update_pins_output(self, updated): return self.m.json.output({'updated': updated or []})
[ "hashlib.sha256" ]
[((1283, 1295), 'hashlib.sha256', 'sha256', (['name'], {}), '(name)\n', (1289, 1295), False, 'from hashlib import sha256\n'), ((470, 484), 'hashlib.sha256', 'sha256', (['target'], {}), '(target)\n', (476, 484), False, 'from hashlib import sha256\n')]
import sklearn.mixture import matplotlib.pyplot as plt import numpy as np from matplotlib import ticker import matplotlib.patheffects as mpatheffects def get_gmm_and_pos_label( array, n_components=2, n_steps=5000 ): gmm = sklearn.mixture.GaussianMixture( n_components=n_components, covariance_type='spherical', random_state=0 ) gmm.fit(array.reshape(-1, 1)) label = np.argmax(gmm.means_) # low = array.min() # high = array.max() low = gmm.means_.min() - 2*np.sqrt(gmm.covariances_[np.argmin(gmm.means_)]) high = gmm.means_.max() + 2*np.sqrt(gmm.covariances_[np.argmax(gmm.means_)]) ref_space = np.linspace(low, high, n_steps) result = gmm.predict(ref_space.reshape(-1, 1)) idx = np.where(np.ediff1d(result) != 0) cutoffs = ref_space[idx] return gmm, label, cutoffs def _get_gmm_and_pos_label(array, n_components=2): gmm = sklearn.mixture.GaussianMixture( n_components=n_components, covariance_type='spherical', random_state=0 ) gmm.fit(array.reshape(-1, 1)) label = np.argmax(gmm.means_) low = np.expm1(array.min()) high = np.expm1(array.max()) ref_space = np.arange(low, high) ref_space = np.log1p(ref_space) result = gmm.predict(ref_space.reshape(-1, 1)) idx = np.where(np.ediff1d(result) != 0) _cutoffs = ref_space[idx] diff_mean = np.absolute(_cutoffs - np.mean(array)) diff_high = np.absolute(_cutoffs - np.log1p(high)) cutoffs = _cutoffs[diff_mean < diff_high] cutoff = np.expm1(cutoffs.max()) # cutoff = cutoffs[np.argmin(diff_mean < diff_high)] # return gmm, label, cutoff return gmm, label, _cutoffs diff_mean = np.absolute(_cutoffs - np.mean(np.expm1(array))) diff_high = np.absolute(_cutoffs - high) diff_low = np.absolute(_cutoffs - low) between = (diff_mean < diff_high) & (diff_mean < diff_low) cutoffs = _cutoffs[between] cutoff = cutoffs[np.argmax(between)] return gmm, label, cutoff def plot_gmm_fitting(array, gmm, ax): plt.sca(ax) _ = plt.hist(array.flatten(), color='lightgray', bins=200, density=True) x = np.linspace(array.min(), array.max(), 200) log_prob = gmm.score_samples(x.reshape(-1, 1)) responsibilities = gmm.predict_proba(x.reshape(-1, 1)) pdf = np.exp(log_prob) pdf_individual = responsibilities * pdf[:, np.newaxis] mean_index = np.argmax(pdf_individual, axis=0) rank_map = mean_index.argsort().argsort() ax.set_prop_cycle( color=plt.get_cmap('Dark2')(rank_map) ) ax.plot(x, pdf_individual) ax.plot(x, pdf, '--k') return ax def auto_gate_func(array, n_components=3, n_stds=3, log_transform=True): gmm = sklearn.mixture.GaussianMixture( n_components=n_components, covariance_type='spherical', random_state=0 ) if log_transform: gmm.fit(np.log1p(array).reshape(-1, 1)) else: gmm.fit(array.reshape(-1, 1)) means = gmm.means_ stds = np.sqrt(gmm.covariances_) idx = np.argmax(means) lower_bound = means[idx] - n_stds * stds[idx] if log_transform: return np.expm1(lower_bound) else: return lower_bound def plot_cumulative(array, ax, hist_kwargs={}): formatter = ticker.ScalarFormatter(useMathText=True) formatter.set_scientific(True) formatter.set_powerlimits((-1,1)) ax.yaxis.set_major_formatter(formatter) _ = ax.hist(array, histtype='step', bins=300, cumulative=1, **hist_kwargs) return ax def gmm_label_map_by_mean(gmm): return { o:n for o, n in zip( range(len(gmm.means_)), sorted(range(len(gmm.means_)), key=lambda x: gmm.means_[x][0]) ) } def sort_predict_label(gmm, labels): mapping = gmm_label_map_by_mean(gmm) sorted_labels = labels.copy() for k, v in mapping.iteritems(): sorted_labels[labels==k] = v return sorted_labels def plot_hist_gmm( df, markers, n_components=2, subplot_grid_shape=None, transform_log=True, xlim_percentiles=(0, 100), cum_density=False, hide_yaxis_left=True ): if transform_log: df = df.transform(np.log1p) revert_func = np.expm1 else: revert_func = np.array if subplot_grid_shape is None: subplot_grid_shape = (1, len(markers)) n_rows, n_cols = subplot_grid_shape fig, axes = plt.subplots(n_rows, n_cols, sharex=True) axes = np.array(axes) for m, ax in zip(markers, axes.ravel()): gmm, _, cutoffs = get_gmm_and_pos_label( df[m].values, n_components=n_components ) plot_gmm_fitting(df[m].values, gmm, ax) ax.title.set_text(m) if hide_yaxis_left: ax.yaxis.set_visible(False) p1, p2 = np.array(xlim_percentiles) / 100 axis_min = df.loc[:, markers].quantile(p1).min() axis_max = df.loc[:, markers].quantile(p2).max() color_cum = 'gray' pax = ax.twinx() pax = plot_cumulative( df[m].values, pax, hist_kwargs=dict(color=color_cum, density=cum_density) ) pax.tick_params(axis='y', labelsize=8, colors=color_cum) print(cutoffs) cutoff_range = np.ptp(cutoffs) if cutoff_range == 0: cutoff_range = 1 cutoff_colors = plt.get_cmap('plasma')( (cutoffs - np.min(cutoffs)) / cutoff_range ) for co, cc in zip(cutoffs, cutoff_colors): ax.axvline(x=co, c=cc, alpha=0.2) ax.annotate( '', xy=(co, 0), xytext=(co, -0.05), xycoords=('data', 'axes fraction'), arrowprops=dict(arrowstyle='wedge, tail_width=0.7, shrink_factor=0.5', color=cc) ) ax.set_xlim(axis_min, axis_max) # cutoff_string = np.round(revert_func(cutoffs)).astype(int) for i, (co, cc) in enumerate( zip(revert_func(cutoffs)[::-1], cutoff_colors[::-1]) ): text = ax.text( ax.get_xlim()[0] + 0.02*np.diff(ax.get_xlim()), ax.get_ylim()[1] - 0.05*(i+1)*np.diff(ax.get_ylim()), f'{np.round(co).astype(int)}', fontsize=10, c=cc ) text_outline = mpatheffects.Stroke(linewidth=1, foreground='#000') text.set_path_effects( [text_outline, mpatheffects.Normal()] ) plt.tight_layout() for aax in fig.axes: aax.spines['right'].set_color(color_cum) power_label = aax.yaxis.get_offset_text() power_label.set_visible(False) aax.annotate( power_label.get_text(), xy=(1.02, 1.01), xycoords='axes fraction', fontsize=10, color=color_cum ) plt.sca(ax)
[ "numpy.ptp", "numpy.sqrt", "matplotlib.patheffects.Normal", "numpy.array", "matplotlib.ticker.ScalarFormatter", "numpy.arange", "numpy.mean", "numpy.exp", "numpy.linspace", "numpy.min", "numpy.argmin", "numpy.round", "numpy.ediff1d", "numpy.argmax", "matplotlib.pyplot.get_cmap", "numpy.absolute", "numpy.expm1", "matplotlib.pyplot.sca", "matplotlib.patheffects.Stroke", "matplotlib.pyplot.tight_layout", "numpy.log1p", "matplotlib.pyplot.subplots" ]
[((410, 431), 'numpy.argmax', 'np.argmax', (['gmm.means_'], {}), '(gmm.means_)\n', (419, 431), True, 'import numpy as np\n'), ((669, 700), 'numpy.linspace', 'np.linspace', (['low', 'high', 'n_steps'], {}), '(low, high, n_steps)\n', (680, 700), True, 'import numpy as np\n'), ((1099, 1120), 'numpy.argmax', 'np.argmax', (['gmm.means_'], {}), '(gmm.means_)\n', (1108, 1120), True, 'import numpy as np\n'), ((1207, 1227), 'numpy.arange', 'np.arange', (['low', 'high'], {}), '(low, high)\n', (1216, 1227), True, 'import numpy as np\n'), ((1245, 1264), 'numpy.log1p', 'np.log1p', (['ref_space'], {}), '(ref_space)\n', (1253, 1264), True, 'import numpy as np\n'), ((1807, 1835), 'numpy.absolute', 'np.absolute', (['(_cutoffs - high)'], {}), '(_cutoffs - high)\n', (1818, 1835), True, 'import numpy as np\n'), ((1852, 1879), 'numpy.absolute', 'np.absolute', (['(_cutoffs - low)'], {}), '(_cutoffs - low)\n', (1863, 1879), True, 'import numpy as np\n'), ((2102, 2113), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (2109, 2113), True, 'import matplotlib.pyplot as plt\n'), ((2369, 2385), 'numpy.exp', 'np.exp', (['log_prob'], {}), '(log_prob)\n', (2375, 2385), True, 'import numpy as np\n'), ((2466, 2499), 'numpy.argmax', 'np.argmax', (['pdf_individual'], {'axis': '(0)'}), '(pdf_individual, axis=0)\n', (2475, 2499), True, 'import numpy as np\n'), ((3069, 3094), 'numpy.sqrt', 'np.sqrt', (['gmm.covariances_'], {}), '(gmm.covariances_)\n', (3076, 3094), True, 'import numpy as np\n'), ((3106, 3122), 'numpy.argmax', 'np.argmax', (['means'], {}), '(means)\n', (3115, 3122), True, 'import numpy as np\n'), ((3344, 3384), 'matplotlib.ticker.ScalarFormatter', 'ticker.ScalarFormatter', ([], {'useMathText': '(True)'}), '(useMathText=True)\n', (3366, 3384), False, 'from matplotlib import ticker\n'), ((4539, 4580), 'matplotlib.pyplot.subplots', 'plt.subplots', (['n_rows', 'n_cols'], {'sharex': '(True)'}), '(n_rows, n_cols, sharex=True)\n', (4551, 4580), True, 'import matplotlib.pyplot as plt\n'), ((4593, 4607), 'numpy.array', 'np.array', (['axes'], {}), '(axes)\n', (4601, 4607), True, 'import numpy as np\n'), ((6638, 6656), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (6654, 6656), True, 'import matplotlib.pyplot as plt\n'), ((6998, 7009), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (7005, 7009), True, 'import matplotlib.pyplot as plt\n'), ((2003, 2021), 'numpy.argmax', 'np.argmax', (['between'], {}), '(between)\n', (2012, 2021), True, 'import numpy as np\n'), ((3213, 3234), 'numpy.expm1', 'np.expm1', (['lower_bound'], {}), '(lower_bound)\n', (3221, 3234), True, 'import numpy as np\n'), ((5408, 5423), 'numpy.ptp', 'np.ptp', (['cutoffs'], {}), '(cutoffs)\n', (5414, 5423), True, 'import numpy as np\n'), ((775, 793), 'numpy.ediff1d', 'np.ediff1d', (['result'], {}), '(result)\n', (785, 793), True, 'import numpy as np\n'), ((1339, 1357), 'numpy.ediff1d', 'np.ediff1d', (['result'], {}), '(result)\n', (1349, 1357), True, 'import numpy as np\n'), ((1437, 1451), 'numpy.mean', 'np.mean', (['array'], {}), '(array)\n', (1444, 1451), True, 'import numpy as np\n'), ((1493, 1507), 'numpy.log1p', 'np.log1p', (['high'], {}), '(high)\n', (1501, 1507), True, 'import numpy as np\n'), ((4939, 4965), 'numpy.array', 'np.array', (['xlim_percentiles'], {}), '(xlim_percentiles)\n', (4947, 4965), True, 'import numpy as np\n'), ((5497, 5519), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""plasma"""'], {}), "('plasma')\n", (5509, 5519), True, 'import matplotlib.pyplot as plt\n'), ((6475, 6526), 'matplotlib.patheffects.Stroke', 'mpatheffects.Stroke', ([], {'linewidth': '(1)', 'foreground': '"""#000"""'}), "(linewidth=1, foreground='#000')\n", (6494, 6526), True, 'import matplotlib.patheffects as mpatheffects\n'), ((1772, 1787), 'numpy.expm1', 'np.expm1', (['array'], {}), '(array)\n', (1780, 1787), True, 'import numpy as np\n'), ((2588, 2609), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""Dark2"""'], {}), "('Dark2')\n", (2600, 2609), True, 'import matplotlib.pyplot as plt\n'), ((544, 565), 'numpy.argmin', 'np.argmin', (['gmm.means_'], {}), '(gmm.means_)\n', (553, 565), True, 'import numpy as np\n'), ((626, 647), 'numpy.argmax', 'np.argmax', (['gmm.means_'], {}), '(gmm.means_)\n', (635, 647), True, 'import numpy as np\n'), ((2951, 2966), 'numpy.log1p', 'np.log1p', (['array'], {}), '(array)\n', (2959, 2966), True, 'import numpy as np\n'), ((5545, 5560), 'numpy.min', 'np.min', (['cutoffs'], {}), '(cutoffs)\n', (5551, 5560), True, 'import numpy as np\n'), ((6595, 6616), 'matplotlib.patheffects.Normal', 'mpatheffects.Normal', ([], {}), '()\n', (6614, 6616), True, 'import matplotlib.patheffects as mpatheffects\n'), ((6368, 6380), 'numpy.round', 'np.round', (['co'], {}), '(co)\n', (6376, 6380), True, 'import numpy as np\n')]
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : upsert子查询功能 Case Name : upsert子查询for update语法验证 Description : 1、初始创建测试数据 2、session1以线程方式启动,事务内部相关子查询for update后等待20s 3、session1开始后等待5s,session2对session1相关的锁定行进行update 4、验证session1提交后,session2才提交; 5、session1事务执行结果验证 6、验证session2是在session1事务提交后,才进行的update Expect : 1、初始创建测试数据乘公共 2、session1以线程方式启动,事务内部相关子查询for update后等待20s,session1开始执行 3、session1开始后等待5s,session2对session1相关的锁定行进行update,session2开始执行 4、验证session1提交后,session2才提交;session2事务提交总时长大于10s 5、session1事务正常提交 6、select方式验证,session1的update结果是session2提交之前的数据; History : """ import time import unittest from testcase.utils.ComThread import ComThread from testcase.utils.CommonSH import CommonSH from testcase.utils.Constant import Constant from testcase.utils.Logger import Logger class UpsertCase131(unittest.TestCase): def setUp(self): self.log = Logger() self.log.info('----Opengauss_Function_DML_Upsert_Case0131:初始化----') self.pri_sh = CommonSH('PrimaryDbUser') self.constant = Constant() self.t1 = 't_dml_upsert_sub0131' self.t2 = 't_dml_upsert0131' def test_main(self): self.log.info("--1、初始创建测试数据--") sql = f"drop table if exists {self.t1};" \ f"create table {self.t1} (a int,b text);" \ f"insert into {self.t1} values(generate_series(1,10)," \ f"'b-'||generate_series(1,10));" \ f"drop table if exists {self.t2};" \ f"create table {self.t2} (a int primary key,b text,c text);" \ f"insert into {self.t2} values (1,1,1),(2,2,2),(3,3,3);" \ f"select * from {self.t2};select * from {self.t1};" result = self.pri_sh.execut_db_sql(sql) self.log.info(result) self.assertTrue("INSERT 0 10" in result and 'INSERT 0 3' in result) self.log.info("--2、session1以线程方式启动,事务内部相关子查询for update后等待20s--") sql1 = f"begin;" \ f"insert into {self.t2} values(2) on duplicate key update " \ f"b= (select b from {self.t1} where a = excluded.a for update);" \ f"select pg_sleep(20);" \ f"end;" self.log.info(sql1) session1_excute = ComThread(self.pri_sh.execut_db_sql, args=(sql1,)) session1_excute.setDaemon(True) session1_excute.start() time.sleep(5) self.log.info("--3、session1开始后等待5s,session2对session1相关的锁定行进行update--") sql2 = f"begin;" \ f"update {self.t1} set b ='bb-2' where a =2;" \ f"end;" self.log.info(sql2) start_time = time.time() session2_result = self.pri_sh.execut_db_sql(sql2) self.assertIn(self.constant.COMMIT_SUCCESS_MSG, session2_result) self.log.info("--4、验证session1提交后,session2才提交;session2事务提交总时长大于10s--") self.log.info(session2_result) end_time = time.time() self.log.info('start_time:' + str(start_time) + ';end_time:' + str(end_time)) self.log.info('session2执行等待时长' + str(end_time - start_time)) self.assertTrue(end_time - start_time > 10) self.log.info("--5、session1事务执行结果--") session1_excute.join() session1_result = session1_excute.get_result() self.log.info(session1_result) self.assertIn(self.constant.COMMIT_SUCCESS_MSG, session1_result) self.log.info("--6、验证session2是在session1事务提交后,才进行的update--") sql3 = f"select * from {self.t2} where a = 2;" result3 = self.pri_sh.execut_db_sql(sql3) self.log.info(result3) self.assertIn("b-2", result3) sql4 = f"select * from {self.t1} where a = 2;" result4 = self.pri_sh.execut_db_sql(sql4) self.log.info(result4) self.assertIn("bb-2", result4) def tearDown(self): self.log.info("--清理测试数据--") clean_sql = f"drop table if exists {self.t1};" \ f"drop table if exists {self.t2};" clean_result = self.pri_sh.execut_db_sql(clean_sql) self.log.info(clean_result) self.log.info('----Opengauss_Function_DML_Upsert_Case0131:用例执行完毕----')
[ "time.sleep", "testcase.utils.Logger.Logger", "testcase.utils.Constant.Constant", "testcase.utils.CommonSH.CommonSH", "time.time", "testcase.utils.ComThread.ComThread" ]
[((1408, 1416), 'testcase.utils.Logger.Logger', 'Logger', ([], {}), '()\n', (1414, 1416), False, 'from testcase.utils.Logger import Logger\n'), ((1515, 1540), 'testcase.utils.CommonSH.CommonSH', 'CommonSH', (['"""PrimaryDbUser"""'], {}), "('PrimaryDbUser')\n", (1523, 1540), False, 'from testcase.utils.CommonSH import CommonSH\n'), ((1565, 1575), 'testcase.utils.Constant.Constant', 'Constant', ([], {}), '()\n', (1573, 1575), False, 'from testcase.utils.Constant import Constant\n'), ((2722, 2772), 'testcase.utils.ComThread.ComThread', 'ComThread', (['self.pri_sh.execut_db_sql'], {'args': '(sql1,)'}), '(self.pri_sh.execut_db_sql, args=(sql1,))\n', (2731, 2772), False, 'from testcase.utils.ComThread import ComThread\n'), ((2853, 2866), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (2863, 2866), False, 'import time\n'), ((3103, 3114), 'time.time', 'time.time', ([], {}), '()\n', (3112, 3114), False, 'import time\n'), ((3383, 3394), 'time.time', 'time.time', ([], {}), '()\n', (3392, 3394), False, 'import time\n')]
""" This is a django-split-settings main file. For more information read this: https://github.com/sobolevn/django-split-settings Default environment is `development`. To change settings file: `DJANGO_ENV=production python manage.py runserver` """ import django_heroku from split_settings.tools import include base_settings = [ 'components/middleware.py', # middleware configuration 'components/apps.py', # installed applications 'components/database.py', # database settings 'components/pyuploadcare.py', # pyuploadcare settings 'components/rest_framework.py', # rest framework settings 'components/allauth.py', # allauth rest_auth settings 'components/currency.py', # currency settings 'components/email.py', # email settings 'components/rest_framework.py', # rest framework settings 'components/common.py', # standard django settings 'components/cors_configuration.py', # configuration for Access Control Allow Origin 'components/graphene.py', # sendy config 'components/sendy.py' ] # Include settings: include(*base_settings) django_heroku.settings(locals())
[ "split_settings.tools.include" ]
[((1080, 1103), 'split_settings.tools.include', 'include', (['*base_settings'], {}), '(*base_settings)\n', (1087, 1103), False, 'from split_settings.tools import include\n')]
from django.conf.urls import patterns, url, include from django.contrib import admin from django.conf import settings from django.contrib.staticfiles.urls import staticfiles_urlpatterns from .views import template_test urlpatterns = patterns( '', url(r'^test/', template_test, name='template_test'), url(r'^test2/', include('testapp.another_urls', namespace='foo', app_name='faa')) ) admin.autodiscover() urlpatterns += patterns( '', url(r'^admin/', include(admin.site.urls)), ) if settings.DEBUG: urlpatterns += staticfiles_urlpatterns() import debug_toolbar urlpatterns += patterns( url(r'^__debug__/', include(debug_toolbar.urls)), )
[ "django.conf.urls.include", "django.conf.urls.url", "django.contrib.staticfiles.urls.staticfiles_urlpatterns", "django.contrib.admin.autodiscover" ]
[((401, 421), 'django.contrib.admin.autodiscover', 'admin.autodiscover', ([], {}), '()\n', (419, 421), False, 'from django.contrib import admin\n'), ((258, 308), 'django.conf.urls.url', 'url', (['"""^test/"""', 'template_test'], {'name': '"""template_test"""'}), "('^test/', template_test, name='template_test')\n", (261, 308), False, 'from django.conf.urls import patterns, url, include\n'), ((544, 569), 'django.contrib.staticfiles.urls.staticfiles_urlpatterns', 'staticfiles_urlpatterns', ([], {}), '()\n', (567, 569), False, 'from django.contrib.staticfiles.urls import staticfiles_urlpatterns\n'), ((331, 395), 'django.conf.urls.include', 'include', (['"""testapp.another_urls"""'], {'namespace': '"""foo"""', 'app_name': '"""faa"""'}), "('testapp.another_urls', namespace='foo', app_name='faa')\n", (338, 395), False, 'from django.conf.urls import patterns, url, include\n'), ((476, 500), 'django.conf.urls.include', 'include', (['admin.site.urls'], {}), '(admin.site.urls)\n', (483, 500), False, 'from django.conf.urls import patterns, url, include\n'), ((652, 679), 'django.conf.urls.include', 'include', (['debug_toolbar.urls'], {}), '(debug_toolbar.urls)\n', (659, 679), False, 'from django.conf.urls import patterns, url, include\n')]