code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
import os import wget import time import glob import getpass import tarfile import subprocess import email.mime.multipart import email.mime.text import email.mime.image import email.mime.audio from datetime import datetime from pprint import pprint from colorama import Style, Fore from smtplib import SMTP, SMTP_SSL from imaplib import IMAP4_SSL, IMAP4 def smtp_connect(smtp_server, verbose=True): """ Conection to smtp server. smtp_server_ip (str): This value is the smtp server's ip. verbose (boolean): Print information about function progress. Returns: None """ try: smtp = SMTP_SSL(host=smtp_server) smtp.ehlo() if verbose: print(Fore.GREEN+ " ==> [smtp_connect] with SSL" +Style.RESET_ALL) return smtp except: try: smtp = SMTP(host=smtp_server) smtp.ehlo() if verbose: print(Fore.GREEN+ " ==> [smtp_connect] without SSL" +Style.RESET_ALL) return smtp except: print(Fore.RED+ " ==> [smtp_connect] failed!" +Style.RESET_ALL) return 1 def imap_connect(imap_server, username, password, verbose=True): """ Connection to imp server. imap_server_ip (str): This value is the imap server's ip. verbose (boolean): Print information about function progress. Returns: None """ try: imap = IMAP4_SSL(imap_server) imap.login(username, password) if verbose: print(Fore.GREEN+ " ==> [imap_connect] with SSL" +Style.RESET_ALL) return imap except: try: imap = IMAP4(imap_server) imap.login(username, password) if verbose: print(Fore.GREEN+ " ==> [imap_connect] without SSL" +Style.RESET_ALL) return imap except: print(Fore.RED+ " ==> [imap_connect] failed!" +Style.RESET_ALL) def send_mail(smtp_server, FROM="", TO="", subject="", msg="", attachements=[], verbose=True): """ Send mail. smtp_server_ip (str): This value is the smtp server's ip. FROM (str): This value is the sender email address. TO (list): This value is a list of multiple recipient SUBJECT (str, Optional): This value is the email's subject content. msg (str, Optional): This value is the email's message content. attachements (list Optional): verbose (boolean): Print information about function progress. Returns: None """ smtp = smtp_connect(smtp_server, verbose=False) mail = email.mime.multipart.MIMEMultipart() mail["Subject"] = "[ "+subject+" ]" mail["From"] = FROM mail["To"] = TO msg = email.mime.text.MIMEText(msg, _subtype="plain") msg.add_header("Content-Disposition", "email message") mail.attach(msg) for attachement in attachements: if attachement[0] == "image": img = email.mime.image.MIMEImage(open(attachement[1], "rb").read()) img.add_header("Content-Disposition", "attachement") img.add_header("Attachement-type", "image") img.add_header("Attachement-filename", attachement[1]) mail.attach(img) if attachement[0] == "file": text = email.mime.text.MIMEText(open(attachement[1], "r").read()) text.add_header("Content-Disposition", "attachement") text.add_header("Attachement-type", "filetext") text.add_header("Attachement-filename", attachement[1]) mail.attach(text) try: smtp.sendmail(mail["From"], mail["To"], mail.as_string()) if verbose: print(Fore.GREEN+ " ==> [send_mail] "+mail["From"]+" --> "+mail["To"]+" {"+subject+"} -- "+ time.strftime("%H:%M:%S", time.localtime()) +Style.RESET_ALL) smtp_logout(smtp, verbose=False) except Exception as e: print(Fore.RED+ " ==> [send_mail] failed! "+mail["From"]+" --> "+mail["To"]+" -- "+ time.strftime("%H:%M:%S", time.localtime()) +Style.RESET_ALL) print(Fore.RED+str(e)+Style.RESET_ALL) smtp_logout(smtp, verbose=False) def read_mailbox(imap_server, username, password, verbose=True): # attribut [ _payload ] """ Read email inbox imap_server_ip (str): This value is the imap server's ip. login (str): This value is the username login. password (str): This value is the password login. verbose (boolean): Print information about function progress. Returns: list of str: all emails content """ imap = imap_connect(imap_server, username, password, verbose=False) all_mails = [] imap.select("INBOX") status, mails = imap.search(None, "ALL") for mail in mails[0].split(): status, data = imap.fetch(mail, "(RFC822)") mail_content = email.message_from_string(data[0][1].decode("utf-8")) all_mails.append(mail_content) for part in mail_content.walk(): if not part.is_multipart(): pass if verbose: print(Fore.GREEN+ " ==> [read_mailbox] {"+str(len(mails)-1)+"} -- "+ time.strftime("%H:%M:%S", time.localtime()) +Style.RESET_ALL) imap_logout(imap, verbose=False) return all_mails def read_mailbox_download_execute(imap_server, imap_login, imap_password): """ Read email inbox and download link inside. imap_server_ip (str): This value is the imap server's ip. imap_login (str): This value is the username login. imap_password (str): This value is the password login. verbose (boolean): Print information about function progress. Returns: list of str: all emails content """ try: path = None mails = read_mailbox(imap_server, imap_login, imap_password, verbose=False) if len(mails) <= 0: print(Fore.YELLOW+ " ==> [read_mailbox_download_execute] {"+str(len(mails)-1)+"} -- "+ time.strftime("%H:%M:%S", time.localtime()) +Style.RESET_ALL) return 0 for mail in mails: for element in str(mail).replace("\n", " ").split(" "): if "http" in element: path = wget.download(element) if path == None: print(Fore.YELLOW+ " ==> [read_mailbox_download_execute] {"+str(len(mails)-1)+"} -- "+ time.strftime("%H:%M:%S", time.localtime()) +Style.RESET_ALL) return 0 tarf_file = tarfile.open(path) tarf_file.extractall(".") tarf_file.close() python_files = glob.glob("*/*maj*.py") for python_script in python_files: subprocess.getoutput("python3 "+python_script) print(Fore.GREEN+ " ==> [read_mailbox_download_execute] {"+str(len(mails)-1)+"} -- "+ time.strftime("%H:%M:%S", time.localtime()) +Style.RESET_ALL) return True except Exception as e: print(Fore.RED+ " ==> [read_mailbox_download_execute] failed during execution! -- "+ time.strftime("%H:%M:%S", time.localtime()) +Style.RESET_ALL) print(e) return False def download_attachements(imap_server, username, password, verbose=True): """ Read email inbox and download attachements. imap_server_ip (str): This value is the imap server's ip. imap_login (str): This value is the username login. imap_password (str): This value is the password login. verbose (boolean): Print information about function progress. Returns: list of str: all emails content """ imap = imap_connect(imap_server, username, password, verbose=False) #INIT if not os.path.isdir("/home/"+getpass.getuser()+"/Downloads"): os.makedirs("/home/"+getpass.getuser()+"/Downloads") mails = [] imap.select("INBOX") status, mails = imap.search(None, "ALL") for mail in mails[0].split(): status, data = imap.fetch(mail, "(RFC822)") mail_content = email.message_from_string(data[0][1].decode("utf-8")) for part in mail_content.walk(): if not part.is_multipart(): if part["Content-Disposition"] == "attachement" and part["Attachement-type"] == "filetext": username = getpass.getuser() file = open(part["Attachement-filename"],"w") file.write(part._payload) file.close() imap_logout(imap, verbose=False) print(Fore.GREEN+ " ==> [download_attachements] --- " + time.strftime("%H:%M:%S", time.localtime())+Style.RESET_ALL) # In progress def delete_old_emails(imap, time_laps=60): delete_messages = [] imap.select("INBOX") status, mails = imap.search(None, "ALL") for mail in mails[0].split(): status, data = imap.fetch(mail, "(RFC822)") mail_content = email.message_from_string(data[0][1].decode("utf-8")) if (time.time() - time.mktime(time.strptime(mail_content["Date"], "%a, %d %b %Y %H:%M:%S %z")) >= time_laps ): delete_messages.append(mail) delete_emails(imap, delete_messages) def delete_emails(imap, mails): """ Delete mails specified in attributs imap (imap_object): This value is the imap server's object. mails (list): This value is an email list to delete. Returns: list of str: all emails content """ for mail in mails: imap.store(mail,"+FLAGS","\\Deleted") imap.expunge() def delete_all_emails(imap_server, username, password, verbose=True): """ Delete all emails in INBOX. imap_server_ip (str): This value is the imap server's ip. imap_login (str): This value is the username login. imap_password (str): This value is the password login. verbose (boolean): Print information about function progress. Returns: list of str: all emails content """ imap = imap_connect(imap_server, username, password, verbose=False) delete_messages = [] imap.select("INBOX") status, mails = imap.search(None, "ALL") for mail in mails[0].split(): delete_messages.append(mail) delete_emails(imap, delete_messages) status, mails = imap.search(None, "ALL") if len(mails) == 1: print(Fore.GREEN+ " ==> [delete_all_emails] was successfull --- " + time.strftime("%H:%M:%S", time.localtime()) +Style.RESET_ALL) imap_logout(imap, verbose=False) return 0 print(Fore.RED+ " ==> [delete_all_emails] failed! --- " + time.strftime("%H:%M:%S", time.localtime()) +Style.RESET_ALL) imap_logout(imap, verbose=False) return 1 def imap_logout(imap, verbose=True): """ Logout out to the imap service imap (imap_object): This value is the imap server's object. Returns: None """ try: imap.close() imap.logout() if verbose: print(Fore.GREEN+ " ==> [imap_logout] was successfull" +Style.RESET_ALL) except: print(Fore.RED+ " ==> [imap_logout] failed" +Style.RESET_ALL) def smtp_logout(smtp, verbose=True): """ Logout out to the smtp service smtp (smtp_object): This value is the smtp server's object. Returns: None """ try: smtp.quit() if verbose: print(Fore.GREEN+ " ==> [smtp_logout] was successfull" +Style.RESET_ALL) except: print(Fore.RED+ " ==> [smtp_logout] failed" +Style.RESET_ALL)
[ "subprocess.getoutput", "wget.download", "tarfile.open", "smtplib.SMTP", "time.strptime", "imaplib.IMAP4_SSL", "smtplib.SMTP_SSL", "imaplib.IMAP4", "getpass.getuser", "time.localtime", "time.time", "glob.glob" ]
[((636, 662), 'smtplib.SMTP_SSL', 'SMTP_SSL', ([], {'host': 'smtp_server'}), '(host=smtp_server)\n', (644, 662), False, 'from smtplib import SMTP, SMTP_SSL\n'), ((1448, 1470), 'imaplib.IMAP4_SSL', 'IMAP4_SSL', (['imap_server'], {}), '(imap_server)\n', (1457, 1470), False, 'from imaplib import IMAP4_SSL, IMAP4\n'), ((6523, 6541), 'tarfile.open', 'tarfile.open', (['path'], {}), '(path)\n', (6535, 6541), False, 'import tarfile\n'), ((6625, 6648), 'glob.glob', 'glob.glob', (['"""*/*maj*.py"""'], {}), "('*/*maj*.py')\n", (6634, 6648), False, 'import glob\n'), ((6704, 6752), 'subprocess.getoutput', 'subprocess.getoutput', (["('python3 ' + python_script)"], {}), "('python3 ' + python_script)\n", (6724, 6752), False, 'import subprocess\n'), ((848, 870), 'smtplib.SMTP', 'SMTP', ([], {'host': 'smtp_server'}), '(host=smtp_server)\n', (852, 870), False, 'from smtplib import SMTP, SMTP_SSL\n'), ((1675, 1693), 'imaplib.IMAP4', 'IMAP4', (['imap_server'], {}), '(imap_server)\n', (1680, 1693), False, 'from imaplib import IMAP4_SSL, IMAP4\n'), ((8945, 8956), 'time.time', 'time.time', ([], {}), '()\n', (8954, 8956), False, 'import time\n'), ((6271, 6293), 'wget.download', 'wget.download', (['element'], {}), '(element)\n', (6284, 6293), False, 'import wget\n'), ((7732, 7749), 'getpass.getuser', 'getpass.getuser', ([], {}), '()\n', (7747, 7749), False, 'import getpass\n'), ((7794, 7811), 'getpass.getuser', 'getpass.getuser', ([], {}), '()\n', (7809, 7811), False, 'import getpass\n'), ((8294, 8311), 'getpass.getuser', 'getpass.getuser', ([], {}), '()\n', (8309, 8311), False, 'import getpass\n'), ((8582, 8598), 'time.localtime', 'time.localtime', ([], {}), '()\n', (8596, 8598), False, 'import time\n'), ((8971, 9034), 'time.strptime', 'time.strptime', (["mail_content['Date']", '"""%a, %d %b %Y %H:%M:%S %z"""'], {}), "(mail_content['Date'], '%a, %d %b %Y %H:%M:%S %z')\n", (8984, 9034), False, 'import time\n'), ((10582, 10598), 'time.localtime', 'time.localtime', ([], {}), '()\n', (10596, 10598), False, 'import time\n'), ((5228, 5244), 'time.localtime', 'time.localtime', ([], {}), '()\n', (5242, 5244), False, 'import time\n'), ((6874, 6890), 'time.localtime', 'time.localtime', ([], {}), '()\n', (6888, 6890), False, 'import time\n'), ((10396, 10412), 'time.localtime', 'time.localtime', ([], {}), '()\n', (10410, 10412), False, 'import time\n'), ((3851, 3867), 'time.localtime', 'time.localtime', ([], {}), '()\n', (3865, 3867), False, 'import time\n'), ((4075, 4091), 'time.localtime', 'time.localtime', ([], {}), '()\n', (4089, 4091), False, 'import time\n'), ((6054, 6070), 'time.localtime', 'time.localtime', ([], {}), '()\n', (6068, 6070), False, 'import time\n'), ((6446, 6462), 'time.localtime', 'time.localtime', ([], {}), '()\n', (6460, 6462), False, 'import time\n'), ((7078, 7094), 'time.localtime', 'time.localtime', ([], {}), '()\n', (7092, 7094), False, 'import time\n')]
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup(name="pyims", version='0.1.2', description='A python wrapper for the IMS Word Sense Disambiguation tool (Zhong and Ng, 2010)', url='http://github.com/vishnumenon/pyims', author="<NAME>", author_email="<EMAIL>", long_description=long_description, long_description_content_type="text/markdown", license='MIT', packages=setuptools.find_packages(), install_requires=[ 'nltk', ], classifiers=( "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ), zip_safe=False)
[ "setuptools.find_packages" ]
[((457, 483), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (481, 483), False, 'import setuptools\n')]
# UnitTests of all triggmine events import unittest import datetime from client import Client class ClientTest(unittest.TestCase): def setUp(self): self.client = Client('YOUR API_URL', 'YOUR API_KEY') # Registration event def test_registration_success(self): response = self.client.registration.create(device_id='4c3d48512d48b2603092b5a45ba74c8c', device_id_1='465060737', customer_id='1', customer_first_name='Jhon', customer_last_name='Doe', customer_email='<EMAIL>', customer_date_created=str(datetime.datetime.now())) self.assertEqual(201, response.status_code) # Diagnostic event def test_diagnostic_success(self): response = self.client.diagnostic.create(date_created=str(datetime.datetime.now()), diagnostic_type="Install_Test_Plugin", description="TestCms", status=1) self.assertEqual(201, response.status_code) # Cart event def test_cart_success(self): response = self.client.cart.create(order_id="22",price_total="210.86",qty_total="1", products=[dict(product_id= "421", product_name= "Elizabeth Knit Top", product_desc= "Loose fitting from the shoulders, open weave knit top. Semi sheer. Slips on. Faux button closure detail on the back. Linen/Cotton. Machine wash.", product_sku= "wbk013", product_image= "https://1924magento.triggmine.com.ua/media/catalog/product/cache/1/image/265x/9df78eab33525d08d6e5fb8d27136e95/w/b/wbk012t.jpg", product_url= "https://1924magento.triggmine.com.ua/elizabeth-knit-top-596.html", product_qty= 1, product_price= 210, product_total_val= 210, product_categories= ['New Arrivals','Tops & Blouses'])], customer=dict(device_id='4c3d48512d48b2603092b5a45ba74c8c', customer_id='1', customer_first_name='Jhon', customer_last_name='Doe', customer_email='<EMAIL>', customer_date_created="2016-09-08 10:20:37")) # Login event def test_login_success(self): response = self.client.login.create(device_id='4c3d48512d48b2603092b5a45ba74c8c', device_id_1='465060737', customer_id='1', customer_first_name='Jhon', customer_last_name='Doe', customer_email='<EMAIL>', customer_date_created=str(datetime.datetime.now())) self.assertEqual(200, response.status_code) # Logout event def test_logout_success(self): response = self.client.logout.create(device_id='4c3d48512d48b2603092b5a45ba74c8c', device_id_1='465060737', customer_id='1', customer_first_name='Jhon', customer_last_name='Doe', customer_email='<EMAIL>', customer_date_created=str(datetime.datetime.now())) self.assertEqual(200, response.status_code) # History event def test_history_success(self): response = self.client.history.create(orders= [dict(order_id="22",price_total="210.86",qty_total="1", products=[dict(product_id= "421", product_name= "Elizabeth Knit Top", product_desc= "Loose fitting from the shoulders, open weave knit top. Semi sheer. Slips on. Faux button closure detail on the back. Linen/Cotton. Machine wash.", product_sku= "wbk013", product_image= "https://1924magento.triggmine.com.ua/media/catalog/product/cache/1/image/265x/9df78eab33525d08d6e5fb8d27136e95/w/b/wbk012t.jpg", product_url= "https://1924magento.triggmine.com.ua/elizabeth-knit-top-596.html", product_qty= 1, product_price= 210, product_total_val= 210, product_categories= ['New Arrivals','Tops & Blouses'])], customer=dict(device_id='4c3d48512d48b2603092b5a45ba74c8c', customer_id='1', customer_first_name='Jhon', customer_last_name='Doe', customer_email='<EMAIL>', customer_date_created="2016-09-08 10:20:37")), dict(order_id="22",price_total="210.86",qty_total="1", products=[dict(product_id= "421", product_name= "Elizabeth Knit Top", product_desc= "Loose fitting from the shoulders, open weave knit top. Semi sheer. Slips on. Faux button closure detail on the back. Linen/Cotton. Machine wash.", product_sku= "wbk013", product_image= "https://1924magento.triggmine.com.ua/media/catalog/product/cache/1/image/265x/9df78eab33525d08d6e5fb8d27136e95/w/b/wbk012t.jpg", product_url= "https://1924magento.triggmine.com.ua/elizabeth-knit-top-596.html", product_qty= 1, product_price= 210, product_total_val= 210, product_categories= ['New Arrivals','Tops & Blouses'])], customer=dict(device_id='4c3d48512d48b2603092b5a45ba74c8c', customer_id='1', customer_first_name='Jhon', customer_last_name='Doe', customer_email='<EMAIL>', customer_date_created="2016-09-08 10:20:37"))]) self.assertEqual(200, response.status_code) # Navigation event def test_navigation_success(self): response = self.client.navigation.create(user_agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.106 Safari/537.36", products=[dict(product_id= "421", product_name= "Elizabeth Knit Top", product_desc= "Loose fitting from the shoulders, open weave knit top. Semi sheer. Slips on. Faux button closure detail on the back. Linen/Cotton. Machine wash.", product_sku= "wbk013", product_image= "https://1924magento.triggmine.com.ua/media/catalog/product/cache/1/image/265x/9df78eab33525d08d6e5fb8d27136e95/w/b/wbk012t.jpg", product_url= "https://1924magento.triggmine.com.ua/elizabeth-knit-top-596.html", product_qty= 1, product_price= 210, product_total_val= 210, product_categories= ['New Arrivals','Tops & Blouses'])], customer=dict(device_id='4c3d48512d48b2603092b5a45ba74c8c', customer_id='1', customer_first_name='Jhon', customer_last_name='Doe', customer_email='<EMAIL>', customer_date_created="2016-09-08 10:20:37")) self.assertEqual(201, response.status_code) # Order event def test_order_success(self): response = self.client.order.create(order_id="22",price_total="210.86",qty_total="1",status="Paid", products=[dict(product_id= "421", product_name= "Elizabeth Knit Top", product_desc= "Loose fitting from the shoulders, open weave knit top. Semi sheer. Slips on. Faux button closure detail on the back. Linen/Cotton. Machine wash.", product_sku= "wbk013", product_image= "https://1924magento.triggmine.com.ua/media/catalog/product/cache/1/image/265x/9df78eab33525d08d6e5fb8d27136e95/w/b/wbk012t.jpg", product_url= "https://1924magento.triggmine.com.ua/elizabeth-knit-top-596.html", product_qty= 1, product_price= 210, product_total_val= 210, product_categories= ['New Arrivals','Tops & Blouses'])], customer=dict(device_id='4c3d48512d48b2603092b5a45ba74c8c', customer_id='1', customer_first_name='Jhon', customer_last_name='Doe', customer_email='<EMAIL>', customer_date_created="2016-09-08 10:20:37")) self.assertEqual(201, response.status_code) if __name__ == '__main__': unittest.main()
[ "unittest.main", "datetime.datetime.now", "client.Client" ]
[((11253, 11268), 'unittest.main', 'unittest.main', ([], {}), '()\n', (11266, 11268), False, 'import unittest\n'), ((177, 215), 'client.Client', 'Client', (['"""YOUR API_URL"""', '"""YOUR API_KEY"""'], {}), "('YOUR API_URL', 'YOUR API_KEY')\n", (183, 215), False, 'from client import Client\n'), ((840, 863), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (861, 863), False, 'import datetime\n'), ((1051, 1074), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1072, 1074), False, 'import datetime\n'), ((3462, 3485), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3483, 3485), False, 'import datetime\n'), ((4111, 4134), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4132, 4134), False, 'import datetime\n')]
from flask_restful import Resource, reqparse parser = reqparse.RequestParser() parser.add_argument('command', required=True) parser.add_argument('docker', required=True) class Build(Resource): def get(self): return {'status': 'building'} def post(self): args = parser.parse_args() print(args) return {'status': 'started'}
[ "flask_restful.reqparse.RequestParser" ]
[((55, 79), 'flask_restful.reqparse.RequestParser', 'reqparse.RequestParser', ([], {}), '()\n', (77, 79), False, 'from flask_restful import Resource, reqparse\n')]
from pathlib import Path from shutil import which from subprocess import run, PIPE import click from .main import main, lprint @main.command() @click.pass_context @click.argument('watcher') def symlink(ctx, watcher): """Locally install a symlink to sera""" if ctx.parent.params['watcher']: click.echo("This command runs locally") raise click.Abort source = Path(which('sera')) target = source.parent / watcher if ctx.obj['verbosity']: click.echo('Installing symlink at %s' % str(target)) out = run( ['ln', '-s', str(source), str(target)], stdout=PIPE, stderr=PIPE, universal_newlines=True) return lprint(ctx, out)
[ "click.echo", "click.argument", "shutil.which" ]
[((168, 193), 'click.argument', 'click.argument', (['"""watcher"""'], {}), "('watcher')\n", (182, 193), False, 'import click\n'), ((310, 349), 'click.echo', 'click.echo', (['"""This command runs locally"""'], {}), "('This command runs locally')\n", (320, 349), False, 'import click\n'), ((394, 407), 'shutil.which', 'which', (['"""sera"""'], {}), "('sera')\n", (399, 407), False, 'from shutil import which\n')]
from typing import Optional, Dict, List import aiohttp plate_to_version = { '真1': 'maimai', '真2': 'maimai PLUS', '超': 'maimai GreeN', '檄': 'maimai GreeN PLUS', '橙': 'maimai ORANGE', '暁': 'maimai ORANGE PLUS', '晓': 'maimai ORANGE PLUS', '桃': 'maimai PiNK', '櫻': 'maimai PiNK PLUS', '樱': 'maimai PiNK PLUS', '紫': 'maimai MURASAKi', '菫': 'maimai MURASAKi PLUS', '堇': 'maimai MURASAKi PLUS', '白': 'maimai MiLK', '雪': 'MiLK PLUS', '輝': 'maimai FiNALE', '辉': 'maimai FiNALE', '熊': 'maimai でらっくす', '華': 'maimai でらっくす PLUS', '华': 'maimai でらっくす PLUS', '爽': 'maimai でらっくす Splash' } async def get_player_plate(payload: Dict): async with aiohttp.request("POST", "https://www.diving-fish.com/api/maimaidxprober/query/plate", json=payload) as resp: if resp.status == 400: return None, 400 elif resp.status == 403: return None, 403 plate_data = await resp.json() return plate_data, 0
[ "aiohttp.request" ]
[((802, 905), 'aiohttp.request', 'aiohttp.request', (['"""POST"""', '"""https://www.diving-fish.com/api/maimaidxprober/query/plate"""'], {'json': 'payload'}), "('POST',\n 'https://www.diving-fish.com/api/maimaidxprober/query/plate', json=payload)\n", (817, 905), False, 'import aiohttp\n')]
import os import re import time import numpy as np from msedge.selenium_tools import EdgeOptions, Edge from selenium.webdriver.common.action_chains import ActionChains headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.83 Safari/537.36 Edg/85.0.564.41' } print('load data...') sha256set = np.loadtxt(os.getcwd() + "/Gorgon Group.csv", delimiter=",", usecols=(0), dtype=str, skiprows=1) # usecols=(0) 0表示hash值是第0列,这个需要按情况做修改。 print('finish data load...') opt = EdgeOptions() # 使用基于Chromium内核的Microsoft Edge浏览器,其他浏览器需要看情况更改 opt.use_chromium = True # opt.add_argument("headless") # 无头浏览器,如果运行出错请注释掉这句。 opt.add_argument("disable-gpu") opt.add_experimental_option('excludeSwitches', ['enable-logging']) driver = Edge(executable_path = os.getcwd() + "/msedgedriver.exe", options = opt) # 这里msedgedriver.exe需要跟下载的webdriver名字对应,默认在项目文件根目录 for filehash in sha256set: noerror = 1 while(noerror): try: fileurl = 'https://www.virustotal.com/gui/file/' + filehash + '/behavior/VirusTotal%20Cuckoofork' driver.get(fileurl) driver.implicitly_wait(7) driver.find_element_by_tag_name('body') time.sleep(1.5) print(driver.current_url) if driver.current_url == "https://www.virustotal.com/gui/captcha": # 检测是否被网站拦截,拦截了手动通过图形验证码限时60s ActionChains(driver).move_by_offset(342, 146).click().perform() # 自动点击,打开图形验证码 ActionChains(driver).move_by_offset(-342, -146).perform() time.sleep(90) # 等待手动通过 matchresult = re.findall(r"file.(.*?).detection", driver.current_url, re.M) with open(os.getcwd() + '/sha256.txt', 'a+', encoding='UTF-8') as f: # 保存文件 f.write(matchresult[0] + '\n') f.close() noerror = 0 except: noerror = 1
[ "msedge.selenium_tools.EdgeOptions", "time.sleep", "os.getcwd", "selenium.webdriver.common.action_chains.ActionChains", "re.findall" ]
[((541, 554), 'msedge.selenium_tools.EdgeOptions', 'EdgeOptions', ([], {}), '()\n', (552, 554), False, 'from msedge.selenium_tools import EdgeOptions, Edge\n'), ((380, 391), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (389, 391), False, 'import os\n'), ((811, 822), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (820, 822), False, 'import os\n'), ((1232, 1247), 'time.sleep', 'time.sleep', (['(1.5)'], {}), '(1.5)\n', (1242, 1247), False, 'import time\n'), ((1630, 1690), 're.findall', 're.findall', (['"""file.(.*?).detection"""', 'driver.current_url', 're.M'], {}), "('file.(.*?).detection', driver.current_url, re.M)\n", (1640, 1690), False, 'import re\n'), ((1580, 1594), 'time.sleep', 'time.sleep', (['(90)'], {}), '(90)\n', (1590, 1594), False, 'import time\n'), ((1714, 1725), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1723, 1725), False, 'import os\n'), ((1506, 1526), 'selenium.webdriver.common.action_chains.ActionChains', 'ActionChains', (['driver'], {}), '(driver)\n', (1518, 1526), False, 'from selenium.webdriver.common.action_chains import ActionChains\n'), ((1411, 1431), 'selenium.webdriver.common.action_chains.ActionChains', 'ActionChains', (['driver'], {}), '(driver)\n', (1423, 1431), False, 'from selenium.webdriver.common.action_chains import ActionChains\n')]
import pixiedust my_logger = pixiedust.getLogger(__name__)
[ "pixiedust.getLogger" ]
[((29, 58), 'pixiedust.getLogger', 'pixiedust.getLogger', (['__name__'], {}), '(__name__)\n', (48, 58), False, 'import pixiedust\n')]
# Generated by Django 2.1.11 on 2020-06-04 09:19 from django.db import migrations, models def fix_period_before_after(apps, schema_editor): # noinspection PyPep8Naming Form = apps.get_model("iaso", "Form") for form in Form.objects.filter(period_type=None).exclude(periods_before_allowed=0, periods_after_allowed=0): form.periods_before_allowed = 0 form.periods_after_allowed = 0 form.save() class Migration(migrations.Migration): dependencies = [("iaso", "0051_device_position")] operations = [ migrations.AlterField( model_name="form", name="period_type", field=models.TextField( blank=True, choices=[("MONTH", "Month"), ("QUARTER", "Quarter"), ("SIX_MONTH", "Six-month"), ("YEAR", "Year")], null=True, ), ), migrations.AlterField(model_name="form", name="periods_after_allowed", field=models.IntegerField(default=0)), migrations.AlterField(model_name="form", name="periods_before_allowed", field=models.IntegerField(default=0)), migrations.RunPython(fix_period_before_after, reverse_code=migrations.RunPython.noop), ]
[ "django.db.migrations.RunPython", "django.db.models.TextField", "django.db.models.IntegerField" ]
[((1119, 1209), 'django.db.migrations.RunPython', 'migrations.RunPython', (['fix_period_before_after'], {'reverse_code': 'migrations.RunPython.noop'}), '(fix_period_before_after, reverse_code=migrations.\n RunPython.noop)\n', (1139, 1209), False, 'from django.db import migrations, models\n'), ((659, 802), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'choices': "[('MONTH', 'Month'), ('QUARTER', 'Quarter'), ('SIX_MONTH', 'Six-month'), (\n 'YEAR', 'Year')]", 'null': '(True)'}), "(blank=True, choices=[('MONTH', 'Month'), ('QUARTER',\n 'Quarter'), ('SIX_MONTH', 'Six-month'), ('YEAR', 'Year')], null=True)\n", (675, 802), False, 'from django.db import migrations, models\n'), ((959, 989), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (978, 989), False, 'from django.db import migrations, models\n'), ((1078, 1108), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1097, 1108), False, 'from django.db import migrations, models\n')]
from hca.dss import DSSClient dss = DSSClient() dss.logout()
[ "hca.dss.DSSClient" ]
[((37, 48), 'hca.dss.DSSClient', 'DSSClient', ([], {}), '()\n', (46, 48), False, 'from hca.dss import DSSClient\n')]
import sys import os import os.path import random from pathlib import Path import torch import torchaudio from .audiodataset import AUDIO_EXTENSIONS, default_loader from ..dataset import PureDatasetFolder, has_file_allowed_extension class TAU2019(PureDatasetFolder): """TAU urban acoustic scene 2019 dataset. This dataset was used for DCASE 2019 Task 1. For using this dataset, download the dataset from the following links: https://zenodo.org/record/2589280#.XvWs0Zbgprk https://zenodo.org/record/3063822#.XvWs55bgprk Then, unzip them in the *root* folder. """ def __init__(self, root, mode, loader=default_loader, extensions=AUDIO_EXTENSIONS, transforms=None, transform=None, target_transform=None, is_valid_file=None, pre_load=False, pre_transform=None, pre_target_transform=None, pre_transforms=None): super(TAU2019, self).__init__(root, transforms=transforms, transform=transform, target_transform=target_transform) self.MODES = ('train', 'evaluate', 'test') if mode not in self.MODES: raise ValueError("mode \"{}\" is not in {}".format(mode, self.MODES)) self.mode = mode classes, class_to_idx = self._define_classes() samples = self._make_dataset(str(self.root), mode, class_to_idx, extensions, is_valid_file) self.loader = loader self.extensions = extensions self.samples = samples self.targets = [s[1] for s in samples] self.classes = classes self.class_to_idx = class_to_idx has_pre_transforms = pre_transforms is not None has_pre_separate_transform = pre_transform is not None or pre_target_transform is not None if has_pre_transforms and has_pre_separate_transform: raise ValueError("Only pre_transforms or pre_transform/pre_target_transform can " "be passed as argument") if has_pre_separate_transform: pre_transforms = torchdataset.transform.SeparatedTransform(pre_transform, pre_target_transform) self.pre_transforms = pre_transforms self.pre_load = pre_load if pre_load: self.pre_process() def pre_process(self, ): preprocessed_samples = [] for i in range(len(self)): sys.stdout.write("\rloaded {0} / {1}".format(i+1, len(self))) sys.stdout.flush() path, target = self.samples[i] sample = self.loader(path) if self.pre_transforms is not None: sample, target = self.pre_transforms(sample, target) preprocessed_samples.append((sample, target)) self.preprocessed_samples = preprocessed_samples sys.stdout.write("\n") def _define_classes(self, ): classes = ['airport', 'shopping_mall', 'metro_station', 'street_pedestrian', 'public_square', 'street_traffic', 'tram', 'bus', 'metro', 'park'] classes.sort() class_to_idx = {classes[i]: i for i in range(len(classes))} return classes, class_to_idx def _make_dataset(self, directory, mode, class_to_idx, extensions=None, is_valid_file=None): instances = [] directory = os.path.expanduser(directory) both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") if extensions is not None: def is_valid_file(x): return has_file_allowed_extension(x, extensions) if not os.path.isdir(directory): raise ValueError("{} is not a directory".format(directory)) with open(os.path.join(directory, 'evaluation_setup', 'fold1_'+mode+'.csv')) as f: for i, line in enumerate(f): if i == 0: continue line = line.rstrip('\n') fname = line.split('\t')[0] path = os.path.join(directory, fname) class_index = class_to_idx[os.path.split(fname)[1].split('-')[0]] item = path, class_index instances.append(item) return instances def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ if self.pre_load: sample, target = self.preprocessed_samples[index] else: path, target = self.samples[index] sample = self.loader(path) if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def __len__(self): return len(self.samples)
[ "os.path.join", "os.path.split", "os.path.isdir", "sys.stdout.flush", "os.path.expanduser", "sys.stdout.write" ]
[((2934, 2956), 'sys.stdout.write', 'sys.stdout.write', (['"""\n"""'], {}), "('\\n')\n", (2950, 2956), False, 'import sys\n'), ((3443, 3472), 'os.path.expanduser', 'os.path.expanduser', (['directory'], {}), '(directory)\n', (3461, 3472), False, 'import os\n'), ((2592, 2610), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (2608, 2610), False, 'import sys\n'), ((3915, 3939), 'os.path.isdir', 'os.path.isdir', (['directory'], {}), '(directory)\n', (3928, 3939), False, 'import os\n'), ((4031, 4100), 'os.path.join', 'os.path.join', (['directory', '"""evaluation_setup"""', "('fold1_' + mode + '.csv')"], {}), "(directory, 'evaluation_setup', 'fold1_' + mode + '.csv')\n", (4043, 4100), False, 'import os\n'), ((4309, 4339), 'os.path.join', 'os.path.join', (['directory', 'fname'], {}), '(directory, fname)\n', (4321, 4339), False, 'import os\n'), ((4383, 4403), 'os.path.split', 'os.path.split', (['fname'], {}), '(fname)\n', (4396, 4403), False, 'import os\n')]
import os import torch import hashlib from collections import OrderedDict from util.env import env_factory, eval_policy from util.logo import print_logo if __name__ == "__main__": import sys, argparse, time, os parser = argparse.ArgumentParser() parser.add_argument("--nolog", action='store_true') print_logo(subtitle="Recurrent Reinforcement Learning for Robotics.") if len(sys.argv) < 2: print("Usage: python apex.py [algorithm name]", sys.argv) elif sys.argv[1] == 'ars': """ Utility for running Augmented Random Search. """ from algos.ars import run_experiment sys.argv.remove(sys.argv[1]) parser.add_argument("--workers", type=int, default=4) parser.add_argument("--hidden_size", default=32, type=int) # neurons in hidden layer parser.add_argument("--timesteps", "-t", default=1e8, type=float) # timesteps to run experiment ofr parser.add_argument("--load_model", "-l", default=None, type=str) # load a model from a saved file. parser.add_argument('--std', "-sd", default=0.0075, type=float) # the standard deviation of the parameter noise vectors parser.add_argument("--deltas", "-d", default=64, type=int) # number of parameter noise vectors to use parser.add_argument("--lr", "-lr", default=0.01, type=float) # the learning rate used to update policy parser.add_argument("--reward_shift", "-rs", default=1, type=float) # the reward shift (to counter Gym's alive_bonus) parser.add_argument("--traj_len", "-tl", default=1000, type=int) # max trajectory length for environment parser.add_argument("--algo", "-a", default='v1', type=str) # whether to use ars v1 or v2 parser.add_argument("--normalize" '-n', action='store_true') # normalize states online parser.add_argument("--recurrent", "-r", action='store_true') # whether to use a recurrent policy parser.add_argument("--logdir", default="./logs/ars/", type=str) parser.add_argument("--seed", "-s", default=0, type=int) parser.add_argument("--env_name", "-e", default="Hopper-v3") parser.add_argument("--average_every", default=10, type=int) parser.add_argument("--save_model", "-m", default=None, type=str) # where to save the trained model to parser.add_argument("--redis", default=None) args = parser.parse_args() run_experiment(args) elif sys.argv[1] == 'ddpg': sys.argv.remove(sys.argv[1]) """ Utility for running Recurrent/Deep Deterministic Policy Gradients. """ from algos.off_policy import run_experiment parser.add_argument("--timesteps", "-t", default=1e6, type=float) # number of timesteps in replay buffer parser.add_argument("--start_timesteps", default=1e4, type=int) # number of timesteps to generate random actions for parser.add_argument("--load_actor", default=None, type=str) # load an actor from a .pt file parser.add_argument("--load_critic", default=None, type=str) # load a critic from a .pt file parser.add_argument('--discount', default=0.99, type=float) # the discount factor parser.add_argument('--expl_noise', default=0.2, type=float) # random noise used for exploration parser.add_argument('--tau', default=0.01, type=float) # update factor for target networks parser.add_argument("--a_lr", "-alr", default=1e-5, type=float) # adam learning rate for critic parser.add_argument("--c_lr", "-clr", default=1e-4, type=float) # adam learning rate for actor parser.add_argument("--traj_len", "-tl", default=1000, type=int) # max trajectory length for environment parser.add_argument("--center_reward", "-r", action='store_true') # normalize rewards to a normal distribution parser.add_argument("--normc_init", default=True, type=bool) # using col norm to init weights parser.add_argument("--normalize" '-n', action='store_true') # normalize states online parser.add_argument("--batch_size", default=64, type=int) # batch size for policy update parser.add_argument("--updates", default=1, type=int) # (if recurrent) number of times to update policy per episode parser.add_argument("--eval_every", default=100, type=int) # how often to evaluate the trained policy parser.add_argument("--save_actor", default=None, type=str) parser.add_argument("--save_critic", default=None, type=str) parser.add_argument("--recurrent", action='store_true') parser.add_argument("--prenormalize_steps", default=10000, type=int) parser.add_argument("--logdir", default="./logs/ddpg/", type=str) parser.add_argument("--seed", "-s", default=0, type=int) parser.add_argument("--env_name", "-e", default="Hopper-v3") args = parser.parse_args() args.algo = 'ddpg' run_experiment(args) elif sys.argv[1] == 'td3': sys.argv.remove(sys.argv[1]) """ Utility for running Twin-Delayed Deep Deterministic policy gradients. """ from algos.off_policy import run_experiment parser.add_argument("--timesteps", "-t", default=1e6, type=float) # number of timesteps in replay buffer parser.add_argument("--start_timesteps", default=1e4, type=float) # number of timesteps to generate random actions for parser.add_argument("--load_actor", default=None, type=str) # load an actor from a .pt file parser.add_argument('--discount', default=0.99, type=float) # the discount factor parser.add_argument('--expl_noise', default=0.1, type=float) # random noise used for exploration parser.add_argument('--max_action', default=1.0, type=float) # parser.add_argument('--policy_noise', default=0.2, type=float) # parser.add_argument('--noise_clip', default=0.5, type=float) # parser.add_argument('--tau', default=0.005, type=float) # update factor for target networks parser.add_argument("--a_lr", "-alr", default=3e-4, type=float) # adam learning rate for critic parser.add_argument("--c_lr", "-clr", default=3e-4, type=float) # adam learning rate for actor parser.add_argument("--traj_len", "-tl", default=1000, type=int) # max trajectory length for environment parser.add_argument("--center_reward", "-r", action='store_true') # normalize rewards to a normal distribution parser.add_argument("--batch_size", default=256, type=int) # batch size for policy update parser.add_argument("--updates", default=1, type=int) # (if recurrent) number of times to update policy per episode parser.add_argument("--update_freq", default=1, type=int) # how many episodes to skip before updating parser.add_argument("--eval_every", default=100, type=int) # how often to evaluate the trained policy parser.add_argument("--save_actor", default=None, type=str) #parser.add_argument("--save_critics", default=None, type=str) parser.add_argument("--logdir", default="./logs/td3/", type=str) parser.add_argument("--recurrent", action='store_true') parser.add_argument("--prenormalize_steps", default=10000, type=int) parser.add_argument("--seed", "-s", default=0, type=int) parser.add_argument("--env_name", "-e", default="Hopper-v3") args = parser.parse_args() args.algo = 'td3' run_experiment(args) elif sys.argv[1] == 'ppo': sys.argv.remove(sys.argv[1]) """ Utility for running Proximal Policy Optimization. """ from algos.ppo import run_experiment parser.add_argument("--seed", default=0, type=int) # number of timesteps to run experiment for parser.add_argument("--timesteps", "-t", default=1e6, type=float) # number of timesteps to run experiment for parser.add_argument("--env_name", default='Cassie-v0', type=str) parser.add_argument("--traj_len", "-tl", default=400, type=int) # max trajectory length for environment parser.add_argument("--prenormalize_steps", default=10000, type=int) parser.add_argument("--num_steps", default=5000, type=int) parser.add_argument("--recurrent", action='store_true') parser.add_argument('--discount', default=0.99, type=float) # the discount factor parser.add_argument('--std', default=0.13, type=float) # the fixed exploration std parser.add_argument("--a_lr", "-alr", default=1e-4, type=float) # adam learning rate for actor parser.add_argument("--c_lr", "-clr", default=1e-4, type=float) # adam learning rate for critic parser.add_argument("--eps", "-ep", default=1e-5, type=float) # adam eps parser.add_argument("--kl", default=0.02, type=float) # kl abort threshold parser.add_argument("--entropy_coeff", default=0.0, type=float) parser.add_argument("--grad_clip", default=0.05, type=float) parser.add_argument("--batch_size", default=64, type=int) # batch size for policy update parser.add_argument("--epochs", default=3, type=int) # number of updates per iter parser.add_argument("--save_actor", default=None, type=str) parser.add_argument("--save_critic", default=None, type=str) parser.add_argument("--logdir", default="./logs/ppo/", type=str) parser.add_argument("--workers", default=4, type=int) parser.add_argument("--redis", default=None, type=str) args = parser.parse_args() run_experiment(args) elif sys.argv[1] == 'sac': sys.argv.remove(sys.argv[1]) """ Utility for running Soft Actor-Critic. """ from algos.off_policy import run_experiment parser.add_argument("--seed", default=0, type=int) # number of timesteps to run experiment for parser.add_argument("--timesteps", "-t", default=1e6, type=float) # number of timesteps to run experiment for parser.add_argument("--env_name", default='Cassie-v0', type=str) parser.add_argument("--traj_len", "-tl", default=400, type=int) # max trajectory length for environment parser.add_argument("--start_timesteps", default=10000, type=int) parser.add_argument("--eval_every", default=100, type=int) parser.add_argument("--recurrent", action='store_true') parser.add_argument('--discount', default=0.99, type=float) # the discount factor parser.add_argument('--tau', default=1e-2, type=float) parser.add_argument("--a_lr", "-alr", default=1e-4, type=float) # adam learning rate for actor parser.add_argument("--c_lr", "-clr", default=1e-4, type=float) # adam learning rate for critic parser.add_argument("--alpha", default=None, type=float) # adam learning rate for critic parser.add_argument("--grad_clip", default=0.05, type=float) parser.add_argument("--batch_size", default=128, type=int) # batch size for policy update parser.add_argument("--prenormalize_steps", default=10000, type=int) parser.add_argument("--save_actor", default=None, type=str) parser.add_argument("--save_critic", default=None, type=str) parser.add_argument("--logdir", default="./logs/sac/", type=str) args = parser.parse_args() args.algo = 'sac' run_experiment(args) elif sys.argv[1] == 'eval': sys.argv.remove(sys.argv[1]) parser.add_argument("--policy", default="./trained_models/ddpg/ddpg_actor.pt", type=str) parser.add_argument("--env_name", default=None, type=str) parser.add_argument("--traj_len", default=400, type=int) args = parser.parse_args() policy = torch.load(args.policy) eval_policy(policy, min_timesteps=100000, env_name=args.env_name, max_traj_len=args.traj_len) elif sys.argv[1] == 'cassie': sys.argv.remove(sys.argv[1]) from cassie.udp import run_udp parser.add_argument("--policy", default='logs/ppo/Cassie-nodelta-stateest-clockbased/bcbc77-seed0/actor.pt', type=str) args = parser.parse_args() run_udp(args) else: print("Invalid option '{}'".format(sys.argv[1]))
[ "argparse.ArgumentParser", "util.env.eval_policy", "torch.load", "sys.argv.remove", "algos.off_policy.run_experiment", "util.logo.print_logo", "cassie.udp.run_udp" ]
[((227, 252), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (250, 252), False, 'import sys, argparse, time, os\n'), ((315, 384), 'util.logo.print_logo', 'print_logo', ([], {'subtitle': '"""Recurrent Reinforcement Learning for Robotics."""'}), "(subtitle='Recurrent Reinforcement Learning for Robotics.')\n", (325, 384), False, 'from util.logo import print_logo\n'), ((615, 643), 'sys.argv.remove', 'sys.argv.remove', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (630, 643), False, 'import sys, argparse, time, os\n'), ((2610, 2630), 'algos.off_policy.run_experiment', 'run_experiment', (['args'], {}), '(args)\n', (2624, 2630), False, 'from algos.off_policy import run_experiment\n'), ((2666, 2694), 'sys.argv.remove', 'sys.argv.remove', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (2681, 2694), False, 'import sys, argparse, time, os\n'), ((5336, 5356), 'algos.off_policy.run_experiment', 'run_experiment', (['args'], {}), '(args)\n', (5350, 5356), False, 'from algos.off_policy import run_experiment\n'), ((5392, 5420), 'sys.argv.remove', 'sys.argv.remove', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (5407, 5420), False, 'import sys, argparse, time, os\n'), ((8114, 8134), 'algos.off_policy.run_experiment', 'run_experiment', (['args'], {}), '(args)\n', (8128, 8134), False, 'from algos.off_policy import run_experiment\n'), ((8169, 8197), 'sys.argv.remove', 'sys.argv.remove', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (8184, 8197), False, 'import sys, argparse, time, os\n'), ((10614, 10634), 'algos.off_policy.run_experiment', 'run_experiment', (['args'], {}), '(args)\n', (10628, 10634), False, 'from algos.off_policy import run_experiment\n'), ((10669, 10697), 'sys.argv.remove', 'sys.argv.remove', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (10684, 10697), False, 'import sys, argparse, time, os\n'), ((12724, 12744), 'algos.off_policy.run_experiment', 'run_experiment', (['args'], {}), '(args)\n', (12738, 12744), False, 'from algos.off_policy import run_experiment\n'), ((12780, 12808), 'sys.argv.remove', 'sys.argv.remove', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (12795, 12808), False, 'import sys, argparse, time, os\n'), ((13071, 13094), 'torch.load', 'torch.load', (['args.policy'], {}), '(args.policy)\n', (13081, 13094), False, 'import torch\n'), ((13100, 13197), 'util.env.eval_policy', 'eval_policy', (['policy'], {'min_timesteps': '(100000)', 'env_name': 'args.env_name', 'max_traj_len': 'args.traj_len'}), '(policy, min_timesteps=100000, env_name=args.env_name,\n max_traj_len=args.traj_len)\n', (13111, 13197), False, 'from util.env import env_factory, eval_policy\n'), ((13231, 13259), 'sys.argv.remove', 'sys.argv.remove', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (13246, 13259), False, 'import sys, argparse, time, os\n'), ((13455, 13468), 'cassie.udp.run_udp', 'run_udp', (['args'], {}), '(args)\n', (13462, 13468), False, 'from cassie.udp import run_udp\n')]
import read_data as RD import numpy as np import matplotlib.pyplot as plt from PIL import Image X = RD.read_data() print('X = ',X.shape) X_mean = np.reshape(np.sum(X,1)/X.shape[1],[ X.shape[0],1]) X = X-X_mean print('X_centerred = ',X.shape) [U,S,V] = np.linalg.svd(X, full_matrices=False) print('U = ',U.shape) print('S = ',S.shape) print('V = ',V.shape) N = 12#number of eigen images Eig_im = U[:,0:N] plt.figure(figsize=(10,10)) for i in range(0,N): plt.subplot(int(np.sqrt(N)),int(np.ceil(N/int(np.sqrt(N)))),i+1) im = np.reshape(Eig_im[:,i],[64,64]) plt.imshow(im,cmap=plt.cm.gray, interpolation='none') plt.title('Eigen Image = '+str(i+1)) plt.savefig('Eigen_Images.png') plt.savefig('Eigen_Images.tif') Y = np.matmul(np.transpose(U),X) print('Y = ',Y.shape) plt.figure(figsize=(10,10)) Np = 10#Number of projection coefficients to plot Ni = 4#Number of images images = ['a','b','c','d'] for i in range(0,Ni): plt.plot(np.arange(1,Np+1),Y[0:Np,i],label='Image = '+images[i]) plt.xlabel('Eigenvectors',fontsize=20) plt.xticks(weight = 'bold',fontsize=15) plt.ylabel('Magnitude of the projection coefficient',fontsize=20) plt.yticks(weight = 'bold',fontsize=15) plt.legend(fontsize=20) plt.savefig('Projection_Coefficients.png') plt.savefig('Projection_Coefficients.tif') #Image synthesis ind = 0#index of the image to synthesize m = [1, 5, 10, 15, 20, 30] plt.figure(figsize=(10,15)) for i in range(0,len(m)): X_hat = np.reshape(np.matmul(U[:,0:m[i]],Y[0:m[i],ind]),[X.shape[0],1]) print(X_hat.shape) print(X_mean.shape) X_hat += X_mean plt.subplot(3,2,i+1) im = np.reshape(X_hat,[64,64]) plt.imshow(im,cmap=plt.cm.gray, interpolation='none') plt.title('m = '+str(m[i]),fontsize=20) plt.xticks(weight = 'bold',fontsize=15) plt.yticks(weight = 'bold',fontsize=15) #img_out = Image.fromarray(im.astype(np.uint8)) #img_out.save('Im_reconstruction_'+str(m[i])+'.tif') plt.savefig('Im_reconstruction.png') plt.savefig('Im_reconstruction.tif')
[ "matplotlib.pyplot.imshow", "matplotlib.pyplot.savefig", "numpy.reshape", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "numpy.arange", "numpy.sqrt", "matplotlib.pyplot.xlabel", "numpy.sum", "matplotlib.pyplot.figure", "read_data.read_data", "matplotlib.pyplot.yticks", "numpy.matmul", "numpy.linalg.svd", "numpy.transpose", "matplotlib.pyplot.subplot", "matplotlib.pyplot.legend" ]
[((101, 115), 'read_data.read_data', 'RD.read_data', ([], {}), '()\n', (113, 115), True, 'import read_data as RD\n'), ((253, 290), 'numpy.linalg.svd', 'np.linalg.svd', (['X'], {'full_matrices': '(False)'}), '(X, full_matrices=False)\n', (266, 290), True, 'import numpy as np\n'), ((406, 434), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (416, 434), True, 'import matplotlib.pyplot as plt\n'), ((653, 684), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Eigen_Images.png"""'], {}), "('Eigen_Images.png')\n", (664, 684), True, 'import matplotlib.pyplot as plt\n'), ((685, 716), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Eigen_Images.tif"""'], {}), "('Eigen_Images.tif')\n", (696, 716), True, 'import matplotlib.pyplot as plt\n'), ((773, 801), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (783, 801), True, 'import matplotlib.pyplot as plt\n'), ((990, 1029), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Eigenvectors"""'], {'fontsize': '(20)'}), "('Eigenvectors', fontsize=20)\n", (1000, 1029), True, 'import matplotlib.pyplot as plt\n'), ((1029, 1067), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'weight': '"""bold"""', 'fontsize': '(15)'}), "(weight='bold', fontsize=15)\n", (1039, 1067), True, 'import matplotlib.pyplot as plt\n'), ((1069, 1135), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Magnitude of the projection coefficient"""'], {'fontsize': '(20)'}), "('Magnitude of the projection coefficient', fontsize=20)\n", (1079, 1135), True, 'import matplotlib.pyplot as plt\n'), ((1135, 1173), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'weight': '"""bold"""', 'fontsize': '(15)'}), "(weight='bold', fontsize=15)\n", (1145, 1173), True, 'import matplotlib.pyplot as plt\n'), ((1175, 1198), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'fontsize': '(20)'}), '(fontsize=20)\n', (1185, 1198), True, 'import matplotlib.pyplot as plt\n'), ((1199, 1241), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Projection_Coefficients.png"""'], {}), "('Projection_Coefficients.png')\n", (1210, 1241), True, 'import matplotlib.pyplot as plt\n'), ((1242, 1284), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Projection_Coefficients.tif"""'], {}), "('Projection_Coefficients.tif')\n", (1253, 1284), True, 'import matplotlib.pyplot as plt\n'), ((1371, 1399), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 15)'}), '(figsize=(10, 15))\n', (1381, 1399), True, 'import matplotlib.pyplot as plt\n'), ((1891, 1927), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Im_reconstruction.png"""'], {}), "('Im_reconstruction.png')\n", (1902, 1927), True, 'import matplotlib.pyplot as plt\n'), ((1928, 1964), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Im_reconstruction.tif"""'], {}), "('Im_reconstruction.tif')\n", (1939, 1964), True, 'import matplotlib.pyplot as plt\n'), ((527, 561), 'numpy.reshape', 'np.reshape', (['Eig_im[:, i]', '[64, 64]'], {}), '(Eig_im[:, i], [64, 64])\n', (537, 561), True, 'import numpy as np\n'), ((560, 614), 'matplotlib.pyplot.imshow', 'plt.imshow', (['im'], {'cmap': 'plt.cm.gray', 'interpolation': '"""none"""'}), "(im, cmap=plt.cm.gray, interpolation='none')\n", (570, 614), True, 'import matplotlib.pyplot as plt\n'), ((732, 747), 'numpy.transpose', 'np.transpose', (['U'], {}), '(U)\n', (744, 747), True, 'import numpy as np\n'), ((1557, 1581), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(i + 1)'], {}), '(3, 2, i + 1)\n', (1568, 1581), True, 'import matplotlib.pyplot as plt\n'), ((1584, 1611), 'numpy.reshape', 'np.reshape', (['X_hat', '[64, 64]'], {}), '(X_hat, [64, 64])\n', (1594, 1611), True, 'import numpy as np\n'), ((1611, 1665), 'matplotlib.pyplot.imshow', 'plt.imshow', (['im'], {'cmap': 'plt.cm.gray', 'interpolation': '"""none"""'}), "(im, cmap=plt.cm.gray, interpolation='none')\n", (1621, 1665), True, 'import matplotlib.pyplot as plt\n'), ((1707, 1745), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'weight': '"""bold"""', 'fontsize': '(15)'}), "(weight='bold', fontsize=15)\n", (1717, 1745), True, 'import matplotlib.pyplot as plt\n'), ((1748, 1786), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'weight': '"""bold"""', 'fontsize': '(15)'}), "(weight='bold', fontsize=15)\n", (1758, 1786), True, 'import matplotlib.pyplot as plt\n'), ((158, 170), 'numpy.sum', 'np.sum', (['X', '(1)'], {}), '(X, 1)\n', (164, 170), True, 'import numpy as np\n'), ((934, 954), 'numpy.arange', 'np.arange', (['(1)', '(Np + 1)'], {}), '(1, Np + 1)\n', (943, 954), True, 'import numpy as np\n'), ((1445, 1484), 'numpy.matmul', 'np.matmul', (['U[:, 0:m[i]]', 'Y[0:m[i], ind]'], {}), '(U[:, 0:m[i]], Y[0:m[i], ind])\n', (1454, 1484), True, 'import numpy as np\n'), ((472, 482), 'numpy.sqrt', 'np.sqrt', (['N'], {}), '(N)\n', (479, 482), True, 'import numpy as np\n'), ((502, 512), 'numpy.sqrt', 'np.sqrt', (['N'], {}), '(N)\n', (509, 512), True, 'import numpy as np\n')]
from django.db import models from manager_utils import ManagerUtilsQuerySet, ManagerUtilsManager from activatable_model.signals import model_activations_changed class ActivatableQuerySet(ManagerUtilsQuerySet): """ Provides bulk activation/deactivation methods. """ def update(self, *args, **kwargs): if self.model.ACTIVATABLE_FIELD_NAME in kwargs: # Fetch the instances that are about to be updated if they have an activatable flag. This # is because their activatable flag may be changed in the subsequent update, causing us # to potentially lose what this original query referenced updated_instance_ids = list(self.values_list('id', flat=True)) ret_val = super(ActivatableQuerySet, self).update(*args, **kwargs) if self.model.ACTIVATABLE_FIELD_NAME in kwargs and updated_instance_ids: # Refetch the instances that were updated and send them to the activation signal model_activations_changed.send( self.model, instance_ids=updated_instance_ids, is_active=kwargs[self.model.ACTIVATABLE_FIELD_NAME]) return ret_val def activate(self): return self.update(**{ self.model.ACTIVATABLE_FIELD_NAME: True }) def deactivate(self): return self.update(**{ self.model.ACTIVATABLE_FIELD_NAME: False }) def delete(self, force=False): return super(ActivatableQuerySet, self).delete() if force else self.deactivate() class ActivatableManager(ManagerUtilsManager): def get_queryset(self): return ActivatableQuerySet(self.model) def activate(self): return self.get_queryset().activate() def deactivate(self): return self.get_queryset().deactivate() class BaseActivatableModel(models.Model): """ Adds an is_active flag and processes information about when an is_active flag is changed. """ class Meta: abstract = True # The name of the Boolean field that determines if this model is active or inactive. A field # must be defined with this name, and it must be a BooleanField. Note that the reason we don't # define a BooleanField is because this would eliminate the ability for the user to easily # define default values for the field and if it is indexed. ACTIVATABLE_FIELD_NAME = 'is_active' objects = ActivatableManager() # The original activatable field value, for determining when it changes __original_activatable_value = None def __init__(self, *args, **kwargs): super(BaseActivatableModel, self).__init__(*args, **kwargs) # Keep track of the original activatable value to know when it changes self.__original_activatable_value = getattr(self, self.ACTIVATABLE_FIELD_NAME) def save(self, *args, **kwargs): """ A custom save method that handles figuring out when something is activated or deactivated. """ current_activable_value = getattr(self, self.ACTIVATABLE_FIELD_NAME) is_active_changed = self.id is None or self.__original_activatable_value != current_activable_value self.__original_activatable_value = current_activable_value ret_val = super(BaseActivatableModel, self).save(*args, **kwargs) # Emit the signal for when the is_active flag is changed if is_active_changed: model_activations_changed.send(self.__class__, instance_ids=[self.id], is_active=current_activable_value) return ret_val def delete(self, force=False, **kwargs): """ It is impossible to delete an activatable model unless force is True. This function instead sets it to inactive. """ if force: return super(BaseActivatableModel, self).delete(**kwargs) else: setattr(self, self.ACTIVATABLE_FIELD_NAME, False) return self.save(update_fields=[self.ACTIVATABLE_FIELD_NAME])
[ "activatable_model.signals.model_activations_changed.send" ]
[((986, 1121), 'activatable_model.signals.model_activations_changed.send', 'model_activations_changed.send', (['self.model'], {'instance_ids': 'updated_instance_ids', 'is_active': 'kwargs[self.model.ACTIVATABLE_FIELD_NAME]'}), '(self.model, instance_ids=\n updated_instance_ids, is_active=kwargs[self.model.ACTIVATABLE_FIELD_NAME])\n', (1016, 1121), False, 'from activatable_model.signals import model_activations_changed\n'), ((3427, 3536), 'activatable_model.signals.model_activations_changed.send', 'model_activations_changed.send', (['self.__class__'], {'instance_ids': '[self.id]', 'is_active': 'current_activable_value'}), '(self.__class__, instance_ids=[self.id],\n is_active=current_activable_value)\n', (3457, 3536), False, 'from activatable_model.signals import model_activations_changed\n')]
# my_lambdata/my_mod.py # my_lambdata.my_mod import pandas as pd def enlarge(num): return num * 100 def null_check(df): null_lines = df[df.isnull().any(axis=1)] return null_lines def date_divider(df,date_col): ''' df: the whole dataframe adding new day, month, year to date_col: the name of the column the date is stored in ''' converted_df = df.copy() converted_df["Year"] = pd.DatetimeIndex(converted_df[date_col]).year converted_df["Month"] = pd.DatetimeIndex(converted_df[date_col]).month converted_df["Day"] = pd.DatetimeIndex(converted_df[date_col]).day return converted_df if __name__ == "__main__": x = 11 print(enlarge(x)) y = int(input("Please choose a number (e.g. 5)")) print(enlarge(y))
[ "pandas.DatetimeIndex" ]
[((409, 449), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (['converted_df[date_col]'], {}), '(converted_df[date_col])\n', (425, 449), True, 'import pandas as pd\n'), ((482, 522), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (['converted_df[date_col]'], {}), '(converted_df[date_col])\n', (498, 522), True, 'import pandas as pd\n'), ((554, 594), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (['converted_df[date_col]'], {}), '(converted_df[date_col])\n', (570, 594), True, 'import pandas as pd\n')]
import sys sys.path.append('./') import os import pandas as pd from vtkplotter import load from brainrender import DEFAULT_STRUCTURE_COLOR def get_rat_regions_metadata(metadata_fld): """ :param metadata_fld: """ return pd.read_pickle(os.path.join(metadata_fld, "rat_structures.pkl")) def get_rat_mesh_from_region(region, paths, use_original_color=False, **kwargs): """ :param region: :param paths: :param use_original_color: (Default value = False) :param **kwargs: """ if not isinstance(region, (tuple, list)): region = [region] check = False else: check = True metadata = get_rat_regions_metadata(paths.metadata) meshes = [] for reg in region: if isinstance(reg, int): entry = metadata.loc[metadata.Id == reg] elif isinstance(reg, str): entry = metadata.loc[metadata['Name'] == reg] else: raise ValueError("Unrecognized value for region while trying to get mesh for rat: {}".format(reg)) try: meshname = os.path.join(paths.rat_meshes, "label_{}.stl".format(entry.Id.values[0])) if not os.path.isfile(meshname): raise FileExistsError(meshname) if use_original_color: c = entry["rgb"].values[0] if isinstance(c, str): c = c.replace("[", "") c = c.replace("]", "") cols = c.split(",") color = [int(c) for c in cols] else: color = c else: if "color" in list(kwargs.keys()): color = kwargs.pop("color", DEFAULT_STRUCTURE_COLOR) elif "c" in list(kwargs.keys()): color = kwargs.pop("c", DEFAULT_STRUCTURE_COLOR) if "color" in list(kwargs.keys()): del kwargs["color"] elif "c" in list(kwargs.keys()): del kwargs["c"] mesh = load(meshname, c=color, **kwargs) mesh = mesh.smoothLaplacian().subdivide(2) meshes.append(mesh) except: print("Could not load rat region: {}".format(entry["Name"].values[0])) return None if not check: return meshes[0] else: return meshes if __name__ == "__main__": pass #fix_data() ## UNDEFINED!!??
[ "os.path.join", "sys.path.append", "vtkplotter.load", "os.path.isfile" ]
[((11, 32), 'sys.path.append', 'sys.path.append', (['"""./"""'], {}), "('./')\n", (26, 32), False, 'import sys\n'), ((257, 305), 'os.path.join', 'os.path.join', (['metadata_fld', '"""rat_structures.pkl"""'], {}), "(metadata_fld, 'rat_structures.pkl')\n", (269, 305), False, 'import os\n'), ((2015, 2048), 'vtkplotter.load', 'load', (['meshname'], {'c': 'color'}), '(meshname, c=color, **kwargs)\n', (2019, 2048), False, 'from vtkplotter import load\n'), ((1185, 1209), 'os.path.isfile', 'os.path.isfile', (['meshname'], {}), '(meshname)\n', (1199, 1209), False, 'import os\n')]
import pandas as pd from melusine.prepare_email.mail_segmenting import structure_email, tag_signature structured_historic = [ { "text": " \n \n \n Bonjours, \n \n Suite a notre conversation \ téléphonique de Mardi , pourriez vous me dire la \n somme que je vous \ dois afin d'd'être en régularisation . \n \n Merci bonne journée", "meta": "", }, { "text": " \n Bonjour. \n \n Merci de bien vouloir prendre connaissance \ du document ci-joint : \n 1 - Relevé d'identité postal MUTUELLE \ (contrats) \n \n Sentiments mutualistes. \n \n La Mutuelle \n \n \ La visualisation des fichiers PDF nécessite Adobe Reader. \n ", "meta": " \n \n Le mar. 22 mai 2018 à 10:20, \ <<EMAIL>> a écrit\xa0:", }, ] output = [ { "meta": {"date": None, "from": None, "to": None}, "structured_text": { "header": None, "text": [ {"part": " Bonjours, ", "tags": "HELLO"}, { "part": " Suite a notre conversation \ téléphonique de Mardi , pourriez vous me dire la somme que je vous dois \ afin d'd'être en régularisation . \n \n ", "tags": "BODY", }, {"part": "Merci bonne journée", "tags": "GREETINGS"}, ], }, }, { "meta": { "date": " mar. 22 mai 2018 à 10:20", "from": " <<EMAIL>> ", "to": None, }, "structured_text": { "header": None, "text": [ {"part": " Bonjour. \n \n ", "tags": "HELLO"}, { "part": "Merci de bien vouloir prendre \ connaissance du document ci-joint : 1 - Relevé d'identité postal MUTUELLE \ (contrats) ", "tags": "BODY", }, {"part": " Sentiments mutualistes. ", "tags": "GREETINGS"}, {"part": " La Mutuelle ", "tags": "BODY"}, { "part": " La visualisation des fichiers \ PDF nécessite Adobe Reader. \n", "tags": "FOOTER", }, ], }, }, ] def test_structure_email(): input_df = pd.DataFrame({"structured_historic": [structured_historic]}) output_df = pd.Series([output]) result = input_df.apply(structure_email, axis=1) pd.testing.assert_series_equal(result, output_df) structured_historic_signature = [ { "text": " \n \n \n Bonjours, \n \n Suite a notre conversation \ téléphonique de Mardi , pourriez vous me dire la \n somme que je vous \ dois afin d'd'être en régularisation . \n \n Merci bonne journée\n<NAME>", "meta": "", }, { "text": " \n Bonjour. \n \n Merci de bien vouloir prendre connaissance \ du document ci-joint : \n 1 - Relevé d'identité postal MUTUELLE \ (contrats) \n \n Sentiments mutualistes. \n \n La Mutuelle \n \n \ La visualisation des fichiers PDF nécessite Adobe Reader. \n ", "meta": " \n \n Le mar. 22 mai 2018 à 10:20, \ <<EMAIL>> a écrit\xa0:", }, ] output_signature = [ { "meta": {"date": None, "from": None, "to": None}, "structured_text": { "header": None, "text": [ {"part": " Bonjours, ", "tags": "HELLO"}, { "part": " Suite a notre conversation \ téléphonique de Mardi , pourriez vous me dire la somme que je vous dois \ afin d'd'être en régularisation . \n \n ", "tags": "BODY", }, {"part": "Merci bonne journée", "tags": "GREETINGS"}, {"part": "<NAME>", "tags": "SIGNATURE"}, ], }, }, { "meta": { "date": " mar. 22 mai 2018 à 10:20", "from": " <<EMAIL>> ", "to": None, }, "structured_text": { "header": None, "text": [ {"part": " Bonjour. \n \n ", "tags": "HELLO"}, { "part": "Merci de bien vouloir prendre \ connaissance du document ci-joint : 1 - Relevé d'identité postal MUTUELLE \ (contrats) ", "tags": "BODY", }, {"part": " Sentiments mutualistes. ", "tags": "GREETINGS"}, {"part": " La Mutuelle ", "tags": "BODY"}, { "part": " La visualisation des fichiers PDF nécessite Adobe Reader. \n", "tags": "FOOTER", }, ], }, }, ] def test_tag_signature(): input_df = pd.DataFrame({"structured_historic": [structured_historic_signature]}) output_df = pd.Series([output_signature]) input_df["structured_body"] = input_df.apply(structure_email, axis=1) result = input_df.apply(tag_signature, axis=1) pd.testing.assert_series_equal(result, output_df)
[ "pandas.DataFrame", "pandas.Series", "pandas.testing.assert_series_equal" ]
[((2304, 2364), 'pandas.DataFrame', 'pd.DataFrame', (["{'structured_historic': [structured_historic]}"], {}), "({'structured_historic': [structured_historic]})\n", (2316, 2364), True, 'import pandas as pd\n'), ((2384, 2403), 'pandas.Series', 'pd.Series', (['[output]'], {}), '([output])\n', (2393, 2403), True, 'import pandas as pd\n'), ((2465, 2514), 'pandas.testing.assert_series_equal', 'pd.testing.assert_series_equal', (['result', 'output_df'], {}), '(result, output_df)\n', (2495, 2514), True, 'import pandas as pd\n'), ((4799, 4869), 'pandas.DataFrame', 'pd.DataFrame', (["{'structured_historic': [structured_historic_signature]}"], {}), "({'structured_historic': [structured_historic_signature]})\n", (4811, 4869), True, 'import pandas as pd\n'), ((4889, 4918), 'pandas.Series', 'pd.Series', (['[output_signature]'], {}), '([output_signature])\n', (4898, 4918), True, 'import pandas as pd\n'), ((5051, 5100), 'pandas.testing.assert_series_equal', 'pd.testing.assert_series_equal', (['result', 'output_df'], {}), '(result, output_df)\n', (5081, 5100), True, 'import pandas as pd\n')]
""" =================================== Merging two instances in the design =================================== This example demonstrate how to merge two instance in the design to create a new merged definition .. hdl-diagram:: ../../../examples/basic/_initial_design_merge.v :type: netlistsvg :align: center :module: top **Output1** Merged design Instance .. hdl-diagram:: ../../../examples/basic/_merged_design.v :type: netlistsvg :align: center :module: top """ from os import path import spydrnet as sdn import spydrnet_physical as sdnphy import logging logger = logging.getLogger('spydrnet_logs') sdn.enable_file_logging(LOG_LEVEL='INFO') netlist = sdnphy.load_netlist_by_name('nested_hierarchy') sdn.compose(netlist, '_initial_design_merge.v', skip_constraints=True) netlist = sdnphy.load_netlist_by_name('nested_hierarchy') top = netlist.top_instance.reference inst1 = next(top.get_instances("inst_1_0")) inst2 = next(top.get_instances("inst_1_1")) top.merge_instance([inst1, inst2], new_definition_name="merged_module", new_instance_name="merged_module_instance_0") top.create_unconn_wires() sdn.compose(netlist, '_merged_design.v', skip_constraints=True)
[ "logging.getLogger", "spydrnet.compose", "spydrnet_physical.load_netlist_by_name", "spydrnet.enable_file_logging" ]
[((594, 628), 'logging.getLogger', 'logging.getLogger', (['"""spydrnet_logs"""'], {}), "('spydrnet_logs')\n", (611, 628), False, 'import logging\n'), ((629, 670), 'spydrnet.enable_file_logging', 'sdn.enable_file_logging', ([], {'LOG_LEVEL': '"""INFO"""'}), "(LOG_LEVEL='INFO')\n", (652, 670), True, 'import spydrnet as sdn\n'), ((682, 729), 'spydrnet_physical.load_netlist_by_name', 'sdnphy.load_netlist_by_name', (['"""nested_hierarchy"""'], {}), "('nested_hierarchy')\n", (709, 729), True, 'import spydrnet_physical as sdnphy\n'), ((730, 800), 'spydrnet.compose', 'sdn.compose', (['netlist', '"""_initial_design_merge.v"""'], {'skip_constraints': '(True)'}), "(netlist, '_initial_design_merge.v', skip_constraints=True)\n", (741, 800), True, 'import spydrnet as sdn\n'), ((812, 859), 'spydrnet_physical.load_netlist_by_name', 'sdnphy.load_netlist_by_name', (['"""nested_hierarchy"""'], {}), "('nested_hierarchy')\n", (839, 859), True, 'import spydrnet_physical as sdnphy\n'), ((1169, 1232), 'spydrnet.compose', 'sdn.compose', (['netlist', '"""_merged_design.v"""'], {'skip_constraints': '(True)'}), "(netlist, '_merged_design.v', skip_constraints=True)\n", (1180, 1232), True, 'import spydrnet as sdn\n')]
import praw import re import os reddit = praw.Reddit('Splunge Bot v1', client_id=os.environ['REDDIT_CLIENT_ID'], client_secret=os.environ['REDDIT_CLIENT_SECRET'], password=os.environ['REDDIT_PASSWORD'], username=os.environ['REDDIT_USERNAME']) subreddit = reddit.subreddit('tubasaur') for submission in subreddit.new(limit=5): for top_level_comment in submission.comments: if re.search('splunge', top_level_comment.body, re.IGNORECASE): top_level_comment.reply("Well, yeah, splunge for me too!") print("Splunged.")
[ "praw.Reddit", "re.search" ]
[((42, 252), 'praw.Reddit', 'praw.Reddit', (['"""Splunge Bot v1"""'], {'client_id': "os.environ['REDDIT_CLIENT_ID']", 'client_secret': "os.environ['REDDIT_CLIENT_SECRET']", 'password': "os.environ['REDDIT_PASSWORD']", 'username': "os.environ['REDDIT_USERNAME']"}), "('Splunge Bot v1', client_id=os.environ['REDDIT_CLIENT_ID'],\n client_secret=os.environ['REDDIT_CLIENT_SECRET'], password=os.environ[\n 'REDDIT_PASSWORD'], username=os.environ['REDDIT_USERNAME'])\n", (53, 252), False, 'import praw\n'), ((379, 438), 're.search', 're.search', (['"""splunge"""', 'top_level_comment.body', 're.IGNORECASE'], {}), "('splunge', top_level_comment.body, re.IGNORECASE)\n", (388, 438), False, 'import re\n')]
import discord from discord import embeds from discord.ext import commands from discord.ext.commands.core import command from pymongo import MongoClient, collation from discord_components import Button, Select, SelectOption, ComponentsBot from discord.utils import get class managecommands(commands.Cog): def __init__(self, bot): self.bot = bot # Enable/disable command @commands.command(pass_context=True) @commands.has_permissions(manage_guild=True) async def disable(self, ctx, command: str = None, role: discord.Role = None): validcommand = False for cmd in self.bot.commands: if command == cmd.name: validcommand = True break if not validcommand: await ctx.reply(embed=discord.Embed(title="Provide a valid command", color=0xFD3333)) return if role == None: role = ctx.guild.default_role collection = MongoClient('localhost', 27017).maindb.guilds myquery = {"id": ctx.guild.id} settings = collection.find_one(myquery)["settings"] if command not in settings.keys(): settings[command] = { "guild": [], "disabled_guild": [], "category": {}, "disabled_category": {}, "channel": {}, "disabled_channel": {} } if role.id not in settings[command]['disabled_guild']: settings[command]['disabled_guild'].append(role.id) else: await ctx.reply(embed=discord.Embed(title="Command is already disabled", color=0xFD3333)) return if role.id in settings[command]['guild']: settings[command]['guild'].remove(role.id) newvalue = {"$set": {"settings": settings}} collection.update_one(myquery, newvalue) await ctx.reply(embed=discord.Embed(title="Disabled "+command+" on server for "+role.name, color=0x00FF42)) @commands.command(pass_context=True) @commands.has_permissions(manage_guild=True) async def disablecategory(self, ctx, category: discord.CategoryChannel = None, command: str = None, role: discord.Role = None): validcommand = False for cmd in self.bot.commands: if command == cmd.name: validcommand = True break if not validcommand: await ctx.reply(embed=discord.Embed(title="Provide a valid command", color=0xFD3333)) return if role == None: role = ctx.guild.default_role collection = MongoClient('localhost', 27017).maindb.guilds myquery = {"id": ctx.guild.id} settings = collection.find_one(myquery)["settings"] if command not in settings.keys(): settings[command] = { "guild": [], "disabled_guild": [], "category": {}, "disabled_category": {}, "channel": {}, "disabled_channel": {} } if str(category.id) not in settings[command]['disabled_category'].keys(): settings[command]['disabled_category'][str(category.id)] = [ role.id] else: if role.id in settings[command]['disabled_category'][str(category.id)]: await ctx.reply(embed=discord.Embed(title="Command is already disabled", color=0xFD3333)) return else: settings[command]['disabled_category'][str( category.id)].append(role.id) if str(category.id) in settings[command]['category'].keys(): if role.id in settings[command]['category'][str(category.id)]: settings[command]['category'][str(category.id)].remove(role.id) newvalue = {"$set": {"settings": settings}} collection.update_one(myquery, newvalue) await ctx.reply(embed=discord.Embed(title="Disabled "+command+" in category " + category.name+" for "+role.name + category.name, color=0x00FF42)) @commands.command(pass_context=True) @commands.has_permissions(manage_guild=True) async def disablechannel(self, ctx, channel: discord.TextChannel = None, command: str = None, role: discord.Role = None): validcommand = False for cmd in self.bot.commands: if command == cmd.name: validcommand = True break if not validcommand: await ctx.reply(embed=discord.Embed(title="Provide a valid command", color=0xFD3333)) return if role == None: role = ctx.guild.default_role collection = MongoClient('localhost', 27017).maindb.guilds myquery = {"id": ctx.guild.id} settings = collection.find_one(myquery)["settings"] if command not in settings.keys(): settings[command] = { "guild": [], "disabled_guild": [], "category": {}, "disabled_category": {}, "channel": {}, "disabled_channel": {} } if str(channel.id) not in settings[command]['disabled_channel'].keys(): settings[command]['disabled_channel'][str(channel.id)] = [role.id] else: if role.id in settings[command]['disabled_channel'][str(channel.id)]: await ctx.reply(embed=discord.Embed(title="Command is already disabled", color=0xFD3333)) return else: settings[command]['disabled_channel'][str( channel.id)].append(role.id) if str(channel.id) in settings[command]['channel'].keys(): if role.id in settings[command]['channel'][str(channel.id)]: settings[command]['channel'][str(channel.id)].remove(role.id) newvalue = {"$set": {"settings": settings}} collection.update_one(myquery, newvalue) await ctx.reply(embed=discord.Embed(title="Disabled "+command+" in channel " + channel.name+" for "+role.name, color=0x00FF42)) @commands.command(pass_context=True) @commands.has_permissions(manage_guild=True) async def enable(self, ctx, command: str = None, role: discord.Role = None): validcommand = False for cmd in self.bot.commands: if command == cmd.name: validcommand = True break if not validcommand: await ctx.reply(embed=discord.Embed(title="Provide a valid command", color=0xFD3333)) return if role == None: role = ctx.guild.default_role collection = MongoClient('localhost', 27017).maindb.guilds myquery = {"id": ctx.guild.id} settings = collection.find_one(myquery)["settings"] if command not in settings.keys(): settings[command] = { "guild": [], "disabled_guild": [], "category": {}, "disabled_category": {}, "channel": {}, "disabled_channel": {} } if role.id not in settings[command]['guild']: settings[command]['guild'].append(role.id) else: await ctx.reply(embed=discord.Embed(title="Command is already enabled", color=0xFD3333)) return if role.id in settings[command]['disabled_guild']: settings[command]['disabled_guild'].remove(role.id) newvalue = {"$set": {"settings": settings}} collection.update_one(myquery, newvalue) await ctx.reply(embed=discord.Embed(title="Enabled "+command+" on server for "+role.name, color=0x00FF42)) @commands.command(pass_context=True) @commands.has_permissions(manage_guild=True) async def enablecategory(self, ctx, category: discord.CategoryChannel = None, command: str = None, role: discord.Role = None): validcommand = False for cmd in self.bot.commands: if command == cmd.name: validcommand = True break if not validcommand: await ctx.reply(embed=discord.Embed(title="Provide a valid command", color=0xFD3333)) return if role == None: role = ctx.guild.default_role collection = MongoClient('localhost', 27017).maindb.guilds myquery = {"id": ctx.guild.id} settings = collection.find_one(myquery)["settings"] if command not in settings.keys(): settings[command] = { "guild": [], "disabled_guild": [], "category": {}, "disabled_category": {}, "channel": {}, "disabled_channel": {} } if str(category.id) not in settings[command]['category'].keys(): settings[command]['category'][str(category.id)] = [role.id] else: if role.id in settings[command]['category'][str(category.id)]: await ctx.reply(embed=discord.Embed(title="Command is already disabled", color=0xFD3333)) return else: settings[command]['category'][str(category.id)].append(role.id) if str(category.id) in settings[command]['disabled_category'].keys(): if role.id in settings[command]['disabled_category'][str(category.id)]: settings[command]['disabled_category'][str( category.id)].remove(role.id) newvalue = {"$set": {"settings": settings}} collection.update_one(myquery, newvalue) await ctx.reply(embed=discord.Embed(title="Enabled "+command+" in category " + category.name + " for "+role.name, color=0x00FF42)) @commands.command(pass_context=True) @commands.has_permissions(manage_guild=True) async def enablechannel(self, ctx, channel: discord.TextChannel = None, command: str = None, role: discord.Role = None): validcommand = False for cmd in self.bot.commands: if command == cmd.name: validcommand = True break if not validcommand: await ctx.reply(embed=discord.Embed(title="Provide a valid command", color=0xFD3333)) return if role == None: role = ctx.guild.default_role collection = MongoClient('localhost', 27017).maindb.guilds myquery = {"id": ctx.guild.id} settings = collection.find_one(myquery)["settings"] if command not in settings.keys(): settings[command] = { "guild": [], "disabled_guild": [], "category": {}, "disabled_category": {}, "channel": {}, "disabled_channel": {} } if str(channel.id) not in settings[command]['channel'].keys(): settings[command]['channel'][str(channel.id)] = [role.id] else: if role.id in settings[command]['channel'][str(channel.id)]: await ctx.reply(embed=discord.Embed(title="Command is already disabled", color=0xFD3333)) return else: settings[command]['channel'][str(channel.id)].append(role.id) if str(channel.id) in settings[command]['disabled_channel'].keys(): if role.id in settings[command]['disabled_channel'][str(channel.id)]: settings[command]['disabled_channel'][str( channel.id)].remove(role.id) newvalue = {"$set": {"settings": settings}} collection.update_one(myquery, newvalue) await ctx.reply(embed=discord.Embed(title="Enabled "+command+" in channel " + channel.name + " for "+role.name, color=0x00FF42)) @commands.command(pass_context=True) @commands.has_permissions(manage_guild=True) async def resetperms(self, ctx, command: str = None): validcommand = False for cmd in self.bot.commands: if command == cmd.name: validcommand = True break if not validcommand: await ctx.reply(embed=discord.Embed(title="Provide a valid command", color=0xFD3333)) return collection = MongoClient('localhost', 27017).maindb.guilds myquery = {"id": ctx.guild.id} settings = collection.find_one(myquery)["settings"] settings[command] = { "guild": [], "disabled_guild": [], "category": {}, "disabled_category": {}, "channel": {}, "disabled_channel": {}} newvalue = {"$set": {"settings": settings}} collection.update_one(myquery, newvalue) await ctx.reply(embed=discord.Embed(title="Reset command permissions", color=0x00FF42)) @commands.command(pass_context=True) async def showperms(self, ctx): collection = MongoClient('localhost', 27017).maindb.guilds myquery = {"id": ctx.guild.id} settings = collection.find_one(myquery)["settings"] options=[] for setting in settings.keys(): options.append(SelectOption(label=setting, value=setting)) message = await ctx.reply("The lower in the hiearchy will go over the other. So channel enable will go over guild disable.", components=[Select(placeholder="Select something!", options=options, custom_id="commandperms",)]) while True: interaction = await self.bot.wait_for("select_option") embed = discord.Embed(name="Command permissions for ", value=interaction.values[0], color=0xFFFFFF) if len(settings[interaction.values[0]]["guild"]) > 0: msg = "" for roleid in settings[interaction.values[0]]["guild"]: role_obj = get(ctx.guild.roles, id=roleid) msg += role_obj.name+'\n' else: msg="None" embed.add_field(name="Guild wide allowed", value=msg) if len(settings[interaction.values[0]]["guild"]) > 0: msg = "" for roleid in settings[interaction.values[0]]["disabled_guild"]: role_obj = get(ctx.guild.roles, id=roleid) msg += role_obj.name+'\n' else: msg="None" embed.add_field(name="Guild wide denied", value=msg) # this is no longer a list # its a dictionary embed.add_field(name="Category wide allowed", value="\u200b", inline=False) if len(settings[interaction.values[0]]["category"].keys()) > 0: for key in settings[interaction.values[0]]["category"].keys(): if len(settings[interaction.values[0]]["category"][key]) == 0: continue msg = "" for roleid in settings[interaction.values[0]]["category"][key]: role_obj = get(ctx.guild.roles, id=roleid) msg += role_obj.name+'\n' name = get(ctx.guild.categories, id=int(key)) embed.add_field(name=name, value=msg) else: msg = "None" embed.add_field(name="Category wide denied", value="\u200b", inline=False) if len(settings[interaction.values[0]]["disabled_category"].keys()) > 0: for key in settings[interaction.values[0]]["disabled_category"].keys(): if len(settings[interaction.values[0]]["disabled_category"][key]) == 0: continue msg = "" for roleid in settings[interaction.values[0]]["disabled_category"][key]: role_obj = get(ctx.guild.roles, id=roleid) msg += role_obj.name+'\n' name = get(ctx.guild.categories, id=int(key)) embed.add_field(name=name, value=msg) else: msg = "None" embed.add_field(name="Channel wide allowed", value="\u200b", inline=False) if len(settings[interaction.values[0]]["channel"].keys()) > 0: for key in settings[interaction.values[0]]["channel"].keys(): if len(settings[interaction.values[0]]["channel"][key]) == 0: continue msg = "" for roleid in settings[interaction.values[0]]["channel"][key]: role_obj = get(ctx.guild.roles, id=roleid) msg += role_obj.name+'\n' name = get(ctx.guild.text_channels, id=int(key)) embed.add_field(name=name, value=msg) else: msg = "None" embed.add_field(name="Channel wide denied", value="\u200b", inline=False) if len(settings[interaction.values[0]]["disabled_channel"].keys()) > 0: for key in settings[interaction.values[0]]["disabled_channel"].keys(): if len(settings[interaction.values[0]]["disabled_channel"][key]) == 0: continue msg = "" for roleid in settings[interaction.values[0]]["disabled_channel"][key]: role_obj = get(ctx.guild.roles, id=roleid) msg += role_obj.name+'\n' name = get(ctx.guild.text_channels, id=int(key)) embed.add_field(name=name, value=msg) else: msg = "There " await message.edit(embed=embed,components=[Select(placeholder="Select something!", options=options, custom_id="commandperms",)]) def setup(bot): bot.add_cog(managecommands(bot)) def perms(context): command = context.command.name #str guild_id = context.guild.id channel_id = str(context.message.channel.id) category_id = str(context.message.channel.category_id) roles = [] for role in context.author.roles: roles.append(role.id) collection = MongoClient('localhost', 27017).maindb.guilds myquery = {"id": guild_id} settings = collection.find_one(myquery)["settings"] if command in settings.keys(): if channel_id in settings[command]["channel"].keys(): print("channels exist") if bool(set(roles) & set(settings[command]["channel"][channel_id])): return True elif channel_id in settings[command]["disabled_channel"].keys(): if bool(set(roles) & set(settings[command]["disabled_channel"][channel_id])): return False elif category_id in settings[command]["category"].keys(): if bool(set(roles) & set(settings[command]["category"][category_id])): return True elif category_id in settings[command]["disabled_category"].keys(): if bool(set(roles) & set(settings[command]["disabled_category"][category_id])): return False elif bool(set(roles) & set(settings[command]["disabled_guild"])): return False elif bool(set(roles) & set(settings[command]["guild"])): return True return True
[ "discord.ext.commands.has_permissions", "discord_components.SelectOption", "discord.utils.get", "discord_components.Select", "pymongo.MongoClient", "discord.Embed", "discord.ext.commands.command" ]
[((395, 430), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (411, 430), False, 'from discord.ext import commands\n'), ((436, 479), 'discord.ext.commands.has_permissions', 'commands.has_permissions', ([], {'manage_guild': '(True)'}), '(manage_guild=True)\n', (460, 479), False, 'from discord.ext import commands\n'), ((2001, 2036), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (2017, 2036), False, 'from discord.ext import commands\n'), ((2042, 2085), 'discord.ext.commands.has_permissions', 'commands.has_permissions', ([], {'manage_guild': '(True)'}), '(manage_guild=True)\n', (2066, 2085), False, 'from discord.ext import commands\n'), ((4090, 4125), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (4106, 4125), False, 'from discord.ext import commands\n'), ((4131, 4174), 'discord.ext.commands.has_permissions', 'commands.has_permissions', ([], {'manage_guild': '(True)'}), '(manage_guild=True)\n', (4155, 4174), False, 'from discord.ext import commands\n'), ((6124, 6159), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (6140, 6159), False, 'from discord.ext import commands\n'), ((6165, 6208), 'discord.ext.commands.has_permissions', 'commands.has_permissions', ([], {'manage_guild': '(True)'}), '(manage_guild=True)\n', (6189, 6208), False, 'from discord.ext import commands\n'), ((7728, 7763), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (7744, 7763), False, 'from discord.ext import commands\n'), ((7769, 7812), 'discord.ext.commands.has_permissions', 'commands.has_permissions', ([], {'manage_guild': '(True)'}), '(manage_guild=True)\n', (7793, 7812), False, 'from discord.ext import commands\n'), ((9775, 9810), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (9791, 9810), False, 'from discord.ext import commands\n'), ((9816, 9859), 'discord.ext.commands.has_permissions', 'commands.has_permissions', ([], {'manage_guild': '(True)'}), '(manage_guild=True)\n', (9840, 9859), False, 'from discord.ext import commands\n'), ((11804, 11839), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (11820, 11839), False, 'from discord.ext import commands\n'), ((11845, 11888), 'discord.ext.commands.has_permissions', 'commands.has_permissions', ([], {'manage_guild': '(True)'}), '(manage_guild=True)\n', (11869, 11888), False, 'from discord.ext import commands\n'), ((12860, 12895), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (12876, 12895), False, 'from discord.ext import commands\n'), ((13567, 13662), 'discord.Embed', 'discord.Embed', ([], {'name': '"""Command permissions for """', 'value': 'interaction.values[0]', 'color': '(16777215)'}), "(name='Command permissions for ', value=interaction.values[0],\n color=16777215)\n", (13580, 13662), False, 'import discord\n'), ((18224, 18255), 'pymongo.MongoClient', 'MongoClient', (['"""localhost"""', '(27017)'], {}), "('localhost', 27017)\n", (18235, 18255), False, 'from pymongo import MongoClient, collation\n'), ((959, 990), 'pymongo.MongoClient', 'MongoClient', (['"""localhost"""', '(27017)'], {}), "('localhost', 27017)\n", (970, 990), False, 'from pymongo import MongoClient, collation\n'), ((2616, 2647), 'pymongo.MongoClient', 'MongoClient', (['"""localhost"""', '(27017)'], {}), "('localhost', 27017)\n", (2627, 2647), False, 'from pymongo import MongoClient, collation\n'), ((4699, 4730), 'pymongo.MongoClient', 'MongoClient', (['"""localhost"""', '(27017)'], {}), "('localhost', 27017)\n", (4710, 4730), False, 'from pymongo import MongoClient, collation\n'), ((6687, 6718), 'pymongo.MongoClient', 'MongoClient', (['"""localhost"""', '(27017)'], {}), "('localhost', 27017)\n", (6698, 6718), False, 'from pymongo import MongoClient, collation\n'), ((8342, 8373), 'pymongo.MongoClient', 'MongoClient', (['"""localhost"""', '(27017)'], {}), "('localhost', 27017)\n", (8353, 8373), False, 'from pymongo import MongoClient, collation\n'), ((10383, 10414), 'pymongo.MongoClient', 'MongoClient', (['"""localhost"""', '(27017)'], {}), "('localhost', 27017)\n", (10394, 10414), False, 'from pymongo import MongoClient, collation\n'), ((12277, 12308), 'pymongo.MongoClient', 'MongoClient', (['"""localhost"""', '(27017)'], {}), "('localhost', 27017)\n", (12288, 12308), False, 'from pymongo import MongoClient, collation\n'), ((12953, 12984), 'pymongo.MongoClient', 'MongoClient', (['"""localhost"""', '(27017)'], {}), "('localhost', 27017)\n", (12964, 12984), False, 'from pymongo import MongoClient, collation\n'), ((13184, 13226), 'discord_components.SelectOption', 'SelectOption', ([], {'label': 'setting', 'value': 'setting'}), '(label=setting, value=setting)\n', (13196, 13226), False, 'from discord_components import Button, Select, SelectOption, ComponentsBot\n'), ((1909, 2000), 'discord.Embed', 'discord.Embed', ([], {'title': "('Disabled ' + command + ' on server for ' + role.name)", 'color': '(65346)'}), "(title='Disabled ' + command + ' on server for ' + role.name,\n color=65346)\n", (1922, 2000), False, 'import discord\n'), ((3960, 4091), 'discord.Embed', 'discord.Embed', ([], {'title': "('Disabled ' + command + ' in category ' + category.name + ' for ' + role.\n name + category.name)", 'color': '(65346)'}), "(title='Disabled ' + command + ' in category ' + category.name +\n ' for ' + role.name + category.name, color=65346)\n", (3973, 4091), False, 'import discord\n'), ((6012, 6125), 'discord.Embed', 'discord.Embed', ([], {'title': "('Disabled ' + command + ' in channel ' + channel.name + ' for ' + role.name)", 'color': '(65346)'}), "(title='Disabled ' + command + ' in channel ' + channel.name +\n ' for ' + role.name, color=65346)\n", (6025, 6125), False, 'import discord\n'), ((7637, 7727), 'discord.Embed', 'discord.Embed', ([], {'title': "('Enabled ' + command + ' on server for ' + role.name)", 'color': '(65346)'}), "(title='Enabled ' + command + ' on server for ' + role.name,\n color=65346)\n", (7650, 7727), False, 'import discord\n'), ((9660, 9774), 'discord.Embed', 'discord.Embed', ([], {'title': "('Enabled ' + command + ' in category ' + category.name + ' for ' + role.name)", 'color': '(65346)'}), "(title='Enabled ' + command + ' in category ' + category.name +\n ' for ' + role.name, color=65346)\n", (9673, 9774), False, 'import discord\n'), ((11687, 11799), 'discord.Embed', 'discord.Embed', ([], {'title': "('Enabled ' + command + ' in channel ' + channel.name + ' for ' + role.name)", 'color': '(65346)'}), "(title='Enabled ' + command + ' in channel ' + channel.name +\n ' for ' + role.name, color=65346)\n", (11700, 11799), False, 'import discord\n'), ((12788, 12849), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Reset command permissions"""', 'color': '(65346)'}), "(title='Reset command permissions', color=65346)\n", (12801, 12849), False, 'import discord\n'), ((13854, 13885), 'discord.utils.get', 'get', (['ctx.guild.roles'], {'id': 'roleid'}), '(ctx.guild.roles, id=roleid)\n', (13857, 13885), False, 'from discord.utils import get\n'), ((14246, 14277), 'discord.utils.get', 'get', (['ctx.guild.roles'], {'id': 'roleid'}), '(ctx.guild.roles, id=roleid)\n', (14249, 14277), False, 'from discord.utils import get\n'), ((786, 848), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Provide a valid command"""', 'color': '(16593715)'}), "(title='Provide a valid command', color=16593715)\n", (799, 848), False, 'import discord\n'), ((1585, 1651), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Command is already disabled"""', 'color': '(16593715)'}), "(title='Command is already disabled', color=16593715)\n", (1598, 1651), False, 'import discord\n'), ((2443, 2505), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Provide a valid command"""', 'color': '(16593715)'}), "(title='Provide a valid command', color=16593715)\n", (2456, 2505), False, 'import discord\n'), ((4526, 4588), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Provide a valid command"""', 'color': '(16593715)'}), "(title='Provide a valid command', color=16593715)\n", (4539, 4588), False, 'import discord\n'), ((6514, 6576), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Provide a valid command"""', 'color': '(16593715)'}), "(title='Provide a valid command', color=16593715)\n", (6527, 6576), False, 'import discord\n'), ((7295, 7360), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Command is already enabled"""', 'color': '(16593715)'}), "(title='Command is already enabled', color=16593715)\n", (7308, 7360), False, 'import discord\n'), ((8169, 8231), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Provide a valid command"""', 'color': '(16593715)'}), "(title='Provide a valid command', color=16593715)\n", (8182, 8231), False, 'import discord\n'), ((10210, 10272), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Provide a valid command"""', 'color': '(16593715)'}), "(title='Provide a valid command', color=16593715)\n", (10223, 10272), False, 'import discord\n'), ((12172, 12234), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Provide a valid command"""', 'color': '(16593715)'}), "(title='Provide a valid command', color=16593715)\n", (12185, 12234), False, 'import discord\n'), ((13374, 13461), 'discord_components.Select', 'Select', ([], {'placeholder': '"""Select something!"""', 'options': 'options', 'custom_id': '"""commandperms"""'}), "(placeholder='Select something!', options=options, custom_id=\n 'commandperms')\n", (13380, 13461), False, 'from discord_components import Button, Select, SelectOption, ComponentsBot\n'), ((15035, 15066), 'discord.utils.get', 'get', (['ctx.guild.roles'], {'id': 'roleid'}), '(ctx.guild.roles, id=roleid)\n', (15038, 15066), False, 'from discord.utils import get\n'), ((15852, 15883), 'discord.utils.get', 'get', (['ctx.guild.roles'], {'id': 'roleid'}), '(ctx.guild.roles, id=roleid)\n', (15855, 15883), False, 'from discord.utils import get\n'), ((16611, 16642), 'discord.utils.get', 'get', (['ctx.guild.roles'], {'id': 'roleid'}), '(ctx.guild.roles, id=roleid)\n', (16614, 16642), False, 'from discord.utils import get\n'), ((17406, 17437), 'discord.utils.get', 'get', (['ctx.guild.roles'], {'id': 'roleid'}), '(ctx.guild.roles, id=roleid)\n', (17409, 17437), False, 'from discord.utils import get\n'), ((3384, 3450), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Command is already disabled"""', 'color': '(16593715)'}), "(title='Command is already disabled', color=16593715)\n", (3397, 3450), False, 'import discord\n'), ((5444, 5510), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Command is already disabled"""', 'color': '(16593715)'}), "(title='Command is already disabled', color=16593715)\n", (5457, 5510), False, 'import discord\n'), ((9066, 9132), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Command is already disabled"""', 'color': '(16593715)'}), "(title='Command is already disabled', color=16593715)\n", (9079, 9132), False, 'import discord\n'), ((11101, 11167), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Command is already disabled"""', 'color': '(16593715)'}), "(title='Command is already disabled', color=16593715)\n", (11114, 11167), False, 'import discord\n'), ((17738, 17825), 'discord_components.Select', 'Select', ([], {'placeholder': '"""Select something!"""', 'options': 'options', 'custom_id': '"""commandperms"""'}), "(placeholder='Select something!', options=options, custom_id=\n 'commandperms')\n", (17744, 17825), False, 'from discord_components import Button, Select, SelectOption, ComponentsBot\n')]
import unittest import mock from src.api.resources import log from tests import LOGS_PATH class TestLogListResource(unittest.TestCase): def setUp(self): self.class_ = log.LogListResource() def test_post_with_file_that_exits(self): class FakeRequest: @staticmethod def get_json(): return {"logs-file": LOGS_PATH} with mock.patch("src.api.resources.log.flask.request", FakeRequest): result = self.class_.post() self.assertEqual(3, len(result.json)) self.assertEqual("200 OK", result.status) def test_post_with_file_that_does_not_exit(self): class FakeRequest: @staticmethod def get_json(): return {"logs-file": "/foo/bar"} with self.assertRaises(FileNotFoundError) as cm: with mock.patch("src.api.resources.log.flask.request", FakeRequest): self.class_.post() the_exception = cm.exception self.assertIsInstance(the_exception, FileNotFoundError) if __name__ == "__main__": unittest.main()
[ "unittest.main", "src.api.resources.log.LogListResource", "mock.patch" ]
[((1095, 1110), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1108, 1110), False, 'import unittest\n'), ((182, 203), 'src.api.resources.log.LogListResource', 'log.LogListResource', ([], {}), '()\n', (201, 203), False, 'from src.api.resources import log\n'), ((394, 456), 'mock.patch', 'mock.patch', (['"""src.api.resources.log.flask.request"""', 'FakeRequest'], {}), "('src.api.resources.log.flask.request', FakeRequest)\n", (404, 456), False, 'import mock\n'), ((862, 924), 'mock.patch', 'mock.patch', (['"""src.api.resources.log.flask.request"""', 'FakeRequest'], {}), "('src.api.resources.log.flask.request', FakeRequest)\n", (872, 924), False, 'import mock\n')]
# Software License Agreement (BSD License) # # Copyright (c) 2012, <NAME>, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of <NAME>, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import threading class MessageLoaderThread(threading.Thread): """ Waits for a new playhead position on the given topic, then loads the message at that position and notifies the view threads. One thread per topic. Maintains a cache of recently loaded messages. """ def __init__(self, timeline, topic): threading.Thread.__init__(self) self.timeline = timeline self.topic = topic self.topic_playhead_position = None self._message_cache_capacity = 50 self._message_cache = {} self._message_cache_keys = [] self._stop_flag = False self.setDaemon(True) self.start() def reset(self): self.bag_playhead_position = None def run(self): while not self._stop_flag: # Wait for a new entry cv = self.timeline._playhead_positions_cvs[self.topic] with cv: while (self.topic not in self.timeline._playhead_positions) or (self.topic_playhead_position == self.timeline._playhead_positions[self.topic]): cv.wait() if self._stop_flag: return playhead_position = self.timeline._playhead_positions[self.topic] self.topic_playhead_position = playhead_position # Don't bother loading the message if there are no listeners if not self.timeline.has_listeners(self.topic): continue # Load the message if playhead_position is None: msg_data = None else: msg_data = self._get_message(playhead_position) # Inform the views messages_cv = self.timeline._messages_cvs[self.topic] with messages_cv: self.timeline._messages[self.topic] = msg_data messages_cv.notify_all() # notify all views that a message is loaded def _get_message(self, position): key = str(position) if key in self._message_cache: return self._message_cache[key] msg_data = self.timeline.read_message(self.topic, position) self._message_cache[key] = msg_data self._message_cache_keys.append(key) if len(self._message_cache) > self._message_cache_capacity: oldest_key = self._message_cache_keys[0] del self._message_cache[oldest_key] self._message_cache_keys.remove(oldest_key) return msg_data def stop(self): self._stop_flag = True cv = self.timeline._playhead_positions_cvs[self.topic] with cv: print("DJS: self.timeline._playhead_positions_cvs[self.topic].notify_all() [MessageLoader:stop") cv.notify_all()
[ "threading.Thread.__init__" ]
[((1924, 1955), 'threading.Thread.__init__', 'threading.Thread.__init__', (['self'], {}), '(self)\n', (1949, 1955), False, 'import threading\n')]
import json import regex import nltk.data from nltk.tokenize import word_tokenize import sys sent_detector = nltk.data.load('tokenizers/punkt/english.pickle') def tokenize(string): return word_tokenize(string) def split_paragraphs(text): """ remove urls, lowercase all words and separate paragraphs """ splits = regex.split(r'\n+', text) paras = [] for split in splits[1:]: # skip the titles split = split.strip() if len(split) == 0: continue if 'Section::' in split: continue paras.append(split) paras = " ".join(paras) return sent_detector.tokenize(paras) def split_sent(sent): strings = regex.split('<a |</a>', sent) new_strings = [] count = 0 for s in strings: s = s.strip() if s: if 'href=' in s: s = s.lstrip('href="') href, text = s.split('">') new_strings.append((text, href)) count += 1 else: ss = tokenize(s) new_strings.extend([(_, None) for _ in ss]) return new_strings, count / len(new_strings), count fw = open('out-more.json', 'w') with open('en.json', 'r') as f: for i, line in enumerate(f): data = json.loads(line) entry = {"id": data['id'], "url": data['url'], 'title': data['title']} outputs = [] if len(data['text']) > 50: try: sents = split_paragraphs(data['text']) for sent in sents: if len(sent) < 400: output, ratio, count = split_sent(sent) if count > 1 and ratio >= 0.10 and len(output) >= 8 and output[0][0][0].isupper(): text = [_[0] for _ in output] hyperlink = [_[1] for _ in output] outputs.append((text, hyperlink)) except Exception: pass if len(outputs) > 0: entry['text'] = outputs fw.write(json.dumps(entry) + '\n') sys.stdout.write('finished {}/{} \r'.format(i, 5989879)) fw.close()
[ "json.dumps", "json.loads", "regex.split", "nltk.tokenize.word_tokenize" ]
[((194, 215), 'nltk.tokenize.word_tokenize', 'word_tokenize', (['string'], {}), '(string)\n', (207, 215), False, 'from nltk.tokenize import word_tokenize\n'), ((335, 360), 'regex.split', 'regex.split', (['"""\\\\n+"""', 'text'], {}), "('\\\\n+', text)\n", (346, 360), False, 'import regex\n'), ((695, 724), 'regex.split', 'regex.split', (['"""<a |</a>"""', 'sent'], {}), "('<a |</a>', sent)\n", (706, 724), False, 'import regex\n'), ((1302, 1318), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (1312, 1318), False, 'import json\n'), ((2105, 2122), 'json.dumps', 'json.dumps', (['entry'], {}), '(entry)\n', (2115, 2122), False, 'import json\n')]
from helpers.concurrency import execute from scaleapi import exceptions def upsert(client, project_name, batches): print("\n\nCreating Batches...") print("===================") def upsert_batch(desired_batch): batch_name = desired_batch['name'] batch_callback_url = desired_batch['callback_url'] try: current_batch = client.get_batch(desired_batch['name']) # Batch already exists - validate is still in "staging" mode if (not batches.get('batchStatusOverride', False) and current_batch.status != 'staging'): raise(Exception( f"❌ Trying to submit to a non-staging batch, '{desired_batch['name']}' is in status '{current_batch.status}' | Exiting now")) return f"✅ Batch '{desired_batch['name']}' already exists, skipping" except exceptions.ScaleResourceNotFound as err: try: new_batch = client.create_batch( project_name, batch_name, batch_callback_url) return f"✅ Successfully created batch `{desired_batch['name']}`" except exceptions.ScaleException as err: return f"❌ Batch creation for '{desired_batch['name']}' failed <Status Code {err.code}: {err.message}>" except exceptions.ScaleException as err: return f"❌ Batch fetch for '{desired_batch['name']}' failed <Status Code {err.code}: {err.message}>" execute(upsert_batch, batches['batches']) def finalize(client, batches): print("\n\nFinalizing Batches...") print("=====================") def finalize_batch(batch): batch_name = batch["name"] # See if this batch was already finalized (finalizing again gives bad request) try: batch = client.get_batch(batch_name) if (batch.status == 'in_progress'): return f"✅ Batch '{batch_name}' was already finalized, skipping" batch.finalize() return f"✅ Succesfuly finalized batch '{batch_name}'" except exceptions.ScaleException as err: return f"❌ Attempt to finalize batch '{batch_name}' failed <Status Code {err.code}: {err.message}>" execute(finalize_batch, batches['batches'])
[ "helpers.concurrency.execute" ]
[((1458, 1499), 'helpers.concurrency.execute', 'execute', (['upsert_batch', "batches['batches']"], {}), "(upsert_batch, batches['batches'])\n", (1465, 1499), False, 'from helpers.concurrency import execute\n'), ((2217, 2260), 'helpers.concurrency.execute', 'execute', (['finalize_batch', "batches['batches']"], {}), "(finalize_batch, batches['batches'])\n", (2224, 2260), False, 'from helpers.concurrency import execute\n')]
from zzcore import StdAns, mysakuya import requests class Ans(StdAns): def GETMSG(self): msg='' try: msg += xs() except: msg += '可能是机器人笑死了!' return msg def xs(): url = "http://api-x.aya1.xyz:6/" text = requests.get(url=url).text return text
[ "requests.get" ]
[((272, 293), 'requests.get', 'requests.get', ([], {'url': 'url'}), '(url=url)\n', (284, 293), False, 'import requests\n')]
import copy import datetime import importlib import logging import operator import re from calendar import different_locale import translations from data_source.game_data import GameData from game_constants import COLORS, EVENT_TYPES, RARITY_COLORS, SOULFORGE_REQUIREMENTS, TROOP_RARITIES, \ UNDERWORLD_SOULFORGE_REQUIREMENTS, WEAPON_RARITIES from models.bookmark import Bookmark from models.toplist import Toplist from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day LOGLEVEL = logging.DEBUG formatter = logging.Formatter('%(asctime)-15s [%(levelname)s] %(message)s') handler = logging.StreamHandler() handler.setFormatter(formatter) handler.setLevel(LOGLEVEL) log = logging.getLogger(__name__) log.setLevel(LOGLEVEL) log.addHandler(handler) t = translations.Translations() _ = t.get def update_translations(): global _ importlib.reload(translations) del _ _ = translations.Translations().get class TeamExpander: def __init__(self): world = GameData() world.populate_world_data() self.troops = world.troops self.troop_types = world.troop_types self.spells = world.spells self.effects = world.effects self.positive_effects = world.positive_effects self.weapons = world.weapons self.classes = world.classes self.banners = world.banners self.traits = world.traits self.kingdoms = world.kingdoms self.pet_effects = world.pet_effects self.pets = world.pets self.talent_trees = world.talent_trees self.spoilers = world.spoilers self.events = world.events self.campaign_tasks = world.campaign_tasks self.reroll_tasks = world.campaign_rerolls self.soulforge = world.soulforge self.traitstones = world.traitstones self.levels = world.levels self.rooms = {} self.toplists = Toplist() self.bookmarks = Bookmark() self.adventure_board = world.adventure_board self.drop_chances = world.drop_chances self.event_kingdoms = world.event_kingdoms self.weekly_event = world.weekly_event self.active_gems = world.gem_events @classmethod def extract_code_from_message(cls, raw_code): numbers = [int(n.strip()) for n in raw_code.split(',') if n] return numbers def get_team_from_code(self, code, lang): result = { 'troops': [], 'banner': {}, 'class': None, 'talents': [], 'class_title': _('[CLASS]', lang), 'troops_title': _('[TROOPS]', lang), } has_weapon = False has_class = False for i, element in enumerate(code): troop = self.troops.get(element) weapon = self.weapons.get(element) if troop: troop = troop.copy() self.translate_troop(troop, lang) result['troops'].append(troop) continue elif weapon: weapon = weapon.copy() self.translate_weapon(weapon, lang) result['troops'].append(weapon) has_weapon = True continue _class = self.classes.get(element) if _class: result['class'] = _(_class['name'], lang) result['class_talents'] = _class['talents'] has_class = True continue banner = self.banners.get(element) if banner: result['banner'] = self.translate_banner(banner, lang) continue if 0 <= element <= 3: result['talents'].append(element) continue if i <= 3: result['troops'].append(self.troops['`?`']) continue elif i == 4: banner = { 'colors': [('questionmark', 1)], 'name': '[REQUIREMENTS_NOT_MET]', 'filename': 'Locked', 'id': '`?`' } result['banner'] = self.translate_banner(banner, lang) continue elif i == 12: result['class'] = _('[REQUIREMENTS_NOT_MET]', lang) result['talents'] = [] has_class = True continue if has_weapon and has_class: new_talents = [] for talent_no, talent_code in enumerate(result['talents']): talent = '-' if talent_code > 0: talent = _(result['class_talents'][talent_code - 1][talent_no]['name'], lang) new_talents.append(talent) result['talents'] = new_talents else: result['class'] = None result['talents'] = None return result def get_team_from_message(self, user_code, lang): code = self.extract_code_from_message(user_code) if not code: return return self.get_team_from_code(code, lang) @staticmethod def search_item(search_term, lang, items, lookup_keys, translator, sort_by='name'): if search_term.isdigit() and int(search_term) in items: item = items.get(int(search_term)) if item: result = item.copy() translator(result, lang) return [result] return [] possible_matches = [] for base_item in items.values(): if base_item['name'] == '`?`' or base_item['id'] == '`?`': continue item = base_item.copy() translator(item, lang) lookups = { k: extract_search_tag(dig(item, k)) for k in lookup_keys } real_search = extract_search_tag(search_term) if real_search == extract_search_tag(item['name']): return [item] for key, lookup in lookups.items(): if real_search in lookup: possible_matches.append(item) break return sorted(possible_matches, key=operator.itemgetter(sort_by)) def search_troop(self, search_term, lang): lookup_keys = [ 'name', 'kingdom', 'type', 'roles', 'spell.description', ] return self.search_item(search_term, lang, items=self.troops, lookup_keys=lookup_keys, translator=self.translate_troop) def translate_troop(self, troop, lang): troop['name'] = _(troop['name'], lang) if self.is_untranslated(troop['name']): troop['name'] = troop['reference_name'] troop['description'] = _(troop['description'], lang).replace('widerbeleben', 'wiederbeleben') troop['color_code'] = "".join(troop['colors']) troop['rarity_title'] = _('[RARITY]', lang) troop['raw_rarity'] = troop['rarity'] rarity_number = 1 if troop['rarity'] in TROOP_RARITIES: rarity_number = TROOP_RARITIES.index(troop['rarity']) troop['rarity'] = _(f'[RARITY_{rarity_number}]', lang) troop['traits_title'] = _('[TRAITS]', lang) troop['traits'] = self.enrich_traits(troop['traits'], lang) troop['roles_title'] = _('[TROOP_ROLE]', lang) troop['roles'] = [_(f'[TROOP_ROLE_{role.upper()}]', lang) for role in troop['roles']] troop['type_title'] = _('[FILTER_TROOPTYPE]', lang) troop['raw_types'] = troop['types'] types = [ _(f'[TROOPTYPE_{_type.upper()}]', lang) for _type in troop['types'] ] troop['type'] = ' / '.join(types) troop['kingdom_title'] = _('[KINGDOM]', lang) reference_name = troop['kingdom'].get('reference_name', troop['kingdom']['name']) troop['kingdom'] = _(troop['kingdom']['name'], lang) if self.is_untranslated(troop['kingdom']): troop['kingdom'] = reference_name troop['spell'] = self.translate_spell(troop['spell_id'], lang) troop['spell_title'] = _('[TROOPHELP_SPELL0]', lang) self.translate_traitstones(troop, lang) troop['bonuses_title'] = _('[BONUSES]', lang) @staticmethod def translate_traitstones(item, lang): item['traitstones_title'] = _('[SOULFORGE_TAB_TRAITSTONES]', lang) if 'traitstones' not in item: item['traitstones'] = [] traitstones = [] for rune in item['traitstones']: traitstones.append(f'{_(rune["name"], lang)} ({rune["amount"]})') item['traitstones'] = traitstones @staticmethod def enrich_traits(traits, lang): new_traits = [] for trait in traits: new_trait = trait.copy() new_trait['name'] = _(trait['name'], lang) new_trait['description'] = _(trait['description'], lang) new_traits.append(new_trait) return new_traits def search_kingdom(self, search_term, lang, include_warband=True): lookup_keys = ['name'] return self.search_item(search_term, lang, items=self.kingdoms, lookup_keys=lookup_keys, translator=self.translate_kingdom) def kingdom_summary(self, lang): kingdoms = [k.copy() for k in self.kingdoms.values() if k['location'] == 'krystara' and len(k['colors']) > 0] for kingdom in kingdoms: self.translate_kingdom(kingdom, lang) return sorted(kingdoms, key=operator.itemgetter('name')) def translate_kingdom(self, kingdom, lang): kingdom['name'] = _(kingdom['name'], lang) if self.is_untranslated(kingdom['name']): kingdom['name'] = kingdom['reference_name'] kingdom['description'] = _(kingdom['description'], lang) kingdom['punchline'] = _(kingdom['punchline'], lang) kingdom['troop_title'] = _('[TROOPS]', lang) kingdom['troops'] = [] for troop_id in kingdom['troop_ids']: if troop_id not in self.troops: continue troop = self.troops[troop_id].copy() self.translate_troop(troop, lang) kingdom['troops'].append(troop) kingdom['troops'] = sorted(kingdom['troops'], key=operator.itemgetter('name')) kingdom['weapons_title'] = _('[WEAPONS:]', lang) kingdom['weapons'] = sorted([ {'name': _(self.weapons[_id]['name'], lang), 'id': _id } for _id in kingdom['weapon_ids'] ], key=operator.itemgetter('name')) kingdom['banner_title'] = _('[BANNERS]', lang) kingdom['banner'] = self.translate_banner(self.banners[kingdom['id']], lang) kingdom['linked_kingdom'] = None if kingdom['linked_kingdom_id']: kingdom['linked_kingdom'] = _(self.kingdoms[kingdom['linked_kingdom_id']]['name'], lang) if kingdom['linked_kingdom'] and self.is_untranslated(kingdom['linked_kingdom']): kingdom['linked_kingdom'] = None kingdom['map'] = _('[MAPNAME_MAIN]', lang) kingdom['linked_map'] = _('[MAPNAME_UNDERWORLD]', lang) if kingdom['underworld']: kingdom['map'] = _('[MAPNAME_UNDERWORLD]', lang) kingdom['linked_map'] = _('[MAPNAME_MAIN]', lang) if 'primary_color' in kingdom: deed_num = COLORS.index(kingdom['primary_color']) kingdom['deed'] = _(f'[DEED{deed_num:02d}]', lang) kingdom['color_title'] = _('[GEM_MASTERY]', lang) kingdom['stat_title'] = _('[STAT_BONUS]', lang) if 'class_id' in kingdom: kingdom['class_title'] = _('[CLASS]', lang) kingdom['class'] = _(self.classes[kingdom['class_id']]['name'], lang) if 'primary_stat' in kingdom: kingdom['primary_stat'] = _(f'[{kingdom["primary_stat"].upper()}]', lang) if 'pet' in kingdom: kingdom['pet_title'] = _('[PET_RESCUE_PET]', lang) kingdom['pet'] = kingdom['pet'].translations[lang] if 'event_weapon' in kingdom: kingdom['event_weapon_title'] = _('[FACTION_WEAPON]', lang) kingdom['event_weapon_id'] = kingdom['event_weapon']['id'] event_weapon = kingdom['event_weapon'].copy() self.translate_weapon(event_weapon, lang) kingdom['event_weapon'] = event_weapon kingdom['max_power_level_title'] = _('[KINGDOM_POWER_LEVELS]', lang) def search_class(self, search_term, lang): lookup_keys = ['name'] return self.search_item(search_term, lang, items=self.classes, translator=self.translate_class, lookup_keys=lookup_keys) def class_summary(self, lang): classes = [c.copy() for c in self.classes.values()] for c in classes: self.translate_class(c, lang) return sorted(classes, key=operator.itemgetter('name')) def translate_class(self, _class, lang): kingdom = self.kingdoms[_class['kingdom_id']] _class['kingdom'] = _(kingdom['name'], lang, default=kingdom['reference_name']) weapon = self.weapons[_class['weapon_id']] _class['weapon'] = _(weapon['name'], lang) _class['name'] = _(_class['name'], lang) translated_trees = [] for tree in _class['talents']: translated_talents = [] for talent in tree: translated_talents.append({ 'name': _(talent['name'], lang), 'description': _(talent['description'], lang) }) translated_trees.append(translated_talents) self.translate_traitstones(_class, lang) _class['talents_title'] = _('[TALENT_TREES]', lang) _class['kingdom_title'] = _('[KINGDOM]', lang) _class['traits_title'] = _('[TRAITS]', lang) _class['traits'] = self.enrich_traits(_class['traits'], lang) _class['weapon_title'] = _('[WEAPON]', lang) _class['talents'] = translated_trees _class['trees'] = [_(f'[TALENT_TREE_{t.upper()}]', lang) for t in _class['trees']] _class['type_short'] = _(f'[TROOPTYPE_{_class["type"].upper()}]', lang) _class['type'] = _(f'[PERK_TYPE_{_class["type"].upper()}]', lang) _class['weapon_bonus'] = _('[MAGIC_BONUS]', lang) + " " + _( f'[MAGIC_BONUS_{COLORS.index(_class["weapon_color"])}]', lang) def search_talent(self, search_term, lang): possible_matches = [] for tree in self.talent_trees.values(): translated_name = extract_search_tag(_(tree['name'], lang)) translated_talents = [_(t['name'], lang) for t in tree['talents']] talents_search_tags = [extract_search_tag(t) for t in translated_talents] real_search = extract_search_tag(search_term) if real_search == translated_name or real_search in talents_search_tags: result = tree.copy() self.translate_talent_tree(result, lang) return [result] elif real_search in translated_name: result = tree.copy() self.translate_talent_tree(result, lang) possible_matches.append(result) else: talent_matches = [t for t in talents_search_tags if real_search in t] if talent_matches: result = tree.copy() result['talent_matches'] = talent_matches self.translate_talent_tree(result, lang) possible_matches.append(result) return sorted(possible_matches, key=operator.itemgetter('name')) @staticmethod def translate_talent_tree(tree, lang): tree['talents_title'] = _('[TALENT_TREES]', lang) tree['name'] = _(tree['name'], lang) translated_talents = [] for talent in tree['talents']: translated_talents.append({ 'name': _(talent['name'], lang), 'description': _(talent['description'], lang) }) tree['talents'] = translated_talents tree['classes'] = [ {'id': c['id'], 'name': _(c['name'], lang) } for c in tree['classes'] ] def get_troops_with_trait(self, trait, lang): return self.get_objects_by_trait(trait, self.troops, self.translate_troop, lang) def get_classes_with_trait(self, trait, lang): return self.get_objects_by_trait(trait, self.classes, self.translate_class, lang) @staticmethod def get_objects_by_trait(trait, objects, translator, lang): result = [] for o in objects.values(): trait_codes = [t['code'] for t in o['traits']] if 'traits' in o else [] if trait['code'] in trait_codes: translated_object = o.copy() translator(translated_object, lang) result.append(translated_object) return result def search_trait(self, search_term, lang): possible_matches = [] for code, trait in self.traits.items(): translated_name = extract_search_tag(_(trait['name'], lang)) translated_description = extract_search_tag(_(trait['description'], lang)) real_search = extract_search_tag(search_term) if real_search == translated_name: result = trait.copy() result['troops'] = self.get_troops_with_trait(trait, lang) result['troops_title'] = _('[TROOPS]', lang) result['classes'] = self.get_classes_with_trait(trait, lang) result['classes_title'] = _('[CLASS]', lang) if result['troops'] or result['classes']: return self.enrich_traits([result], lang) elif real_search in translated_name or real_search in translated_description: result = trait.copy() result['troops'] = self.get_troops_with_trait(trait, lang) result['troops_title'] = _('[TROOPS]', lang) result['classes'] = self.get_classes_with_trait(trait, lang) result['classes_title'] = _('[CLASS]', lang) if result['troops'] or result['classes']: possible_matches.append(result) return sorted(self.enrich_traits(possible_matches, lang), key=operator.itemgetter('name')) def search_pet(self, search_term, lang): return self.pets.search(search_term, lang) def search_weapon(self, search_term, lang): lookup_keys = [ 'name', 'type', 'roles', 'spell.description', ] return self.search_item(search_term, lang, items=self.weapons, lookup_keys=lookup_keys, translator=self.translate_weapon) def translate_weapon(self, weapon, lang): weapon['name'] = _(weapon['name'], lang) weapon['description'] = _(weapon['description'], lang) weapon['color_code'] = "".join(sorted(weapon['colors'])) weapon['spell_title'] = _('[TROOPHELP_SPELL0]', lang) weapon['rarity_title'] = _('[RARITY]', lang) weapon['raw_rarity'] = weapon['rarity'] rarity_number = WEAPON_RARITIES.index(weapon['rarity']) weapon['rarity'] = _(f'[RARITY_{rarity_number}]', lang) weapon['spell'] = self.translate_spell(weapon['spell_id'], lang) weapon['upgrade_title'] = _('[UPGRADE_WEAPON]', lang) bonus_title = _('[BONUS]', lang) upgrade_numbers = zip(weapon['armor_increase'], weapon['attack_increase'], weapon['health_increase'], weapon['magic_increase']) upgrade_titles = ( _('[ARMOR]', lang), _('[ATTACK]', lang), _('[LIFE]', lang), _('[MAGIC]', lang), ) upgrades = [] for upgrade in upgrade_numbers: for i, amount in enumerate(upgrade): if amount: upgrades.append( {'name': f'{upgrade_titles[i]} {bonus_title}', 'description': f'+{amount} {upgrade_titles[i]}'}) weapon['upgrades'] = upgrades + [self.translate_spell(spell['id'], lang) for spell in weapon['affixes']] weapon['kingdom_title'] = _('[KINGDOM]', lang) weapon['kingdom_id'] = weapon['kingdom']['id'] weapon['kingdom'] = _(weapon['kingdom']['name'], lang) weapon['roles_title'] = _('[WEAPON_ROLE]', lang) weapon['roles'] = [_(f'[TROOP_ROLE_{role.upper()}]', lang) for role in weapon['roles']] weapon['type_title'] = _('[FILTER_WEAPONTYPE]', lang) weapon['type'] = _(f'[WEAPONTYPE_{weapon["type"].upper()}]', lang) weapon['has_mastery_requirement_color'] = False if weapon['requirement'] < 1000: weapon['requirement_text'] = _('[WEAPON_MASTERY_REQUIRED]', lang) + \ str(weapon['requirement']) weapon['has_mastery_requirement_color'] = True elif weapon['requirement'] == 1000: weapon['requirement_text'] = _('[WEAPON_AVAILABLE_FROM_CHESTS_AND_EVENTS]', lang) elif weapon['requirement'] == 1002: _class = _(weapon.get('class', '[NO_CLASS]'), lang) weapon['requirement_text'] = _('[CLASS_REWARD_TITLE]', lang) + f' ({_class})' elif weapon['requirement'] == 1003: weapon['requirement_text'] = _('[SOULFORGE_WEAPONS_TAB_EMPTY_ERROR]', lang) if weapon.get('event_faction'): weapon['requirement_text'] += ' (' + _(f'[{weapon["event_faction"]}_NAME]', lang) + ' ' + _( '[FACTION_WEAPON]', lang) + ')' def search_affix(self, search_term, lang): real_search = extract_search_tag(search_term) results = {} for weapon in self.weapons.values(): my_weapon = weapon.copy() self.translate_weapon(my_weapon, lang) affixes = [affix for affix in my_weapon['upgrades'] if 'cost' in affix] for affix in affixes: search_name = extract_search_tag(affix['name']) search_desc = extract_search_tag(affix['description']) if real_search == search_name \ or real_search == search_desc \ or real_search in search_name \ or real_search in search_desc: if affix['name'] in results: results[affix['name']]['weapons'].append(my_weapon) results[affix['name']]['num_weapons'] += 1 else: results[affix['name']] = affix.copy() results[affix['name']]['weapons_title'] = _('[SOULFORGE_TAB_WEAPONS]', lang) results[affix['name']]['weapons'] = [my_weapon] results[affix['name']]['num_weapons'] = 1 for name, affix in results.items(): if real_search == extract_search_tag(name): return [affix] return sorted(results.values(), key=operator.itemgetter('name')) def search_traitstone(self, search_term, lang): return self.search_item(search_term, lang, items=self.traitstones, lookup_keys=['name'], translator=self.translate_traitstone) def translate_traitstone(self, traitstone, lang): troops = [] for troop_id in traitstone['troop_ids']: amount = sum([t['amount'] for t in self.troops[troop_id]['traitstones'] if t['id'] == traitstone['id']]) troops.append([_(self.troops[troop_id]['name'], lang), amount]) traitstone['troops'] = sorted(troops, key=operator.itemgetter(1), reverse=True) classes = [] for class_id in traitstone['class_ids']: amount = sum([t['amount'] for t in self.classes[class_id]['traitstones'] if t['id'] == traitstone['id']]) classes.append([_(self.classes[class_id]['name'], lang), amount]) traitstone['classes'] = classes kingdoms = [] for kingdom_id in traitstone['kingdom_ids']: kingdoms.append(_(self.kingdoms[int(kingdom_id)]['name'], lang)) if not traitstone['kingdom_ids']: kingdoms.append(_('[ALL_KINGDOMS]', lang)) traitstone['kingdoms'] = kingdoms traitstone['name'] = _(traitstone['name'], lang) traitstone['troops_title'] = _('[TROOPS]', lang) traitstone['classes_title'] = _('[CLASS]', lang) traitstone['kingdoms_title'] = _('[KINGDOMS]', lang) def translate_spell(self, spell_id, lang): spell = self.spells[spell_id] magic = _('[MAGIC]', lang) description = _(spell['description'], lang) for i, (multiplier, amount) in enumerate(spell['effects'], start=1): spell_amount = f' + {amount}' if amount else '' multiplier_text = '' if multiplier > 1: if multiplier == int(multiplier): multiplier_text = f'{multiplier:.0f} ⨯ ' else: multiplier_text = f'{multiplier} ⨯ ' divisor = '' if multiplier < 1: number = int(round(1 / multiplier)) divisor = f' / {number}' damage = f'[{multiplier_text}{magic}{divisor}{spell_amount}]' number_of_replacements = len(re.findall(r'\{\d\}', description)) has_half_replacement = len(spell['effects']) == number_of_replacements - 1 if '{2}' in description and has_half_replacement: multiplier *= 0.5 amount *= 0.5 if amount == int(amount): amount = int(amount) half_damage = f'[{multiplier} ⨯ {magic}{divisor} + {amount}]' description = description.replace('{1}', half_damage) description = description.replace('{2}', damage) else: description = description.replace(f'{{{i}}}', damage) boost = '' if spell['boost'] and spell['boost'] > 100: boost = f' [x{int(round(spell["boost"] / 100))}]' elif spell['boost'] and spell['boost'] != 1 and spell['boost'] <= 100: boost = f' [{100 / spell["boost"]:0.0f}:1]' description = f'{description}{boost}' return { 'name': _(spell['name'], lang), 'cost': spell['cost'], 'description': description, } def translate_banner(self, banner, lang): result = { 'name': _(banner['name'], lang), 'kingdom': _(self.kingdoms[banner['id']]['name'], lang), 'colors': [(_(c[0], 'en').lower(), c[1]) for c in banner['colors'] if c[1]], 'filename': banner['filename'], } colors_shorthand = [] for color, amount in result['colors']: if amount > 0: colors_shorthand.append(color[0].upper()) else: colors_shorthand.append(color[0].lower()) result['colors_shorthand'] = ''.join(colors_shorthand) if not result['colors']: result['available'] = _('[AVAILABLE_FROM_KINGDOM]', lang).replace('%1', _(f'[{banner["id"]}_NAME]', lang)) return result def get_event_kingdoms(self, lang): today = datetime.date.today() start = today + datetime.timedelta(days=-today.weekday(), weeks=1) result = self.guess_weekly_kingdom_from_troop_spoilers(lang) for kingdom_id in self.event_kingdoms: end = start + datetime.timedelta(days=7) if kingdom_id != 0: event_data = { 'start': start, 'end': end, 'kingdom': _(self.kingdoms[kingdom_id]['name'], lang, default=self.kingdoms[kingdom_id]['reference_name']), } result[start] = event_data start = end return sorted(result.values(), key=operator.itemgetter('start')) def guess_weekly_kingdom_from_troop_spoilers(self, lang): result = {} latest_date = datetime.datetime.utcnow() for spoiler in self.spoilers: if spoiler['type'] == 'troop' \ and spoiler['date'].weekday() == 0 \ and spoiler['date'] > latest_date: troop = self.troops[spoiler['id']] if troop['rarity'] == 'Mythic': continue kingdom = troop['kingdom'] if not kingdom.get('name') and not kingdom.get('reference_name'): continue result[spoiler['date'].date()] = { 'start': spoiler['date'].date(), 'end': spoiler['date'].date() + datetime.timedelta(days=7), 'kingdom': _(kingdom['name'], lang, default=kingdom['reference_name']) + ' *', } latest_date = spoiler['date'] return result def get_events(self, lang): today = datetime.date.today() events = [self.translate_event(e, lang) for e in self.events if today <= e['start']] return events def translate_event(self, event, lang): entry = event.copy() entry['extra_info'] = '' if entry['type'] in ('[BOUNTY]', '[HIJACK]') and entry['gacha'] and entry['gacha'] in self.troops: entry['extra_info'] = _(self.troops[entry['gacha']]['name'], lang) elif entry['type'] == '[PETRESCUE]' and entry['gacha']: entry['extra_info'] = self.pets[entry['gacha']][lang].name elif entry['type'] == '[CLASS_EVENT]' and entry['gacha']: entry['extra_info'] = _(self.classes[entry['gacha']]['name'], lang) elif entry['type'] == '[TOWER_OF_DOOM]' and entry['gacha']: entry['extra_info'] = _(self.troops[entry['gacha']]['name'], lang) elif entry['type'] == '[DELVE_EVENT]': entry['extra_info'] = _(self.kingdoms[entry['kingdom_id']]['name'], lang) elif entry['type'] == '[HIJACK]' and entry['troops']: entry['extra_info'] = ', '.join(_(self.troops[t]['name'], lang) for t in entry['troops']) elif entry['type'] == '[INVASION]' and entry['gacha'] and entry['gacha'] in self.troops: troop = self.troops[entry['gacha']] troop_name = _(troop['name'], lang) troop_types = [_(f'[TROOPTYPE_{t.upper()}]', lang) for t in troop['types']] entry['extra_info'] = f'{troop_name} ({", ".join(troop_types)})' elif entry['type'] in ('[WEEKLY_EVENT]', '[RARITY_5]') and entry['gacha'] and entry['gacha'] in self.troops: troop = self.troops[entry['gacha']] troop_name = _(troop['name'], lang) kingdom = _(self.kingdoms[entry['kingdom_id']]['name'], lang) entry['extra_info'] = f'{troop_name} ({kingdom})' entry['kingdom'] = kingdom locale = translations.LANGUAGE_CODE_MAPPING.get(lang, lang) locale = translations.LOCALE_MAPPING.get(locale, 'en_GB') + '.UTF8' with different_locale(locale): entry['formatted_start'] = entry['start'].strftime('%b %d') entry['formatted_end'] = entry['end'].strftime('%b %d') entry['raw_type'] = entry['type'] entry['type'] = _(entry['type'], lang) return entry def get_campaign_tasks(self, lang, _filter=None): result = {'heading': f'{_("[CAMPAIGN]", lang)}: {_("[TASKS]", lang)}'} tiers = ['bronze', 'silver', 'gold'] result['campaigns'] = { f'[MEDAL_LEVEL_{i}]': [self.translate_campaign_task(t, lang) for t in self.campaign_tasks[tier]] for i, tier in reversed(list(enumerate(tiers))) if _filter is None or tier.lower() == _filter.lower() } formatted_start, start_date = get_next_monday_in_locale(date=None, lang=lang) result['has_content'] = any([len(c) > 0 for c in result['campaigns'].values()]) result['background'] = f'Background/{self.campaign_tasks["kingdom"]["filename"]}_full.png' result['gow_logo'] = 'Atlas/gow_logo.png' kingdom_filebase = self.campaign_tasks['kingdom']['filename'] result['kingdom_logo'] = f'Troopcardshields_{kingdom_filebase}_full.png' result['kingdom'] = _(self.campaign_tasks['kingdom']['name'], lang) result['raw_date'] = start_date result['date'] = formatted_start result['lang'] = lang result['texts'] = { 'campaign': _('[CAMPAIGN]', lang), 'team': _('[LITE_CHAT_TEAM_START]', lang), } return result def get_reroll_tasks(self, lang, _filter=None): tiers = ['bronze', 'silver', 'gold'] tasks = { f'[MEDAL_LEVEL_{i}]': [self.translate_campaign_task(t, lang) for t in self.reroll_tasks[tier]] for i, tier in reversed(list(enumerate(tiers))) if _filter is None or tier.lower() == _filter.lower() } return tasks def translate_campaign_task(self, task, lang): new_task = task.copy() color_code = int(new_task['value1']) if new_task['value1'].isdigit() else 666 color = COLORS[color_code].upper() if color_code < len(COLORS) else '`?`' if isinstance(new_task.get('y'), str): new_task['y'] = _(f'[{new_task["y"].upper()}]', lang) new_task['plural'] = int(new_task.get('x', 1)) != 1 replacements = { '{WeaponType}': '[WEAPONTYPE_{c:u}]', '{Kingdom}': '[{d:u}_NAME]', '{Banner}': '[{c:u}_BANNERNAME]', '{Class}': '[HEROCLASS_{c:l}_NAME]', '{Color}': f'[GEM_{color}]', '{TroopType}': '[TROOPTYPE_{value1:u}]', '{Troop}': '{{[{value1}][name]}}', '{Value0}': task['value0'], '{Value1}': task['value1'], '{0}': '{x}', '{1}': task['c'], '{2}': '{x} {y}', } new_task['title'] = _(new_task['title'], lang, plural=new_task['plural']) new_task['name'] = _(new_task["name"], lang, plural=new_task['plural']) if '{0}' not in new_task['name'] and '{2}' not in new_task['name']: new_task['name'] = f'{task["x"]}x ' + new_task['name'] for before, after in replacements.items(): if before in new_task['title'] or before in new_task['name']: translated = _(after.format(**new_task).format(self.troops), lang, plural=new_task['plural']) if '`?`' in translated: translated = '`?`' new_task['title'] = new_task['title'].replace(before, translated) new_task['name'] = new_task['name'].replace(before, translated) where = '' if new_task['value1'] == '`?`': pass elif task['name'] == '[TASK_KILL_TROOP_COLOR]': color_kingdoms = self.get_color_kingdoms(lang) target_kingdom = color_kingdoms[color.lower()]['name'] where = f' --> {target_kingdom}' elif task['name'] == '[TASK_KILL_TROOP_ID]': target_kingdom = _(self.troops[int(task['value1'])]['kingdom']['name'], lang) pvp = _('[PVP]', lang) weekly_event = _('[WEEKLY_EVENT]', lang) where = f' --> {target_kingdom} / {pvp} / {weekly_event}' elif task['name'] == '[TASK_KILL_TROOP_TYPE]': troop_type_kingdoms = dict(self.get_type_kingdoms(lang)) troop_type = _(f'[TROOPTYPE_{task["value1"].upper()}]', lang) target_kingdom = troop_type_kingdoms[troop_type]['name'] where = f' --> {target_kingdom}' new_task['name'] += where return new_task def get_spoilers(self, lang): spoilers = [] now = datetime.datetime.utcnow() near_term_spoilers = [s for s in self.spoilers if now <= s['date'] <= now + datetime.timedelta(days=180)] for spoiler in near_term_spoilers: translated = self.translate_spoiler(spoiler, lang) if translated: spoilers.append(translated) return spoilers def translate_spoiler(self, spoiler, lang): # FIXME this is transitional until all new models are in place. if spoiler['type'] in ['pet']: item = getattr(self, spoiler['type'] + 's').get(spoiler['id']) if not item: return entry = item[translations.LANGUAGE_CODE_MAPPING.get(lang, lang)].data.copy() else: entry = getattr(self, spoiler['type'] + 's').get(spoiler['id'], {}).copy() if not entry: return None entry['name'] = _(entry['name'], lang) if self.is_untranslated(entry['name']): entry['name'] = entry.get('reference_name', entry['name']) entry['type'] = spoiler['type'] entry['date'] = spoiler['date'].date() entry['event'] = _('[GLOG_EVENT]', lang) + ': ' if entry.get('event') else '' if 'rarity' in entry: entry['rarity_title'] = _('[RARITY]', lang) if entry['rarity'] in TROOP_RARITIES: rarity_number = TROOP_RARITIES.index(entry['rarity']) entry['rarity'] = _(f'[RARITY_{rarity_number}]', lang) kingdom_id = entry.get('kingdom_id') if kingdom_id: kingdom = self.kingdoms[kingdom_id] entry['kingdom'] = _(kingdom['name'], lang) if self.is_untranslated(entry['kingdom']): entry['kingdom'] = kingdom['reference_name'] return entry def get_soulforge(self, lang): title = _('[SOULFORGE]', lang) craftable_items = {} for category, recipes in self.soulforge.items(): recipe_type = _(category, lang) craftable_items[recipe_type] = [self.translate_recipe(r, lang) for r in recipes] return title, craftable_items @staticmethod def translate_recipe(recipe, lang): new_recipe = recipe.copy() new_recipe['name'] = _(recipe['name'], lang) rarity_number = WEAPON_RARITIES.index(new_recipe['rarity']) new_recipe['rarity_number'] = rarity_number new_recipe['rarity'] = _(f'[RARITY_{rarity_number}]', lang) return new_recipe @staticmethod def translate_categories(categories, lang): def try_different_translated_versions_because_devs_are_stupid(cat): lookup = f'[{cat.upper()}S]' result = _(lookup, lang) if result == lookup: lookup = f'[{cat.upper()}S:]' result = _(lookup, lang)[:-1] if result == lookup[:-1]: result = _(f'[{cat.upper()}]', lang) return result translated = [try_different_translated_versions_because_devs_are_stupid(c) for c in categories] return dict(zip(categories, translated)) def get_levels(self, lang): levels = [{ 'level': level['level'], 'bonus': _(level['bonus'], lang), } for level in self.levels] return levels def translate_toplist(self, toplist_id, lang): toplist = self.toplists.get(toplist_id) if not toplist: return None result = toplist.copy() result['items'] = [] for item_search in toplist['items']: items = self.search_troop(item_search, lang) if not items: items = self.search_weapon(item_search, lang) if not items: continue result['items'].append(items[0]) return result async def create_toplist(self, message, description, items, lang, update_id): toplist_id = await self.toplists.add(message.author.id, message.author.display_name, description, items, update_id) toplist = self.translate_toplist(toplist_id, lang) return toplist def kingdom_percentage(self, filter_name, filter_values, lang): result = {} now = datetime.datetime.utcnow() hidden_kingdoms = [3032, 3033, 3034, 3038] for filter_ in filter_values: kingdoms = [] for kingdom in self.kingdoms.values(): if kingdom['location'] != 'krystara': continue if kingdom['id'] in hidden_kingdoms: continue all_troops = [self.troops.get(t) for t in kingdom['troop_ids']] available_troops = [t for t in all_troops if t and t.get('release_date', now) <= now] if not available_troops: continue fitting_troops = [t for t in available_troops if filter_ in t[filter_name]] kingdoms.append({ 'name': _(kingdom['name'], lang), 'total': len(available_troops), 'fitting_troops': len(fitting_troops), 'percentage': len(fitting_troops) / len(available_troops), }) top_kingdom = sorted(kingdoms, key=operator.itemgetter('percentage'), reverse=True)[0] result[filter_] = top_kingdom return result def get_color_kingdoms(self, lang): colors_without_skulls = COLORS[:6] return self.kingdom_percentage('colors', colors_without_skulls, lang) def get_type_kingdoms(self, lang): forbidden_types = {'None', 'Boss', 'Tower', 'Castle', 'Doom', 'Gnome'} troop_types = self.troop_types - forbidden_types result = self.kingdom_percentage('types', troop_types, lang) translated_result = { _(f"[TROOPTYPE_{troop_type.upper()}]", lang): kingdom for troop_type, kingdom in result.items() } return sorted(translated_result.items(), key=operator.itemgetter(0)) def get_adventure_board(self, lang): result = [] for adventure in self.adventure_board: result.append(self.translate_adventure(adventure, lang)) return result @staticmethod def translate_adventure(adventure, lang): def change_form(key, value): if value == 1 and key.startswith('[KEYTYPE'): key = key.replace('_TITLE', '_SINGLE') return _(key, lang).replace('%1 ', ''), value result = adventure.copy() result['name'] = _(result['name'], lang) result['reward_types'] = set(result['rewards'].keys()) result['rewards'] = dict([change_form(key, value) for key, value in result['rewards'].items()]) result['rarity'] = _(result['rarity'], lang) return result @staticmethod def is_untranslated(param): if not param: return True return param[0] + param[-1] == '[]' def get_toplist_troop_ids(self, items, lang): result = [] for search_term in items.split(','): items = self.search_troop(search_term, lang) if not items: items = self.search_weapon(search_term, lang) if items: result.append(str(items[0]['id'])) return result def get_soulforge_weapon_image_data(self, search_term, date, switch, lang): search_result = self.search_weapon(search_term, lang) if len(search_result) != 1: return weapon = search_result[0].copy() requirements = SOULFORGE_REQUIREMENTS[weapon['raw_rarity']].copy() alternate_kingdom_id = weapon.get('event_faction') if alternate_kingdom_id: requirements = UNDERWORLD_SOULFORGE_REQUIREMENTS[weapon['raw_rarity']].copy() jewels = [] for color in weapon['colors']: color_code = COLORS.index(color) filename = f'Runes_Jewel{color_code:02n}_full.png' jewels.append({ 'filename': filename, 'amount': requirements['jewels'], 'available_on': translate_day(color_code, lang), 'kingdoms': sorted([_(kingdom['name'], lang) for kingdom in self.kingdoms.values() if 'primary_color' in kingdom and color == kingdom['primary_color'] and kingdom['location'] == 'krystara']), }) requirements['jewels'] = jewels kingdom = self.kingdoms[weapon['kingdom_id']] alternate_kingdom = None alternate_kingdom_name = None alternate_kingdom_filename = None if alternate_kingdom_id: alternate_kingdom = self.kingdoms[alternate_kingdom_id] alternate_kingdom_name = _(alternate_kingdom['name'], lang) alternate_kingdom_filename = alternate_kingdom['filename'] affixes = [{ 'name': _(affix['name'], lang), 'description': _(affix['description'], lang), 'color': list(RARITY_COLORS.values())[i], } for i, affix in enumerate(weapon['affixes'], start=1)] mana_colors = ''.join([c.title() for c in weapon['colors']]).replace('Brown', 'Orange') kingdom_filebase = self.kingdoms[weapon['kingdom_id']]['filename'] in_soulforge_text = _('[WEAPON_AVAILABLE_FROM_SOULFORGE]', lang) if alternate_kingdom_id: in_soulforge_text += ' (' + _(f'[{weapon["event_faction"]}_NAME]', lang) + ' ' + _( '[FACTION_WEAPON]', lang) + ')' date = get_next_monday_in_locale(date, lang)[0] result = { 'switch': switch, 'name': weapon['name'], 'rarity_color': RARITY_COLORS[weapon['raw_rarity']], 'rarity': weapon['rarity'], 'filename': f'Spells/Cards_{weapon["spell_id"]}_full.png', 'description': weapon['spell']['description'], 'kingdom': weapon['kingdom'], 'alternate_kingdom': alternate_kingdom_name, 'kingdom_logo': f'Troopcardshields_{kingdom_filebase}_full.png', 'alternate_kingdom_logo': f'Troopcardshields_{alternate_kingdom_filename}_full.png', 'type': _(weapon['type'], lang), 'background': f'Background/{kingdom["filename"]}_full.png', 'gow_logo': 'Atlas/gow_logo.png', 'requirements': requirements, 'affixes': affixes, 'affix_icon': 'Atlas/affix.png', 'gold_medal': 'Atlas/medal_gold.png', 'mana_color': f'Troopcardall_{mana_colors}_full.png', 'mana_cost': weapon['spell']['cost'], 'stat_increases': {'attack': sum(weapon['attack_increase']), 'health': sum(weapon['health_increase']), 'armor': sum(weapon['armor_increase']), 'magic': sum(weapon['magic_increase'])}, 'stat_icon': 'Atlas/{stat}.png', 'texts': { 'from_battles': _('[PET_LOOT_BONUS]', lang).replace('+%1% %2 ', '').replace('+%1 %2 ', ''), 'gem_bounty': _('[DUNGEON_OFFER_NAME]', lang), 'kingdom_challenges': f'{_("[KINGDOM]", lang)} {_("[CHALLENGES]", lang)}', 'soulforge': _('[SOULFORGE]', lang), 'resources': _('[RESOURCES]', lang), 'dungeon': _('[DUNGEON]', lang), 'dungeon_battles': _('[TASK_WIN_DUNGEON_BATTLES]', lang).replace('{0}', '3').replace('\x19', 's'), 'tier_8': _('[CHALLENGE_TIER_8_ROMAN]', lang), 'available': _('[AVAILABLE]', lang), 'in_soulforge': in_soulforge_text, 'n_gems': _('[GEMS_GAINED]', lang).replace('%1', '50'), }, 'date': date, } return result def translate_drop_chances(self, data: dict, lang): for key, item in data.copy().items(): if not self.is_untranslated(key): continue new_key = _(key, lang) if key == '[KEYTYPE_5_TITLE]': new_key = f'{new_key}*' data[new_key] = item.copy() if key != new_key: del data[key] if isinstance(data[new_key], dict): self.translate_drop_chances(data[new_key], lang) def get_drop_chances(self, lang): drop_chances = self.drop_chances.copy() self.translate_drop_chances(drop_chances, lang) return drop_chances def get_current_event(self, lang, emojis): event = copy.deepcopy(self.weekly_event) kingdoms = self.search_kingdom(event['kingdom_id'], lang) if kingdoms: event['kingdom'] = kingdoms[0] event['name'] = event['name'].get(lang, _(EVENT_TYPES[event['type']], lang)) event['lore'] = event['lore'].get(lang, '') event['currencies'] = [{ 'name': currency['name'].get(lang, ''), 'value': _('[N_TIMES_POINTS]', lang).replace('%1', str(currency['value'])) } for currency in event['currencies']] for stage in event['rewards'].keys(): for reward in event['rewards'][stage]['rewards']: reward_type = reward['type'] reward['type'] = _(reward_type, lang).replace('%1', '').strip() if reward_type == '[TITLE]': reward['type'] += ' (' + _(f'[TITLE_{reward["data"]}]', lang) + ')' if reward_type == '[TROOP]': reward['type'] = _(self.troops.get(reward['data'])['name'], lang) for item in ('token', 'badge', 'medal'): if not event[item]: continue event[item] = { 'name': _(f'[WONDER_{event[item]}_NAME]', lang), 'description': _(f'[WONDER_{event[item]}_DESC]', lang), } def translate_restriction(r): if isinstance(r, int): return emojis.get(COLORS[r]) return _(r, lang) def translate_battle(b): result = b.copy() result['name'] = b['names'].get(lang) del result['names'] return result event['restrictions'] = {_(r, lang): ', '.join([translate_restriction(i) for i in v]) for r, v in event['restrictions'].items() if v} event['troop'] = _(event['troop'], lang) if event['weapon_id']: event['weapon'] = _(self.weapons.get(event['weapon_id'], {'name': ''})['name'], lang) new_battles = [] for battle in event['battles']: tb = translate_battle(battle) if tb not in new_battles: new_battles.append(tb) event['battles'] = new_battles return event def get_effects(self, lang): positive = _('[TROOPHELP_ALLPOSITIVESTATUSEFFECTS_1]', lang) negative = _('[TROOPHELP_ALLNEGATIVESTATUSEFFECTS_1]', lang) result = { positive: [], negative: [], } for effect in self.effects: key = positive if effect in self.positive_effects else negative result[key].append({ 'name': _(f'[TROOPHELP_{effect}_1]', lang), 'description': _(f'[TROOPHELP_{effect}_2]', lang), }) result[positive] = sorted(result[positive], key=operator.itemgetter('name')) result[negative] = sorted(result[negative], key=operator.itemgetter('name')) return result def get_active_gems(self): return [g['gem_type'] for g in self.active_gems.values()] @staticmethod def get_storms(lang): storms = {} fields = { '1': 'name', '2': 'description', } p = re.compile(r'\[TROOPHELP_STORM\d+_\d+') for key, value in t.translations[lang].items(): if not p.match(key): continue field = fields[key[-2]] storm_key = key[:-2] storms.setdefault(storm_key, {})[field] = value return storms def get_warbands(self, lang): warbands = [k.copy() for k in self.kingdoms.values() if 'WARBAND' in k['reference_name']] for warband in warbands: self.translate_kingdom(warband, lang) return warbands def get_map_data(self, lang, location): if not location: location = 'krystara' base_folder = 'Worldmap' map_data = { 'krystara': { 'title': _('[MAPNAME_MAIN]', lang), 'map': f'{base_folder}/Main/Main_Albedo_full.png', 'water': f'{base_folder}/Main/Water_Main_Albedo_full.png', 'height': f'{base_folder}/Main/Main_Height_full.png', 'blend_mode': 'overlay', }, 'underworld': { 'title': _('[MAPNAME_UNDERWORLD]', lang), 'map': f'{base_folder}/Underworld/Underworld_Albedo_full.png', 'water': f'{base_folder}/Underworld/Water_Underworld_Albedo_full.png', 'height': f'{base_folder}/Underworld/Underworld_Height_full.png', 'blend_mode': 'stereo', } } result = map_data[location] result['kingdoms'] = [] result['title'] = f"Gary's Gems of War Map: {result['title']}" def is_pseudo_kingdom(k): return k['location'] == 'krystara' and k['links'] == {-1} for kingdom in self.kingdoms.values(): if 'description' not in kingdom: continue if kingdom['location'] != location: continue if is_pseudo_kingdom(kingdom): continue my_kingdom = kingdom.copy() self.translate_kingdom(my_kingdom, lang) if self.is_untranslated(my_kingdom['name']): continue result['kingdoms'].append(my_kingdom) return result
[ "logging.getLogger", "logging.StreamHandler", "re.compile", "game_constants.TROOP_RARITIES.index", "util.dig", "game_constants.RARITY_COLORS.values", "translations.Translations", "copy.deepcopy", "operator.itemgetter", "datetime.timedelta", "translations.LOCALE_MAPPING.get", "util.extract_search_tag", "models.bookmark.Bookmark", "util.get_next_monday_in_locale", "game_constants.COLORS.index", "datetime.date.today", "re.findall", "translations.LANGUAGE_CODE_MAPPING.get", "game_constants.WEAPON_RARITIES.index", "datetime.datetime.utcnow", "logging.Formatter", "models.toplist.Toplist", "data_source.game_data.GameData", "util.translate_day", "importlib.reload", "calendar.different_locale" ]
[((542, 605), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)-15s [%(levelname)s] %(message)s"""'], {}), "('%(asctime)-15s [%(levelname)s] %(message)s')\n", (559, 605), False, 'import logging\n'), ((616, 639), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (637, 639), False, 'import logging\n'), ((705, 732), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (722, 732), False, 'import logging\n'), ((786, 813), 'translations.Translations', 'translations.Translations', ([], {}), '()\n', (811, 813), False, 'import translations\n'), ((870, 900), 'importlib.reload', 'importlib.reload', (['translations'], {}), '(translations)\n', (886, 900), False, 'import importlib\n'), ((919, 946), 'translations.Translations', 'translations.Translations', ([], {}), '()\n', (944, 946), False, 'import translations\n'), ((1014, 1024), 'data_source.game_data.GameData', 'GameData', ([], {}), '()\n', (1022, 1024), False, 'from data_source.game_data import GameData\n'), ((1921, 1930), 'models.toplist.Toplist', 'Toplist', ([], {}), '()\n', (1928, 1930), False, 'from models.toplist import Toplist\n'), ((1956, 1966), 'models.bookmark.Bookmark', 'Bookmark', ([], {}), '()\n', (1964, 1966), False, 'from models.bookmark import Bookmark\n'), ((19577, 19616), 'game_constants.WEAPON_RARITIES.index', 'WEAPON_RARITIES.index', (["weapon['rarity']"], {}), "(weapon['rarity'])\n", (19598, 19616), False, 'from game_constants import COLORS, EVENT_TYPES, RARITY_COLORS, SOULFORGE_REQUIREMENTS, TROOP_RARITIES, UNDERWORLD_SOULFORGE_REQUIREMENTS, WEAPON_RARITIES\n'), ((22125, 22156), 'util.extract_search_tag', 'extract_search_tag', (['search_term'], {}), '(search_term)\n', (22143, 22156), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((27805, 27826), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (27824, 27826), False, 'import datetime\n'), ((28627, 28653), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (28651, 28653), False, 'import datetime\n'), ((29581, 29602), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (29600, 29602), False, 'import datetime\n'), ((31501, 31551), 'translations.LANGUAGE_CODE_MAPPING.get', 'translations.LANGUAGE_CODE_MAPPING.get', (['lang', 'lang'], {}), '(lang, lang)\n', (31539, 31551), False, 'import translations\n'), ((32401, 32448), 'util.get_next_monday_in_locale', 'get_next_monday_in_locale', ([], {'date': 'None', 'lang': 'lang'}), '(date=None, lang=lang)\n', (32426, 32448), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((36338, 36364), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (36362, 36364), False, 'import datetime\n'), ((38632, 38675), 'game_constants.WEAPON_RARITIES.index', 'WEAPON_RARITIES.index', (["new_recipe['rarity']"], {}), "(new_recipe['rarity'])\n", (38653, 38675), False, 'from game_constants import COLORS, EVENT_TYPES, RARITY_COLORS, SOULFORGE_REQUIREMENTS, TROOP_RARITIES, UNDERWORLD_SOULFORGE_REQUIREMENTS, WEAPON_RARITIES\n'), ((40588, 40614), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (40612, 40614), False, 'import datetime\n'), ((49022, 49054), 'copy.deepcopy', 'copy.deepcopy', (['self.weekly_event'], {}), '(self.weekly_event)\n', (49035, 49054), False, 'import copy\n'), ((52239, 52280), 're.compile', 're.compile', (['"""\\\\[TROOPHELP_STORM\\\\d+_\\\\d+"""'], {}), "('\\\\[TROOPHELP_STORM\\\\d+_\\\\d+')\n", (52249, 52280), False, 'import re\n'), ((5857, 5888), 'util.extract_search_tag', 'extract_search_tag', (['search_term'], {}), '(search_term)\n', (5875, 5888), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((7264, 7301), 'game_constants.TROOP_RARITIES.index', 'TROOP_RARITIES.index', (["troop['rarity']"], {}), "(troop['rarity'])\n", (7284, 7301), False, 'from game_constants import COLORS, EVENT_TYPES, RARITY_COLORS, SOULFORGE_REQUIREMENTS, TROOP_RARITIES, UNDERWORLD_SOULFORGE_REQUIREMENTS, WEAPON_RARITIES\n'), ((11549, 11587), 'game_constants.COLORS.index', 'COLORS.index', (["kingdom['primary_color']"], {}), "(kingdom['primary_color'])\n", (11561, 11587), False, 'from game_constants import COLORS, EVENT_TYPES, RARITY_COLORS, SOULFORGE_REQUIREMENTS, TROOP_RARITIES, UNDERWORLD_SOULFORGE_REQUIREMENTS, WEAPON_RARITIES\n'), ((15047, 15078), 'util.extract_search_tag', 'extract_search_tag', (['search_term'], {}), '(search_term)\n', (15065, 15078), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((17543, 17574), 'util.extract_search_tag', 'extract_search_tag', (['search_term'], {}), '(search_term)\n', (17561, 17574), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((31569, 31617), 'translations.LOCALE_MAPPING.get', 'translations.LOCALE_MAPPING.get', (['locale', '"""en_GB"""'], {}), "(locale, 'en_GB')\n", (31600, 31617), False, 'import translations\n'), ((31641, 31665), 'calendar.different_locale', 'different_locale', (['locale'], {}), '(locale)\n', (31657, 31665), False, 'from calendar import different_locale\n'), ((44273, 44292), 'game_constants.COLORS.index', 'COLORS.index', (['color'], {}), '(color)\n', (44285, 44292), False, 'from game_constants import COLORS, EVENT_TYPES, RARITY_COLORS, SOULFORGE_REQUIREMENTS, TROOP_RARITIES, UNDERWORLD_SOULFORGE_REQUIREMENTS, WEAPON_RARITIES\n'), ((45998, 46035), 'util.get_next_monday_in_locale', 'get_next_monday_in_locale', (['date', 'lang'], {}), '(date, lang)\n', (46023, 46035), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((5920, 5952), 'util.extract_search_tag', 'extract_search_tag', (["item['name']"], {}), "(item['name'])\n", (5938, 5952), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((6195, 6223), 'operator.itemgetter', 'operator.itemgetter', (['sort_by'], {}), '(sort_by)\n', (6214, 6223), False, 'import operator\n'), ((9701, 9728), 'operator.itemgetter', 'operator.itemgetter', (['"""name"""'], {}), "('name')\n", (9720, 9728), False, 'import operator\n'), ((10460, 10487), 'operator.itemgetter', 'operator.itemgetter', (['"""name"""'], {}), "('name')\n", (10479, 10487), False, 'import operator\n'), ((10727, 10754), 'operator.itemgetter', 'operator.itemgetter', (['"""name"""'], {}), "('name')\n", (10746, 10754), False, 'import operator\n'), ((13140, 13167), 'operator.itemgetter', 'operator.itemgetter', (['"""name"""'], {}), "('name')\n", (13159, 13167), False, 'import operator\n'), ((14970, 14991), 'util.extract_search_tag', 'extract_search_tag', (['t'], {}), '(t)\n', (14988, 14991), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((15880, 15907), 'operator.itemgetter', 'operator.itemgetter', (['"""name"""'], {}), "('name')\n", (15899, 15907), False, 'import operator\n'), ((18636, 18663), 'operator.itemgetter', 'operator.itemgetter', (['"""name"""'], {}), "('name')\n", (18655, 18663), False, 'import operator\n'), ((22460, 22493), 'util.extract_search_tag', 'extract_search_tag', (["affix['name']"], {}), "(affix['name'])\n", (22478, 22493), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((22524, 22564), 'util.extract_search_tag', 'extract_search_tag', (["affix['description']"], {}), "(affix['description'])\n", (22542, 22564), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((23373, 23397), 'util.extract_search_tag', 'extract_search_tag', (['name'], {}), '(name)\n', (23391, 23397), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((23474, 23501), 'operator.itemgetter', 'operator.itemgetter', (['"""name"""'], {}), "('name')\n", (23493, 23501), False, 'import operator\n'), ((24154, 24176), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (24173, 24176), False, 'import operator\n'), ((25854, 25890), 're.findall', 're.findall', (['"""\\\\{\\\\d\\\\}"""', 'description'], {}), "('\\\\{\\\\d\\\\}', description)\n", (25864, 25890), False, 'import re\n'), ((28045, 28071), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(7)'}), '(days=7)\n', (28063, 28071), False, 'import datetime\n'), ((28492, 28520), 'operator.itemgetter', 'operator.itemgetter', (['"""start"""'], {}), "('start')\n", (28511, 28520), False, 'import operator\n'), ((37706, 37743), 'game_constants.TROOP_RARITIES.index', 'TROOP_RARITIES.index', (["entry['rarity']"], {}), "(entry['rarity'])\n", (37726, 37743), False, 'from game_constants import COLORS, EVENT_TYPES, RARITY_COLORS, SOULFORGE_REQUIREMENTS, TROOP_RARITIES, UNDERWORLD_SOULFORGE_REQUIREMENTS, WEAPON_RARITIES\n'), ((42371, 42393), 'operator.itemgetter', 'operator.itemgetter', (['(0)'], {}), '(0)\n', (42390, 42393), False, 'import operator\n'), ((51842, 51869), 'operator.itemgetter', 'operator.itemgetter', (['"""name"""'], {}), "('name')\n", (51861, 51869), False, 'import operator\n'), ((51927, 51954), 'operator.itemgetter', 'operator.itemgetter', (['"""name"""'], {}), "('name')\n", (51946, 51954), False, 'import operator\n'), ((5782, 5794), 'util.dig', 'dig', (['item', 'k'], {}), '(item, k)\n', (5785, 5794), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((44504, 44535), 'util.translate_day', 'translate_day', (['color_code', 'lang'], {}), '(color_code, lang)\n', (44517, 44535), False, 'from util import dig, extract_search_tag, get_next_monday_in_locale, translate_day\n'), ((14610, 14646), 'game_constants.COLORS.index', 'COLORS.index', (["_class['weapon_color']"], {}), "(_class['weapon_color'])\n", (14622, 14646), False, 'from game_constants import COLORS, EVENT_TYPES, RARITY_COLORS, SOULFORGE_REQUIREMENTS, TROOP_RARITIES, UNDERWORLD_SOULFORGE_REQUIREMENTS, WEAPON_RARITIES\n'), ((29286, 29312), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(7)'}), '(days=7)\n', (29304, 29312), False, 'import datetime\n'), ((36449, 36477), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(180)'}), '(days=180)\n', (36467, 36477), False, 'import datetime\n'), ((41635, 41668), 'operator.itemgetter', 'operator.itemgetter', (['"""percentage"""'], {}), "('percentage')\n", (41654, 41668), False, 'import operator\n'), ((45469, 45491), 'game_constants.RARITY_COLORS.values', 'RARITY_COLORS.values', ([], {}), '()\n', (45489, 45491), False, 'from game_constants import COLORS, EVENT_TYPES, RARITY_COLORS, SOULFORGE_REQUIREMENTS, TROOP_RARITIES, UNDERWORLD_SOULFORGE_REQUIREMENTS, WEAPON_RARITIES\n'), ((36988, 37038), 'translations.LANGUAGE_CODE_MAPPING.get', 'translations.LANGUAGE_CODE_MAPPING.get', (['lang', 'lang'], {}), '(lang, lang)\n', (37026, 37038), False, 'import translations\n')]
import math from numpy import linalg from scipy import stats from scipy.spatial import distance import numpy def euclidean(p, Q): return numpy.apply_along_axis(lambda q: linalg.norm(p - q), 0, Q) def hellinger(p, Q): factor = 1 / math.sqrt(2) sqrt_p = numpy.sqrt(p) return factor * numpy.apply_along_axis( lambda q: linalg.norm(sqrt_p - numpy.sqrt(q)), 0, Q ) def jensen_shannon_distance(p, Q): """Square root of Jensen-Shannon divergence.""" return numpy.apply_along_axis(lambda q: distance.jensenshannon(p, q), 0, Q) def k_directed(p, Q): """See: <NAME>. "Divergence Measures Based on the Shannon Entropy". 1991.""" return numpy.apply_along_axis(lambda q: stats.entropy(p, (p + q) / 2), 0, Q) def kullback_leibler(p, Q): return numpy.apply_along_axis(lambda q: stats.entropy(p, q), 0, Q) def neyman_chi_square(p, Q): return numpy.apply_along_axis(lambda q: numpy.sum(numpy.square(p - q) / q), 0, Q) def pearson_chi_square(p, Q): return numpy.apply_along_axis(lambda q: numpy.sum(numpy.square(p - q) / p), 0, Q) def total_variation(p, Q): return 0.5 * numpy.apply_along_axis(lambda q: linalg.norm(p - q, 1), 0, Q)
[ "scipy.stats.entropy", "numpy.sqrt", "math.sqrt", "numpy.square", "numpy.linalg.norm", "scipy.spatial.distance.jensenshannon" ]
[((269, 282), 'numpy.sqrt', 'numpy.sqrt', (['p'], {}), '(p)\n', (279, 282), False, 'import numpy\n'), ((243, 255), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (252, 255), False, 'import math\n'), ((177, 195), 'numpy.linalg.norm', 'linalg.norm', (['(p - q)'], {}), '(p - q)\n', (188, 195), False, 'from numpy import linalg\n'), ((527, 555), 'scipy.spatial.distance.jensenshannon', 'distance.jensenshannon', (['p', 'q'], {}), '(p, q)\n', (549, 555), False, 'from scipy.spatial import distance\n'), ((713, 742), 'scipy.stats.entropy', 'stats.entropy', (['p', '((p + q) / 2)'], {}), '(p, (p + q) / 2)\n', (726, 742), False, 'from scipy import stats\n'), ((824, 843), 'scipy.stats.entropy', 'stats.entropy', (['p', 'q'], {}), '(p, q)\n', (837, 843), False, 'from scipy import stats\n'), ((1165, 1186), 'numpy.linalg.norm', 'linalg.norm', (['(p - q)', '(1)'], {}), '(p - q, 1)\n', (1176, 1186), False, 'from numpy import linalg\n'), ((936, 955), 'numpy.square', 'numpy.square', (['(p - q)'], {}), '(p - q)\n', (948, 955), False, 'import numpy\n'), ((1054, 1073), 'numpy.square', 'numpy.square', (['(p - q)'], {}), '(p - q)\n', (1066, 1073), False, 'import numpy\n'), ((366, 379), 'numpy.sqrt', 'numpy.sqrt', (['q'], {}), '(q)\n', (376, 379), False, 'import numpy\n')]
import json import math from dataclasses import dataclass from datetime import timedelta from enum import Enum from pathlib import Path from typing import List, Optional import numpy as np from vad.util.time_utils import ( format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta, ) class VoiceActivityVersion(Enum): v01 = "v0.1" v02 = "v0.2" v03 = "v0.3" class VoiceActivityMillisecondsVersion(Enum): v01 = "v0.1" v02 = "v0.2" v03 = "v0.3" @dataclass class Activity: start: timedelta end: timedelta @dataclass class VoiceActivity: duration: timedelta activities: List[Activity] probs_sample_rate: Optional[int] probs: Optional[List[float]] @classmethod def load(cls, path: Path): with path.open() as file: voice_activity_data = json.load(file) return VoiceActivity.from_json(voice_activity_data) @classmethod def from_json(cls, voice_activity_data: dict): version = voice_activity_data["version"] if version == VoiceActivityVersion.v01.value: voice_activity = cls( duration=parse_timecode_to_timedelta(voice_activity_data["duration"]), activities=[ Activity( start=parse_timecode_to_timedelta(speech_block["start_time"]), end=parse_timecode_to_timedelta(speech_block["end_time"]), ) for speech_block in voice_activity_data["voice_activity"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) elif version == VoiceActivityVersion.v02.value: if voice_activity_data["time_format"] == "timecode": voice_activity = cls( duration=parse_timecode_to_timedelta(voice_activity_data["duration"]), activities=[ Activity( start=parse_timecode_to_timedelta(speech_block["start_time"]), end=parse_timecode_to_timedelta(speech_block["end_time"]), ) for speech_block in voice_activity_data["voice_activity"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) elif voice_activity_data["time_format"] == "millisecond": voice_activity = cls( duration=timedelta(milliseconds=voice_activity_data["duration"]), activities=[ Activity( start=timedelta(milliseconds=speech_block["start_time"]), end=timedelta(milliseconds=speech_block["end_time"]), ) for speech_block in voice_activity_data["voice_activity"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) else: raise NotImplementedError elif version == VoiceActivityVersion.v03.value: voice_activity = cls( duration=parse_timecode_to_timedelta(voice_activity_data["duration"]), activities=[ Activity( start=parse_timecode_to_timedelta(activity["start"]), end=parse_timecode_to_timedelta(activity["end"]), ) for activity in voice_activity_data["activities"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) else: raise NotImplementedError return voice_activity def save(self, path: Path, version: VoiceActivityVersion = VoiceActivityVersion.v03): voice_activity_data = self.to_json(version) with path.open("w") as file: json.dump(voice_activity_data, file, ensure_ascii=False, indent=4) def to_json(self, version: VoiceActivityVersion = VoiceActivityVersion.v03): if version == VoiceActivityVersion.v01: voice_activity_formatted = { "version": VoiceActivityVersion.v01.value, "duration": format_timedelta_to_timecode(self.duration), "voice_activity": [ { "start_time": format_timedelta_to_timecode(activity.start), "end_time": format_timedelta_to_timecode(activity.end), } for activity in self.activities ], "probs_sample_rate": self.probs_sample_rate, "probs": self.probs, } elif version == VoiceActivityVersion.v02: voice_activity_formatted = { "version": VoiceActivityVersion.v02.value, "duration": format_timedelta_to_timecode(self.duration), "time_format": "timecode", "voice_activity": [ { "start_time": format_timedelta_to_timecode(activity.start), "end_time": format_timedelta_to_timecode(activity.end), } for activity in self.activities ], "probs_sample_rate": self.probs_sample_rate, "probs": self.probs, } elif version == VoiceActivityVersion.v03: voice_activity_formatted = { "version": VoiceActivityVersion.v03.value, "duration": format_timedelta_to_timecode(self.duration), "activities": [ { "start": format_timedelta_to_timecode(activity.start), "end": format_timedelta_to_timecode(activity.end), } for activity in self.activities ], "probs_sample_rate": self.probs_sample_rate, "probs": self.probs, } else: raise NotImplementedError return voice_activity_formatted def to_milliseconds( self, version: VoiceActivityMillisecondsVersion = VoiceActivityMillisecondsVersion.v03 ): if version == VoiceActivityMillisecondsVersion.v02: voice_activity_milliseconds = { "version": version.value, "duration": format_timedelta_to_milliseconds(self.duration), "time_format": "millisecond", "voice_activity": [ { "start_time": format_timedelta_to_milliseconds(activity.start), "end_time": format_timedelta_to_milliseconds(activity.end), } for activity in self.activities ], "probs_sample_rate": self.probs_sample_rate, "probs": self.probs, } elif version == VoiceActivityMillisecondsVersion.v03: voice_activity_milliseconds = { "version": version.value, "duration": {"total_milliseconds": format_timedelta_to_milliseconds(self.duration)}, "activities": [ { "start": { "total_milliseconds": format_timedelta_to_milliseconds(activity.start) }, "end": { "total_milliseconds": format_timedelta_to_milliseconds(activity.end) }, } for activity in self.activities ], "probs_sample_rate": self.probs_sample_rate, "probs": self.probs, } else: raise NotImplementedError return voice_activity_milliseconds @classmethod def from_milliseconds(cls, voice_activity_data: dict): version = voice_activity_data["version"] # version of milliseconds format if version == VoiceActivityMillisecondsVersion.v02.value: voice_activity = VoiceActivity( duration=timedelta(milliseconds=voice_activity_data["duration"]), activities=[ Activity( start=timedelta(milliseconds=speech_block["start_time"]), end=timedelta(milliseconds=speech_block["end_time"]), ) for speech_block in voice_activity_data["voice_activity"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) elif version == VoiceActivityMillisecondsVersion.v03.value: voice_activity = VoiceActivity( duration=timedelta( milliseconds=voice_activity_data["duration"]["total_milliseconds"] ), activities=[ Activity( start=timedelta(milliseconds=segment["start"]["total_milliseconds"]), end=timedelta(milliseconds=segment["end"]["total_milliseconds"]), ) for segment in voice_activity_data["activities"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) else: raise NotImplementedError return voice_activity def to_labels(self, sample_rate: int) -> np.array: total_samples = int(self.duration.total_seconds() * sample_rate) labels = np.zeros(total_samples, dtype=np.long) for activity in self.activities: start_sample = int(activity.start.total_seconds() * sample_rate) end_sample = int(activity.end.total_seconds() * sample_rate) labels[start_sample:end_sample] = 1 return labels
[ "vad.util.time_utils.parse_timecode_to_timedelta", "vad.util.time_utils.format_timedelta_to_milliseconds", "numpy.zeros", "json.load", "datetime.timedelta", "json.dump", "vad.util.time_utils.format_timedelta_to_timecode" ]
[((10019, 10057), 'numpy.zeros', 'np.zeros', (['total_samples'], {'dtype': 'np.long'}), '(total_samples, dtype=np.long)\n', (10027, 10057), True, 'import numpy as np\n'), ((863, 878), 'json.load', 'json.load', (['file'], {}), '(file)\n', (872, 878), False, 'import json\n'), ((4223, 4289), 'json.dump', 'json.dump', (['voice_activity_data', 'file'], {'ensure_ascii': '(False)', 'indent': '(4)'}), '(voice_activity_data, file, ensure_ascii=False, indent=4)\n', (4232, 4289), False, 'import json\n'), ((4548, 4591), 'vad.util.time_utils.format_timedelta_to_timecode', 'format_timedelta_to_timecode', (['self.duration'], {}), '(self.duration)\n', (4576, 4591), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((6743, 6790), 'vad.util.time_utils.format_timedelta_to_milliseconds', 'format_timedelta_to_milliseconds', (['self.duration'], {}), '(self.duration)\n', (6775, 6790), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((1170, 1230), 'vad.util.time_utils.parse_timecode_to_timedelta', 'parse_timecode_to_timedelta', (["voice_activity_data['duration']"], {}), "(voice_activity_data['duration'])\n", (1197, 1230), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((5198, 5241), 'vad.util.time_utils.format_timedelta_to_timecode', 'format_timedelta_to_timecode', (['self.duration'], {}), '(self.duration)\n', (5226, 5241), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((8489, 8544), 'datetime.timedelta', 'timedelta', ([], {'milliseconds': "voice_activity_data['duration']"}), "(milliseconds=voice_activity_data['duration'])\n", (8498, 8544), False, 'from datetime import timedelta\n'), ((4689, 4733), 'vad.util.time_utils.format_timedelta_to_timecode', 'format_timedelta_to_timecode', (['activity.start'], {}), '(activity.start)\n', (4717, 4733), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((4771, 4813), 'vad.util.time_utils.format_timedelta_to_timecode', 'format_timedelta_to_timecode', (['activity.end'], {}), '(activity.end)\n', (4799, 4813), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((5891, 5934), 'vad.util.time_utils.format_timedelta_to_timecode', 'format_timedelta_to_timecode', (['self.duration'], {}), '(self.duration)\n', (5919, 5934), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((6934, 6982), 'vad.util.time_utils.format_timedelta_to_milliseconds', 'format_timedelta_to_milliseconds', (['activity.start'], {}), '(activity.start)\n', (6966, 6982), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((7020, 7066), 'vad.util.time_utils.format_timedelta_to_milliseconds', 'format_timedelta_to_milliseconds', (['activity.end'], {}), '(activity.end)\n', (7052, 7066), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((7472, 7519), 'vad.util.time_utils.format_timedelta_to_milliseconds', 'format_timedelta_to_milliseconds', (['self.duration'], {}), '(self.duration)\n', (7504, 7519), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((9171, 9248), 'datetime.timedelta', 'timedelta', ([], {'milliseconds': "voice_activity_data['duration']['total_milliseconds']"}), "(milliseconds=voice_activity_data['duration']['total_milliseconds'])\n", (9180, 9248), False, 'from datetime import timedelta\n'), ((1918, 1978), 'vad.util.time_utils.parse_timecode_to_timedelta', 'parse_timecode_to_timedelta', (["voice_activity_data['duration']"], {}), "(voice_activity_data['duration'])\n", (1945, 1978), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((3415, 3475), 'vad.util.time_utils.parse_timecode_to_timedelta', 'parse_timecode_to_timedelta', (["voice_activity_data['duration']"], {}), "(voice_activity_data['duration'])\n", (3442, 3475), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((5382, 5426), 'vad.util.time_utils.format_timedelta_to_timecode', 'format_timedelta_to_timecode', (['activity.start'], {}), '(activity.start)\n', (5410, 5426), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((5464, 5506), 'vad.util.time_utils.format_timedelta_to_timecode', 'format_timedelta_to_timecode', (['activity.end'], {}), '(activity.end)\n', (5492, 5506), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((1321, 1376), 'vad.util.time_utils.parse_timecode_to_timedelta', 'parse_timecode_to_timedelta', (["speech_block['start_time']"], {}), "(speech_block['start_time'])\n", (1348, 1376), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((1406, 1459), 'vad.util.time_utils.parse_timecode_to_timedelta', 'parse_timecode_to_timedelta', (["speech_block['end_time']"], {}), "(speech_block['end_time'])\n", (1433, 1459), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((2655, 2710), 'datetime.timedelta', 'timedelta', ([], {'milliseconds': "voice_activity_data['duration']"}), "(milliseconds=voice_activity_data['duration'])\n", (2664, 2710), False, 'from datetime import timedelta\n'), ((6023, 6067), 'vad.util.time_utils.format_timedelta_to_timecode', 'format_timedelta_to_timecode', (['activity.start'], {}), '(activity.start)\n', (6051, 6067), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((6100, 6142), 'vad.util.time_utils.format_timedelta_to_timecode', 'format_timedelta_to_timecode', (['activity.end'], {}), '(activity.end)\n', (6128, 6142), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((7661, 7709), 'vad.util.time_utils.format_timedelta_to_milliseconds', 'format_timedelta_to_milliseconds', (['activity.start'], {}), '(activity.start)\n', (7693, 7709), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((7820, 7866), 'vad.util.time_utils.format_timedelta_to_milliseconds', 'format_timedelta_to_milliseconds', (['activity.end'], {}), '(activity.end)\n', (7852, 7866), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((8635, 8685), 'datetime.timedelta', 'timedelta', ([], {'milliseconds': "speech_block['start_time']"}), "(milliseconds=speech_block['start_time'])\n", (8644, 8685), False, 'from datetime import timedelta\n'), ((8715, 8763), 'datetime.timedelta', 'timedelta', ([], {'milliseconds': "speech_block['end_time']"}), "(milliseconds=speech_block['end_time'])\n", (8724, 8763), False, 'from datetime import timedelta\n'), ((9377, 9439), 'datetime.timedelta', 'timedelta', ([], {'milliseconds': "segment['start']['total_milliseconds']"}), "(milliseconds=segment['start']['total_milliseconds'])\n", (9386, 9439), False, 'from datetime import timedelta\n'), ((9469, 9529), 'datetime.timedelta', 'timedelta', ([], {'milliseconds': "segment['end']['total_milliseconds']"}), "(milliseconds=segment['end']['total_milliseconds'])\n", (9478, 9529), False, 'from datetime import timedelta\n'), ((2081, 2136), 'vad.util.time_utils.parse_timecode_to_timedelta', 'parse_timecode_to_timedelta', (["speech_block['start_time']"], {}), "(speech_block['start_time'])\n", (2108, 2136), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((2170, 2223), 'vad.util.time_utils.parse_timecode_to_timedelta', 'parse_timecode_to_timedelta', (["speech_block['end_time']"], {}), "(speech_block['end_time'])\n", (2197, 2223), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((3566, 3612), 'vad.util.time_utils.parse_timecode_to_timedelta', 'parse_timecode_to_timedelta', (["activity['start']"], {}), "(activity['start'])\n", (3593, 3612), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((3642, 3686), 'vad.util.time_utils.parse_timecode_to_timedelta', 'parse_timecode_to_timedelta', (["activity['end']"], {}), "(activity['end'])\n", (3669, 3686), False, 'from vad.util.time_utils import format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta\n'), ((2813, 2863), 'datetime.timedelta', 'timedelta', ([], {'milliseconds': "speech_block['start_time']"}), "(milliseconds=speech_block['start_time'])\n", (2822, 2863), False, 'from datetime import timedelta\n'), ((2897, 2945), 'datetime.timedelta', 'timedelta', ([], {'milliseconds': "speech_block['end_time']"}), "(milliseconds=speech_block['end_time'])\n", (2906, 2945), False, 'from datetime import timedelta\n')]
import sys import urllib.parse as urlparse print("Argumentos recibidos por STDIN: ") try: for line in sys.stdin: url = 'foo.com/?' + line parsed = urlparse.urlparse(url) print('Recibido: {}'.format(urlparse.parse_qs(parsed.query))) except: ignorar = True
[ "urllib.parse.parse_qs", "urllib.parse.urlparse" ]
[((177, 199), 'urllib.parse.urlparse', 'urlparse.urlparse', (['url'], {}), '(url)\n', (194, 199), True, 'import urllib.parse as urlparse\n'), ((239, 270), 'urllib.parse.parse_qs', 'urlparse.parse_qs', (['parsed.query'], {}), '(parsed.query)\n', (256, 270), True, 'import urllib.parse as urlparse\n')]
# ------------------------------------------------------------------- # Copyright 2021 Virtex authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. # ------------------------------------------------------------------- import asyncio from functools import wraps from typing import Callable, Any from virtex.core.timing import now, async_now def profile(profile_fn, *fn_args, tstamp_fn: Callable[[float, float], Any], loop: asyncio.BaseEventLoop = None): """ Parameters ---------- profile_fn: ``Callable[Any, Any]`` Wrapped function fn_args: ``Tuple[Any]`` Wrapped function arguments tstamp_fn: ``Callable[[float, float], Any]`` A function that accepts a start_time,end_time argument pair and returns the profile value loop: ``Optional[asyncio.BaseEventLoop]`` Event loop to be used for async functions """ def _execute(func): @wraps(func) async def timeit_async(*args, **kwargs): start_time = async_now(loop) result = await func(*args, **kwargs) end_time = async_now(loop) profile_fn(*fn_args, tstamp_fn(start_time, end_time)) return result @wraps(func) def timeit(*args, **kwargs): start_time = now() result = func(*args, **kwargs) end_time = now() profile_fn(*fn_args, tstamp_fn(start_time, end_time)) return result if asyncio.iscoroutinefunction(func): assert loop is not None return timeit_async return timeit return _execute
[ "virtex.core.timing.async_now", "asyncio.iscoroutinefunction", "functools.wraps", "virtex.core.timing.now" ]
[((1475, 1486), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (1480, 1486), False, 'from functools import wraps\n'), ((1767, 1778), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (1772, 1778), False, 'from functools import wraps\n'), ((2023, 2056), 'asyncio.iscoroutinefunction', 'asyncio.iscoroutinefunction', (['func'], {}), '(func)\n', (2050, 2056), False, 'import asyncio\n'), ((1561, 1576), 'virtex.core.timing.async_now', 'async_now', (['loop'], {}), '(loop)\n', (1570, 1576), False, 'from virtex.core.timing import now, async_now\n'), ((1649, 1664), 'virtex.core.timing.async_now', 'async_now', (['loop'], {}), '(loop)\n', (1658, 1664), False, 'from virtex.core.timing import now, async_now\n'), ((1841, 1846), 'virtex.core.timing.now', 'now', ([], {}), '()\n', (1844, 1846), False, 'from virtex.core.timing import now, async_now\n'), ((1913, 1918), 'virtex.core.timing.now', 'now', ([], {}), '()\n', (1916, 1918), False, 'from virtex.core.timing import now, async_now\n')]
# coding = utf-8 from abc import ABCMeta, abstractmethod import torch from Putil.torch.indicator.vision.object_detection import box ##@brief 计算iou # @note # @return def _iou(x11, y11, x12, y12, x21, y21, x22, y22): cap, cup = box._cap_cup(x11, y11, x12, y12, x21, y21, x22, y22) return cap / cup def _cap_cup_iou(cap, cup): return cap / cup ##@brief 计算IoU,基于[batch, box, ...]进行计算,box的结构是[top_left_x, top_left_y, width, height], # 返回的是[batch, 1, ...],第二维表示的是iou值,当前单元不存在gt_box的情况使用[0, 0, 0, 0]代表, # 那么不同的iou,针对不存在gt的情况获得的值就不一样,需要特别注明 **一般情况下,计算一个batch的MeanIoU都是需要 # 进 # @note class iou(torch.nn.Module): def __init__(self): torch.nn.Module.__init__(self) pass ##@brief 返回当前对象的准确iou值索引,有些的返回值可能有多个数据(包含过程数据以及基础iou等),需要该接口方便的返回对应iou的索引 # @return int 索引 @abstractmethod def iou_index(self): pass @abstractmethod def iou_mean(self, iou): pass class MeanIoU(torch.nn.Module): def __init__(self): torch.nn.Module.__init__(self) pass def forward(self, iou, obj_gt): iou_filtered = iou * obj_gt iou = torch.nansum(iou_filtered) / ((torch.isnan(iou_filtered).eq(False) * obj_gt).sum() + 1e-32) return iou ##@brief # @note class IoU(iou): def iou_index(self): return 0 def __init__(self): iou.__init__(self) pass def forward(self, box1, box2): box1 = box._tlwh_to_tlbr(box1) box2 = box._tlwh_to_tlbr(box2) x11, y11, x12, y12 = box._to_xyxy(box1) x21, y21, x22, y22 = box._to_xyxy(box2) iou = _iou(x11, y11, x12, y12, x21, y21, x22, y22) return iou,
[ "Putil.torch.indicator.vision.object_detection.box._cap_cup", "Putil.torch.indicator.vision.object_detection.box._tlwh_to_tlbr", "torch.nansum", "torch.isnan", "torch.nn.Module.__init__", "Putil.torch.indicator.vision.object_detection.box._to_xyxy" ]
[((232, 284), 'Putil.torch.indicator.vision.object_detection.box._cap_cup', 'box._cap_cup', (['x11', 'y11', 'x12', 'y12', 'x21', 'y21', 'x22', 'y22'], {}), '(x11, y11, x12, y12, x21, y21, x22, y22)\n', (244, 284), False, 'from Putil.torch.indicator.vision.object_detection import box\n'), ((652, 682), 'torch.nn.Module.__init__', 'torch.nn.Module.__init__', (['self'], {}), '(self)\n', (676, 682), False, 'import torch\n'), ((982, 1012), 'torch.nn.Module.__init__', 'torch.nn.Module.__init__', (['self'], {}), '(self)\n', (1006, 1012), False, 'import torch\n'), ((1425, 1448), 'Putil.torch.indicator.vision.object_detection.box._tlwh_to_tlbr', 'box._tlwh_to_tlbr', (['box1'], {}), '(box1)\n', (1442, 1448), False, 'from Putil.torch.indicator.vision.object_detection import box\n'), ((1464, 1487), 'Putil.torch.indicator.vision.object_detection.box._tlwh_to_tlbr', 'box._tlwh_to_tlbr', (['box2'], {}), '(box2)\n', (1481, 1487), False, 'from Putil.torch.indicator.vision.object_detection import box\n'), ((1517, 1535), 'Putil.torch.indicator.vision.object_detection.box._to_xyxy', 'box._to_xyxy', (['box1'], {}), '(box1)\n', (1529, 1535), False, 'from Putil.torch.indicator.vision.object_detection import box\n'), ((1565, 1583), 'Putil.torch.indicator.vision.object_detection.box._to_xyxy', 'box._to_xyxy', (['box2'], {}), '(box2)\n', (1577, 1583), False, 'from Putil.torch.indicator.vision.object_detection import box\n'), ((1113, 1139), 'torch.nansum', 'torch.nansum', (['iou_filtered'], {}), '(iou_filtered)\n', (1125, 1139), False, 'import torch\n'), ((1144, 1169), 'torch.isnan', 'torch.isnan', (['iou_filtered'], {}), '(iou_filtered)\n', (1155, 1169), False, 'import torch\n')]
# today is 389f # the python pit # magPi - 05 # MOUNTAINS import os, pygame; from pygame.locals import * pygame.init(); clock = pygame.time.Clock() os.environ['SDL_VIDEO_WINDOW_POS'] = 'center' pygame.display.set_caption("Mountains") screen=pygame.display.set_mode([600,382],0,32) sky = pygame.Surface((600,255)) r=0; g=64; b=128 for l in range (0,255): pygame.draw.rect(sky,(r,g,b),(0,l-1,600,l)) r=r+1;g=g+1;b=b+1 if r>=255: r=255 if g>=255: g=255 if b>=255: b=255 ground = pygame.Surface((600,128)) r=192; g=255; b=192 for l in range (0,128): pygame.draw.rect(ground,(r,g,b),(0,l-2,600,l)) r=r-2;g=g-2;b=b-2 if r<=0: r=0 if g<=0: g=0 if b<=0: b=0 # Add in an extra surface for the mountains mountain = pygame.Surface((600,128)) mountain.set_colorkey([0,0,0]) # Black is transparent r=96; g=64; b=255 for l in range (0,128): pygame.draw.rect(mountain,(r,g,b),(0,l-2,600,l)) r=r+2;g=g+2;b=b+2 if r>=255: r=255 if g>=255: g=255 if b>=255: b=255 # Draw some black (Transparent) polygons to create mountain peaks # The screen is 600 wide so I've drawn 10 polygons at 60 pixels wide each pygame.draw.polygon(mountain,[0,0,0],[(0,0),(60,0),(60,10),(0,40)]) pygame.draw.polygon(mountain,[0,0,0],[(60,0),(120,0),(120,30),(60,10)]) pygame.draw.polygon(mountain,[0,0,0],[(120,0),(180,0),(180,20),(120,30)]) pygame.draw.polygon(mountain,[0,0,0],[(180,0),(240,0),(240,50),(180,20)]) pygame.draw.polygon(mountain,[0,0,0],[(240,0),(300,0),(300,40),(240,50)]) pygame.draw.polygon(mountain,[0,0,0],[(300,0),(360,0),(360,10),(300,40)]) pygame.draw.polygon(mountain,[0,0,0],[(360,0),(420,0),(420,35),(360,10)]) pygame.draw.polygon(mountain,[0,0,0],[(420,0),(480,0),(480,45),(420,35)]) pygame.draw.polygon(mountain,[0,0,0],[(480,0),(540,0),(540,42),(480,45)]) pygame.draw.polygon(mountain,[0,0,0],[(540,0),(600,0),(600,15),(540,42)]) screen.blit(sky,(0,0)) screen.blit(ground,(0,255)) screen.blit(mountain,(0,128)) pygame.display.update() pygame.time.wait(30000)
[ "pygame.draw.polygon", "pygame.init", "pygame.Surface", "pygame.time.wait", "pygame.display.set_mode", "pygame.time.Clock", "pygame.draw.rect", "pygame.display.set_caption", "pygame.display.update" ]
[((107, 120), 'pygame.init', 'pygame.init', ([], {}), '()\n', (118, 120), False, 'import os, pygame\n'), ((130, 149), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (147, 149), False, 'import os, pygame\n'), ((196, 235), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""Mountains"""'], {}), "('Mountains')\n", (222, 235), False, 'import os, pygame\n'), ((243, 285), 'pygame.display.set_mode', 'pygame.display.set_mode', (['[600, 382]', '(0)', '(32)'], {}), '([600, 382], 0, 32)\n', (266, 285), False, 'import os, pygame\n'), ((290, 316), 'pygame.Surface', 'pygame.Surface', (['(600, 255)'], {}), '((600, 255))\n', (304, 316), False, 'import os, pygame\n'), ((500, 526), 'pygame.Surface', 'pygame.Surface', (['(600, 128)'], {}), '((600, 128))\n', (514, 526), False, 'import os, pygame\n'), ((750, 776), 'pygame.Surface', 'pygame.Surface', (['(600, 128)'], {}), '((600, 128))\n', (764, 776), False, 'import os, pygame\n'), ((1151, 1229), 'pygame.draw.polygon', 'pygame.draw.polygon', (['mountain', '[0, 0, 0]', '[(0, 0), (60, 0), (60, 10), (0, 40)]'], {}), '(mountain, [0, 0, 0], [(0, 0), (60, 0), (60, 10), (0, 40)])\n', (1170, 1229), False, 'import os, pygame\n'), ((1219, 1305), 'pygame.draw.polygon', 'pygame.draw.polygon', (['mountain', '[0, 0, 0]', '[(60, 0), (120, 0), (120, 30), (60, 10)]'], {}), '(mountain, [0, 0, 0], [(60, 0), (120, 0), (120, 30), (60,\n 10)])\n', (1238, 1305), False, 'import os, pygame\n'), ((1291, 1380), 'pygame.draw.polygon', 'pygame.draw.polygon', (['mountain', '[0, 0, 0]', '[(120, 0), (180, 0), (180, 20), (120, 30)]'], {}), '(mountain, [0, 0, 0], [(120, 0), (180, 0), (180, 20), (\n 120, 30)])\n', (1310, 1380), False, 'import os, pygame\n'), ((1365, 1454), 'pygame.draw.polygon', 'pygame.draw.polygon', (['mountain', '[0, 0, 0]', '[(180, 0), (240, 0), (240, 50), (180, 20)]'], {}), '(mountain, [0, 0, 0], [(180, 0), (240, 0), (240, 50), (\n 180, 20)])\n', (1384, 1454), False, 'import os, pygame\n'), ((1439, 1528), 'pygame.draw.polygon', 'pygame.draw.polygon', (['mountain', '[0, 0, 0]', '[(240, 0), (300, 0), (300, 40), (240, 50)]'], {}), '(mountain, [0, 0, 0], [(240, 0), (300, 0), (300, 40), (\n 240, 50)])\n', (1458, 1528), False, 'import os, pygame\n'), ((1513, 1602), 'pygame.draw.polygon', 'pygame.draw.polygon', (['mountain', '[0, 0, 0]', '[(300, 0), (360, 0), (360, 10), (300, 40)]'], {}), '(mountain, [0, 0, 0], [(300, 0), (360, 0), (360, 10), (\n 300, 40)])\n', (1532, 1602), False, 'import os, pygame\n'), ((1587, 1676), 'pygame.draw.polygon', 'pygame.draw.polygon', (['mountain', '[0, 0, 0]', '[(360, 0), (420, 0), (420, 35), (360, 10)]'], {}), '(mountain, [0, 0, 0], [(360, 0), (420, 0), (420, 35), (\n 360, 10)])\n', (1606, 1676), False, 'import os, pygame\n'), ((1661, 1750), 'pygame.draw.polygon', 'pygame.draw.polygon', (['mountain', '[0, 0, 0]', '[(420, 0), (480, 0), (480, 45), (420, 35)]'], {}), '(mountain, [0, 0, 0], [(420, 0), (480, 0), (480, 45), (\n 420, 35)])\n', (1680, 1750), False, 'import os, pygame\n'), ((1735, 1824), 'pygame.draw.polygon', 'pygame.draw.polygon', (['mountain', '[0, 0, 0]', '[(480, 0), (540, 0), (540, 42), (480, 45)]'], {}), '(mountain, [0, 0, 0], [(480, 0), (540, 0), (540, 42), (\n 480, 45)])\n', (1754, 1824), False, 'import os, pygame\n'), ((1809, 1898), 'pygame.draw.polygon', 'pygame.draw.polygon', (['mountain', '[0, 0, 0]', '[(540, 0), (600, 0), (600, 15), (540, 42)]'], {}), '(mountain, [0, 0, 0], [(540, 0), (600, 0), (600, 15), (\n 540, 42)])\n', (1828, 1898), False, 'import os, pygame\n'), ((1965, 1988), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (1986, 1988), False, 'import os, pygame\n'), ((1989, 2012), 'pygame.time.wait', 'pygame.time.wait', (['(30000)'], {}), '(30000)\n', (2005, 2012), False, 'import os, pygame\n'), ((361, 413), 'pygame.draw.rect', 'pygame.draw.rect', (['sky', '(r, g, b)', '(0, l - 1, 600, l)'], {}), '(sky, (r, g, b), (0, l - 1, 600, l))\n', (377, 413), False, 'import os, pygame\n'), ((574, 629), 'pygame.draw.rect', 'pygame.draw.rect', (['ground', '(r, g, b)', '(0, l - 2, 600, l)'], {}), '(ground, (r, g, b), (0, l - 2, 600, l))\n', (590, 629), False, 'import os, pygame\n'), ((876, 933), 'pygame.draw.rect', 'pygame.draw.rect', (['mountain', '(r, g, b)', '(0, l - 2, 600, l)'], {}), '(mountain, (r, g, b), (0, l - 2, 600, l))\n', (892, 933), False, 'import os, pygame\n')]
""" Handles reports """ from parkour.env import env from parkour.utils import normalize_name import asyncio import aiotfm import time class Reports(aiotfm.Client): def __init__(self, *args, **kwargs): self.rep_id = 0 self.reports = {} self.reported = [] self.reporters = [] super().__init__(*args, **kwargs) self.loop.create_task(self.check_reports()) async def check_reports(self): while not self.main.open: await asyncio.sleep(3.0) while self.main.open: now = time.time() to_remove = [] for report, data in self.reports.items(): # reporter, reported, sent to discord, # discord date, expiration date if not data[2] and now >= data[3]: data[2] = True await self.report_discord(report) elif now >= data[4]: # expired self.reported.remove(data[1]) to_remove.append(report) await self.mod_chat.channel.send( "Report id {} has expired.".format(report) ) for report in to_remove: del self.reports[report] await asyncio.sleep(30.0) async def report_discord(self, report): reporter, reported = self.reports[report][:2] file = await self.load_player_file(reported) if file is None: room = "unknown" else: room = file["room"] await self.send_channel( env.report_channel, "@everyone `{}` reported `{}` (room: `{}`, report id: `{}`). " "Connect to the game and use the handle command in modchat." .format(reporter, reported, room, report) ) def report_cooldown(self, name): reports = 0 remove_until = -1 now = time.time() for index, (expire, reporter) in enumerate(self.reporters): if now >= expire: remove_until = index elif reporter == name: reports += 1 if remove_until >= 0: del self.reporters[:remove_until + 1] if reports >= 2: return True return False async def on_channel_command(self, channel, name, author, ranks, cmd, args): if name == "mod": if cmd == "handle": if (not ranks["admin"] and not ranks["mod"] and not ranks["trainee"]): return True if not args or not args[0].isdigit(): await channel.send("Usage: .handle [id] (silent?)") return True rep_id = int(args[0]) if len(args) > 1: silent = args[1].lower() in ("silent", "silence", "s") else: silent = False if rep_id not in self.reports: return await channel.send("Report id {} not found".format(rep_id)) report = self.reports[rep_id] del self.reports[rep_id] file = await self.load_player_file(report[1]) if file is None: extra = "Could not get reported player information." else: extra = "Sent you the player's room in whispers." await self.whisper( author, "{}'s room: {}".format(report[1], file["room"]) ) await channel.send( "{} will be handling the report {}. {}" .format(author, rep_id, extra) ) if not silent: await self.whisper( report[0], "A parkour moderator is now handling your report." ) else: return False else: return False return True async def on_whisper_command(self, whisper, author, ranks, cmd, args): if await super().on_whisper_command( whisper, author, ranks, cmd, args ): return True if cmd == "norep": if not ranks["admin"] and not ranks["mod"]: return True if not args: await whisper.reply("Usage: .norep Username#0000") return True target = normalize_name(args[0]) pid, name, online = await self.get_player_info(target) if name is None or not online: await whisper.reply("That player ({}) is not online.".format(target)) return True file = await self.load_player_file(name, online_check=False) if file is None: await whisper.reply("Could not load {}'s file.".format(name)) return True file["report"] = not file["report"] if not await self.save_player_file( name, file, "report", online_check=False ): await whisper.reply("Could not modify {}'s file.".format(name)) return True action = "enabled" if file["report"] else "disabled" await self.send_webhook( env.webhooks.sanctions, "**`[NOREP]:`** `{}` has {} reports from `{}` (ID: `{}`)" .format(author, action, name, pid) ) await whisper.reply( "Reports from {} (ID: {}) have been {}." .format(name, pid, action) ) elif cmd == "report": # Argument check if not args: await whisper.reply("Usage: .report Username#0000") return True reported = normalize_name(args[0]) if reported == author: await whisper.reply("Why are you trying to report yourself?") return True pid, name, online = await self.get_player_info(reported) if name is None or not online: await whisper.reply("That player ({}) is not online.".format(reported)) return True await whisper.reply("Your report of the player {} will be handled shortly.".format(reported)) # Player information check if self.report_cooldown(author): return True if reported in self.reported: return True file = await self.load_player_file(author, online_check=False) if file is None or not file["report"]: return True file = await self.load_player_file(reported, online_check=False) if file is None: return True now = self.tfm_time() if now < file.get("killed", 0): return ban = file.get("banned", 0) if ban == 2 or now < ban: return True # Create report report = self.rep_id self.rep_id += 1 online = len(self.mod_chat.players) - 1 now = time.time() self.reports[report] = [ author, reported, online == 0, now + 60 * 5, now + 60 * 30 ] self.reported.append(reported) self.reporters.append((now + 60 * 5, author)) if online == 0: await self.report_discord(report) else: await self.mod_chat.channel.send( "{} reported {} (report id: {}) (room: {}) " "(use the handle command here before handling it)" .format(author, reported, report, file["room"]) ) else: return False return True
[ "parkour.utils.normalize_name", "time.time", "asyncio.sleep" ]
[((1546, 1557), 'time.time', 'time.time', ([], {}), '()\n', (1555, 1557), False, 'import time\n'), ((493, 504), 'time.time', 'time.time', ([], {}), '()\n', (502, 504), False, 'import time\n'), ((3432, 3455), 'parkour.utils.normalize_name', 'normalize_name', (['args[0]'], {}), '(args[0])\n', (3446, 3455), False, 'from parkour.utils import normalize_name\n'), ((440, 458), 'asyncio.sleep', 'asyncio.sleep', (['(3.0)'], {}), '(3.0)\n', (453, 458), False, 'import asyncio\n'), ((1011, 1030), 'asyncio.sleep', 'asyncio.sleep', (['(30.0)'], {}), '(30.0)\n', (1024, 1030), False, 'import asyncio\n'), ((4491, 4514), 'parkour.utils.normalize_name', 'normalize_name', (['args[0]'], {}), '(args[0])\n', (4505, 4514), False, 'from parkour.utils import normalize_name\n'), ((5537, 5548), 'time.time', 'time.time', ([], {}), '()\n', (5546, 5548), False, 'import time\n')]
from joblib import load from os.path import join import argparse import numpy as np import matplotlib.pyplot as plt from mvmm_sim.simulation.sim_viz import save_fig from mvmm_sim.data_analysis.utils import load_data from mvmm_sim.simulation.utils import make_and_get_dir from mvmm_sim.mouse_et.MouseETPaths import MouseETPaths from mvmm_sim.mouse_et.raw_ephys_loading import load_raw_ephys from mvmm_sim.mouse_et.ephys_viz import get_ephys_super_data,\ plot_top_clust_ephys_curves, plot_cluster_ephys_curve parser = argparse.\ ArgumentParser(description='Cluster interpretation.') parser.add_argument('--results_dir', default=None, help='Directory to save results.') parser.add_argument('--fpaths', nargs='+', help='Paths to data sets.') args = parser.parse_args() inches = 8 n_top_clust = 10 results_dir = args.results_dir fpaths = args.fpaths fitting_dir = join(results_dir, 'model_fitting') ephys_viz_dir = join(results_dir, 'interpret', 'bd_mvmm', 'ephys_pca_feats') # load models and data models = load(join(fitting_dir, 'selected_models')) view_data, dataset_names, sample_names, view_feat_names = load_data(*fpaths) # load raw ephys data orig_data_dir = join(MouseETPaths().raw_data_dir, 'inh_patchseq_spca_files', 'orig_data_csv') ephys_raw = load_raw_ephys(orig_data_dir, concat=False) for k in ephys_raw.keys(): ephys_raw[k] = ephys_raw[k].loc[sample_names] print(k, ephys_raw[k].shape) n_datasets = len(ephys_raw) # get data for plotting v = 1 cluster_super_means, super_data_means, super_data_stds, y_cnts = \ get_ephys_super_data(model=models['bd_mvmm'].final_.view_models_[v], fit_data=view_data[v], ephys_raw=ephys_raw) clust_labels = ['cluster_{}'.format(cl_idx + 1) for cl_idx in range(len(y_cnts))] # plot top several clusters plot_top_clust_ephys_curves(cluster_super_means, y_cnts=y_cnts, overall_means=super_data_means, overall_stds=super_data_stds, clust_labels=clust_labels, n_to_show=n_top_clust, inches=inches) save_fig(join(ephys_viz_dir, 'ephys_curves_top_clust.png')) # plot each (non-trival) cluster # non_trivial_clusters = y_cnts[y_cnts >= 5].index.values non_trivial_clusters = y_cnts[y_cnts >= 0].index.values save_dir = make_and_get_dir(ephys_viz_dir, 'cluster_curves') for cl_idx in non_trivial_clusters: label = clust_labels[cl_idx] values = {} for name in cluster_super_means.keys(): values[name] = cluster_super_means[name][cl_idx] plt.figure(figsize=(2 * n_datasets * inches, inches)) plot_cluster_ephys_curve(values, overall_means=super_data_means, overall_stds=super_data_stds, y_label=label) save_fig(join(save_dir, '{}_ephys_curve.png'.format(label)))
[ "mvmm_sim.mouse_et.raw_ephys_loading.load_raw_ephys", "mvmm_sim.simulation.utils.make_and_get_dir", "mvmm_sim.mouse_et.ephys_viz.plot_cluster_ephys_curve", "mvmm_sim.data_analysis.utils.load_data", "argparse.ArgumentParser", "mvmm_sim.mouse_et.MouseETPaths.MouseETPaths", "os.path.join", "mvmm_sim.mouse_et.ephys_viz.get_ephys_super_data", "matplotlib.pyplot.figure", "mvmm_sim.mouse_et.ephys_viz.plot_top_clust_ephys_curves" ]
[((523, 585), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Cluster interpretation."""'}), "(description='Cluster interpretation.')\n", (546, 585), False, 'import argparse\n'), ((915, 949), 'os.path.join', 'join', (['results_dir', '"""model_fitting"""'], {}), "(results_dir, 'model_fitting')\n", (919, 949), False, 'from os.path import join\n'), ((966, 1026), 'os.path.join', 'join', (['results_dir', '"""interpret"""', '"""bd_mvmm"""', '"""ephys_pca_feats"""'], {}), "(results_dir, 'interpret', 'bd_mvmm', 'ephys_pca_feats')\n", (970, 1026), False, 'from os.path import join\n'), ((1162, 1180), 'mvmm_sim.data_analysis.utils.load_data', 'load_data', (['*fpaths'], {}), '(*fpaths)\n', (1171, 1180), False, 'from mvmm_sim.data_analysis.utils import load_data\n'), ((1332, 1375), 'mvmm_sim.mouse_et.raw_ephys_loading.load_raw_ephys', 'load_raw_ephys', (['orig_data_dir'], {'concat': '(False)'}), '(orig_data_dir, concat=False)\n', (1346, 1375), False, 'from mvmm_sim.mouse_et.raw_ephys_loading import load_raw_ephys\n'), ((1617, 1733), 'mvmm_sim.mouse_et.ephys_viz.get_ephys_super_data', 'get_ephys_super_data', ([], {'model': "models['bd_mvmm'].final_.view_models_[v]", 'fit_data': 'view_data[v]', 'ephys_raw': 'ephys_raw'}), "(model=models['bd_mvmm'].final_.view_models_[v],\n fit_data=view_data[v], ephys_raw=ephys_raw)\n", (1637, 1733), False, 'from mvmm_sim.mouse_et.ephys_viz import get_ephys_super_data, plot_top_clust_ephys_curves, plot_cluster_ephys_curve\n'), ((1909, 2107), 'mvmm_sim.mouse_et.ephys_viz.plot_top_clust_ephys_curves', 'plot_top_clust_ephys_curves', (['cluster_super_means'], {'y_cnts': 'y_cnts', 'overall_means': 'super_data_means', 'overall_stds': 'super_data_stds', 'clust_labels': 'clust_labels', 'n_to_show': 'n_top_clust', 'inches': 'inches'}), '(cluster_super_means, y_cnts=y_cnts,\n overall_means=super_data_means, overall_stds=super_data_stds,\n clust_labels=clust_labels, n_to_show=n_top_clust, inches=inches)\n', (1936, 2107), False, 'from mvmm_sim.mouse_et.ephys_viz import get_ephys_super_data, plot_top_clust_ephys_curves, plot_cluster_ephys_curve\n'), ((2488, 2537), 'mvmm_sim.simulation.utils.make_and_get_dir', 'make_and_get_dir', (['ephys_viz_dir', '"""cluster_curves"""'], {}), "(ephys_viz_dir, 'cluster_curves')\n", (2504, 2537), False, 'from mvmm_sim.simulation.utils import make_and_get_dir\n'), ((1066, 1102), 'os.path.join', 'join', (['fitting_dir', '"""selected_models"""'], {}), "(fitting_dir, 'selected_models')\n", (1070, 1102), False, 'from os.path import join\n'), ((2278, 2327), 'os.path.join', 'join', (['ephys_viz_dir', '"""ephys_curves_top_clust.png"""'], {}), "(ephys_viz_dir, 'ephys_curves_top_clust.png')\n", (2282, 2327), False, 'from os.path import join\n'), ((2731, 2784), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(2 * n_datasets * inches, inches)'}), '(figsize=(2 * n_datasets * inches, inches))\n', (2741, 2784), True, 'import matplotlib.pyplot as plt\n'), ((2790, 2903), 'mvmm_sim.mouse_et.ephys_viz.plot_cluster_ephys_curve', 'plot_cluster_ephys_curve', (['values'], {'overall_means': 'super_data_means', 'overall_stds': 'super_data_stds', 'y_label': 'label'}), '(values, overall_means=super_data_means,\n overall_stds=super_data_stds, y_label=label)\n', (2814, 2903), False, 'from mvmm_sim.mouse_et.ephys_viz import get_ephys_super_data, plot_top_clust_ephys_curves, plot_cluster_ephys_curve\n'), ((1226, 1240), 'mvmm_sim.mouse_et.MouseETPaths.MouseETPaths', 'MouseETPaths', ([], {}), '()\n', (1238, 1240), False, 'from mvmm_sim.mouse_et.MouseETPaths import MouseETPaths\n')]
#!/usr/bin/env python # Copyright (c) 2009-2016 <NAME> <<EMAIL>> # # This module is free software. You can redistribute it and/or modify it under # the terms of the MIT License, see the file COPYING included with this # distribution. from __future__ import print_function from gimmemotifs.comparison import MotifComparer from gimmemotifs.motif import pwmfile_to_motifs, Motif from gimmemotifs.plot import match_plot def match(args): sample = dict([(m.id, m) for m in pwmfile_to_motifs(args.pwmfile)]) db = dict([(m.id, m) for m in pwmfile_to_motifs(args.dbpwmfile)]) mc = MotifComparer() result = mc.get_closest_match(sample.values(), db.values(), "partial", "wic", "mean") print("Motif\tMatch\tScore\tP-value") for motif, match in result.items(): pval, pos, orient = mc.compare_motifs(sample[motif], db[match[0]], "partial", "wic", "mean", pval=True) print("%s\t%s\t%0.2f\t%0.3e" % (motif, match[0], match[1][0], pval)) if args.img: plotdata = [] for query, match in result.items(): motif = sample[query] dbmotif = db[match[0]] pval, pos, orient = mc.compare_motifs(motif, dbmotif, "partial", "wic", "mean", pval=True) if orient == -1: tmp = dbmotif.id dbmotif = dbmotif.rc() dbmotif.id = tmp if pos < 0: tmp = motif.id motif = Motif([[0.25,0.25,0.25,0.25]] * -pos + motif.pwm) motif.id = tmp elif pos > 0: tmp = dbmotif.id dbmotif = Motif([[0.25,0.25,0.25,0.25]] * pos + dbmotif.pwm) dbmotif.id = tmp plotdata.append((motif, dbmotif, pval)) match_plot(plotdata, args.img)
[ "gimmemotifs.motif.pwmfile_to_motifs", "gimmemotifs.motif.Motif", "gimmemotifs.comparison.MotifComparer", "gimmemotifs.plot.match_plot" ]
[((590, 605), 'gimmemotifs.comparison.MotifComparer', 'MotifComparer', ([], {}), '()\n', (603, 605), False, 'from gimmemotifs.comparison import MotifComparer\n'), ((1766, 1796), 'gimmemotifs.plot.match_plot', 'match_plot', (['plotdata', 'args.img'], {}), '(plotdata, args.img)\n', (1776, 1796), False, 'from gimmemotifs.plot import match_plot\n'), ((476, 507), 'gimmemotifs.motif.pwmfile_to_motifs', 'pwmfile_to_motifs', (['args.pwmfile'], {}), '(args.pwmfile)\n', (493, 507), False, 'from gimmemotifs.motif import pwmfile_to_motifs, Motif\n'), ((544, 577), 'gimmemotifs.motif.pwmfile_to_motifs', 'pwmfile_to_motifs', (['args.dbpwmfile'], {}), '(args.dbpwmfile)\n', (561, 577), False, 'from gimmemotifs.motif import pwmfile_to_motifs, Motif\n'), ((1451, 1503), 'gimmemotifs.motif.Motif', 'Motif', (['([[0.25, 0.25, 0.25, 0.25]] * -pos + motif.pwm)'], {}), '([[0.25, 0.25, 0.25, 0.25]] * -pos + motif.pwm)\n', (1456, 1503), False, 'from gimmemotifs.motif import pwmfile_to_motifs, Motif\n'), ((1617, 1670), 'gimmemotifs.motif.Motif', 'Motif', (['([[0.25, 0.25, 0.25, 0.25]] * pos + dbmotif.pwm)'], {}), '([[0.25, 0.25, 0.25, 0.25]] * pos + dbmotif.pwm)\n', (1622, 1670), False, 'from gimmemotifs.motif import pwmfile_to_motifs, Motif\n')]
# -*- coding: utf-8 -*- """ Created on 2017-4-25 @author: cheng.li """ import datetime as dt import numpy as np from sklearn.linear_model import LinearRegression from alphamind.data.neutralize import neutralize def benchmark_neutralize(n_samples: int, n_features: int, n_loops: int) -> None: print("-" * 60) print("Starting least square fitting benchmarking") print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2})".format(n_samples, n_features, n_loops)) y = np.random.randn(n_samples, 5) x = np.random.randn(n_samples, n_features) start = dt.datetime.now() for _ in range(n_loops): calc_res = neutralize(x, y) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() for _ in range(n_loops): benchmark_model = LinearRegression(fit_intercept=False) benchmark_model.fit(x, y) exp_res = y - x @ benchmark_model.coef_.T benchmark_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) np.testing.assert_array_almost_equal(calc_res, exp_res) def benchmark_neutralize_with_groups(n_samples: int, n_features: int, n_loops: int, n_groups: int) -> None: print("-" * 60) print("Starting least square fitting with group benchmarking") print( "Parameters(n_samples: {0}, n_features: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_features, n_loops, n_groups)) y = np.random.randn(n_samples, 5) x = np.random.randn(n_samples, n_features) groups = np.random.randint(n_groups, size=n_samples) start = dt.datetime.now() for _ in range(n_loops): _ = neutralize(x, y, groups) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() model = LinearRegression(fit_intercept=False) for _ in range(n_loops): for i in range(n_groups): curr_x = x[groups == i] curr_y = y[groups == i] model.fit(curr_x, curr_y) _ = curr_y - curr_x @ model.coef_.T benchmark_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) if __name__ == '__main__': benchmark_neutralize(3000, 10, 1000) benchmark_neutralize_with_groups(3000, 10, 1000, 30)
[ "numpy.testing.assert_array_almost_equal", "alphamind.data.neutralize.neutralize", "datetime.datetime.now", "numpy.random.randint", "numpy.random.randn", "sklearn.linear_model.LinearRegression" ]
[((591, 620), 'numpy.random.randn', 'np.random.randn', (['n_samples', '(5)'], {}), '(n_samples, 5)\n', (606, 620), True, 'import numpy as np\n'), ((630, 668), 'numpy.random.randn', 'np.random.randn', (['n_samples', 'n_features'], {}), '(n_samples, n_features)\n', (645, 668), True, 'import numpy as np\n'), ((684, 701), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (699, 701), True, 'import datetime as dt\n'), ((907, 924), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (922, 924), True, 'import datetime as dt\n'), ((1244, 1299), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['calc_res', 'exp_res'], {}), '(calc_res, exp_res)\n', (1280, 1299), True, 'import numpy as np\n'), ((1968, 1997), 'numpy.random.randn', 'np.random.randn', (['n_samples', '(5)'], {}), '(n_samples, 5)\n', (1983, 1997), True, 'import numpy as np\n'), ((2007, 2045), 'numpy.random.randn', 'np.random.randn', (['n_samples', 'n_features'], {}), '(n_samples, n_features)\n', (2022, 2045), True, 'import numpy as np\n'), ((2060, 2103), 'numpy.random.randint', 'np.random.randint', (['n_groups'], {'size': 'n_samples'}), '(n_groups, size=n_samples)\n', (2077, 2103), True, 'import numpy as np\n'), ((2119, 2136), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (2134, 2136), True, 'import datetime as dt\n'), ((2343, 2360), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (2358, 2360), True, 'import datetime as dt\n'), ((2376, 2413), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {'fit_intercept': '(False)'}), '(fit_intercept=False)\n', (2392, 2413), False, 'from sklearn.linear_model import LinearRegression\n'), ((752, 768), 'alphamind.data.neutralize.neutralize', 'neutralize', (['x', 'y'], {}), '(x, y)\n', (762, 768), False, 'from alphamind.data.neutralize import neutralize\n'), ((792, 809), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (807, 809), True, 'import datetime as dt\n'), ((982, 1019), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {'fit_intercept': '(False)'}), '(fit_intercept=False)\n', (998, 1019), False, 'from sklearn.linear_model import LinearRegression\n'), ((1134, 1151), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (1149, 1151), True, 'import datetime as dt\n'), ((2180, 2204), 'alphamind.data.neutralize.neutralize', 'neutralize', (['x', 'y', 'groups'], {}), '(x, y, groups)\n', (2190, 2204), False, 'from alphamind.data.neutralize import neutralize\n'), ((2228, 2245), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (2243, 2245), True, 'import datetime as dt\n'), ((2669, 2686), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (2684, 2686), True, 'import datetime as dt\n')]
from __future__ import annotations from math import log from typing import List, Type, Union from imm import MuteState, Sequence, lprob_add, lprob_zero from nmm import ( AminoAlphabet, AminoLprob, BaseLprob, CodonLprob, CodonMarg, DNAAlphabet, FrameState, RNAAlphabet, codon_iter, ) from .codon_table import CodonTable from .hmmer_model import HMMERModel from .model import AltModel, EntryDistr, Node, NullModel, SpecialNode, Transitions from .profile import Profile, ProfileID __all__ = ["ProteinProfile", "create_profile"] class ProteinProfile(Profile): @classmethod def create( cls: Type[ProteinProfile], profid: ProfileID, factory: ProteinStateFactory, null_aminot: AminoLprob, core_nodes: List[Node], core_trans: List[Transitions], entry_distr: EntryDistr, ) -> ProteinProfile: base_alphabet = factory.genetic_code.base_alphabet R = factory.create(b"R", null_aminot) null_model = NullModel.create(R) special_node = SpecialNode( S=MuteState.create(b"S", base_alphabet), N=factory.create(b"N", null_aminot), B=MuteState.create(b"B", base_alphabet), E=MuteState.create(b"E", base_alphabet), J=factory.create(b"J", null_aminot), C=factory.create(b"C", null_aminot), T=MuteState.create(b"T", base_alphabet), ) alt_model = AltModel.create( special_node, core_nodes, core_trans, entry_distr, ) # alt_model.set_fragment_length(self._special_transitions) return cls(profid, base_alphabet, null_model, alt_model, False) # @property # def epsilon(self) -> float: # nodes = self._alt_model.core_nodes() # return nodes[0].M.epsilon # @classmethod # def create_from_binary( # cls: Type[ProteinProfile], # profid: ProfileID, # null_model: nmm.Model, # alt_model: nmm.Model, # ): # special_node = wrap.special_node(alt_model.hmm) # core_nodes = wrap.core_nodes(alt_model.hmm) # alt = AltModel.create_from_hmm( # special_node, core_nodes, alt_model.hmm, alt_model.dp # ) # null = NullModel.create_from_hmm(null_model.hmm) # return cls(profid, alt_model.hmm.alphabet, null, alt, False) # @property # def window_length(self) -> int: # return super().window_length # @window_length.setter # def window_length(self, length: int) -> None: # if length < -1: # raise ValueError("Length must be greater than or equal to -1.") # if length == -1: # length = 2 * 3 * self._alt_model.core_length # self._window_length = length def create_sequence(self, sequence: bytes) -> Sequence: return Sequence.create(sequence, self.alphabet) @property def null_model(self) -> NullModel: return self._null_model @property def alt_model(self) -> AltModel: return self._alt_model # def search(self, sequence: SequenceABC) -> SearchResults: # self._set_target_length_model(len(sequence)) # alt_results = self._alt_model.viterbi(sequence, self.window_length) # def create_fragment( # seq: SequenceABC, path: Path, homologous: bool # ): # return ProteinFragment(seq, path, homologous) # search_results = SearchResults(sequence, create_fragment) # for alt_result in alt_results: # subseq = alt_result.sequence # # TODO: temporary fix for reading from binary file # # and consequently alt and null model having different alphabets # s = Sequence.create(bytes(subseq), self._null_model.hmm.alphabet) # viterbi_score0 = self._null_model.loglikelihood(s) # if len(alt_result.path) == 0: # viterbi_score1 = lprob_invalid() # else: # viterbi_score1 = self._alt_model.loglikelihood(alt_result.sequence, # alt_result.path) # score = viterbi_score1 - viterbi_score0 # window = Interval(subseq.start, subseq.start + len(subseq)) # search_results.append( # score, window, alt_result.path, viterbi_score1, viterbi_score0 # ) # return search_results # def create_profile( # hmm: HMMERModel, # base_abc: Union[RNAAlphabet, DNAAlphabet], # window_length: int = 0, # epsilon: float = 0.1, # ) -> ProteinProfile: # amino_abc = hmm.alphabet # assert isinstance(amino_abc, AminoAlphabet) # lprobs = lprob_normalize(hmm.insert_lprobs(0)) # null_aminot = AminoLprob.create(amino_abc, lprobs) # factory = ProteinStateFactory(CodonTable(base_abc, amino_abc), epsilon) # nodes: List[Node] = [] # for m in range(1, hmm.model_length + 1): # lprobs = lprob_normalize(hmm.match_lprobs(m)) # M = factory.create(f"M{m}".encode(), AminoLprob.create(amino_abc, lprobs)) # lprobs = lprob_normalize(hmm.insert_lprobs(m)) # I = factory.create(f"I{m}".encode(), AminoLprob.create(amino_abc, lprobs)) # D = MuteState.create(f"D{m}".encode(), base_abc) # nodes.append(Node(M, I, D)) # trans: List[Transitions] = [] # for t in hmm.transitions: # t.normalize() # trans.append(t) # profid = ProfileID(hmm.model_id.name, hmm.model_id.acc) # prof = ProteinProfile.create( # profid, factory, null_aminot, nodes, trans, EntryDistr.UNIFORM # ) # prof.window_length = window_length # return prof def create_profile( hmm: HMMERModel, base_abc: Union[RNAAlphabet, DNAAlphabet], window_length: int = 0, epsilon: float = 0.1, ) -> ProteinProfile: amino_abc = hmm.alphabet assert isinstance(amino_abc, AminoAlphabet) null_lprobs = hmm.null_lprobs null_log_odds = [0.0] * len(null_lprobs) null_aminot = AminoLprob.create(amino_abc, null_lprobs) factory = ProteinStateFactory(CodonTable(base_abc, amino_abc), epsilon) nodes: List[Node] = [] for m in range(1, hmm.model_length + 1): lodds = [v0 - v1 for v0, v1 in zip(hmm.match_lprobs(m), null_lprobs)] M = factory.create(f"M{m}".encode(), AminoLprob.create(amino_abc, lodds)) I = factory.create( f"I{m}".encode(), AminoLprob.create(amino_abc, null_log_odds) ) D = MuteState.create(f"D{m}".encode(), base_abc) nodes.append(Node(M, I, D)) trans = hmm.transitions profid = ProfileID(hmm.model_id.name, hmm.model_id.acc) entry_distr = EntryDistr.OCCUPANCY prof = ProteinProfile.create( profid, factory, null_aminot, nodes, trans, entry_distr ) prof.window_length = window_length return prof class ProteinStateFactory: def __init__( self, gcode: CodonTable, epsilon: float, ): self._gcode = gcode self._epsilon = epsilon def create(self, name: bytes, aminot: AminoLprob) -> FrameState: codonp = _create_codon_prob(aminot, self._gcode) baset = _create_base_table(codonp) codonm = CodonMarg.create(codonp) return FrameState.create(name, baset, codonm, self._epsilon) @property def genetic_code(self) -> CodonTable: return self._gcode @property def epsilon(self) -> float: return self._epsilon def _create_base_table(codonp: CodonLprob): base_abc = codonp.alphabet base_lprob = {base: lprob_zero() for base in base_abc.symbols} norm = log(3) for codon in codon_iter(base_abc): lprob = codonp.get_lprob(codon) triplet = codon.symbols base_lprob[triplet[0]] = lprob_add(base_lprob[triplet[0]], lprob - norm) base_lprob[triplet[1]] = lprob_add(base_lprob[triplet[1]], lprob - norm) base_lprob[triplet[2]] = lprob_add(base_lprob[triplet[2]], lprob - norm) assert len(base_lprob) == 4 bases = base_abc.symbols assert len(bases) == 4 return BaseLprob.create( base_abc, ( base_lprob[bases[0]], base_lprob[bases[1]], base_lprob[bases[2]], base_lprob[bases[3]], ), ) def _create_codon_prob(aminot: AminoLprob, gencode: CodonTable) -> CodonLprob: codonp = CodonLprob.create(gencode.base_alphabet) codon_lprobs = [] lprob_norm = lprob_zero() for i in range(len(aminot.alphabet.symbols)): aa = aminot.alphabet.symbols[i : i + 1] lprob = aminot.lprob(aa) codons = gencode.codons(aa) if len(codons) == 0: continue norm = log(len(codons)) for codon in codons: codon_lprobs.append((codon, lprob - norm)) lprob_norm = lprob_add(lprob_norm, codon_lprobs[-1][1]) for codon, lprob in codon_lprobs: codonp.set_lprob(codon, lprob - lprob_norm) return codonp
[ "nmm.CodonLprob.create", "nmm.BaseLprob.create", "imm.MuteState.create", "imm.Sequence.create", "math.log", "nmm.AminoLprob.create", "nmm.codon_iter", "nmm.FrameState.create", "nmm.CodonMarg.create", "imm.lprob_add", "imm.lprob_zero" ]
[((6106, 6147), 'nmm.AminoLprob.create', 'AminoLprob.create', (['amino_abc', 'null_lprobs'], {}), '(amino_abc, null_lprobs)\n', (6123, 6147), False, 'from nmm import AminoAlphabet, AminoLprob, BaseLprob, CodonLprob, CodonMarg, DNAAlphabet, FrameState, RNAAlphabet, codon_iter\n'), ((7728, 7734), 'math.log', 'log', (['(3)'], {}), '(3)\n', (7731, 7734), False, 'from math import log\n'), ((7752, 7772), 'nmm.codon_iter', 'codon_iter', (['base_abc'], {}), '(base_abc)\n', (7762, 7772), False, 'from nmm import AminoAlphabet, AminoLprob, BaseLprob, CodonLprob, CodonMarg, DNAAlphabet, FrameState, RNAAlphabet, codon_iter\n'), ((8190, 8310), 'nmm.BaseLprob.create', 'BaseLprob.create', (['base_abc', '(base_lprob[bases[0]], base_lprob[bases[1]], base_lprob[bases[2]],\n base_lprob[bases[3]])'], {}), '(base_abc, (base_lprob[bases[0]], base_lprob[bases[1]],\n base_lprob[bases[2]], base_lprob[bases[3]]))\n', (8206, 8310), False, 'from nmm import AminoAlphabet, AminoLprob, BaseLprob, CodonLprob, CodonMarg, DNAAlphabet, FrameState, RNAAlphabet, codon_iter\n'), ((8483, 8523), 'nmm.CodonLprob.create', 'CodonLprob.create', (['gencode.base_alphabet'], {}), '(gencode.base_alphabet)\n', (8500, 8523), False, 'from nmm import AminoAlphabet, AminoLprob, BaseLprob, CodonLprob, CodonMarg, DNAAlphabet, FrameState, RNAAlphabet, codon_iter\n'), ((8564, 8576), 'imm.lprob_zero', 'lprob_zero', ([], {}), '()\n', (8574, 8576), False, 'from imm import MuteState, Sequence, lprob_add, lprob_zero\n'), ((2902, 2942), 'imm.Sequence.create', 'Sequence.create', (['sequence', 'self.alphabet'], {}), '(sequence, self.alphabet)\n', (2917, 2942), False, 'from imm import MuteState, Sequence, lprob_add, lprob_zero\n'), ((7319, 7343), 'nmm.CodonMarg.create', 'CodonMarg.create', (['codonp'], {}), '(codonp)\n', (7335, 7343), False, 'from nmm import AminoAlphabet, AminoLprob, BaseLprob, CodonLprob, CodonMarg, DNAAlphabet, FrameState, RNAAlphabet, codon_iter\n'), ((7359, 7412), 'nmm.FrameState.create', 'FrameState.create', (['name', 'baset', 'codonm', 'self._epsilon'], {}), '(name, baset, codonm, self._epsilon)\n', (7376, 7412), False, 'from nmm import AminoAlphabet, AminoLprob, BaseLprob, CodonLprob, CodonMarg, DNAAlphabet, FrameState, RNAAlphabet, codon_iter\n'), ((7674, 7686), 'imm.lprob_zero', 'lprob_zero', ([], {}), '()\n', (7684, 7686), False, 'from imm import MuteState, Sequence, lprob_add, lprob_zero\n'), ((7880, 7927), 'imm.lprob_add', 'lprob_add', (['base_lprob[triplet[0]]', '(lprob - norm)'], {}), '(base_lprob[triplet[0]], lprob - norm)\n', (7889, 7927), False, 'from imm import MuteState, Sequence, lprob_add, lprob_zero\n'), ((7961, 8008), 'imm.lprob_add', 'lprob_add', (['base_lprob[triplet[1]]', '(lprob - norm)'], {}), '(base_lprob[triplet[1]], lprob - norm)\n', (7970, 8008), False, 'from imm import MuteState, Sequence, lprob_add, lprob_zero\n'), ((8042, 8089), 'imm.lprob_add', 'lprob_add', (['base_lprob[triplet[2]]', '(lprob - norm)'], {}), '(base_lprob[triplet[2]], lprob - norm)\n', (8051, 8089), False, 'from imm import MuteState, Sequence, lprob_add, lprob_zero\n'), ((6420, 6455), 'nmm.AminoLprob.create', 'AminoLprob.create', (['amino_abc', 'lodds'], {}), '(amino_abc, lodds)\n', (6437, 6455), False, 'from nmm import AminoAlphabet, AminoLprob, BaseLprob, CodonLprob, CodonMarg, DNAAlphabet, FrameState, RNAAlphabet, codon_iter\n'), ((6516, 6559), 'nmm.AminoLprob.create', 'AminoLprob.create', (['amino_abc', 'null_log_odds'], {}), '(amino_abc, null_log_odds)\n', (6533, 6559), False, 'from nmm import AminoAlphabet, AminoLprob, BaseLprob, CodonLprob, CodonMarg, DNAAlphabet, FrameState, RNAAlphabet, codon_iter\n'), ((8937, 8979), 'imm.lprob_add', 'lprob_add', (['lprob_norm', 'codon_lprobs[-1][1]'], {}), '(lprob_norm, codon_lprobs[-1][1])\n', (8946, 8979), False, 'from imm import MuteState, Sequence, lprob_add, lprob_zero\n'), ((1092, 1129), 'imm.MuteState.create', 'MuteState.create', (["b'S'", 'base_alphabet'], {}), "(b'S', base_alphabet)\n", (1108, 1129), False, 'from imm import MuteState, Sequence, lprob_add, lprob_zero\n'), ((1194, 1231), 'imm.MuteState.create', 'MuteState.create', (["b'B'", 'base_alphabet'], {}), "(b'B', base_alphabet)\n", (1210, 1231), False, 'from imm import MuteState, Sequence, lprob_add, lprob_zero\n'), ((1247, 1284), 'imm.MuteState.create', 'MuteState.create', (["b'E'", 'base_alphabet'], {}), "(b'E', base_alphabet)\n", (1263, 1284), False, 'from imm import MuteState, Sequence, lprob_add, lprob_zero\n'), ((1398, 1435), 'imm.MuteState.create', 'MuteState.create', (["b'T'", 'base_alphabet'], {}), "(b'T', base_alphabet)\n", (1414, 1435), False, 'from imm import MuteState, Sequence, lprob_add, lprob_zero\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """Description """ import torch from ptranking.ltr_global import global_gpu as gpu def get_one_hot_reprs(batch_stds): """ Get one-hot representation of batch ground-truth labels """ batch_size = batch_stds.size(0) hist_size = batch_stds.size(1) int_batch_stds = batch_stds.type(torch.cuda.LongTensor) if gpu else batch_stds.type(torch.LongTensor) hot_batch_stds = torch.cuda.FloatTensor(batch_size, hist_size, 3) if gpu else torch.FloatTensor(batch_size, hist_size, 3) hot_batch_stds.zero_() hot_batch_stds.scatter_(2, torch.unsqueeze(int_batch_stds, 2), 1) return hot_batch_stds
[ "torch.unsqueeze", "torch.cuda.FloatTensor", "torch.FloatTensor" ]
[((435, 483), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['batch_size', 'hist_size', '(3)'], {}), '(batch_size, hist_size, 3)\n', (457, 483), False, 'import torch\n'), ((496, 539), 'torch.FloatTensor', 'torch.FloatTensor', (['batch_size', 'hist_size', '(3)'], {}), '(batch_size, hist_size, 3)\n', (513, 539), False, 'import torch\n'), ((598, 632), 'torch.unsqueeze', 'torch.unsqueeze', (['int_batch_stds', '(2)'], {}), '(int_batch_stds, 2)\n', (613, 632), False, 'import torch\n')]
from ..utils import run import logging logger = logging.getLogger(__name__) def process_one_package(path, package, python_version="3"): """Get details about one precise python package in the given image. :param path: path were the docker image filesystem is expanded. :type path: string :param package: name of the python package to get info from. :type package: string :param python_version: version of python to use. can be "2" or "3". default to "3". :type python_version: string :return: list containing package name, version and size :rtype: list[string, string, int] """ command = f"sudo chroot {path} pip{python_version} show {package}" info = get_ipython().getoutput(command) for line in info: if "Name" in line: name = line.split(" ").pop() if "Version" in line: version = line.split(" ").pop() if "Location" in line: location = line.split(" ").pop() result = get_ipython().getoutput( f"du --max-depth=0 {path}{location}/{name}").pop() # If the folder does not exist, try lowercase if "cannot access" in result: result = get_ipython().getoutput( f"du --max-depth=0 {path}{location}/{name.lower()}").pop() # If the lowercase folder do not exist either if "cannot access" not in result: size = int(result.split('\t').pop(0)) # List the files by hand else: command = f"sudo chroot {path} pip{python_version} show {package} -f" info = get_ipython().getoutput(command) flag = False size = 0 for line in info: if flag: command = f"du {path}{location}/{line.strip()}" size += int(get_ipython().getoutput(command).pop().split('\t').pop(0)) if 'Files' in line: flag = True return [name, version, size] def get_python_packages_info(path, python_version="3"): """Get details about all python packages in an image filesystem. :param path: path were the docker image filesystem is expanded. :type path: string :param python_version: version of python to use. can be "2" or "3". default to "3". :type python_version: string :return: list containing lists of each package's name, version and size :rtype: list[list[string, string, int]] """ command = f"sudo chroot {path} pip{python_version} list --format freeze --no-cache-dir 2>/dev/null" packages = [package.split('==') for package in get_ipython().getoutput(command)] package_list = [] for package in packages: try: package_list.append(process_one_package(path, package[0])) except Exception as e: logger.error("Error processing python packages", package[0], e) pass return package_list
[ "logging.getLogger" ]
[((49, 76), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (66, 76), False, 'import logging\n')]
from django.core.exceptions import ObjectDoesNotExist from django.http import HttpResponse, JsonResponse from django.views.generic.base import View from django.contrib.auth.mixins import LoginRequiredMixin from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import permissions from .models import ( TestCategory, Test, Question, PossibleAnswer, AnswersCounter ) from .serializers import ( TestCategorySerializer, TestSerializer, QuestionSerializer, PossibleAnswerSerializer ) from backend.courses.models import Task, RealizationTask, Course from backend.courses.api_views import CompletedTasks from backend.utils.api import BlankGetAPIView class AllCategories(BlankGetAPIView): """ Вывод всех категорий, параметров нет """ permission_classes = [permissions.IsAuthenticated] model = TestCategory serializer = TestCategorySerializer class TestsInCategory(BlankGetAPIView): """ Вывод тестов в отдельной категории, параметр: pk, значение: id категории, тесты которой нужны """ permission_classes = [permissions.IsAuthenticated] model = Test serializer = TestSerializer filter_name = 'category_id' class QuestionsInTest(LoginRequiredMixin, View): """Вывод вопросов в отдельном тесте, параметр: pk, значение: id теста, вопросы которого нужны """ def get(self, request): """Get""" quest = Question.objects.filter(test_id=request.GET.get("pk", None)).order_by("-id") counter = CompleteQuestion().get_counter(request.user, request.GET.get("pk", None)) serializer = QuestionSerializer(quest, many=True) return JsonResponse(serializer.data, safe=False) # class QuestionsInTest(BlankGetAPIView): # """ # Вывод вопросов в отдельном тесте, # параметр: pk, значение: id теста, вопросы которого нужны # """ # permission_classes = [permissions.IsAuthenticated] # model = Question # serializer = QuestionSerializer # filter_name = 'test_id' # order_params = 'id' class AnswersInQuestion(BlankGetAPIView): """ Вывод вариантов ответа к вопросу, параметр: pk, значение: id вопроса, ответы которого нужны """ permission_classes = [permissions.IsAuthenticated] model = PossibleAnswer serializer = PossibleAnswerSerializer filter_name = 'question_id' order_params = '-id' class CompleteQuestion(LoginRequiredMixin, View): """Вывод результатов теста и его прохождение""" def post(self, request): """Post""" pks = request.POST.getlist('pks[]', None) if not pks: return JsonResponse({'task': { 'exists': None, 'success': None, 'next': None }, "message": 'Нет ответов!'}) variants = PossibleAnswer.objects.filter(id__in=pks) # Наличие привязанного таска task_exists = variants.first().question.test.tasks.exists() # Количество верных вариантов right_count = variants.filter(is_right=True).count() # Общее количество вопросов в тесте total_questions = variants.first().question.test.questions.count() # total_variants = variants.filter(is_right=True) # Проверка на совпадение количества правильных ответов # и общего количества вопросов if not variants.filter(is_right=False).exists() and right_count >= total_questions: success = True mess = "" elif variants.filter(is_right=False).exists() and right_count >= total_questions: success = False mess = "Тест не пройден" else: success = False mess = "" course_pk = request.POST.get('course_pk', None) link = None if success: # Получаем RealizationTask текущего юзера и отмечаем его пройденным realization = self.get_realization(request.user, variants.first()) if realization is not None: realization.success = True realization.save() else: link = Course.objects.get(id=course_pk).buy_link #, test_in_course=variants.first().question.test next_task = None if course_pk: next_task = CompletedTasks().get_next_task(request, course_pk=course_pk) return JsonResponse({ 'task': { 'exists': task_exists, 'success': success if task_exists else None, 'next': next_task.id if next_task else None }, 'success': success, 'total': total_questions, 'right': right_count, 'link': link, 'message': mess, }) # def post(self, request): # """Прохождение теста""" # pk = request.data.get('pk') # id варианта ответа # # try: # variant = PossibleAnswer.objects.get(id=pk) # except ObjectDoesNotExist: # return Response('Нет такого варианта', status=404) # # counter = self.get_counter(request.user, variant.question.test.id) # # if variant.is_right: # counter.counter += 1 # counter.save() # # if counter.counter >= counter.questions_count: # realization = self.get_realization(request.user, variant) # # if realization is None: # counter.delete() # return Response('Не жульничай', status=400) # # realization.success = True # realization.save() # # return Response(status=200) def get(self, request): """Вывод результатов""" pk = request.GET.get('pk') # id теста counter = self.get_counter(request.user, pk) return JsonResponse({'total': counter.questions_count, 'right': counter.counter}) @staticmethod def get_counter(user, pk): """Получение счетчика правильных ответов""" test = Test.objects.get(id=pk) try: counter = AnswersCounter.objects.get(user=user, test=test) except ObjectDoesNotExist: counter = AnswersCounter.objects.create(user=user, test=test) # counter = AnswersCounter.objects.get_or_create(user=user, test=test) return counter @staticmethod def get_realization(user, variant): """Получение модели выполнения задания""" try: realization = RealizationTask.objects.get( student=user, task__test__questions__answers__id=variant.id ) return realization except ObjectDoesNotExist: return None
[ "backend.courses.api_views.CompletedTasks", "backend.courses.models.RealizationTask.objects.get", "backend.courses.models.Course.objects.get", "django.http.JsonResponse" ]
[((1717, 1758), 'django.http.JsonResponse', 'JsonResponse', (['serializer.data'], {'safe': '(False)'}), '(serializer.data, safe=False)\n', (1729, 1758), False, 'from django.http import HttpResponse, JsonResponse\n'), ((4423, 4671), 'django.http.JsonResponse', 'JsonResponse', (["{'task': {'exists': task_exists, 'success': success if task_exists else\n None, 'next': next_task.id if next_task else None}, 'success': success,\n 'total': total_questions, 'right': right_count, 'link': link, 'message':\n mess}"], {}), "({'task': {'exists': task_exists, 'success': success if\n task_exists else None, 'next': next_task.id if next_task else None},\n 'success': success, 'total': total_questions, 'right': right_count,\n 'link': link, 'message': mess})\n", (4435, 4671), False, 'from django.http import HttpResponse, JsonResponse\n'), ((5872, 5946), 'django.http.JsonResponse', 'JsonResponse', (["{'total': counter.questions_count, 'right': counter.counter}"], {}), "({'total': counter.questions_count, 'right': counter.counter})\n", (5884, 5946), False, 'from django.http import HttpResponse, JsonResponse\n'), ((2683, 2785), 'django.http.JsonResponse', 'JsonResponse', (["{'task': {'exists': None, 'success': None, 'next': None}, 'message':\n 'Нет ответов!'}"], {}), "({'task': {'exists': None, 'success': None, 'next': None},\n 'message': 'Нет ответов!'})\n", (2695, 2785), False, 'from django.http import HttpResponse, JsonResponse\n'), ((6560, 6652), 'backend.courses.models.RealizationTask.objects.get', 'RealizationTask.objects.get', ([], {'student': 'user', 'task__test__questions__answers__id': 'variant.id'}), '(student=user,\n task__test__questions__answers__id=variant.id)\n', (6587, 6652), False, 'from backend.courses.models import Task, RealizationTask, Course\n'), ((4183, 4215), 'backend.courses.models.Course.objects.get', 'Course.objects.get', ([], {'id': 'course_pk'}), '(id=course_pk)\n', (4201, 4215), False, 'from backend.courses.models import Task, RealizationTask, Course\n'), ((4346, 4362), 'backend.courses.api_views.CompletedTasks', 'CompletedTasks', ([], {}), '()\n', (4360, 4362), False, 'from backend.courses.api_views import CompletedTasks\n')]
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.lib.services.placement import resource_providers_client from tempest.tests.lib import fake_auth_provider from tempest.tests.lib.services import base class TestResourceProvidersClient(base.BaseServiceTest): FAKE_RESOURCE_PROVIDER_UUID = '3722a86e-a563-11e9-9abb-c3d41b6d3abf' FAKE_ROOT_PROVIDER_UUID = '4a6a57c8-a563-11e9-914e-f3e0478fce53' FAKE_RESOURCE_PROVIDER = { 'generation': 0, 'name': 'Ceph Storage Pool', 'uuid': FAKE_RESOURCE_PROVIDER_UUID, 'parent_provider_uuid': FAKE_ROOT_PROVIDER_UUID, 'root_provider_uuid': FAKE_ROOT_PROVIDER_UUID } FAKE_RESOURCE_PROVIDERS = { 'resource_providers': [FAKE_RESOURCE_PROVIDER] } FAKE_RESOURCE_PROVIDER_INVENTORIES = { 'inventories': { 'DISK_GB': { 'allocation_ratio': 1.0, 'max_unit': 35, 'min_unit': 1, 'reserved': 0, 'step_size': 1, 'total': 35 } }, 'resource_provider_generation': 7 } FAKE_AGGREGATE_UUID = '1166be40-a567-11e9-9f2a-53827f9311fa' FAKE_RESOURCE_PROVIDER_AGGREGATES = { 'aggregates': [FAKE_AGGREGATE_UUID] } FAKE_RESOURCE_UPDATE_INVENTORIES_RESPONSE = { "inventories": { "MEMORY_MB": { "allocation_ratio": 2.0, "max_unit": 16, "min_unit": 1, "reserved": 0, "step_size": 4, "total": 128 }, "VCPU": { "allocation_ratio": 10.0, "max_unit": 2147483647, "min_unit": 1, "reserved": 2, "step_size": 1, "total": 64 } }, "resource_provider_generation": 2 } FAKE_RESOURCE_UPDATE_INVENTORIES_REQUEST = { "inventories": { "MEMORY_MB": { "allocation_ratio": 2.0, "max_unit": 16, "step_size": 4, "total": 128 }, "VCPU": { "allocation_ratio": 10.0, "reserved": 2, "total": 64 } }, "resource_provider_generation": 1 } def setUp(self): super(TestResourceProvidersClient, self).setUp() fake_auth = fake_auth_provider.FakeAuthProvider() self.client = resource_providers_client.ResourceProvidersClient( fake_auth, 'placement', 'regionOne') def _test_list_resource_providers(self, bytes_body=False): self.check_service_client_function( self.client.list_resource_providers, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_RESOURCE_PROVIDERS, to_utf=bytes_body, status=200 ) def test_list_resource_providers_with_bytes_body(self): self._test_list_resource_providers() def test_list_resource_providers_with_str_body(self): self._test_list_resource_providers(bytes_body=True) def _test_show_resource_provider(self, bytes_body=False): self.check_service_client_function( self.client.show_resource_provider, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_RESOURCE_PROVIDER, to_utf=bytes_body, status=200, rp_uuid=self.FAKE_RESOURCE_PROVIDER_UUID ) def test_show_resource_provider_with_str_body(self): self._test_show_resource_provider() def test_show_resource_provider_with_bytes_body(self): self._test_show_resource_provider(bytes_body=True) def _test_list_resource_provider_inventories(self, bytes_body=False): self.check_service_client_function( self.client.list_resource_provider_inventories, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_RESOURCE_PROVIDER_INVENTORIES, to_utf=bytes_body, status=200, rp_uuid=self.FAKE_RESOURCE_PROVIDER_UUID ) def test_list_resource_provider_inventories_with_str_body(self): self._test_list_resource_provider_inventories() def test_list_resource_provider_inventories_with_bytes_body(self): self._test_list_resource_provider_inventories(bytes_body=True) def _test_update_resource_providers_inventories(self, bytes_body=False): self.check_service_client_function( self.client.update_resource_providers_inventories, 'tempest.lib.common.rest_client.RestClient.put', self.FAKE_RESOURCE_UPDATE_INVENTORIES_RESPONSE, to_utf=bytes_body, status=200, rp_uuid=self.FAKE_RESOURCE_PROVIDER_UUID, **self.FAKE_RESOURCE_UPDATE_INVENTORIES_REQUEST ) def test_update_resource_providers_inventories_with_str_body(self): self._test_update_resource_providers_inventories() def test_update_resource_providers_inventories_with_bytes_body(self): self._test_update_resource_providers_inventories(bytes_body=True) def test_delete_resource_providers_inventories(self): self.check_service_client_function( self.client.delete_resource_providers_inventories, 'tempest.lib.common.rest_client.RestClient.delete', {}, status=204, rp_uuid=self.FAKE_RESOURCE_PROVIDER_UUID, ) def _test_list_resource_provider_aggregates(self, bytes_body=False): self.check_service_client_function( self.client.list_resource_provider_aggregates, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_RESOURCE_PROVIDER_AGGREGATES, to_utf=bytes_body, status=200, rp_uuid=self.FAKE_RESOURCE_PROVIDER_UUID ) def test_list_resource_provider_aggregates_with_str_body(self): self._test_list_resource_provider_aggregates() def test_list_resource_provider_aggregates_with_bytes_body(self): self._test_list_resource_provider_aggregates(bytes_body=True)
[ "tempest.lib.services.placement.resource_providers_client.ResourceProvidersClient", "tempest.tests.lib.fake_auth_provider.FakeAuthProvider" ]
[((2962, 2999), 'tempest.tests.lib.fake_auth_provider.FakeAuthProvider', 'fake_auth_provider.FakeAuthProvider', ([], {}), '()\n', (2997, 2999), False, 'from tempest.tests.lib import fake_auth_provider\n'), ((3022, 3112), 'tempest.lib.services.placement.resource_providers_client.ResourceProvidersClient', 'resource_providers_client.ResourceProvidersClient', (['fake_auth', '"""placement"""', '"""regionOne"""'], {}), "(fake_auth, 'placement',\n 'regionOne')\n", (3071, 3112), False, 'from tempest.lib.services.placement import resource_providers_client\n')]
from problems import utils, mymath @utils.memoize def sum_proper_factors(n): return sum(mymath.proper_factorization(n)) def solve(): upper_bound = 1000000 chains = dict() for start_number in range(1, upper_bound): chain = [start_number] current_number = sum_proper_factors(start_number) while current_number != start_number: if current_number > upper_bound or current_number == 0 or len(chain) > 100: break elif current_number in chains: chain += chains[current_number] break else: chain.append(current_number) current_number = sum_proper_factors(current_number) if current_number == start_number: chains[start_number] = chain chain_lengths = {i: len(chains[i]) for i in chains} max_key = mymath.key_of_max_value(chain_lengths) return min(chains[max_key]) if __name__ == '__main__': print(solve())
[ "problems.mymath.proper_factorization", "problems.mymath.key_of_max_value" ]
[((881, 919), 'problems.mymath.key_of_max_value', 'mymath.key_of_max_value', (['chain_lengths'], {}), '(chain_lengths)\n', (904, 919), False, 'from problems import utils, mymath\n'), ((94, 124), 'problems.mymath.proper_factorization', 'mymath.proper_factorization', (['n'], {}), '(n)\n', (121, 124), False, 'from problems import utils, mymath\n')]
import logging from django.utils import timezone from typing import Union from .exceptions import InvalidTrustchain, TrustchainMissingMetadata from .models import FetchedEntityStatement, TrustChain from .statements import EntityConfiguration, get_entity_configurations from .settings import HTTPC_PARAMS from .trust_chain import TrustChainBuilder from .utils import datetime_from_timestamp logger = logging.getLogger(__name__) def trust_chain_builder( subject: str, trust_anchor: EntityConfiguration, httpc_params: dict = HTTPC_PARAMS, required_trust_marks: list = [] ) -> Union[TrustChainBuilder, bool]: """ Trust Chain builder """ tc = TrustChainBuilder( subject, trust_anchor=trust_anchor, required_trust_marks=required_trust_marks, httpc_params=httpc_params ) tc.start() if not tc.is_valid: logger.error( "The tree of trust cannot be validated for " f"{tc.subject}: {tc.tree_of_trust}" ) return False else: return tc def dumps_statements_from_trust_chain_to_db(trust_chain: TrustChainBuilder) -> list: entity_statements = [] for stat in trust_chain.trust_path: data = dict( exp=datetime_from_timestamp(stat.payload["exp"]), iat=datetime_from_timestamp(stat.payload["iat"]), statement=stat.payload, jwt=stat.jwt, ) fes = FetchedEntityStatement.objects.filter(sub=stat.sub, iss=stat.iss) if fes: fes.update(**data) else: fes = FetchedEntityStatement.objects.create( sub=stat.sub, iss=stat.iss, **data ) entity_statements.append(fes) if stat.verified_descendant_statements: for desc_stat_sub in stat.verified_descendant_statements: payload = stat.verified_descendant_statements[desc_stat_sub] jwt = stat.verified_descendant_statements_as_jwt[desc_stat_sub] _data = dict( exp=datetime_from_timestamp(payload["exp"]), iat=datetime_from_timestamp(payload["iat"]), statement=payload, jwt=jwt, ) desc_fes = FetchedEntityStatement.objects.filter( sub=payload["sub"], iss=payload["iss"] ) if desc_fes: desc_fes.update(**_data) else: desc_fes = FetchedEntityStatement.objects.create( sub=payload["sub"], iss=payload["iss"], **_data ) entity_statements.append(desc_fes) return entity_statements def get_or_create_trust_chain( subject: str, trust_anchor: str, httpc_params: dict = HTTPC_PARAMS, required_trust_marks: list = [], force: bool = False, ) -> Union[TrustChain, None]: """ returns a TrustChain model object if any available if available it return it if not available it create a new one if available and expired it return the expired one if flag force is set to True -> renew the trust chain, update it and return the updated one """ fetched_trust_anchor = FetchedEntityStatement.objects.filter( sub=trust_anchor, iss=trust_anchor ) if not fetched_trust_anchor or fetched_trust_anchor.first().is_expired or force: jwts = get_entity_configurations([trust_anchor], httpc_params=httpc_params) ta_conf = EntityConfiguration(jwts[0], httpc_params=httpc_params) data = dict( exp=datetime_from_timestamp(ta_conf.payload["exp"]), iat=datetime_from_timestamp(ta_conf.payload["iat"]), statement=ta_conf.payload, jwt=ta_conf.jwt, ) if not fetched_trust_anchor: # trust to the anchor should be absolute trusted! # ta_conf.validate_by_itself() fetched_trust_anchor = FetchedEntityStatement.objects.create( sub=ta_conf.sub, iss=ta_conf.iss, **data ) else: fetched_trust_anchor.update( exp=datetime_from_timestamp(ta_conf.payload["exp"]), iat=datetime_from_timestamp(ta_conf.payload["iat"]), statement=ta_conf.payload, jwt=ta_conf.jwt, ) fetched_trust_anchor = fetched_trust_anchor.first() else: fetched_trust_anchor = fetched_trust_anchor.first() ta_conf = fetched_trust_anchor.get_entity_configuration_as_obj() tc = TrustChain.objects.filter(sub=subject, trust_anchor__sub=trust_anchor).first() if tc and not tc.is_active: # if manualy disabled by staff return None elif force or not tc or tc.is_expired: trust_chain = trust_chain_builder( subject=subject, trust_anchor=ta_conf, required_trust_marks=required_trust_marks ) if not trust_chain: raise InvalidTrustchain( f"Trust chain for subject {subject} and " f"trust_anchor {trust_anchor} is not found" ) elif not trust_chain.is_valid: raise InvalidTrustchain( f"Trust chain for subject {subject} and " f"trust_anchor {trust_anchor} is not valid" ) elif not trust_chain.final_metadata: raise TrustchainMissingMetadata( f"Trust chain for subject {subject} and " f"trust_anchor {trust_anchor} doesn't have any metadata" ) dumps_statements_from_trust_chain_to_db(trust_chain) tc = TrustChain.objects.filter( sub=subject, trust_anchor__sub=trust_anchor ) data = dict( exp=trust_chain.exp_datetime, processing_start = timezone.localtime(), chain=trust_chain.serialize(), metadata=trust_chain.final_metadata, parties_involved=[i.sub for i in trust_chain.trust_path], status="valid", trust_marks=[ {"id": i.id, "trust_mark": i.jwt} for i in trust_chain.verified_trust_marks ], is_active=True, ) if tc: tc.update(**data) tc = tc.first() else: tc = TrustChain.objects.create( sub=subject, trust_anchor=fetched_trust_anchor, **data, ) return tc
[ "logging.getLogger", "django.utils.timezone.localtime" ]
[((402, 429), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (419, 429), False, 'import logging\n'), ((5925, 5945), 'django.utils.timezone.localtime', 'timezone.localtime', ([], {}), '()\n', (5943, 5945), False, 'from django.utils import timezone\n')]
########################################################################## # Copyright (c) 2009, ETH Zurich. # All rights reserved. # # This file is distributed under the terms in the attached LICENSE file. # If you do not find this file, copies can be found by writing to: # ETH Zurich D-INFK, Haldeneggsteig 4, CH-8092 Zurich. Attn: Systems Group. ########################################################################## import tests from common import TestCommon from results import PassFailMultiResult class CompilerRTBuiltinsAbstract(TestCommon): def get_finish_string(self): return "usleeptest_done" def process_data(self, testdir, rawiter): # the test passed if no error occurred errors = [] for line in rawiter: if "error in" in line: errors.append(line) if line.startswith("Assertion failed on core"): errors.append(line) return PassFailMultiResult(self.name, errors) # lists of tests to run for compiler-rt vector_fp_tests = [ "compiler-rt/test/builtins/Unit/adddf3vfp_test", "compiler-rt/test/builtins/Unit/addsf3vfp_test", "compiler-rt/test/builtins/Unit/divdf3vfp_test", "compiler-rt/test/builtins/Unit/divsf3vfp_test", "compiler-rt/test/builtins/Unit/eqdf2vfp_test", "compiler-rt/test/builtins/Unit/eqsf2vfp_test", "compiler-rt/test/builtins/Unit/extebdsfdf2vfp_test", "compiler-rt/test/builtins/Unit/fixdfsivfp_test", "compiler-rt/test/builtins/Unit/fixsfsivfp_test", "compiler-rt/test/builtins/Unit/fixunsdfsivfp_test", "compiler-rt/test/builtins/Unit/fixunssfsivfp_test", "compiler-rt/test/builtins/Unit/floatsidfvfp_test", "compiler-rt/test/builtins/Unit/floatsisfvfp_test", "compiler-rt/test/builtins/Unit/floatunssidfvfp_test", "compiler-rt/test/builtins/Unit/floatunssisfvfp_test", "compiler-rt/test/builtins/Unit/gedf2vfp_test", "compiler-rt/test/builtins/Unit/gesf2vfp_test", "compiler-rt/test/builtins/Unit/gtdf2vfp_test", "compiler-rt/test/builtins/Unit/gtsf2vfp_test", "compiler-rt/test/builtins/Unit/ledf2vfp_test", "compiler-rt/test/builtins/Unit/lesf2vfp_test", "compiler-rt/test/builtins/Unit/ltdf2vfp_test", "compiler-rt/test/builtins/Unit/ltsf2vfp_test", "compiler-rt/test/builtins/Unit/muldf3vfp_test", "compiler-rt/test/builtins/Unit/mulsf3vfp_test", "compiler-rt/test/builtins/Unit/nedf2vfp_test", "compiler-rt/test/builtins/Unit/negdf2vfp_test", "compiler-rt/test/builtins/Unit/negsf2vfp_test", "compiler-rt/test/builtins/Unit/nesf2vfp_test", "compiler-rt/test/builtins/Unit/subdf3vfp_test", "compiler-rt/test/builtins/Unit/subsf3vfp_test", "compiler-rt/test/builtins/Unit/truncdfsf2vfp_test", "compiler-rt/test/builtins/Unit/unorddf2vfp_test", "compiler-rt/test/builtins/Unit/unordsf2vfp_test", ] @tests.add_test class CompilerRTBuiltinsVfp(CompilerRTBuiltinsAbstract): name = 'compiler-rt-vfp' def get_modules(self, build, machine): modules = super(CompilerRTBuiltinsVfp, self).get_modules(build, machine) for m in vector_fp_tests: modules.add_module(m) modules.add_module("usleeptest", [ "5" ]) return modules fp_tests = [ "compiler-rt/test/builtins/Unit/absvdi2_test", "compiler-rt/test/builtins/Unit/absvsi2_test", "compiler-rt/test/builtins/Unit/absvti2_test", "compiler-rt/test/builtins/Unit/addtf3_test", "compiler-rt/test/builtins/Unit/addvdi3_test", "compiler-rt/test/builtins/Unit/addvsi3_test", "compiler-rt/test/builtins/Unit/addvti3_test", "compiler-rt/test/builtins/Unit/ashldi3_test", "compiler-rt/test/builtins/Unit/ashlti3_test", "compiler-rt/test/builtins/Unit/ashrdi3_test", "compiler-rt/test/builtins/Unit/ashrti3_test", "compiler-rt/test/builtins/Unit/bswapdi2_test", "compiler-rt/test/builtins/Unit/bswapsi2_test", # "compiler-rt/test/builtins/Unit/clear_cache_test", "compiler-rt/test/builtins/Unit/clzdi2_test", "compiler-rt/test/builtins/Unit/clzsi2_test", "compiler-rt/test/builtins/Unit/clzti2_test", "compiler-rt/test/builtins/Unit/cmpdi2_test", "compiler-rt/test/builtins/Unit/cmpti2_test", "compiler-rt/test/builtins/Unit/comparedf2_test", "compiler-rt/test/builtins/Unit/comparesf2_test", "compiler-rt/test/builtins/Unit/ctzdi2_test", "compiler-rt/test/builtins/Unit/ctzsi2_test", "compiler-rt/test/builtins/Unit/ctzti2_test", "compiler-rt/test/builtins/Unit/divdc3_test", "compiler-rt/test/builtins/Unit/divdi3_test", "compiler-rt/test/builtins/Unit/divmodsi4_test", "compiler-rt/test/builtins/Unit/divsc3_test", "compiler-rt/test/builtins/Unit/divsi3_test", # "compiler-rt/test/builtins/Unit/divtc3_test", "compiler-rt/test/builtins/Unit/divtf3_test", "compiler-rt/test/builtins/Unit/divti3_test", "compiler-rt/test/builtins/Unit/divxc3_test", # "compiler-rt/test/builtins/Unit/enable_execute_stack_test", "compiler-rt/test/builtins/Unit/eqtf2_test", "compiler-rt/test/builtins/Unit/extenddftf2_test", # "compiler-rt/test/builtins/Unit/extendhfsf2_test", "compiler-rt/test/builtins/Unit/extendsftf2_test", "compiler-rt/test/builtins/Unit/ffsdi2_test", "compiler-rt/test/builtins/Unit/ffsti2_test", "compiler-rt/test/builtins/Unit/fixdfdi_test", "compiler-rt/test/builtins/Unit/fixdfti_test", "compiler-rt/test/builtins/Unit/fixsfdi_test", "compiler-rt/test/builtins/Unit/fixsfti_test", "compiler-rt/test/builtins/Unit/fixtfdi_test", "compiler-rt/test/builtins/Unit/fixtfsi_test", "compiler-rt/test/builtins/Unit/fixtfti_test", # this errors on 0X1P+64 #"compiler-rt/test/builtins/Unit/fixunsdfdi_test", "compiler-rt/test/builtins/Unit/fixunsdfsi_test", "compiler-rt/test/builtins/Unit/fixunsdfti_test", # this errors on 0X1P+64 #"compiler-rt/test/builtins/Unit/fixunssfdi_test", "compiler-rt/test/builtins/Unit/fixunssfsi_test", "compiler-rt/test/builtins/Unit/fixunssfti_test", "compiler-rt/test/builtins/Unit/fixunstfdi_test", "compiler-rt/test/builtins/Unit/fixunstfsi_test", "compiler-rt/test/builtins/Unit/fixunstfti_test", "compiler-rt/test/builtins/Unit/fixunsxfdi_test", "compiler-rt/test/builtins/Unit/fixunsxfsi_test", "compiler-rt/test/builtins/Unit/fixunsxfti_test", "compiler-rt/test/builtins/Unit/fixxfdi_test", "compiler-rt/test/builtins/Unit/fixxfti_test", "compiler-rt/test/builtins/Unit/floatdidf_test", "compiler-rt/test/builtins/Unit/floatdisf_test", "compiler-rt/test/builtins/Unit/floatditf_test", "compiler-rt/test/builtins/Unit/floatdixf_test", "compiler-rt/test/builtins/Unit/floatsitf_test", "compiler-rt/test/builtins/Unit/floattidf_test", "compiler-rt/test/builtins/Unit/floattisf_test", "compiler-rt/test/builtins/Unit/floattixf_test", "compiler-rt/test/builtins/Unit/floatundidf_test", "compiler-rt/test/builtins/Unit/floatundisf_test", "compiler-rt/test/builtins/Unit/floatunditf_test", "compiler-rt/test/builtins/Unit/floatundixf_test", "compiler-rt/test/builtins/Unit/floatunsitf_test", "compiler-rt/test/builtins/Unit/floatuntidf_test", "compiler-rt/test/builtins/Unit/floatuntisf_test", "compiler-rt/test/builtins/Unit/floatuntixf_test", # "compiler-rt/test/builtins/Unit/gcc_personality_test", "compiler-rt/test/builtins/Unit/getf2_test", "compiler-rt/test/builtins/Unit/gttf2_test", "compiler-rt/test/builtins/Unit/letf2_test", "compiler-rt/test/builtins/Unit/lshrdi3_test", "compiler-rt/test/builtins/Unit/lshrti3_test", "compiler-rt/test/builtins/Unit/lttf2_test", "compiler-rt/test/builtins/Unit/moddi3_test", "compiler-rt/test/builtins/Unit/modsi3_test", "compiler-rt/test/builtins/Unit/modti3_test", "compiler-rt/test/builtins/Unit/muldc3_test", "compiler-rt/test/builtins/Unit/muldi3_test", "compiler-rt/test/builtins/Unit/mulodi4_test", "compiler-rt/test/builtins/Unit/mulosi4_test", "compiler-rt/test/builtins/Unit/muloti4_test", "compiler-rt/test/builtins/Unit/mulsc3_test", "compiler-rt/test/builtins/Unit/multc3_test", "compiler-rt/test/builtins/Unit/multf3_test", "compiler-rt/test/builtins/Unit/multi3_test", "compiler-rt/test/builtins/Unit/mulvdi3_test", "compiler-rt/test/builtins/Unit/mulvsi3_test", "compiler-rt/test/builtins/Unit/mulvti3_test", "compiler-rt/test/builtins/Unit/mulxc3_test", "compiler-rt/test/builtins/Unit/negdi2_test", "compiler-rt/test/builtins/Unit/negti2_test", "compiler-rt/test/builtins/Unit/negvdi2_test", "compiler-rt/test/builtins/Unit/negvsi2_test", "compiler-rt/test/builtins/Unit/negvti2_test", "compiler-rt/test/builtins/Unit/netf2_test", "compiler-rt/test/builtins/Unit/paritydi2_test", "compiler-rt/test/builtins/Unit/paritysi2_test", "compiler-rt/test/builtins/Unit/parityti2_test", "compiler-rt/test/builtins/Unit/popcountdi2_test", "compiler-rt/test/builtins/Unit/popcountsi2_test", "compiler-rt/test/builtins/Unit/popcountti2_test", "compiler-rt/test/builtins/Unit/powidf2_test", "compiler-rt/test/builtins/Unit/powisf2_test", "compiler-rt/test/builtins/Unit/powitf2_test", "compiler-rt/test/builtins/Unit/powixf2_test", "compiler-rt/test/builtins/Unit/subtf3_test", "compiler-rt/test/builtins/Unit/subvdi3_test", "compiler-rt/test/builtins/Unit/subvsi3_test", "compiler-rt/test/builtins/Unit/subvti3_test", # "compiler-rt/test/builtins/Unit/trampoline_setup_test", # "compiler-rt/test/builtins/Unit/truncdfhf2_test", "compiler-rt/test/builtins/Unit/truncdfsf2_test", # "compiler-rt/test/builtins/Unit/truncsfhf2_test", "compiler-rt/test/builtins/Unit/trunctfdf2_test", "compiler-rt/test/builtins/Unit/trunctfsf2_test", "compiler-rt/test/builtins/Unit/ucmpdi2_test", "compiler-rt/test/builtins/Unit/ucmpti2_test", "compiler-rt/test/builtins/Unit/udivdi3_test", "compiler-rt/test/builtins/Unit/udivmoddi4_test", "compiler-rt/test/builtins/Unit/udivmodsi4_test", "compiler-rt/test/builtins/Unit/udivmodti4_test", "compiler-rt/test/builtins/Unit/udivsi3_test", "compiler-rt/test/builtins/Unit/udivti3_test", "compiler-rt/test/builtins/Unit/umoddi3_test", "compiler-rt/test/builtins/Unit/umodsi3_test", "compiler-rt/test/builtins/Unit/umodti3_test", "compiler-rt/test/builtins/Unit/unordtf2_test", ] def get_modules_tpl(ts, self, build, machine): '''Function template for get_modules() for each compiler-rt test case''' modules = super(CompilerRTBuiltinsAbstract, self).get_modules(build, machine) for m in ts: if machine.name.startswith("panda") and \ (m.endswith("floatdisf_test") or m.endswith("floatdidf_test")): # Skip failing test on pandaboard continue modules.add_module(m) modules.add_module("usleeptest", [ "5" ]) return modules def chunker(seq, size): '''Helper function: this takes a sequence `seq` and splits it up into `size`-sized chunks, except for the last chunk which is just the <= size long remainder of the sequence''' return (seq[pos:pos+size] for pos in xrange(0, len(seq), size)) # generate test-cases with <=CHUNK_SIZE compiler-rt tests each CHUNK_SIZE=35 # array just to keep the class objects somewhere compiler_rt_tests_classes = [] for i, ts in enumerate(chunker(fp_tests, CHUNK_SIZE)): # append new class to our array compiler_rt_tests_classes.append( # this is essentially the decorator @tests.add_test tests.add_test( # type is the (built-in) base-class for python classes, here we # construct classes by calling its constructor # signature of type constructor: # type(classname, baseclass tuple, dict with methods/attributes) type('CompilerRTBuiltins%d' % (i+1), (CompilerRTBuiltinsAbstract,), { 'name': 'compiler-rt-fp%d' % (i+1), # partially bind the get_modules() template to select the # right set of tests. Note the ts=ts in the lambda # arguments, this prevents python's default late-binding # for closure arguments. 'get_modules': lambda s, b, m, ts=ts: get_modules_tpl(ts, s, b, m)})))
[ "results.PassFailMultiResult" ]
[((949, 987), 'results.PassFailMultiResult', 'PassFailMultiResult', (['self.name', 'errors'], {}), '(self.name, errors)\n', (968, 987), False, 'from results import PassFailMultiResult\n')]
import requests from requests.exceptions import HTTPError import time class APIBase: """ This class is to be used as a base to build an API library. Authorization token generation and endpoint functions must be written """ def __init__(self, root, proxies=None, requests_session=True, max_retries=10, requests_timeout=None): """ Initialize the class :param: root: Root URL for the API :param proxies: A dictionary of proxies, if needed :param requests_session: Use request Sessions class. Speeds up API calls significantly when set to True :param max_retries: Maximum amount of times to retry an API call before stopping :param requests_timeout: Number of seconds requests should wait before timing out """ self.proxies = proxies self.token_str = "" # Encrypted API token. This will need to be set manually or by a method of a subclass self.root = root self.max_retries = max_retries self.requests_timeout = requests_timeout if requests_session: self._session = requests.Session() else: self._session = requests.api # individual calls, slower def _auth_headers(self): """ Get header for API request :return: header in dictionary format """ if self.token_str: return {'Authorization': 'Bearer {}'.format(self.token_str)} else: return {} def _call(self, method, url, params): """ Make a call to the API :param method: 'GET', 'POST', 'DELETE', or 'PUT' :param url: URL of API endpoint :param params: API paramaters :return: JSON data from the API """ if not url.startswith('http'): url = self.root + url headers = self._auth_headers() headers['Content-Type'] = 'application/json' r = self._session.request(method, url, headers=headers, proxies=self.proxies, params=params, timeout=self.requests_timeout) r.raise_for_status() # Check for error return r.json() def _get(self, url, **kwargs): """ GET request from the API :param url: URL for API endpoint :return: JSON data from the API """ retries = self.max_retries delay = 1 while retries > 0: try: return self._call('GET', url, kwargs) except HTTPError as e: # Retry for some known issues retries -= 1 status = e.response.status_code if status == 429 or (500 <= status < 600): if retries < 0: raise else: print('retrying ...' + str(delay) + ' secs') time.sleep(delay + 1) delay += 1 else: raise except Exception as e: print('exception', str(e)) retries -= 1 if retries >= 0: print('retrying ...' + str(delay) + 'secs') time.sleep(delay + 1) delay += 1 else: raise def _post(self, url, **kwargs): """ POST request from the API :param url: URL for API endpoint :return: JSON data from the API """ return self._call('POST', url, kwargs) def _delete(self, url, **kwargs): """ DELETE request from the API :param url: URL for API endpoint :return: JSON data from the API """ return self._call('DELETE', url, kwargs) def _put(self, url, **kwargs): """ PUT request from the API :param url: URL for API endpoint :return: JSON data from the API """ return self._call('PUT', url, kwargs)
[ "requests.Session", "time.sleep" ]
[((1113, 1131), 'requests.Session', 'requests.Session', ([], {}), '()\n', (1129, 1131), False, 'import requests\n'), ((3310, 3331), 'time.sleep', 'time.sleep', (['(delay + 1)'], {}), '(delay + 1)\n', (3320, 3331), False, 'import time\n'), ((2981, 3002), 'time.sleep', 'time.sleep', (['(delay + 1)'], {}), '(delay + 1)\n', (2991, 3002), False, 'import time\n')]
# Copyright (C) 2011-2020 Airbus, <EMAIL> containers = { 'ELF': 'X86_64', 'MACHO': 'X86_64' } try: from plasmasm.python.compatibility import set except ImportError: pass from plasmasm.arch.I386 import opcodes as opcodes_x86 x64_att_opcodes = set([ 'jmpq', 'callq', 'retq', 'popq', 'pushq', 'movq', 'cmpq', 'testq', 'leaq', 'btq', 'bswapq', 'notq', 'orq', 'xorq', 'andq', 'bsfq', 'bslq', 'bsrq', 'rolq', 'rorq', 'sarq', 'salq', 'shrq', 'shlq', 'sbbq', 'negq', 'decq', 'incq', 'adcq', 'addq', 'subq', 'mulq', 'divq', 'imulq', 'idivq', 'shldq', 'shrdq', 'cltq', 'cqto', 'movabsq', 'movsbq', 'movslq', 'movswq', 'insq', 'movsq', 'outsq', 'lodsq', 'stosq', 'cmpsq', 'scasq', 'pextrq', 'pinsrq', 'cvtsi2sdq', 'cvtsi2ssq', 'cvttsd2siq', 'cvttss2siq', ]) suffix = [ 'a', 'ae', 'b', 'be', 'c', 'e', 'g', 'ge', 'l', 'le', 'nb', 'nc', 'ne', 'np', 'ns', 'nz', 'p', 's', ] x64_att_opcodes.update(set([ 'cmov'+s+'q' for s in suffix ])) del suffix x64_att_opcodes.update(opcodes_x86['I386-att']) opcodes = { 'X64-att': x64_att_opcodes, }
[ "plasmasm.python.compatibility.set" ]
[((250, 779), 'plasmasm.python.compatibility.set', 'set', (["['jmpq', 'callq', 'retq', 'popq', 'pushq', 'movq', 'cmpq', 'testq', 'leaq',\n 'btq', 'bswapq', 'notq', 'orq', 'xorq', 'andq', 'bsfq', 'bslq', 'bsrq',\n 'rolq', 'rorq', 'sarq', 'salq', 'shrq', 'shlq', 'sbbq', 'negq', 'decq',\n 'incq', 'adcq', 'addq', 'subq', 'mulq', 'divq', 'imulq', 'idivq',\n 'shldq', 'shrdq', 'cltq', 'cqto', 'movabsq', 'movsbq', 'movslq',\n 'movswq', 'insq', 'movsq', 'outsq', 'lodsq', 'stosq', 'cmpsq', 'scasq',\n 'pextrq', 'pinsrq', 'cvtsi2sdq', 'cvtsi2ssq', 'cvttsd2siq', 'cvttss2siq']"], {}), "(['jmpq', 'callq', 'retq', 'popq', 'pushq', 'movq', 'cmpq', 'testq',\n 'leaq', 'btq', 'bswapq', 'notq', 'orq', 'xorq', 'andq', 'bsfq', 'bslq',\n 'bsrq', 'rolq', 'rorq', 'sarq', 'salq', 'shrq', 'shlq', 'sbbq', 'negq',\n 'decq', 'incq', 'adcq', 'addq', 'subq', 'mulq', 'divq', 'imulq',\n 'idivq', 'shldq', 'shrdq', 'cltq', 'cqto', 'movabsq', 'movsbq',\n 'movslq', 'movswq', 'insq', 'movsq', 'outsq', 'lodsq', 'stosq', 'cmpsq',\n 'scasq', 'pextrq', 'pinsrq', 'cvtsi2sdq', 'cvtsi2ssq', 'cvttsd2siq',\n 'cvttss2siq'])\n", (253, 779), False, 'from plasmasm.python.compatibility import set\n'), ((979, 1020), 'plasmasm.python.compatibility.set', 'set', (["[('cmov' + s + 'q') for s in suffix]"], {}), "([('cmov' + s + 'q') for s in suffix])\n", (982, 1020), False, 'from plasmasm.python.compatibility import set\n')]
# Generated by Django 3.1.5 on 2021-01-25 16:24 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('app', '0002_auto_20210124_0610'), ] operations = [ migrations.RenameModel( old_name='Parent', new_name='Account', ), ]
[ "django.db.migrations.RenameModel" ]
[((223, 284), 'django.db.migrations.RenameModel', 'migrations.RenameModel', ([], {'old_name': '"""Parent"""', 'new_name': '"""Account"""'}), "(old_name='Parent', new_name='Account')\n", (245, 284), False, 'from django.db import migrations\n')]
#!/usr/bin/python3 import threading import time import base64 from lynkco_app_request import lynkco_app_request from com.uestcit.api.gateway.sdk.auth.aes import aes as AES from sms_request import sms_request import json import sys import os import re class lynco_regist_wrok(threading.Thread): """新开线程处理任务""" def __init__(self, config): # 初始化线程 threading.Thread.__init__(self) # 缓存配置信息 self.config = config self.project_id = self.config['sms_platform']['project_id'] self.max_count = int(self.config['sms_platform']['count']) self.sms_request = sms_request() # 缓存APPKEY(因为存储的是base64后的值,所以需要base64解码一次) self.app_key = base64.b64decode(self.config['api_geteway']['app_key']).decode('utf-8') # 缓存APPSECRET(因为存储的是base64后的值,所以需要base64解码一次) self.app_secret = base64.b64decode(self.config['api_geteway']['app_secret']).decode('utf-8') # 缓存AESKEY(因为存储的是两次base64后的值,所以需要base64解码两次) self.aes_key = base64.b64decode(base64.b64decode(self.config['aes_key']).decode('utf-8')).decode('utf-8') self.AES = AES(self.aes_key) self.lynkco_app_request = lynkco_app_request(self.app_key, self.app_secret) def run(self): """线程开始的方法""" print ("开始注册任务 " + time.strftime('%Y-%m-%d %H:%M:%S')) self.token = self.get_token() if('' == self.token): return 0 phone_list = [] while len(phone_list) < self.max_count: phone = self.regist() if('' == phone): continue phone_list.append({ 'username': phone, 'password': '<PASSWORD>' }) with open(sys.path[0] + '/phone_list_' + time.strftime('%Y%m%d%H%M%S') + '.json', 'w') as json_file: json_file.write(json.dumps(phone_list,ensure_ascii = False)) print ("注册执行完成任务 " + time.strftime('%Y-%m-%d %H:%M:%S')) def get_token(self): """登录获取token""" sms_username = self.config['sms_platform']['username'] sms_password = self.config['sms_platform']['password'] context = self.sms_request.login(sms_username, sms_password) array = context.split('|') if(int(array[0]) != 1): print("短信账户登录失败:" + context + " " + time.strftime('%Y-%m-%d %H:%M:%S')) return '' token = array[1] print("短信账户登录成功,token:" + token + " " + time.strftime('%Y-%m-%d %H:%M:%S')) return token def regist(self): """App端操作流程""" # 获取一个手机号 context = self.sms_request.get_phone(self.token, self.project_id) array = context.split('|') if(int(array[0]) != 1): print("短信账户获取手机号失败:" + context + " " + time.strftime('%Y-%m-%d %H:%M:%S')) return '' phone = array[1] # 发送注册短信 response = self.lynkco_app_request.get_vcode_by_regist(phone) if response['code'] != 'success': print("发送注册短信失败" + response['message'] + " " + time.strftime('%Y-%m-%d %H:%M:%S')) return '' # 循环10次获取短信内容,每次获取失败等待3秒钟 vcode = '' fail_count = 0; while fail_count < 10: context = self.sms_request.get_phone_msg(self.token, self.project_id, phone) array = context.split('|') if(int(array[0]) != 1): print("短信账户获取验证码内容失败:" + context + " " + time.strftime('%Y-%m-%d %H:%M:%S')) fail_count += 1 time.sleep(3) else: context = array[1] # 此处需要正则取验证码 pattern = re.compile(r'\d{6}') result = pattern.findall(context) if(len(result) != 1): print("短信账户解析验证码内容失败:" + context + " " + time.strftime('%Y-%m-%d %H:%M:%S')) else: vcode = result[0] print("短信账户获取验证码内容成功:" + vcode + " " + time.strftime('%Y-%m-%d %H:%M:%S')) break if('' == vcode): return '' # 发送注册 password = self.AES.encrypt('<PASSWORD>') response = self.lynkco_app_request.regist(phone, password, vcode) if response['code'] != 'success': print("发送注册接口失败" + response['message'] + " " + time.strftime('%Y-%m-%d %H:%M:%S')) return '' # 尝试登陆一次 response = self.lynkco_app_request.login(phone, password) if response['code'] != 'success': print("尝试接口失败" + response['message'] + " " + time.strftime('%Y-%m-%d %H:%M:%S')) return phone return phone
[ "threading.Thread.__init__", "re.compile", "time.strftime", "json.dumps", "base64.b64decode", "time.sleep", "com.uestcit.api.gateway.sdk.auth.aes.aes", "sms_request.sms_request", "lynkco_app_request.lynkco_app_request" ]
[((371, 402), 'threading.Thread.__init__', 'threading.Thread.__init__', (['self'], {}), '(self)\n', (396, 402), False, 'import threading\n'), ((611, 624), 'sms_request.sms_request', 'sms_request', ([], {}), '()\n', (622, 624), False, 'from sms_request import sms_request\n'), ((1113, 1130), 'com.uestcit.api.gateway.sdk.auth.aes.aes', 'AES', (['self.aes_key'], {}), '(self.aes_key)\n', (1116, 1130), True, 'from com.uestcit.api.gateway.sdk.auth.aes import aes as AES\n'), ((1165, 1214), 'lynkco_app_request.lynkco_app_request', 'lynkco_app_request', (['self.app_key', 'self.app_secret'], {}), '(self.app_key, self.app_secret)\n', (1183, 1214), False, 'from lynkco_app_request import lynkco_app_request\n'), ((700, 755), 'base64.b64decode', 'base64.b64decode', (["self.config['api_geteway']['app_key']"], {}), "(self.config['api_geteway']['app_key'])\n", (716, 755), False, 'import base64\n'), ((852, 910), 'base64.b64decode', 'base64.b64decode', (["self.config['api_geteway']['app_secret']"], {}), "(self.config['api_geteway']['app_secret'])\n", (868, 910), False, 'import base64\n'), ((1304, 1338), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (1317, 1338), False, 'import time\n'), ((1803, 1845), 'json.dumps', 'json.dumps', (['phone_list'], {'ensure_ascii': '(False)'}), '(phone_list, ensure_ascii=False)\n', (1813, 1845), False, 'import json\n'), ((1894, 1928), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (1907, 1928), False, 'import time\n'), ((2425, 2459), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (2438, 2459), False, 'import time\n'), ((3461, 3474), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (3471, 3474), False, 'import time\n'), ((3583, 3603), 're.compile', 're.compile', (['"""\\\\d{6}"""'], {}), "('\\\\d{6}')\n", (3593, 3603), False, 'import re\n'), ((2292, 2326), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (2305, 2326), False, 'import time\n'), ((2742, 2776), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (2755, 2776), False, 'import time\n'), ((3005, 3039), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (3018, 3039), False, 'import time\n'), ((4270, 4304), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (4283, 4304), False, 'import time\n'), ((4506, 4540), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (4519, 4540), False, 'import time\n'), ((1715, 1744), 'time.strftime', 'time.strftime', (['"""%Y%m%d%H%M%S"""'], {}), "('%Y%m%d%H%M%S')\n", (1728, 1744), False, 'import time\n'), ((3405, 3439), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (3418, 3439), False, 'import time\n'), ((1020, 1060), 'base64.b64decode', 'base64.b64decode', (["self.config['aes_key']"], {}), "(self.config['aes_key'])\n", (1036, 1060), False, 'import base64\n'), ((3781, 3815), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (3794, 3815), False, 'import time\n'), ((3936, 3970), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (3949, 3970), False, 'import time\n')]
# Author: <NAME> <<EMAIL>> # A core-attachment based method to detect protein complexes in PPI networks # <NAME>, Kwoh, Ng (2009) # http://www.biomedcentral.com/1471-2105/10/169 from collections import defaultdict from itertools import combinations import functools # return average degree and density for a graph def __graph_stats(graph): avg_deg = sum(len(n) for n in graph.values()) / float(len(graph)) density = avg_deg / (len(graph) - 1) return avg_deg, density # return core nodes, given a graph and its average degree __get_core_nodes = lambda g, avg: set(v for v, n in g.items() if len(n) >= avg) # return NA score __NA_score = lambda a, b: float(len(a & b) ** 2) / (len(a) * len(b)) def __core_removal(graph, density_threshold): if len(graph) == 1: # need at least two nodes in the graph... return [graph] avg_deg, density = __graph_stats(graph) if density >= density_threshold: return [graph] else: # find and remove core nodes; create connected subcomponents core_nodes = __get_core_nodes(graph, avg_deg) result = [] subgraphs = [] for v, n in graph.items(): if v in core_nodes: continue n = n - core_nodes # note that we're reassigning n for s in subgraphs: if not n.isdisjoint(s): s |= n break else: subgraphs.append(n | {v}) # connected subcomponent joining i = 0 while i < len(subgraphs) - 1: j = i + 1 while j < len(subgraphs): if not subgraphs[i].isdisjoint(subgraphs[j]): subgraphs[i] |= subgraphs[j] subgraphs.pop(j) else: j += 1 i += 1 # recursive core removal for s in subgraphs: tresults = __core_removal( dict((v, graph[v] & s) for v in s), density_threshold ) for tc in tresults: nodes = set() for v, n in tc.items(): nodes.add(v) n |= graph[v] & core_nodes for c in core_nodes: tc[c] = graph[c] & (nodes | core_nodes) result += tresults return result def co_ach(g, density_threshold=0.7, affinity_threshold=0.225, closeness_threshold=0.5): # read protein-protein pairs data = defaultdict(set) for a, b in g.edges(): data[a].add(b) data[b].add(a) # step 1: find preliminary cores SC = [] # currently-detected preliminary cores count = 0 for vertex, neighbors in data.items(): # build neighborhood graph vertices = {vertex} | neighbors size1_neighbors = set() graph = {} for v in vertices: n = data[v] & vertices if len(n) > 1: # ignore size-1 vertices graph[v] = n else: size1_neighbors.add(v) if len(graph) < 2: # not enough connections in this graph continue graph[vertex] -= size1_neighbors # get core graph avg_deg, density = __graph_stats(graph) core_nodes = __get_core_nodes(graph, avg_deg) vertices = set(graph.keys()) for v in vertices - core_nodes: del graph[v] for n in graph.values(): n &= core_nodes if len(graph) < 2: # not enough connections in this graph continue graph_nodes = set(graph) # inner loop for sg in __core_removal(graph, density_threshold): while True: _, density = __graph_stats(sg) # if density threshold met, stop; else, remove min degree node if density >= density_threshold: break w = min(sg.items(), key=lambda k: len(k[1]))[0] del sg[w] for n in sg.values(): n.discard(w) sg_nodes = set(sg) while graph_nodes - sg_nodes: w = max(graph_nodes - sg_nodes, key=lambda v: len(graph[v] & sg_nodes)) new_sg = sg.copy() for v, n in new_sg.items(): if w in graph[v]: n.add(w) new_sg[w] = graph[w] & sg_nodes _, density = __graph_stats(new_sg) if density < density_threshold: break sg = new_sg sg_nodes.add(w) # redundancy filtering max_sim = -1 for i in range(len(SC)): sim = __NA_score(set(SC[i]), sg_nodes) if sim > max_sim: max_sim = sim index = i if max_sim < affinity_threshold: SC.append(sg) else: _, density_i = __graph_stats(SC[index]) if density * len(sg) > density_i * len(SC[index]): SC[index] = sg # step 2: adding peripheral proteins clusters = set() for core in SC: nodes = frozenset(core) neighbors = ( functools.reduce(lambda x, y: x | y, (data[v] for v in nodes)) - nodes ) neighbors -= set( v for v in neighbors if float(len(data[v] & nodes)) / len(nodes) <= closeness_threshold ) clusters.add(nodes | neighbors) return [list(c) for c in clusters]
[ "functools.reduce", "collections.defaultdict" ]
[((2492, 2508), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (2503, 2508), False, 'from collections import defaultdict\n'), ((5261, 5323), 'functools.reduce', 'functools.reduce', (['(lambda x, y: x | y)', '(data[v] for v in nodes)'], {}), '(lambda x, y: x | y, (data[v] for v in nodes))\n', (5277, 5323), False, 'import functools\n')]
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from common.constants import DEFAULT_QUEUE from common.waterfall import failure_type from gae_libs.pipeline_wrapper import pipeline_handlers from waterfall import create_revert_cl_pipeline from waterfall.create_revert_cl_pipeline import CreateRevertCLPipeline from waterfall.revert_and_notify_culprit_pipeline import ( RevertAndNotifyCulpritPipeline) from waterfall.send_notification_for_culprit_pipeline import ( SendNotificationForCulpritPipeline) from waterfall.test import wf_testcase class RevertAndNotifyCulpritPipelineTest(wf_testcase.WaterfallTestCase): app_module = pipeline_handlers._APP def testSendNotificationForTestCulprit(self): master_name = 'm' builder_name = 'b' build_number = 124 repo_name = 'chromium' revision = 'r1' culprits = { 'r1': { 'repo_name': repo_name, 'revision': revision, } } heuristic_cls = [[repo_name, revision]] try_job_type = failure_type.TEST self.MockPipeline(SendNotificationForCulpritPipeline, None, expected_args=[master_name, builder_name, build_number, repo_name, revision, True]) pipeline = RevertAndNotifyCulpritPipeline( master_name, builder_name, build_number, culprits, heuristic_cls, try_job_type) pipeline.start(queue_name=DEFAULT_QUEUE) self.execute_queued_tasks() def testSendNotificationToConfirmRevert(self): master_name = 'm' builder_name = 'b' build_number = 124 repo_name = 'chromium' revision = 'r1' culprits = { 'r1': { 'repo_name': repo_name, 'revision': revision, } } heuristic_cls = [[repo_name, revision]] try_job_type = failure_type.COMPILE self.MockPipeline(CreateRevertCLPipeline, create_revert_cl_pipeline.CREATED_BY_SHERIFF, expected_args=[master_name, builder_name, build_number, repo_name, revision]) self.MockPipeline(SendNotificationForCulpritPipeline, None, expected_args=[ master_name, builder_name, build_number, repo_name, revision, True, create_revert_cl_pipeline.CREATED_BY_SHERIFF]) pipeline = RevertAndNotifyCulpritPipeline( master_name, builder_name, build_number, culprits, heuristic_cls, try_job_type) pipeline.start(queue_name=DEFAULT_QUEUE) self.execute_queued_tasks()
[ "waterfall.revert_and_notify_culprit_pipeline.RevertAndNotifyCulpritPipeline" ]
[((1383, 1497), 'waterfall.revert_and_notify_culprit_pipeline.RevertAndNotifyCulpritPipeline', 'RevertAndNotifyCulpritPipeline', (['master_name', 'builder_name', 'build_number', 'culprits', 'heuristic_cls', 'try_job_type'], {}), '(master_name, builder_name, build_number,\n culprits, heuristic_cls, try_job_type)\n', (1413, 1497), False, 'from waterfall.revert_and_notify_culprit_pipeline import RevertAndNotifyCulpritPipeline\n'), ((2541, 2655), 'waterfall.revert_and_notify_culprit_pipeline.RevertAndNotifyCulpritPipeline', 'RevertAndNotifyCulpritPipeline', (['master_name', 'builder_name', 'build_number', 'culprits', 'heuristic_cls', 'try_job_type'], {}), '(master_name, builder_name, build_number,\n culprits, heuristic_cls, try_job_type)\n', (2571, 2655), False, 'from waterfall.revert_and_notify_culprit_pipeline import RevertAndNotifyCulpritPipeline\n')]
import torch import torch.nn as nn from torch.autograd import Variable from torch.nn import functional as F import numpy as np class LSTM(nn.Module): def __init__(self, embedding_matrix, embedding_dim, vocab_size, hidden_dim, dropout, num_layers, bidirectional, output_dim): """ Args: embedding_matrix: Pre-trained word embeddings matrix embedding_dim: Embedding dimension of the word embeddings vocab_size: Dimension of the vocabulary hidden_dim: Dimension of the hiddden states dropout: Dropout probability num_layers: Number of layers of the LSTM bidirectional: Bidiredctional output_dim: Number of output classes (Subtask A: 2 = (OFF, NOT)) """ super(LSTM, self).__init__() self.num_layers = num_layers self.hidden_dim = hidden_dim self.bidirectional = bidirectional #Word embeddings self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) self.word_embeddings.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32), requires_grad=False) #Dropout self.dropout = dropout #LSTM layer(s) if(self.bidirectional): self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2 , num_layers, dropout=self.dropout, bidirectional=True) else: self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers, dropout=self.dropout) #Linear layer self.output = nn.Linear(in_features=hidden_dim, out_features=output_dim) def forward(self, X): #Word embeddings embedded = self.word_embeddings(X) embedded = embedded.permute(1,0,2) #Batch size batch_size = X.size(0) #Initial hidden state if(self.bidirectional): h0 = Variable(torch.zeros(2*self.num_layers, batch_size, self.hidden_dim // 2)) c0 = Variable(torch.zeros(2*self.num_layers, batch_size, self.hidden_dim // 2)) else: h0 = Variable(torch.zeros(self.num_layers, batch_size, self.hidden_dim)) c0 = Variable(torch.zeros(self.num_layers, batch_size, self.hidden_dim)) #Forward state output, (hidden_state, cell_state) = self.lstm(embedded, (h0, c0)) x = self.output(output[-1]) return x
[ "torch.nn.LSTM", "torch.tensor", "torch.nn.Linear", "torch.zeros", "torch.nn.Embedding" ]
[((991, 1030), 'torch.nn.Embedding', 'nn.Embedding', (['vocab_size', 'embedding_dim'], {}), '(vocab_size, embedding_dim)\n', (1003, 1030), True, 'import torch.nn as nn\n'), ((1532, 1590), 'torch.nn.Linear', 'nn.Linear', ([], {'in_features': 'hidden_dim', 'out_features': 'output_dim'}), '(in_features=hidden_dim, out_features=output_dim)\n', (1541, 1590), True, 'import torch.nn as nn\n'), ((1082, 1133), 'torch.tensor', 'torch.tensor', (['embedding_matrix'], {'dtype': 'torch.float32'}), '(embedding_matrix, dtype=torch.float32)\n', (1094, 1133), False, 'import torch\n'), ((1285, 1382), 'torch.nn.LSTM', 'nn.LSTM', (['embedding_dim', '(hidden_dim // 2)', 'num_layers'], {'dropout': 'self.dropout', 'bidirectional': '(True)'}), '(embedding_dim, hidden_dim // 2, num_layers, dropout=self.dropout,\n bidirectional=True)\n', (1292, 1382), True, 'import torch.nn as nn\n'), ((1418, 1486), 'torch.nn.LSTM', 'nn.LSTM', (['embedding_dim', 'hidden_dim', 'num_layers'], {'dropout': 'self.dropout'}), '(embedding_dim, hidden_dim, num_layers, dropout=self.dropout)\n', (1425, 1486), True, 'import torch.nn as nn\n'), ((1872, 1938), 'torch.zeros', 'torch.zeros', (['(2 * self.num_layers)', 'batch_size', '(self.hidden_dim // 2)'], {}), '(2 * self.num_layers, batch_size, self.hidden_dim // 2)\n', (1883, 1938), False, 'import torch\n'), ((1964, 2030), 'torch.zeros', 'torch.zeros', (['(2 * self.num_layers)', 'batch_size', '(self.hidden_dim // 2)'], {}), '(2 * self.num_layers, batch_size, self.hidden_dim // 2)\n', (1975, 2030), False, 'import torch\n'), ((2070, 2127), 'torch.zeros', 'torch.zeros', (['self.num_layers', 'batch_size', 'self.hidden_dim'], {}), '(self.num_layers, batch_size, self.hidden_dim)\n', (2081, 2127), False, 'import torch\n'), ((2155, 2212), 'torch.zeros', 'torch.zeros', (['self.num_layers', 'batch_size', 'self.hidden_dim'], {}), '(self.num_layers, batch_size, self.hidden_dim)\n', (2166, 2212), False, 'import torch\n')]
from django.core.urlresolvers import resolve from django.shortcuts import render,redirect,HttpResponse from kingadmin.permission_list import perm_dic from django.conf import settings def perm_check(*args,**kwargs): request = args[0] resolve_url_obj = resolve(request.path) current_url_name = resolve_url_obj.url_name # 当前url的url_name print('---perm:',request.user,request.user.is_authenticated(),current_url_name) #match_flag = False match_results = [None,] match_key = None if request.user.is_authenticated() is False: return redirect(settings.LOGIN_URL) for permission_key,permission_val in perm_dic.items(): per_url_name = permission_val[0] per_method = permission_val[1] perm_args = permission_val[2] perm_kwargs = permission_val[3] perm_hook_func = permission_val[4] if len(permission_val)>4 else None if per_url_name == current_url_name: #matches current request url if per_method == request.method: #matches request method # if not perm_args: #if no args defined in perm dic, then set this request to passed perm #逐个匹配参数,看每个参数时候都能对应的上。 args_matched = False #for args only for item in perm_args: request_method_func = getattr(request,per_method) #request.GET/POST if request_method_func.get(item,None):# request字典中有此参数 args_matched = True else: print("arg not match......") args_matched = False break # 有一个参数不能匹配成功,则判定为假,退出该循环。 else:#当列表为空的时候才走这里 args_matched = True #匹配有特定值的参数 kwargs_matched = False for k,v in perm_kwargs.items(): request_method_func = getattr(request, per_method) arg_val = request_method_func.get(k, None) # request字典中有此参数 print("perm kwargs check:",arg_val,type(arg_val),v,type(v)) if arg_val == str(v): #匹配上了特定的参数 及对应的 参数值, 比如,需要request 对象里必须有一个叫 user_id=3的参数 kwargs_matched = True else: kwargs_matched = False break # 有一个参数不能匹配成功,则判定为假,退出该循环。 else: kwargs_matched = True #开始匹配自定义权限钩子函数 perm_hook_matched = False if perm_hook_func: perm_hook_matched = perm_hook_func(request) match_results = [args_matched,kwargs_matched,perm_hook_matched] print("--->match_results ", match_results) if all(match_results): #都匹配上了 match_key = permission_key break if all(match_results): app_name, *per_name = match_key.split('_') print("--->matched ",match_results,match_key) print(app_name, *per_name) perm_obj = '%s.%s' % (app_name,match_key) print("perm str:",perm_obj) if request.user.has_perm(perm_obj): print('当前用户有此权限') return True else: print('当前用户没有该权限') return False else: print("未匹配到权限项,当前用户无权限") def check_permission(func): def inner(*args,**kwargs): if not perm_check(*args,**kwargs): request = args[0] return render(request,'kingadmin/page_403.html') return func(*args,**kwargs) return inner
[ "django.shortcuts.render", "django.core.urlresolvers.resolve", "django.shortcuts.redirect", "kingadmin.permission_list.perm_dic.items" ]
[((262, 283), 'django.core.urlresolvers.resolve', 'resolve', (['request.path'], {}), '(request.path)\n', (269, 283), False, 'from django.core.urlresolvers import resolve\n'), ((644, 660), 'kingadmin.permission_list.perm_dic.items', 'perm_dic.items', ([], {}), '()\n', (658, 660), False, 'from kingadmin.permission_list import perm_dic\n'), ((572, 600), 'django.shortcuts.redirect', 'redirect', (['settings.LOGIN_URL'], {}), '(settings.LOGIN_URL)\n', (580, 600), False, 'from django.shortcuts import render, redirect, HttpResponse\n'), ((3483, 3525), 'django.shortcuts.render', 'render', (['request', '"""kingadmin/page_403.html"""'], {}), "(request, 'kingadmin/page_403.html')\n", (3489, 3525), False, 'from django.shortcuts import render, redirect, HttpResponse\n')]
#!/usr/bin/env python3 from time import sleep import logging import os import subprocess print("Nebra ECC Tool") preTestFail = 0 afterTestFail = 0 ECC_SUCCESSFUL_TOUCH_FILEPATH = "/var/data/gwmfr_ecc_provisioned" logging.basicConfig(level=os.environ.get("LOGLEVEL", "DEBUG")) def record_successful_provision(): logging.debug("ECC provisioning complete") # Via: https://stackoverflow.com/questions/12654772/create-empty-file-using-python/12654798 # because path lib not included in python3-minimal # https://stackoverflow.com/questions/1158076/implement-touch-using-python open(ECC_SUCCESSFUL_TOUCH_FILEPATH, 'a').close() logging.debug("ECC provisioning recorded. Touched to %s" % ECC_SUCCESSFUL_TOUCH_FILEPATH) while preTestFail < 10: preTest = subprocess.run(["/opt/gateway_mfr/bin/gateway_mfr", "ecc", "onboarding"], capture_output=True) preTestResult = str(preTest.stdout.decode('ascii')).rstrip() if "not responding to pings" not in preTestResult: break else: print("Can't load provisioning tool, retrying") preTestFail += 1 sleep(2) if "ecc_response_exec_error" in preTestResult: print("Provisioning") while afterTestFail < 5: subprocess.run(["/opt/gateway_mfr/bin/gateway_mfr", "ecc", "provision"]) print("Testing") afterTest = subprocess.run(["/opt/gateway_mfr/bin/gateway_mfr", "ecc", "onboarding"], capture_output=True).stdout afterTestResult = str(afterTest.decode('ascii')).rstrip() print(afterTestResult) if "ecc_response_exec_error" in afterTestResult: print("\033[91mProgramming FAILED\033[0m") print("Retrying provisioning") afterTestFail += 1 sleep(2) elif (len(afterTestResult) == 51 or len(afterTestResult) == 52): print("\033[92mProgramming Success!\033[0m") record_successful_provision() break else: print("\033[91mAn Unknown Error Occured\033[0m") print("Retrying provisioning") afterTestFail += 1 sleep(2) elif (len(preTestResult) == 50 or len(preTestResult) == 51 or len(preTestResult) == 52): print("\033[93mKey Already Programmed\033[0m") print(preTestResult) record_successful_provision() else: print("An Unknown Error Occured") print(preTestResult) # This next bit of mank is so we can run the gwmfr container for longer # by providing the OVERRIDE_GWMFR_EXIT environment variable for trouble # shooting purposes. if os.getenv('OVERRIDE_GWMFR_EXIT', None): while(True): print("GWMFR Utility Exit Overriden") sleep(300)
[ "logging.debug", "os.getenv", "subprocess.run", "os.environ.get", "time.sleep" ]
[((2556, 2594), 'os.getenv', 'os.getenv', (['"""OVERRIDE_GWMFR_EXIT"""', 'None'], {}), "('OVERRIDE_GWMFR_EXIT', None)\n", (2565, 2594), False, 'import os\n'), ((321, 363), 'logging.debug', 'logging.debug', (['"""ECC provisioning complete"""'], {}), "('ECC provisioning complete')\n", (334, 363), False, 'import logging\n'), ((651, 744), 'logging.debug', 'logging.debug', (["('ECC provisioning recorded. Touched to %s' % ECC_SUCCESSFUL_TOUCH_FILEPATH)"], {}), "('ECC provisioning recorded. Touched to %s' %\n ECC_SUCCESSFUL_TOUCH_FILEPATH)\n", (664, 744), False, 'import logging\n'), ((781, 879), 'subprocess.run', 'subprocess.run', (["['/opt/gateway_mfr/bin/gateway_mfr', 'ecc', 'onboarding']"], {'capture_output': '(True)'}), "(['/opt/gateway_mfr/bin/gateway_mfr', 'ecc', 'onboarding'],\n capture_output=True)\n", (795, 879), False, 'import subprocess\n'), ((243, 278), 'os.environ.get', 'os.environ.get', (['"""LOGLEVEL"""', '"""DEBUG"""'], {}), "('LOGLEVEL', 'DEBUG')\n", (257, 278), False, 'import os\n'), ((1109, 1117), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (1114, 1117), False, 'from time import sleep\n'), ((1230, 1302), 'subprocess.run', 'subprocess.run', (["['/opt/gateway_mfr/bin/gateway_mfr', 'ecc', 'provision']"], {}), "(['/opt/gateway_mfr/bin/gateway_mfr', 'ecc', 'provision'])\n", (1244, 1302), False, 'import subprocess\n'), ((2667, 2677), 'time.sleep', 'sleep', (['(300)'], {}), '(300)\n', (2672, 2677), False, 'from time import sleep\n'), ((1350, 1448), 'subprocess.run', 'subprocess.run', (["['/opt/gateway_mfr/bin/gateway_mfr', 'ecc', 'onboarding']"], {'capture_output': '(True)'}), "(['/opt/gateway_mfr/bin/gateway_mfr', 'ecc', 'onboarding'],\n capture_output=True)\n", (1364, 1448), False, 'import subprocess\n'), ((1748, 1756), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (1753, 1756), False, 'from time import sleep\n'), ((2108, 2116), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (2113, 2116), False, 'from time import sleep\n')]
#!/usr/bin/env python3 """ Simple example/demo of the unlinkable DP-3T design This demo simulates some interactions between two phones, represented by the contact tracing modules, and then runs contact tracing. """ __copyright__ = """ Copyright 2020 EPFL Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ __license__ = "Apache 2.0" from datetime import timedelta from dp3t.protocols.unlinkable import ContactTracer, TracingDataBatch def report_broadcasted_ephids(name, app): """ Convenience function to report some broadcasted EphIDs """ reporting_time = app.start_of_today + timedelta(hours=10) ephid = app.get_ephid_for_time(reporting_time) print("At {}: {} broadcasts {}".format(reporting_time.time(), name, ephid.hex())) def report_day(time): """ Convenience function to report start of the day """ print("---- {} ----".format(time)) def process_single_day(alice, bob, interaction_time=None): """ Convenience function, process and report on a single day """ report_day(alice.today) report_broadcasted_ephids("Alice", alice) report_broadcasted_ephids("Bob", bob) if interaction_time: print("Alice and Bob interact:") ephid_bob = bob.get_ephid_for_time(interaction_time) alice.add_observation(ephid_bob, interaction_time) print(" Alice observes Bob's EphID {}".format(ephid_bob.hex())) ephid_alice = alice.get_ephid_for_time(interaction_time) bob.add_observation(ephid_alice, interaction_time) print(" Bob observes Alice's EphID {}".format(ephid_alice.hex())) else: print("Alice and Bob do not interact") # Advance to the next day alice.next_day() bob.next_day() print("") def main(): alice = ContactTracer() bob = ContactTracer() ### Interaction ### process_single_day(alice, bob) process_single_day(alice, bob) interaction_time = alice.start_of_today + timedelta(hours=10) bob_contagious_start = bob.start_of_today process_single_day(alice, bob, interaction_time) print("... skipping 3 days ...\n") for _ in range(4): alice.next_day() bob.next_day() ### Diagnosis and reporting ### report_day(alice.today) print("Bob is diagnosed with SARS-CoV-2") print( "Doctor establishes that Bob started being contagious at {}".format( bob_contagious_start ) ) print("And that Bob was contagious for 3 days") bob_contagious_end = bob_contagious_start + timedelta(days=3) print("\n[Bob -> Server] Bob sends:") tracing_info_bob = bob.get_tracing_information( bob_contagious_start, bob_contagious_end ) print( " * his seeds for the time period {} to {}".format( bob_contagious_start, bob_contagious_end ) ) print(" * and the corresponding epochs\n") ### Contact tracing ### print("[Server] Compiles download batch by:") print(" * Computing hashed observations given the seeds") print(" * Inserts these into a cuckoo filter\n") batch = TracingDataBatch([tracing_info_bob]) print("[Server -> Alice] Alice receives batch") print(" * Alice checks if she was in contact with an infected person") if alice.matches_with_batch(batch) > 0: print(" * CORRECT: Alice's phone concludes she is at risk") else: print(" * ERROR: Alice's phone does not conclude she is at risk") if __name__ == "__main__": main()
[ "datetime.timedelta", "dp3t.protocols.unlinkable.ContactTracer", "dp3t.protocols.unlinkable.TracingDataBatch" ]
[((2289, 2304), 'dp3t.protocols.unlinkable.ContactTracer', 'ContactTracer', ([], {}), '()\n', (2302, 2304), False, 'from dp3t.protocols.unlinkable import ContactTracer, TracingDataBatch\n'), ((2315, 2330), 'dp3t.protocols.unlinkable.ContactTracer', 'ContactTracer', ([], {}), '()\n', (2328, 2330), False, 'from dp3t.protocols.unlinkable import ContactTracer, TracingDataBatch\n'), ((3617, 3653), 'dp3t.protocols.unlinkable.TracingDataBatch', 'TracingDataBatch', (['[tracing_info_bob]'], {}), '([tracing_info_bob])\n', (3633, 3653), False, 'from dp3t.protocols.unlinkable import ContactTracer, TracingDataBatch\n'), ((1119, 1138), 'datetime.timedelta', 'timedelta', ([], {'hours': '(10)'}), '(hours=10)\n', (1128, 1138), False, 'from datetime import timedelta\n'), ((2474, 2493), 'datetime.timedelta', 'timedelta', ([], {'hours': '(10)'}), '(hours=10)\n', (2483, 2493), False, 'from datetime import timedelta\n'), ((3053, 3070), 'datetime.timedelta', 'timedelta', ([], {'days': '(3)'}), '(days=3)\n', (3062, 3070), False, 'from datetime import timedelta\n')]
from django.urls import reverse from rest_framework import status from rest_framework.test import force_authenticate from rest_framework_simplejwt.state import User from core.views import DeactivateSelfAPIView, BecomeCommercialAPIView from tests.unittests.common import APIFactoryTestCase class BecomeCommercialAPITestCase(APIFactoryTestCase): def setUp(self) -> None: super(BecomeCommercialAPITestCase, self).setUp() self.view = BecomeCommercialAPIView.as_view() self.user = User.objects.get(username='User') self.user_2 = User.objects.get(username='User2') self.user_3 = User.objects.get(username='User3') self.commercial_user = User.objects.get(username='Commercial') def test_BecomeCommercialValid(self): request = self.request_factory.put(reverse('api_v1:core:become_commercial'), { 'password': '<PASSWORD>' }) force_authenticate(request, self.user) response = self.view(request) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertTrue(User.objects.get(username='User').is_commercial) def test_BecomeCommercialInvalid(self): request = self.request_factory.put(reverse('api_v1:core:become_commercial'), { 'password': '<PASSWORD>' }) force_authenticate(request, self.user) response = self.view(request) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_BecomeCommercialUnauthenticated(self): request = self.request_factory.put(reverse('api_v1:core:become_commercial'), { 'password': '<PASSWORD>' }) response = self.view(request) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_BecomeCommercialNoData(self): request = self.request_factory.put(reverse('api_v1:core:become_commercial')) force_authenticate(request, self.user) response = self.view(request) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_BecomeCommercialAlreadyCommercial(self): request = self.request_factory.put(reverse('api_v1:core:become_commercial'), { 'password': '<PASSWORD>' }) force_authenticate(request, self.commercial_user) response = self.view(request) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST)
[ "rest_framework.test.force_authenticate", "core.views.BecomeCommercialAPIView.as_view", "rest_framework_simplejwt.state.User.objects.get", "django.urls.reverse" ]
[((454, 487), 'core.views.BecomeCommercialAPIView.as_view', 'BecomeCommercialAPIView.as_view', ([], {}), '()\n', (485, 487), False, 'from core.views import DeactivateSelfAPIView, BecomeCommercialAPIView\n'), ((508, 541), 'rest_framework_simplejwt.state.User.objects.get', 'User.objects.get', ([], {'username': '"""User"""'}), "(username='User')\n", (524, 541), False, 'from rest_framework_simplejwt.state import User\n'), ((564, 598), 'rest_framework_simplejwt.state.User.objects.get', 'User.objects.get', ([], {'username': '"""User2"""'}), "(username='User2')\n", (580, 598), False, 'from rest_framework_simplejwt.state import User\n'), ((621, 655), 'rest_framework_simplejwt.state.User.objects.get', 'User.objects.get', ([], {'username': '"""User3"""'}), "(username='User3')\n", (637, 655), False, 'from rest_framework_simplejwt.state import User\n'), ((687, 726), 'rest_framework_simplejwt.state.User.objects.get', 'User.objects.get', ([], {'username': '"""Commercial"""'}), "(username='Commercial')\n", (703, 726), False, 'from rest_framework_simplejwt.state import User\n'), ((913, 951), 'rest_framework.test.force_authenticate', 'force_authenticate', (['request', 'self.user'], {}), '(request, self.user)\n', (931, 951), False, 'from rest_framework.test import force_authenticate\n'), ((1318, 1356), 'rest_framework.test.force_authenticate', 'force_authenticate', (['request', 'self.user'], {}), '(request, self.user)\n', (1336, 1356), False, 'from rest_framework.test import force_authenticate\n'), ((1911, 1949), 'rest_framework.test.force_authenticate', 'force_authenticate', (['request', 'self.user'], {}), '(request, self.user)\n', (1929, 1949), False, 'from rest_framework.test import force_authenticate\n'), ((2262, 2311), 'rest_framework.test.force_authenticate', 'force_authenticate', (['request', 'self.commercial_user'], {}), '(request, self.commercial_user)\n', (2280, 2311), False, 'from rest_framework.test import force_authenticate\n'), ((813, 853), 'django.urls.reverse', 'reverse', (['"""api_v1:core:become_commercial"""'], {}), "('api_v1:core:become_commercial')\n", (820, 853), False, 'from django.urls import reverse\n'), ((1218, 1258), 'django.urls.reverse', 'reverse', (['"""api_v1:core:become_commercial"""'], {}), "('api_v1:core:become_commercial')\n", (1225, 1258), False, 'from django.urls import reverse\n'), ((1567, 1607), 'django.urls.reverse', 'reverse', (['"""api_v1:core:become_commercial"""'], {}), "('api_v1:core:become_commercial')\n", (1574, 1607), False, 'from django.urls import reverse\n'), ((1861, 1901), 'django.urls.reverse', 'reverse', (['"""api_v1:core:become_commercial"""'], {}), "('api_v1:core:become_commercial')\n", (1868, 1901), False, 'from django.urls import reverse\n'), ((2162, 2202), 'django.urls.reverse', 'reverse', (['"""api_v1:core:become_commercial"""'], {}), "('api_v1:core:become_commercial')\n", (2169, 2202), False, 'from django.urls import reverse\n'), ((1081, 1114), 'rest_framework_simplejwt.state.User.objects.get', 'User.objects.get', ([], {'username': '"""User"""'}), "(username='User')\n", (1097, 1114), False, 'from rest_framework_simplejwt.state import User\n')]
# Comment import pandas as pd import re from google.cloud import storage from pathlib import Path def load_data(filename, chunksize=10000): good_columns = [ 'created_at', 'entities', 'favorite_count', 'full_text', 'id_str', 'in_reply_to_screen_name', 'in_reply_to_status_id_str', 'is_quote_status', 'lang', 'retweet_count', 'source', 'user', 'quoted_status_id_str', 'quoted_status_permalink' ] chunks = pd.read_json( filename, lines=True, chunksize=chunksize, dtype={ 'id_str': str, 'in_reply_to_status_id_str': str, 'quoted_status_id_str': str } ) df = pd.concat(chunk for chunk in chunks)[good_columns] return df def entity_extraction(entity, component, urls=False, user_mentions=False): try: if urls is True: if entity[component] == []: return None elif entity[component] != []: return ','.join([url['url'] for url in entity[component]]) elif user_mentions is True: if entity[component] == []: return None elif entity[component] != []: return ','.join( [mention['screen_name'] for mention in entity[component]] ) else: if entity[component] == []: return None elif entity[component] != []: return ','.join([comp['text'] for comp in entity[component]]) except Exception: return None def source_extract(text): try: regex = re.compile(r'(?<=>).*?(?=<)', re.I) return regex.search(text).group() except AttributeError: return None def quoted_status_extract(status): try: return status['url'] except Exception: return None def clean_panacea_data(dataframe): user_components = [ 'created_at', 'description', 'favourites_count', 'followers_count', 'friends_count', 'id_str', 'location', 'name', 'profile_image_url_https', 'screen_name', 'statuses_count', 'verified' ] dataframe['hashtags'] = dataframe['entities']\ .apply(lambda x: entity_extraction(x, 'hashtags')) dataframe['symbols'] = dataframe['entities']\ .apply(lambda x: entity_extraction(x, 'symbols')) dataframe['urls'] = dataframe['entities']\ .apply(lambda x: entity_extraction(x, 'urls', urls=True)) dataframe['user_mentions'] = dataframe['entities']\ .apply(lambda x: entity_extraction(x, 'user_mentions', user_mentions=True)) dataframe['tweet_source'] = dataframe['source'].apply(source_extract) for comp in user_components: dataframe[f'user_{comp}'] = dataframe['user']\ .apply(lambda user: user[comp]) dataframe['quoted_status_url'] = dataframe['quoted_status_permalink']\ .apply(quoted_status_extract) dataframe.drop(labels=[ 'user', 'entities', 'source', 'quoted_status_permalink' ], axis=1, inplace=True) dataframe.fillna('none', inplace=True) return dataframe def cleaning_wrapper(date): print('Loading data...') df = load_data(f'{date}/{date}_clean-dataset.json') print('Cleaning data...') df = clean_panacea_data(dataframe=df) print(f'Cleaned data, converting data for date {date} to pickle format...') df.to_pickle(f'{date}/{date}_clean-dataset.pkl') def download_blob(bucket_name, source_blob_name, destination_file_name): """Downloads a blob from the bucket.""" # bucket_name = "your-bucket-name" # source_blob_name = "storage-object-name" # destination_file_name = "local/path/to/file" storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blob = bucket.blob(source_blob_name) blob.download_to_filename(destination_file_name) print(f"Blob {source_blob_name} downloaded to {destination_file_name}.") def upload_blob(bucket_name, source_file_name, destination_blob_name): """Uploads a file to the bucket.""" # bucket_name = "your-bucket-name" # source_file_name = "local/path/to/file" # destination_blob_name = "storage-object-name" storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blob = bucket.blob(destination_blob_name) blob.upload_from_filename(source_file_name) print(f"File {source_file_name} uploaded to {destination_blob_name}.") def main(): date = input('Date whose data will be cleaned (format: YYYY-MM-DD):\n') bucket_name = 'thepanacealab_covid19twitter' download_blob( bucket_name=bucket_name, source_blob_name=f''' dailies/{date}/panacealab_{date}_clean-dataset.json ''', destination_file_name=f'{date}/{date}_clean-dataset.json' ) cleaning_wrapper(date) upload_blob( bucket_name=bucket_name, source_file_name=f'{date}/{date}_clean-dataset.pkl', destination_blob_name=f'dailies/{date}/{date}_clean-dataset.pkl' ) file_delete_path = Path.cwd() / date / f'{date}_clean-dataset.json' file_delete_path.unlink() print(f'{date}_clean-dataset.json removed from {date} folder.') if __name__ == '__main__': main()
[ "google.cloud.storage.Client", "re.compile", "pathlib.Path.cwd", "pandas.concat", "pandas.read_json" ]
[((529, 674), 'pandas.read_json', 'pd.read_json', (['filename'], {'lines': '(True)', 'chunksize': 'chunksize', 'dtype': "{'id_str': str, 'in_reply_to_status_id_str': str, 'quoted_status_id_str': str}"}), "(filename, lines=True, chunksize=chunksize, dtype={'id_str':\n str, 'in_reply_to_status_id_str': str, 'quoted_status_id_str': str})\n", (541, 674), True, 'import pandas as pd\n'), ((3948, 3964), 'google.cloud.storage.Client', 'storage.Client', ([], {}), '()\n', (3962, 3964), False, 'from google.cloud import storage\n'), ((4456, 4472), 'google.cloud.storage.Client', 'storage.Client', ([], {}), '()\n', (4470, 4472), False, 'from google.cloud import storage\n'), ((764, 800), 'pandas.concat', 'pd.concat', (['(chunk for chunk in chunks)'], {}), '(chunk for chunk in chunks)\n', (773, 800), True, 'import pandas as pd\n'), ((1718, 1752), 're.compile', 're.compile', (['"""(?<=>).*?(?=<)"""', 're.I'], {}), "('(?<=>).*?(?=<)', re.I)\n", (1728, 1752), False, 'import re\n'), ((5296, 5306), 'pathlib.Path.cwd', 'Path.cwd', ([], {}), '()\n', (5304, 5306), False, 'from pathlib import Path\n')]
import os import glob import torch import numpy as np # from PIL import Image, UnidentifiedImageError from torch.utils.data import Dataset from torchvision.datasets import MNIST class ToyDataset(Dataset): def __init__(self, N_K=50, K=4, X=None, Y=None): super().__init__() if X is not None: self.data, self.targets = X, Y else: self.data, self.targets = self._init_data(N_K, K) self.task_ids = torch.arange(self.targets.size(0)) def _init_data(self, N_K, K): X1 = torch.cat([ 0.8 + 0.4 * torch.randn(N_K, 1), 1.5 + 0.4 * torch.randn(N_K, 1), ], dim=-1) Y1 = 0 * torch.ones(X1.size(0)).long() X2 = torch.cat([ 0.5 + 0.6 * torch.randn(N_K, 1), -0.2 - 0.1 * torch.randn(N_K, 1), ], dim=-1) Y2 = 1 * torch.ones(X2.size(0)).long() X3 = torch.cat([ 2.5 - 0.1 * torch.randn(N_K, 1), 1.0 + 0.6 * torch.randn(N_K, 1), ], dim=-1) Y3 = 2 * torch.ones(X3.size(0)).long() X4 = torch.distributions.MultivariateNormal( torch.Tensor([-0.5, 1.5]), covariance_matrix=torch.Tensor([[0.2, 0.1], [0.1, 0.1]])).sample(torch.Size([N_K])) Y4 = 3 * torch.ones(X4.size(0)).long() X = torch.cat([X1, X2, X3, X4], dim=0) X[:, 1] -= 1 X[:, 0] -= 0.5 Y = torch.cat([Y1, Y2, Y3, Y4]) return X, Y def filter_by_class(self, class_list=None): if class_list: mask = torch.zeros_like(self.targets).bool() for c in class_list: mask |= self.targets == c else: mask = torch.ones_like(self.targets).bool() self.task_ids = torch.masked_select(torch.arange(self.targets.size(0)), mask) def __getitem__(self, index): return self.data[self.task_ids[index]], self.targets[self.task_ids[index]] def __len__(self): return self.task_ids.size(0) class SplitMNIST(MNIST): def __init__(self, *args, **kwargs): kwargs['download'] = True super().__init__(*args, **kwargs) self.data = self.data.reshape(self.data.size(0), -1).float() / 255. self.task_ids = torch.arange(self.targets.size(0)) def filter_by_class(self, class_list=None): if class_list: mask = torch.zeros_like(self.targets).bool() for c in class_list: mask |= self.targets == c else: mask = torch.ones_like(self.targets).bool() self.task_ids = torch.masked_select(torch.arange(self.targets.size(0)), mask) def filter_by_idx(self, idx): self.data = self.data[idx] self.targets = self.targets[idx] self.task_ids = torch.arange(self.targets.size(0)) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ return self.data[self.task_ids[index]], self.targets[self.task_ids[index]] def __len__(self): return self.task_ids.size(0) class PermutedMNIST(MNIST): @staticmethod def create_tasks(n=1): return [torch.randperm(784) for _ in range(n)] def __init__(self, *args, **kwargs): kwargs['download'] = True super().__init__(*args, **kwargs) self.data = self.data.reshape(self.data.size(0), -1).float() / 255. self.perm = None def set_task(self, perm): assert self.perm is None, 'Cannot set task again.' self.data = self.data[:, perm] self.perm = perm def filter_by_idx(self, idx): self.data = self.data[idx] self.targets = self.targets[idx] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ return self.data[index], self.targets[index]
[ "torch.ones_like", "torch.randperm", "torch.Tensor", "torch.zeros_like", "torch.Size", "torch.randn", "torch.cat" ]
[((1207, 1241), 'torch.cat', 'torch.cat', (['[X1, X2, X3, X4]'], {'dim': '(0)'}), '([X1, X2, X3, X4], dim=0)\n', (1216, 1241), False, 'import torch\n'), ((1287, 1314), 'torch.cat', 'torch.cat', (['[Y1, Y2, Y3, Y4]'], {}), '([Y1, Y2, Y3, Y4])\n', (1296, 1314), False, 'import torch\n'), ((1136, 1153), 'torch.Size', 'torch.Size', (['[N_K]'], {}), '([N_K])\n', (1146, 1153), False, 'import torch\n'), ((2951, 2970), 'torch.randperm', 'torch.randperm', (['(784)'], {}), '(784)\n', (2965, 2970), False, 'import torch\n'), ((1032, 1057), 'torch.Tensor', 'torch.Tensor', (['[-0.5, 1.5]'], {}), '([-0.5, 1.5])\n', (1044, 1057), False, 'import torch\n'), ((1411, 1441), 'torch.zeros_like', 'torch.zeros_like', (['self.targets'], {}), '(self.targets)\n', (1427, 1441), False, 'import torch\n'), ((1533, 1562), 'torch.ones_like', 'torch.ones_like', (['self.targets'], {}), '(self.targets)\n', (1548, 1562), False, 'import torch\n'), ((2162, 2192), 'torch.zeros_like', 'torch.zeros_like', (['self.targets'], {}), '(self.targets)\n', (2178, 2192), False, 'import torch\n'), ((2284, 2313), 'torch.ones_like', 'torch.ones_like', (['self.targets'], {}), '(self.targets)\n', (2299, 2313), False, 'import torch\n'), ((535, 554), 'torch.randn', 'torch.randn', (['N_K', '(1)'], {}), '(N_K, 1)\n', (546, 554), False, 'import torch\n'), ((574, 593), 'torch.randn', 'torch.randn', (['N_K', '(1)'], {}), '(N_K, 1)\n', (585, 593), False, 'import torch\n'), ((693, 712), 'torch.randn', 'torch.randn', (['N_K', '(1)'], {}), '(N_K, 1)\n', (704, 712), False, 'import torch\n'), ((733, 752), 'torch.randn', 'torch.randn', (['N_K', '(1)'], {}), '(N_K, 1)\n', (744, 752), False, 'import torch\n'), ((852, 871), 'torch.randn', 'torch.randn', (['N_K', '(1)'], {}), '(N_K, 1)\n', (863, 871), False, 'import torch\n'), ((891, 910), 'torch.randn', 'torch.randn', (['N_K', '(1)'], {}), '(N_K, 1)\n', (902, 910), False, 'import torch\n'), ((1089, 1127), 'torch.Tensor', 'torch.Tensor', (['[[0.2, 0.1], [0.1, 0.1]]'], {}), '([[0.2, 0.1], [0.1, 0.1]])\n', (1101, 1127), False, 'import torch\n')]
from django.shortcuts import render, HttpResponse from django.views.generic.list import ListView from django.views.generic.edit import UpdateView, DeleteView, CreateView from . models import OuverTimeRecord from django.contrib.auth.models import User from django.urls import reverse_lazy from django.views import View import json import csv # Import for reportlab import io from django.http import FileResponse from reportlab.pdfgen import canvas # Import for Xhtm2 from django.template.loader import get_template from xhtml2pdf import pisa #import Xlwt import xlwt def index(request): return HttpResponse('ok') class OuverTimeRecordListView(ListView): model = OuverTimeRecord # paginate_by = 100 # if pagination is desired def get_queryset(self): logged_company = self.request.user.employee.company.id queryset = OuverTimeRecord.objects.filter(employee=logged_company) return queryset class OuverTimeRecordUpdate(UpdateView): model = OuverTimeRecord fields = ['reason', 'hours'] #Metodo desabilitado por mudança de regra #def form_valid(self, form): # obj = form.save(commit=False) # obj.employee = self.request.user.employee # obj.save() # return super(OuverTimeRecordUpdate, self).form_valid(form) class OuverTimeRecordDelete(DeleteView): model = OuverTimeRecord success_url = reverse_lazy('ouvertime_record:ouver-time') class OuverTimeRecordCreate(CreateView): model = OuverTimeRecord fields = ['reason', 'hours'] def form_valid(self, form): obj = form.save(commit=False) obj.employee = self.request.user.employee obj.save() return super(OuverTimeRecordCreate, self).form_valid(form) class UtilizouHoraExtra(View): def post(self, *args, **kwargs): used = OuverTimeRecord.objects.get(id=kwargs['pk']) used.used = True used.save() employee = self.request.user.employee response = json.dumps( {'mensagem': 'Utilizado', 'hours': float(employee.sum_overtime)}) return HttpResponse(response, content_type='application/json') class CheckedFalse(View): def post(self, *args, **kwargs): used = OuverTimeRecord.objects.get(id=kwargs['pk']) used.used = False used.save() employee = self.request.user.employee response = json.dumps( {'mensagem': 'Não Utilizado', 'hours': float(employee.sum_overtime)}) return HttpResponse(response, content_type='application/json') # ReportLab def some_view(request): response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename="mypdf.pdf"' buffer = io.BytesIO() p = canvas.Canvas(buffer) p.drawString(200, 810, 'Relatorio de Horas ReportLab') times = OuverTimeRecord.objects.filter( employee=request.user.employee.company.id) y = 790 for time in times: p.drawString(10, y, time.reason) p.drawString(100, y, time.employee.name) p.drawString(200, y, str(time.hours)) p.drawString(300, y, str(time.used)) y -= 40 p.showPage() p.save() pdf = buffer.getvalue() buffer.close() response.write(pdf) return response # Xhtml2 def link_callback(uri, rel): """ Convert HTML URIs to absolute system paths so xhtml2pdf can access those resources """ result = finders.find(uri) if result: if not isinstance(result, (list, tuple)): result = [result] result = list(os.path.realpath(path) for path in result) path = result[0] else: sUrl = settings.STATIC_URL # Typically /static/ sRoot = settings.STATIC_ROOT # Typically /home/userX/project_static/ mUrl = settings.MEDIA_URL # Typically /media/ mRoot = settings.MEDIA_ROOT # Typically /home/userX/project_static/media/ if uri.startswith(mUrl): path = os.path.join(mRoot, uri.replace(mUrl, "")) elif uri.startswith(sUrl): path = os.path.join(sRoot, uri.replace(sUrl, "")) else: return uri # make sure that file exists if not os.path.isfile(path): raise Exception( 'media URI must start with %s or %s' % (sUrl, mUrl) ) return path def render_pdf_view(request): template_path = 'ouvertime_record/time_report.html' cols = OuverTimeRecord.objects.filter( employee=request.user.employee.company.id) context = {'cols': cols} # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') # response['Content-Disposition'] = 'attachment; filename="report.pdf"' response['Content-Disposition'] = 'attachment; filename="time-report.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisa_status = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisa_status.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response class ExportCsv(View): def get(self, request): # Create the HttpResponse object with the appropriate CSV header. response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="somefilename.csv"' times = OuverTimeRecord.objects.filter( employee=request.user.employee.company.id) writer = csv.writer(response) writer.writerow(['Reason', 'Employee', 'Hours', 'Used']) for time in times: writer.writerow( [time.reason, time.employee.name, time.hours, time.used]) return response # Excel class ExportExcel(View): def get(self, request): response = HttpResponse(content_type='application/ms-excel') response['Content-Disposition'] = 'attachment; filename="export_excel.xls"' wb = xlwt.Workbook(encoding='utf-8') ws = wb.add_sheet('export_excel') row_num = 0 columns = ['Reason', 'Employee', 'Hours', 'Used'] for col_num in range(len(columns)): ws.write(row_num, col_num, columns[col_num]) font_style = xlwt.XFStyle() times = OuverTimeRecord.objects.filter( employee=request.user.employee.company.id) row_num = 1 for time in times: ws.write(row_num, 0, time.reason) ws.write(row_num, 1, time.employee.name) ws.write(row_num, 2, time.hours) ws.write(row_num, 3, time.used) row_num += 1 wb.save(response) return response
[ "xhtml2pdf.pisa.CreatePDF", "django.shortcuts.HttpResponse", "xlwt.XFStyle", "csv.writer", "io.BytesIO", "django.urls.reverse_lazy", "reportlab.pdfgen.canvas.Canvas", "xlwt.Workbook", "django.template.loader.get_template" ]
[((603, 621), 'django.shortcuts.HttpResponse', 'HttpResponse', (['"""ok"""'], {}), "('ok')\n", (615, 621), False, 'from django.shortcuts import render, HttpResponse\n'), ((1385, 1428), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""ouvertime_record:ouver-time"""'], {}), "('ouvertime_record:ouver-time')\n", (1397, 1428), False, 'from django.urls import reverse_lazy\n'), ((2599, 2643), 'django.shortcuts.HttpResponse', 'HttpResponse', ([], {'content_type': '"""application/pdf"""'}), "(content_type='application/pdf')\n", (2611, 2643), False, 'from django.shortcuts import render, HttpResponse\n'), ((2731, 2743), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2741, 2743), False, 'import io\n'), ((2752, 2773), 'reportlab.pdfgen.canvas.Canvas', 'canvas.Canvas', (['buffer'], {}), '(buffer)\n', (2765, 2773), False, 'from reportlab.pdfgen import canvas\n'), ((4665, 4709), 'django.shortcuts.HttpResponse', 'HttpResponse', ([], {'content_type': '"""application/pdf"""'}), "(content_type='application/pdf')\n", (4677, 4709), False, 'from django.shortcuts import render, HttpResponse\n'), ((4919, 4946), 'django.template.loader.get_template', 'get_template', (['template_path'], {}), '(template_path)\n', (4931, 4946), False, 'from django.template.loader import get_template\n'), ((5021, 5085), 'xhtml2pdf.pisa.CreatePDF', 'pisa.CreatePDF', (['html'], {'dest': 'response', 'link_callback': 'link_callback'}), '(html, dest=response, link_callback=link_callback)\n', (5035, 5085), False, 'from xhtml2pdf import pisa\n'), ((2087, 2142), 'django.shortcuts.HttpResponse', 'HttpResponse', (['response'], {'content_type': '"""application/json"""'}), "(response, content_type='application/json')\n", (2099, 2142), False, 'from django.shortcuts import render, HttpResponse\n'), ((2490, 2545), 'django.shortcuts.HttpResponse', 'HttpResponse', (['response'], {'content_type': '"""application/json"""'}), "(response, content_type='application/json')\n", (2502, 2545), False, 'from django.shortcuts import render, HttpResponse\n'), ((5174, 5232), 'django.shortcuts.HttpResponse', 'HttpResponse', (["('We had some errors <pre>' + html + '</pre>')"], {}), "('We had some errors <pre>' + html + '</pre>')\n", (5186, 5232), False, 'from django.shortcuts import render, HttpResponse\n'), ((5399, 5436), 'django.shortcuts.HttpResponse', 'HttpResponse', ([], {'content_type': '"""text/csv"""'}), "(content_type='text/csv')\n", (5411, 5436), False, 'from django.shortcuts import render, HttpResponse\n'), ((5643, 5663), 'csv.writer', 'csv.writer', (['response'], {}), '(response)\n', (5653, 5663), False, 'import csv\n'), ((5968, 6017), 'django.shortcuts.HttpResponse', 'HttpResponse', ([], {'content_type': '"""application/ms-excel"""'}), "(content_type='application/ms-excel')\n", (5980, 6017), False, 'from django.shortcuts import render, HttpResponse\n'), ((6116, 6147), 'xlwt.Workbook', 'xlwt.Workbook', ([], {'encoding': '"""utf-8"""'}), "(encoding='utf-8')\n", (6129, 6147), False, 'import xlwt\n'), ((6403, 6417), 'xlwt.XFStyle', 'xlwt.XFStyle', ([], {}), '()\n', (6415, 6417), False, 'import xlwt\n')]
import unittest as ut import time class test_magick(ut.TestCase): def test_us(self): list_r = list(range(0, 100)) for i in list_r: with self.subTest(case=i): self.assertEqual(magick(i), i) def magick(x=None, start=0, stop=100): yes = ['да', 'д', 'yes', 'y', 'ye'] while (stop >= start): current_state = (start + stop) // 2 if x is None: ans = input(f'Верно ли, что загаданное число меньше {current_state}?').lower() if ans in yes: stop = current_state - 1 else: start = current_state + 1 elif current_state > x: stop = current_state - 1 else: start = current_state + 1 return stop def main(): x = float(input('Введите число: ')) print('ваше число:', magick()) print('\n\n') def test(): start = time.time() magick(123123123123, 0, 10e100) print(time.time() - start, '\n') start = time.time() magick(123123123123, 0, 10e250) print(time.time() - start, '\n') start = time.time() magick(123123123123, 0, 10e500) print(time.time() - start, '\n') ut.main() if __name__ == '__main__': main() # test()
[ "unittest.main", "time.time" ]
[((907, 918), 'time.time', 'time.time', ([], {}), '()\n', (916, 918), False, 'import time\n'), ((1005, 1016), 'time.time', 'time.time', ([], {}), '()\n', (1014, 1016), False, 'import time\n'), ((1103, 1114), 'time.time', 'time.time', ([], {}), '()\n', (1112, 1114), False, 'import time\n'), ((1193, 1202), 'unittest.main', 'ut.main', ([], {}), '()\n', (1200, 1202), True, 'import unittest as ut\n'), ((965, 976), 'time.time', 'time.time', ([], {}), '()\n', (974, 976), False, 'import time\n'), ((1063, 1074), 'time.time', 'time.time', ([], {}), '()\n', (1072, 1074), False, 'import time\n'), ((1161, 1172), 'time.time', 'time.time', ([], {}), '()\n', (1170, 1172), False, 'import time\n')]
# coding=utf-8 # Copyright 2020 The Tensor2Robot Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as python3 """Functions for converting env episode data to tfrecords of transitions.""" import collections import gin import numpy as np from PIL import Image import six from six.moves import range import tensorflow.compat.v1 as tf _bytes_feature = ( lambda v: tf.train.Feature(bytes_list=tf.train.BytesList(value=v))) _int64_feature = ( lambda v: tf.train.Feature(int64_list=tf.train.Int64List(value=v))) _float_feature = ( lambda v: tf.train.Feature(float_list=tf.train.FloatList(value=v))) _IMAGE_KEY_PREFIX = 'image' @gin.configurable def make_fixed_length( input_list, fixed_length, always_include_endpoints=True, randomized=True): """Create a fixed length list by sampling entries from input_list. Args: input_list: The original list we sample entries from. fixed_length: An integer: the desired length of the output list. always_include_endpoints: If True, always include the first and last entries of input_list in the output. randomized: If True, select entries from input_list by random sampling with replacement. If False, select entries from input_list deterministically. Returns: A list of length fixed_length containing sampled entries of input_list. """ original_length = len(input_list) if original_length <= 2: return None if not randomized: indices = np.sort(np.mod(np.arange(fixed_length), original_length)) return [input_list[i] for i in indices] if always_include_endpoints: # Always include entries 0 and N-1. endpoint_indices = np.array([0, original_length - 1]) # The remaining (fixed_length-2) frames are sampled with replacement # from entries [1, N-1) of input_list. other_indices = 1 + np.random.choice( original_length - 2, fixed_length-2, replace=True) indices = np.concatenate( (endpoint_indices, other_indices), axis=0) else: indices = np.random.choice( original_length, fixed_length, replace=True) indices = np.sort(indices) return [input_list[i] for i in indices] @gin.configurable def episode_to_transitions_reacher(episode_data, is_demo=False): """Converts reacher env data to transition examples.""" transitions = [] for i, transition in enumerate(episode_data): del i feature_dict = {} (obs_t, action, reward, obs_tp1, done, debug) = transition del debug feature_dict['pose_t'] = _float_feature(obs_t) feature_dict['pose_tp1'] = _float_feature(obs_tp1) feature_dict['action'] = _float_feature(action) feature_dict['reward'] = _float_feature([reward]) feature_dict['done'] = _int64_feature([int(done)]) feature_dict['is_demo'] = _int64_feature([int(is_demo)]) example = tf.train.Example(features=tf.train.Features(feature=feature_dict)) transitions.append(example) return transitions @gin.configurable def episode_to_transitions_metareacher(episode_data): """Converts metareacher env data to transition examples.""" context_features = {} feature_lists = collections.defaultdict(list) context_features['is_demo'] = _int64_feature( [int(episode_data[0][-1]['is_demo'])]) context_features['target_idx'] = _int64_feature( [episode_data[0][-1]['target_idx']]) for i, transition in enumerate(episode_data): del i (obs_t, action, reward, obs_tp1, done, debug) = transition del debug feature_lists['pose_t'].append(_float_feature(obs_t)) feature_lists['pose_tp1'].append(_float_feature(obs_tp1)) feature_lists['action'].append(_float_feature(action)) feature_lists['reward'].append(_float_feature([reward])) feature_lists['done'].append(_int64_feature([int(done)])) tf_feature_lists = {} for key in feature_lists: tf_feature_lists[key] = tf.train.FeatureList(feature=feature_lists[key]) return [tf.train.SequenceExample( context=tf.train.Features(feature=context_features), feature_lists=tf.train.FeatureLists(feature_list=tf_feature_lists))]
[ "tensorflow.compat.v1.train.Features", "tensorflow.compat.v1.train.FloatList", "numpy.random.choice", "numpy.sort", "numpy.array", "tensorflow.compat.v1.train.BytesList", "collections.defaultdict", "tensorflow.compat.v1.train.FeatureList", "numpy.concatenate", "tensorflow.compat.v1.train.Int64List", "tensorflow.compat.v1.train.FeatureLists", "numpy.arange" ]
[((2614, 2630), 'numpy.sort', 'np.sort', (['indices'], {}), '(indices)\n', (2621, 2630), True, 'import numpy as np\n'), ((3634, 3663), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (3657, 3663), False, 'import collections\n'), ((2168, 2202), 'numpy.array', 'np.array', (['[0, original_length - 1]'], {}), '([0, original_length - 1])\n', (2176, 2202), True, 'import numpy as np\n'), ((2434, 2491), 'numpy.concatenate', 'np.concatenate', (['(endpoint_indices, other_indices)'], {'axis': '(0)'}), '((endpoint_indices, other_indices), axis=0)\n', (2448, 2491), True, 'import numpy as np\n'), ((2531, 2592), 'numpy.random.choice', 'np.random.choice', (['original_length', 'fixed_length'], {'replace': '(True)'}), '(original_length, fixed_length, replace=True)\n', (2547, 2592), True, 'import numpy as np\n'), ((4371, 4419), 'tensorflow.compat.v1.train.FeatureList', 'tf.train.FeatureList', ([], {'feature': 'feature_lists[key]'}), '(feature=feature_lists[key])\n', (4391, 4419), True, 'import tensorflow.compat.v1 as tf\n'), ((910, 937), 'tensorflow.compat.v1.train.BytesList', 'tf.train.BytesList', ([], {'value': 'v'}), '(value=v)\n', (928, 937), True, 'import tensorflow.compat.v1 as tf\n'), ((1001, 1028), 'tensorflow.compat.v1.train.Int64List', 'tf.train.Int64List', ([], {'value': 'v'}), '(value=v)\n', (1019, 1028), True, 'import tensorflow.compat.v1 as tf\n'), ((1092, 1119), 'tensorflow.compat.v1.train.FloatList', 'tf.train.FloatList', ([], {'value': 'v'}), '(value=v)\n', (1110, 1119), True, 'import tensorflow.compat.v1 as tf\n'), ((2343, 2412), 'numpy.random.choice', 'np.random.choice', (['(original_length - 2)', '(fixed_length - 2)'], {'replace': '(True)'}), '(original_length - 2, fixed_length - 2, replace=True)\n', (2359, 2412), True, 'import numpy as np\n'), ((1987, 2010), 'numpy.arange', 'np.arange', (['fixed_length'], {}), '(fixed_length)\n', (1996, 2010), True, 'import numpy as np\n'), ((3362, 3401), 'tensorflow.compat.v1.train.Features', 'tf.train.Features', ([], {'feature': 'feature_dict'}), '(feature=feature_dict)\n', (3379, 3401), True, 'import tensorflow.compat.v1 as tf\n'), ((4471, 4514), 'tensorflow.compat.v1.train.Features', 'tf.train.Features', ([], {'feature': 'context_features'}), '(feature=context_features)\n', (4488, 4514), True, 'import tensorflow.compat.v1 as tf\n'), ((4536, 4588), 'tensorflow.compat.v1.train.FeatureLists', 'tf.train.FeatureLists', ([], {'feature_list': 'tf_feature_lists'}), '(feature_list=tf_feature_lists)\n', (4557, 4588), True, 'import tensorflow.compat.v1 as tf\n')]
from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException import pandas as pd import requests from StringIO import StringIO def detect_file_extension(filename): """Extract and return the extension of a file given a filename. Args: filename (str): name of the file Returns: str: extension of the file Raises: BarryFileException: if extension not present in filename """ if filename is None: raise BarryFileException("Input file name cannot be None") split_filename = filename.split(".") if len(split_filename) > 1: return str(split_filename[-1]).lower() else: raise BarryFileException("Could not determine input file type from file extension") def xls_to_df(filename, skip_rows, skip_header, columns): """Converts a XLS file to Pandas dataframe. Args: filename (str): name of the file skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 return pd.read_excel(filename, skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def xlsx_to_df(filename, skip_rows, skip_header, columns): """Converts a XLSX file to Pandas dataframe. Args: filename (str): name of the file skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 return pd.read_excel(filename, skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def csv_to_df(filename, skip_rows, skip_header, columns): """Converts a CSV file to Pandas dataframe. Args: filename (str): name of the file skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 return pd.read_csv(filename, skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def url_to_df(url, skip_rows, skip_header, columns): """Converts a CSV from HTTP URL to Pandas dataframe. Args: url (str): http url of the csv skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 url_content = requests.get(url).content return pd.read_csv(StringIO(url_content), skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def df_to_xls(df, out_filename): """Writes a Pandas dataframe to a XLS file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_excel(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def df_to_xlsx(df, out_filename): """Writes a Pandas dataframe to a XLS file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_excel(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def df_to_json(df, out_filename): """Writes a Pandas dataframe to a JSON file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_json(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def df_to_csv(df, out_filename): """Writes a Pandas dataframe to a CSV file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_csv(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def sort_df(df, sort_column, ascending): """Sort a DataFrame with the column name passed in ascending/descending order. Args: df (dataframe): dataframe that needs to be sorted sort_column (str): column to be sorted on ascending (bool): sort order, ascending if True, descending if False Returns: dataframe: a pandas dataframe Raises: BarryDFException: if there is any error while sorting the dataframe """ try: return df.sort(columns=sort_column, ascending=ascending) except Exception as e: raise BarryDFException("Could not sort dataframe on columns %s" % (sort_column))
[ "StringIO.StringIO", "exceptions.BarryFileException", "exceptions.BarryDFException", "pandas.read_csv", "exceptions.BarryConversionException", "requests.get", "pandas.read_excel", "exceptions.BarryExportException" ]
[((506, 558), 'exceptions.BarryFileException', 'BarryFileException', (['"""Input file name cannot be None"""'], {}), "('Input file name cannot be None')\n", (524, 558), False, 'from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException\n'), ((705, 782), 'exceptions.BarryFileException', 'BarryFileException', (['"""Could not determine input file type from file extension"""'], {}), "('Could not determine input file type from file extension')\n", (723, 782), False, 'from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException\n'), ((1557, 1635), 'pandas.read_excel', 'pd.read_excel', (['filename'], {'skiprows': 'skip_rows', 'header': 'skip_header', 'names': 'columns'}), '(filename, skiprows=skip_rows, header=skip_header, names=columns)\n', (1570, 1635), True, 'import pandas as pd\n'), ((2533, 2611), 'pandas.read_excel', 'pd.read_excel', (['filename'], {'skiprows': 'skip_rows', 'header': 'skip_header', 'names': 'columns'}), '(filename, skiprows=skip_rows, header=skip_header, names=columns)\n', (2546, 2611), True, 'import pandas as pd\n'), ((3507, 3583), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'skiprows': 'skip_rows', 'header': 'skip_header', 'names': 'columns'}), '(filename, skiprows=skip_rows, header=skip_header, names=columns)\n', (3518, 3583), True, 'import pandas as pd\n'), ((1677, 1754), 'exceptions.BarryConversionException', 'BarryConversionException', (["('Could not convert file %s to dataframe' % filename)"], {}), "('Could not convert file %s to dataframe' % filename)\n", (1701, 1754), False, 'from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException\n'), ((2653, 2730), 'exceptions.BarryConversionException', 'BarryConversionException', (["('Could not convert file %s to dataframe' % filename)"], {}), "('Could not convert file %s to dataframe' % filename)\n", (2677, 2730), False, 'from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException\n'), ((3625, 3702), 'exceptions.BarryConversionException', 'BarryConversionException', (["('Could not convert file %s to dataframe' % filename)"], {}), "('Could not convert file %s to dataframe' % filename)\n", (3649, 3702), False, 'from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException\n'), ((4489, 4506), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (4501, 4506), False, 'import requests\n'), ((4543, 4564), 'StringIO.StringIO', 'StringIO', (['url_content'], {}), '(url_content)\n', (4551, 4564), False, 'from StringIO import StringIO\n'), ((4662, 4739), 'exceptions.BarryConversionException', 'BarryConversionException', (["('Could not convert file %s to dataframe' % filename)"], {}), "('Could not convert file %s to dataframe' % filename)\n", (4686, 4739), False, 'from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException\n'), ((5109, 5184), 'exceptions.BarryExportException', 'BarryExportException', (["('Could not write dataframe to file %s' % out_filename)"], {}), "('Could not write dataframe to file %s' % out_filename)\n", (5129, 5184), False, 'from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException\n'), ((5555, 5630), 'exceptions.BarryExportException', 'BarryExportException', (["('Could not write dataframe to file %s' % out_filename)"], {}), "('Could not write dataframe to file %s' % out_filename)\n", (5575, 5630), False, 'from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException\n'), ((6001, 6076), 'exceptions.BarryExportException', 'BarryExportException', (["('Could not write dataframe to file %s' % out_filename)"], {}), "('Could not write dataframe to file %s' % out_filename)\n", (6021, 6076), False, 'from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException\n'), ((6444, 6519), 'exceptions.BarryExportException', 'BarryExportException', (["('Could not write dataframe to file %s' % out_filename)"], {}), "('Could not write dataframe to file %s' % out_filename)\n", (6464, 6519), False, 'from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException\n'), ((7107, 7179), 'exceptions.BarryDFException', 'BarryDFException', (["('Could not sort dataframe on columns %s' % sort_column)"], {}), "('Could not sort dataframe on columns %s' % sort_column)\n", (7123, 7179), False, 'from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException\n')]
from flask_script import Command from app import db class SeedCommand(Command): """ Seed the DB.""" def run(self): if ( input( "Are you sure you want to drop all tables and recreate? (y/N)\n" ).lower() == "y" ): print("Dropping tables...") db.drop_all() db.create_all() db.session.commit() print("DB successfully seeded.")
[ "app.db.create_all", "app.db.drop_all", "app.db.session.commit" ]
[((332, 345), 'app.db.drop_all', 'db.drop_all', ([], {}), '()\n', (343, 345), False, 'from app import db\n'), ((358, 373), 'app.db.create_all', 'db.create_all', ([], {}), '()\n', (371, 373), False, 'from app import db\n'), ((386, 405), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (403, 405), False, 'from app import db\n')]
# -*- coding: utf-8 -*- """ Core client, used for all API requests. """ import os import platform from collections import namedtuple from plivo.base import ResponseObject from plivo.exceptions import (AuthenticationError, InvalidRequestError, PlivoRestError, PlivoServerError, ResourceNotFoundError, ValidationError) from plivo.resources import (Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts) from plivo.resources.live_calls import LiveCalls from plivo.resources.queued_calls import QueuedCalls from plivo.utils import is_valid_mainaccount, is_valid_subaccount from plivo.version import __version__ from requests import Request, Session AuthenticationCredentials = namedtuple('AuthenticationCredentials', 'auth_id auth_token') PLIVO_API = 'https://api.plivo.com' PLIVO_API_BASE_URI = '/'.join([PLIVO_API, 'v1/Account']) def get_user_agent(): return 'plivo-python/%s (Python: %s)' % (__version__, platform.python_version()) def fetch_credentials(auth_id, auth_token): """Fetches the right credentials either from params or from environment""" if not (auth_id and auth_token): try: auth_id = os.environ['PLIVO_AUTH_ID'] auth_token = os.environ['PLIVO_AUTH_TOKEN'] except KeyError: raise AuthenticationError('The Plivo Python SDK ' 'could not find your auth credentials.') if not (is_valid_mainaccount(auth_id) or is_valid_subaccount(auth_id)): raise AuthenticationError('Invalid auth_id supplied: %s' % auth_id) return AuthenticationCredentials(auth_id=auth_id, auth_token=auth_token) class Client(object): def __init__(self, auth_id=None, auth_token=None, proxies=None, timeout=5): """ The Plivo API client. Deals with all the API requests to be made. """ self.base_uri = PLIVO_API_BASE_URI self.session = Session() self.session.headers.update({ 'User-Agent': get_user_agent(), 'Content-Type': 'application/json', 'Accept': 'application/json', }) self.session.auth = fetch_credentials(auth_id, auth_token) self.multipart_session = Session() self.multipart_session.headers.update({ 'User-Agent': get_user_agent(), 'Cache-Control': 'no-cache', }) self.multipart_session.auth = fetch_credentials(auth_id, auth_token) self.proxies = proxies self.timeout = timeout self.account = Accounts(self) self.subaccounts = Subaccounts(self) self.applications = Applications(self) self.calls = Calls(self) self.live_calls = LiveCalls(self) self.queued_calls = QueuedCalls(self) self.conferences = Conferences(self) self.endpoints = Endpoints(self) self.messages = Messages(self) self.numbers = Numbers(self) self.pricing = Pricings(self) self.recordings = Recordings(self) self.addresses = Addresses(self) self.identities = Identities(self) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.session.close() self.multipart_session.close() def process_response(self, method, response, response_type=None, objects_type=None): """Processes the API response based on the status codes and method used to access the API """ try: response_json = response.json( object_hook= lambda x: ResponseObject(x) if isinstance(x, dict) else x) if response_type: r = response_type(self, response_json.__dict__) response_json = r if 'objects' in response_json and objects_type: response_json.objects = [ objects_type(self, obj.__dict__) for obj in response_json.objects ] except ValueError: response_json = None if response.status_code == 400: if response_json and 'error' in response_json: raise ValidationError(response_json.error) raise ValidationError( 'A parameter is missing or is invalid while accessing resource' 'at: {url}'.format(url=response.url)) if response.status_code == 401: if response_json and 'error' in response_json: raise AuthenticationError(response_json.error) raise AuthenticationError( 'Failed to authenticate while accessing resource at: ' '{url}'.format(url=response.url)) if response.status_code == 404: if response_json and 'error' in response_json: raise ResourceNotFoundError(response_json.error) raise ResourceNotFoundError( 'Resource not found at: {url}'.format(url=response.url)) if response.status_code == 405: if response_json and 'error' in response_json: raise InvalidRequestError(response_json.error) raise InvalidRequestError( 'HTTP method "{method}" not allowed to access resource at: ' '{url}'.format(method=method, url=response.url)) if response.status_code == 500: if response_json and 'error' in response_json: raise PlivoServerError(response_json.error) raise PlivoServerError( 'A server error occurred while accessing resource at: ' '{url}'.format(url=response.url)) if method == 'DELETE': if response.status_code != 204: raise PlivoRestError('Resource at {url} could not be ' 'deleted'.format(url=response.url)) elif response.status_code not in [200, 201, 202]: raise PlivoRestError( 'Received status code {status_code} for the HTTP method ' '"{method}"'.format( status_code=response.status_code, method=method)) return response_json def create_request(self, method, path=None, data=None): path = path or [] req = Request(method, '/'.join([self.base_uri, self.session.auth[0]] + list([str(p) for p in path])) + '/', **({ 'params': data } if method == 'GET' else { 'json': data })) return self.session.prepare_request(req) def create_multipart_request(self, method, path=None, data=None, files=None): path = path or [] data_args = {} if method == 'GET': data_args['params'] = data else: data_args['data'] = data if files and 'file' in files and files['file'] != '': data_args['files'] = files req = Request(method, '/'.join([self.base_uri, self.multipart_session.auth[0]] + list([str(p) for p in path])) + '/', **( data_args)) return self.multipart_session.prepare_request(req) def send_request(self, request, **kwargs): if 'session' in kwargs: session = kwargs['session'] del kwargs['session'] else: session = self.session return session.send( request, proxies=self.proxies, timeout=self.timeout, **kwargs) def request(self, method, path=None, data=None, response_type=None, objects_type=None, files=None, **kwargs): if files is not None: req = self.create_multipart_request(method, path, data, files) session = self.multipart_session else: req = self.create_request(method, path, data) session = self.session kwargs['session'] = session res = self.send_request(req, **kwargs) return self.process_response(method, res, response_type, objects_type)
[ "requests.Session", "plivo.resources.Addresses", "plivo.resources.Applications", "plivo.utils.is_valid_mainaccount", "plivo.resources.Accounts", "plivo.resources.live_calls.LiveCalls", "plivo.base.ResponseObject", "plivo.exceptions.PlivoServerError", "collections.namedtuple", "plivo.resources.Identities", "plivo.resources.Calls", "plivo.resources.Conferences", "plivo.resources.Recordings", "plivo.resources.queued_calls.QueuedCalls", "plivo.resources.Subaccounts", "platform.python_version", "plivo.utils.is_valid_subaccount", "plivo.resources.Pricings", "plivo.resources.Endpoints", "plivo.exceptions.ResourceNotFoundError", "plivo.resources.Numbers", "plivo.exceptions.AuthenticationError", "plivo.exceptions.ValidationError", "plivo.exceptions.InvalidRequestError", "plivo.resources.Messages" ]
[((871, 932), 'collections.namedtuple', 'namedtuple', (['"""AuthenticationCredentials"""', '"""auth_id auth_token"""'], {}), "('AuthenticationCredentials', 'auth_id auth_token')\n", (881, 932), False, 'from collections import namedtuple\n'), ((1759, 1820), 'plivo.exceptions.AuthenticationError', 'AuthenticationError', (["('Invalid auth_id supplied: %s' % auth_id)"], {}), "('Invalid auth_id supplied: %s' % auth_id)\n", (1778, 1820), False, 'from plivo.exceptions import AuthenticationError, InvalidRequestError, PlivoRestError, PlivoServerError, ResourceNotFoundError, ValidationError\n'), ((2177, 2186), 'requests.Session', 'Session', ([], {}), '()\n', (2184, 2186), False, 'from requests import Request, Session\n'), ((2470, 2479), 'requests.Session', 'Session', ([], {}), '()\n', (2477, 2479), False, 'from requests import Request, Session\n'), ((2786, 2800), 'plivo.resources.Accounts', 'Accounts', (['self'], {}), '(self)\n', (2794, 2800), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((2828, 2845), 'plivo.resources.Subaccounts', 'Subaccounts', (['self'], {}), '(self)\n', (2839, 2845), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((2874, 2892), 'plivo.resources.Applications', 'Applications', (['self'], {}), '(self)\n', (2886, 2892), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((2914, 2925), 'plivo.resources.Calls', 'Calls', (['self'], {}), '(self)\n', (2919, 2925), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((2952, 2967), 'plivo.resources.live_calls.LiveCalls', 'LiveCalls', (['self'], {}), '(self)\n', (2961, 2967), False, 'from plivo.resources.live_calls import LiveCalls\n'), ((2996, 3013), 'plivo.resources.queued_calls.QueuedCalls', 'QueuedCalls', (['self'], {}), '(self)\n', (3007, 3013), False, 'from plivo.resources.queued_calls import QueuedCalls\n'), ((3041, 3058), 'plivo.resources.Conferences', 'Conferences', (['self'], {}), '(self)\n', (3052, 3058), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((3084, 3099), 'plivo.resources.Endpoints', 'Endpoints', (['self'], {}), '(self)\n', (3093, 3099), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((3124, 3138), 'plivo.resources.Messages', 'Messages', (['self'], {}), '(self)\n', (3132, 3138), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((3162, 3175), 'plivo.resources.Numbers', 'Numbers', (['self'], {}), '(self)\n', (3169, 3175), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((3199, 3213), 'plivo.resources.Pricings', 'Pricings', (['self'], {}), '(self)\n', (3207, 3213), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((3240, 3256), 'plivo.resources.Recordings', 'Recordings', (['self'], {}), '(self)\n', (3250, 3256), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((3282, 3297), 'plivo.resources.Addresses', 'Addresses', (['self'], {}), '(self)\n', (3291, 3297), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((3324, 3340), 'plivo.resources.Identities', 'Identities', (['self'], {}), '(self)\n', (3334, 3340), False, 'from plivo.resources import Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts\n'), ((1193, 1218), 'platform.python_version', 'platform.python_version', ([], {}), '()\n', (1216, 1218), False, 'import platform\n'), ((1681, 1710), 'plivo.utils.is_valid_mainaccount', 'is_valid_mainaccount', (['auth_id'], {}), '(auth_id)\n', (1701, 1710), False, 'from plivo.utils import is_valid_mainaccount, is_valid_subaccount\n'), ((1714, 1742), 'plivo.utils.is_valid_subaccount', 'is_valid_subaccount', (['auth_id'], {}), '(auth_id)\n', (1733, 1742), False, 'from plivo.utils import is_valid_mainaccount, is_valid_subaccount\n'), ((1545, 1631), 'plivo.exceptions.AuthenticationError', 'AuthenticationError', (['"""The Plivo Python SDK could not find your auth credentials."""'], {}), "(\n 'The Plivo Python SDK could not find your auth credentials.')\n", (1564, 1631), False, 'from plivo.exceptions import AuthenticationError, InvalidRequestError, PlivoRestError, PlivoServerError, ResourceNotFoundError, ValidationError\n'), ((4513, 4549), 'plivo.exceptions.ValidationError', 'ValidationError', (['response_json.error'], {}), '(response_json.error)\n', (4528, 4549), False, 'from plivo.exceptions import AuthenticationError, InvalidRequestError, PlivoRestError, PlivoServerError, ResourceNotFoundError, ValidationError\n'), ((4841, 4881), 'plivo.exceptions.AuthenticationError', 'AuthenticationError', (['response_json.error'], {}), '(response_json.error)\n', (4860, 4881), False, 'from plivo.exceptions import AuthenticationError, InvalidRequestError, PlivoRestError, PlivoServerError, ResourceNotFoundError, ValidationError\n'), ((5164, 5206), 'plivo.exceptions.ResourceNotFoundError', 'ResourceNotFoundError', (['response_json.error'], {}), '(response_json.error)\n', (5185, 5206), False, 'from plivo.exceptions import AuthenticationError, InvalidRequestError, PlivoRestError, PlivoServerError, ResourceNotFoundError, ValidationError\n'), ((5443, 5483), 'plivo.exceptions.InvalidRequestError', 'InvalidRequestError', (['response_json.error'], {}), '(response_json.error)\n', (5462, 5483), False, 'from plivo.exceptions import AuthenticationError, InvalidRequestError, PlivoRestError, PlivoServerError, ResourceNotFoundError, ValidationError\n'), ((5787, 5824), 'plivo.exceptions.PlivoServerError', 'PlivoServerError', (['response_json.error'], {}), '(response_json.error)\n', (5803, 5824), False, 'from plivo.exceptions import AuthenticationError, InvalidRequestError, PlivoRestError, PlivoServerError, ResourceNotFoundError, ValidationError\n'), ((3927, 3944), 'plivo.base.ResponseObject', 'ResponseObject', (['x'], {}), '(x)\n', (3941, 3944), False, 'from plivo.base import ResponseObject\n')]
from django import template from django.conf import settings from django.utils.safestring import mark_safe register = template.Library() @register.simple_tag def setting(name): return getattr(settings, name, "") #@register.filter #def format_difference(value): # number = int(value) # if number > 0: # return mark_safe('<span style="color: green">+' + str(number) + '</span>') # elif number < 0: # return mark_safe('<span style="color: red">' + str(number) + '</span>') # else: # return mark_safe(str(number))
[ "django.template.Library" ]
[((119, 137), 'django.template.Library', 'template.Library', ([], {}), '()\n', (135, 137), False, 'from django import template\n')]
# Given a series of input numbers, count the number of times # the values increase from one to the next. import pandas as pd # Part 1 sample = pd.read_csv(".\Day1\sample.txt", header=None, squeeze=True) input = pd.read_csv(".\Day1\input.txt", header=None, squeeze=True) #print(type(input)) ans = input.diff(1).apply(lambda x: x > 0).sum() #print(ans) # Part 2 #print(sample) rolling = input.rolling(window=3,min_periods=3,center=True) print(rolling.sum().dropna().diff(1).apply(lambda x: x > 0).sum())
[ "pandas.read_csv" ]
[((145, 206), 'pandas.read_csv', 'pd.read_csv', (['""".\\\\Day1\\\\sample.txt"""'], {'header': 'None', 'squeeze': '(True)'}), "('.\\\\Day1\\\\sample.txt', header=None, squeeze=True)\n", (156, 206), True, 'import pandas as pd\n'), ((214, 274), 'pandas.read_csv', 'pd.read_csv', (['""".\\\\Day1\\\\input.txt"""'], {'header': 'None', 'squeeze': '(True)'}), "('.\\\\Day1\\\\input.txt', header=None, squeeze=True)\n", (225, 274), True, 'import pandas as pd\n')]
################################################################################ # Copyright (c) 2021 ContinualAI. # # Copyrights licensed under the MIT License. # # See the accompanying LICENSE file for terms. # # # # Date: 19-01-2021 # # Author(s): <NAME>, <NAME> # # E-mail: <EMAIL> # # Website: www.continualai.org # ################################################################################ import GPUtil from threading import Thread import time import warnings from typing import Optional, TYPE_CHECKING, List from avalanche.evaluation import Metric, PluginMetric from avalanche.evaluation.metric_results import MetricValue, MetricResult from avalanche.evaluation.metric_utils import get_metric_name, \ phase_and_task, stream_type if TYPE_CHECKING: from avalanche.training import BaseStrategy class MaxGPU(Metric[float]): """ The standalone GPU usage metric. Important: this metric approximates the real maximum GPU percentage usage since it sample at discrete amount of time the GPU values. Instances of this metric keeps the maximum GPU usage percentage detected. The `start_thread` method starts the usage tracking. The `stop_thread` method stops the tracking. The result, obtained using the `result` method, is the usage in mega-bytes. The reset method will bring the metric to its initial state. By default this metric in its initial state will return an usage value of 0. """ def __init__(self, gpu_id, every=0.5): """ Creates an instance of the GPU usage metric. :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage """ self.every = every self.gpu_id = gpu_id n_gpus = len(GPUtil.getGPUs()) if n_gpus == 0: warnings.warn("Your system has no GPU!") self.gpu_id = None elif gpu_id < 0: warnings.warn("GPU metric called with negative GPU id." "GPU logging disabled") self.gpu_id = None else: if gpu_id >= n_gpus: warnings.warn(f"GPU {gpu_id} not found. Using GPU 0.") self.gpu_id = 0 self.thread = None """ Thread executing GPU monitoring code """ self.stop_f = False """ Flag to stop the thread """ self.max_usage = 0 """ Main metric result. Max GPU usage. """ def _f(self): """ Until a stop signal is encountered, this function monitors each `every` seconds the maximum amount of GPU used by the process """ start_time = time.monotonic() while not self.stop_f: # GPU percentage gpu_perc = GPUtil.getGPUs()[self.gpu_id].load * 100 if gpu_perc > self.max_usage: self.max_usage = gpu_perc time.sleep(self.every - ((time.monotonic() - start_time) % self.every)) def start_thread(self): if self.gpu_id: assert not self.thread, "Trying to start thread " \ "without joining the previous." self.thread = Thread(target=self._f, daemon=True) self.thread.start() def stop_thread(self): if self.thread: self.stop_f = True self.thread.join() self.stop_f = False self.thread = None def reset(self) -> None: """ Resets the metric. :return: None. """ self.max_usage = 0 def result(self) -> Optional[float]: """ Returns the max GPU percentage value. :return: The percentage GPU usage as a float value in range [0, 1]. """ return self.max_usage class MinibatchMaxGPU(PluginMetric[float]): """ The Minibatch Max GPU metric. This plugin metric only works at training time. """ def __init__(self, gpu_id, every=0.5): """ Creates an instance of the Minibatch Max GPU metric :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage """ super().__init__() self.gpu_id = gpu_id self._gpu = MaxGPU(gpu_id, every) def before_training(self, strategy: 'BaseStrategy') \ -> None: self._gpu.start_thread() def before_training_iteration(self, strategy: 'BaseStrategy') -> None: self.reset() def after_training_iteration(self, strategy: 'BaseStrategy') \ -> MetricResult: return self._package_result(strategy) def after_training(self, strategy: 'BaseStrategy') -> None: self._gpu.stop_thread() def reset(self) -> None: self._gpu.reset() def result(self) -> float: return self._gpu.result() def _package_result(self, strategy: 'BaseStrategy') -> MetricResult: gpu_usage = self.result() metric_name = get_metric_name(self, strategy) plot_x_position = self.get_global_counter() return [MetricValue(self, metric_name, gpu_usage, plot_x_position)] def __str__(self): return f"MaxGPU{self.gpu_id}Usage_MB" class EpochMaxGPU(PluginMetric[float]): """ The Epoch Max GPU metric. This plugin metric only works at training time. """ def __init__(self, gpu_id, every=0.5): """ Creates an instance of the epoch Max GPU metric. :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage """ super().__init__() self.gpu_id = gpu_id self._gpu = MaxGPU(gpu_id, every) def before_training(self, strategy: 'BaseStrategy') \ -> None: self._gpu.start_thread() def before_training_epoch(self, strategy) -> MetricResult: self.reset() def after_training_epoch(self, strategy: 'BaseStrategy') \ -> MetricResult: return self._package_result(strategy) def after_training(self, strategy: 'BaseStrategy') -> None: self._gpu.stop_thread() def reset(self) -> None: self._gpu.reset() def result(self) -> float: return self._gpu.result() def _package_result(self, strategy: 'BaseStrategy') -> MetricResult: gpu_usage = self.result() metric_name = get_metric_name(self, strategy) plot_x_position = self.get_global_counter() return [MetricValue(self, metric_name, gpu_usage, plot_x_position)] def __str__(self): return f"MaxGPU{self.gpu_id}Usage_Epoch" class ExperienceMaxGPU(PluginMetric[float]): """ The Experience Max GPU metric. This plugin metric only works at eval time. """ def __init__(self, gpu_id, every=0.5): """ Creates an instance of the Experience CPU usage metric. :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage """ super().__init__() self.gpu_id = gpu_id self._gpu = MaxGPU(gpu_id, every) def before_eval(self, strategy: 'BaseStrategy') \ -> None: self._gpu.start_thread() def before_eval_exp(self, strategy) -> MetricResult: self.reset() def after_eval_exp(self, strategy: 'BaseStrategy') \ -> MetricResult: return self._package_result(strategy) def after_eval(self, strategy: 'BaseStrategy') -> None: self._gpu.stop_thread() def reset(self) -> None: self._gpu.reset() def result(self) -> float: return self._gpu.result() def _package_result(self, strategy: 'BaseStrategy') -> MetricResult: gpu_usage = self.result() metric_name = get_metric_name(self, strategy, add_experience=True) plot_x_position = self.get_global_counter() return [MetricValue(self, metric_name, gpu_usage, plot_x_position)] def __str__(self): return f"MaxGPU{self.gpu_id}Usage_Experience" class StreamMaxGPU(PluginMetric[float]): """ The Stream Max GPU metric. This plugin metric only works at eval time. """ def __init__(self, gpu_id, every=0.5): """ Creates an instance of the Experience CPU usage metric. :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage """ super().__init__() self.gpu_id = gpu_id self._gpu = MaxGPU(gpu_id, every) def before_eval(self, strategy) -> MetricResult: self.reset() self._gpu.start_thread() def after_eval(self, strategy: 'BaseStrategy') \ -> MetricResult: packed = self._package_result(strategy) self._gpu.stop_thread() return packed def reset(self) -> None: self._gpu.reset() def result(self) -> float: return self._gpu.result() def _package_result(self, strategy: 'BaseStrategy') -> MetricResult: gpu_usage = self.result() phase_name, _ = phase_and_task(strategy) stream = stream_type(strategy.experience) metric_name = '{}/{}_phase/{}_stream' \ .format(str(self), phase_name, stream) plot_x_position = self.get_global_counter() return [MetricValue(self, metric_name, gpu_usage, plot_x_position)] def __str__(self): return f"MaxGPU{self.gpu_id}Usage_Stream" def gpu_usage_metrics(gpu_id, every=0.5, minibatch=False, epoch=False, experience=False, stream=False) -> List[PluginMetric]: """ Helper method that can be used to obtain the desired set of plugin metrics. :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage :param minibatch: If True, will return a metric able to log the minibatch max GPU usage. :param epoch: If True, will return a metric able to log the epoch max GPU usage. :param experience: If True, will return a metric able to log the experience max GPU usage. :param stream: If True, will return a metric able to log the evaluation max stream GPU usage. :return: A list of plugin metrics. """ metrics = [] if minibatch: metrics.append(MinibatchMaxGPU(gpu_id, every)) if epoch: metrics.append(EpochMaxGPU(gpu_id, every)) if experience: metrics.append(ExperienceMaxGPU(gpu_id, every)) if stream: metrics.append(StreamMaxGPU(gpu_id, every)) return metrics __all__ = [ 'MaxGPU', 'MinibatchMaxGPU', 'EpochMaxGPU', 'ExperienceMaxGPU', 'StreamMaxGPU', 'gpu_usage_metrics' ]
[ "GPUtil.getGPUs", "time.monotonic", "avalanche.evaluation.metric_utils.phase_and_task", "avalanche.evaluation.metric_results.MetricValue", "warnings.warn", "threading.Thread", "avalanche.evaluation.metric_utils.get_metric_name", "avalanche.evaluation.metric_utils.stream_type" ]
[((3087, 3103), 'time.monotonic', 'time.monotonic', ([], {}), '()\n', (3101, 3103), False, 'import time\n'), ((5440, 5471), 'avalanche.evaluation.metric_utils.get_metric_name', 'get_metric_name', (['self', 'strategy'], {}), '(self, strategy)\n', (5455, 5471), False, 'from avalanche.evaluation.metric_utils import get_metric_name, phase_and_task, stream_type\n'), ((6844, 6875), 'avalanche.evaluation.metric_utils.get_metric_name', 'get_metric_name', (['self', 'strategy'], {}), '(self, strategy)\n', (6859, 6875), False, 'from avalanche.evaluation.metric_utils import get_metric_name, phase_and_task, stream_type\n'), ((8244, 8296), 'avalanche.evaluation.metric_utils.get_metric_name', 'get_metric_name', (['self', 'strategy'], {'add_experience': '(True)'}), '(self, strategy, add_experience=True)\n', (8259, 8296), False, 'from avalanche.evaluation.metric_utils import get_metric_name, phase_and_task, stream_type\n'), ((9543, 9567), 'avalanche.evaluation.metric_utils.phase_and_task', 'phase_and_task', (['strategy'], {}), '(strategy)\n', (9557, 9567), False, 'from avalanche.evaluation.metric_utils import get_metric_name, phase_and_task, stream_type\n'), ((9585, 9617), 'avalanche.evaluation.metric_utils.stream_type', 'stream_type', (['strategy.experience'], {}), '(strategy.experience)\n', (9596, 9617), False, 'from avalanche.evaluation.metric_utils import get_metric_name, phase_and_task, stream_type\n'), ((2146, 2162), 'GPUtil.getGPUs', 'GPUtil.getGPUs', ([], {}), '()\n', (2160, 2162), False, 'import GPUtil\n'), ((2200, 2240), 'warnings.warn', 'warnings.warn', (['"""Your system has no GPU!"""'], {}), "('Your system has no GPU!')\n", (2213, 2240), False, 'import warnings\n'), ((3644, 3679), 'threading.Thread', 'Thread', ([], {'target': 'self._f', 'daemon': '(True)'}), '(target=self._f, daemon=True)\n', (3650, 3679), False, 'from threading import Thread\n'), ((5541, 5599), 'avalanche.evaluation.metric_results.MetricValue', 'MetricValue', (['self', 'metric_name', 'gpu_usage', 'plot_x_position'], {}), '(self, metric_name, gpu_usage, plot_x_position)\n', (5552, 5599), False, 'from avalanche.evaluation.metric_results import MetricValue, MetricResult\n'), ((6945, 7003), 'avalanche.evaluation.metric_results.MetricValue', 'MetricValue', (['self', 'metric_name', 'gpu_usage', 'plot_x_position'], {}), '(self, metric_name, gpu_usage, plot_x_position)\n', (6956, 7003), False, 'from avalanche.evaluation.metric_results import MetricValue, MetricResult\n'), ((8366, 8424), 'avalanche.evaluation.metric_results.MetricValue', 'MetricValue', (['self', 'metric_name', 'gpu_usage', 'plot_x_position'], {}), '(self, metric_name, gpu_usage, plot_x_position)\n', (8377, 8424), False, 'from avalanche.evaluation.metric_results import MetricValue, MetricResult\n'), ((9826, 9884), 'avalanche.evaluation.metric_results.MetricValue', 'MetricValue', (['self', 'metric_name', 'gpu_usage', 'plot_x_position'], {}), '(self, metric_name, gpu_usage, plot_x_position)\n', (9837, 9884), False, 'from avalanche.evaluation.metric_results import MetricValue, MetricResult\n'), ((2309, 2385), 'warnings.warn', 'warnings.warn', (['"""GPU metric called with negative GPU id.GPU logging disabled"""'], {}), "('GPU metric called with negative GPU id.GPU logging disabled')\n", (2322, 2385), False, 'import warnings\n'), ((2509, 2563), 'warnings.warn', 'warnings.warn', (['f"""GPU {gpu_id} not found. Using GPU 0."""'], {}), "(f'GPU {gpu_id} not found. Using GPU 0.')\n", (2522, 2563), False, 'import warnings\n'), ((3187, 3203), 'GPUtil.getGPUs', 'GPUtil.getGPUs', ([], {}), '()\n', (3201, 3203), False, 'import GPUtil\n'), ((3350, 3366), 'time.monotonic', 'time.monotonic', ([], {}), '()\n', (3364, 3366), False, 'import time\n')]
import base64 import datetime import io import json import os import requests from collections import namedtuple from urllib.parse import urlparse import faust import numpy as np import keras_preprocessing.image as keras_img from avro import schema from confluent_kafka import avro from confluent_kafka.avro import AvroProducer from confluent_kafka.avro.cached_schema_registry_client import CachedSchemaRegistryClient from confluent_kafka.schema_registry import SchemaRegistryClient from confluent_kafka.schema_registry.avro import AvroSerializer from biovolume import calc_biovolume from blob import Blob, BlobConfig config_path = os.environ.get('IFCB_STREAM_APP_CONFIG', 'config.json') with open(config_path) as config_file: config = json.load(config_file) Stats = namedtuple( 'Stats', ['time', 'ifcb_id', 'roi', 'name', 'classifier', 'prob', 'classification_time', 'biovolume', 'carbon', 'hab'] ) ClassifierStats = namedtuple( 'ClassifierStats', ['sample_name', 'prob', 'classifier', 'classification_time'] ) schema_config = { 'url': config['schema.registry.url'], 'ssl.ca.location': None } # need to use CachedSchemaRegistryClient to get schema # - need to copy config because it is consumed when used in CachedSchemaRegistryClient schema_config_copy = schema_config.copy() cached_schema_client = CachedSchemaRegistryClient(schema_config) key_schema = str(cached_schema_client.get_latest_schema('ifcb-stats-key')[1]) value_schema = str(cached_schema_client.get_latest_schema('ifcb-stats-value')[1]) key_schema = avro.loads(key_schema) value_schema = avro.loads(value_schema) producer = AvroProducer({ 'bootstrap.servers': config['bootstrap.servers'], 'schema.registry.url': config['schema.registry.url'] }, default_key_schema=key_schema, default_value_schema=value_schema ) app = faust.App( config['app_name'], broker=config['broker'], topic_partitions=config['topic_partitions'], store='rocksdb://', consumer_auto_offset_reset='earliest', version=1 ) image_topic = app.topic(config['image_topic']) stats_topic = app.topic(config['stats_topic']) classifier_stats_table = app.Table('ifcb-classifier-stats', default=ClassifierStats) diatoms = config['diatoms'] class_names = config['class_names'] hab_species = config['hab_species'] def publish_stats(feature_key, image, classifier_stats, blob_config=BlobConfig()): """Calculate biovolume, carbon, hab, and publish to Kafka""" # calculate biovolume # - scale biovolume for 3d (from ifcb-analysis) blob = Blob(image, blob_config) biovolume = calc_biovolume(blob) mu = 1/3.4 biovolume = biovolume * mu ** 3 carbon = calc_carbon(classifier_stats[0], biovolume) hab = classifier_stats[0] in hab_species time, ifcb_id, roi = feature_key.split('_') roi = int(roi) timestamp = int(datetime.datetime.strptime(time[1:], '%Y%m%dT%H%M%S').timestamp()) stats = Stats( timestamp, ifcb_id, roi, classifier_stats[0], classifier_stats[2], classifier_stats[1], classifier_stats[3], biovolume, carbon, hab ) # send to topic with Avro schema producer.poll(0) producer.produce( topic=config['stats_topic'], key={ 'pid': f"{time}_{ifcb_id}", 'roi': int(roi) }, value=stats._asdict() ) producer.flush() @app.agent(image_topic) async def classify(images, url=config['tensorflow_url'], target_size=(224, 224)): async for image in images: # decode binary blob to png file then resize and normalize image_str = base64.b64decode(image['image']) image_file = io.BytesIO(image_str) img = keras_img.img_to_array( keras_img.load_img(image_file, target_size=target_size) ) img /= 255 # create payload and send to TF RESTful API headers = {"content-type": "application/json"} data = json.dumps({'instances': [img.tolist()]}) result = requests.post(url, headers=headers, data=data) # save the probabilities for each class (1d ndarray) probs = result.json()['predictions'][0][:] # feature_key is roi time = datetime.datetime.fromtimestamp(image['datetime']) feature_key = f"{time:D%Y%m%dT%H%M%S}_{image['ifcb_id']}_{image['roi']:05}" print(f'processing {feature_key}') # update table if current prob is greater than what is already in the table prob = np.nanmax(probs) if feature_key not in classifier_stats_table or prob > classifier_stats_table[feature_key].prob: name = class_names[np.argmax(probs)] classifier, version = get_classifier(url) classifier_version = f'{classifier}:{version}' classifier_stats_table[feature_key] = ClassifierStats( name, prob, classifier_version, int(datetime.datetime.utcnow().timestamp()) ) # send publish_stats(feature_key, image_str, classifier_stats_table[feature_key]) def get_classifier(url): """Given TF style url, return name and version""" parse_results = urlparse(url) _, version, _, name_raw = parse_results.path.split('/') name = name_raw.split(':')[0] return (name, version) def calc_carbon(english_name, scaled_biovolume, diatom_list=diatoms): """Given volume in u3/cell return carbon in pg C/cell. $log_10(C) = log(a) + b \cdot log_10(V)$ """ if english_name in diatom_list: carbon = 10**(-0.665 + 0.939*np.log10(scaled_biovolume)) else: carbon = 10**(-0.993 + 0.881*np.log10(scaled_biovolume)) return carbon if __name__ == '__main__': app.main()
[ "requests.post", "numpy.log10", "confluent_kafka.avro.loads", "faust.App", "keras_preprocessing.image.load_img", "io.BytesIO", "confluent_kafka.avro.cached_schema_registry_client.CachedSchemaRegistryClient", "blob.BlobConfig", "blob.Blob", "numpy.nanmax", "collections.namedtuple", "biovolume.calc_biovolume", "confluent_kafka.avro.AvroProducer", "numpy.argmax", "datetime.datetime.fromtimestamp", "urllib.parse.urlparse", "datetime.datetime.utcnow", "datetime.datetime.strptime", "os.environ.get", "base64.b64decode", "json.load" ]
[((637, 692), 'os.environ.get', 'os.environ.get', (['"""IFCB_STREAM_APP_CONFIG"""', '"""config.json"""'], {}), "('IFCB_STREAM_APP_CONFIG', 'config.json')\n", (651, 692), False, 'import os\n'), ((777, 911), 'collections.namedtuple', 'namedtuple', (['"""Stats"""', "['time', 'ifcb_id', 'roi', 'name', 'classifier', 'prob',\n 'classification_time', 'biovolume', 'carbon', 'hab']"], {}), "('Stats', ['time', 'ifcb_id', 'roi', 'name', 'classifier', 'prob',\n 'classification_time', 'biovolume', 'carbon', 'hab'])\n", (787, 911), False, 'from collections import namedtuple\n'), ((936, 1031), 'collections.namedtuple', 'namedtuple', (['"""ClassifierStats"""', "['sample_name', 'prob', 'classifier', 'classification_time']"], {}), "('ClassifierStats', ['sample_name', 'prob', 'classifier',\n 'classification_time'])\n", (946, 1031), False, 'from collections import namedtuple\n'), ((1336, 1377), 'confluent_kafka.avro.cached_schema_registry_client.CachedSchemaRegistryClient', 'CachedSchemaRegistryClient', (['schema_config'], {}), '(schema_config)\n', (1362, 1377), False, 'from confluent_kafka.avro.cached_schema_registry_client import CachedSchemaRegistryClient\n'), ((1552, 1574), 'confluent_kafka.avro.loads', 'avro.loads', (['key_schema'], {}), '(key_schema)\n', (1562, 1574), False, 'from confluent_kafka import avro\n'), ((1590, 1614), 'confluent_kafka.avro.loads', 'avro.loads', (['value_schema'], {}), '(value_schema)\n', (1600, 1614), False, 'from confluent_kafka import avro\n'), ((1626, 1818), 'confluent_kafka.avro.AvroProducer', 'AvroProducer', (["{'bootstrap.servers': config['bootstrap.servers'], 'schema.registry.url':\n config['schema.registry.url']}"], {'default_key_schema': 'key_schema', 'default_value_schema': 'value_schema'}), "({'bootstrap.servers': config['bootstrap.servers'],\n 'schema.registry.url': config['schema.registry.url']},\n default_key_schema=key_schema, default_value_schema=value_schema)\n", (1638, 1818), False, 'from confluent_kafka.avro import AvroProducer\n'), ((1842, 2020), 'faust.App', 'faust.App', (["config['app_name']"], {'broker': "config['broker']", 'topic_partitions': "config['topic_partitions']", 'store': '"""rocksdb://"""', 'consumer_auto_offset_reset': '"""earliest"""', 'version': '(1)'}), "(config['app_name'], broker=config['broker'], topic_partitions=\n config['topic_partitions'], store='rocksdb://',\n consumer_auto_offset_reset='earliest', version=1)\n", (1851, 2020), False, 'import faust\n'), ((745, 767), 'json.load', 'json.load', (['config_file'], {}), '(config_file)\n', (754, 767), False, 'import json\n'), ((2389, 2401), 'blob.BlobConfig', 'BlobConfig', ([], {}), '()\n', (2399, 2401), False, 'from blob import Blob, BlobConfig\n'), ((2558, 2582), 'blob.Blob', 'Blob', (['image', 'blob_config'], {}), '(image, blob_config)\n', (2562, 2582), False, 'from blob import Blob, BlobConfig\n'), ((2599, 2619), 'biovolume.calc_biovolume', 'calc_biovolume', (['blob'], {}), '(blob)\n', (2613, 2619), False, 'from biovolume import calc_biovolume\n'), ((5241, 5254), 'urllib.parse.urlparse', 'urlparse', (['url'], {}), '(url)\n', (5249, 5254), False, 'from urllib.parse import urlparse\n'), ((3659, 3691), 'base64.b64decode', 'base64.b64decode', (["image['image']"], {}), "(image['image'])\n", (3675, 3691), False, 'import base64\n'), ((3713, 3734), 'io.BytesIO', 'io.BytesIO', (['image_str'], {}), '(image_str)\n', (3723, 3734), False, 'import io\n'), ((4052, 4098), 'requests.post', 'requests.post', (['url'], {'headers': 'headers', 'data': 'data'}), '(url, headers=headers, data=data)\n', (4065, 4098), False, 'import requests\n'), ((4257, 4307), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (["image['datetime']"], {}), "(image['datetime'])\n", (4288, 4307), False, 'import datetime\n'), ((4536, 4552), 'numpy.nanmax', 'np.nanmax', (['probs'], {}), '(probs)\n', (4545, 4552), True, 'import numpy as np\n'), ((3785, 3840), 'keras_preprocessing.image.load_img', 'keras_img.load_img', (['image_file'], {'target_size': 'target_size'}), '(image_file, target_size=target_size)\n', (3803, 3840), True, 'import keras_preprocessing.image as keras_img\n'), ((2861, 2914), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['time[1:]', '"""%Y%m%dT%H%M%S"""'], {}), "(time[1:], '%Y%m%dT%H%M%S')\n", (2887, 2914), False, 'import datetime\n'), ((4689, 4705), 'numpy.argmax', 'np.argmax', (['probs'], {}), '(probs)\n', (4698, 4705), True, 'import numpy as np\n'), ((5635, 5661), 'numpy.log10', 'np.log10', (['scaled_biovolume'], {}), '(scaled_biovolume)\n', (5643, 5661), True, 'import numpy as np\n'), ((5710, 5736), 'numpy.log10', 'np.log10', (['scaled_biovolume'], {}), '(scaled_biovolume)\n', (5718, 5736), True, 'import numpy as np\n'), ((4987, 5013), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (5011, 5013), False, 'import datetime\n')]
import discord from discord.ext import commands from discord.utils import get class c260(commands.Cog, name="c260"): def __init__(self, bot: commands.Bot): self.bot = bot @commands.command(name='Yikilth_Lair_of_the_Abyssals', aliases=['c260', 'Abyssal_11']) async def example_embed(self, ctx): embed = discord.Embed(title='Yikilth, Lair of the Abyssals', color=0x1D9E74) embed.set_thumbnail(url='https://www.duelingbook.com/images/custom-pics/2300000/2360326.jpg') embed.add_field(name='Status (Archetype)', value='Casual:3/Tournament:3 (Abyssal)', inline=True) embed.add_field(name='Type', value='Spell/Field', inline=False) embed.add_field(name='Card Effect', value='When this card is activated: Add 1 "Abyssal" monster from your Deck to your hand. Once per turn, when your opponent activates a card or effect that targets and/or would destroy a Set monster(s) you control: You can flip 1 Set monster you control into face-up Attack or Defense Position; negate the activation. You can only activate 1 "Yikilth, Lair of the Abyssals" per turn.', inline=False) embed.set_footer(text='Set Code: ANCF') await ctx.send(embed=embed) def setup(bot: commands.Bot): bot.add_cog(c260(bot))
[ "discord.Embed", "discord.ext.commands.command" ]
[((190, 279), 'discord.ext.commands.command', 'commands.command', ([], {'name': '"""Yikilth_Lair_of_the_Abyssals"""', 'aliases': "['c260', 'Abyssal_11']"}), "(name='Yikilth_Lair_of_the_Abyssals', aliases=['c260',\n 'Abyssal_11'])\n", (206, 279), False, 'from discord.ext import commands\n'), ((332, 399), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Yikilth, Lair of the Abyssals"""', 'color': '(1941108)'}), "(title='Yikilth, Lair of the Abyssals', color=1941108)\n", (345, 399), False, 'import discord\n')]
""" This module tests utils """ from unittest.mock import patch, MagicMock from superset_patchup.utils import get_complex_env_var, is_safe_url, is_valid_provider from superset_patchup.oauth import CustomSecurityManager class TestUtils: """ Class to test the utils module """ @patch("superset_patchup.utils.request") def test_is_safe_url(self, mock): """ Test that only urls from the same domain are set as safe by the is_safe_url function """ mock.host_url = "https://example.com" assert is_safe_url("https://example.com") is True assert is_safe_url("https://google.com") is False @patch("superset_patchup.utils.os.getenv") def test_get_complex_env_var_default(self, mock): """ Test that the get_complex_env_var function returns the default value when the variable is not set """ mock.return_value = None default_params = {"bean": "bag"} params = get_complex_env_var("PARAMS", default_params) # assert that the value returned is a dictionary assert isinstance(params, dict) # assert that the value returned is the default assert params == default_params @patch("superset_patchup.utils.os.getenv") def test_get_complex_env_var(self, mock): """ Test that the get_complex_env_var function is able to return a complex variable """ default_params = {"bean": "bag"} # dict variable params_value = {"spring": "bean"} mock.return_value = str(params_value) params = get_complex_env_var("PARAMS", default_params) assert isinstance(params, dict) assert params == params_value # bool variable mock.return_value = "True" bool_params = get_complex_env_var("PARAMS", default_params) assert isinstance(bool_params, bool) assert bool_params is True def test_case_insensitivity_for_provider(self): """ Test that provider information form user can be case insesitive, to static standard strings that they will be checked against """ assert is_valid_provider("opensrp", "OpenSRP") assert is_valid_provider("OnaData", 'onadata') assert is_valid_provider("OpenlMis", "openlmis") assert not is_valid_provider("oensrp", "OpenSrp")
[ "superset_patchup.utils.is_safe_url", "superset_patchup.utils.is_valid_provider", "unittest.mock.patch", "superset_patchup.utils.get_complex_env_var" ]
[((296, 335), 'unittest.mock.patch', 'patch', (['"""superset_patchup.utils.request"""'], {}), "('superset_patchup.utils.request')\n", (301, 335), False, 'from unittest.mock import patch, MagicMock\n'), ((667, 708), 'unittest.mock.patch', 'patch', (['"""superset_patchup.utils.os.getenv"""'], {}), "('superset_patchup.utils.os.getenv')\n", (672, 708), False, 'from unittest.mock import patch, MagicMock\n'), ((1237, 1278), 'unittest.mock.patch', 'patch', (['"""superset_patchup.utils.os.getenv"""'], {}), "('superset_patchup.utils.os.getenv')\n", (1242, 1278), False, 'from unittest.mock import patch, MagicMock\n'), ((992, 1037), 'superset_patchup.utils.get_complex_env_var', 'get_complex_env_var', (['"""PARAMS"""', 'default_params'], {}), "('PARAMS', default_params)\n", (1011, 1037), False, 'from superset_patchup.utils import get_complex_env_var, is_safe_url, is_valid_provider\n'), ((1616, 1661), 'superset_patchup.utils.get_complex_env_var', 'get_complex_env_var', (['"""PARAMS"""', 'default_params'], {}), "('PARAMS', default_params)\n", (1635, 1661), False, 'from superset_patchup.utils import get_complex_env_var, is_safe_url, is_valid_provider\n'), ((1822, 1867), 'superset_patchup.utils.get_complex_env_var', 'get_complex_env_var', (['"""PARAMS"""', 'default_params'], {}), "('PARAMS', default_params)\n", (1841, 1867), False, 'from superset_patchup.utils import get_complex_env_var, is_safe_url, is_valid_provider\n'), ((2183, 2222), 'superset_patchup.utils.is_valid_provider', 'is_valid_provider', (['"""opensrp"""', '"""OpenSRP"""'], {}), "('opensrp', 'OpenSRP')\n", (2200, 2222), False, 'from superset_patchup.utils import get_complex_env_var, is_safe_url, is_valid_provider\n'), ((2238, 2277), 'superset_patchup.utils.is_valid_provider', 'is_valid_provider', (['"""OnaData"""', '"""onadata"""'], {}), "('OnaData', 'onadata')\n", (2255, 2277), False, 'from superset_patchup.utils import get_complex_env_var, is_safe_url, is_valid_provider\n'), ((2293, 2334), 'superset_patchup.utils.is_valid_provider', 'is_valid_provider', (['"""OpenlMis"""', '"""openlmis"""'], {}), "('OpenlMis', 'openlmis')\n", (2310, 2334), False, 'from superset_patchup.utils import get_complex_env_var, is_safe_url, is_valid_provider\n'), ((560, 594), 'superset_patchup.utils.is_safe_url', 'is_safe_url', (['"""https://example.com"""'], {}), "('https://example.com')\n", (571, 594), False, 'from superset_patchup.utils import get_complex_env_var, is_safe_url, is_valid_provider\n'), ((618, 651), 'superset_patchup.utils.is_safe_url', 'is_safe_url', (['"""https://google.com"""'], {}), "('https://google.com')\n", (629, 651), False, 'from superset_patchup.utils import get_complex_env_var, is_safe_url, is_valid_provider\n'), ((2354, 2392), 'superset_patchup.utils.is_valid_provider', 'is_valid_provider', (['"""oensrp"""', '"""OpenSrp"""'], {}), "('oensrp', 'OpenSrp')\n", (2371, 2392), False, 'from superset_patchup.utils import get_complex_env_var, is_safe_url, is_valid_provider\n')]
# Generated by Django 2.2.5 on 2019-10-28 21:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0003_auto_20191028_1802'), ] operations = [ migrations.AlterField( model_name='profile', name='registered_at', field=models.DateTimeField(auto_now_add=True, verbose_name='date_registered'), ), ]
[ "django.db.models.DateTimeField" ]
[((342, 413), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'verbose_name': '"""date_registered"""'}), "(auto_now_add=True, verbose_name='date_registered')\n", (362, 413), False, 'from django.db import migrations, models\n')]
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import tensorflow as tf from fewshot.models.kmeans_utils import compute_logits from fewshot.models.model import Model from fewshot.models.refine_model import RefineModel from fewshot.models.basic_model_VAT import BasicModelVAT from fewshot.models.model_factory import RegisterModel from fewshot.models.nnlib import (concat, weight_variable) from fewshot.utils import logger from fewshot.utils.debug import debug_identity from fewshot.models.SSL_utils import * l2_norm = lambda t: tf.sqrt(tf.reduce_sum(tf.pow(t, 2))) log = logger.get() @RegisterModel("basic-VAT-ENT") class BasicModelVAT_ENT(BasicModelVAT): def get_train_op(self, logits, y_test): loss, train_op = BasicModelVAT.get_train_op(self, logits, y_test) config = self.config ENT_weight = config.ENT_weight VAT_ENT_step_size = config.VAT_ENT_step_size logits = self._unlabel_logits s = tf.shape(logits) s = s[0] p = tf.stop_gradient(self.h_unlabel) affinity_matrix = compute_logits(p, p) - (tf.eye(s, dtype=tf.float32) * 1000.0) # logits = tf.Print(logits, [tf.shape(point_logits)]) ENT_loss = walking_penalty(logits, affinity_matrix) loss += ENT_weight * ENT_loss ENT_opt = tf.train.AdamOptimizer(VAT_ENT_step_size * self.learn_rate, name="Entropy-optimizer") ENT_grads_and_vars = ENT_opt.compute_gradients(loss) train_op = ENT_opt.apply_gradients(ENT_grads_and_vars) for gradient, variable in ENT_grads_and_vars: if gradient is None: gradient = tf.constant(0.0) self.adv_summaries.append(tf.summary.scalar("ENT/gradients/" + variable.name, l2_norm(gradient), family="Grads")) self.adv_summaries.append(tf.summary.histogram("ENT/gradients/" + variable.name, gradient, family="Grads")) self.summaries.append(tf.summary.scalar('entropy loss', ENT_loss)) return loss, train_op
[ "tensorflow.train.AdamOptimizer", "tensorflow.eye", "tensorflow.shape", "tensorflow.pow", "fewshot.models.basic_model_VAT.BasicModelVAT.get_train_op", "fewshot.utils.logger.get", "tensorflow.summary.scalar", "tensorflow.stop_gradient", "tensorflow.summary.histogram", "tensorflow.constant", "fewshot.models.kmeans_utils.compute_logits", "fewshot.models.model_factory.RegisterModel" ]
[((656, 668), 'fewshot.utils.logger.get', 'logger.get', ([], {}), '()\n', (666, 668), False, 'from fewshot.utils import logger\n'), ((672, 702), 'fewshot.models.model_factory.RegisterModel', 'RegisterModel', (['"""basic-VAT-ENT"""'], {}), "('basic-VAT-ENT')\n", (685, 702), False, 'from fewshot.models.model_factory import RegisterModel\n'), ((803, 851), 'fewshot.models.basic_model_VAT.BasicModelVAT.get_train_op', 'BasicModelVAT.get_train_op', (['self', 'logits', 'y_test'], {}), '(self, logits, y_test)\n', (829, 851), False, 'from fewshot.models.basic_model_VAT import BasicModelVAT\n'), ((995, 1011), 'tensorflow.shape', 'tf.shape', (['logits'], {}), '(logits)\n', (1003, 1011), True, 'import tensorflow as tf\n'), ((1029, 1061), 'tensorflow.stop_gradient', 'tf.stop_gradient', (['self.h_unlabel'], {}), '(self.h_unlabel)\n', (1045, 1061), True, 'import tensorflow as tf\n'), ((1300, 1390), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['(VAT_ENT_step_size * self.learn_rate)'], {'name': '"""Entropy-optimizer"""'}), "(VAT_ENT_step_size * self.learn_rate, name=\n 'Entropy-optimizer')\n", (1322, 1390), True, 'import tensorflow as tf\n'), ((635, 647), 'tensorflow.pow', 'tf.pow', (['t', '(2)'], {}), '(t, 2)\n', (641, 647), True, 'import tensorflow as tf\n'), ((1082, 1102), 'fewshot.models.kmeans_utils.compute_logits', 'compute_logits', (['p', 'p'], {}), '(p, p)\n', (1096, 1102), False, 'from fewshot.models.kmeans_utils import compute_logits\n'), ((1856, 1899), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""entropy loss"""', 'ENT_loss'], {}), "('entropy loss', ENT_loss)\n", (1873, 1899), True, 'import tensorflow as tf\n'), ((1106, 1133), 'tensorflow.eye', 'tf.eye', (['s'], {'dtype': 'tf.float32'}), '(s, dtype=tf.float32)\n', (1112, 1133), True, 'import tensorflow as tf\n'), ((1586, 1602), 'tensorflow.constant', 'tf.constant', (['(0.0)'], {}), '(0.0)\n', (1597, 1602), True, 'import tensorflow as tf\n'), ((1749, 1834), 'tensorflow.summary.histogram', 'tf.summary.histogram', (["('ENT/gradients/' + variable.name)", 'gradient'], {'family': '"""Grads"""'}), "('ENT/gradients/' + variable.name, gradient, family='Grads'\n )\n", (1769, 1834), True, 'import tensorflow as tf\n')]
import unittest import os import pathlib import h5py from desc.input_reader import InputReader from desc.equilibrium_io import hdf5Writer, hdf5Reader from desc.configuration import Configuration, Equilibrium #from desc.input_output import read_input #class TestIO(unittest.TestCase): # """tests for input/output functions""" # # def test_min_input(self): # dirname = os.path.dirname(__file__) # filename = os.path.join(dirname, 'MIN_INPUT') # inputs = read_input(filename) # # self.assertEqual(len(inputs), 26) class TestInputReader(unittest.TestCase): def setUp(self): self.argv0 = [] self.argv1 = ['nonexistant_input_file'] self.argv2 = ['./tests/MIN_INPUT'] def test_no_input_file(self): with self.assertRaises(NameError): ir = InputReader(cl_args=self.argv0) def test_nonexistant_input_file(self): with self.assertRaises(FileNotFoundError): ir = InputReader(cl_args=self.argv1) def test_min_input(self): ir = InputReader(cl_args=self.argv2) #self.assertEqual(ir.args.prog, 'DESC', 'Program is incorrect.') self.assertEqual(ir.args.input_file[0], self.argv2[0], 'Input file name does not match') #self.assertEqual(ir.output_path, self.argv2[0] + '.output', # 'Default output file does not match.') self.assertEqual(ir.input_path, str(pathlib.Path('./'+self.argv2[0]).resolve()), 'Path to input file is incorrect.') #Test defaults self.assertFalse(ir.args.plot, 'plot is not default False') self.assertFalse(ir.args.quiet, 'quiet is not default False') self.assertFalse(ir.args.verbose, 'verbose is not default False') #self.assertEqual(ir.args.vmec_path, '', "vmec path is not default ''") #self.assertFalse(ir.args.gpuID, 'gpu argument was given') self.assertFalse(ir.args.numpy, 'numpy is not default False') self.assertEqual(os.environ['DESC_USE_NUMPY'], '', 'numpy environment ' 'variable incorrect with default argument') self.assertFalse(ir.args.version, 'version is not default False') self.assertEqual(len(ir.inputs), 28, 'number of inputs does not match ' 'number expected in MIN_INPUT') # test equality of arguments def test_np_environ(self): argv = self.argv2 + ['--numpy'] ir = InputReader(cl_args=argv) self.assertEqual(os.environ['DESC_USE_NUMPY'], 'True', 'numpy ' 'environment variable incorrect on use') def test_quiet_verbose(self): ir = InputReader(self.argv2) self.assertEqual(ir.inputs['verbose'], 1, "value of inputs['verbose'] " "incorrect on no arguments") argv = self.argv2 + ['-v'] ir = InputReader(argv) self.assertEqual(ir.inputs['verbose'], 2, "value of inputs['verbose'] " "incorrect on verbose argument") argv.append('-q') ir = InputReader(argv) self.assertEqual(ir.inputs['verbose'], 0, "value of inputs['verbose'] " "incorrect on quiet argument") def test_vmec_to_desc_input(self): pass class MockObject: def __init__(self): self._save_attrs_ = ['a', 'b', 'c'] class Testhdf5Writer(unittest.TestCase): def setUp(self): self.filename = 'writer_test_file' self.file_mode = 'w' def test_given_filename(self): writer = hdf5Writer(self.filename, self.file_mode) self.assertFalse(writer.check_type(writer.target)) self.assertTrue(writer.check_type(writer.base)) self.assertTrue(writer._close_base_) writer.close() self.assertFalse(writer._close_base_) def test_given_file(self): f = h5py.File(self.filename, self.file_mode) writer = hdf5Writer(f, self.file_mode) self.assertTrue(writer.check_type(writer.target)) self.assertTrue(writer.check_type(writer.base)) self.assertFalse(writer._close_base_) #with self.assertWarns(RuntimeWarning): # writer.close() self.assertFalse(writer._close_base_) f.close() def test_close_on_delete(self): writer = hdf5Writer(self.filename, self.file_mode) with self.assertRaises(OSError): newwriter = hdf5Writer(self.filename, self.file_mode) del writer newwriter = hdf5Writer(self.filename, self.file_mode) del newwriter def test_write_dict(self): thedict = {'1':1, '2':2, '3':3} writer = hdf5Writer(self.filename, self.file_mode) writer.write_dict(thedict) writer.write_dict(thedict, where=writer.sub('subgroup')) with self.assertRaises(SyntaxError): writer.write_dict(thedict, where='not a writable type') writer.close() f = h5py.File(self.filename, 'r') g = f['subgroup'] for key in thedict.keys(): self.assertTrue(key in f.keys()) self.assertTrue(key in g.keys()) f.close() def test_write_obj(self): mo = MockObject() writer = hdf5Writer(self.filename, self.file_mode) #writer should throw runtime warning if any save_attrs are undefined with self.assertWarns(RuntimeWarning): writer.write_obj(mo) writer.close() writer = hdf5Writer(self.filename, self.file_mode) for name in mo._save_attrs_: setattr(mo, name, name) writer.write_obj(mo) groupname = 'initial' writer.write_obj(mo, where=writer.sub(groupname)) writer.close() f = h5py.File(self.filename, 'r') for key in mo._save_attrs_: self.assertTrue(key in f.keys()) self.assertTrue(groupname in f.keys()) initial = f[groupname] for key in mo._save_attrs_: self.assertTrue(key in initial.keys()) f.close() class Testhdf5Reader(unittest.TestCase): def setUp(self): self.filename = 'reader_test_file' self.file_mode = 'r' self.thedict = {'a':'a', 'b':'b', 'c':'c'} f = h5py.File(self.filename, 'w') self.subgroup = 'subgroup' g = f.create_group(self.subgroup) for key in self.thedict.keys(): f.create_dataset(key, data=self.thedict[key]) g.create_dataset(key, data=self.thedict[key]) f.close() def test_given_filename(self): reader = hdf5Reader(self.filename) self.assertFalse(reader.check_type(reader.target)) self.assertTrue(reader.check_type(reader.base)) self.assertTrue(reader._close_base_) reader.close() self.assertFalse(reader._close_base_) def test_given_file(self): f = h5py.File(self.filename, self.file_mode) reader = hdf5Reader(f) self.assertTrue(reader.check_type(reader.target)) self.assertTrue(reader.check_type(reader.base)) self.assertFalse(reader._close_base_) #with self.assertWarns(RuntimeWarning): # reader.close() self.assertFalse(reader._close_base_) f.close() #def test_close_on_delete(self): # reader = hdf5Reader(self.filename) # with self.assertRaises(OSError): # newreader = hdf5Reader(self.filename) # del reader # newreader = hdf5Reader(self.filename) # del newreader def test_read_dict(self): reader = hdf5Reader(self.filename) newdict = {} newsubdict = {} otherdict = {} reader.read_dict(newdict) reader.read_dict(newsubdict, where=reader.sub(self.subgroup)) with self.assertRaises(SyntaxError): reader.read_dict(otherdict, where='not a readable type') reader.close() if type(newdict['a']) is bytes: for key in newdict.keys(): newdict[key] = newdict[key].decode('ascii') for key in newsubdict.keys(): newsubdict[key] = newsubdict[key].decode('ascii') self.assertTrue(self.thedict == newdict) self.assertTrue(self.thedict == newsubdict) def test_read_obj(self): mo = MockObject() reader = hdf5Reader(self.filename) reader.read_obj(mo) mo._save_attrs_ += '4' with self.assertWarns(RuntimeWarning): reader.read_obj(mo) del mo._save_attrs_[-1] submo = MockObject() reader.read_obj(submo, where=reader.sub(self.subgroup)) for key in mo._save_attrs_: self.assertTrue(hasattr(mo, key)) self.assertTrue(hasattr(submo, key)) def test_load_configuration(self): pass def test_load_equilibrium(self): pass
[ "desc.input_reader.InputReader", "pathlib.Path", "desc.equilibrium_io.hdf5Writer", "h5py.File", "desc.equilibrium_io.hdf5Reader" ]
[((1042, 1073), 'desc.input_reader.InputReader', 'InputReader', ([], {'cl_args': 'self.argv2'}), '(cl_args=self.argv2)\n', (1053, 1073), False, 'from desc.input_reader import InputReader\n'), ((2451, 2476), 'desc.input_reader.InputReader', 'InputReader', ([], {'cl_args': 'argv'}), '(cl_args=argv)\n', (2462, 2476), False, 'from desc.input_reader import InputReader\n'), ((2650, 2673), 'desc.input_reader.InputReader', 'InputReader', (['self.argv2'], {}), '(self.argv2)\n', (2661, 2673), False, 'from desc.input_reader import InputReader\n'), ((2843, 2860), 'desc.input_reader.InputReader', 'InputReader', (['argv'], {}), '(argv)\n', (2854, 2860), False, 'from desc.input_reader import InputReader\n'), ((3025, 3042), 'desc.input_reader.InputReader', 'InputReader', (['argv'], {}), '(argv)\n', (3036, 3042), False, 'from desc.input_reader import InputReader\n'), ((3495, 3536), 'desc.equilibrium_io.hdf5Writer', 'hdf5Writer', (['self.filename', 'self.file_mode'], {}), '(self.filename, self.file_mode)\n', (3505, 3536), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((3810, 3850), 'h5py.File', 'h5py.File', (['self.filename', 'self.file_mode'], {}), '(self.filename, self.file_mode)\n', (3819, 3850), False, 'import h5py\n'), ((3868, 3897), 'desc.equilibrium_io.hdf5Writer', 'hdf5Writer', (['f', 'self.file_mode'], {}), '(f, self.file_mode)\n', (3878, 3897), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((4252, 4293), 'desc.equilibrium_io.hdf5Writer', 'hdf5Writer', (['self.filename', 'self.file_mode'], {}), '(self.filename, self.file_mode)\n', (4262, 4293), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((4440, 4481), 'desc.equilibrium_io.hdf5Writer', 'hdf5Writer', (['self.filename', 'self.file_mode'], {}), '(self.filename, self.file_mode)\n', (4450, 4481), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((4593, 4634), 'desc.equilibrium_io.hdf5Writer', 'hdf5Writer', (['self.filename', 'self.file_mode'], {}), '(self.filename, self.file_mode)\n', (4603, 4634), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((4883, 4912), 'h5py.File', 'h5py.File', (['self.filename', '"""r"""'], {}), "(self.filename, 'r')\n", (4892, 4912), False, 'import h5py\n'), ((5156, 5197), 'desc.equilibrium_io.hdf5Writer', 'hdf5Writer', (['self.filename', 'self.file_mode'], {}), '(self.filename, self.file_mode)\n', (5166, 5197), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((5395, 5436), 'desc.equilibrium_io.hdf5Writer', 'hdf5Writer', (['self.filename', 'self.file_mode'], {}), '(self.filename, self.file_mode)\n', (5405, 5436), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((5662, 5691), 'h5py.File', 'h5py.File', (['self.filename', '"""r"""'], {}), "(self.filename, 'r')\n", (5671, 5691), False, 'import h5py\n'), ((6155, 6184), 'h5py.File', 'h5py.File', (['self.filename', '"""w"""'], {}), "(self.filename, 'w')\n", (6164, 6184), False, 'import h5py\n'), ((6489, 6514), 'desc.equilibrium_io.hdf5Reader', 'hdf5Reader', (['self.filename'], {}), '(self.filename)\n', (6499, 6514), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((6788, 6828), 'h5py.File', 'h5py.File', (['self.filename', 'self.file_mode'], {}), '(self.filename, self.file_mode)\n', (6797, 6828), False, 'import h5py\n'), ((6846, 6859), 'desc.equilibrium_io.hdf5Reader', 'hdf5Reader', (['f'], {}), '(f)\n', (6856, 6859), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((7473, 7498), 'desc.equilibrium_io.hdf5Reader', 'hdf5Reader', (['self.filename'], {}), '(self.filename)\n', (7483, 7498), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((8229, 8254), 'desc.equilibrium_io.hdf5Reader', 'hdf5Reader', (['self.filename'], {}), '(self.filename)\n', (8239, 8254), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((822, 853), 'desc.input_reader.InputReader', 'InputReader', ([], {'cl_args': 'self.argv0'}), '(cl_args=self.argv0)\n', (833, 853), False, 'from desc.input_reader import InputReader\n'), ((966, 997), 'desc.input_reader.InputReader', 'InputReader', ([], {'cl_args': 'self.argv1'}), '(cl_args=self.argv1)\n', (977, 997), False, 'from desc.input_reader import InputReader\n'), ((4359, 4400), 'desc.equilibrium_io.hdf5Writer', 'hdf5Writer', (['self.filename', 'self.file_mode'], {}), '(self.filename, self.file_mode)\n', (4369, 4400), False, 'from desc.equilibrium_io import hdf5Writer, hdf5Reader\n'), ((1445, 1479), 'pathlib.Path', 'pathlib.Path', (["('./' + self.argv2[0])"], {}), "('./' + self.argv2[0])\n", (1457, 1479), False, 'import pathlib\n')]
from unittest import skip import unittest2 from nose.plugins.attrib import attr from nose.tools import assert_equals @attr('test_nose_plugin') class TestNosePlugin(unittest2.TestCase): def setUp(self): pass def tearDown(self): pass def test_one(self): """first test, simulation passing test""" assert_equals(1, 1) def test_one6(self): """first test, simulation passing test""" assert_equals(1, 1) def test_three(self): """third test, simulation failing test""" assert_equals(1, 1)
[ "nose.tools.assert_equals", "nose.plugins.attrib.attr" ]
[((121, 145), 'nose.plugins.attrib.attr', 'attr', (['"""test_nose_plugin"""'], {}), "('test_nose_plugin')\n", (125, 145), False, 'from nose.plugins.attrib import attr\n'), ((343, 362), 'nose.tools.assert_equals', 'assert_equals', (['(1)', '(1)'], {}), '(1, 1)\n', (356, 362), False, 'from nose.tools import assert_equals\n'), ((447, 466), 'nose.tools.assert_equals', 'assert_equals', (['(1)', '(1)'], {}), '(1, 1)\n', (460, 466), False, 'from nose.tools import assert_equals\n'), ((552, 571), 'nose.tools.assert_equals', 'assert_equals', (['(1)', '(1)'], {}), '(1, 1)\n', (565, 571), False, 'from nose.tools import assert_equals\n')]
# Copyright 2020-2021 Canonical Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # For further info, check https://github.com/canonical/charmcraft """Charmcraft manifest.yaml related functionality.""" import datetime import logging import pathlib from typing import Optional, List import yaml from charmcraft import __version__, config, linters logger = logging.getLogger(__name__) def create_manifest( basedir: pathlib.Path, started_at: datetime.datetime, bases_config: Optional[config.BasesConfiguration], linting_results: List[linters.CheckResult], ): """Create manifest.yaml in basedir for given base configuration. For packing bundles, `bases` will be skipped when bases_config is None. Charms should always include a valid bases_config. :param basedir: Directory to create Charm in. :param started_at: Build start time. :param bases_config: Relevant bases configuration, if any. :returns: Path to created manifest.yaml. """ content = { "charmcraft-version": __version__, "charmcraft-started-at": started_at.isoformat() + "Z", } # Annotate bases only if bases_config is not None. if bases_config is not None: bases = [ { "name": r.name, "channel": r.channel, "architectures": r.architectures, } for r in bases_config.run_on ] content["bases"] = bases # include the linters results (only for attributes) attributes_info = [ {"name": result.name, "result": result.result} for result in linting_results if result.check_type == linters.CheckType.attribute ] content["analysis"] = {"attributes": attributes_info} filepath = basedir / "manifest.yaml" filepath.write_text(yaml.dump(content)) return filepath
[ "logging.getLogger", "yaml.dump" ]
[((859, 886), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (876, 886), False, 'import logging\n'), ((2319, 2337), 'yaml.dump', 'yaml.dump', (['content'], {}), '(content)\n', (2328, 2337), False, 'import yaml\n')]
#ecoding:utf-8 import DatasetLoader import RICNNModel import tensorflow as tf import sys import numpy as np import regularization as re import os import trainLoader os.environ["CUDA_VISIBLE_DEVICES"] = "1" TRAIN_FILENAME = '/media/liuqi/Files/dataset/test_mnist_ricnn_raw_100.h5' TEST_FILENAME = '/media/liuqi/Files/dataset/test_mnist_ricnn_raw.h5' TRAIN_LABELS = '/media/liuqi/Files/dataset/rotate_100_simple.h5' TEST_LABELS = '/home/liuqi/Desktop/mnist_rotation_new/mnist_all_rotation_normalized_float_test.amat' LOADED_SIZE = 28 DESIRED_SIZE = 227 # model constants NUMBER_OF_CLASSES = 10 NUMBER_OF_FILTERS = 40 NUMBER_OF_FC_FEATURES = 5120 NUMBER_OF_TRANSFORMATIONS = 8 # optimization constants BATCH_SIZE = 64 TEST_CHUNK_SIZE = 100 ADAM_LEARNING_RATE = 1e-5 PRINTING_INTERVAL = 10 # set seeds np.random.seed(100) tf.set_random_seed(100) x = tf.placeholder(tf.float32, shape=[None, DESIRED_SIZE, DESIRED_SIZE, 1, NUMBER_OF_TRANSFORMATIONS]) y_gt = tf.placeholder(tf.float32, shape=[None, NUMBER_OF_CLASSES]) keep_prob = tf.placeholder(tf.float32) logits, raw_feature, regularization_loss = RICNNModel.define_model(x, keep_prob, NUMBER_OF_CLASSES, NUMBER_OF_FILTERS, NUMBER_OF_FC_FEATURES) with tf.name_scope('loss'): with tf.name_scope('re_loss'): re_loss = re.regu_constraint(raw_feature, logits) with tf.name_scope('sotfmax_loss'): sotfmax_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_gt)) with tf.name_scope('total_loss'): total_loss = sotfmax_loss train_step = tf.train.AdamOptimizer(ADAM_LEARNING_RATE).minimize(total_loss) correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y_gt, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) session = tf.Session() session.run(tf.initialize_all_variables()) train_data_loader = trainLoader.DataLoader(TRAIN_FILENAME, TRAIN_LABELS, NUMBER_OF_CLASSES, NUMBER_OF_TRANSFORMATIONS, LOADED_SIZE, DESIRED_SIZE) test_data_loader = DatasetLoader.DataLoader(TEST_FILENAME, TEST_LABELS, NUMBER_OF_CLASSES, NUMBER_OF_TRANSFORMATIONS, LOADED_SIZE, DESIRED_SIZE) test_size = test_data_loader.all()[1].shape[0] assert test_size % TEST_CHUNK_SIZE == 0 number_of_test_chunks = test_size / TEST_CHUNK_SIZE while (True): batch = train_data_loader.next_batch(BATCH_SIZE) # next_batch from the loader txt_name = "accary_ricnn.txt" txt_file = file(txt_name, "a+") if (train_data_loader.is_new_epoch()): train_accuracy = session.run(accuracy, feed_dict={x : batch[0], y_gt : batch[1], keep_prob : 1.0}) print_loss = session.run(re_loss,feed_dict={x : batch[0], y_gt : batch[1], keep_prob : 1.0}) print_loss_1 = session.run(sotfmax_loss, feed_dict={x: batch[0], y_gt: batch[1], keep_prob: 1.0}) print(print_loss) print(print_loss_1) train_context = "epochs:" + str(train_data_loader.get_completed_epochs()) + '\n' txt_file.write(train_context) loss_context = "softmax_loss:" + str(print_loss_1) + '\n' txt_file.write(loss_context) txt_file.close() print("completed_epochs %d, training accuracy %g" % (train_data_loader.get_completed_epochs(), train_accuracy)) sys.stdout.flush() if (train_data_loader.get_completed_epochs() % PRINTING_INTERVAL == 0): sum = 0.0 xt_name = "accary_ricnn.txt" txt_file = file(txt_name, "a+") for chunk_index in xrange(number_of_test_chunks): chunk = test_data_loader.next_batch(TEST_CHUNK_SIZE) sum += session.run(accuracy, feed_dict={x : chunk[0], y_gt : chunk[1], keep_prob : 1.0}) test_accuracy = sum / number_of_test_chunks new_context = "testing accuracy: " + str(test_accuracy) + '\n' txt_file.write(new_context) txt_file.close() print("testing accuracy %g" % test_accuracy) sys.stdout.flush() session.run(train_step, feed_dict={x : batch[0], y_gt : batch[1], keep_prob : 0.5})
[ "tensorflow.cast", "sys.stdout.flush", "tensorflow.initialize_all_variables", "trainLoader.DataLoader", "tensorflow.placeholder", "tensorflow.Session", "RICNNModel.define_model", "tensorflow.argmax", "tensorflow.name_scope", "numpy.random.seed", "regularization.regu_constraint", "tensorflow.nn.softmax_cross_entropy_with_logits", "tensorflow.train.AdamOptimizer", "tensorflow.set_random_seed", "DatasetLoader.DataLoader" ]
[((801, 820), 'numpy.random.seed', 'np.random.seed', (['(100)'], {}), '(100)\n', (815, 820), True, 'import numpy as np\n'), ((821, 844), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['(100)'], {}), '(100)\n', (839, 844), True, 'import tensorflow as tf\n'), ((849, 951), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, DESIRED_SIZE, DESIRED_SIZE, 1, NUMBER_OF_TRANSFORMATIONS]'}), '(tf.float32, shape=[None, DESIRED_SIZE, DESIRED_SIZE, 1,\n NUMBER_OF_TRANSFORMATIONS])\n', (863, 951), True, 'import tensorflow as tf\n'), ((1107, 1166), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, NUMBER_OF_CLASSES]'}), '(tf.float32, shape=[None, NUMBER_OF_CLASSES])\n', (1121, 1166), True, 'import tensorflow as tf\n'), ((1179, 1205), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (1193, 1205), True, 'import tensorflow as tf\n'), ((1249, 1351), 'RICNNModel.define_model', 'RICNNModel.define_model', (['x', 'keep_prob', 'NUMBER_OF_CLASSES', 'NUMBER_OF_FILTERS', 'NUMBER_OF_FC_FEATURES'], {}), '(x, keep_prob, NUMBER_OF_CLASSES, NUMBER_OF_FILTERS,\n NUMBER_OF_FC_FEATURES)\n', (1272, 1351), False, 'import RICNNModel\n'), ((2047, 2059), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (2057, 2059), True, 'import tensorflow as tf\n'), ((2123, 2252), 'trainLoader.DataLoader', 'trainLoader.DataLoader', (['TRAIN_FILENAME', 'TRAIN_LABELS', 'NUMBER_OF_CLASSES', 'NUMBER_OF_TRANSFORMATIONS', 'LOADED_SIZE', 'DESIRED_SIZE'], {}), '(TRAIN_FILENAME, TRAIN_LABELS, NUMBER_OF_CLASSES,\n NUMBER_OF_TRANSFORMATIONS, LOADED_SIZE, DESIRED_SIZE)\n', (2145, 2252), False, 'import trainLoader\n'), ((2453, 2582), 'DatasetLoader.DataLoader', 'DatasetLoader.DataLoader', (['TEST_FILENAME', 'TEST_LABELS', 'NUMBER_OF_CLASSES', 'NUMBER_OF_TRANSFORMATIONS', 'LOADED_SIZE', 'DESIRED_SIZE'], {}), '(TEST_FILENAME, TEST_LABELS, NUMBER_OF_CLASSES,\n NUMBER_OF_TRANSFORMATIONS, LOADED_SIZE, DESIRED_SIZE)\n', (2477, 2582), False, 'import DatasetLoader\n'), ((1485, 1506), 'tensorflow.name_scope', 'tf.name_scope', (['"""loss"""'], {}), "('loss')\n", (1498, 1506), True, 'import tensorflow as tf\n'), ((1928, 1948), 'tensorflow.argmax', 'tf.argmax', (['logits', '(1)'], {}), '(logits, 1)\n', (1937, 1948), True, 'import tensorflow as tf\n'), ((1950, 1968), 'tensorflow.argmax', 'tf.argmax', (['y_gt', '(1)'], {}), '(y_gt, 1)\n', (1959, 1968), True, 'import tensorflow as tf\n'), ((1996, 2035), 'tensorflow.cast', 'tf.cast', (['correct_prediction', 'tf.float32'], {}), '(correct_prediction, tf.float32)\n', (2003, 2035), True, 'import tensorflow as tf\n'), ((2072, 2101), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (2099, 2101), True, 'import tensorflow as tf\n'), ((1517, 1541), 'tensorflow.name_scope', 'tf.name_scope', (['"""re_loss"""'], {}), "('re_loss')\n", (1530, 1541), True, 'import tensorflow as tf\n'), ((1561, 1600), 'regularization.regu_constraint', 're.regu_constraint', (['raw_feature', 'logits'], {}), '(raw_feature, logits)\n', (1579, 1600), True, 'import regularization as re\n'), ((1610, 1639), 'tensorflow.name_scope', 'tf.name_scope', (['"""sotfmax_loss"""'], {}), "('sotfmax_loss')\n", (1623, 1639), True, 'import tensorflow as tf\n'), ((1757, 1784), 'tensorflow.name_scope', 'tf.name_scope', (['"""total_loss"""'], {}), "('total_loss')\n", (1770, 1784), True, 'import tensorflow as tf\n'), ((1834, 1876), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['ADAM_LEARNING_RATE'], {}), '(ADAM_LEARNING_RATE)\n', (1856, 1876), True, 'import tensorflow as tf\n'), ((4127, 4145), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4143, 4145), False, 'import sys\n'), ((1679, 1746), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'logits': 'logits', 'labels': 'y_gt'}), '(logits=logits, labels=y_gt)\n', (1718, 1746), True, 'import tensorflow as tf\n'), ((4855, 4873), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4871, 4873), False, 'import sys\n')]
#!/usr/bin/env python """Extract radial, sulcal, and gyral orientations from gyral coordinate NIFTI file""" def main(): import argparse parser = argparse.ArgumentParser("Extract radial, sulcal, and gyral dyads from a coord NIFTI file") parser.add_argument('coord', help='name of the coord file') parser.add_argument('-b', '--base', help='Basename of the output files') parser.add_argument('-r', '--radial', help='Filename for the radial output (overrides the --base option)') parser.add_argument('-s', '--sulcal', help='Filename for the sulcal output (overrides the --base option)') parser.add_argument('-g', '--gyral', help='Filename for the gyral output (overrides the --base option)') args = parser.parse_args() from mcot.core.surface import utils utils.gcoord_split(args)
[ "mcot.core.surface.utils.gcoord_split", "argparse.ArgumentParser" ]
[((156, 251), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Extract radial, sulcal, and gyral dyads from a coord NIFTI file"""'], {}), "(\n 'Extract radial, sulcal, and gyral dyads from a coord NIFTI file')\n", (179, 251), False, 'import argparse\n'), ((795, 819), 'mcot.core.surface.utils.gcoord_split', 'utils.gcoord_split', (['args'], {}), '(args)\n', (813, 819), False, 'from mcot.core.surface import utils\n')]
import pyautogui import time import datetime class SwipeCard: def __init__(self): self.resolution = pyautogui.size() def resolve_task(self): try: hide_card_position = pyautogui.center( pyautogui.locateOnScreen(f"assets/tasks/swipe_card/main.png", confidence=0.7)) pyautogui.click(hide_card_position[0], hide_card_position[1]) time.sleep(1) card_position = pyautogui.center( pyautogui.locateOnScreen(f"assets/tasks/swipe_card/card.png", confidence=0.8)) pyautogui.moveTo(card_position[0], card_position[1]) pyautogui.mouseDown(button="left") mouse_pos_x = card_position[0] while (mouse_pos_x < 1450): pyautogui.moveTo(mouse_pos_x, card_position[1]) mouse_pos_x += 60 pyautogui.click() return True except Exception as e: print(e) def log(self): time = datetime.datetime.now() print( f"[{time.hour}:{time.minute}][ZADANIE] Rozwiązauje kartę w adminie" ) def run(self): return self.resolve_task()
[ "pyautogui.moveTo", "pyautogui.locateOnScreen", "time.sleep", "pyautogui.size", "pyautogui.click", "datetime.datetime.now", "pyautogui.mouseDown" ]
[((114, 130), 'pyautogui.size', 'pyautogui.size', ([], {}), '()\n', (128, 130), False, 'import pyautogui\n'), ((1081, 1104), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1102, 1104), False, 'import datetime\n'), ((372, 433), 'pyautogui.click', 'pyautogui.click', (['hide_card_position[0]', 'hide_card_position[1]'], {}), '(hide_card_position[0], hide_card_position[1])\n', (387, 433), False, 'import pyautogui\n'), ((447, 460), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (457, 460), False, 'import time\n'), ((656, 708), 'pyautogui.moveTo', 'pyautogui.moveTo', (['card_position[0]', 'card_position[1]'], {}), '(card_position[0], card_position[1])\n', (672, 708), False, 'import pyautogui\n'), ((721, 755), 'pyautogui.mouseDown', 'pyautogui.mouseDown', ([], {'button': '"""left"""'}), "(button='left')\n", (740, 755), False, 'import pyautogui\n'), ((951, 968), 'pyautogui.click', 'pyautogui.click', ([], {}), '()\n', (966, 968), False, 'import pyautogui\n'), ((240, 317), 'pyautogui.locateOnScreen', 'pyautogui.locateOnScreen', (['f"""assets/tasks/swipe_card/main.png"""'], {'confidence': '(0.7)'}), "(f'assets/tasks/swipe_card/main.png', confidence=0.7)\n", (264, 317), False, 'import pyautogui\n'), ((523, 600), 'pyautogui.locateOnScreen', 'pyautogui.locateOnScreen', (['f"""assets/tasks/swipe_card/card.png"""'], {'confidence': '(0.8)'}), "(f'assets/tasks/swipe_card/card.png', confidence=0.8)\n", (547, 600), False, 'import pyautogui\n'), ((856, 903), 'pyautogui.moveTo', 'pyautogui.moveTo', (['mouse_pos_x', 'card_position[1]'], {}), '(mouse_pos_x, card_position[1])\n', (872, 903), False, 'import pyautogui\n')]
from service import Service from unittest import TestCase from mock import patch import sys class TestService(TestCase): @patch('service.Service.bad_random', return_value=10) def test_bad_random(self, bad_random): self.assertEqual(bad_random(), 10) @patch('service.Service.bad_random', return_value=10) def test_divide(self, bad_random): x = Service() self.assertEqual(x.divide(2),5) self.assertEqual(x.divide(-2),-5) bad_random.return_value=-10 self.assertEqual(x.divide(2),-5) bad_random.return_value=0 self.assertEqual(x.divide(sys.maxsize),0) self.assertEqual(x.divide(-sys.maxsize+1),0) def test_abs_plus(self): x=Service() self.assertEqual(x.abs_plus(10),11) self.assertEqual(x.abs_plus(0),1) self.assertEqual(x.abs_plus(-10),11) self.assertEqual(x.abs_plus(-sys.maxsize+1),sys.maxsize) self.assertEqual(x.abs_plus(10),11) @patch('service.Service.bad_random', return_value=10) def test_complicated_function(self, bad_random): x = Service() results = x.complicated_function(20) self.assertEqual(results[0], 0.5) self.assertEqual(results[1], 0) bad_random.return_value=-13 results = x.complicated_function(-1) self.assertEqual(results[0], 13) self.assertEqual(results[1], 1) bad_random.return_value=0 results = x.complicated_function(sys.maxsize) self.assertEqual(results[0], 0) self.assertEqual(results[1], 0)
[ "mock.patch", "service.Service" ]
[((124, 176), 'mock.patch', 'patch', (['"""service.Service.bad_random"""'], {'return_value': '(10)'}), "('service.Service.bad_random', return_value=10)\n", (129, 176), False, 'from mock import patch\n'), ((257, 309), 'mock.patch', 'patch', (['"""service.Service.bad_random"""'], {'return_value': '(10)'}), "('service.Service.bad_random', return_value=10)\n", (262, 309), False, 'from mock import patch\n'), ((878, 930), 'mock.patch', 'patch', (['"""service.Service.bad_random"""'], {'return_value': '(10)'}), "('service.Service.bad_random', return_value=10)\n", (883, 930), False, 'from mock import patch\n'), ((352, 361), 'service.Service', 'Service', ([], {}), '()\n', (359, 361), False, 'from service import Service\n'), ((655, 664), 'service.Service', 'Service', ([], {}), '()\n', (662, 664), False, 'from service import Service\n'), ((988, 997), 'service.Service', 'Service', ([], {}), '()\n', (995, 997), False, 'from service import Service\n')]
"""Use TIMESTAMP column for latest submission Revision ID: eff<PASSWORD>0<PASSWORD> Revises: <PASSWORD> Create Date: 2017-01-08 22:20:43.814375 """ # revision identifiers, used by Alembic. revision = 'eff<PASSWORD>' down_revision = '<PASSWORD>' from alembic import op # lgtm[py/unused-import] import sqlalchemy as sa # lgtm[py/unused-import] import libweasyl from libweasyl.legacy import UNIXTIME_OFFSET def upgrade(): op.alter_column( 'profile', 'latest_submission_time', new_column_name='latest_submission_time_old', ) op.add_column( 'profile', sa.Column('latest_submission_time', libweasyl.models.helpers.ArrowColumn(), nullable=False, server_default='epoch'), ) op.execute( "UPDATE profile SET latest_submission_time = TIMESTAMP WITHOUT TIME ZONE 'epoch' + " "(latest_submission_time_old - %d) * INTERVAL '1 second'" % (UNIXTIME_OFFSET,)) op.drop_column('profile', 'latest_submission_time_old') def downgrade(): op.alter_column( 'profile', 'latest_submission_time', new_column_name='latest_submission_time_new', ) op.add_column( 'profile', sa.Column('latest_submission_time', libweasyl.models.helpers.WeasylTimestampColumn(), nullable=False, server_default='0'), ) op.execute( "UPDATE profile SET latest_submission_time = extract(epoch from latest_submission_time_new) + %d" % (UNIXTIME_OFFSET,)) op.drop_column('profile', 'latest_submission_time_new')
[ "alembic.op.alter_column", "alembic.op.drop_column", "libweasyl.models.helpers.ArrowColumn", "alembic.op.execute", "libweasyl.models.helpers.WeasylTimestampColumn" ]
[((433, 536), 'alembic.op.alter_column', 'op.alter_column', (['"""profile"""', '"""latest_submission_time"""'], {'new_column_name': '"""latest_submission_time_old"""'}), "('profile', 'latest_submission_time', new_column_name=\n 'latest_submission_time_old')\n", (448, 536), False, 'from alembic import op\n'), ((736, 918), 'alembic.op.execute', 'op.execute', (['("UPDATE profile SET latest_submission_time = TIMESTAMP WITHOUT TIME ZONE \'epoch\' + (latest_submission_time_old - %d) * INTERVAL \'1 second\'"\n % (UNIXTIME_OFFSET,))'], {}), '(\n "UPDATE profile SET latest_submission_time = TIMESTAMP WITHOUT TIME ZONE \'epoch\' + (latest_submission_time_old - %d) * INTERVAL \'1 second\'"\n % (UNIXTIME_OFFSET,))\n', (746, 918), False, 'from alembic import op\n'), ((933, 988), 'alembic.op.drop_column', 'op.drop_column', (['"""profile"""', '"""latest_submission_time_old"""'], {}), "('profile', 'latest_submission_time_old')\n", (947, 988), False, 'from alembic import op\n'), ((1012, 1115), 'alembic.op.alter_column', 'op.alter_column', (['"""profile"""', '"""latest_submission_time"""'], {'new_column_name': '"""latest_submission_time_new"""'}), "('profile', 'latest_submission_time', new_column_name=\n 'latest_submission_time_new')\n", (1027, 1115), False, 'from alembic import op\n'), ((1321, 1461), 'alembic.op.execute', 'op.execute', (["('UPDATE profile SET latest_submission_time = extract(epoch from latest_submission_time_new) + %d'\n % (UNIXTIME_OFFSET,))"], {}), "(\n 'UPDATE profile SET latest_submission_time = extract(epoch from latest_submission_time_new) + %d'\n % (UNIXTIME_OFFSET,))\n", (1331, 1461), False, 'from alembic import op\n'), ((1465, 1520), 'alembic.op.drop_column', 'op.drop_column', (['"""profile"""', '"""latest_submission_time_new"""'], {}), "('profile', 'latest_submission_time_new')\n", (1479, 1520), False, 'from alembic import op\n'), ((645, 683), 'libweasyl.models.helpers.ArrowColumn', 'libweasyl.models.helpers.ArrowColumn', ([], {}), '()\n', (681, 683), False, 'import libweasyl\n'), ((1224, 1272), 'libweasyl.models.helpers.WeasylTimestampColumn', 'libweasyl.models.helpers.WeasylTimestampColumn', ([], {}), '()\n', (1270, 1272), False, 'import libweasyl\n')]
from bs4 import BeautifulSoup import requests import math import time start_url='https://www.macys.com' domain='https://www.macys.com' ''' get soup ''' def get_soup(url): # get contents from url content='' while content=='': try: content = requests.get(url, headers={'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36'}).content except: time.sleep(5) continue return BeautifulSoup(content,'lxml') # choose lxml parser '''find all anchor tags''' def findAllATags(url): soup = get_soup(url) a_tags = soup.findAll('a') a_tags=[a for a in [a for a in a_tags if 'href' in a.attrs] if a.attrs['href'].find('/shop')==0] return a_tags '''print all 'title' attributes''' def printTitles(url,f): soup=get_soup(domain+url) temp=[i.find('a') for i in soup.findAll('div',{'class':'productThumbnailImage'})] for i in temp: f.write(i['title']+'\n') '''iterate through all pages for each soup object''' def pagination(count, url,f,u): count_=math.ceil(count/60) i=2 printTitles(url,f) u.write(url+'\n') while i<=count_: printTitles(url.replace("?","/Pageindex/"+str(i)+"?"),f) i+=1 '''filehandlers for output.txt and urlHandler.txt''' def fileHandler(): f=open('output.txt','a') return f def urlHandler(): f=open('urlHandler.txt','a') return f '''generates soup object for each url''' def getItems(url): soup=get_soup(domain+url) try: f=fileHandler() u=urlHandler() f.write(soup.find('span', {'id' : 'currentCategory'}).text+'\n') pagination(int(soup.find('span',{'id':'productCount'}).text),url,f, u) except: pass finally: f.close() u.close() '''main function''' if __name__=='__main__': start_time=time.time() items=[] tags=findAllATags(url=start_url) '''executing getItems for tags[12:] because first 11 have no relevant information''' for i in tags[12:]: getItems(i.attrs['href']) print(time.time()-start_time)
[ "math.ceil", "time.sleep", "requests.get", "bs4.BeautifulSoup", "time.time" ]
[((575, 605), 'bs4.BeautifulSoup', 'BeautifulSoup', (['content', '"""lxml"""'], {}), "(content, 'lxml')\n", (588, 605), False, 'from bs4 import BeautifulSoup\n'), ((1199, 1220), 'math.ceil', 'math.ceil', (['(count / 60)'], {}), '(count / 60)\n', (1208, 1220), False, 'import math\n'), ((2012, 2023), 'time.time', 'time.time', ([], {}), '()\n', (2021, 2023), False, 'import time\n'), ((2237, 2248), 'time.time', 'time.time', ([], {}), '()\n', (2246, 2248), False, 'import time\n'), ((290, 465), 'requests.get', 'requests.get', (['url'], {'headers': "{'User-Agent':\n 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36'\n }"}), "(url, headers={'User-Agent':\n 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36'\n })\n", (302, 465), False, 'import requests\n'), ((527, 540), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (537, 540), False, 'import time\n')]
from pydantic import BaseModel, Field, EmailStr class PostSchema(BaseModel): id: int = Field(default=None) title: str = Field(...) content: str = Field(...) class Config: schema_extra = { "example": { "title": "Securing FastAPI applications with JWT.", "content": "In this tutorial, you'll learn how to secure your application by enabling authentication using JWT. We'll be using PyJWT to sign, encode and decode JWT tokens...." } } class UserSchema(BaseModel): fullname: str = Field(...) email: EmailStr = Field(...) password: str = Field(...) class Config: schema_extra = { "example": { "fullname": "<NAME>", "email": "<EMAIL>", "password": "<PASSWORD>" } } class UserLoginSchema(BaseModel): email: EmailStr = Field(...) password: str = Field(...) class Config: schema_extra = { "example": { "email": "<EMAIL>", "password": "<PASSWORD>" } }
[ "pydantic.Field" ]
[((93, 112), 'pydantic.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (98, 112), False, 'from pydantic import BaseModel, Field, EmailStr\n'), ((130, 140), 'pydantic.Field', 'Field', (['...'], {}), '(...)\n', (135, 140), False, 'from pydantic import BaseModel, Field, EmailStr\n'), ((160, 170), 'pydantic.Field', 'Field', (['...'], {}), '(...)\n', (165, 170), False, 'from pydantic import BaseModel, Field, EmailStr\n'), ((575, 585), 'pydantic.Field', 'Field', (['...'], {}), '(...)\n', (580, 585), False, 'from pydantic import BaseModel, Field, EmailStr\n'), ((608, 618), 'pydantic.Field', 'Field', (['...'], {}), '(...)\n', (613, 618), False, 'from pydantic import BaseModel, Field, EmailStr\n'), ((639, 649), 'pydantic.Field', 'Field', (['...'], {}), '(...)\n', (644, 649), False, 'from pydantic import BaseModel, Field, EmailStr\n'), ((915, 925), 'pydantic.Field', 'Field', (['...'], {}), '(...)\n', (920, 925), False, 'from pydantic import BaseModel, Field, EmailStr\n'), ((946, 956), 'pydantic.Field', 'Field', (['...'], {}), '(...)\n', (951, 956), False, 'from pydantic import BaseModel, Field, EmailStr\n')]
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import test_plan import settings class Module(test_plan.Testplan): runScript = settings.KMD_RUNSCRIPT deviceTargets = ['sim', 'ufpga'] def __init__(self): super(Module, self).__init__(__name__) # Convenience globals kmd = Module.runScript devices = Module.deviceTargets ces = ["Core Engine Scheduler"] nn = ["Neural Network"] convd = ["CONV HW - Direct"] convi = ["CONV HW - Image"] convw = ["CONV HW - Winograd"] convp = ["CONV HW - Pipeline"] sdpx1 = ["SDP X1 HW"] sdpx2 = ["SDP X2 HW"] sdpy = ["SDP Y HW"] sdpf = ["SDP HW - Full"] cdp = ["CDP HW"] pdp = ["PDP HW"] def registerNvSmallTests(self, testplan): testplan.append( [0, "Written", kmd, "CONV_D_L0_0_small", None, convd, devices, "Convolution test - Sanity test direct convolution", "Direct convolution, 8x8x128 input cube, 3x3x128 kernel cube and 32 kernels input and weight read from DRAM, no mean and bias data, output written to DRAM through SDP."]) testplan.append( [0, "Written", kmd, "SDP_X1_L0_0_small", None, sdpx1, devices, "SDP test - Sanity test for SDP, only X1 enabled with ALU, X2 and Y disable. No DMA used", "Element wise sum operation in X1, 8x8x32 input cube and 8x8x32 bias cube. Activation function as ReLU"]) testplan.append( [0, "Written", kmd, "CDP_L0_0_small", None, cdp, devices, "CDP test - Sanity test for CDP", "Use only linear table with LUT configured with all 1. 8x8x32 input cube and 8x8x32 output cube."]) testplan.append( [0, "Written", kmd, "PDP_L0_0_small", None, pdp, devices, "PDP test - Sanity test for PDP with max pooling", "Max pooling, 8x8x32 input cube, 8x8x32 output cube, no padding, 1x1 kernel size. No need to compare data. It is enough if task succeeds to pass this test."]) testplan.append( [0, "Written", kmd, "NN_L0_1_small", None, nn, devices, "AlexNet", "AlexNet"]) def registerFirmwareSmallTests(self): testplan = [] registerNvSmallTests(self, testplan) for item in testplan: test = test_plan.Test() test.level = item[0] test.status = item[1] test.runscript = item[2] test.name = item[3] test.options = item[4] test.features = item[5] test.targets = item[6] test.description = item[7] test.dependencies = None self.add_test(test) def registerTests(self): registerFirmwareSmallTests(self) Module.register_tests = registerTests
[ "test_plan.Test" ]
[((3586, 3602), 'test_plan.Test', 'test_plan.Test', ([], {}), '()\n', (3600, 3602), False, 'import test_plan\n')]
#!/usr/bin/env python # vim:ts=4:sts=4:sw=4:et # # Author: <NAME> # Date: 2018-09-09 23:06:06 +0100 (Sun, 09 Sep 2018) # # https://github.com/harisekhon/devops-python-tools # # License: see accompanying Hari Sekhon LICENSE file # # If you're using my code you're welcome to connect with me on LinkedIn and optionally send me feedback # to help improve or steer this or other code I publish # pylint: disable=line-too-long # # https://www.linkedin.com/in/harisekhon # """ Strip ANSI Escape Codes from Text String input Works as a standard unix filter program, reading from file arguments or standard input and printing to standard output """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import sys libdir = os.path.abspath(os.path.join(os.path.dirname(__file__), 'pylib')) sys.path.append(libdir) try: # pylint: disable=wrong-import-position from harisekhon.utils import die, ERRORS, log_option, strip_ansi_escape_codes from harisekhon import CLI except ImportError as _: print('module import failed: %s' % _, file=sys.stderr) print("Did you remember to build the project by running 'make'?", file=sys.stderr) print("Alternatively perhaps you tried to copy this program out without it's adjacent libraries?", file=sys.stderr) sys.exit(4) __author__ = '<NAME>' __version__ = '0.2' # pylint: disable=too-few-public-methods class StripAnsiEscapeCodes(CLI): # def __init__(self): # # Python 2.x # super(StripAnsiEscapeCodes, self).__init__() # # Python 3.x # # super().__init__() def run(self): if not self.args: self.args.append('-') for arg in self.args: if arg == '-': continue if not os.path.exists(arg): print("'%s' not found" % arg) sys.exit(ERRORS['WARNING']) if os.path.isfile(arg): log_option('file', arg) elif os.path.isdir(arg): log_option('directory', arg) else: die("path '%s' could not be determined as either a file or directory" % arg) for filename in self.args: if filename == '-': for line in sys.stdin: print(strip_ansi_escape_codes(line), end='') else: with open(filename) as filehandle: for line in filehandle: print(strip_ansi_escape_codes(line), end='') if __name__ == '__main__': StripAnsiEscapeCodes().main()
[ "os.path.exists", "os.path.isfile", "os.path.dirname", "harisekhon.utils.log_option", "os.path.isdir", "harisekhon.utils.die", "harisekhon.utils.strip_ansi_escape_codes", "sys.exit", "sys.path.append" ]
[((900, 923), 'sys.path.append', 'sys.path.append', (['libdir'], {}), '(libdir)\n', (915, 923), False, 'import sys\n'), ((863, 888), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (878, 888), False, 'import os\n'), ((1381, 1392), 'sys.exit', 'sys.exit', (['(4)'], {}), '(4)\n', (1389, 1392), False, 'import sys\n'), ((1974, 1993), 'os.path.isfile', 'os.path.isfile', (['arg'], {}), '(arg)\n', (1988, 1993), False, 'import os\n'), ((1848, 1867), 'os.path.exists', 'os.path.exists', (['arg'], {}), '(arg)\n', (1862, 1867), False, 'import os\n'), ((1931, 1958), 'sys.exit', 'sys.exit', (["ERRORS['WARNING']"], {}), "(ERRORS['WARNING'])\n", (1939, 1958), False, 'import sys\n'), ((2011, 2034), 'harisekhon.utils.log_option', 'log_option', (['"""file"""', 'arg'], {}), "('file', arg)\n", (2021, 2034), False, 'from harisekhon.utils import die, ERRORS, log_option, strip_ansi_escape_codes\n'), ((2052, 2070), 'os.path.isdir', 'os.path.isdir', (['arg'], {}), '(arg)\n', (2065, 2070), False, 'import os\n'), ((2088, 2116), 'harisekhon.utils.log_option', 'log_option', (['"""directory"""', 'arg'], {}), "('directory', arg)\n", (2098, 2116), False, 'from harisekhon.utils import die, ERRORS, log_option, strip_ansi_escape_codes\n'), ((2151, 2227), 'harisekhon.utils.die', 'die', (['("path \'%s\' could not be determined as either a file or directory" % arg)'], {}), '("path \'%s\' could not be determined as either a file or directory" % arg)\n', (2154, 2227), False, 'from harisekhon.utils import die, ERRORS, log_option, strip_ansi_escape_codes\n'), ((2360, 2389), 'harisekhon.utils.strip_ansi_escape_codes', 'strip_ansi_escape_codes', (['line'], {}), '(line)\n', (2383, 2389), False, 'from harisekhon.utils import die, ERRORS, log_option, strip_ansi_escape_codes\n'), ((2542, 2571), 'harisekhon.utils.strip_ansi_escape_codes', 'strip_ansi_escape_codes', (['line'], {}), '(line)\n', (2565, 2571), False, 'from harisekhon.utils import die, ERRORS, log_option, strip_ansi_escape_codes\n')]
from vk_bot.core.modules.basicplug import BasicPlug import time class Counting(BasicPlug): command = ("отсчет",) doc = "Отсчет от 1 до 3" def main(self): for x in range(3, -1, -1): if x == 0: return self.sendmsg(x) time.sleep(1)
[ "time.sleep" ]
[((287, 300), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (297, 300), False, 'import time\n')]
## Copyright © 2021, Oracle and/or its affiliates. ## Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl. #!/usr/bin/env python from setuptools import setup setup(name='wind-marketplace-library', version="1.0.0", description='Robot Framework test library for OCI Marketplace', long_description='Robot Framework test library for OCI Marketplace', classifiers=[ 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3.6', 'Framework :: WIND Robot Framework', ], author='<EMAIL>', author_email='<EMAIL>', packages=['MarketplaceLibrary'], license = "UPL-1.0", install_requires=[ ], extras_require={ 'dev': [ ] }, platforms='any', include_package_data=True, zip_safe=False)
[ "setuptools.setup" ]
[((212, 803), 'setuptools.setup', 'setup', ([], {'name': '"""wind-marketplace-library"""', 'version': '"""1.0.0"""', 'description': '"""Robot Framework test library for OCI Marketplace"""', 'long_description': '"""Robot Framework test library for OCI Marketplace"""', 'classifiers': "['Operating System :: OS Independent', 'Programming Language :: Python',\n 'Programming Language :: Python :: 3.6',\n 'Framework :: WIND Robot Framework']", 'author': '"""<EMAIL>"""', 'author_email': '"""<EMAIL>"""', 'packages': "['MarketplaceLibrary']", 'license': '"""UPL-1.0"""', 'install_requires': '[]', 'extras_require': "{'dev': []}", 'platforms': '"""any"""', 'include_package_data': '(True)', 'zip_safe': '(False)'}), "(name='wind-marketplace-library', version='1.0.0', description=\n 'Robot Framework test library for OCI Marketplace', long_description=\n 'Robot Framework test library for OCI Marketplace', classifiers=[\n 'Operating System :: OS Independent', 'Programming Language :: Python',\n 'Programming Language :: Python :: 3.6',\n 'Framework :: WIND Robot Framework'], author='<EMAIL>', author_email=\n '<EMAIL>', packages=['MarketplaceLibrary'], license='UPL-1.0',\n install_requires=[], extras_require={'dev': []}, platforms='any',\n include_package_data=True, zip_safe=False)\n", (217, 803), False, 'from setuptools import setup\n')]
from django.http import JsonResponse from django.shortcuts import reverse from django.urls import NoReverseMatch from django.views import View from rest_framework import __version__ as drf_version from rest_framework.exceptions import ValidationError from rest_framework.permissions import AllowAny from rest_framework.response import Response from rest_framework.viewsets import ViewSet from oilandrope import __version__ class ApiVersionView(View): http_method_names = ['get'] data = { 'version': __version__, 'powered_by': 'Django Rest Framework', 'drf_version': drf_version, } def get(self, request, *args, **kwargs): return JsonResponse(self.data) class URLResolverViewSet(ViewSet): """ Returns URL with given resolver and params. """ permission_classes = [AllowAny] def resolve_url(self, request, *args, **kwargs): data = request.data.copy() if 'resolver' not in data: raise ValidationError() resolver = data.pop('resolver') if isinstance(resolver, list): resolver = resolver[0] extra_params = {} for key, value in data.items(): extra_params[key] = value try: url = reverse(resolver, kwargs=extra_params) except NoReverseMatch: url = '#no-url' return Response({'url': url})
[ "rest_framework.response.Response", "rest_framework.exceptions.ValidationError", "django.shortcuts.reverse", "django.http.JsonResponse" ]
[((681, 704), 'django.http.JsonResponse', 'JsonResponse', (['self.data'], {}), '(self.data)\n', (693, 704), False, 'from django.http import JsonResponse\n'), ((1369, 1391), 'rest_framework.response.Response', 'Response', (["{'url': url}"], {}), "({'url': url})\n", (1377, 1391), False, 'from rest_framework.response import Response\n'), ((985, 1002), 'rest_framework.exceptions.ValidationError', 'ValidationError', ([], {}), '()\n', (1000, 1002), False, 'from rest_framework.exceptions import ValidationError\n'), ((1255, 1293), 'django.shortcuts.reverse', 'reverse', (['resolver'], {'kwargs': 'extra_params'}), '(resolver, kwargs=extra_params)\n', (1262, 1293), False, 'from django.shortcuts import reverse\n')]
from zerver.lib.actions import do_add_realm_playground from zerver.lib.test_classes import ZulipTestCase from zerver.models import RealmPlayground, get_realm class RealmPlaygroundTests(ZulipTestCase): def test_create_one_playground_entry(self) -> None: iago = self.example_user("iago") payload = { "name": "Python playground", "pygments_language": "Python", "url_prefix": "https://python.example.com", } # Now send a POST request to the API endpoint. resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_success(resp) # Check if the actual object exists realm = get_realm("zulip") self.assertTrue( RealmPlayground.objects.filter(realm=realm, name="Python playground").exists() ) def test_create_multiple_playgrounds_for_same_language(self) -> None: iago = self.example_user("iago") data = [ { "name": "Python playground 1", "pygments_language": "Python", "url_prefix": "https://python.example.com", }, { "name": "Python playground 2", "pygments_language": "Python", "url_prefix": "https://python2.example.com", }, ] for payload in data: resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_success(resp) realm = get_realm("zulip") self.assertTrue( RealmPlayground.objects.filter(realm=realm, name="Python playground 1").exists() ) self.assertTrue( RealmPlayground.objects.filter(realm=realm, name="Python playground 2").exists() ) def test_invalid_params(self) -> None: iago = self.example_user("iago") payload = { "name": "Invalid URL", "pygments_language": "Python", "url_prefix": "https://invalid-url", } resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_error(resp, "url_prefix is not a URL") payload["url_prefix"] = "https://python.example.com" payload["pygments_language"] = "a$b$c" resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_error(resp, "Invalid characters in pygments language") def test_create_already_existing_playground(self) -> None: iago = self.example_user("iago") payload = { "name": "Python playground", "pygments_language": "Python", "url_prefix": "https://python.example.com", } resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_success(resp) resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_error( resp, "Realm playground with this Realm, Pygments language and Name already exists." ) def test_not_realm_admin(self) -> None: hamlet = self.example_user("hamlet") resp = self.api_post(hamlet, "/json/realm/playgrounds") self.assert_json_error(resp, "Must be an organization administrator") resp = self.api_delete(hamlet, "/json/realm/playgrounds/1") self.assert_json_error(resp, "Must be an organization administrator") def test_delete_realm_playground(self) -> None: iago = self.example_user("iago") realm = get_realm("zulip") playground_info = dict( name="Python playground", pygments_language="Python", url_prefix="https://python.example.com", ) playground_id = do_add_realm_playground(realm, acting_user=iago, **playground_info) self.assertTrue(RealmPlayground.objects.filter(name="Python playground").exists()) result = self.api_delete(iago, f"/json/realm/playgrounds/{playground_id + 1}") self.assert_json_error(result, "Invalid playground") result = self.api_delete(iago, f"/json/realm/playgrounds/{playground_id}") self.assert_json_success(result) self.assertFalse(RealmPlayground.objects.filter(name="Python").exists())
[ "zerver.models.RealmPlayground.objects.filter", "zerver.lib.actions.do_add_realm_playground", "zerver.models.get_realm" ]
[((697, 715), 'zerver.models.get_realm', 'get_realm', (['"""zulip"""'], {}), "('zulip')\n", (706, 715), False, 'from zerver.models import RealmPlayground, get_realm\n'), ((1517, 1535), 'zerver.models.get_realm', 'get_realm', (['"""zulip"""'], {}), "('zulip')\n", (1526, 1535), False, 'from zerver.models import RealmPlayground, get_realm\n'), ((3517, 3535), 'zerver.models.get_realm', 'get_realm', (['"""zulip"""'], {}), "('zulip')\n", (3526, 3535), False, 'from zerver.models import RealmPlayground, get_realm\n'), ((3734, 3801), 'zerver.lib.actions.do_add_realm_playground', 'do_add_realm_playground', (['realm'], {'acting_user': 'iago'}), '(realm, acting_user=iago, **playground_info)\n', (3757, 3801), False, 'from zerver.lib.actions import do_add_realm_playground\n'), ((753, 822), 'zerver.models.RealmPlayground.objects.filter', 'RealmPlayground.objects.filter', ([], {'realm': 'realm', 'name': '"""Python playground"""'}), "(realm=realm, name='Python playground')\n", (783, 822), False, 'from zerver.models import RealmPlayground, get_realm\n'), ((1573, 1644), 'zerver.models.RealmPlayground.objects.filter', 'RealmPlayground.objects.filter', ([], {'realm': 'realm', 'name': '"""Python playground 1"""'}), "(realm=realm, name='Python playground 1')\n", (1603, 1644), False, 'from zerver.models import RealmPlayground, get_realm\n'), ((1701, 1772), 'zerver.models.RealmPlayground.objects.filter', 'RealmPlayground.objects.filter', ([], {'realm': 'realm', 'name': '"""Python playground 2"""'}), "(realm=realm, name='Python playground 2')\n", (1731, 1772), False, 'from zerver.models import RealmPlayground, get_realm\n'), ((3826, 3882), 'zerver.models.RealmPlayground.objects.filter', 'RealmPlayground.objects.filter', ([], {'name': '"""Python playground"""'}), "(name='Python playground')\n", (3856, 3882), False, 'from zerver.models import RealmPlayground, get_realm\n'), ((4192, 4237), 'zerver.models.RealmPlayground.objects.filter', 'RealmPlayground.objects.filter', ([], {'name': '"""Python"""'}), "(name='Python')\n", (4222, 4237), False, 'from zerver.models import RealmPlayground, get_realm\n')]
# # This is Seisflows # # See LICENCE file # # ############################################################################### # Import system modules import os # Import Numpy import numpy as np # Local imports from seisflows.tools import unix from seisflows.tools.math import dot from seisflows.tools.tools import loadtxt, savetxt, loadnpy, savenpy class NLCG: """ Nonlinear conjugate gradient method """ def __init__(self, path='.', load=loadnpy, save=savenpy, thresh=1., maxiter=np.inf, precond=None): self.path = path self.load = load self.save = save self.maxiter = maxiter self.thresh = thresh self.precond = precond try: self.iter = loadtxt(self.path+'/'+'NLCG/iter') except IOError: unix.mkdir(self.path+'/'+'NLCG') self.iter = 0 def __call__(self): """ Returns NLCG search direction """ self.iter += 1 savetxt(self.path+'/'+'NLCG/iter', self.iter) unix.cd(self.path) g_new = self.load('g_new') if self.iter == 1: return -g_new, 0 elif self.iter > self.maxiter: print('restarting NLCG... [periodic restart]') self.restart() return -g_new, 1 # compute search direction g_old = self.load('g_old') p_old = self.load('p_old') if self.precond: beta = pollak_ribere(g_new, g_old, self.precond) p_new = -self.precond(g_new) + beta*p_old else: beta = pollak_ribere(g_new, g_old) p_new = -g_new + beta*p_old # check restart conditions if check_conjugacy(g_new, g_old) > self.thresh: print('restarting NLCG... [loss of conjugacy]') self.restart() return -g_new, 1 elif check_descent(p_new, g_new) > 0.: print('restarting NLCG... [not a descent direction]') self.restart() return -g_new, 1 else: return p_new, 0 def restart(self): """ Restarts algorithm """ self.iter = 1 savetxt(self.path+'/'+'NLCG/iter', self.iter) # Utility functions def fletcher_reeves(g_new, g_old, precond=lambda x: x): num = dot(precond(g_new), g_new) den = dot(g_old, g_old) beta = num/den return beta def pollak_ribere(g_new, g_old, precond=lambda x: x): num = dot(precond(g_new), g_new-g_old) den = dot(g_old, g_old) beta = num/den return beta def check_conjugacy(g_new, g_old): return abs(dot(g_new, g_old) / dot(g_new, g_new)) def check_descent(p_new, g_new): return dot(p_new, g_new) / dot(g_new, g_new)
[ "seisflows.tools.unix.mkdir", "seisflows.tools.unix.cd", "seisflows.tools.tools.loadtxt", "seisflows.tools.tools.savetxt", "seisflows.tools.math.dot" ]
[((2343, 2360), 'seisflows.tools.math.dot', 'dot', (['g_old', 'g_old'], {}), '(g_old, g_old)\n', (2346, 2360), False, 'from seisflows.tools.math import dot\n'), ((2505, 2522), 'seisflows.tools.math.dot', 'dot', (['g_old', 'g_old'], {}), '(g_old, g_old)\n', (2508, 2522), False, 'from seisflows.tools.math import dot\n'), ((984, 1033), 'seisflows.tools.tools.savetxt', 'savetxt', (["(self.path + '/' + 'NLCG/iter')", 'self.iter'], {}), "(self.path + '/' + 'NLCG/iter', self.iter)\n", (991, 1033), False, 'from seisflows.tools.tools import loadtxt, savetxt, loadnpy, savenpy\n'), ((1039, 1057), 'seisflows.tools.unix.cd', 'unix.cd', (['self.path'], {}), '(self.path)\n', (1046, 1057), False, 'from seisflows.tools import unix\n'), ((2171, 2220), 'seisflows.tools.tools.savetxt', 'savetxt', (["(self.path + '/' + 'NLCG/iter')", 'self.iter'], {}), "(self.path + '/' + 'NLCG/iter', self.iter)\n", (2178, 2220), False, 'from seisflows.tools.tools import loadtxt, savetxt, loadnpy, savenpy\n'), ((2695, 2712), 'seisflows.tools.math.dot', 'dot', (['p_new', 'g_new'], {}), '(p_new, g_new)\n', (2698, 2712), False, 'from seisflows.tools.math import dot\n'), ((2715, 2732), 'seisflows.tools.math.dot', 'dot', (['g_new', 'g_new'], {}), '(g_new, g_new)\n', (2718, 2732), False, 'from seisflows.tools.math import dot\n'), ((744, 782), 'seisflows.tools.tools.loadtxt', 'loadtxt', (["(self.path + '/' + 'NLCG/iter')"], {}), "(self.path + '/' + 'NLCG/iter')\n", (751, 782), False, 'from seisflows.tools.tools import loadtxt, savetxt, loadnpy, savenpy\n'), ((2610, 2627), 'seisflows.tools.math.dot', 'dot', (['g_new', 'g_old'], {}), '(g_new, g_old)\n', (2613, 2627), False, 'from seisflows.tools.math import dot\n'), ((2630, 2647), 'seisflows.tools.math.dot', 'dot', (['g_new', 'g_new'], {}), '(g_new, g_new)\n', (2633, 2647), False, 'from seisflows.tools.math import dot\n'), ((815, 851), 'seisflows.tools.unix.mkdir', 'unix.mkdir', (["(self.path + '/' + 'NLCG')"], {}), "(self.path + '/' + 'NLCG')\n", (825, 851), False, 'from seisflows.tools import unix\n')]
from dataclasses import dataclass, field from typing import Optional __NAMESPACE__ = "sdformat/v1.5/physics.xsd" @dataclass class Physics: """ The physics tag specifies the type and properties of the dynamics engine. Parameters ---------- max_step_size: Maximum time step size at which every system in simulation can interact with the states of the world. (was physics.sdf's dt). real_time_factor: target simulation speedup factor, defined by ratio of simulation time to real-time. real_time_update_rate: Rate at which to update the physics engine (UpdatePhysics calls per real-time second). (was physics.sdf's update_rate). max_contacts: Maximum number of contacts allowed between two entities. This value can be over ridden by a max_contacts element in a collision element. gravity: The gravity vector in m/s^2, expressed in a coordinate frame defined by the spherical_coordinates tag. magnetic_field: The magnetic vector in Tesla, expressed in a coordinate frame defined by the spherical_coordinates tag. simbody: Simbody specific physics properties bullet: Bullet specific physics properties ode: ODE specific physics properties name: The name of this set of physics parameters. default: If true, this physics element is set as the default physics profile for the world. If multiple default physics elements exist, the first element marked as default is chosen. If no default physics element exists, the first physics element is chosen. type: The type of the dynamics engine. Current options are ode, bullet, simbody and rtql8. Defaults to ode if left unspecified. """ class Meta: name = "physics" max_step_size: float = field( default=0.001, metadata={ "type": "Element", "namespace": "", "required": True, }, ) real_time_factor: float = field( default=1.0, metadata={ "type": "Element", "namespace": "", "required": True, }, ) real_time_update_rate: float = field( default=1000.0, metadata={ "type": "Element", "namespace": "", "required": True, }, ) max_contacts: int = field( default=20, metadata={ "type": "Element", "namespace": "", "required": True, }, ) gravity: str = field( default="0 0 -9.8", metadata={ "type": "Element", "namespace": "", "required": True, "pattern": r"(\s*(-|\+)?(\d+(\.\d*)?|\.\d+|\d+\.\d+[eE][-\+]?[0-9]+)\s+){2}((-|\+)?(\d+(\.\d*)?|\.\d+|\d+\.\d+[eE][-\+]?[0-9]+))\s*", }, ) magnetic_field: str = field( default="5.5645e-6 22.8758e-6 -42.3884e-6", metadata={ "type": "Element", "namespace": "", "required": True, "pattern": r"(\s*(-|\+)?(\d+(\.\d*)?|\.\d+|\d+\.\d+[eE][-\+]?[0-9]+)\s+){2}((-|\+)?(\d+(\.\d*)?|\.\d+|\d+\.\d+[eE][-\+]?[0-9]+))\s*", }, ) simbody: Optional["Physics.Simbody"] = field( default=None, metadata={ "type": "Element", "namespace": "", }, ) bullet: Optional["Physics.Bullet"] = field( default=None, metadata={ "type": "Element", "namespace": "", }, ) ode: Optional["Physics.Ode"] = field( default=None, metadata={ "type": "Element", "namespace": "", }, ) name: str = field( default="default_physics", metadata={ "type": "Attribute", }, ) default: bool = field( default=False, metadata={ "type": "Attribute", }, ) type: Optional[str] = field( default=None, metadata={ "type": "Attribute", "required": True, }, ) @dataclass class Simbody: """ Simbody specific physics properties. Parameters ---------- min_step_size: (Currently not used in simbody) The time duration which advances with each iteration of the dynamics engine, this has to be no bigger than max_step_size under physics block. If left unspecified, min_step_size defaults to max_step_size. accuracy: Roughly the relative error of the system. -LOG(accuracy) is roughly the number of significant digits. max_transient_velocity: Tolerable "slip" velocity allowed by the solver when static friction is supposed to hold object in place. contact: Relationship among dissipation, coef. restitution, etc. d = dissipation coefficient (1/velocity) vc = capture velocity (velocity where e=e_max) vp = plastic velocity (smallest v where e=e_min) &amp;gt; vc Assume real COR=1 when v=0. e_min = given minimum COR, at v &amp;gt;= vp (a.k.a. plastic_coef_restitution) d = slope = (1-e_min)/vp OR, e_min = 1 - d*vp e_max = maximum COR = 1-d*vc, reached at v=vc e = 0, v &amp;lt;= vc = 1 - d*v, vc &amp;lt; v &amp;lt; vp = e_min, v &amp;gt;= vp dissipation factor = d*min(v,vp) [compliant] cor = e [rigid] Combining rule e = 0, e1==e2==0 = 2*e1*e2/(e1+e2), otherwise """ min_step_size: float = field( default=0.0001, metadata={ "type": "Element", "namespace": "", "required": True, }, ) accuracy: float = field( default=0.001, metadata={ "type": "Element", "namespace": "", "required": True, }, ) max_transient_velocity: float = field( default=0.01, metadata={ "type": "Element", "namespace": "", "required": True, }, ) contact: Optional["Physics.Simbody.Contact"] = field( default=None, metadata={ "type": "Element", "namespace": "", }, ) @dataclass class Contact: """Relationship among dissipation, coef. restitution, etc. d = dissipation coefficient (1/velocity) vc = capture velocity (velocity where e=e_max) vp = plastic velocity (smallest v where e=e_min) &amp;gt; vc Assume real COR=1 when v=0. e_min = given minimum COR, at v &amp;gt;= vp (a.k.a. plastic_coef_restitution) d = slope = (1-e_min)/vp OR, e_min = 1 - d*vp e_max = maximum COR = 1-d*vc, reached at v=vc e = 0, v &amp;lt;= vc = 1 - d*v, vc &amp;lt; v &amp;lt; vp = e_min, v &amp;gt;= vp dissipation factor = d*min(v,vp) [compliant] cor = e [rigid] Combining rule e = 0, e1==e2==0 = 2*e1*e2/(e1+e2), otherwise Parameters ---------- stiffness: Default contact material stiffness (force/dist or torque/radian). dissipation: dissipation coefficient to be used in compliant contact; if not given it is (1-min_cor)/plastic_impact_velocity plastic_coef_restitution: this is the COR to be used at high velocities for rigid impacts; if not given it is 1 - dissipation*plastic_impact_velocity plastic_impact_velocity: smallest impact velocity at which min COR is reached; set to zero if you want the min COR always to be used static_friction: static friction (mu_s) as described by this plot: http://gazebosim.org/wiki/File:Stribeck_friction.png dynamic_friction: dynamic friction (mu_d) as described by this plot: http://gazebosim.org/wiki/File:Stribeck_friction.png viscous_friction: viscous friction (mu_v) with units of (1/velocity) as described by this plot: http://gazebosim.org/wiki/File:Stribeck_friction.png override_impact_capture_velocity: for rigid impacts only, impact velocity at which COR is set to zero; normally inherited from global default but can be overridden here. Combining rule: use larger velocity override_stiction_transition_velocity: This is the largest slip velocity at which we'll consider a transition to stiction. Normally inherited from a global default setting. For a continuous friction model this is the velocity at which the max static friction force is reached. Combining rule: use larger velocity """ stiffness: float = field( default=100000000.0, metadata={ "type": "Element", "namespace": "", "required": True, }, ) dissipation: float = field( default=100.0, metadata={ "type": "Element", "namespace": "", "required": True, }, ) plastic_coef_restitution: float = field( default=0.5, metadata={ "type": "Element", "namespace": "", "required": True, }, ) plastic_impact_velocity: float = field( default=0.5, metadata={ "type": "Element", "namespace": "", "required": True, }, ) static_friction: float = field( default=0.9, metadata={ "type": "Element", "namespace": "", "required": True, }, ) dynamic_friction: float = field( default=0.9, metadata={ "type": "Element", "namespace": "", "required": True, }, ) viscous_friction: float = field( default=0.0, metadata={ "type": "Element", "namespace": "", "required": True, }, ) override_impact_capture_velocity: float = field( default=0.001, metadata={ "type": "Element", "namespace": "", "required": True, }, ) override_stiction_transition_velocity: float = field( default=0.001, metadata={ "type": "Element", "namespace": "", "required": True, }, ) @dataclass class Bullet: """ Bullet specific physics properties. Parameters ---------- solver: constraints: Bullet constraint parameters. """ solver: Optional["Physics.Bullet.Solver"] = field( default=None, metadata={ "type": "Element", "namespace": "", "required": True, }, ) constraints: Optional["Physics.Bullet.Constraints"] = field( default=None, metadata={ "type": "Element", "namespace": "", "required": True, }, ) @dataclass class Solver: """ Parameters ---------- type: One of the following types: sequential_impulse only. min_step_size: The time duration which advances with each iteration of the dynamics engine, this has to be no bigger than max_step_size under physics block. If left unspecified, min_step_size defaults to max_step_size. iters: Number of iterations for each step. A higher number produces greater accuracy at a performance cost. sor: Set the successive over-relaxation parameter. """ type: str = field( default="sequential_impulse", metadata={ "type": "Element", "namespace": "", "required": True, }, ) min_step_size: float = field( default=0.0001, metadata={ "type": "Element", "namespace": "", "required": True, }, ) iters: int = field( default=50, metadata={ "type": "Element", "namespace": "", "required": True, }, ) sor: float = field( default=1.3, metadata={ "type": "Element", "namespace": "", "required": True, }, ) @dataclass class Constraints: """ Bullet constraint parameters. Parameters ---------- cfm: Constraint force mixing parameter. See the ODE page for more information. erp: Error reduction parameter. See the ODE page for more information. contact_surface_layer: The depth of the surface layer around all geometry objects. Contacts are allowed to sink into the surface layer up to the given depth before coming to rest. The default value is zero. Increasing this to some small value (e.g. 0.001) can help prevent jittering problems due to contacts being repeatedly made and broken. split_impulse: Similar to ODE's max_vel implementation. See http://web.archive.org/web/20120430155635/http://bulletphysics.org/mediawiki-1.5.8/index.php/BtContactSolverInfo#Split_Impulse for more information. split_impulse_penetration_threshold: Similar to ODE's max_vel implementation. See http://web.archive.org/web/20120430155635/http://bulletphysics.org/mediawiki-1.5.8/index.php/BtContactSolverInfo#Split_Impulse for more information. """ cfm: float = field( default=0.0, metadata={ "type": "Element", "namespace": "", "required": True, }, ) erp: float = field( default=0.2, metadata={ "type": "Element", "namespace": "", "required": True, }, ) contact_surface_layer: float = field( default=0.001, metadata={ "type": "Element", "namespace": "", "required": True, }, ) split_impulse: bool = field( default=True, metadata={ "type": "Element", "namespace": "", "required": True, }, ) split_impulse_penetration_threshold: float = field( default=-0.01, metadata={ "type": "Element", "namespace": "", "required": True, }, ) @dataclass class Ode: """ ODE specific physics properties. Parameters ---------- solver: constraints: ODE constraint parameters. """ solver: Optional["Physics.Ode.Solver"] = field( default=None, metadata={ "type": "Element", "namespace": "", "required": True, }, ) constraints: Optional["Physics.Ode.Constraints"] = field( default=None, metadata={ "type": "Element", "namespace": "", "required": True, }, ) @dataclass class Solver: """ Parameters ---------- type: One of the following types: world, quick min_step_size: The time duration which advances with each iteration of the dynamics engine, this has to be no bigger than max_step_size under physics block. If left unspecified, min_step_size defaults to max_step_size. iters: Number of iterations for each step. A higher number produces greater accuracy at a performance cost. precon_iters: Experimental parameter. sor: Set the successive over-relaxation parameter. use_dynamic_moi_rescaling: Flag to enable dynamic rescaling of moment of inertia in constrained directions. See gazebo pull request 1114 for the implementation of this feature. https://osrf- migration.github.io/gazebo-gh-pages/#!/osrf/gazebo/pull- request/1114 """ type: str = field( default="quick", metadata={ "type": "Element", "namespace": "", "required": True, }, ) min_step_size: float = field( default=0.0001, metadata={ "type": "Element", "namespace": "", "required": True, }, ) iters: int = field( default=50, metadata={ "type": "Element", "namespace": "", "required": True, }, ) precon_iters: int = field( default=0, metadata={ "type": "Element", "namespace": "", "required": True, }, ) sor: float = field( default=1.3, metadata={ "type": "Element", "namespace": "", "required": True, }, ) use_dynamic_moi_rescaling: bool = field( default=False, metadata={ "type": "Element", "namespace": "", "required": True, }, ) @dataclass class Constraints: """ ODE constraint parameters. Parameters ---------- cfm: Constraint force mixing parameter. See the ODE page for more information. erp: Error reduction parameter. See the ODE page for more information. contact_max_correcting_vel: The maximum correcting velocities allowed when resolving contacts. contact_surface_layer: The depth of the surface layer around all geometry objects. Contacts are allowed to sink into the surface layer up to the given depth before coming to rest. The default value is zero. Increasing this to some small value (e.g. 0.001) can help prevent jittering problems due to contacts being repeatedly made and broken. """ cfm: float = field( default=0.0, metadata={ "type": "Element", "namespace": "", "required": True, }, ) erp: float = field( default=0.2, metadata={ "type": "Element", "namespace": "", "required": True, }, ) contact_max_correcting_vel: float = field( default=100.0, metadata={ "type": "Element", "namespace": "", "required": True, }, ) contact_surface_layer: float = field( default=0.001, metadata={ "type": "Element", "namespace": "", "required": True, }, )
[ "dataclasses.field" ]
[((1829, 1918), 'dataclasses.field', 'field', ([], {'default': '(0.001)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.001, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (1834, 1918), False, 'from dataclasses import dataclass, field\n'), ((2015, 2102), 'dataclasses.field', 'field', ([], {'default': '(1.0)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=1.0, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (2020, 2102), False, 'from dataclasses import dataclass, field\n'), ((2204, 2294), 'dataclasses.field', 'field', ([], {'default': '(1000.0)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=1000.0, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (2209, 2294), False, 'from dataclasses import dataclass, field\n'), ((2385, 2471), 'dataclasses.field', 'field', ([], {'default': '(20)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=20, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (2390, 2471), False, 'from dataclasses import dataclass, field\n'), ((2557, 2816), 'dataclasses.field', 'field', ([], {'default': '"""0 0 -9.8"""', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True, 'pattern':\n '(\\\\s*(-|\\\\+)?(\\\\d+(\\\\.\\\\d*)?|\\\\.\\\\d+|\\\\d+\\\\.\\\\d+[eE][-\\\\+]?[0-9]+)\\\\s+){2}((-|\\\\+)?(\\\\d+(\\\\.\\\\d*)?|\\\\.\\\\d+|\\\\d+\\\\.\\\\d+[eE][-\\\\+]?[0-9]+))\\\\s*'\n }"}), "(default='0 0 -9.8', metadata={'type': 'Element', 'namespace': '',\n 'required': True, 'pattern':\n '(\\\\s*(-|\\\\+)?(\\\\d+(\\\\.\\\\d*)?|\\\\.\\\\d+|\\\\d+\\\\.\\\\d+[eE][-\\\\+]?[0-9]+)\\\\s+){2}((-|\\\\+)?(\\\\d+(\\\\.\\\\d*)?|\\\\.\\\\d+|\\\\d+\\\\.\\\\d+[eE][-\\\\+]?[0-9]+))\\\\s*'\n })\n", (2562, 2816), False, 'from dataclasses import dataclass, field\n'), ((2890, 3173), 'dataclasses.field', 'field', ([], {'default': '"""5.5645e-6 22.8758e-6 -42.3884e-6"""', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True, 'pattern':\n '(\\\\s*(-|\\\\+)?(\\\\d+(\\\\.\\\\d*)?|\\\\.\\\\d+|\\\\d+\\\\.\\\\d+[eE][-\\\\+]?[0-9]+)\\\\s+){2}((-|\\\\+)?(\\\\d+(\\\\.\\\\d*)?|\\\\.\\\\d+|\\\\d+\\\\.\\\\d+[eE][-\\\\+]?[0-9]+))\\\\s*'\n }"}), "(default='5.5645e-6 22.8758e-6 -42.3884e-6', metadata={'type':\n 'Element', 'namespace': '', 'required': True, 'pattern':\n '(\\\\s*(-|\\\\+)?(\\\\d+(\\\\.\\\\d*)?|\\\\.\\\\d+|\\\\d+\\\\.\\\\d+[eE][-\\\\+]?[0-9]+)\\\\s+){2}((-|\\\\+)?(\\\\d+(\\\\.\\\\d*)?|\\\\.\\\\d+|\\\\d+\\\\.\\\\d+[eE][-\\\\+]?[0-9]+))\\\\s*'\n })\n", (2895, 3173), False, 'from dataclasses import dataclass, field\n'), ((3264, 3330), 'dataclasses.field', 'field', ([], {'default': 'None', 'metadata': "{'type': 'Element', 'namespace': ''}"}), "(default=None, metadata={'type': 'Element', 'namespace': ''})\n", (3269, 3330), False, 'from dataclasses import dataclass, field\n'), ((3430, 3496), 'dataclasses.field', 'field', ([], {'default': 'None', 'metadata': "{'type': 'Element', 'namespace': ''}"}), "(default=None, metadata={'type': 'Element', 'namespace': ''})\n", (3435, 3496), False, 'from dataclasses import dataclass, field\n'), ((3590, 3656), 'dataclasses.field', 'field', ([], {'default': 'None', 'metadata': "{'type': 'Element', 'namespace': ''}"}), "(default=None, metadata={'type': 'Element', 'namespace': ''})\n", (3595, 3656), False, 'from dataclasses import dataclass, field\n'), ((3731, 3795), 'dataclasses.field', 'field', ([], {'default': '"""default_physics"""', 'metadata': "{'type': 'Attribute'}"}), "(default='default_physics', metadata={'type': 'Attribute'})\n", (3736, 3795), False, 'from dataclasses import dataclass, field\n'), ((3862, 3914), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'type': 'Attribute'}"}), "(default=False, metadata={'type': 'Attribute'})\n", (3867, 3914), False, 'from dataclasses import dataclass, field\n'), ((3987, 4056), 'dataclasses.field', 'field', ([], {'default': 'None', 'metadata': "{'type': 'Attribute', 'required': True}"}), "(default=None, metadata={'type': 'Attribute', 'required': True})\n", (3992, 4056), False, 'from dataclasses import dataclass, field\n'), ((5819, 5909), 'dataclasses.field', 'field', ([], {'default': '(0.0001)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.0001, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (5824, 5909), False, 'from dataclasses import dataclass, field\n'), ((6030, 6119), 'dataclasses.field', 'field', ([], {'default': '(0.001)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.001, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (6035, 6119), False, 'from dataclasses import dataclass, field\n'), ((6254, 6342), 'dataclasses.field', 'field', ([], {'default': '(0.01)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.01, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (6259, 6342), False, 'from dataclasses import dataclass, field\n'), ((6492, 6558), 'dataclasses.field', 'field', ([], {'default': 'None', 'metadata': "{'type': 'Element', 'namespace': ''}"}), "(default=None, metadata={'type': 'Element', 'namespace': ''})\n", (6497, 6558), False, 'from dataclasses import dataclass, field\n'), ((12084, 12172), 'dataclasses.field', 'field', ([], {'default': 'None', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=None, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (12089, 12172), False, 'from dataclasses import dataclass, field\n'), ((12329, 12417), 'dataclasses.field', 'field', ([], {'default': 'None', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=None, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (12334, 12417), False, 'from dataclasses import dataclass, field\n'), ((17009, 17097), 'dataclasses.field', 'field', ([], {'default': 'None', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=None, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (17014, 17097), False, 'from dataclasses import dataclass, field\n'), ((17251, 17339), 'dataclasses.field', 'field', ([], {'default': 'None', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=None, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (17256, 17339), False, 'from dataclasses import dataclass, field\n'), ((9569, 9664), 'dataclasses.field', 'field', ([], {'default': '(100000000.0)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=100000000.0, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (9574, 9664), False, 'from dataclasses import dataclass, field\n'), ((9820, 9909), 'dataclasses.field', 'field', ([], {'default': '(100.0)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=100.0, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (9825, 9909), False, 'from dataclasses import dataclass, field\n'), ((10078, 10165), 'dataclasses.field', 'field', ([], {'default': '(0.5)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.5, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (10083, 10165), False, 'from dataclasses import dataclass, field\n'), ((10333, 10420), 'dataclasses.field', 'field', ([], {'default': '(0.5)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.5, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (10338, 10420), False, 'from dataclasses import dataclass, field\n'), ((10580, 10667), 'dataclasses.field', 'field', ([], {'default': '(0.9)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.9, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (10585, 10667), False, 'from dataclasses import dataclass, field\n'), ((10828, 10915), 'dataclasses.field', 'field', ([], {'default': '(0.9)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.9, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (10833, 10915), False, 'from dataclasses import dataclass, field\n'), ((11076, 11163), 'dataclasses.field', 'field', ([], {'default': '(0.0)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.0, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (11081, 11163), False, 'from dataclasses import dataclass, field\n'), ((11340, 11429), 'dataclasses.field', 'field', ([], {'default': '(0.001)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.001, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (11345, 11429), False, 'from dataclasses import dataclass, field\n'), ((11611, 11700), 'dataclasses.field', 'field', ([], {'default': '(0.001)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.001, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (11616, 11700), False, 'from dataclasses import dataclass, field\n'), ((13207, 13311), 'dataclasses.field', 'field', ([], {'default': '"""sequential_impulse"""', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default='sequential_impulse', metadata={'type': 'Element',\n 'namespace': '', 'required': True})\n", (13212, 13311), False, 'from dataclasses import dataclass, field\n'), ((13469, 13559), 'dataclasses.field', 'field', ([], {'default': '(0.0001)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.0001, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (13474, 13559), False, 'from dataclasses import dataclass, field\n'), ((13707, 13793), 'dataclasses.field', 'field', ([], {'default': '(50)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=50, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (13712, 13793), False, 'from dataclasses import dataclass, field\n'), ((13941, 14028), 'dataclasses.field', 'field', ([], {'default': '(1.3)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=1.3, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (13946, 14028), False, 'from dataclasses import dataclass, field\n'), ((15546, 15633), 'dataclasses.field', 'field', ([], {'default': '(0.0)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.0, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (15551, 15633), False, 'from dataclasses import dataclass, field\n'), ((15781, 15868), 'dataclasses.field', 'field', ([], {'default': '(0.2)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.2, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (15786, 15868), False, 'from dataclasses import dataclass, field\n'), ((16034, 16123), 'dataclasses.field', 'field', ([], {'default': '(0.001)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.001, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (16039, 16123), False, 'from dataclasses import dataclass, field\n'), ((16280, 16368), 'dataclasses.field', 'field', ([], {'default': '(True)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=True, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (16285, 16368), False, 'from dataclasses import dataclass, field\n'), ((16548, 16637), 'dataclasses.field', 'field', ([], {'default': '(-0.01)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=-0.01, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (16553, 16637), False, 'from dataclasses import dataclass, field\n'), ((18530, 18621), 'dataclasses.field', 'field', ([], {'default': '"""quick"""', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default='quick', metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (18535, 18621), False, 'from dataclasses import dataclass, field\n'), ((18779, 18869), 'dataclasses.field', 'field', ([], {'default': '(0.0001)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.0001, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (18784, 18869), False, 'from dataclasses import dataclass, field\n'), ((19017, 19103), 'dataclasses.field', 'field', ([], {'default': '(50)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=50, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (19022, 19103), False, 'from dataclasses import dataclass, field\n'), ((19258, 19344), 'dataclasses.field', 'field', ([], {'default': '(0)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0, metadata={'type': 'Element', 'namespace': '', 'required': \n True})\n", (19263, 19344), False, 'from dataclasses import dataclass, field\n'), ((19491, 19578), 'dataclasses.field', 'field', ([], {'default': '(1.3)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=1.3, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (19496, 19578), False, 'from dataclasses import dataclass, field\n'), ((19747, 19836), 'dataclasses.field', 'field', ([], {'default': '(False)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=False, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (19752, 19836), False, 'from dataclasses import dataclass, field\n'), ((20929, 21016), 'dataclasses.field', 'field', ([], {'default': '(0.0)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.0, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (20934, 21016), False, 'from dataclasses import dataclass, field\n'), ((21164, 21251), 'dataclasses.field', 'field', ([], {'default': '(0.2)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.2, metadata={'type': 'Element', 'namespace': '', 'required':\n True})\n", (21169, 21251), False, 'from dataclasses import dataclass, field\n'), ((21422, 21511), 'dataclasses.field', 'field', ([], {'default': '(100.0)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=100.0, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (21427, 21511), False, 'from dataclasses import dataclass, field\n'), ((21677, 21766), 'dataclasses.field', 'field', ([], {'default': '(0.001)', 'metadata': "{'type': 'Element', 'namespace': '', 'required': True}"}), "(default=0.001, metadata={'type': 'Element', 'namespace': '',\n 'required': True})\n", (21682, 21766), False, 'from dataclasses import dataclass, field\n')]
#!/usr/bin/env python # Copyright 2018-present Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function, unicode_literals import os import shutil import subprocess # The location of the generate grammar kit script DIR = os.path.dirname(__file__) # The location of the plugin directory PLUGIN_PATH = os.path.abspath(os.path.join(DIR, "..")) # The location of the grammar-kit directory GRAMMAR_KIT = os.path.abspath( os.path.join(DIR, "../../../third-party/java/grammar-kit/") ) OUT_DIR = os.path.join(PLUGIN_PATH, "gen") FLEX_OUT_DIR = os.path.join(OUT_DIR, "com/facebook/buck/intellij/ideabuck/lang") GRAMMAR_KIT_JAR = os.path.join(GRAMMAR_KIT, "grammar-kit.jar") GRAMMAR_KIT_JFLEX_JAR = os.path.join(GRAMMAR_KIT, "JFlex.jar") JFLEX_SKELETON = os.path.join(PLUGIN_PATH, "resources/idea-flex.skeleton") FLEX_FILE = os.path.join( PLUGIN_PATH, "src/com/facebook/buck/intellij/ideabuck/lang/Buck.flex" ) BNF_FILE = os.path.join( PLUGIN_PATH, "src/com/facebook/buck/intellij/ideabuck/lang/Buck.bnf" ) def subprocess_call(cmd): print("Running: %s" % (" ".join(cmd))) subprocess.call(cmd) shutil.rmtree(OUT_DIR, ignore_errors=True) subprocess_call(["java", "-jar", GRAMMAR_KIT_JAR, OUT_DIR, BNF_FILE]) subprocess_call( [ "java", "-jar", GRAMMAR_KIT_JFLEX_JAR, "-sliceandcharat", "-skel", JFLEX_SKELETON, "-d", FLEX_OUT_DIR, FLEX_FILE, ] )
[ "os.path.dirname", "os.path.join", "subprocess.call", "shutil.rmtree" ]
[((793, 818), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (808, 818), False, 'import os\n'), ((1066, 1098), 'os.path.join', 'os.path.join', (['PLUGIN_PATH', '"""gen"""'], {}), "(PLUGIN_PATH, 'gen')\n", (1078, 1098), False, 'import os\n'), ((1114, 1179), 'os.path.join', 'os.path.join', (['OUT_DIR', '"""com/facebook/buck/intellij/ideabuck/lang"""'], {}), "(OUT_DIR, 'com/facebook/buck/intellij/ideabuck/lang')\n", (1126, 1179), False, 'import os\n'), ((1199, 1243), 'os.path.join', 'os.path.join', (['GRAMMAR_KIT', '"""grammar-kit.jar"""'], {}), "(GRAMMAR_KIT, 'grammar-kit.jar')\n", (1211, 1243), False, 'import os\n'), ((1268, 1306), 'os.path.join', 'os.path.join', (['GRAMMAR_KIT', '"""JFlex.jar"""'], {}), "(GRAMMAR_KIT, 'JFlex.jar')\n", (1280, 1306), False, 'import os\n'), ((1325, 1382), 'os.path.join', 'os.path.join', (['PLUGIN_PATH', '"""resources/idea-flex.skeleton"""'], {}), "(PLUGIN_PATH, 'resources/idea-flex.skeleton')\n", (1337, 1382), False, 'import os\n'), ((1395, 1482), 'os.path.join', 'os.path.join', (['PLUGIN_PATH', '"""src/com/facebook/buck/intellij/ideabuck/lang/Buck.flex"""'], {}), "(PLUGIN_PATH,\n 'src/com/facebook/buck/intellij/ideabuck/lang/Buck.flex')\n", (1407, 1482), False, 'import os\n'), ((1496, 1582), 'os.path.join', 'os.path.join', (['PLUGIN_PATH', '"""src/com/facebook/buck/intellij/ideabuck/lang/Buck.bnf"""'], {}), "(PLUGIN_PATH,\n 'src/com/facebook/buck/intellij/ideabuck/lang/Buck.bnf')\n", (1508, 1582), False, 'import os\n'), ((1683, 1725), 'shutil.rmtree', 'shutil.rmtree', (['OUT_DIR'], {'ignore_errors': '(True)'}), '(OUT_DIR, ignore_errors=True)\n', (1696, 1725), False, 'import shutil\n'), ((889, 912), 'os.path.join', 'os.path.join', (['DIR', '""".."""'], {}), "(DIR, '..')\n", (901, 912), False, 'import os\n'), ((993, 1052), 'os.path.join', 'os.path.join', (['DIR', '"""../../../third-party/java/grammar-kit/"""'], {}), "(DIR, '../../../third-party/java/grammar-kit/')\n", (1005, 1052), False, 'import os\n'), ((1660, 1680), 'subprocess.call', 'subprocess.call', (['cmd'], {}), '(cmd)\n', (1675, 1680), False, 'import subprocess\n')]
from lxml import html from d_parser.d_spider_common import DSpiderCommon from d_parser.helpers.re_set import Ree from helpers.url_generator import UrlGenerator from d_parser.helpers.stat_counter import StatCounter as SC VERSION = 29 # Warn: Don't remove task argument even if not use it (it's break grab and spider crashed) # Warn: noinspection PyUnusedLocal class DSpider(DSpiderCommon): def __init__(self, thread_number, try_limit=0): super().__init__(thread_number, try_limit) # parse categories def task_initial(self, grab, task): try: if self.check_body_errors(grab, task): yield self.check_errors(task) return links = grab.doc.select('//div[@id="main-subitems"]//a') for link in links: url = UrlGenerator.get_page_params(self.domain, link.attr('href'), {'onpage': 99999}) yield self.do_task('parse_page', url, DSpider.get_next_task_priority(task)) except Exception as e: self.process_error(grab, task, e) finally: self.process_finally(task) # parse page def task_parse_page(self, grab, task): try: if self.check_body_errors(grab, task): yield self.check_errors(task) # parse items links items_links = grab.doc.select('//div[@id="catalog-list"]//div[@class="catalog-items"]//a[@property="name"]') for row in items_links: link = row.attr('href') link = UrlGenerator.get_page_params(self.domain, link, {}) yield self.do_task('parse_item', link, DSpider.get_next_task_priority(task)) except Exception as e: self.process_error(grab, task, e) finally: self.process_finally(task) # parse single item def task_parse_item(self, grab, task): try: if self.check_body_errors(grab, task): yield self.check_errors(task) # common block with info product_info = grab.doc.select('//div[@id="product-info"]') # parse fields # A = name product_name = product_info.select('.//h1').text() # B = [const] # C = [const] # D = [const] product_count_string = product_info.select('.//div[@class="product-data-storehouse"]').text(default='[not found]') product_count = '-1' product_status = '0' product_unit = 'ед.' if product_count_string != 'в наличии': self.log.warning(task, 'Skip item, cuz wrong count {}'.format(product_count_string)) return # E = price # if E = "запросить цену и наличие" => zapros # else => float product_price = product_info.select('.//span[@itemprop="price"]').text().replace(' ', '') if product_price == 'Уточняйте': product_price = '-1' else: # E = price (float) # check if correct price if not Ree.float.match(product_price): self.log_warn(SC.MSG_UNKNOWN_PRICE, f'Skip item, cuz wrong price {product_price}', task) return # F = vendor code product_vendor_code = product_info.select('.//div[@class="product-data-articul"]').text() # G = vendor product_vendor = product_info.select('.//div[@class="product-data-producer"]').text() # H = photo url product_photo_url_raw = product_info.select('.//div[@id="product-images-list"]/div[1]/img[@itemprop="contentUrl"]').attr('src') product_photo_url = UrlGenerator.get_page_params(self.domain, product_photo_url_raw, {}) # pre I product_description_part_raw = product_info.select('.//div[@class="product-description description"]/following-sibling::node()[2]')\ .text(default='')\ .replace('$(".description").html(\'', '')\ .replace('\');', '') # I = description # this part insert pure html with js, so we need clear all html tags and &-symbols product_description_part_list = html.fromstring(f'<div>{product_description_part_raw}</div>').xpath('string()') product_description_part = '' for row in product_description_part_list: product_description_part += row product_description = {'Описание': product_description_part} table = product_info.select('.//div[@class="product-description table"]/div') for row in table: key = row.select('./text()').text() value = row.select('./span').text() if key: product_description[key] = value # ID product_id = product_info.select('.//div[@class="product-add-but"]').attr('data-id', '') # save self.result.add({ 'name': product_name, 'quantity': product_count, 'delivery': product_status, 'measure': product_unit, 'price': product_price, 'sku': product_vendor_code, 'manufacture': product_vendor, 'photo': product_photo_url, 'id': product_id, 'properties': product_description }) except Exception as e: self.process_error(grab, task, e) finally: self.process_finally(task)
[ "helpers.url_generator.UrlGenerator.get_page_params", "d_parser.helpers.re_set.Ree.float.match", "lxml.html.fromstring" ]
[((3756, 3824), 'helpers.url_generator.UrlGenerator.get_page_params', 'UrlGenerator.get_page_params', (['self.domain', 'product_photo_url_raw', '{}'], {}), '(self.domain, product_photo_url_raw, {})\n', (3784, 3824), False, 'from helpers.url_generator import UrlGenerator\n'), ((1550, 1601), 'helpers.url_generator.UrlGenerator.get_page_params', 'UrlGenerator.get_page_params', (['self.domain', 'link', '{}'], {}), '(self.domain, link, {})\n', (1578, 1601), False, 'from helpers.url_generator import UrlGenerator\n'), ((3130, 3160), 'd_parser.helpers.re_set.Ree.float.match', 'Ree.float.match', (['product_price'], {}), '(product_price)\n', (3145, 3160), False, 'from d_parser.helpers.re_set import Ree\n'), ((4292, 4353), 'lxml.html.fromstring', 'html.fromstring', (['f"""<div>{product_description_part_raw}</div>"""'], {}), "(f'<div>{product_description_part_raw}</div>')\n", (4307, 4353), False, 'from lxml import html\n')]
#!/usr/bin/python3 import logging import argparse from time import time import toml from data.io.knowledge_graph import KnowledgeGraph from data.io.tarball import Tarball from data.io.tsv import TSV from data.utils import is_readable, is_writable from embeddings import graph_structure from tasks.node_classification import build_dataset, build_model, evaluate_model from tasks.utils import mksplits, init_fold, mkfolds, sample_mask, set_seed, strip_graph def single_run(A, X, Y, X_node_map, tsv_writer, config): tsv_writer.writerow(["epoch", "training_loss", "training_accurary", "validation_loss", "validation_accuracy", "test_loss", "test_accuracy"]) # create splits dataset = mksplits(X, Y, X_node_map, config['task']['dataset_ratio']) # compile model computation graph model = build_model(X, Y, A, config) # train model nepoch = config['model']['epoch'] batch_size = X.shape[0] # number of nodes sample_weights = sample_mask(dataset['train']['X_idx'], Y.shape[0]) for epoch in train_model(A, model, dataset, sample_weights, batch_size, nepoch): # log metrics tsv_writer.writerow([str(epoch[0]), str(epoch[1]), str(epoch[2]), str(epoch[3]), str(epoch[4]), "-1", "-1"]) # test model test_loss, test_acc = test_model(A, model, dataset, batch_size) # log metrics tsv_writer.writerow(["-1", "-1", "-1", "-1", "-1", str(test_loss[0]), str(test_acc[0])]) return (test_loss[0], test_acc[0]) def kfold_crossvalidation(A, X, Y, X_node_map, k, tsv_writer, config): tsv_writer.writerow(["fold", "epoch", "training_loss", "training_accurary", "validation_loss", "validation_accuracy", "test_loss", "test_accuracy"]) # generate fold indices folds_idx = mkfolds(X_node_map.shape[0], k) results = [] logger.info("Starting {}-fold cross validation".format(k)) for fold in range(1, k+1): logger.info("Fold {} / {}".format(fold, k)) # compile model computation graph model = build_model(X, Y, A, config) # initialize fold dataset = init_fold(X, Y, X_node_map, folds_idx[fold-1], config['task']['dataset_ratio']) # train model nepoch = config['model']['epoch'] batch_size = X.shape[0] # number of nodes sample_weights = sample_mask(dataset['train']['X_idx'], Y.shape[0]) for epoch in train_model(A, model, dataset, sample_weights, batch_size, nepoch): # log metrics tsv_writer.writerow([str(fold), str(epoch[0]), str(epoch[1]), str(epoch[2]), str(epoch[3]), str(epoch[4]), "-1", "-1"]) # test model test_loss, test_acc = test_model(A, model, dataset, batch_size) results.append((test_loss[0], test_acc[0])) # log metrics tsv_writer.writerow([str(fold), "-1", "-1", "-1", "-1", "-1", str(test_loss[0]), str(test_acc[0])]) mean_loss, mean_acc = tuple(sum(e)/len(e) for e in zip(*results)) tsv_writer.writerow(["-1", "-1", "-1", "-1", "-1", "-1", str(mean_loss), str(mean_acc)]) return (mean_loss, mean_acc) def train_model(A, model, dataset, sample_weights, batch_size, nepoch): logging.info("Training for {} epoch".format(nepoch)) # Log wall-clock time t0 = time() for epoch in range(1, nepoch+1): # Single training iteration model.fit(x=[dataset['train']['X']] + A, y=dataset['train']['Y'], batch_size=batch_size, epochs=1, shuffle=False, sample_weight=sample_weights, validation_data=([dataset['val']['X']] + A, dataset['val']['Y']), callbacks=[], verbose=0) # Predict on full dataset Y_hat = model.predict(x=[dataset['train']['X']] + A, batch_size=batch_size, verbose=0) # Train / validation scores train_val_loss, train_val_acc = evaluate_model(Y_hat, [dataset['train']['Y'], dataset['val']['Y']], [dataset['train']['X_idx'], dataset['val']['X_idx']]) logging.info("{:04d} ".format(epoch) \ + "| train loss {:.4f} / acc {:.4f} ".format(train_val_loss[0], train_val_acc[0]) + "| val loss {:.4f} / acc {:.4f}".format(train_val_loss[1], train_val_acc[1])) yield (epoch, train_val_loss[0], train_val_acc[0], train_val_loss[1], train_val_acc[1]) logging.info("training time: {:.2f}s".format(time()-t0)) def test_model(A, model, dataset, batch_size): # Predict on full dataset Y_hat = model.predict(x=[dataset['train']['X']] + A, batch_size=batch_size, verbose=0) test_loss, test_acc = evaluate_model(Y_hat, [dataset['test']['Y']], [dataset['test']['X_idx']]) logging.info("Performance on test set: loss {:.4f} / accuracy {:.4f}".format( test_loss[0], test_acc[0])) return (test_loss, test_acc) def run(args, tsv_writer, config): set_seed(config['task']['seed']) # prep data if args.input is None: logging.debug("No tarball supplied - building task prequisites") with KnowledgeGraph(path=config['graph']['file']) as kg: targets = strip_graph(kg, config) A = graph_structure.generate(kg, config) X, Y, X_node_map = build_dataset(kg, targets, config) else: assert is_readable(args.input) logging.debug("Importing prepared tarball") with Tarball(args.input, 'r') as tb: A = tb.get('A') X = tb.get('X') Y = tb.get('Y') X_node_map = tb.get('X_node_map') if config['task']['kfolds'] < 0: loss, accuracy = single_run(A, X, Y, X_node_map, tsv_writer, config) else: loss, accuracy = kfold_crossvalidation(A, X, Y, X_node_map, config['task']['kfolds'], tsv_writer, config) logging.info("Mean performance: loss {:.4f} / accuracy {:.4f}".format( loss, accuracy)) if args.verbose < 1: print("Mean performance: loss {:.4f} / accuracy {:.4f}".format( loss, accuracy)) def init_logger(filename, verbose=0): logging.basicConfig(filename=filename, format='[%(asctime)s] %(module)s/%(funcName)s | %(levelname)s: %(message)s', level=logging.DEBUG) if verbose > 0: stream_handler = logging.StreamHandler() level = logging.INFO if verbose >= 2: level = logging.DEBUG stream_handler.setLevel(level) logging.getLogger().addHandler(stream_handler) if __name__ == "__main__": timestamp = int(time()) parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", help="Configuration file (toml)", required=True, default=None) parser.add_argument("-i", "--input", help="Optional prepared input file (tar)", default=None) parser.add_argument("-o", "--output", help="Output directory", default="/tmp/") parser.add_argument("-v", "--verbose", help="Increase output verbosity", action='count', default=0) args = parser.parse_args() # load configuration assert is_readable(args.config) config = toml.load(args.config) # set output base filename baseFilename = "{}{}{}".format(args.output, config['name'], timestamp) if args.output.endswith("/") \ else "{}/{}{}".format(args.output, config['name'], timestamp) assert is_writable(baseFilename) init_logger(baseFilename+'.log', args.verbose) logger = logging.getLogger(__name__) tsv_writer = TSV(baseFilename+'.tsv', 'w') # log parameters logger.debug("Arguments:\n{}".format( "\n".join(["\t{}: {}".format(arg, getattr(args, arg)) for arg in vars(args)]))) logger.debug("Configuration:\n{}".format( "\n".join(["\t{}: {}".format(k,v) for k,v in config.items()]))) # run training run(args, tsv_writer, config) logging.shutdown()
[ "logging.getLogger", "logging.StreamHandler", "tasks.utils.mksplits", "tasks.utils.init_fold", "logging.debug", "embeddings.graph_structure.generate", "data.io.knowledge_graph.KnowledgeGraph", "tasks.utils.strip_graph", "data.io.tarball.Tarball", "tasks.node_classification.build_model", "argparse.ArgumentParser", "toml.load", "tasks.utils.sample_mask", "tasks.utils.mkfolds", "tasks.node_classification.build_dataset", "data.utils.is_readable", "data.utils.is_writable", "time.time", "logging.basicConfig", "tasks.utils.set_seed", "data.io.tsv.TSV", "logging.shutdown", "tasks.node_classification.evaluate_model" ]
[((766, 825), 'tasks.utils.mksplits', 'mksplits', (['X', 'Y', 'X_node_map', "config['task']['dataset_ratio']"], {}), "(X, Y, X_node_map, config['task']['dataset_ratio'])\n", (774, 825), False, 'from tasks.utils import mksplits, init_fold, mkfolds, sample_mask, set_seed, strip_graph\n'), ((906, 934), 'tasks.node_classification.build_model', 'build_model', (['X', 'Y', 'A', 'config'], {}), '(X, Y, A, config)\n', (917, 934), False, 'from tasks.node_classification import build_dataset, build_model, evaluate_model\n'), ((1064, 1114), 'tasks.utils.sample_mask', 'sample_mask', (["dataset['train']['X_idx']", 'Y.shape[0]'], {}), "(dataset['train']['X_idx'], Y.shape[0])\n", (1075, 1114), False, 'from tasks.utils import mksplits, init_fold, mkfolds, sample_mask, set_seed, strip_graph\n'), ((2140, 2171), 'tasks.utils.mkfolds', 'mkfolds', (['X_node_map.shape[0]', 'k'], {}), '(X_node_map.shape[0], k)\n', (2147, 2171), False, 'from tasks.utils import mksplits, init_fold, mkfolds, sample_mask, set_seed, strip_graph\n'), ((4000, 4006), 'time.time', 'time', ([], {}), '()\n', (4004, 4006), False, 'from time import time\n'), ((5946, 6019), 'tasks.node_classification.evaluate_model', 'evaluate_model', (['Y_hat', "[dataset['test']['Y']]", "[dataset['test']['X_idx']]"], {}), "(Y_hat, [dataset['test']['Y']], [dataset['test']['X_idx']])\n", (5960, 6019), False, 'from tasks.node_classification import build_dataset, build_model, evaluate_model\n'), ((6329, 6361), 'tasks.utils.set_seed', 'set_seed', (["config['task']['seed']"], {}), "(config['task']['seed'])\n", (6337, 6361), False, 'from tasks.utils import mksplits, init_fold, mkfolds, sample_mask, set_seed, strip_graph\n'), ((7644, 7789), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': 'filename', 'format': '"""[%(asctime)s] %(module)s/%(funcName)s | %(levelname)s: %(message)s"""', 'level': 'logging.DEBUG'}), "(filename=filename, format=\n '[%(asctime)s] %(module)s/%(funcName)s | %(levelname)s: %(message)s',\n level=logging.DEBUG)\n", (7663, 7789), False, 'import logging\n'), ((8161, 8186), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (8184, 8186), False, 'import argparse\n'), ((8646, 8670), 'data.utils.is_readable', 'is_readable', (['args.config'], {}), '(args.config)\n', (8657, 8670), False, 'from data.utils import is_readable, is_writable\n'), ((8684, 8706), 'toml.load', 'toml.load', (['args.config'], {}), '(args.config)\n', (8693, 8706), False, 'import toml\n'), ((8938, 8963), 'data.utils.is_writable', 'is_writable', (['baseFilename'], {}), '(baseFilename)\n', (8949, 8963), False, 'from data.utils import is_readable, is_writable\n'), ((9029, 9056), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (9046, 9056), False, 'import logging\n'), ((9079, 9110), 'data.io.tsv.TSV', 'TSV', (["(baseFilename + '.tsv')", '"""w"""'], {}), "(baseFilename + '.tsv', 'w')\n", (9082, 9110), False, 'from data.io.tsv import TSV\n'), ((9442, 9460), 'logging.shutdown', 'logging.shutdown', ([], {}), '()\n', (9458, 9460), False, 'import logging\n'), ((2395, 2423), 'tasks.node_classification.build_model', 'build_model', (['X', 'Y', 'A', 'config'], {}), '(X, Y, A, config)\n', (2406, 2423), False, 'from tasks.node_classification import build_dataset, build_model, evaluate_model\n'), ((2478, 2564), 'tasks.utils.init_fold', 'init_fold', (['X', 'Y', 'X_node_map', 'folds_idx[fold - 1]', "config['task']['dataset_ratio']"], {}), "(X, Y, X_node_map, folds_idx[fold - 1], config['task'][\n 'dataset_ratio'])\n", (2487, 2564), False, 'from tasks.utils import mksplits, init_fold, mkfolds, sample_mask, set_seed, strip_graph\n'), ((2727, 2777), 'tasks.utils.sample_mask', 'sample_mask', (["dataset['train']['X_idx']", 'Y.shape[0]'], {}), "(dataset['train']['X_idx'], Y.shape[0])\n", (2738, 2777), False, 'from tasks.utils import mksplits, init_fold, mkfolds, sample_mask, set_seed, strip_graph\n'), ((4773, 4899), 'tasks.node_classification.evaluate_model', 'evaluate_model', (['Y_hat', "[dataset['train']['Y'], dataset['val']['Y']]", "[dataset['train']['X_idx'], dataset['val']['X_idx']]"], {}), "(Y_hat, [dataset['train']['Y'], dataset['val']['Y']], [\n dataset['train']['X_idx'], dataset['val']['X_idx']])\n", (4787, 4899), False, 'from tasks.node_classification import build_dataset, build_model, evaluate_model\n'), ((6414, 6478), 'logging.debug', 'logging.debug', (['"""No tarball supplied - building task prequisites"""'], {}), "('No tarball supplied - building task prequisites')\n", (6427, 6478), False, 'import logging\n'), ((6734, 6757), 'data.utils.is_readable', 'is_readable', (['args.input'], {}), '(args.input)\n', (6745, 6757), False, 'from data.utils import is_readable, is_writable\n'), ((6766, 6809), 'logging.debug', 'logging.debug', (['"""Importing prepared tarball"""'], {}), "('Importing prepared tarball')\n", (6779, 6809), False, 'import logging\n'), ((7875, 7898), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (7896, 7898), False, 'import logging\n'), ((8139, 8145), 'time.time', 'time', ([], {}), '()\n', (8143, 8145), False, 'from time import time\n'), ((6492, 6536), 'data.io.knowledge_graph.KnowledgeGraph', 'KnowledgeGraph', ([], {'path': "config['graph']['file']"}), "(path=config['graph']['file'])\n", (6506, 6536), False, 'from data.io.knowledge_graph import KnowledgeGraph\n'), ((6566, 6589), 'tasks.utils.strip_graph', 'strip_graph', (['kg', 'config'], {}), '(kg, config)\n', (6577, 6589), False, 'from tasks.utils import mksplits, init_fold, mkfolds, sample_mask, set_seed, strip_graph\n'), ((6606, 6642), 'embeddings.graph_structure.generate', 'graph_structure.generate', (['kg', 'config'], {}), '(kg, config)\n', (6630, 6642), False, 'from embeddings import graph_structure\n'), ((6674, 6708), 'tasks.node_classification.build_dataset', 'build_dataset', (['kg', 'targets', 'config'], {}), '(kg, targets, config)\n', (6687, 6708), False, 'from tasks.node_classification import build_dataset, build_model, evaluate_model\n'), ((6823, 6847), 'data.io.tarball.Tarball', 'Tarball', (['args.input', '"""r"""'], {}), "(args.input, 'r')\n", (6830, 6847), False, 'from data.io.tarball import Tarball\n'), ((5685, 5691), 'time.time', 'time', ([], {}), '()\n', (5689, 5691), False, 'from time import time\n'), ((8044, 8063), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (8061, 8063), False, 'import logging\n')]
import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing from actn import * ap = argparse.ArgumentParser() # for help -> python alpha.py --help ap.add_argument("-f", "--file", required=True, help="name of the file") ap.add_argument("-o", "--output", required=True, help="specifiy the folder path of output") ap.add_argument("-b", "--before", required=True, help="seconds to cut before", type=int) ap.add_argument("-a", "--after", required=True, help="seconds to cut after", type=int) args = vars(ap.parse_args()) class core_overwatch(): def __init__(self, file_name, output_folder, before, after): self.file_name = file_name self.output_folder = output_folder self.before = before self.after = after if not os.path.exists(str(self.output_folder)): print("The File Path Doesn't Exist!") print("[++++++]Creating the Folder in Path {0}".format(output_folder)) os.makedirs("{0}".format(self.output_folder)) print("[++++++]Finished Making The Folder in Path {0}".format(output_folder)) try: fh = open('{0}'.format(self.file_name), 'r') except FileNotFoundError: print("[+++++++]The Video File Not Found In Path.Please Try Again") cmd1 = "ffmpeg -i {0} 2>&1 | sed -n \"s/.*, \(.*\) fp.*/\\1/p\"".format(self.file_name) os.system(cmd1 + ' > tmp1') self.fps = int(open('tmp1', 'r').read()) os.system( """ ffprobe -v error -select_streams v:0 -show_entries stream=nb_frames -of default=nokey=1:noprint_wrappers=1 {0} > tmp2 """.format( self.file_name )) self.frame_count = int(open('tmp2', 'r').read()) print('[++++++]fps', self.fps) print('[++++++]frame count', self.frame_count) # get imp vid inf def build_folder(self): folder_names = ['./raw_calc', './raw_calc/frame_db_temp'] for directory in folder_names: if not os.path.exists(str(directory)): os.makedirs(str(directory)) # if exists then delete all the files in that dir tree def which_frame_formula(self): second_length = 1 chunk_size = round(self.fps * second_length) # fps*second_length assert type(chunk_size) is int, "Chunk Size must have to be Integer Type" # upto which frame the ops will execute(for loop to extract one frame from chunk size ) n = round(round(self.frame_count) / chunk_size) start_frame = round(self.fps / 2) common_diff = round(self.fps * second_length) # * second length,taking 1F/60 return start_frame, n, common_diff def select_frame(self, a, n, d): # arithmetic series y=a+(p-1)*d which_frame_list = [a + (p - 1) * d for p in range(1, n + 1)] return which_frame_list def read_save_frame(self): os.system("ffmpeg -hide_banner -loglevel panic -i {video_Fname} -vf fps=1 {f_name}/%d.png".format( f_name='./raw_calc/frame_db_temp', video_Fname=str(self.file_name) )) def get_action_process_multithreaded_cmd_run_commands(self): img_list = ['./raw_calc/frame_db_temp/{0}'.format(x) for x in os.listdir('./raw_calc/frame_db_temp')] img_list.sort(key=lambda fx: int(''.join(filter(str.isdigit, fx)))) az = return_text(img_list) return az # utils function start here -3 def _dbl(self, time): if time < 10: return '0' + str(time) else: return str(time) def time_cut(self, input_in_sec): times = [] hours = 0 minutes = 0 seconds = 0 hours = input_in_sec // 3600 minutes = (input_in_sec % 3600) // 60 seconds = (input_in_sec % 3600) % 60 return "{}:{}:{}".format(core_overwatch._dbl(self, hours), core_overwatch._dbl(self, minutes), core_overwatch._dbl(self, seconds)) def findIndices(self, sequence, _str, extra=0): # 0011 assert len(sequence) < len(_str), "Sequence is Greater Than the Main String" indices = [] for i in range(len(_str) - len(sequence) + 1): temp = _str[i:i + len(sequence)] if (sequence == temp): indices.append(i + 2 - extra) return indices # utils fx ends here def action_index_find(self, raw_list, which_frame): raw_str_hashed = '' for j in raw_list: raw_str_hashed += str(j) assert type(raw_str_hashed) is str, " The parameter to find Indices Type must have to be a String" result_list = core_overwatch.findIndices(self, '01', raw_str_hashed, extra=1) final_result = [] for yx in result_list: final_result.append(int(which_frame[yx])) return final_result def build_frame_range_to_cut(self, action_result): # print(action_result) # input will be taken ->cp from raw code frames = round(self.frame_count) fps = round(self.fps) bef = int(self.before) * fps # count frm aft = int(self.after) * fps # frame range (tuple ds) contained list frame_range = [] # build condition for after and before trimming for ucv in action_result: if int(ucv) < bef and aft < frames: frame_range.append((0, ucv + aft)) elif int(ucv) < bef and aft > frames: frame_range.append((0, frames)) elif int(ucv) > bef and aft < frames: frame_range.append((ucv - bef, ucv + aft)) elif int(ucv) > bef and aft < frames: frame_range.append((ucv - bef, frames)) # (temp) test return frame_range def build_output(self, start, end, video_name, file_name, end1): os.system( 'ffmpeg -hide_banner -loglevel panic -ss {st} -i {ivfname} -to {ed} -c copy {ovfname}'.format(st=start, ed=end1, ivfname=self.file_name, ovfname=video_name)) file_ = open('{}'.format(file_name), 'w') file_.write('Start at : {sec} \n End at : {sec1} '.format(sec=start, sec1=end)) file_.close() def send_frame_signal(self, frame_range): # frame range is like [(0,21),(4,198)] assert type(frame_range) is list, "Frame range must have to be a list" fps = round(self.fps) # build video file path name ax = str(datetime.datetime.now()) tm = ax[0:10] + '_' + ax[11:] file_n_ = str(self.output_folder + '/' + str(tm)) os.makedirs(file_n_) video_type = os.path.splitext(os.path.basename(str(self.file_name)))[1] # output e.g as .mp4 for ux in range(len(frame_range)): start = core_overwatch.time_cut(self, input_in_sec=math.ceil(frame_range[ux][0] / fps)) end = core_overwatch.time_cut(self, input_in_sec=math.ceil(frame_range[ux][1] / fps)) end1 = core_overwatch.time_cut(self, input_in_sec=math.ceil( (frame_range[ux][1] / fps) - (frame_range[ux][0] / fps))) print('[++++++]Start at {0} End at {1}'.format(start, end)) core_overwatch.build_output(self, start=str(start), end=str(end), video_name=file_n_ + '/output{vid_number}{type_v}'.format(vid_number=ux, type_v=video_type), file_name=file_n_ + '/output{0}.txt'.format(ux), end1=end1 ) print("Total {0} Videos have been cut from Main Video".format(len(os.listdir(file_n_))/2)) if __name__ == "__main__": a = core_overwatch(file_name=str(args['file']), output_folder=str(args['output']), before=int(args['before']), after=int(args['after'])) a.build_folder() start_frame, n, common_diff = a.which_frame_formula() # returns a,n,d c = a.select_frame(start_frame, n, common_diff) # returns which_frame_list st = time.time() print("[+++++]Reading Frames....") a.read_save_frame() print("[+++++++]Finished Reading Frames") print("[+++++++]Image Processing Rolling....") d = a.get_action_process_multithreaded_cmd_run_commands() print("[++++++++]Finished Processing Images") f = a.action_index_find(raw_list=d, which_frame=c) # return list to start aft and bef(action first observed) g = a.build_frame_range_to_cut(f) a.send_frame_signal(frame_range=g) print('[++++++]Time req to run The Engine is {0}m'.format((time.time() - st) / 60)) print('Deleting temp folders..') shutil.rmtree('./raw_calc/frame_db_temp') os.remove('./tmp1') os.remove('./tmp2')
[ "os.listdir", "math.ceil", "argparse.ArgumentParser", "os.makedirs", "datetime.datetime.now", "shutil.rmtree", "os.system", "time.time", "os.remove" ]
[((117, 142), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (140, 142), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((8644, 8655), 'time.time', 'time.time', ([], {}), '()\n', (8653, 8655), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((9253, 9294), 'shutil.rmtree', 'shutil.rmtree', (['"""./raw_calc/frame_db_temp"""'], {}), "('./raw_calc/frame_db_temp')\n", (9266, 9294), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((9299, 9318), 'os.remove', 'os.remove', (['"""./tmp1"""'], {}), "('./tmp1')\n", (9308, 9318), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((9323, 9342), 'os.remove', 'os.remove', (['"""./tmp2"""'], {}), "('./tmp2')\n", (9332, 9342), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((1473, 1501), 'os.system', 'os.system', (["(cmd1 + ' > tmp1')"], {}), "(cmd1 + ' > tmp1')\n", (1482, 1501), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((7046, 7066), 'os.makedirs', 'os.makedirs', (['file_n_'], {}), '(file_n_)\n', (7057, 7066), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((6915, 6938), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (6936, 6938), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((3339, 3377), 'os.listdir', 'os.listdir', (['"""./raw_calc/frame_db_temp"""'], {}), "('./raw_calc/frame_db_temp')\n", (3349, 3377), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((7277, 7312), 'math.ceil', 'math.ceil', (['(frame_range[ux][0] / fps)'], {}), '(frame_range[ux][0] / fps)\n', (7286, 7312), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((7375, 7410), 'math.ceil', 'math.ceil', (['(frame_range[ux][1] / fps)'], {}), '(frame_range[ux][1] / fps)\n', (7384, 7410), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((7474, 7536), 'math.ceil', 'math.ceil', (['(frame_range[ux][1] / fps - frame_range[ux][0] / fps)'], {}), '(frame_range[ux][1] / fps - frame_range[ux][0] / fps)\n', (7483, 7536), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((9186, 9197), 'time.time', 'time.time', ([], {}), '()\n', (9195, 9197), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n'), ((8238, 8257), 'os.listdir', 'os.listdir', (['file_n_'], {}), '(file_n_)\n', (8248, 8257), False, 'import argparse, time, os, cv2, shutil, datetime, math, subprocess, pickle, multiprocessing\n')]
from dcim.choices import DeviceStatusChoices from dcim.models import Device from extras.reports import Report class DeviceIPReport(Report): description = ( "Check that every device has either an IPv4 or IPv6 primary address assigned" ) def test_primary_ip4(self): for device in Device.objects.filter(status=DeviceStatusChoices.STATUS_ACTIVE): intcount = 0 for interface in device.interfaces.all(): if not interface.mgmt_only: intcount += 1 # There may be dumb devices with no interfaces so no IP addresses, that's OK if intcount == 0: if device.primary_ip4_id is not None: if device.primary_ip6_id is not None: self.log_failure( device, "Device has primary IPv4 and IPv6 address but no interfaces", ) else: self.log_warning( device, "Device has missing primary IPv4 addresses but no interfaces", ) else: self.log_success(device) elif device.primary_ip4_id is None: if device.device_type.is_child_device is True: self.log_success(device) else: if device.primary_ip6_id is None: self.log_failure( device, "Device is missing primary IPv4 and IPv6 address" ) else: self.log_warning( device, "Device is missing primary IPv4 addresses" ) else: if device.device_type.is_child_device is True: self.log_success(device) else: if device.primary_ip6_id is None: self.log_info(device, "Device is missing primary IPv6 address") else: self.log_success(device)
[ "dcim.models.Device.objects.filter" ]
[((309, 372), 'dcim.models.Device.objects.filter', 'Device.objects.filter', ([], {'status': 'DeviceStatusChoices.STATUS_ACTIVE'}), '(status=DeviceStatusChoices.STATUS_ACTIVE)\n', (330, 372), False, 'from dcim.models import Device\n')]
import socket import random import os import requests import re import github import minecraft import string import sys HOST = "xeroxirc.net" PORT = 6667 NICK = "ak_sus" #PASSWORD = os.getenv("PASSWORD") CHANNEL = "#BlockySurvival" SERVER = "" readbuffer = "" def send(message): s.send(message) print(message) s = socket.socket() s.connect((HOST, PORT)) send(bytes("NICK %s\r\n" % NICK, "UTF-8")) send(bytes("USER %s %s %s :%s\r\n" % (NICK, NICK, NICK, NICK), "UTF-8")) #s.send(bytes("PRIVMSG NickServ regain {} {}\r\n".format(NICK, PASSWORD), "UTF-8")) #s.send(bytes("PRIVMSG NickServ identify {} {}\r\n".format(NICK, PASSWORD), "UTF-8")) send(bytes("JOIN {}\r\n".format(CHANNEL), "UTF-8")) #s.send(bytes("PRIVMSG NickServ :identify {}\r\n".format(PASSWORD), "UTF-8")) readbuffer = readbuffer + s.recv(1024).decode("UTF-8") temp = str.split(readbuffer, "\n") readbuffer = temp.pop() for line in temp: SERVER = str.rstrip(line)[1:].split()[0] print(str.rstrip(line)) while 1: readbuffer = readbuffer + s.recv(1024).decode("UTF-8") temp = str.split(readbuffer, "\n") readbuffer = temp.pop() for line in temp: print(str.rstrip(line)) message = str.rstrip(line).split(" PRIVMSG {} :".format(CHANNEL)) if "PING" in line: send("PONG :{}\r\n".format(SERVER).encode("utf-8")) msg = message[-1] tokens = msg.split() if msg == "$hello": send("PRIVMSG {} :Hello!\r\n".format(CHANNEL).encode("utf-8")) if msg == "$ping": send("PRIVMSG {} :Pong!\r\n".format(CHANNEL).encode("utf-8")) if msg == "$random": send("PRIVMSG {} :{}\r\n".format(CHANNEL, random.randint(0, 100)).encode("utf-8")) if msg.startswith("$youtube "): html = requests.get("https://www.youtube.com/results?search_query=" + " ".join(msg.split()[1:])).content video_ids = re.findall(r"watch\?v=(\S{11})", html.decode()) send("PRIVMSG {} :https://www.youtube.com/watch?v={}\r\n".format(CHANNEL, video_ids[0]).encode("utf-8")) #if msg.startswith("$google "): send("PRIVMSG {} :{}\r\n".format(CHANNEL, googlesearch.search(" ".join(msg.split()[1:]))[0]).encode("utf-8")) #if msg.startswith("$wolfram "): send("PRIVMSG {} :{}\r\n".format(CHANNEL, wolfram.get(" ".join(msg.split()[1:]))).encode("utf-8")) if msg.startswith("$github "): if tokens[1] == "url": send("PRIVMSG {} :https://github.com/{}/{}\r\n".format(CHANNEL, tokens[2], tokens[3]).encode("utf-8")) if tokens[1] == "issues": send("PRIVMSG {} :#{}: {}\r\n".format(CHANNEL, tokens[4], github.get_issue_title(tokens[2], tokens[3], tokens[4])).encode("utf-8")) if msg == "$server": send("PRIVMSG {} :{}\r\n".format(CHANNEL, minecraft.get()).encode("utf-8")) if msg == "$help": send("PRIVMSG {} :Avalible commands: $hello, $ping, $youtube, $google, $github, $wolfram.\r\n".format(CHANNEL).encode("utf-8")) if msg.startswith("$help "): if tokens[1] == "hello": send("PRIVMSG {} :Syntax: $hello Action: Says \"Hello!\".\r\n".format(CHANNEL).encode("utf-8")) if tokens[1] == "ping":send("PRIVMSG {} :Syntax: $ping Action: Says \"Ping!\".\r\n".format(CHANNEL).encode("utf-8")) if tokens[1] == "youtube": send("PRIVMSG {} :Syntax: $youtube <keyword> Action: Sends the URL of a YouTube video matching the keyword given.\r\n".format(CHANNEL).encode("utf-8")) #if tokens[1] == "google": send("PRIVMSG {} :Syntax: $google <keyword> Action: Sends the URL of a google search with the keyword given\r\n".format(CHANNEL).encode("utf-8")) if tokens[1] == "github": send("PRIVMSG {} :Syntax: $github <topic> <user> <repo> <number> Action: Returns data about a github repo.\r\n".format(CHANNEL).encode("utf-8")) #if tokens[1] == "wolfram": send("PRIVMSG {} :Syntax: $wolfram <query> Action: Asks Wolfram|Alpha the query given.\r\n".format(CHANNEL).encode("utf-8"))
[ "github.get_issue_title", "minecraft.get", "random.randint", "socket.socket" ]
[((322, 337), 'socket.socket', 'socket.socket', ([], {}), '()\n', (335, 337), False, 'import socket\n'), ((1631, 1653), 'random.randint', 'random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (1645, 1653), False, 'import random\n'), ((2726, 2741), 'minecraft.get', 'minecraft.get', ([], {}), '()\n', (2739, 2741), False, 'import minecraft\n'), ((2581, 2636), 'github.get_issue_title', 'github.get_issue_title', (['tokens[2]', 'tokens[3]', 'tokens[4]'], {}), '(tokens[2], tokens[3], tokens[4])\n', (2603, 2636), False, 'import github\n')]
""" The file defines the evaluate process on target dataset. @Author: <NAME> @Github: https://github.com/luyanger1799 @Project: https://github.com/luyanger1799/amazing-semantic-segmentation """ from sklearn.metrics import multilabel_confusion_matrix from amazingutils.helpers import * from amazingutils.utils import load_image import numpy as np import argparse import sys import cv2 import os def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser = argparse.ArgumentParser() parser.add_argument('--dataset', help='The path of the dataset.', type=str, default='CamVid') parser.add_argument('--crop_height', help='The height to crop the image.', type=int, default=256) parser.add_argument('--crop_width', help='The width to crop the image.', type=int, default=256) parser.add_argument('--predictions', help='The path of predicted image.', type=str, required=True) args = parser.parse_args() # check related paths paths = check_related_path(os.getcwd()) # get image and label file names for training and validation _, _, _, _, _, test_label_names = get_dataset_info(args.dataset) # get color info csv_file = os.path.join(args.dataset, 'class_dict.csv') class_names, _ = get_colored_info(csv_file) # get the prediction file name list if not os.path.exists(args.predictions): raise ValueError('the path of predictions does not exit.') prediction_names = [] for file in sorted(os.listdir(args.predictions)): prediction_names.append(os.path.join(args.predictions, file)) # evaluated classes evaluated_classes = get_evaluated_classes(os.path.join(args.dataset, 'evaluated_classes.txt')) num_classes = len(class_names) class_iou = dict() for name in evaluated_classes: class_iou[name] = list() class_idx = dict(zip(class_names, range(num_classes))) # begin evaluate assert len(test_label_names) == len(prediction_names) for i, (name1, name2) in enumerate(zip(test_label_names, prediction_names)): sys.stdout.write('\rRunning test image %d / %d' % (i + 1, len(test_label_names))) sys.stdout.flush() label = np.array(cv2.resize(load_image(name1), dsize=(args.crop_width, args.crop_height), interpolation=cv2.INTER_NEAREST)) pred = np.array(cv2.resize(load_image(name2), dsize=(args.crop_width, args.crop_height), interpolation=cv2.INTER_NEAREST)) confusion_matrix = multilabel_confusion_matrix(label.flatten(), pred.flatten(), labels=list(class_idx.values())) for eval_cls in evaluated_classes: eval_idx = class_idx[eval_cls] (tn, fp), (fn, tp) = confusion_matrix[eval_idx] if tp + fn > 0: class_iou[eval_cls].append(tp / (tp + fp + fn)) print('\n****************************************') print('* The IoU of each class is as follows: *') print('****************************************') for eval_cls in evaluated_classes: class_iou[eval_cls] = np.mean(class_iou[eval_cls]) print('{cls:}: {iou:.4f}'.format(cls=eval_cls, iou=class_iou[eval_cls])) print('\n**********************************************') print('* The Mean IoU of all classes is as follows: *') print('**********************************************') print('Mean IoU: {mean_iou:.4f}'.format(mean_iou=np.mean(list(class_iou.values()))))
[ "os.path.exists", "numpy.mean", "os.listdir", "argparse.ArgumentParser", "os.path.join", "argparse.ArgumentTypeError", "os.getcwd", "sys.stdout.flush", "amazingutils.utils.load_image" ]
[((651, 676), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (674, 676), False, 'import argparse\n'), ((1311, 1355), 'os.path.join', 'os.path.join', (['args.dataset', '"""class_dict.csv"""'], {}), "(args.dataset, 'class_dict.csv')\n", (1323, 1355), False, 'import os\n'), ((1142, 1153), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1151, 1153), False, 'import os\n'), ((1445, 1477), 'os.path.exists', 'os.path.exists', (['args.predictions'], {}), '(args.predictions)\n', (1459, 1477), False, 'import os\n'), ((1584, 1612), 'os.listdir', 'os.listdir', (['args.predictions'], {}), '(args.predictions)\n', (1594, 1612), False, 'import os\n'), ((1744, 1795), 'os.path.join', 'os.path.join', (['args.dataset', '"""evaluated_classes.txt"""'], {}), "(args.dataset, 'evaluated_classes.txt')\n", (1756, 1795), False, 'import os\n'), ((2204, 2222), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (2220, 2222), False, 'import sys\n'), ((3093, 3121), 'numpy.mean', 'np.mean', (['class_iou[eval_cls]'], {}), '(class_iou[eval_cls])\n', (3100, 3121), True, 'import numpy as np\n'), ((1643, 1679), 'os.path.join', 'os.path.join', (['args.predictions', 'file'], {}), '(args.predictions, file)\n', (1655, 1679), False, 'import os\n'), ((586, 639), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['"""Boolean value expected."""'], {}), "('Boolean value expected.')\n", (612, 639), False, 'import argparse\n'), ((2256, 2273), 'amazingutils.utils.load_image', 'load_image', (['name1'], {}), '(name1)\n', (2266, 2273), False, 'from amazingutils.utils import load_image\n'), ((2415, 2432), 'amazingutils.utils.load_image', 'load_image', (['name2'], {}), '(name2)\n', (2425, 2432), False, 'from amazingutils.utils import load_image\n')]
from pso.GPSO import GPSO import numpy as np import time import pandas as pd np.random.seed(42) # f1 完成 def Sphere(p): # Sphere函数 out_put = 0 for i in p: out_put += i ** 2 return out_put # f2 完成 def Sch222(x): out_put = 0 out_put01 = 1 for i in x: out_put += abs(i) out_put01 = abs(i)*out_put01 out_put = out_put01+out_put return out_put # f3 完成 def Quadric(x): output = 0 # print(x.shape[0]) for i in range(x.shape[0]): output += (np.sum(x[0:i+1])) ** 2 # print(np.square(np.sum(x[0:i+1]))) return output # f4 完成 def Schl(x): # print(np.max(np.abs(x))) return np.max(np.abs(x)) # f5 完成 def Step(x): output = 0 for i in x: output += (np.floor(i+0.5))**2 return output # f6 完成 def Noise(x): output = 0 cnt = 1 for i in x: output = cnt * (i**4) + output cnt += 1 output += np.random.rand() return output # f7 完成 def Rosenbrock(p): ''' -2.048<=xi<=2.048 函数全局最优点在一个平滑、狭长的抛物线山谷内,使算法很难辨别搜索方向,查找最优也变得十分困难 在(1,...,1)处可以找到极小值0 :param p: :return: ''' n_dim = len(p) res = 0 for i in range(n_dim - 1): res += 100 * np.square(np.square(p[i]) - p[i + 1]) + np.square(p[i] - 1) return res # f8 有问题,忽略,这个是APSO的f8 def Schewel(x): out_put = 0 for i in x: out_put += -i*np.sin(np.sqrt(abs(i))) return out_put # f9 完成 def Rastrigin(p): ''' 多峰值函数,也是典型的非线性多模态函数 -5.12<=xi<=5.12 在范围内有10n个局部最小值,峰形高低起伏不定跳跃。很难找到全局最优 has a global minimum at x = 0 where f(x) = 0 ''' return np.sum([np.square(x) - 10 * np.cos(2 * np.pi * x) + 10 for x in p]) # f10 def Ackley(x): part1 = 0 part2 = 0 for i in x: part1 += (i**2) part2 += np.cos(2 * np.pi * i) left = 20 * np.exp(-0.2 * ((part1 / x.shape[0]) ** .5)) right = np.exp(part2 / x.shape[0]) return -left - right + 20 + np.e # f11 ok def Griewank(p): ''' 存在多个局部最小值点,数目与问题的维度有关。 此函数是典型的非线性多模态函数,具有广泛的搜索空间,是优化算法很难处理的复杂多模态问题。 在(0,...,0)处取的全局最小值0 -600<=xi<=600 ''' part1 = [np.square(x) / 4000 for x in p] part2 = [np.cos(x / np.sqrt(i + 1)) for i, x in enumerate(p)] return np.sum(part1) - np.prod(part2) + 1 g = 10000 times = 30 table = np.zeros((2, 10)) gBest = np.zeros((10, 30)) # 1010个函数的30次的最优值 for i in range(times): optimizer = GPSO(func=Sphere, dim=30, pop=20, max_iter=g, lb=np.ones(30) * (-100), ub=np.ones(30) * 100, w=0.9, c1=2, c2=2, acceptance=0.01) start = time.time() optimizer.run() end = time.time() print('Sphere:', optimizer.gbest_y) table[0, 0] += optimizer.gbest_y table[1, 0] += end - start gBest[0, i] = optimizer.gbest_y optimizer = GPSO(func=Sch222, dim=30, pop=20, max_iter=g, lb=np.ones(30) * (-10), ub=np.ones(30) * 10, w=0.9, c1=2, c2=2, acceptance=0.01) start = time.time() optimizer.run() end = time.time() print('Sch222:', optimizer.gbest_y) table[0, 1] += optimizer.gbest_y table[1, 1] += end - start gBest[1, i] = optimizer.gbest_y optimizer = GPSO(func=Quadric, dim=30, pop=20, max_iter=g, lb=np.ones(30) * (-100), ub=np.ones(30) * 100, w=0.9, c1=2, c2=2, acceptance=100) start = time.time() optimizer.run() end = time.time() print('Quadric:', optimizer.gbest_y) table[0, 2] += optimizer.gbest_y table[1, 2] += end - start gBest[2, i] = optimizer.gbest_y optimizer = GPSO(func=Rosenbrock, dim=30, pop=20, max_iter=g, lb=np.ones(30) * (-10), ub=np.ones(30) * 10, w=0.9, c1=2, c2=2, acceptance=100) start = time.time() optimizer.run() end = time.time() print('Rosenbrock:', optimizer.gbest_y) table[0, 3] += optimizer.gbest_y table[1, 3] += end - start gBest[3, i] = optimizer.gbest_y optimizer = GPSO(func=Step, dim=30, pop=20, max_iter=g, lb=np.ones(30) * (-100), ub=np.ones(30) * 100, w=0.9, c1=2, c2=2, acceptance=0) start = time.time() optimizer.run() end = time.time() print('Step:', optimizer.gbest_y) table[0, 4] += optimizer.gbest_y table[1, 4] += end - start gBest[4, i] = optimizer.gbest_y optimizer = GPSO(func=Noise, dim=30, pop=20, max_iter=g, lb=np.ones(30) * (-1.28), ub=np.ones(30) * 1.28, w=0.9, c1=2, c2=2, acceptance=0.01) start = time.time() optimizer.run() end = time.time() print('Noise:', optimizer.gbest_y) table[0, 5] += optimizer.gbest_y table[1, 5] += end - start gBest[5, i] = optimizer.gbest_y optimizer = GPSO(func=Schewel, dim=30, pop=20, max_iter=g, lb=np.ones(30) * (-500), ub=np.ones(30) * 500, w=0.9, c1=2, c2=2, acceptance=-10000) start = time.time() optimizer.run() end = time.time() print('Schewel:', optimizer.gbest_y) table[0, 6] += optimizer.gbest_y table[1, 6] += end - start gBest[6, i] = optimizer.gbest_y optimizer = GPSO(func=Rastrigin, dim=30, pop=20, max_iter=g, lb=np.ones(30) * (-5.12), ub=np.ones(30) * 5.12, w=0.9, c1=2, c2=2, acceptance=50) start = time.time() optimizer.run() end = time.time() print('Rastrigin:', optimizer.gbest_y) table[0, 7] += optimizer.gbest_y table[1, 7] += end - start gBest[7, i] = optimizer.gbest_y optimizer = GPSO(func=Ackley, dim=30, pop=20, max_iter=g, lb=np.ones(30) * (-32), ub=np.ones(30) * 32, w=0.9, c1=2, c2=2, acceptance=0.01) start = time.time() optimizer.run() end = time.time() print('Ackley:', optimizer.gbest_y) table[0, 8] += optimizer.gbest_y table[1, 8] += end - start gBest[8, i] = optimizer.gbest_y optimizer = GPSO(func=Griewank, dim=30, pop=20, max_iter=g, lb=np.ones(30) * (-600), ub=np.ones(30) * 600, w=0.9, c1=2, c2=2, acceptance=0.01) start = time.time() optimizer.run() end = time.time() print('Griewank:', optimizer.gbest_y) table[0, 9] += optimizer.gbest_y table[1, 9] += end - start gBest[9, i] = optimizer.gbest_y table = table / times table = pd.DataFrame(table) table.columns = ['Sphere', 'Schwefel_P222', 'Quadric', 'Rosenbrock', 'Step', 'Quadric_Noise', 'Schwefel', 'Rastrigin', 'Ackley', 'Griewank'] table.index = ['mean score', 'mean time'] print(table) print('10个测试函数的30次std:', np.std(gBest, axis=1)) print('10个测试函数的30次best:', np.min(gBest, axis=1))
[ "numpy.abs", "numpy.prod", "numpy.sqrt", "numpy.random.rand", "numpy.ones", "numpy.floor", "numpy.min", "numpy.square", "numpy.exp", "numpy.sum", "numpy.zeros", "numpy.random.seed", "numpy.cos", "numpy.std", "pandas.DataFrame", "time.time" ]
[((78, 96), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (92, 96), True, 'import numpy as np\n'), ((2299, 2316), 'numpy.zeros', 'np.zeros', (['(2, 10)'], {}), '((2, 10))\n', (2307, 2316), True, 'import numpy as np\n'), ((2325, 2343), 'numpy.zeros', 'np.zeros', (['(10, 30)'], {}), '((10, 30))\n', (2333, 2343), True, 'import numpy as np\n'), ((6195, 6214), 'pandas.DataFrame', 'pd.DataFrame', (['table'], {}), '(table)\n', (6207, 6214), True, 'import pandas as pd\n'), ((930, 946), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (944, 946), True, 'import numpy as np\n'), ((1883, 1909), 'numpy.exp', 'np.exp', (['(part2 / x.shape[0])'], {}), '(part2 / x.shape[0])\n', (1889, 1909), True, 'import numpy as np\n'), ((2564, 2575), 'time.time', 'time.time', ([], {}), '()\n', (2573, 2575), False, 'import time\n'), ((2606, 2617), 'time.time', 'time.time', ([], {}), '()\n', (2615, 2617), False, 'import time\n'), ((2939, 2950), 'time.time', 'time.time', ([], {}), '()\n', (2948, 2950), False, 'import time\n'), ((2981, 2992), 'time.time', 'time.time', ([], {}), '()\n', (2990, 2992), False, 'import time\n'), ((3316, 3327), 'time.time', 'time.time', ([], {}), '()\n', (3325, 3327), False, 'import time\n'), ((3358, 3369), 'time.time', 'time.time', ([], {}), '()\n', (3367, 3369), False, 'import time\n'), ((3695, 3706), 'time.time', 'time.time', ([], {}), '()\n', (3704, 3706), False, 'import time\n'), ((3737, 3748), 'time.time', 'time.time', ([], {}), '()\n', (3746, 3748), False, 'import time\n'), ((4071, 4082), 'time.time', 'time.time', ([], {}), '()\n', (4080, 4082), False, 'import time\n'), ((4113, 4124), 'time.time', 'time.time', ([], {}), '()\n', (4122, 4124), False, 'import time\n'), ((4447, 4458), 'time.time', 'time.time', ([], {}), '()\n', (4456, 4458), False, 'import time\n'), ((4489, 4500), 'time.time', 'time.time', ([], {}), '()\n', (4498, 4500), False, 'import time\n'), ((4826, 4837), 'time.time', 'time.time', ([], {}), '()\n', (4835, 4837), False, 'import time\n'), ((4868, 4879), 'time.time', 'time.time', ([], {}), '()\n', (4877, 4879), False, 'import time\n'), ((5207, 5218), 'time.time', 'time.time', ([], {}), '()\n', (5216, 5218), False, 'import time\n'), ((5249, 5260), 'time.time', 'time.time', ([], {}), '()\n', (5258, 5260), False, 'import time\n'), ((5585, 5596), 'time.time', 'time.time', ([], {}), '()\n', (5594, 5596), False, 'import time\n'), ((5627, 5638), 'time.time', 'time.time', ([], {}), '()\n', (5636, 5638), False, 'import time\n'), ((5964, 5975), 'time.time', 'time.time', ([], {}), '()\n', (5973, 5975), False, 'import time\n'), ((6006, 6017), 'time.time', 'time.time', ([], {}), '()\n', (6015, 6017), False, 'import time\n'), ((6467, 6488), 'numpy.std', 'np.std', (['gBest'], {'axis': '(1)'}), '(gBest, axis=1)\n', (6473, 6488), True, 'import numpy as np\n'), ((6516, 6537), 'numpy.min', 'np.min', (['gBest'], {'axis': '(1)'}), '(gBest, axis=1)\n', (6522, 6537), True, 'import numpy as np\n'), ((673, 682), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (679, 682), True, 'import numpy as np\n'), ((1789, 1810), 'numpy.cos', 'np.cos', (['(2 * np.pi * i)'], {}), '(2 * np.pi * i)\n', (1795, 1810), True, 'import numpy as np\n'), ((1827, 1869), 'numpy.exp', 'np.exp', (['(-0.2 * (part1 / x.shape[0]) ** 0.5)'], {}), '(-0.2 * (part1 / x.shape[0]) ** 0.5)\n', (1833, 1869), True, 'import numpy as np\n'), ((516, 534), 'numpy.sum', 'np.sum', (['x[0:i + 1]'], {}), '(x[0:i + 1])\n', (522, 534), True, 'import numpy as np\n'), ((756, 773), 'numpy.floor', 'np.floor', (['(i + 0.5)'], {}), '(i + 0.5)\n', (764, 773), True, 'import numpy as np\n'), ((1255, 1274), 'numpy.square', 'np.square', (['(p[i] - 1)'], {}), '(p[i] - 1)\n', (1264, 1274), True, 'import numpy as np\n'), ((2124, 2136), 'numpy.square', 'np.square', (['x'], {}), '(x)\n', (2133, 2136), True, 'import numpy as np\n'), ((2233, 2246), 'numpy.sum', 'np.sum', (['part1'], {}), '(part1)\n', (2239, 2246), True, 'import numpy as np\n'), ((2249, 2263), 'numpy.prod', 'np.prod', (['part2'], {}), '(part2)\n', (2256, 2263), True, 'import numpy as np\n'), ((2180, 2194), 'numpy.sqrt', 'np.sqrt', (['(i + 1)'], {}), '(i + 1)\n', (2187, 2194), True, 'import numpy as np\n'), ((2451, 2462), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (2458, 2462), True, 'import numpy as np\n'), ((2476, 2487), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (2483, 2487), True, 'import numpy as np\n'), ((2828, 2839), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (2835, 2839), True, 'import numpy as np\n'), ((2852, 2863), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (2859, 2863), True, 'import numpy as np\n'), ((3204, 3215), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (3211, 3215), True, 'import numpy as np\n'), ((3229, 3240), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (3236, 3240), True, 'import numpy as np\n'), ((3585, 3596), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (3592, 3596), True, 'import numpy as np\n'), ((3609, 3620), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (3616, 3620), True, 'import numpy as np\n'), ((3961, 3972), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (3968, 3972), True, 'import numpy as np\n'), ((3986, 3997), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (3993, 3997), True, 'import numpy as np\n'), ((4332, 4343), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (4339, 4343), True, 'import numpy as np\n'), ((4358, 4369), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (4365, 4369), True, 'import numpy as np\n'), ((4711, 4722), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (4718, 4722), True, 'import numpy as np\n'), ((4736, 4747), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (4743, 4747), True, 'import numpy as np\n'), ((5094, 5105), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (5101, 5105), True, 'import numpy as np\n'), ((5120, 5131), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (5127, 5131), True, 'import numpy as np\n'), ((5474, 5485), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (5481, 5485), True, 'import numpy as np\n'), ((5498, 5509), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (5505, 5509), True, 'import numpy as np\n'), ((5851, 5862), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (5858, 5862), True, 'import numpy as np\n'), ((5876, 5887), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (5883, 5887), True, 'import numpy as np\n'), ((1622, 1634), 'numpy.square', 'np.square', (['x'], {}), '(x)\n', (1631, 1634), True, 'import numpy as np\n'), ((1225, 1240), 'numpy.square', 'np.square', (['p[i]'], {}), '(p[i])\n', (1234, 1240), True, 'import numpy as np\n'), ((1642, 1663), 'numpy.cos', 'np.cos', (['(2 * np.pi * x)'], {}), '(2 * np.pi * x)\n', (1648, 1663), True, 'import numpy as np\n')]
# -*- coding:utf-8 -*- # @Time : 2019/7/21 12:35 PM # @Author : __wutonghe__ # docs https://channels.readthedocs.io/en/latest/tutorial/part_3.html#rewrite-the-consumer-to-be-asynchronous from channels.generic.websocket import AsyncWebsocketConsumer import json class MessageConsumer(AsyncWebsocketConsumer): """ 私信websocket,采用异步通信来增加并发 """ async def connect(self): """当 websocket 一链接上以后触发该函数""" if self.scope['user'].is_anonymous: await self.close() else: await self.channel_layer.group_add(self.scope['user'].username + '-message',self.channel_name) # 创建聊天室 await self.accept() async def receive(self, text_data=None, bytes_data=None): """将答复交回给websocket""" await self.send(text_data=json.dumps(text_data)) # 将消息发送给前端 async def disconnect(self, code): """断开链接时触发该函数""" await self.channel_layer.group_discard(self.scope['user'].username + '-message',self.channel_name) # 将该链接移出聊天室
[ "json.dumps" ]
[((793, 814), 'json.dumps', 'json.dumps', (['text_data'], {}), '(text_data)\n', (803, 814), False, 'import json\n')]
import io from .. import util def test_parsing_pkg_info_file(mocker): open_mock = mocker.patch('vcsver.util.open') open_mock.return_value = io.StringIO( 'Name: name\n' 'Version: 1.0\n' ) pkg_info_data = util.parse_pkg_info_file(mocker.sentinel.path) open_mock = open_mock.assert_called_once_with( mocker.sentinel.path, 'rt', ) assert { 'Name': 'name', 'Version': '1.0', } == pkg_info_data
[ "io.StringIO" ]
[((151, 194), 'io.StringIO', 'io.StringIO', (['"""Name: name\nVersion: 1.0\n"""'], {}), '("""Name: name\nVersion: 1.0\n""")\n', (162, 194), False, 'import io\n')]
#!/usr/bin/env python # This "flattens" a LaTeX document by replacing all # \input{X} lines w/ the text actually contained in X. See # associated README.md for details. # Use as a python module in a python script by saying import flatex then flatex.main(in file, out file) import os import re import sys def is_input(line): """ Determines whether or not a read in line contains an uncommented out \input{} statement. Allows only spaces between start of line and '\input{}'. """ #tex_input_re = r"""^\s*\\input{[^}]*}""" # input only tex_input_re = r"""(^[^\%]*\\input{[^}]*})|(^[^\%]*\\include{[^}]*})""" # input or include return re.search(tex_input_re, line) def get_input(line): """ Gets the file name from a line containing an input statement. """ tex_input_filename_re = r"""{[^}]*""" m = re.search(tex_input_filename_re, line) return m.group()[1:] def combine_path(base_path, relative_ref): """ Combines the base path of the tex document being worked on with the the relate reference found in that document. """ #if (base_path != ""): #print "os.getcwd()", os.getcwd() #os.chdir(base_path) filePath = os.path.abspath(relative_ref) filePath = filePath + ".tex" return filePath def expand_file(base_file): """ Recursively-defined function that takes as input a file and returns it with all the inputs replaced with the contents of the referenced file. """ output_lines = [] f = open(base_file, "r") for line in f: if is_input(line): new_base_file = combine_path(current_path, get_input(line)) output_lines += expand_file(new_base_file) output_lines.append('\n') # add a new line after each file input else: output_lines.append(line) f.close() return output_lines def main(base_file, output_file): g = open(output_file, "w") g.write(''.join(expand_file(base_file))) g.close() return None if __name__ == '__main__': base_file, output_file = sys.argv[1:] current_path = os.path.split(base_file)[0] main(base_file, output_file)
[ "os.path.abspath", "os.path.split", "re.search" ]
[((673, 702), 're.search', 're.search', (['tex_input_re', 'line'], {}), '(tex_input_re, line)\n', (682, 702), False, 'import re\n'), ((859, 897), 're.search', 're.search', (['tex_input_filename_re', 'line'], {}), '(tex_input_filename_re, line)\n', (868, 897), False, 'import re\n'), ((1217, 1246), 'os.path.abspath', 'os.path.abspath', (['relative_ref'], {}), '(relative_ref)\n', (1232, 1246), False, 'import os\n'), ((2123, 2147), 'os.path.split', 'os.path.split', (['base_file'], {}), '(base_file)\n', (2136, 2147), False, 'import os\n')]