prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd import numpy as np import re from pandas import DataFrame NWR = pd.read_excel('NWR_ALDT.xls', sheet_name='ICT') # print(NWR.columns) # con=(NWR['(1) ROUTE', '(21) ROUTES LOCKED']) a: DataFrame = pd.DataFrame(NWR[['(1) ROUTE', '(21) ROUTES LOCKED']]) b = pd.DataFrame(NWR['(1) ROUTE']) e= pd.DataFrame('ASSIGN ' + b + '.TCS.SI') c =
pd.DataFrame(NWR['(21) ROUTES LOCKED'])
pandas.DataFrame
# -*- coding: utf-8 -*- import yfinance as yf import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler import pandas as pd import os import math import matplotlib.pylab as plt import matplotlib from Machine_Learning_for_Asset_Managers import ch2_fitKDE_find_best_bandwidth as best_bandwidth from Machine_Learning_for_Asset_Managers import ch2_marcenko_pastur_pdf as mp from Machine_Learning_for_Asset_Managers import ch2_monte_carlo_experiment as mc from Machine_Learning_for_Asset_Managers import ch4_optimal_clustering as oc import onc as onc from Machine_Learning_for_Asset_Managers import ch5_financial_labels as fl from Machine_Learning_for_Asset_Managers import ch7_portfolio_construction as pc #import mlfinlab.trend_scanning as ts #import mlfinlab.nco as nco #import mlfinlab as ml # used for testing code #from mlfinlab.portfolio_optimization.mean_variance import MeanVarianceOptimisation #from mlfinlab.portfolio_optimization.returns_estimators import ReturnsEstimators #Resources: #Random matrix theory: https://calculatedcontent.com/2019/12/03/towards-a-new-theory-of-learning-statistical-mechanics-of-deep-neural-networks/ #Review: [Book] Commented summary of Machine Learning for Asset Managers by <NAME> #https://gmarti.gitlab.io/qfin/2020/04/12/commented-summary-machine-learning-for-asset-managers.html #Chapter 2: This chapter essentially describes an approach that Bouchaud and his crew from the CFM have #pioneered and refined for the past 20 years. The latest iteration of this body of work is summarized in #Joel Bun’s Cleaning large correlation matrices: Tools from Random Matrix Theory. #https://www.sciencedirect.com/science/article/pii/S0370157316303337 #Condition number: https://dominus.ai/wp-content/uploads/2019/11/ML_WhitePaper_MarcoGruppo.pdf # Excersize 2.9: # 2. Using a series of matrix of stock returns: # a) Compute the covariance matrix. # What is the condition number of the correlation matrix # b) Compute one hundredth efficient frontiers by drawing one hundred # alternative vectors of expected returns from a Normal distribution # with mean 10% and std 10% # c) Compute the variance of the errors against the mean efficient frontier. def get_OL_tickers_close(T=936, N=234): # N - num stocks in portfolio, T lookback time ol = pd.read_csv('csv/ol_ticker.csv', sep='\t', header=None) ticker_names = ol[0] closePrice = np.empty([T, N]) covariance_matrix = np.empty([T, N]) portfolio_name = [ [ None ] for x in range( N ) ] ticker_adder = 0 for i in range(0, len(ticker_names)): #len(ticker_names)): # 46 ticker = ticker_names[i] print(ticker) ol_ticker = ticker + '.ol' df = yf.Ticker(ol_ticker) #'shortName' in df.info and try: ticker_df = df.history(period="7y") if ticker=='EMAS': print("****EMAS******") if ticker=='AVM': print("****AVM*********") if ticker_df.shape[0] > T and ticker!='EMAS' and ticker != 'AVM': # only read tickers with more than 30 days history #1.Stock Data closePrice[:,ticker_adder] = ticker_df['Close'][-T:].values # inserted from oldest tick to newest tick portfolio_name[ticker_adder] = ol_ticker ticker_adder += 1 else: print("no data for ticker:" + ol_ticker) except ValueError: print("no history:"+ol_ticker) return closePrice, portfolio_name def denoise_OL(S, do_plot=True): np.argwhere( np.isnan(S) ) # cor.shape = (1000,1000). If rowvar=1 - row represents a var, with observations in the columns. cor = np.corrcoef(S, rowvar=0) eVal0 , eVec0 = mp.getPCA( cor ) print(np.argwhere(np.isnan(np.diag(eVal0)))) # code snippet 2.4 T = float(S.shape[0]) N = S.shape[1] q = float(S.shape[0])/S.shape[1] #T/N eMax0, var0 = mp.findMaxEval(np.diag(eVal0), q, bWidth=.01) nFacts0 = eVal0.shape[0]-np.diag(eVal0)[::-1].searchsorted(eMax0) if do_plot: fig = plt.figure() ax = fig.add_subplot(111) ax.hist(np.diag(eVal0), density = True, bins=100) #, normed = True) #normed = True, pdf0 = mp.mpPDF(var0, q=S.shape[0]/float(S.shape[1]), pts=N) pdf1 = mp.fitKDE( np.diag(eVal0), bWidth=.005) #empirical pdf #plt.plot(pdf1.keys(), pdf1, color='g') #no point in drawing this plt.plot(pdf0.keys(), pdf0, color='r') plt.show() # code snippet 2.5 - denoising by constant residual eigenvalue corr1 = mp.denoisedCorr(eVal0, eVec0, nFacts0) eVal1, eVec1 = mp.getPCA(corr1) return eVal0, eVec0, eVal1, eVec1, corr1, var0 #consider using log-returns def calculate_returns( S, percentageAsProduct=False ): ret = np.zeros((S.shape[0]-1, S.shape[1])) cum_sums = np.zeros(S.shape[1]) for j in range(0, S.shape[1]): cum_return = 0 S_ret = np.zeros(S.shape[0]-1) for i in range(0,S.shape[0]-1): if percentageAsProduct==True: S_ret[i] = 1+((S[i+1,j]-S[i,j])/S[i,j]) else: S_ret[i] = ((S[i+1,j]-S[i,j])/S[i,j]) cum_return = np.prod(S_ret)-1 cum_sums[j] = cum_return ret[:, j] = S_ret return ret, cum_sums def getVolatility(S): #std of instruments return [np.std(S[:,i]) for i in range(0, S.shape[1])] def test_exception_in_plotting_efficient_frontier(S_value): # pylint: disable=invalid-name, protected-access """ Test raising of exception when plotting the efficient frontier. """ mvo = MeanVarianceOptimisation() pdPrice = pd.DataFrame(S_value) pdPrice.index = pd.RangeIndex(start=0, stop=6, step=1) dates = ['2019-01-01','2019-02-01','2019-03-01','2019-04-01','2019-05-01','2019-06-01'] pdPrice['Datetime'] = pd.to_datetime(dates) pdPrice.set_index('Datetime') expected_returns = ReturnsEstimators().calculate_mean_historical_returns(asset_prices=pdPrice, resample_by=None) #'W') covariance = ReturnsEstimators().calculate_returns(asset_prices=pdPrice, resample_by=None).cov() plot = mvo.plot_efficient_frontier(covariance=covariance, max_return=1.0, expected_asset_returns=expected_returns) assert len(plot._A) == 41 plot.savefig('books_read.png') print("read books") # Chapter 7 - apply the Nested Clustered Optimization (NCO) algorithm def testNCO(): N = 5 T = 5 S_value = np.array([[1., 2,3, 4,5], [1.1,3,2, 3,5], [1.2,4,1.3,4,5], [1.3,5,1, 3,5], [1.4,6,1, 4,5.5], [1.5,7,1, 3,5.5]]) S_value[:,1] =1 S_value[5,1] =1.1 S, _ = calculate_returns(S_value) _, instrument_returns = calculate_returns(S_value, percentageAsProduct=True) np.testing.assert_almost_equal(S, pd.DataFrame(S_value).pct_change().dropna(how="all")) mu1 = None cov1_d = np.cov(S ,rowvar=0, ddof=1) #test baseClustering corr1 = mp.cov2corr(cov1_d) a,b,c = nco.NCO()._cluster_kmeans_base(pd.DataFrame(corr1)) d,e,f = oc.clusterKMeansBase(pd.DataFrame(corr1)) #b={0: [0, 1, 2], 1: [3, 4]} #e={0: [0, 3, 4], 1: [1, 2]} min_var_markowitz = mc.optPort(cov1_d, mu1).flatten() #compare min_var_markowitz with mlfinlab impl #ml. min_var_NCO = pc.optPort_nco(cov1_d, mu1, max(int(cov1_d.shape[0]/2), 2)).flatten() mlfinlab_NCO= nco.NCO().allocate_nco(cov1_d, mu1, max(int(cov1_d.shape[0]/2), 2)).flatten() cov1_d = np.cov(S,rowvar=0, ddof=1) mlfinlab_NCO= nco.NCO().allocate_nco(cov1_d, mu1, int(cov1_d.shape[0]/2)).flatten() expected_return_markowitz = [min_var_markowitz[i]*instrument_returns[i] for i in range(0,cov1_d.shape[0])] e_m = sum(expected_return_markowitz) expected_return_NCO = [min_var_NCO[i]*instrument_returns[i] for i in range(0,cov1_d.shape[0])] e_NCO = sum(expected_return_markowitz) vol = getVolatility(S_value) m_minVol = [min_var_markowitz[i]*vol[i] for i in range(0, cov1_d.shape[0])] NCO_minVol = [mlfinlab_NCO[i]*vol[i] for i in range(0, cov1_d.shape[0])] if __name__ == '__main__': testNCO() N = 333 #3 T = 936 S_value = np.loadtxt('csv/ol184.csv', delimiter=',') if S_value.shape[0] < 1 or not os.path.exists('csv/portfolio_name.csv'): S_value, portfolio_name = get_OL_tickers_close(T, N) np.savetxt('csv/ol184.csv', S_value, delimiter=',') np.savetxt('csv/portfolio_name.csv', portfolio_name, delimiter=',', fmt='%s') portfolio_name = pd.read_csv('csv/portfolio_name.csv', sep='\t', header=None).values lastIndex = 173 S_value = S_value[:,0:lastIndex] # S = S[:,6:9] portfolio_name = portfolio_name[0:lastIndex] #portfolio_name = portfolio_name[6:9] # use matrix of returns to calc correlation S, instrument_returns = calculate_returns(S_value) _, instrument_returns = calculate_returns(S_value, percentageAsProduct=True) print(np.asarray(portfolio_name)[np.argsort(instrument_returns)]) #prints performance ascending #calculate_correlation(S) eVal0, eVec0, denoised_eVal, denoised_eVec, denoised_corr, var0 = denoise_OL(S) detoned_corr = mp.detoned_corr(denoised_corr, denoised_eVal, denoised_eVec, market_component=1) detoned_eVal, detoned_eVec = mp.getPCA(detoned_corr) denoised_eigenvalue = np.diag(denoised_eVal) eigenvalue_prior = np.diag(eVal0) plt.plot(range(0, len(denoised_eigenvalue)), np.log(denoised_eigenvalue), color='r', label="Denoised eigen-function") plt.plot(range(0, len(eigenvalue_prior)), np.log(eigenvalue_prior), color='g', label="Original eigen-function") plt.xlabel("Eigenvalue number") plt.ylabel("Eigenvalue (log-scale)") plt.legend(loc="upper right") plt.show() #from code snippet 2.10 detoned_cov = mc.corr2cov(detoned_corr, var0) w = mc.optPort(detoned_cov) print(w) #min_var_port = 1./nTrials*(np.sum(w, axis=0)) #print(min_var_port) #expected portfolio variance: W^T.(Cov).W #https://blog.quantinsti.com/calculating-covariance-matrix-portfolio-variance/ minVarPortfolio_var = np.dot(np.dot(w.T, detoned_corr), w) #Expected return: w.T . mu # https://www.mn.uio.no/math/english/research/projects/focustat/publications_2/shatthik_barua_master2017.pdf p8 # or I.T.cov^-1.mu / I.T.cov^-1.I #inv = np.linalg.inv(cov) #e_r = np.dot(np.dot(ones.T, inv), mu) / np.dot(ones.T, np.dot(ones.T, inv)) #Chapter 4 optimal clustering # recreate fig 4.1 colormap of random block correlation matrix nCols, minBlockSize = 183, 2 print("minBlockSize"+str(minBlockSize)) corr0 = detoned_corr corr1, clstrs, silh = oc.clusterKMeansTop(pd.DataFrame(detoned_corr)) #1: [18, 24, 57, 81, 86, 99, 112, 120, 134, 165] tStatMeanDepth = np.mean([np.mean(silh[clstrs[i]]) / np.std(silh[clstrs[i]]) for i in clstrs.keys()]) print("tstat at depth:") print(tStatMeanDepth) corr1, clstrs, silh = oc.clusterKMeansTop(pd.DataFrame(detoned_corr)) #1: [18, 24, 57, 81, 86, 99, 112, 120, 134, 165] tStatMeanDepth = np.mean([np.mean(silh[clstrs[i]]) / np.std(silh[clstrs[i]]) for i in clstrs.keys()]) print("tstat at depth:") print(tStatMeanDepth) raise SystemExit #corr11, clstrs11, silh11 = onc.get_onc_clusters(pd.DataFrame(detoned_corr)) #test with mlfinlab impl: 1: [18, 24, 57, 81, 86, 99, 112, 120, 134, 165] matplotlib.pyplot.matshow(corr11) #invert y-axis to get origo at lower left corner matplotlib.pyplot.gca().xaxis.tick_bottom() matplotlib.pyplot.gca().invert_yaxis() matplotlib.pyplot.colorbar() matplotlib.pyplot.show() #Chapter 5 Financial labels #Lets try trend-following on PHO idxPHO =118 idxBGBIO = 29 idxWWI = 169 pho = S_value[:,idxBGBIO] df0 = pd.Series(pho[-50:]) df1 = fl.getBinsFromTrend(df0.index, df0, [3, 10, 1]) # [3,10,1] = range(3,10) tValues = df1['tVal'].values lastTValue = [] for i in range(0, lastIndex): pho = S_value[:, i] df0 = pd.Series(pho[-50:]) df1 = fl.getBinsFromTrend(df0.index, df0, [3,10,1]) #[3,10,1] = range(3,10) tValues = df1['tVal'].values lastTValue.append(tValues[41]) np.argmax(lastTValue) plt.scatter(df1.index, df0.loc[df1.index].values, c=tValues, cmap='viridis') #df1['tVal'].values, cmap='viridis') plt.colorbar() plt.show() bgbio_df = yf.Ticker("BGBIO.ol") bg_bio_ticker_df = bgbio_df.history(period="7y") bgbio = bg_bio_ticker_df['Close'] df0 = pd.Series(bgbio[-200:]) df1 = fl.getBinsFromTrend(df0.index, df0, [3,20,1]) #[3,10,1] = range(3,10) tValues = df1['tVal'].values plt.scatter(df1.index, df0.loc[df1.index].values, c=tValues, cmap='viridis') #df1['tVal'].values, cmap='viridis') plt.colorbar() plt.show() S, pnames = get_OL_tickers_close() #get t-statistics from all instruments on OL S, pnames = get_OL_tickers_close(T=200,N=237) np.argwhere(np.isnan(S)) S[182, 110] = S[181,110] #implementing from book abc = [None for i in range(0,237)] for i in range(0, 20):#len(pnames)): instrument = S[:,i] df0 =
pd.Series(instrument)
pandas.Series
from datetime import datetime import re import unittest import nose from nose.tools import assert_equal import numpy as np from pandas.tslib import iNaT from pandas import Series, DataFrame, date_range, DatetimeIndex, Timestamp from pandas import compat from pandas.compat import range, long, lrange, lmap, u from pandas.core.common import notnull, isnull import pandas.core.common as com import pandas.util.testing as tm import pandas.core.config as cf _multiprocess_can_split_ = True def test_mut_exclusive(): msg = "mutually exclusive arguments: '[ab]' and '[ab]'" with tm.assertRaisesRegexp(TypeError, msg): com._mut_exclusive(a=1, b=2) assert com._mut_exclusive(a=1, b=None) == 1 assert com._mut_exclusive(major=None, major_axis=None) is None def test_is_sequence(): is_seq = com._is_sequence assert(is_seq((1, 2))) assert(is_seq([1, 2])) assert(not is_seq("abcd")) assert(not is_seq(u("abcd"))) assert(not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert(not is_seq(A())) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): float_series = Series(np.random.randn(5)) obj_series = Series(np.random.randn(5), dtype=object) assert(isinstance(notnull(float_series), Series)) assert(isinstance(notnull(obj_series), Series)) def test_isnull(): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert not isnull(np.inf) assert not isnull(-np.inf) float_series = Series(np.random.randn(5)) obj_series = Series(np.random.randn(5), dtype=object) assert(isinstance(isnull(float_series), Series)) assert(isinstance(isnull(obj_series), Series)) # call on DataFrame df = DataFrame(np.random.randn(10, 5)) df['foo'] = 'bar' result = isnull(df) expected = result.apply(isnull) tm.assert_frame_equal(result, expected) def test_isnull_tuples(): result = isnull((1, 2)) exp = np.array([False, False]) assert(np.array_equal(result, exp)) result = isnull([(False,)]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = isnull([(1,), (2,)]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = isnull(('foo', 'bar')) assert(not result.any()) result = isnull((u('foo'), u('bar'))) assert(not result.any()) def test_isnull_lists(): result = isnull([[False]]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = isnull([[1], [2]]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = isnull(['foo', 'bar']) assert(not result.any()) result = isnull([u('foo'), u('bar')]) assert(not result.any()) def test_isnull_datetime(): assert (not isnull(datetime.now())) assert notnull(datetime.now()) idx = date_range('1/1/1990', periods=20) assert(notnull(idx).all()) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = isnull(idx) assert(mask[0]) assert(not mask[1:].any()) def test_datetimeindex_from_empty_datetime64_array(): for unit in [ 'ms', 'us', 'ns' ]: idx = DatetimeIndex(np.array([], dtype='datetime64[%s]' % unit)) assert(len(idx) == 0) def test_nan_to_nat_conversions(): df = DataFrame(dict({ 'A' : np.asarray(lrange(10),dtype='float64'), 'B' : Timestamp('20010101') })) df.iloc[3:6,:] = np.nan result = df.loc[4,'B'].value assert(result == iNaT) s = df['B'].copy() s._data = s._data.setitem(tuple([slice(8,9)]),np.nan) assert(isnull(s[8])) # numpy < 1.7.0 is wrong from distutils.version import LooseVersion if LooseVersion(np.__version__) >= '1.7.0': assert(s[8].value == np.datetime64('NaT').astype(np.int64)) def test_any_none(): assert(com._any_none(1, 2, 3, None)) assert(not com._any_none(1, 2, 3, 4)) def test_all_not_none(): assert(com._all_not_none(1, 2, 3, 4)) assert(not com._all_not_none(1, 2, 3, None)) assert(not com._all_not_none(None, None, None, None)) def test_repr_binary_type(): import string letters = string.ascii_letters btype = compat.binary_type try: raw = btype(letters, encoding=cf.get_option('display.encoding')) except TypeError: raw = btype(letters) b = compat.text_type(compat.bytes_to_str(raw)) res = com.pprint_thing(b, quote_strings=True) assert_equal(res, repr(b)) res = com.pprint_thing(b, quote_strings=False) assert_equal(res, b) def test_rands(): r = com.rands(10) assert(len(r) == 10) def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = com.adjoin(2, *data) assert(adjoined == expected) def test_iterpairs(): data = [1, 2, 3, 4] expected = [(1, 2), (2, 3), (3, 4)] result = list(com.iterpairs(data)) assert(result == expected) def test_split_ranges(): def _bin(x, width): "return int(x) as a base2 string of given width" return ''.join(str((x >> i) & 1) for i in range(width - 1, -1, -1)) def test_locs(mask): nfalse = sum(np.array(mask) == 0) remaining = 0 for s, e in com.split_ranges(mask): remaining += e - s assert 0 not in mask[s:e] # make sure the total items covered by the ranges are a complete cover assert remaining + nfalse == len(mask) # exhaustively test all possible mask sequences of length 8 ncols = 8 for i in range(2 ** ncols): cols = lmap(int, list(_bin(i, ncols))) # count up in base2 mask = [cols[i] == 1 for i in range(len(cols))] test_locs(mask) # base cases test_locs([]) test_locs([0]) test_locs([1]) def test_indent(): s = 'a b c\nd e f' result = com.indent(s, spaces=6) assert(result == ' a b c\n d e f') def test_banner(): ban = com.banner('hi') assert(ban == ('%s\nhi\n%s' % ('=' * 80, '=' * 80))) def test_map_indices_py(): data = [4, 3, 2, 1] expected = {4: 0, 3: 1, 2: 2, 1: 3} result = com.map_indices_py(data) assert(result == expected) def test_union(): a = [1, 2, 3] b = [4, 5, 6] union = sorted(com.union(a, b)) assert((a + b) == union) def test_difference(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.difference(b, a)) assert([4, 5, 6] == inter) def test_intersection(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.intersection(a, b)) assert(a == inter) def test_groupby(): values = ['foo', 'bar', 'baz', 'baz2', 'qux', 'foo3'] expected = {'f': ['foo', 'foo3'], 'b': ['bar', 'baz', 'baz2'], 'q': ['qux']} grouped = com.groupby(values, lambda x: x[0]) for k, v in grouped: assert v == expected[k] def test_is_list_like(): passes = ([], [1], (1,), (1, 2), {'a': 1}, set([1, 'a']), Series([1]), Series([]), Series(['a']).str) fails = (1, '2', object()) for p in passes: assert com.is_list_like(p) for f in fails: assert not com.is_list_like(f) def test_ensure_int32(): values = np.arange(10, dtype=np.int32) result = com._ensure_int32(values) assert(result.dtype == np.int32) values = np.arange(10, dtype=np.int64) result = com._ensure_int32(values) assert(result.dtype == np.int32) def test_ensure_platform_int(): # verify that when we create certain types of indices # they remain the correct type under platform conversions from pandas.core.index import Int64Index # int64 x = Int64Index([1, 2, 3], dtype='int64') assert(x.dtype == np.int64) pi = com._ensure_platform_int(x) assert(pi.dtype == np.int_) # int32 x = Int64Index([1, 2, 3], dtype='int32') assert(x.dtype == np.int32) pi = com._ensure_platform_int(x) assert(pi.dtype == np.int_) # TODO: fix this broken test # def test_console_encode(): # """ # On Python 2, if sys.stdin.encoding is None (IPython with zmq frontend) # common.console_encode should encode things as utf-8. # """ # if compat.PY3: # raise nose.SkipTest # with tm.stdin_encoding(encoding=None): # result = com.console_encode(u"\u05d0") # expected = u"\u05d0".encode('utf-8') # assert (result == expected) def test_is_re(): passes = re.compile('ad'), fails = 'x', 2, 3, object() for p in passes: assert com.is_re(p) for f in fails: assert not com.is_re(f) def test_is_recompilable(): passes = (r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')) fails = 1, [], object() for p in passes: assert com.is_re_compilable(p) for f in fails: assert not com.is_re_compilable(f) class TestTake(unittest.TestCase): # standard incompatible fill error fill_error = re.compile("Incompatible type for fill_value") _multiprocess_can_split_ = True def test_1d_with_out(self): def _test_dtype(dtype, can_hold_na): data = np.random.randint(0, 2, 4).astype(dtype) indexer = [2, 1, 0, 1] out = np.empty(4, dtype=dtype) com.take_1d(data, indexer, out=out) expected = data.take(indexer)
tm.assert_almost_equal(out, expected)
pandas.util.testing.assert_almost_equal
import pandas as pd import math import matplotlib.pyplot as plt import seaborn as sn import matplotlib.patches as mpatches from matplotlib import rcParams #from brokenaxes import brokenaxes from natsort import index_natsorted, order_by_index #sn.set_context("paper", font_scale = 2) #AUX FUNC def Vm_groupby(df, group_by, aggr): df = df.groupby(group_by) df = df.agg(aggr) df = df.reset_index() df = df.reindex(index=order_by_index(df.index, index_natsorted(df['TripID'], reverse=False))) return df #### #Loop VM - Single Plot + Compare Plot (BAR/BOXPLOT) def prep_n_mig_LoopVM(plot_dict, df_lst_files): df_aux_list = list() for Class, df in zip(plot_dict['Classes'], df_lst_files): dfaux = Vm_groupby(df, ['TripID', 'VmID'], {'Mig_ID':'count', 'tripdistance': 'first'}) dfaux.rename(columns={'TripID':'TripID', 'VmID':'VmID', 'Mig_ID':'Number of Migrations', 'tripdistance': 'tripdistance'},inplace=True) #dfaux = Vm_groupby(dfaux, ['TripID'], {'Number of Migrations':'mean'}) dfaux.insert(0, 'Class', Class) df_aux_list.append(dfaux) dfconcat = pd.concat(df_aux_list) return dfconcat def n_mig_LoopVM(df): fig, ax = plt.subplots() #BOXPLOT #ax.set_title("Number of Migrations by Trip " + title) #sn.boxplot(x='TripID', y='Number of Migrations', hue='Class', palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data = df, ax=ax) #BAR ax.set_title("Number of Migrations by Trip") sn.barplot(x='TripID', y='Number of Migrations', hue='Class', palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data=df, ax=ax) ax.get_legend().remove() ax.legend(loc='upper right') ax.set_ylim(0, 25) ax.set_xlabel('Trips') ax.set_ylabel('Number of migrations') return 1 def normalized_n_mig_LoopVM(df): df["n_mig_km"] = "" for i in range(df['TripID'].count()): tripdistance = df['tripdistance'].values[i] n_mig = df['Number of Migrations'].values[i] normalized = n_mig / tripdistance df['n_mig_km'].values[i] = normalized #print(df) fig, ax = plt.subplots() #BOXPLOT #ax.set_title("Number of Migrations by Trip " + title) #sn.boxplot(x='TripID', y='Number of Migrations', hue='Class', palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data = df, ax=ax) #BAR ax.set_title("Number of Migrations / km - by Trip") sn.barplot(x='TripID', y='n_mig_km', hue='Class', palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data=df, ax=ax) ax.get_legend().remove() ax.legend(loc='upper right') ax.set_ylim(0, 1.4) ax.set_xlabel('Trips') ax.set_ylabel('Number of migrations / KM') return 1 #### #### #Loop VM - Single Plot + Compare Plot def prep_migtime_LoopVM(plot_dict, df_lst_files): df_aux_list = list() for Class, df in zip(plot_dict['Classes'], df_lst_files): dfaux = Vm_groupby(df, ['TripID', 'VmID'], {'Mt_real':'sum', 'triptime': 'first'}) dfaux.insert(0, 'Class', Class) df_aux_list.append(dfaux) dfconcat = pd.concat(df_aux_list) return dfconcat def migtime_LoopVM(df): fig, ax = plt.subplots() ax.set_title("Time Spent Migrating vs Trip Time") ax.scatter(df['TripID'], df['triptime'], color='black', label='Total Trip Time') sn.boxplot(x='TripID', y='Mt_real', hue="Class", palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data = df, ax=ax) ax.set_xlabel('Trips') ax.set_ylabel('Time in Seconds') ax.legend() return 1 def percentage_migtime_LoopVM(df): df["Percentage_migtime"] = "" for i in range(df['TripID'].count()): triptime = df['triptime'].values[i] Mt_real = df['Mt_real'].values[i] percentage = (Mt_real * 100) / triptime df['Percentage_migtime'].values[i] = percentage #print(df) fig, ax = plt.subplots() ax.set_title("Time Spent Migrating vs Trip Time (Percentage)") sn.boxplot(x='TripID', y='Percentage_migtime', hue="Class", palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data = df, ax=ax) ax.get_legend().remove() ax.legend(loc='upper right') ax.set_ylim(0, 70) ax.set_xlabel('Trips') ax.set_ylabel('Percentage') return 1 #### #### #Loop VM - Single Plot + Compare Plot def prep_downtime_LoopVM(plot_dict, df_lst_files): df_aux_list = list() for Class, df in zip(plot_dict['Classes'], df_lst_files): dfaux = Vm_groupby(df, ['TripID', 'VmID'], {'DT_real':'sum', 'triptime': 'first'}) dfaux.insert(0, 'Class', Class) df_aux_list.append(dfaux) dfconcat = pd.concat(df_aux_list) return dfconcat def downtime_LoopVM(df): fig, ax = plt.subplots() ax.set_title("Downtime by Trip") sn.boxplot(x='TripID', y='DT_real', hue="Class", palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data = df, ax=ax) ax.set_xlabel('Trips') ax.set_ylabel('Time in milliseconds') ax.legend() return 1 def percentage_downtime_LoopVM(df): df["Percentage_downtime"] = "" for i in range(df['TripID'].count()): triptime = df['triptime'].values[i] * pow(10,3) DT_real = df['DT_real'].values[i] percentage = (DT_real * 100) / triptime df['Percentage_downtime'].values[i] = percentage #print(df) fig, ax = plt.subplots() ax.set_title("Downtime by Trip (Percentage)") sn.boxplot(x='TripID', y='Percentage_downtime', hue="Class", palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data = df, ax=ax) ax.get_legend().remove() ax.legend(loc='upper right') ax.set_ylim(0, 2) ax.set_xlabel('Trips') ax.set_ylabel('Percentage') return 1 #### #### #Loop VM - Single Plot + Compare Plot def prep_client_latency_LoopVM(plot_dict, df_lst_files): df_aux_list = list() for Class, df in zip(plot_dict['Classes'], df_lst_files): dfaux = Vm_groupby(df, ['TripID', 'VmID'], {'Latency':'mean'}) dfaux.insert(0, 'Class', Class) df_aux_list.append(dfaux) dfconcat =
pd.concat(df_aux_list)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Fri Dec 13 15:21:55 2019 @author: raryapratama """ #%% #Step (1): Import Python libraries, set land conversion scenarios general parameters import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad import seaborn as sns import pandas as pd #PF_PO Scenario ##Set parameters #Parameters for primary forest initAGB = 233 #t-C #source: van Beijma et al. (2018) initAGB_min = 233-72 #t-C initAGB_max = 233 + 72 #t-C #parameters for oil palm plantation. Source: Khasanah et al. (2015) tf_palmoil = 26 #years a_nucleus = 2.8167 b_nucleus = 6.8648 a_plasma = 2.5449 b_plasma = 5.0007 c_cont_po_nucleus = 0.5448 #fraction of carbon content in biomass c_cont_po_plasma = 0.5454 #fraction of carbon content in biomass tf = 201 #years a = 0.082 b = 2.53 #%% #Step (2_1): C loss from the harvesting/clear cut df2nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') df2pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') df3nu =
pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu')
pandas.read_excel
import numpy as np import pandas as pd import matplotlib.pyplot as plt from pathlib import Path # function for loading data from disk def load_data(): """ this function is responsible for loading traing data from disk. and performs some basic opertaions like - one-hot encoding - feature scaling - reshaping data Parameters: (no-parameters) Returns: X : numpy array (contains all features of training data) y : numpy array (contains all targets of traing data) """ path = "../data/train.csv" if(not Path(path).is_file()): print("[util]: train data not found at '",path,"'") #quit() print("[util]: Loading '",path,"'") train = pd.read_csv(path) y = np.array(
pd.get_dummies(train['label'])
pandas.get_dummies
import pandas as pd import numpy as np def getDailyVol(close, span0=100): """SNIPPET 3.1 DAILY VOLATILITY ESTIMATES Daily vol reindexed to close """ df0=close.index.searchsorted(close.index-pd.Timedelta(days=1)) df0=df0[df0>0] df0=(pd.Series(close.index[df0-1], index=close.index[close.shape[0]-df0.shape[0]:])) try: df0=close.loc[df0.index]/close.loc[df0.values].values-1 # daily rets except Exception as e: print(f'error: {e}\nplease confirm no duplicate indices') df0=df0.ewm(span=span0).std().rename('dailyVol') return df0 def applyPtSlOnT1(close, events, ptSl, molecule): """SNIPPET 3.2 TRIPLE-BARRIER LABELING METHOD Apply stop loss/profit taking, if it takes place before t1 (end of event) """ events_=events.loc[molecule] out=events_[['t1']].copy(deep=True) if ptSl[0]>0: pt=ptSl[0]*events_['trgt'] else: pt=pd.Series(index=events.index) # NaNs if ptSl[1]>0: sl=-ptSl[1]*events_['trgt'] else: sl=pd.Series(index=events.index) # NaNs for loc,t1 in events_['t1'].fillna(close.index[-1]).iteritems(): df0=close[loc:t1] # path prices df0=(df0/close[loc]-1)*events_.at[loc,'side'] # path returns out.loc[loc,'sl']=df0[df0<sl[loc]].index.min() # earliest stop loss out.loc[loc,'pt']=df0[df0>pt[loc]].index.min() # earliest profit taking return out def getEvents(close, tEvents, ptSl, trgt, minRet, numThreads, t1=False, side=None): """SNIPPET 3.3 GETTING THE TIME OF FIRST TOUCH SNIPPET 3.6 EXPANDING getEvents TO INCORPORATEMETA-LABELING """ #1) get target trgt=trgt.loc[tEvents] trgt=trgt[trgt>minRet] # minRet #2) get t1 (max holding period) if t1 is False:t1=pd.Series(pd.NaT, index=tEvents) #3) form events object, apply stop loss on t1 if side is None:side_,ptSl_=pd.Series(1.,index=trgt.index), [ptSl[0],ptSl[0]] else: side_,ptSl_=side.loc[trgt.index],ptSl[:2] events=(pd.concat({'t1':t1,'trgt':trgt,'side':side_}, axis=1) .dropna(subset=['trgt'])) df0=mpPandasObj(func=applyPtSlOnT1,pdObj=('molecule',events.index), numThreads=numThreads,close=close,events=events, ptSl=ptSl_) events['t1']=df0.dropna(how='all').min(axis=1) # pd.min ignores nan if side is None:events=events.drop('side',axis=1) return events def addVerticalBarrier(tEvents, close, numDays=1): """SNIPPET 3.4 ADDING A VERTICAL BARRIER """ t1=close.index.searchsorted(tEvents+pd.Timedelta(days=numDays)) t1=t1[t1<close.shape[0]] t1=(pd.Series(close.index[t1],index=tEvents[:t1.shape[0]])) return t1 def getBinsOld(events, close): """SNIPPET 3.5 LABELING FOR SIDE AND SIZE """ #1) prices aligned with events events_=events.dropna(subset=['t1']) px=events_.index.union(events_['t1'].values).drop_duplicates() px=close.reindex(px,method='bfill') #2) create out object out=pd.DataFrame(index=events_.index) out['ret']=px.loc[events_['t1'].values].values/px.loc[events_.index]-1 out['bin']=np.sign(out['ret']) # where out index and t1 (vertical barrier) intersect label 0 try: locs = out.query('index in @t1').index out.loc[locs, 'bin'] = 0 except: pass return out def getBins(events, close): """SNIPPET 3.7 EXPANDING getBins TO INCORPORATE META-LABELING Compute event's outcome (including side information, if provided). events is a DataFrame where: -events.index is event's starttime -events['t1'] is event's endtime -events['trgt'] is event's target -events['side'] (optional) implies the algo's position side Case 1: ('side' not in events): bin in (-1,1) <-label by price action Case 2: ('side' in events): bin in (0,1) <-label by pnl (meta-labeling) """ #1) prices aligned with events events_=events.dropna(subset=['t1']) px=events_.index.union(events_['t1'].values).drop_duplicates() px=close.reindex(px,method='bfill') #2) create out object out=
pd.DataFrame(index=events_.index)
pandas.DataFrame
# coding: utf-8 # # Estimating the total biomass of terrestrial protists # After searching the literature, we could not find a comprehensive account of the biomass of protists in soils. We generated a crude estimate of the total biomass of protists in soil based on estimating the total number of individual protists in the soil, and on the characteristic carbon content of a single protist. # # In order to calculate the total biomass of soil protists we calculate a characteristic number of individual protists for each one of the morphological groups of protists (flagellates, ciliates, and naked and testate ameobae). We combine these estimates with estimates for the carbon content of each morphological group. # # ## Number of protists # To estimate the total number of protists, we assembled data on the number of protists in soils which contains 160 measurements from 42 independent studies. Here is a sample of the data: # In[1]: # Initialization import pandas as pd import numpy as np import gdal from scipy.stats import gmean import sys sys.path.insert(0,'../../statistics_helper/') from fraction_helper import * from CI_helper import * pd.options.display.float_format = '{:,.1e}'.format # Load data data = pd.read_excel('terrestrial_protist_data.xlsx','Density of Individuals') data.head() # To estimate the total number of protists, we group our samples to different habitats and to the study in which they were taken. We calculate the characteristic number of each of the groups of protists per gram of soil. To do this we first derive a representative value for each study in case there was more than one measurement done in it. We calculate the representative value for each study in each habitat. Then we calculate the average of different representative values from different studies within the same habitat. We calculate the averages either by using the arithmetic mean or the geometric mean. # In[2]: # Define the function to calculate the geometric mean of number of each group of protists per gram def groupby_gmean(input): return pd.DataFrame({'Number of ciliates [# g^-1]': gmean(input['Number of ciliates [# g^-1]'].dropna()), 'Number of naked amoebae [# g^-1]': gmean(input['Number of naked amoebae [# g^-1]'].dropna()), 'Number of testate amoebae [# g^-1]': gmean(input['Number of testate amoebae [# g^-1]'].dropna()), 'Number of flagellates [# g^-1]': gmean(input['Number of flagellates [# g^-1]'].dropna())},index=[0]) # Define the function to calculate the arithmetic mean of number of each group of protists per gram def groupby_mean(input): return pd.DataFrame({'Number of ciliates [# g^-1]': np.nanmean(input['Number of ciliates [# g^-1]'].dropna()), 'Number of naked amoebae [# g^-1]': np.nanmean(input['Number of naked amoebae [# g^-1]'].dropna()), 'Number of testate amoebae [# g^-1]': np.nanmean(input['Number of testate amoebae [# g^-1]'].dropna()), 'Number of flagellates [# g^-1]': np.nanmean(input['Number of flagellates [# g^-1]'].dropna())},index=[0]) # Group the samples by habitat and study, and calculate the geometric mean grouped_data_gmean = data.groupby(['Habitat','DOI']).apply(groupby_gmean) # Group the samples by habitat and study, and calculate the arithmetic mean grouped_data_mean = data.groupby(['Habitat','DOI']).apply(groupby_mean) # Group the representative values by habitat, and calculate the geometric mean habitat_gmean = grouped_data_gmean.groupby('Habitat').apply(groupby_gmean) # Group the representative values by habitat, and calculate the arithmetic mean habitat_mean = grouped_data_mean.groupby('Habitat').apply(groupby_mean) habitat_gmean.set_index(habitat_gmean.index.droplevel(1),inplace=True) habitat_mean.set_index(habitat_mean.index.droplevel(1),inplace=True) # Here is the calculated geometric mean number of cells per gram for each habitat and each group of protists: # In[3]: habitat_gmean # For some groups, not all habitats have values. We fill values for missing data by the following scheme. For missing values in the boreal forest biome, we use values from the temperate forest biome. If we have data for the group of protists from the "General" habitat, which is based on expert assessment of the characteristic number of individuals for that group per gram of soil, we fill the missing values with the value for the "General" habitat. # # The only other missing data was for ciliates in tropical forests and tundra. For tropical forest, we used the values from temperate forests forests. For tundra, we use the mean over all the different habitats to fill the value: # In[4]: # Fill missing values for boreal forests habitat_mean.loc['Boreal Forest',['Number of ciliates [# g^-1]','Number of flagellates [# g^-1]','Number of naked amoebae [# g^-1]']] = habitat_mean.loc['Temperate Forest',['Number of ciliates [# g^-1]','Number of flagellates [# g^-1]','Number of naked amoebae [# g^-1]']] habitat_gmean.loc['Boreal Forest',['Number of ciliates [# g^-1]','Number of flagellates [# g^-1]','Number of naked amoebae [# g^-1]']] = habitat_gmean.loc['Temperate Forest',['Number of ciliates [# g^-1]','Number of flagellates [# g^-1]','Number of naked amoebae [# g^-1]']] # Fill missing values for naked amoebae habitat_mean.loc[['Shrubland','Tropical Forest','Tundra','Woodland'],'Number of naked amoebae [# g^-1]'] = habitat_mean.loc['General','Number of naked amoebae [# g^-1]'] habitat_gmean.loc[['Shrubland','Tropical Forest','Tundra','Woodland'],'Number of naked amoebae [# g^-1]'] = habitat_gmean.loc['General','Number of naked amoebae [# g^-1]'] # Fill missing values for flagellates habitat_gmean.loc[['Desert','Grassland','Shrubland','Tropical Forest','Woodland'],'Number of flagellates [# g^-1]'] = habitat_gmean.loc['General','Number of flagellates [# g^-1]'] habitat_mean.loc[['Desert','Grassland','Shrubland','Tropical Forest','Woodland'],'Number of flagellates [# g^-1]'] = habitat_mean.loc['General','Number of flagellates [# g^-1]'] # Fill missing values for ciliates habitat_gmean.loc['Tropical Forest','Number of ciliates [# g^-1]'] = habitat_gmean.loc['Temperate Forest','Number of ciliates [# g^-1]'] habitat_mean.loc['Tropical Forest','Number of ciliates [# g^-1]'] = habitat_mean.loc['Temperate Forest','Number of ciliates [# g^-1]'] habitat_gmean.loc['Tundra','Number of ciliates [# g^-1]'] = gmean(habitat_mean['Number of ciliates [# g^-1]'].dropna()) habitat_mean.loc['Tundra','Number of ciliates [# g^-1]'] = habitat_mean['Number of ciliates [# g^-1]'].dropna().mean() habitat_gmean # We have estimates for the total number of individual protists per gram of soil. In order to calculate the total number of individual protists we need to first convert the data to number of individuals per $m^2$. To convert number of individuals per gram of soil to number of individuals per $m^2$, we calculate a global average soil density in the top 15 cm based on [Hengl et al.](https://dx.doi.org/10.1371%2Fjournal.pone.0105992). # # In[5]: # Load soil density map from Hengl et al. (in the top 15 cm, reduced in resolution to 1 degree resolution) gtif = gdal.Open('bulk_density_data.tif') bulk_density_map = np.array(gtif.GetRasterBand(1).ReadAsArray()) # Fill missing values with NaN bulk_density_map[bulk_density_map == bulk_density_map[0,1]] = np.nan # Mean soil bulk density from Hengl et al. [in g per m^3] bulk_density = np.nanmean(bulk_density_map[:])*1000 print('Our best estimate for the global mean bulk density of soil in the top 15 cm is ≈%.1e g m^3' %bulk_density) #of ≈1.3 g $cm^3$ # Measuring the density of individuals per gram of soil does not take into account the distribution on biomass along the soil profile. Most of the measurements of the number of individual protists per gram of soil are done in shallow soil depths. We calculate the average sampling depth across studies: # In[6]: # Calculate the average sampling depth sampling_depth = data.groupby('DOI').mean().mean()['Sampling Depth [cm]'] print('The average sampling depth of soil protists is ≈%.0f cm' %sampling_depth) # It is not obvious what is the fraction of the total biomass of soil protists that is found in the top 8 cm of soil. To estimate the fraction of the biomass of soil protists found in the top 8 cm, we rely on two methodologies. The first is based on the distribution of microbial biomass with depth as discussed in Xu et al. Xu et al. extrapolate the microbial biomass across the soil profile based on empirical equations for the distribution of root biomass along soil depth from [Jackson et al.](http://dx.doi.org/10.1007/BF00333714). The empirical equations are biome-specific, and follow the general form: $$Y = 1-\beta^d$$ Where Y is the cumulative fraction of roots, d is depth in centimeters, and $\beta$ is a coefficient fitted for each biome. On a global scale, the best fit for $\beta$ as reported in Jackson et al., is ≈0.966. We use this coefficient to calculate the fraction of total biomass of soil protists found in the top 8 cm: # In[7]: # The beta coefficient from Jackson et al. jackson_beta = 0.966 # Calculate the fraction of the biomass of soil protists found in the top 8 cm jackson_fraction = 1 - jackson_beta** sampling_depth print('Our estimate for the fraction of biomass of soil protists found in soil layers sampled, based on Jackson et al. is ≈%.0f percent' %(jackson_fraction*100)) # As a second estimate for the fraction of the total biomass of soil protists found in the top 8 cm, we rely on an empirical equation from [Fierer et al.](http://dx.doi.org/10.1111/j.1461-0248.2009.01360.x), which estimates the fraction microbial biomass found below sampling depth d: # $$ f = [-0.132×ln(d) + 0.605]×B$$ # Where f is the fraction microbial biomass found below sampling depth d (in cm). We use this equation to calculate the fraction of the total biomass of soil protists found in the top 8 cm: # # In[8]: # The fraction of microbial biomass found in layer shallower than depth x based on Fierer et al. fierer_eq = lambda x: 1-(-0.132*np.log(x)+0.605) fierer_frac = fierer_eq(sampling_depth) print('Our estimate for the fraction of biomass of soil protists found in soil layers sampled, based on Fierer et al. is ≈%.0f percent' %(fierer_frac*100)) # As our best estimate for the fraction of the total biomass of soil protists found in layers shallower than 8 cm, we use the geometric mean of the estimates based on Jackson et al. and Fierer et al.: # In[9]: best_depth_frac = frac_mean(np.array([jackson_fraction,fierer_frac])) print('Our best estimate for the fraction of biomass of soil protists found in soil layers sampled is ≈%.0f percent' %(best_depth_frac*100)) # To convert the measurements per gram of soil to number of individuals per $m^2$, we calculate the average sampling depth across studies. We calculate the volume of soil held within this sampling depth. We use the bulk density to calculate the total weight of soil within one $m^2$ of soil with depth equal to the sampling depth. We multiply the estimates per gram of soil by the total weight of soil per $m^2$. To account for biomass present in lower layers, we divide the total number of individual protists per $m^2$ by our best estimate for the fraction of the total biomass of soil protists found in layer shallower than 8 cm. # In[10]: # convert number of individuals per gram soil to number of individuals per m^2 habitat_per_m2_gmean = (habitat_gmean*bulk_density*sampling_depth/100/best_depth_frac) habitat_per_m2_mean = (habitat_mean*bulk_density*sampling_depth/100/best_depth_frac) # To calculate the total number of protists we multiply the total number of individuals per unit area of each type of protist in each habitat by the total area of each habitat taken from the book [Biogeochemistry: An analysis of Global Change](https://www.sciencedirect.com/science/book/9780123858740) by Schlesinger & Bernhardt. The areas of each habitat are: # In[11]: habitat_area = pd.read_excel('terrestrial_protist_data.xlsx','Biome area', skiprows=1,index_col=0) habitat_area # One habitat for which we do not have data is the savanna. We use the mean of the values for the tropical forest, woodland, shrubland and grassland as an estimate of the total biomass in the savanna. # In[12]: habitat_per_m2_gmean.loc['Tropical Savanna'] = gmean(habitat_per_m2_gmean.loc[['Tropical Forest','Woodland','Shrubland','Grassland']]) habitat_per_m2_mean.loc['Tropical Savanna'] = habitat_per_m2_gmean.loc[['Tropical Forest','Woodland','Shrubland','Grassland']].mean(axis=0) tot_num_gmean = habitat_per_m2_gmean.mul(habitat_area['Area [m^2]'],axis=0) tot_num_mean = habitat_per_m2_mean.mul(habitat_area['Area [m^2]'],axis=0) print(tot_num_mean.sum()) print(tot_num_gmean.sum()) print(gmean([tot_num_mean.sum(),tot_num_gmean.sum()])) # We generated two types of estimates for the total number of soil protists: an estimate which uses the arithmetic mean of the number of individuals at each habitat, and an estimate which uses the geometric mean of the number of individuals at each habitat. The estimate based on the arithmetic mean is more susceptible to sampling bias, as even a single measurement which is not characteristic of the global population (such as samples which are contaminated with organic carbon sources, or samples which have some technical biases associated with them) might shift the average concentration significantly. On the other hand, the estimate based on the geometric mean might underestimate global biomass as it will reduce the effect of biologically relevant high biomass concentrations. As a compromise between these two caveats, we chose to use as our best estimate the geometric mean of the estimates from the two methodologies. # In[13]: tot_num_protist = gmean([tot_num_mean.sum(),tot_num_gmean.sum()]) tot_num_protist # ## Carbon content of protists # We estimate the characteristic carbon content of a single protist from each of the morphological groups of protists based on data from several sources. Here is a sample of the data: # In[14]: cc_data = pd.read_excel('terrestrial_protist_data.xlsx', 'Carbon content') cc_data.head() # We combine this data with an additional source from [Finlay & Fenchel](http://dx.doi.org/10.1078/1434-4610-00060). We calculate the average cell length for each group. # In[15]: # Load data from Finlay & Fenchel ff_data = pd.read_excel('terrestrial_protist_data.xlsx', 'Finlay & Fenchel', skiprows=1) # Define the function to calculate the weighted average for each group of protists def weighted_av_groupby(input): return np.average(input['Length [µm]'],weights=input['Abundance [# g^-1]']) cell_lengths = ff_data.groupby('Protist type').apply(weighted_av_groupby) # We convert the cell length to biovolume according the the allometric relation decribed in Figure 10 of Finlay & Fenchel. The relation between cell volume and cell length is given by the equation: # $$V = 0.6×L^{2.36}$$ # Where V is the cell volume in $µm^3$ and L is the cell length in µm. # In[16]: cell_volumes = 0.6*cell_lengths**2.36 cell_volumes # We convert cell volumes to carbon content assuming ≈150 fg C µm$^3$: # In[17]: ff_carbon_content = cell_volumes*150e-15 pd.options.display.float_format = '{:,.1e}'.format ff_carbon_content # We add these numbers as an additional source for calculating the carbon content of protists: # In[18]: cc_data.loc[cc_data.index[-1]+1] = pd.Series({'Reference': 'Finlay & Fenchel', 'DOI': 'http://dx.doi.org/10.1078/1434-4610-00060', 'Carbon content of ciliates [g C cell^-1]': ff_carbon_content.loc['Ciliate'], 'Carbon content of naked amoebae [g C cell^-1]': ff_carbon_content.loc['Naked amoebae'], 'Carbon content of testate amoebae [g C cell^-1]': ff_carbon_content.loc['Testate amoebae'], 'Carbon content of flagellates [g C cell^-1]': ff_carbon_content.loc['Flagellate'] }) # We calculate the geometric mean of carbon contents for first for values within each study and then for the average values between studies: # In[19]: def groupby_gmean(input): return pd.DataFrame({'Carbon content of ciliates [g C cell^-1]': gmean(input['Carbon content of ciliates [g C cell^-1]'].dropna()), 'Carbon content of naked amoebae [g C cell^-1]': gmean(input['Carbon content of naked amoebae [g C cell^-1]'].dropna()), 'Carbon content of testate amoebae [g C cell^-1]': gmean(input['Carbon content of testate amoebae [g C cell^-1]'].dropna()), 'Carbon content of flagellates [g C cell^-1]': gmean(input['Carbon content of flagellates [g C cell^-1]'].dropna())},index=[0]) study_mean_cc = cc_data.groupby('DOI').apply(groupby_gmean) mean_cc = study_mean_cc.reset_index().groupby('level_1').apply(groupby_gmean) # In[20]: gmean(study_mean_cc['Carbon content of flagellates [g C cell^-1]'].dropna()) mean_cc.T # To estimate the total biomass of soil protists based on the total number of individuals and their carbon content, we multiply our estimate for the total number of individuals for each morphological type by its characteristic carbon content. We sum over all morophological types of protists to generate our best estimate for the global biomass of soil protists # In[21]: # Calculate the total biomass of protists best_estimate = (tot_num_protist*mean_cc).sum(axis=1) print('Our best estimate of the total biomass of soil protists is ≈%.1f Gt C' %(best_estimate/1e15)) tot_num_protist*mean_cc # # Uncertainty analysis # To assess the uncertainty associated with our estimate of the total biomass of terrestrial protists, we collect available uncertainties for the values reported within studies and between studies. We use the highest uncertainty out of this collection of uncertainties as our best projection for the uncertainty associated we the estimate of the total biomass of terrestrial protists. # # ## Number of individuals # We assemble different measures of uncertainty at different levels - for values within the same study, for studies within the same habitat, and between habitats. # # ### Intra-study uncertainty # For each study which reports more than one value, we calculate 95% confidence interval around the geometric mean of those values. We take the maximal uncertainty in each habitat as our measure of the intra-study uncertainty # In[22]: pd.options.display.float_format = '{:,.1f}'.format # Define the function ot calculate the 95% confidence interval around the # geometric mean of number of each group of protists per gram def groupby_geo_CI(input): return pd.DataFrame({'Number of ciliates [# g^-1]': geo_CI_calc(input['Number of ciliates [# g^-1]'].dropna()), 'Number of naked amoebae [# g^-1]': geo_CI_calc(input['Number of naked amoebae [# g^-1]'].dropna()), 'Number of testate amoebae [# g^-1]': geo_CI_calc(input['Number of testate amoebae [# g^-1]'].dropna()), 'Number of flagellates [# g^-1]': geo_CI_calc(input['Number of flagellates [# g^-1]'].dropna())},index=[0]) # Group the samples by habitat and study, and calculate the 95% confidence # interval around the geometric mean of values within each study intra_study_num_CI = data.groupby(['Habitat','DOI']).apply(groupby_geo_CI) # Use the maximal uncertainty in each habitat as a measure of the intra-study uncertainty intra_num_CI = intra_study_num_CI.groupby('Habitat').max() # ### Interstudy uncertainty # We calculate 95% confidence interval around the geometric mean of the average values from different studies. # In[23]: # Group the representative values by habitat, and calculate the 95% confidence interval # around the geometric mean of values within habitat inter_study_habitat_num_CI = grouped_data_gmean.groupby('Habitat').apply(groupby_geo_CI) inter_study_habitat_num_CI.set_index(inter_study_habitat_num_CI.index.droplevel(level=1),inplace=True) inter_study_habitat_num_CI # ### Inter-habitat uncertainty # We first use the maximum of the intra-study and interstudy uncertainty in each habitat as our best projection for the uncertainty associated with the estimate of the total number of protists in the habitat. For habitats with missing uncertainty projections, we use the maximum of the uncertainties for the same group of protists in other habitats. # In[24]: # Use the maximum of the intra-study and interstudy uncertainty as our best projection of the uncertainty # of the number of protists in each habitat tot_num_habitat_CI = inter_study_habitat_num_CI.where(inter_study_habitat_num_CI > intra_num_CI, intra_num_CI).fillna(inter_study_habitat_num_CI) # Fill missing values for each habitat with the mean of the uncertainties for the same group of # protists in the other habitats tot_num_habitat_CI['Number of ciliates [# g^-1]'].fillna(tot_num_habitat_CI['Number of ciliates [# g^-1]'].max(),inplace=True) tot_num_habitat_CI['Number of flagellates [# g^-1]'].fillna(tot_num_habitat_CI['Number of flagellates [# g^-1]'].max(),inplace=True) tot_num_habitat_CI['Number of naked amoebae [# g^-1]'].fillna(tot_num_habitat_CI['Number of naked amoebae [# g^-1]'].max(),inplace=True) tot_num_habitat_CI['Number of testate amoebae [# g^-1]'].fillna(tot_num_habitat_CI['Number of testate amoebae [# g^-1]'].max(),inplace=True) # Fill the uncertainty of the values for the tropical savanna with the mean the uncertainties # for the same group of protists in the other habitats tot_num_habitat_CI.loc['Tropical Savanna'] = tot_num_habitat_CI.max() tot_num_habitat_CI # We propagate the uncertainties associated with the estimates of the total number of protists per gram soil in each habitat to the estimate of the sum across all habitats: # In[25]: tot_num_habitat_CI = tot_num_habitat_CI.loc[tot_num_gmean.dropna().index.values] ciliate_num_per_g_CI = CI_sum_prop(estimates=tot_num_gmean.dropna()['Number of ciliates [# g^-1]'],mul_CIs=tot_num_habitat_CI['Number of ciliates [# g^-1]']) flagellate_num_per_g_CI = CI_sum_prop(estimates=tot_num_gmean.dropna()['Number of ciliates [# g^-1]'],mul_CIs=tot_num_habitat_CI['Number of ciliates [# g^-1]']) naked_amoebea_num_per_g_CI = CI_sum_prop(estimates=tot_num_gmean.dropna()['Number of naked amoebae [# g^-1]'],mul_CIs=tot_num_habitat_CI['Number of naked amoebae [# g^-1]']) testate_amoebea_num_per_g_CI = CI_sum_prop(estimates=tot_num_gmean.dropna()['Number of testate amoebae [# g^-1]'],mul_CIs=tot_num_habitat_CI['Number of testate amoebae [# g^-1]']) num_per_g_CI = pd.Series([ciliate_num_per_g_CI,flagellate_num_per_g_CI,naked_amoebea_num_per_g_CI,testate_amoebea_num_per_g_CI], index= tot_num_habitat_CI.columns) num_per_g_CI # ### Inter-method uncertainty # We generated two types of estimates for the total number of individual protists per gram of soil - one based on the arithmetic mean and one based on the geometric mean of values. As our best estimate we used the geometric mean of the arithmetic mean and geometric mean-based estimates. We calculate the 95% confidence interval around the geometric mean of the two types of estimates as a measure of the uncertainty this procedure introduces into the estimate of the total number of protists: # In[26]: inter_method_num_CI = geo_CI_calc(pd.DataFrame([tot_num_mean.sum(),tot_num_gmean.sum()])) inter_method_num_CI # We use the maximum of the uncertainty stemming from the intra-study and interstudy variability and the inter-method uncertainty as our best projection of the uncertainty associated with our estimate of the number of individual protists per gram of soil: # In[27]: best_num_CI = np.max([num_per_g_CI,inter_method_num_CI],axis=0) best_num_CI =
pd.Series(best_num_CI,index= inter_method_num_CI.index)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import csv import datetime import gc import gzip import json import subprocess import sys from typing import Union, List import nibabel as nib import pandas as pd import pydicom as dicom from bids import layout from matgrab import mat2df from pyedflib import highlevel from scipy.io import wavfile from utils import * def get_parser(): # parses flags at onset of command parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter , description=""" Data2bids is a script based on the SIMEXP lab script to convert nifti MRI files into BIDS format. This script has been modified to also parse README data as well as include conversion of DICOM files to nifti. The script utilizes <NAME>'s Dcm2niix program for actual conversion. This script takes one of two formats for conversion. The first is a series of DICOM files in sequence with an optional \"medata\" folder which contains any number of single or multi-echo uncompressed nifti files (.nii). Note that nifti files in this case must also have a corresponding DICOM scan run, but not necessarily scan echo (for example, one DICOM scan for run 5 but three nifti files which are echoes 1, 2, and 3 of run 5). The other format is a series of nifti files and a README.txt file formatted the same way as it is in the example. Both formats are shown in the examples folder. Both formats use a .json config file that maps either DICOM tags or text within the nifti file name to BIDS metadata. The syntax and formatting of this .json file can be found here https://github.com/SIMEXP/Data2Bids#heuristic. The only thing this script does not account for is event files. If you have the 1D files that's taken care of, but chances are you have some other format. If this is the case, I recommend https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/05-task-events.html so that you can make BIDS compliant event files. Data2bids documentation at https://github.com/SIMEXP/Data2Bids Dcm2niix documentation at https://github.com/rordenlab/dcm2niix""" , epilog=""" Made by <NAME> (<EMAIL>) """) group = parser.add_mutually_exclusive_group(required=True) group.add_argument( "-i" , "--input_dir" , required=False , default=None , help=""" Input data directory(ies), must include a readme.txt file formatted like example under examples folder. Mutually exclusive with DICOM directory option. Default: current directory """, ) parser.add_argument( "-c" , "--config" , required=False , default=None , help="JSON configuration file (see https://github.com/SIMEXP/Data2Bids/blob/master/example/config.json)", ) parser.add_argument( "-o" , "--output_dir" , required=False , default=None , help="Output BIDS directory, Default: Inside current directory ", ) group.add_argument( "-d" , "--DICOM_path" , default=None , required=False , help="Optional DICOM directory, Mutually exclusive with input directory option", ) parser.add_argument( "-m" , "--multi_echo" , nargs='*' , type=int , required=False , help=""" indicator of multi-echo dataset. Only necessary if NOT converting DICOMs. For example, if runs 3-6 were all multi-echo then the flag should look like: -m 3 4 5 6 . Additionally, the -m flag may be called by itself if you wish to let data2bids auto-detect multi echo data, but it will not be able to tell you if there is a mistake.""" ) parser.add_argument( "-ow" , "--overwrite" , required=False , action='store_true' , help="overwrite preexisting BIDS file structures in destination location", ) parser.add_argument( "-ch" , "--channels" , nargs='*' , required=False , help=""" Indicator of channels to keep from edf files. """ ) parser.add_argument( "-s" , "--stim_dir" , required=False , default=None , help="directory containing stimuli files", ) parser.add_argument( "-v" , "--verbose" , required=False , action='store_true' , help="verbosity", ) return parser class Data2Bids: # main conversion and file organization program def __init__(self, input_dir=None, config=None, output_dir=None, DICOM_path=None, multi_echo=None, overwrite=False, stim_dir=None, channels=None, verbose=False): # sets the .self globalization for self variables self._input_dir = None self._config_path = None self._config = None self._bids_dir = None self._bids_version = "1.6.0" self._dataset_name = None self._data_types = {"anat": False, "func": False, "ieeg": False} self._ignore = [] self.set_overwrite(overwrite) self.set_data_dir(input_dir, DICOM_path) self.set_config_path(config) self.set_bids_dir(output_dir) self.set_DICOM(DICOM_path) self.set_multi_echo(multi_echo) self.set_verbosity(verbose) self.set_stim_dir(stim_dir) self.set_channels(channels) def check_ignore(self, file): assert os.path.isabs(file), file + "must be given with the absolute path including root" if not os.path.exists(file): raise FileNotFoundError(file + " does not exist") ans = False for item in self._ignore: if os.path.isfile(item) and Path(file).resolve() == Path(item).resolve(): ans = True elif os.path.isdir(item): for root, dirs, files in os.walk(item): if os.path.basename(file) in files and Path(root).resolve() == Path( os.path.dirname(file)).resolve(): ans = True return ans def set_stim_dir(self, dir): if dir is None: if "stimuli" in os.listdir(self._data_dir): # data2bids can be called at the parent folder dir = os.path.join(self._data_dir, "stimuli") elif "stimuli" in os.listdir(os.path.dirname(self._data_dir)): # or subject folder level dir = os.path.join(os.path.dirname(self._data_dir), "stimuli") else: self.stim_dir = None return if not os.path.isdir(os.path.join(self._bids_dir, "stimuli")): os.mkdir(os.path.join(self._bids_dir, "stimuli")) for item in os.listdir(dir): shutil.copyfile(os.path.join(dir, item), os.path.join(self._bids_dir, "stimuli", item)) self.stim_dir = dir self._ignore.append(dir) def set_channels(self, channels): try: headers_dict = self._config["ieeg"]["headerData"] except KeyError: headers_dict = None self.channels = {} self.sample_rate = {} part_match = None task_label_match = None if self._data_dir: for root, _, files in os.walk(self._data_dir): # ignore BIDS directories and stimuli files[:] = [f for f in files if not self.check_ignore(os.path.join(root, f))] i = 1 while files: file = files.pop(0) src = os.path.join(root, file) if not part_match == match_regexp(self._config["partLabel"], file): part_match = match_regexp(self._config["partLabel"], file) self.channels[part_match] = [] part_match_z = self.part_check(part_match)[1] df = None for name, var in self._config["ieeg"]["channels"].items(): if name in src: df = mat2df(src, var) if "highpass_cutoff" in df.columns.to_list(): df = df.rename(columns={"highpass_cutoff": "high_cutoff"}) if "lowpass_cutoff" in df.columns.to_list(): df = df.rename(columns={"lowpass_cutoff": "low_cutoff"}) name_gen = self.generate_names(src, part_match=part_match, verbose=False) if name_gen is not None and name_gen[-2] is not None: task_label_match = name_gen[-2] if df is None: continue elif task_label_match is None: i += 1 if i > 40: raise NameError("No tasks could be found in files:\n", os.listdir(os.path.dirname(src))) else: files.append(file) continue else: i = 1 filename = os.path.join(self._bids_dir, "sub-" + part_match_z, "sub-" + part_match_z + "_task-" + task_label_match + "_channels.tsv") os.mkdir(os.path.dirname(filename)) df.to_csv(filename, sep="\t", index=False) if part_match not in headers_dict.keys(): try: var = headers_dict["default"] if isinstance(var, str): var = [var] self.channels[part_match] = self.channels[part_match] + [v for v in var if v not in self.channels[part_match]] except KeyError: pass for name, var in headers_dict.items(): if name == part_match: if isinstance(var, str): var = [var] self.channels[part_match] = self.channels[part_match] + [v for v in var if v not in self.channels[part_match]] elif re.match(".*?" + part_match + ".*?" + name, src): # some sort of checking for .mat or txt files? if name.endswith(".mat") and re.match(".*?" + part_match + ".*?" + name, src): self.channels[part_match] = self.channels[part_match] + mat2df(src, var).tolist() try: self.sample_rate[part_match] = mat2df(src, self._config['ieeg']['sampleRate']).iloc[ 0] except KeyError: self.sample_rate[part_match] = None except AttributeError: raise IndexError(self._config['ieeg']['sampleRate'] + " not found in " + src) self._ignore.append(src) elif name.endswith((".txt", ".csv", ".tsv")) and re.match(".*?" + part_match + ".*?" + name, src): f = open(name, 'r') content = f.read() f.close() self.channels[part_match] = self.channels[part_match] + content.split() elif name.endswith(tuple(self._config['dataFormat'])) and re.match( ".*?" + part_match + ".*?" + name, src): raise NotImplementedError(src + "\nthis file format does not yet support {ext} files for " "channel labels".format( ext=os.path.splitext(src)[1])) if isinstance(channels, str) and channels not in channels[part_match]: self.channels[part_match] = self.channels[part_match] + [channels] elif channels is not None: self.channels[part_match] = self.channels[part_match] + [c for c in channels if c not in self.channels[part_match]] def set_overwrite(self, overwrite): self._is_overwrite = overwrite def set_verbosity(self, verbose): self._is_verbose = verbose def set_multi_echo(self, multi_echo): # if -m flag is called if multi_echo is None: self.is_multi_echo = False else: self.is_multi_echo = True if not multi_echo: self._multi_echo = 0 else: self._multi_echo = multi_echo def set_DICOM(self, ddir): # triggers only if dicom flag is called and therefore _data_dir is None if self._data_dir is None: self._data_dir = os.path.dirname(self._bids_dir) subdirs = [x[0] for x in os.walk(ddir)] files = [x[2] for x in os.walk(ddir)] sub_num = str(dicom.read_file(os.path.join(subdirs[1], files[1][0]))[0x10, 0x20].value).split("_", 1)[1] sub_dir = os.path.join(os.path.dirname(self._bids_dir), "sub-{SUB_NUM}".format(SUB_NUM=sub_num)) # destination subdirectory if os.path.isdir(sub_dir): proc = subprocess.Popen("rm -rf {file}".format(file=sub_dir), shell=True, stdout=subprocess.PIPE) proc.communicate() os.mkdir(sub_dir) if any("medata" in x for x in subdirs): # copy over and list me data melist = [x[2] for x in os.walk(os.path.join(ddir, "medata"))][0] runlist = [] for me in melist: if me.startswith("."): continue runmatch = re.match(r".*run(\d{2}).*", me).group(1) if str(int(runmatch)) not in runlist: runlist.append(str(int(runmatch))) shutil.copyfile(os.path.join(ddir, "medata", me), os.path.join(sub_dir, me)) self.is_multi_echo = True # will trigger even if single echo data is in medata folder. Should still # be okay for subdir in subdirs[1:]: # not including parent folder or /medata, run dcm2niix on non me data try: fobj = dicom.read_file(os.path.join(subdir, list(os.walk(subdir))[0][2][0]), force=True) # first dicom file of the scan scan_num = str(int(os.path.basename(subdir))).zfill(2) except ValueError: continue firstfile = [x[2] for x in os.walk(subdir)][0][0] # print(str(fobj[0x20, 0x11].value), runlist) # running dcm2niix, if str(fobj[0x20, 0x11].value) in runlist: proc = subprocess.Popen( "dcm2niix -z y -f run{SCAN_NUM}_%p_%t_sub{SUB_NUM} -o {OUTPUT_DIR} -s y -b y {DATA_DIR}".format( OUTPUT_DIR=sub_dir, SUB_NUM=sub_num, DATA_DIR=os.path.join(subdir, firstfile), SCAN_NUM=scan_num), shell=True, stdout=subprocess.PIPE) # output = proc.stdout.read() outs, errs = proc.communicate() prefix = re.match(".*/sub-{SUB_NUM}/(run{SCAN_NUM}".format(SUB_NUM=sub_num, SCAN_NUM=scan_num) + r"[^ \(\"\\n\.]*).*", str(outs)).group(1) for file in os.listdir(sub_dir): mefile = re.match(r"run{SCAN_NUM}(\.e\d\d)\.nii".format(SCAN_NUM=scan_num), file) if re.match(r"run{SCAN_NUM}\.e\d\d.nii".format(SCAN_NUM=scan_num), file): shutil.move(os.path.join(sub_dir, file), os.path.join(sub_dir, prefix + mefile.group(1) + ".nii")) shutil.copy(os.path.join(sub_dir, prefix + ".json"), os.path.join(sub_dir, prefix + mefile.group(1) + ".json")) os.remove(os.path.join(sub_dir, prefix + ".nii.gz")) os.remove(os.path.join(sub_dir, prefix + ".json")) else: proc = subprocess.Popen( "dcm2niix -z y -f run{SCAN_NUM}_%p_%t_sub{SUB_NUM} -o {OUTPUT_DIR} -b y {DATA_DIR}".format( OUTPUT_DIR=sub_dir, SUB_NUM=sub_num, DATA_DIR=subdir, SCAN_NUM=scan_num), shell=True, stdout=subprocess.PIPE) outs, errs = proc.communicate() sys.stdout.write(outs.decode("utf-8")) self._multi_echo = runlist self._data_dir = os.path.join(os.path.dirname(self._bids_dir), "sub-{SUB_NUM}".format(SUB_NUM=sub_num)) self._DICOM_path = ddir def get_data_dir(self): return self._data_dir def set_data_dir(self, data_dir, DICOM): # check if input dir is listed if DICOM is None: if data_dir is None: self._data_dir = os.getcwd() else: self._data_dir = data_dir self._dataset_name = os.path.basename(self._data_dir) else: self._data_dir = None def get_config(self): return self._config def get_config_path(self): return self._config_path def _set_config(self): with open(self._config_path, 'r') as fst: self._config = json.load(fst) def set_config(self, config): self._config = config def set_config_path(self, config_path): if config_path is None: # Checking if a config.json is present if os.path.isfile(os.path.join(os.getcwd(), "config.json")): self._config_path = os.path.join(os.getcwd(), "config.json") # Otherwise taking the default config else: self._config_path = os.path.join(os.path.dirname(__file__), "config.json") else: self._config_path = config_path self._set_config() def get_bids_dir(self): return self._bids_dir def set_bids_dir(self, bids_dir): if bids_dir is None: # Creating a new directory for BIDS try: newdir = self._data_dir + "/BIDS" except TypeError: print("Error: Please provide input data directory if no BIDS directory...") # deleting old BIDS to make room for new elif not os.path.basename(bids_dir) == "BIDS": newdir = os.path.join(bids_dir, "BIDS") else: newdir = bids_dir if not os.path.isdir(newdir): os.mkdir(newdir) elif self._is_overwrite: force_remove(newdir) os.mkdir(newdir) self._bids_dir = newdir self._ignore.append(newdir) # as of BIDS ver 1.6.0, CT is not a part of BIDS, so check for CT files and add to .bidsignore self.bidsignore("*_CT.*") def get_bids_version(self): return self._bids_version def bids_validator(self): assert self._bids_dir is not None, "Cannot launch bids-validator without specifying bids directory !" # try: subprocess.check_call(['bids-validator', self._bids_dir]) # except FileNotFoundError: # print("bids-validator does not appear to be installed") def generate_names(self, src_file_path, filename=None, # function to run through name text and generate metadata part_match=None, sess_match=None, ce_match=None, acq_match=None, echo_match=None, data_type_match=None, task_label_match=None, run_match=None, verbose=None, debug=False): if filename is None: filename = os.path.basename(src_file_path) if part_match is None: part_match = match_regexp(self._config["partLabel"], filename) if verbose is None: verbose = self._is_verbose try: if re.match(r"^[^\d]{1,3}", part_match): part_matches = re.split(r"([^\d]{1,3})", part_match, 1) part_match_z = part_matches[1] + str(int(part_matches[2])).zfill(self._config["partLabel"]["fill"]) else: part_match_z = str(int(part_match)).zfill(self._config["partLabel"]["fill"]) except KeyError: pass dst_file_path = self._bids_dir + "/sub-" + part_match_z new_name = "/sub-" + part_match_z SeqType = None # Matching the session try: if sess_match is None: sess_match = match_regexp(self._config["sessLabel"], filename) dst_file_path = dst_file_path + "/ses-" + sess_match new_name = new_name + "_ses-" + sess_match except AssertionError: if verbose: print("No session found for %s" % src_file_path) # Matching the run number try: if run_match is None: run_match = match_regexp(self._config["runIndex"], filename) try: if re.match(r"^[^\d]{1,3}", run_match): run_matches = re.split(r"([^\d]{1,3})", run_match, 1) run_match = run_matches[1] + str(int(run_matches[2])).zfill(self._config["runIndex"]["fill"]) else: run_match = str(int(run_match)).zfill(self._config["runIndex"]["fill"]) except KeyError: pass except AssertionError: pass # Matching the anat/fmri data type and task try: if data_type_match is None: data_type_match = match_regexp(self._config["anat"] , filename , subtype=True) dst_file_path = dst_file_path + "/anat" self._data_types["anat"] = True except (AssertionError, KeyError) as e: # If no anatomical, trying functionnal try: if data_type_match is None: data_type_match = match_regexp(self._config["func"] , filename , subtype=True) dst_file_path = dst_file_path + "/func" self._data_types["func"] = True # Now trying to match the task try: if task_label_match is None: task_label_match = match_regexp(self._config["func.task"] , filename , subtype=True) new_name = new_name + "_task-" + task_label_match except AssertionError as e: print("No task found for %s" % src_file_path) if debug: raise e return except (AssertionError, KeyError) as e: # no functional or anatomical, try ieeg try: if data_type_match is None: data_type_match = match_regexp(self._config["ieeg"] , filename , subtype=True) dst_file_path = dst_file_path + "/ieeg" self._data_types["ieeg"] = True # Now trying to match the task try: if task_label_match is None: task_label_match = match_regexp(self._config["ieeg.task"] , filename , subtype=True) new_name = new_name + "_task-" + task_label_match except AssertionError as e: print("No task found for %s" % src_file_path) if debug: raise e return except AssertionError as e: if verbose: print("No anat, func, or ieeg data type found for %s" % src_file_path) if debug: raise e return except KeyError as e: print("No anat, func, or ieeg data type found in config file, one of these data types is required") if debug: raise e return # if is an MRI if dst_file_path.endswith("/func") or dst_file_path.endswith("/anat"): try: SeqType = str(match_regexp(self._config["pulseSequenceType"], filename, subtype=True)) except AssertionError: if verbose: print("No pulse sequence found for %s" % src_file_path) except KeyError: if verbose: print("pulse sequence not listed for %s, will look for in file header" % src_file_path) try: if echo_match is None: echo_match = match_regexp(self._config["echo"], filename) new_name = new_name + "_echo-" + echo_match except AssertionError: if verbose: print("No echo found for %s" % src_file_path) # check for optional labels try: if acq_match is None: acq_match = match_regexp(self._config["acq"], filename) try: if re.match(r"^[^\d]{1,3}", acq_match): acq_matches = re.split(r"([^\d]{1,3})", acq_match, 1) acq_match = acq_matches[1] + str(int(acq_matches[2])).zfill(self._config["acq"]["fill"]) else: acq_match = str(int(acq_match)).zfill(self._config["acq"]["fill"]) except KeyError: pass new_name = new_name + "_acq-" + acq_match except (AssertionError, KeyError) as e: if verbose: print("no optional labels for %s" % src_file_path) try: if ce_match is None: ce_match = match_regexp(self._config["ce"] , filename) new_name = new_name + "_ce-" + ce_match except (AssertionError, KeyError) as e: if verbose: print("no special contrast labels for %s" % src_file_path) if run_match is not None: new_name = new_name + "_run-" + run_match # Adding the modality to the new filename new_name = new_name + "_" + data_type_match return (new_name, dst_file_path, part_match, run_match, acq_match, echo_match, sess_match, ce_match, data_type_match, task_label_match, SeqType) def multi_echo_check(self, runnum, src_file=""): # check to see if run is multi echo based on input if self.is_multi_echo: if int(runnum) in self._multi_echo: return (True) else: if self._multi_echo == 0: try: match_regexp(self._config["echo"], src_file) except AssertionError: return (False) return (True) else: return (False) else: return (False) def get_params(self, folder, echo_num, run_num): # function to run through DICOMs and get metadata # threading? if self.is_multi_echo and run_num in self._multi_echo: vols_per_time = len(self._config['delayTimeInSec']) - 1 echo = self._config['delayTimeInSec'][echo_num] else: vols_per_time = 1 echo = None for root, _, dfiles in os.walk(folder, topdown=True): dfiles.sort() for dfile in dfiles: dcm_file_path = os.path.join(root, dfile) fobj = dicom.read_file(str(dcm_file_path)) if echo is None: try: echo = float(fobj[0x18, 0x81].value) / 1000 except KeyError: echo = self._config['delayTimeInSec'][0] ImagesInAcquisition = int(fobj[0x20, 0x1002].value) seqlist = [] for i in list(range(5)): try: seqlist.append(fobj[0x18, (32 + i)].value) if seqlist[i] == 'NONE': seqlist[i] = None if isinstance(seqlist[i], dicom.multival.MultiValue): seqlist[i] = list(seqlist[i]) if isinstance(seqlist[i], list): seqlist[i] = ", ".join(seqlist[i]) except KeyError: seqlist.append(None) [ScanningSequence, SequenceVariant, SequenceOptions, AquisitionType, SequenceName] = seqlist try: timings = [] except NameError: timings = [None] * int(ImagesInAcquisition / vols_per_time) RepetitionTime = ( (float(fobj[0x18, 0x80].value) / 1000)) # TR value extracted in milliseconds, converted to seconds try: acquisition_series = self._config['series'] except KeyError: print("default") acquisition_series = "non-interleaved" if acquisition_series == "even-interleaved": InstackPositionNumber = 2 else: InStackPositionNumber = 1 InstanceNumber = 0 while None in timings: if timings[InStackPositionNumber - 1] is None: timings[InStackPositionNumber - 1] = slice_time_calc(RepetitionTime, InstanceNumber, int(ImagesInAcquisition / vols_per_time), echo) if acquisition_series == "odd-interleaved" or acquisition_series == "even-interleaved": InStackPositionNumber += 2 if InStackPositionNumber > ImagesInAcquisition / vols_per_time and acquisition_series == "odd-interleaved": InStackPositionNumber = 2 elif InStackPositionNumber > ImagesInAcquisition / vols_per_time and acquisition_series == "even-interleaved": InStackPositionNumber = 1 else: InStackPositionNumber += 1 InstanceNumber += 1 return (timings, echo, ScanningSequence, SequenceVariant, SequenceOptions, SequenceName) def read_edf(self, file_name, channels=None, extra_arrays=None, extra_signal_headers=None): [edfname, dst_path, part_match] = self.generate_names(file_name, verbose=False)[0:3] # file_name = str(file_name) header = highlevel.make_header(patientname=part_match, startdate=datetime.datetime(1, 1, 1)) edf_name = dst_path + edfname + ".edf" d = {str: [], int: []} for i in channels: d[type(i)].append(i) f = EdfReader(file_name) chn_nums = d[int] + [i for i, x in enumerate(f.getSignalLabels()) if x in channels] f.close() chn_nums.sort() try: check_sep = self._config["eventFormat"]["Sep"] except (KeyError, AssertionError) as e: check_sep = None gc.collect() # helps with memory if check_sep: # read edf print("Reading " + file_name + "...") [array, signal_headers, _] = highlevel.read_edf(file_name, ch_nrs=chn_nums, digital=self._config["ieeg"]["digital"], verbose=True) if extra_arrays: array = array + extra_arrays if extra_signal_headers: signal_headers = signal_headers + extra_signal_headers # replace trigger channels with trigger label ("DC1") if part_match in self._config["ieeg"]["headerData"].keys(): trig_label = self._config["ieeg"]["headerData"][part_match] else: trig_label = self._config["ieeg"]["headerData"]["default"] for i in range(len(signal_headers)): #print(re.match(".*\.xls.*", trig_label)) if re.match(".*\.xls.*", str(trig_label)): xls_df = pd.ExcelFile(trig_label).parse(part_match) for column in xls_df: if "Trigger" in column: trig_label = xls_df[column].iloc[0] if signal_headers[i]["label"] == trig_label: signal_headers[i]["label"] = "Trigger" return dict(name=file_name, bids_name=edf_name, nsamples=array.shape[1], signal_headers=signal_headers, file_header=header, data=array, reader=f) elif channels: highlevel.drop_channels(file_name, edf_name, channels, verbose=self._is_verbose) return None else: shutil.copy(file_name, edf_name) return None def part_check(self, part_match=None, filename=None): # Matching the participant label to determine if # there exists therein delete previously created BIDS subject files assert part_match or filename if filename: try: part_match = match_regexp(self._config["partLabel"], filename) except AssertionError: print("No participant found for %s" % filename) except KeyError as e: print("Participant label pattern must be defined") raise e if re.match(r"^[^\d]{1,3}", part_match): part_matches = re.split(r"([^\d]{1,3})", part_match, 1) part_match_z = part_matches[1] + str(int(part_matches[2])).zfill(self._config["partLabel"]["fill"]) else: part_match_z = str(int(part_match)).zfill(self._config["partLabel"]["fill"]) return part_match, part_match_z def bidsignore(self, string: str): if not os.path.isfile(self._bids_dir + "/.bidsignore"): with open(self._bids_dir + "/.bidsignore", 'w') as f: f.write(string + "\n") else: with open(self._bids_dir + "/.bidsignore", "r+") as f: if string not in f.read(): f.write(string + "\n") def run(self): # main function # First we check that every parameters are configured if (self._data_dir is not None and self._config_path is not None and self._config is not None and self._bids_dir is not None): print("---- data2bids starting ----") print(self._data_dir) print("\n BIDS version:") print(self._bids_version) print("\n Config from file :") print(self._config_path) print("\n Ouptut BIDS directory:") print(self._bids_dir) print("\n") # Create the output BIDS directory if not os.path.exists(self._bids_dir): os.makedirs(self._bids_dir) # else # shutil.rmtree(self._bids_dir) # What is the base format to convert to curr_ext = self._config["dataFormat"] compress = self._config["compress"] # delay time in TR unit (if delay_time = 1, delay_time = repetition_time) repetition_time = self._config["repetitionTimeInSec"] delaytime = self._config["delayTimeInSec"] # dataset_description.json must be included in the folder root foolowing BIDS specs if os.path.exists(self._bids_dir + "/dataset_description.json"): # with open(dst_file_path + new_name + ".json", 'w') as fst: with open(self._bids_dir + "/dataset_description.json") as fst: filedata = json.load(fst) with open(self._bids_dir + "/dataset_description.json", 'w') as fst: data = {'Name': self._dataset_name, 'BIDSVersion': self._bids_version} filedata.update(data) json.dump(filedata, fst, ensure_ascii=False, indent=4) else: with open(self._bids_dir + "/dataset_description.json", 'w') as fst: data = {'Name': self._dataset_name, 'BIDSVersion': self._bids_version} json.dump(data, fst, ensure_ascii=False, indent=4) try: for key, data in self._config["JSON_files"].items(): with open(self._bids_dir + '/' + key, 'w') as fst: json.dump(data, fst, ensure_ascii=False, indent=4) except KeyError: pass # add a README file if not os.path.exists(self._bids_dir + "/README"): with open(self._bids_dir + "/README", 'w') as fst: data = "" fst.write(data) # now we can scan all files and rearrange them part_match = None part_match_z = None for root, _, files in os.walk(self._data_dir, topdown=True): # each loop is a new participant so long as participant is top level files[:] = [f for f in files if not self.check_ignore(os.path.join(root, f))] eeg = [] dst_file_path_list = [] names_list = [] mat_list = [] run_list = [] tsv_condition_runs = [] tsv_fso_runs = [] d_list = [] txt_df_list = [] correct = None if not files: continue files.sort() part_match = None i = 0 while part_match is None: try: part_match, part_match_z = self.part_check(filename=files[i]) except: i += 1 continue if self.channels: if self._is_verbose and self.channels[part_match] is not None: print("Channels for participant " + part_match + " are") print(self.channels[part_match]) for i in self._ignore: if part_match in i: print("From " + i) if self._is_verbose: print(files) while files: # loops over each participant file file = files.pop(0) if self._is_verbose: print(file) src_file_path = os.path.join(root, file) dst_file_path = self._bids_dir data_type_match = None new_name = None if re.match(".*?" + ".json", file): try: (new_name, dst_file_path, part_match, run_match, acq_match, echo_match, sess_match, ce_match, data_type_match, task_label_match, SeqType) = self.generate_names(src_file_path, part_match=part_match) except TypeError: continue if echo_match is None: echo_match = 0 if new_name in names_list: shutil.copy(src_file_path, dst_file_path + new_name + ".json") # finally, if it is a bold experiment, we need to edit the JSON file using DICOM tags if os.path.exists(dst_file_path + new_name + ".json"): # https://github.com/nipy/nibabel/issues/712, that is why we take the # scanner parameters from the config.json # nib_img = nib.load(src_file_path) # TR = nib_img.header.get_zooms()[3] for foldername in os.listdir(str(self._DICOM_path)): if run_match.zfill(4) == foldername.zfill(4): DICOM_filepath = os.path.join(self._DICOM_path, foldername) slicetimes, echotime, ScanSeq, SeqVar, SeqOpt, SeqName = self.get_params( str(DICOM_filepath), int(echo_match), int(run_match)) # with open(dst_file_path + new_name + ".json", 'w') as fst: with open(dst_file_path + new_name + ".json", 'r+') as fst: filedata = json.load(fst) with open(dst_file_path + new_name + ".json", 'w') as fst: if data_type_match == "bold": filedata['TaskName'] = task_label_match filedata['SliceTiming'] = slicetimes if int(run_match) in self._multi_echo: filedata['EchoTime'] = echotime else: filedata['DelayTime'] = delaytime[0] if SeqType is not None: filedata['PulseSequenceType'] = SeqType if ScanSeq is not None: filedata['ScanningSequence'] = ScanSeq if SeqVar is not None: filedata['SequenceVariant'] = SeqVar if SeqOpt is not None: filedata['SequenceOption'] = SeqOpt if SeqName is not None: filedata['SequenceName'] = SeqName json.dump(filedata, fst, ensure_ascii=False, indent=4, default=set_default) else: print("Cannot update %s" % (dst_file_path + new_name + ".json")) elif any(re.search("\\.nii", filelist) for filelist in files): files.append(src_file_path) continue elif re.match(".*?" + "EADME.txt", file): # if README.txt in image list with open(src_file_path, 'r') as readmetext: for line in readmetext: regret_words = ["Abort", "NOTE"] if ". tempAttnAudT" in line: # these lines could and should be improved by # linking config["func.task"] instead of literal strings prevline = "con" tsv_condition_runs.append( re.search(r'\d+', line).group()) # save the first number on the line elif ". fsoSubLocal" in line: prevline = "fso" tsv_fso_runs.append(re.search(r'\d+', line).group()) elif all(x in line for x in regret_words): if prevline == "con": del tsv_condition_runs[-1] elif prevline == "fso": del tsv_fso_runs[-1] prevline = "" else: prevline = "" if not os.path.exists( self._bids_dir + "/sub-" + part_match): # Writing both a particpant-specific and agnostic README # Requires creation of a .bidsignore file for local READMEs os.makedirs(self._bids_dir + "/sub-" + part_match) shutil.copy(src_file_path, self._bids_dir + "/sub-" + part_match + "/README.txt") with open(src_file_path, 'r') as readmetext: for line in readmetext: if os.path.exists(self._bids_dir + "/README"): with open(self._bids_dir + "/README", 'a') as f: f.write(line + "\n") else: with open(self._bids_dir + "/README", 'w') as f: f.write(line + "\n") continue elif re.match(".*?" + "\\.1D", file): d_list.append(src_file_path) continue elif re.match(".*?" + "\\.mat", file): mat_list.append(src_file_path) continue # if the file doesn't match the extension, we skip it elif re.match(".*?" + "\\.txt", file): if part_match is None: files.append(file) else: try: df = pd.read_table(src_file_path, header=None, sep="\s+") e = None except Exception as e: df = None txt_df_list.append(dict(name=file, data=df, error=e)) continue elif not any(re.match(".*?" + ext, file) for ext in curr_ext): print("Warning : Skipping %s" % src_file_path) continue if self._is_verbose: print("trying %s" % src_file_path) try: (new_name, dst_file_path, part_match, run_match, acq_match, echo_match, sess_match, ce_match, data_type_match, task_label_match, _) = self.generate_names(src_file_path, part_match=part_match) except TypeError as problem: # print("\nIssue in generate names") print("problem with %s:" % src_file_path, problem, "\n") continue # Creating the directory where to store the new file if not os.path.exists(dst_file_path): os.makedirs(dst_file_path) # print(data_type_match) # finally, if the file is not nifti if dst_file_path.endswith("/func") or dst_file_path.endswith("/anat"): # we convert it using nibabel if not any(file.endswith(ext) for ext in [".nii", ".nii.gz"]): # check if .nii listed in config file, not if file ends with .nii # loading the original image nib_img = nib.load(src_file_path) nib_affine = np.array(nib_img.affine) nib_data = np.array(nib_img.dataobj) # create the nifti1 image # if minc format, invert the data and change the affine transformation # there is also an issue on minc headers if file.endswith(".mnc"): if len(nib_img.shape) > 3: nib_affine[0:3, 0:3] = nib_affine[0:3, 0:3] rot_z(np.pi / 2) rot_y(np.pi) rot_x(np.pi / 2) nib_data = nib_data.T nib_data = np.swapaxes(nib_data, 0, 1) nifti_img = nib.Nifti1Image(nib_data, nib_affine, nib_img.header) nifti_img.header.set_xyzt_units(xyz="mm", t="sec") zooms = np.array(nifti_img.header.get_zooms()) zooms[3] = repetition_time nifti_img.header.set_zooms(zooms) elif len(nib_img.shape) == 3: nifti_img = nib.Nifti1Image(nib_data, nib_affine, nib_img.header) nifti_img.header.set_xyzt_units(xyz="mm") else: nifti_img = nib.Nifti1Image(nib_data, nib_affine, nib_img.header) # saving the image nib.save(nifti_img, dst_file_path + new_name + ".nii.gz") # if it is already a nifti file, no need to convert it so we just copy rename if file.endswith(".nii.gz"): shutil.copy(src_file_path, dst_file_path + new_name + ".nii.gz") elif file.endswith(".nii"): shutil.copy(src_file_path, dst_file_path + new_name + ".nii") # compression just if .nii files if compress is True: print("zipping " + file) with open(dst_file_path + new_name + ".nii", 'rb') as f_in: with gzip.open(dst_file_path + new_name + ".nii.gz", 'wb', self._config["compressLevel"]) as f_out: shutil.copyfileobj(f_in, f_out) os.remove(dst_file_path + new_name + ".nii") elif dst_file_path.endswith("/ieeg"): remove_src_edf = True headers_dict = self.channels[part_match] if file.endswith(".edf"): remove_src_edf = False elif file.endswith(".edf.gz"): with gzip.open(src_file_path, 'rb', self._config["compressLevel"]) as f_in: with open(src_file_path.rsplit(".gz", 1)[0], 'wb') as f_out: shutil.copyfileobj(f_in, f_out) elif not self._config["ieeg"]["binary?"]: raise NotImplementedError( "{file} file format not yet supported. If file is binary format, please indicate so " "and what encoding in the config.json file".format( file=file)) elif headers_dict and any(".mat" in i for i in files) and self.sample_rate[ part_match] is not None: # assume has binary encoding try: # open binary file and write decoded numbers as array where rows = channels # check if zipped if file.endswith(".gz"): with gzip.open(src_file_path, 'rb', self._config["compressLevel"]) as f: data = np.frombuffer(f.read(), dtype=np.dtype(self._config["ieeg"]["binaryEncoding"])) else: with open(src_file_path, mode='rb') as f: data = np.fromfile(f, dtype=self._config["ieeg"]["binaryEncoding"]) array = np.reshape(data, [len(headers_dict), -1], order='F') # byte order is Fortran encoding, dont know why signal_headers = highlevel.make_signal_headers(headers_dict, sample_rate=self.sample_rate[part_match], physical_max=np.amax(array), physical_min=(np.amin(array))) print("converting binary" + src_file_path + " to edf" + os.path.splitext(src_file_path)[ 0] + ".edf") highlevel.write_edf(os.path.splitext(src_file_path)[0] + ".edf", array, signal_headers, digital=self._config["ieeg"]["digital"]) except OSError as e: print("eeg file is either not detailed well enough in config file or file type not yet " "supported") raise e else: raise FileNotFoundError("{file} header could not be found".format(file=file)) # check for extra channels in data, not working in other file modalities f = EdfReader(os.path.splitext(src_file_path)[0] + ".edf") extra_arrays = [] extra_signal_headers = [] if any(len(mat2df(os.path.join(root, fname))) == f.samples_in_file(0) for fname in [i for i in files if i.endswith(".mat")]) or any( len(mat2df(os.path.join(root, fname))) == f.samples_in_file(0) for fname in [ i for i in mat_list if i.endswith(".mat")]): for fname in [i for i in files + mat_list if i.endswith(".mat")]: sig_len = f.samples_in_file(0) if not os.path.isfile(fname): fname = os.path.join(root, fname) if mat2df(fname) is None: continue elif len(mat2df(fname)) == sig_len: if fname in files: files.remove(fname) if fname in mat_list: mat_list.remove(fname) df = pd.DataFrame(mat2df(fname)) for cols in df.columns: extra_arrays = np.vstack([extra_arrays, df[cols]]) extra_signal_headers.append(highlevel.make_signal_header( os.path.splitext(os.path.basename(fname))[0] , sample_rate=self.sample_rate[part_match])) elif sig_len * 0.99 <= len(mat2df(fname)) <= sig_len * 1.01: raise BufferError( file + "of size" + sig_len + "is not the same size as" + fname + "of size" + len(mat2df(fname))) f.close() # read edf and either copy data to BIDS file or save data as dict for writing later eeg.append(self.read_edf(os.path.splitext(src_file_path)[0] + ".edf", headers_dict, extra_arrays, extra_signal_headers)) if remove_src_edf: if self._is_verbose: print("Removing " + os.path.splitext(src_file_path)[0] + ".edf") os.remove(os.path.splitext(src_file_path)[0] + ".edf") # move the sidecar from input to output names_list.append(new_name) dst_file_path_list.append(dst_file_path) try: if run_match is not None: run_list.append(int(run_match)) except UnboundLocalError: pass if d_list: self.convert_1D(run_list, d_list, tsv_fso_runs, tsv_condition_runs, names_list, dst_file_path_list) if mat_list: # deal with remaining .mat files self.mat2tsv(mat_list) if txt_df_list: for txt_df_dict in txt_df_list: if self._config["coordsystem"] in txt_df_dict["name"]: if txt_df_dict["error"] is not None: raise txt_df_dict["error"] df = txt_df_dict["data"] df.columns = ["name1", "name2", "x", "y", "z", "hemisphere", "del"] df["name"] = df["name1"] + df["name2"].astype(str).str.zfill(2) df["hemisphere"] = df["hemisphere"] + df["del"] df = df.drop(columns=["name1", "name2", "del"]) df = pd.concat([df["name"], df["x"], df["y"], df["z"], df["hemisphere"]], axis=1) df.to_csv(self._bids_dir + "/sub-" + part_match_z + "/sub-" + part_match_z + "_space-Talairach_electrodes.tsv", sep="\t", index=False) elif self._config["eventFormat"]["AudioCorrection"] in txt_df_dict["name"]: if txt_df_dict["error"] is not None: raise txt_df_dict["error"] correct = txt_df_dict["data"] else: print("skipping " + txt_df_dict["name"]) # check final file set for new_name in names_list: print(new_name) file_path = dst_file_path_list[names_list.index(new_name)] full_name = file_path + new_name + ".edf" task_match = re.match(".*_task-(\w*)_.*", full_name) if task_match: task_label_match = task_match.group(1) # split any edfs according to tsvs if new_name.endswith("_ieeg") and any(re.match(new_name.split("_ieeg")[0].split("/", 1)[1] + "(?:" + "_acq-" + self._config["acq"]["content"][0] + ")?" + "_run-" + self._config["runIndex"]["content"][ 0] + "_events.tsv", set_file) for set_file in os.listdir(file_path)): # if edf is not yet split if self._is_verbose: print("Reading for split... ") if full_name in [i["bids_name"] for i in eeg]: eeg_dict = eeg[[i["bids_name"] for i in eeg].index(full_name)] else: raise LookupError( "This error should not have been raised, was edf file " + full_name + " ever written?" , [i["name"] for i in eeg]) [array, signal_headers, header] = [eeg_dict["data"], eeg_dict["signal_headers"], eeg_dict["file_header"]] start_nums = [] matches = [] for file in sorted(os.listdir(file_path)): match_tsv = re.match(new_name.split("_ieeg", 1)[0].split("/", 1)[1] + "(?:_acq-" + self._config["acq"]["content"][0] + ")?_run-(" + self._config["runIndex"]["content"][0] + ")_events.tsv", file) if match_tsv: df = pd.read_csv(os.path.join(file_path, file), sep="\t", header=0) # converting signal start and end to correct sample rate for data end_num = str2num(df[self._config["eventFormat"]["Timing"]["end"]].iloc[-1]) i = -1 while not isinstance(end_num, (int, float)): print(end_num, type(end_num)) i -= 1 end_num = str2num(df[self._config["eventFormat"]["Timing"]["end"]].iloc[i]) num_list = [round((float(x) / float(self._config["eventFormat"]["SampleRate"])) * signal_headers[0]["sample_rate"]) for x in ( df[self._config["eventFormat"]["Timing"]["start"]][0], end_num)] start_nums.append(tuple(num_list)) matches.append(match_tsv) for i in range(len(start_nums)): if i == 0: start = 0 practice = os.path.join(file_path, "practice" + new_name.split("_ieeg", 1)[0] + "_ieeg.edf") if not os.path.isfile(practice) and self._config["split"]["practice"]: os.makedirs(os.path.join(file_path, "practice"), exist_ok=True) highlevel.write_edf(practice, np.split(array, [0, start_nums[0][0]], axis=1)[1], signal_headers, header, digital=self._config["ieeg"]["digital"]) self.bidsignore("*practice*") else: start = start_nums[i - 1][1] if i == len(start_nums) - 1: end = array.shape[1] else: end = start_nums[i + 1][0] new_array = np.split(array, [start, end], axis=1)[1] tsv_name: str = os.path.join(file_path, matches[i].string) edf_name: str = os.path.join(file_path, matches[i].string.split("_events.tsv", 1)[0] + "_ieeg.edf") full_name = os.path.join(file_path, new_name.split("/", 1)[1] + ".edf") if self._is_verbose: print(full_name + "(Samples[" + str(start) + ":" + str(end) + "]) ---> " + edf_name) highlevel.write_edf(edf_name, new_array, signal_headers, header, digital=self._config["ieeg"]["digital"]) df = pd.read_csv(tsv_name, sep="\t", header=0) os.remove(tsv_name) # all column manipulation and math in frame2bids df_new = self.frame2bids(df, self._config["eventFormat"]["Events"], self.sample_rate[part_match], correct, start) df_new.to_csv(tsv_name, sep="\t", index=False, na_rep="n/a") # dont forget .json files! self.write_sidecar(edf_name) self.write_sidecar(tsv_name) continue # write JSON file for any missing files self.write_sidecar(file_path + new_name) # write any indicated .json files try: json_list = self._config["JSON_files"] except KeyError: json_list = dict() for jfile, contents in json_list.items(): print(part_match_z, task_label_match, jfile) file_name = os.path.join(self._bids_dir, "sub-" + part_match_z, "sub-" + part_match_z + "_task-" + task_label_match + "_" + jfile) with open(file_name, "w") as fst: json.dump(contents, fst) # Output if self._is_verbose: tree(self._bids_dir) # Finally, we check with bids_validator if everything went alright (This wont work) # self.bids_validator() else: print("Warning: No parameters are defined !") def write_sidecar(self, full_file): if full_file.endswith(".tsv"): # need to search BIDS specs for list of possible known BIDS columns data = dict() df = pd.read_csv(full_file, sep="\t") # for col in df.columns: # data[col] = return elif os.path.dirname(full_file).endswith("/ieeg"): if not full_file.endswith(".edf"): full_file = full_file + ".edf" entities = layout.parse_file_entities(full_file) f = EdfReader(full_file) if f.annotations_in_file == 0: description = "n/a" elif f.getPatientAdditional(): description = f.getPatientAdditional() elif f.getRecordingAdditional(): description = f.getRecordingAdditional() elif any((not i.size == 0) for i in f.readAnnotations()): description = [i for i in f.readAnnotations()] print("description:", description) else: raise SyntaxError(full_file + "was not annotated correctly") signals = [sig for sig in f.getSignalLabels() if "Trigger" not in sig] data = dict(TaskName=entities['task'], InstitutionName=self._config["institution"], iEEGReference=description, SamplingFrequency=int(f.getSignalHeader(0)["sample_rate"]), PowerLineFrequency=60, SoftwareFilters="n/a", ECOGChannelCount=len(signals), TriggerChannelCount=1, RecordingDuration=f.file_duration) elif os.path.dirname(full_file).endswith("/anat"): entities = layout.parse_file_entities(full_file + ".nii.gz") if entities["suffix"] == "CT": data = {} elif entities["suffix"] == "T1w": data = {} else: raise NotImplementedError(full_file + "is not yet accounted for") else: data = {} if not os.path.isfile(os.path.splitext(full_file)[0] + ".json"): with open(os.path.splitext(full_file)[0] + ".json", "w") as fst: json.dump(data, fst) def frame2bids(self, df: pd.DataFrame, events: Union[dict, List[dict]], data_sample_rate=None, audio_correction=None , start_at=0): new_df = None if isinstance(events, dict): events = list(events) event_order = 0 for event in events: event_order += 1 temp_df =
pd.DataFrame()
pandas.DataFrame
"""max temp before jul 1 or min after""" import datetime import psycopg2.extras import numpy as np import pandas as pd from matplotlib.patches import Rectangle from pyiem.plot.use_agg import plt from pyiem.util import get_autoplot_context, get_dbconn from pyiem.exceptions import NoDataFound PDICT = {'fall': 'Minimum Temperature after 1 July', 'spring': 'Maximum Temperature before 1 July'} PDICT2 = {'high': 'High Temperature', 'low': 'Low Temperature'} def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc['data'] = True desc['highcharts'] = True desc['description'] = """This plot presents the climatology and actual year's progression of warmest to date or coldest to date temperature. The simple average is presented along with the percentile intervals.""" desc['arguments'] = [ dict(type='station', name='station', default='IA0200', label='Select Station:', network='IACLIMATE'), dict(type='year', name='year', default=datetime.datetime.now().year, label='Year to Highlight:'), dict(type='select', name='half', default='fall', label='Option to Plot:', options=PDICT), dict(type='select', name='var', default='low', label='Variable to Plot:', options=PDICT2), dict(type='int', name='t', label='Highlight Temperature', default=32), ] return desc def get_context(fdict): """ Get the raw infromations we need""" pgconn = get_dbconn('coop') cursor = pgconn.cursor(cursor_factory=psycopg2.extras.DictCursor) today = datetime.date.today() thisyear = today.year ctx = get_autoplot_context(fdict, get_description()) year = ctx['year'] station = ctx['station'] varname = ctx['var'] half = ctx['half'] table = "alldata_%s" % (station[:2],) ab = ctx['_nt'].sts[station]['archive_begin'] if ab is None: raise NoDataFound("Unknown station metadata.") startyear = int(ab.year) data = np.ma.ones((thisyear-startyear+1, 366)) * 199 if half == 'fall': cursor.execute("""SELECT extract(doy from day), year, """ + varname + """ from """+table+""" WHERE station = %s and low is not null and high is not null and year >= %s""", (station, startyear)) else: cursor.execute("""SELECT extract(doy from day), year, """ + varname + """ from """+table+""" WHERE station = %s and high is not null and low is not null and year >= %s""", (station, startyear)) if cursor.rowcount == 0: raise NoDataFound("No Data Found.") for row in cursor: data[int(row[1] - startyear), int(row[0] - 1)] = row[2] data.mask = np.where(data == 199, True, False) doys = [] avg = [] p25 = [] p2p5 = [] p75 = [] p97p5 = [] mins = [] maxs = [] dyear = [] idx = year - startyear last_doy = int(today.strftime("%j")) if half == 'fall': for doy in range(181, 366): low = np.ma.min(data[:-1, 180:doy], 1) avg.append(np.ma.average(low)) mins.append(np.ma.min(low)) maxs.append(np.ma.max(low)) p = np.percentile(low, [2.5, 25, 75, 97.5]) p2p5.append(p[0]) p25.append(p[1]) p75.append(p[2]) p97p5.append(p[3]) doys.append(doy) if year == thisyear and doy > last_doy: continue dyear.append(np.ma.min(data[idx, 180:doy])) else: for doy in range(1, 181): low = np.ma.max(data[:-1, :doy], 1) avg.append(np.ma.average(low)) mins.append(np.ma.min(low)) maxs.append(np.ma.max(low)) p = np.percentile(low, [2.5, 25, 75, 97.5]) p2p5.append(p[0]) p25.append(p[1]) p75.append(p[2]) p97p5.append(p[3]) doys.append(doy) if year == thisyear and doy > last_doy: continue dyear.append(np.ma.max(data[idx, :doy])) # http://stackoverflow.com/questions/19736080 d = dict(doy=pd.Series(doys), mins=pd.Series(mins), maxs=pd.Series(maxs), p2p5=pd.Series(p2p5), p97p5=pd.Series(p97p5), p25=pd.Series(p25), p75=pd.Series(p75), avg=pd.Series(avg), thisyear=
pd.Series(dyear)
pandas.Series
from contextlib import nullcontext as does_not_raise from functools import partial import pandas as pd from pandas.testing import assert_series_equal from solarforecastarbiter import datamodel from solarforecastarbiter.reference_forecasts import persistence from solarforecastarbiter.conftest import default_observation import pytest def load_data_base(data, observation, data_start, data_end): # slice doesn't care about closed or interval label # so here we manually adjust start and end times if 'instant' in observation.interval_label: pass elif observation.interval_label == 'ending': data_start += pd.Timedelta('1s') elif observation.interval_label == 'beginning': data_end -= pd.Timedelta('1s') return data[data_start:data_end] @pytest.fixture def powerplant_metadata(): """1:1 AC:DC""" modeling_params = datamodel.FixedTiltModelingParameters( ac_capacity=200, dc_capacity=200, temperature_coefficient=-0.3, dc_loss_factor=3, ac_loss_factor=0, surface_tilt=30, surface_azimuth=180) metadata = datamodel.SolarPowerPlant( name='Albuquerque Baseline', latitude=35.05, longitude=-106.54, elevation=1657.0, timezone='America/Denver', modeling_parameters=modeling_params) return metadata @pytest.mark.parametrize('interval_label,closed,end', [ ('beginning', 'left', '20190404 1400'), ('ending', 'right', '20190404 1400'), ('instant', None, '20190404 1359') ]) def test_persistence_scalar(site_metadata, interval_label, closed, end): # interval beginning obs observation = default_observation( site_metadata, interval_length='5min', interval_label=interval_label) tz = 'America/Phoenix' data_index = pd.date_range( start='20190404', end='20190406', freq='5min', tz=tz) data = pd.Series(100., index=data_index) data_start = pd.Timestamp('20190404 1200', tz=tz) data_end = pd.Timestamp('20190404 1300', tz=tz) forecast_start = pd.Timestamp('20190404 1300', tz=tz) forecast_end = pd.Timestamp(end, tz=tz) interval_length = pd.Timedelta('5min') load_data = partial(load_data_base, data) fx = persistence.persistence_scalar( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data=load_data) expected_index = pd.date_range( start='20190404 1300', end=end, freq='5min', tz=tz, closed=closed) expected = pd.Series(100., index=expected_index) assert_series_equal(fx, expected) @pytest.mark.parametrize('obs_interval_label', ('beginning', 'ending', 'instant')) @pytest.mark.parametrize('interval_label,closed,end', [ ('beginning', 'left', '20190406 0000'), ('ending', 'right', '20190406 0000'), ('instant', None, '20190405 2359') ]) def test_persistence_interval(site_metadata, obs_interval_label, interval_label, closed, end): # interval beginning obs observation = default_observation( site_metadata, interval_length='5min', interval_label=obs_interval_label) tz = 'America/Phoenix' data_index = pd.date_range( start='20190404', end='20190406', freq='5min', tz=tz) # each element of data is equal to the hour value of its label data = pd.Series(data_index.hour, index=data_index, dtype=float) if obs_interval_label == 'ending': # e.g. timestamp 12:00:00 should be equal to 11 data = data.shift(1).fillna(0) data_start = pd.Timestamp('20190404 0000', tz=tz) data_end = pd.Timestamp(end, tz=tz) - pd.Timedelta('1d') forecast_start = pd.Timestamp('20190405 0000', tz=tz) interval_length = pd.Timedelta('60min') load_data = partial(load_data_base, data) expected_index = pd.date_range( start='20190405 0000', end=end, freq='60min', tz=tz, closed=closed) expected_vals = list(range(0, 24)) expected = pd.Series(expected_vals, index=expected_index, dtype=float) # handle permutations of parameters that should fail if data_end.minute == 59 and obs_interval_label != 'instant': expectation = pytest.raises(ValueError) elif data_end.minute == 0 and obs_interval_label == 'instant': expectation = pytest.raises(ValueError) else: expectation = does_not_raise() with expectation: fx = persistence.persistence_interval( observation, data_start, data_end, forecast_start, interval_length, interval_label, load_data) assert_series_equal(fx, expected) def test_persistence_interval_missing_data(site_metadata): # interval beginning obs observation = default_observation( site_metadata, interval_length='5min', interval_label='ending') tz = 'America/Phoenix' data_index = pd.date_range( start='20190404T1200', end='20190406', freq='5min', tz=tz) # each element of data is equal to the hour value of its label end = '20190406 0000' data = pd.Series(data_index.hour, index=data_index, dtype=float) data = data.shift(1) data_start = pd.Timestamp('20190404 0000', tz=tz) data_end = pd.Timestamp(end, tz=tz) - pd.Timedelta('1d') forecast_start = pd.Timestamp('20190405 0000', tz=tz) interval_length = pd.Timedelta('60min') load_data = partial(load_data_base, data) expected_index = pd.date_range( start='20190405 0000', end=end, freq='60min', tz=tz, closed='right') expected_vals = [None] * 12 + list(range(12, 24)) expected = pd.Series(expected_vals, index=expected_index, dtype=float) fx = persistence.persistence_interval( observation, data_start, data_end, forecast_start, interval_length, 'ending', load_data) assert_series_equal(fx, expected) @pytest.fixture def uniform_data(): tz = 'America/Phoenix' data_index = pd.date_range( start='20190404', end='20190406', freq='5min', tz=tz) data = pd.Series(100., index=data_index) return data @pytest.mark.parametrize( 'interval_label,expected_index,expected_ghi,expected_ac,obsscale', ( ('beginning', ['20190404 1300', '20190404 1330'], [96.41150694741889, 91.6991546408236], [96.60171202566896, 92.074796727846], 1), ('ending', ['20190404 1330', '20190404 1400'], [96.2818141290749, 91.5132934827808], [96.47816752344607, 91.89460837042301], 1), # test clipped at 2x clearsky ('beginning', ['20190404 1300', '20190404 1330'], [1926.5828549018618, 1832.4163238767312], [383.1524464326973, 365.19729186262526], 50) ) ) def test_persistence_scalar_index( powerplant_metadata, uniform_data, interval_label, expected_index, expected_ghi, expected_ac, obsscale): # ac_capacity is 200 from above observation = default_observation( powerplant_metadata, interval_length='5min', interval_label='beginning') observation_ac = default_observation( powerplant_metadata, interval_length='5min', interval_label='beginning', variable='ac_power') data = uniform_data * obsscale tz = data.index.tzinfo data_start = pd.Timestamp('20190404 1200', tz=tz) data_end = pd.Timestamp('20190404 1300', tz=tz) forecast_start = pd.Timestamp('20190404 1300', tz=tz) forecast_end = pd.Timestamp('20190404 1400', tz=tz) interval_length = pd.Timedelta('30min') load_data = partial(load_data_base, data) fx = persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) expected_index = pd.DatetimeIndex( expected_index, tz=tz, freq=interval_length) expected = pd.Series(expected_ghi, index=expected_index) assert_series_equal(fx, expected, check_names=False) fx = persistence.persistence_scalar_index( observation_ac, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) expected = pd.Series(expected_ac, index=expected_index) assert_series_equal(fx, expected, check_names=False) def test_persistence_scalar_index_instant_obs_fx( site_metadata, powerplant_metadata, uniform_data): # instantaneous obs and fx interval_length = pd.Timedelta('30min') interval_label = 'instant' observation = default_observation( site_metadata, interval_length='5min', interval_label=interval_label) observation_ac = default_observation( powerplant_metadata, interval_length='5min', interval_label=interval_label, variable='ac_power') data = uniform_data tz = data.index.tzinfo load_data = partial(load_data_base, data) data_start = pd.Timestamp('20190404 1200', tz=tz) data_end = pd.Timestamp('20190404 1259', tz=tz) forecast_start = pd.Timestamp('20190404 1300', tz=tz) forecast_end = pd.Timestamp('20190404 1359', tz=tz) fx = persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) expected_index = pd.DatetimeIndex( ['20190404 1300', '20190404 1330'], tz=tz, freq=interval_length) expected_values = [96.59022431746838, 91.99405501672328] expected = pd.Series(expected_values, index=expected_index) assert_series_equal(fx, expected, check_names=False) fx = persistence.persistence_scalar_index( observation_ac, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) expected_values = [96.77231379880752, 92.36198028963426] expected = pd.Series(expected_values, index=expected_index) assert_series_equal(fx, expected, check_names=False) # instant obs and fx, but with offset added to starts instead of ends data_start = pd.Timestamp('20190404 1201', tz=tz) data_end = pd.Timestamp('20190404 1300', tz=tz) forecast_start = pd.Timestamp('20190404 1301', tz=tz) forecast_end = pd.Timestamp('20190404 1400', tz=tz) fx = persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) expected_index = pd.DatetimeIndex( ['20190404 1300', '20190404 1330'], tz=tz, freq=interval_length) expected_values = [96.55340033645147, 91.89662922267517] expected = pd.Series(expected_values, index=expected_index) assert_series_equal(fx, expected, check_names=False) def test_persistence_scalar_index_invalid_times_instant(site_metadata): data = pd.Series(100., index=[0]) load_data = partial(load_data_base, data) tz = 'America/Phoenix' interval_label = 'instant' observation = default_observation( site_metadata, interval_length='5min', interval_label=interval_label) # instant obs that cover the whole interval - not allowed! data_start = pd.Timestamp('20190404 1200', tz=tz) data_end = pd.Timestamp('20190404 1300', tz=tz) forecast_start = pd.Timestamp('20190404 1300', tz=tz) forecast_end = pd.Timestamp('20190404 1400', tz=tz) interval_length = pd.Timedelta('30min') with pytest.raises(ValueError): persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) @pytest.mark.parametrize('interval_label', ['beginning', 'ending']) @pytest.mark.parametrize('data_start,data_end,forecast_start,forecast_end', ( ('20190404 1201', '20190404 1300', '20190404 1300', '20190404 1400'), ('20190404 1200', '20190404 1259', '20190404 1300', '20190404 1400'), ('20190404 1200', '20190404 1300', '20190404 1301', '20190404 1400'), ('20190404 1200', '20190404 1300', '20190404 1300', '20190404 1359'), )) def test_persistence_scalar_index_invalid_times_interval( site_metadata, interval_label, data_start, data_end, forecast_start, forecast_end): data = pd.Series(100., index=[0]) load_data = partial(load_data_base, data) tz = 'America/Phoenix' interval_length = pd.Timedelta('30min') # base times to mess with data_start = pd.Timestamp(data_start, tz=tz) data_end = pd.Timestamp(data_end, tz=tz) forecast_start = pd.Timestamp(forecast_start, tz=tz) forecast_end = pd.Timestamp(forecast_end, tz=tz) # interval average obs with invalid starts/ends observation = default_observation( site_metadata, interval_length='5min', interval_label=interval_label) errtext = "with interval_label beginning or ending" with pytest.raises(ValueError) as excinfo: persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) assert errtext in str(excinfo.value) def test_persistence_scalar_index_invalid_times_invalid_label(site_metadata): data = pd.Series(100., index=[0]) load_data = partial(load_data_base, data) tz = 'America/Phoenix' interval_length = pd.Timedelta('30min') interval_label = 'invalid' observation = default_observation( site_metadata, interval_length='5min') object.__setattr__(observation, 'interval_label', interval_label) data_start = pd.Timestamp('20190404 1200', tz=tz) data_end = pd.Timestamp('20190404 1300', tz=tz) forecast_start = pd.Timestamp('20190404 1300', tz=tz) forecast_end = pd.Timestamp('20190404 1400', tz=tz) with pytest.raises(ValueError) as excinfo: persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) assert "invalid interval_label" in str(excinfo.value) def test_persistence_scalar_index_low_solar_elevation( site_metadata, powerplant_metadata): interval_label = 'beginning' observation = default_observation( site_metadata, interval_length='5min', interval_label=interval_label) observation_ac = default_observation( powerplant_metadata, interval_length='5min', interval_label=interval_label, variable='ac_power') # at ABQ Baseline, solar apparent zenith for these points is # 2019-05-13 12:00:00+00:00 91.62 # 2019-05-13 12:05:00+00:00 90.09 # 2019-05-13 12:10:00+00:00 89.29 # 2019-05-13 12:15:00+00:00 88.45 # 2019-05-13 12:20:00+00:00 87.57 # 2019-05-13 12:25:00+00:00 86.66 tz = 'UTC' data_start = pd.Timestamp('20190513 1200', tz=tz) data_end = pd.Timestamp('20190513 1230', tz=tz) index = pd.date_range(start=data_start, end=data_end, freq='5min', closed='left') # clear sky 5 min avg (from 1 min avg) GHI is # [0., 0.10932908, 1.29732454, 4.67585122, 10.86548521, 19.83487399] # create data series that could produce obs / clear of # 0/0, 1/0.1, -1/1.3, 5/5, 10/10, 20/20 # average without limits is (10 - 1 + 1 + 1 + 1) / 5 = 2.4 # average with element limits of [0, 2] = (2 + 0 + 1 + 1 + 1) / 5 = 1 data = pd.Series([0, 1, -1, 5, 10, 20.], index=index) forecast_start = pd.Timestamp('20190513 1230', tz=tz) forecast_end = pd.Timestamp('20190513 1300', tz=tz) interval_length = pd.Timedelta('5min') load_data = partial(load_data_base, data) expected_index = pd.date_range( start=forecast_start, end=forecast_end, freq='5min', closed='left') # clear sky 5 min avg GHI is # [31.2, 44.5, 59.4, 75.4, 92.4, 110.1] expected_vals = [31.2, 44.5, 59.4, 75.4, 92.4, 110.1] expected = pd.Series(expected_vals, index=expected_index) fx = persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) assert_series_equal(fx, expected, check_less_precise=1, check_names=False) expected = pd.Series([0.2, 0.7, 1.2, 1.6, 2., 2.5], index=expected_index) fx = persistence.persistence_scalar_index( observation_ac, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) assert_series_equal(fx, expected, check_less_precise=1, check_names=False) @pytest.mark.parametrize("interval_label", [ 'beginning', 'ending' ]) @pytest.mark.parametrize("obs_values,axis,constant_values,expected_values", [ # constant_values = variable values # forecasts = percentiles [%] ([0, 0, 0, 20, 20, 20], 'x', [10, 20], [50, 100]), # constant_values = percentiles [%] # forecasts = variable values ([0, 0, 0, 4, 4, 4], 'y', [50], [2]), # invalid axis pytest.param([0, 0, 0, 4, 4, 4], 'percentile', [-1], None, marks=pytest.mark.xfail(raises=ValueError, strict=True)), ]) def test_persistence_probabilistic(site_metadata, interval_label, obs_values, axis, constant_values, expected_values): tz = 'UTC' interval_length = '5min' observation = default_observation( site_metadata, interval_length=interval_length, interval_label=interval_label ) data_start = pd.Timestamp('20190513 1200', tz=tz) data_end = pd.Timestamp('20190513 1230', tz=tz) closed = datamodel.CLOSED_MAPPING[interval_label] index = pd.date_range(start=data_start, end=data_end, freq='5min', closed=closed) data = pd.Series(obs_values, index=index, dtype=float) forecast_start = pd.Timestamp('20190513 1230', tz=tz) forecast_end = pd.Timestamp('20190513 1300', tz=tz) interval_length = pd.Timedelta('5min') load_data = partial(load_data_base, data) expected_index = pd.date_range(start=forecast_start, end=forecast_end, freq=interval_length, closed=closed) forecasts = persistence.persistence_probabilistic( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data, axis, constant_values ) assert isinstance(forecasts, list) for i, fx in enumerate(forecasts): pd.testing.assert_index_equal(fx.index, expected_index, check_categorical=False) pd.testing.assert_series_equal( fx, pd.Series(expected_values[i], index=expected_index, dtype=float) ) @pytest.mark.parametrize("obs_values,axis,constant_values,expected_values", [ # constant_values = variable values # forecasts = percentiles [%] ([0] * 11 + [20] * 11, 'x', [10, 20], [50, 100]), ([0] * 11 + [20] * 11, 'x', [10, 20], [50, 100]), # constant_values = percentiles [%] # forecasts = variable values ([0] * 11 + [4] * 11, 'y', [50], [2]), # invalid axis pytest.param([0] * 11 + [4] * 11, 'percentile', [-1], None, marks=pytest.mark.xfail(raises=ValueError, strict=True)), # insufficient observation data pytest.param([5.3, 7.3, 1.4] * 4, 'x', [50], None, marks=pytest.mark.xfail(raises=ValueError, strict=True)), pytest.param([], 'x', [50], None, marks=pytest.mark.xfail(raises=ValueError, strict=True)), pytest.param([None]*10, 'x', [50], None, marks=pytest.mark.xfail(raises=ValueError, strict=True)), ]) def test_persistence_probabilistic_timeofday(site_metadata, obs_values, axis, constant_values, expected_values): tz = 'UTC' interval_label = "beginning" interval_length = '1h' observation = default_observation( site_metadata, interval_length=interval_length, interval_label=interval_label ) # all observations at 9am each day data_end = pd.Timestamp('20190513T0900', tz=tz) data_start = data_end - pd.Timedelta("{}D".format(len(obs_values))) closed = datamodel.CLOSED_MAPPING[interval_label] index = pd.date_range(start=data_start, end=data_end, freq='1D', closed=closed) data = pd.Series(obs_values, index=index, dtype=float) # forecast 9am forecast_start = pd.Timestamp('20190514T0900', tz=tz) forecast_end = pd.Timestamp('20190514T1000', tz=tz) interval_length = pd.Timedelta('1h') load_data = partial(load_data_base, data) expected_index = pd.date_range(start=forecast_start, end=forecast_end, freq=interval_length, closed=closed) forecasts = persistence.persistence_probabilistic_timeofday( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data, axis, constant_values ) assert isinstance(forecasts, list) for i, fx in enumerate(forecasts): pd.testing.assert_index_equal(fx.index, expected_index, check_categorical=False) pd.testing.assert_series_equal( fx, pd.Series(expected_values[i], index=expected_index, dtype=float) ) @pytest.mark.parametrize("data_end,forecast_start", [ # no timezone (pd.Timestamp("20190513T0900"), pd.Timestamp("20190514T0900")), # same timezone ( pd.Timestamp("20190513T0900", tz="UTC"), pd.Timestamp("20190514T0900", tz="UTC") ), # different timezone ( pd.Timestamp("20190513T0200", tz="US/Pacific"), pd.Timestamp("20190514T0900", tz="UTC") ), # obs timezone, but no fx timezone ( pd.Timestamp("20190513T0900", tz="UTC"), pd.Timestamp("20190514T0900") ), # no obs timezone, but fx timezone ( pd.Timestamp("20190513T0900"), pd.Timestamp("20190514T0900", tz="UTC") ), ]) def test_persistence_probabilistic_timeofday_timezone(site_metadata, data_end, forecast_start): obs_values = [0] * 11 + [20] * 11 axis, constant_values, expected_values = 'x', [10, 20], [50, 100] interval_label = "beginning" interval_length = '1h' observation = default_observation( site_metadata, interval_length=interval_length, interval_label=interval_label ) # all observations at 9am each day data_start = data_end - pd.Timedelta("{}D".format(len(obs_values))) closed = datamodel.CLOSED_MAPPING[interval_label] index = pd.date_range(start=data_start, end=data_end, freq='1D', closed=closed) data = pd.Series(obs_values, index=index, dtype=float) # forecast 9am forecast_end = forecast_start + pd.Timedelta("1h") interval_length = pd.Timedelta('1h') load_data = partial(load_data_base, data) expected_index = pd.date_range(start=forecast_start, end=forecast_end, freq=interval_length, closed=closed) # if forecast without timezone, then use obs timezone if data.index.tzinfo is not None and forecast_start.tzinfo is None: expected_index = expected_index.tz_localize(data.index.tzinfo) forecasts = persistence.persistence_probabilistic_timeofday( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data, axis, constant_values ) assert isinstance(forecasts, list) for i, fx in enumerate(forecasts): pd.testing.assert_index_equal(fx.index, expected_index, check_categorical=False) pd.testing.assert_series_equal( fx, pd.Series(expected_values[i], index=expected_index, dtype=float) ) @pytest.mark.parametrize("interval_label", [ 'beginning', 'ending' ]) @pytest.mark.parametrize("obs_values,axis,constant_values,expected_values", [ # constant_values = variable values # forecasts = percentiles [%] ([0] * 15 + [20] * 15, 'x', [10, 20], [50, 100]), # constant_values = percentiles [%] # forecasts = variable values ([0] * 15 + [4] * 15, 'y', [50], [2]), ([None] * 30, 'y', [50], [None]), ([0] * 10 + [None] * 10 + [20] * 10, 'x', [10, 20], [50, 100]), ([0] * 10 + [None] * 10 + [4] * 10, 'y', [50], [2]), ]) def test_persistence_probabilistic_resampling( site_metadata, interval_label, obs_values, axis, constant_values, expected_values ): tz = 'UTC' interval_length = '1min' observation = default_observation( site_metadata, interval_length=interval_length, interval_label=interval_label ) data_start = pd.Timestamp('20190513 1200', tz=tz) data_end = pd.Timestamp('20190513 1230', tz=tz) closed = datamodel.CLOSED_MAPPING[interval_label] index = pd.date_range(start=data_start, end=data_end, freq='1min', closed=closed) data = pd.Series(obs_values, index=index, dtype=float) forecast_start = pd.Timestamp('20190513 1230', tz=tz) forecast_end = pd.Timestamp('20190513 1300', tz=tz) interval_length = pd.Timedelta('5min') load_data = partial(load_data_base, data) expected_index = pd.date_range(start=forecast_start, end=forecast_end, freq=interval_length, closed=closed) forecasts = persistence.persistence_probabilistic( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data, axis, constant_values ) assert isinstance(forecasts, list) for i, fx in enumerate(forecasts): pd.testing.assert_index_equal(fx.index, expected_index, check_categorical=False) pd.testing.assert_series_equal( fx, pd.Series(expected_values[i], index=expected_index, dtype=float) ) # all observations 9-10 each day. # This index is for (09:00, 10:00] (interval_label=ending), but subtract # 30 minutes for [09:00, 10:00) (interval_label=beginning) PROB_PERS_TOD_OBS_INDEX = pd.DatetimeIndex([ '2019-04-21 09:30:00+00:00', '2019-04-21 10:00:00+00:00', '2019-04-22 09:30:00+00:00', '2019-04-22 10:00:00+00:00', '2019-04-23 09:30:00+00:00', '2019-04-23 10:00:00+00:00', '2019-04-24 09:30:00+00:00', '2019-04-24 10:00:00+00:00', '2019-04-25 09:30:00+00:00', '2019-04-25 10:00:00+00:00', '2019-04-26 09:30:00+00:00', '2019-04-26 10:00:00+00:00', '2019-04-27 09:30:00+00:00', '2019-04-27 10:00:00+00:00', '2019-04-28 09:30:00+00:00', '2019-04-28 10:00:00+00:00', '2019-04-29 09:30:00+00:00', '2019-04-29 10:00:00+00:00', '2019-04-30 09:30:00+00:00', '2019-04-30 10:00:00+00:00', '2019-05-01 09:30:00+00:00', '2019-05-01 10:00:00+00:00', '2019-05-02 09:30:00+00:00', '2019-05-02 10:00:00+00:00', '2019-05-03 09:30:00+00:00', '2019-05-03 10:00:00+00:00', '2019-05-04 09:30:00+00:00', '2019-05-04 10:00:00+00:00', '2019-05-05 09:30:00+00:00', '2019-05-05 10:00:00+00:00', '2019-05-06 09:30:00+00:00', '2019-05-06 10:00:00+00:00', '2019-05-07 09:30:00+00:00', '2019-05-07 10:00:00+00:00', '2019-05-08 09:30:00+00:00', '2019-05-08 10:00:00+00:00', '2019-05-09 09:30:00+00:00', '2019-05-09 10:00:00+00:00', '2019-05-10 09:30:00+00:00', '2019-05-10 10:00:00+00:00', '2019-05-11 09:30:00+00:00', '2019-05-11 10:00:00+00:00', '2019-05-12 09:30:00+00:00', '2019-05-12 10:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None) @pytest.mark.parametrize('obs_interval_label_index', [ ('beginning', PROB_PERS_TOD_OBS_INDEX - pd.Timedelta('30min')), ('ending', PROB_PERS_TOD_OBS_INDEX) ]) @pytest.mark.parametrize('fx_interval_label_index', [ ('beginning', pd.DatetimeIndex(['20190514T0900Z'], freq='1h')), ('ending', pd.DatetimeIndex(['20190514T1000Z'], freq='1h')) ]) @pytest.mark.parametrize("obs_values,axis,constant_values,expected_values", [ # constant_values = variable values # forecasts = percentiles [%] # intervals always average to 10 if done properly, but 0 or 20 if # done improperly ([0, 20] * 22, 'x', [10, 20], [100., 100.]), # constant_values = percentiles [%] # forecasts = variable values ([0, 4] * 22, 'y', [50], [2.]), # works with nan ([None, 4] * 22, 'y', [50], [4.]), ([0.] + [None] * 42 + [4.], 'y', [50], [2.]), # first interval averages to 0, last to 20, else nan ([0.] + [None] * 42 + [20.], 'x', [10, 20], [50., 100.]), ]) def test_persistence_probabilistic_timeofday_resample( site_metadata, obs_values, axis, constant_values, expected_values, obs_interval_label_index, fx_interval_label_index ): obs_interval_label, obs_index = obs_interval_label_index fx_interval_label, fx_index = fx_interval_label_index tz = 'UTC' observation = default_observation( site_metadata, interval_length='30min', interval_label=obs_interval_label ) data_start = pd.Timestamp('20190421T0900', tz=tz) data_end = pd.Timestamp('20190512T1000', tz=tz) data = pd.Series(obs_values, index=obs_index, dtype=float) # forecast 9am - 10am, but label will depend on inputs forecast_start = pd.Timestamp('20190514T0900', tz=tz) forecast_end = pd.Timestamp('20190514T1000', tz=tz) interval_length = pd.Timedelta('1h') load_data = partial(load_data_base, data) expected_index = fx_index forecasts = persistence.persistence_probabilistic_timeofday( observation, data_start, data_end, forecast_start, forecast_end, interval_length, fx_interval_label, load_data, axis, constant_values ) assert isinstance(forecasts, list) for expected, fx in zip(expected_values, forecasts): pd.testing.assert_series_equal( fx, pd.Series(expected, index=expected_index) ) PROB_PERS_TOD_OBS_INDEX_2H = PROB_PERS_TOD_OBS_INDEX.union( PROB_PERS_TOD_OBS_INDEX + pd.Timedelta('1h') ) @pytest.mark.parametrize('obs_interval_label_index', [ ('beginning', PROB_PERS_TOD_OBS_INDEX_2H - pd.Timedelta('30min')), ('ending', PROB_PERS_TOD_OBS_INDEX_2H) ]) @pytest.mark.parametrize('fx_interval_label_index', [ ( 'beginning', pd.DatetimeIndex(['20190514T0900Z', '20190514T1000Z'], freq='1h') ), ( 'ending', pd.DatetimeIndex(['20190514T1000Z', '20190514T1100Z'], freq='1h') ) ]) @pytest.mark.parametrize("obs_values,axis,constant_values,expected_values", [ # first interval averages to 0, last to 20, else nan ([0.] + [None] * 86 + [20.], 'x', [10, 20], [[100., 0.], [100., 100.]]), # no valid observations in first forecast hour ( [None, None, 20., 20.] * 22, 'x', [10, 20], [[None, 0.], [None, 100.]] ), ]) def test_persistence_probabilistic_timeofday_resample_2h( site_metadata, obs_values, axis, constant_values, expected_values, obs_interval_label_index, fx_interval_label_index ): obs_interval_label, obs_index = obs_interval_label_index fx_interval_label, fx_index = fx_interval_label_index tz = 'UTC' observation = default_observation( site_metadata, interval_length='30min', interval_label=obs_interval_label ) data_start = pd.Timestamp('20190421T0900', tz=tz) data_end =
pd.Timestamp('20190512T1100', tz=tz)
pandas.Timestamp
import pandas as pd from collections import Counter from natsort import index_natsorted import numpy as np ids = [] text = [] ab_ids = [] ab_text = [] normal_vocab_freq_dist = Counter() ab_vocab_freq_dist = Counter() # keywords that most likely associated with abnormalities KEYWORDS = ['emphysema', 'cardiomegaly', 'borderline', 'mild', 'chronic', 'minimal', 'copd', 'hernia', 'hyperinflated', 'hemodialysis', 'atelectasis', 'degenerative', 'effusion', 'atherosclerotic', 'aneurysmal', 'granuloma', 'fracture', 'severe', 'concerns', 'fibrosis', 'scarring', 'crowding', 'opacities', 'persistent', 'ectatic', 'hyperinflation', 'moderate', 'opacity', 'calcified', 'effusions', 'edema', 'continued', 'low lung volume', 'pacing lead', 'resection', 'dilated', 'left', 'right', 'bilateral', 'hyperexpanded', 'calcification', 'concerning', 'concern', 'enlargement', 'lines', 'tubes', 'Emphysema', 'Hyperexpanded', 'advanced', 'Advanced', 'tortuosity'] with open('files/normal.txt', mode='r', encoding='utf-8') as f, open('files/abnormal.txt', mode='r', encoding='utf-8') as af: for line in f: xml, *label_text = line.split() ids.append(xml) normal_vocab_freq_dist.update(label_text) text.append(' '.join(label_text)) for line in af: xml, *label_text = line.split() ab_ids.append(xml) ab_vocab_freq_dist.update(label_text) ab_text.append(' '.join(label_text)) def first_filter_normal_label(a_string): if a_string.startswith(('no acute', 'no evidence', 'no active', 'no radiographic evidence')) and a_string.endswith( ('process.', 'disease.', 'abnormality.', 'abnormalities.', 'findings.', 'finding.', 'identified.', 'infiltrates.', 'infiltrate.')): return 0 else: return a_string def second_filter_normal(a_string): if isinstance(a_string, int): return a_string if a_string.startswith(('normal chest', 'normal exam', 'unremarkable chest', 'unremarkable examination', 'unremarkable radiographs')): return 0 if a_string.startswith('clear') and a_string.endswith('lungs.'): return 0 if a_string.startswith(('negative for', 'negative chest')): return 0 if a_string.startswith('negative') and a_string.endswith('negative.'): return 0 else: return a_string def third_filter_normal(a_string): if isinstance(a_string, int): return a_string if a_string.startswith(('stable appearance', 'stable chest radiograph', 'stable exam', 'stable', 'stable post-procedural', 'stable radiographic')): if any(w in a_string for w in KEYWORDS): return a_string else: return 0 if a_string.startswith('clear') or a_string.endswith('clear.'): if any(w in a_string for w in KEYWORDS): return a_string else: return 0 return a_string def fourth_filter_normal(a_string): if isinstance(a_string, int): return a_string if 'no acute' or 'without acute' in a_string: if any(w in a_string for w in KEYWORDS): return 2 elif 'stable' or 'clear' or 'normal' in a_string: return 0 return a_string print(normal_vocab_freq_dist.most_common(50)) print(ab_vocab_freq_dist.most_common(50)) # filtering strickt normal from borderline/mild abnormal e.g. stable/chronic conditions but no acute findings normal = {'xmlId': ids, 'label_text': text} normal_df = pd.DataFrame(normal) normal_df['label'] = normal_df['label_text'] normal_df['label'] = normal_df['label'].apply(first_filter_normal_label) normal_df['label'] = normal_df['label'].apply(second_filter_normal) normal_df['label'] = normal_df['label'].apply(third_filter_normal) normal_df['label'] = normal_df['label'].apply(fourth_filter_normal) print(normal_df.loc[normal_df['label'] != 0]) print(normal_df.loc[normal_df['label'] == 0]) print('creating data frame from abnormal.txt') # dataframe for abnormal file ab_normal = {'xmlId': ab_ids, 'label_text': ab_text} ab_normal_df =
pd.DataFrame(ab_normal)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # ReEDS Scenarios on PV ICE Tool STATES # To explore different scenarios for furture installation projections of PV (or any technology), ReEDS output data can be useful in providing standard scenarios. ReEDS installation projections are used in this journal as input data to the PV ICE tool. # # Current sections include: # # <ol> # <li> ### Reading a standard ReEDS output file and saving it in a PV ICE input format </li> # <li>### Reading scenarios of interest and running PV ICE tool </li> # <li>###Plotting </li> # <li>### GeoPlotting.</li> # </ol> # Notes: # # Scenarios of Interest: # the Ref.Mod, # o 95-by-35.Adv, and # o 95-by-35+Elec.Adv+DR ones # # In[1]: import PV_ICE import numpy as np import pandas as pd import os,sys import matplotlib.pyplot as plt from IPython.display import display plt.rcParams.update({'font.size': 22}) plt.rcParams['figure.figsize'] = (12, 8) # In[2]: import os from pathlib import Path testfolder = str(Path().resolve().parent.parent.parent / 'PV_ICE' / 'TEMP' / 'SF_States') statedatafolder = str(Path().resolve().parent.parent.parent / 'PV_ICE' / 'TEMP' / 'STATEs') print ("Your simulation will be stored in %s" % testfolder) # In[3]: PV_ICE.__version__ # ### Reading REEDS original file to get list of SCENARIOs, PCAs, and STATEs # In[4]: r""" reedsFile = str(Path().resolve().parent.parent.parent / 'December Core Scenarios ReEDS Outputs Solar Futures v2a.xlsx') print ("Input file is stored in %s" % reedsFile) rawdf = pd.read_excel(reedsFile, sheet_name="UPV Capacity (GW)") #index_col=[0,2,3]) #this casts scenario, PCA and State as levels #now set year as an index in place #rawdf.drop(columns=['State'], inplace=True) rawdf.drop(columns=['Tech'], inplace=True) rawdf.set_index(['Scenario','Year','PCA', 'State'], inplace=True) scenarios = list(rawdf.index.get_level_values('Scenario').unique()) PCAs = list(rawdf.index.get_level_values('PCA').unique()) STATEs = list(rawdf.index.get_level_values('State').unique()) simulationname = scenarios simulationname = [w.replace('+', '_') for w in simulationname] simulationname SFscenarios = [simulationname[0], simulationname[4], simulationname[8]] """ # ### Reading GIS inputs # In[5]: r""" GISfile = str(Path().resolve().parent.parent.parent.parent / 'gis_centroid_n.xlsx') GIS = pd.read_excel(GISfile) GIS = GIS.set_index('id') GIS.head() GIS.loc['p1'].long """ # ### Create Scenarios in PV_ICE # #### Downselect to Solar Future scenarios of interest # # Scenarios of Interest: # <li> Ref.Mod # <li> 95-by-35.Adv # <li> 95-by-35+Elec.Adv+DR # In[6]: SFscenarios = ['Reference.Mod', '95-by-35.Adv', '95-by-35_Elec.Adv_DR'] SFscenarios # In[7]: STATEs = ['WA', 'CA', 'VA', 'FL', 'MI', 'IN', 'KY', 'OH', 'PA', 'WV', 'NV', 'MD', 'DE', 'NJ', 'NY', 'VT', 'NH', 'MA', 'CT', 'RI', 'ME', 'ID', 'MT', 'WY', 'UT', 'AZ', 'NM', 'SD', 'CO', 'ND', 'NE', 'MN', 'IA', 'WI', 'TX', 'OK', 'OR', 'KS', 'MO', 'AR', 'LA', 'IL', 'MS', 'AL', 'TN', 'GA', 'SC', 'NC'] # ### Create the 3 Scenarios and assign Baselines # # Keeping track of each scenario as its own PV ICE Object. # In[8]: MATERIALS = ['glass', 'silicon', 'silver','copper','aluminium','backsheet','encapsulant'] # In[9]: #for ii in range (0, 1): #len(scenarios): i = 0 r1 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(STATEs)): filetitle = SFscenarios[i]+'_'+STATEs[jj]+'.csv' filetitle = os.path.join(statedatafolder, filetitle) r1.createScenario(name=STATEs[jj], file=filetitle) r1.scenario[STATEs[jj]].addMaterials(MATERIALS, baselinefolder=r'..\..\baselines\SolarFutures_2021', nameformat=r'\baseline_material_{}_Reeds.csv') i = 1 r2 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(STATEs)): filetitle = SFscenarios[i]+'_'+STATEs[jj]+'.csv' filetitle = os.path.join(statedatafolder, filetitle) r2.createScenario(name=STATEs[jj], file=filetitle) r2.scenario[STATEs[jj]].addMaterials(MATERIALS, baselinefolder=r'..\..\baselines\SolarFutures_2021', nameformat=r'\baseline_material_{}_Reeds.csv') i = 2 r3 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(STATEs)): filetitle = SFscenarios[i]+'_'+STATEs[jj]+'.csv' filetitle = os.path.join(statedatafolder, filetitle) r3.createScenario(name=STATEs[jj], file=filetitle) r3.scenario[STATEs[jj]].addMaterials(MATERIALS, baselinefolder=r'..\..\baselines\SolarFutures_2021', nameformat=r'\baseline_material_{}_Reeds.csv') # # Calculate Mass Flow # In[10]: r1.scenMod_noCircularity() r2.scenMod_noCircularity() r3.scenMod_noCircularity() IRENA= False PERFECTMFG = False ELorRL = 'RL' if IRENA: r1.scenMod_IRENIFY(ELorRL=ELorRL) r2.scenMod_IRENIFY(ELorRL=ELorRL) r3.scenMod_IRENIFY(ELorRL=ELorRL) if PERFECTMFG: r1.scenMod_PerfectManufacturing() r2.scenMod_PerfectManufacturing() r3.scenMod_PerfectManufacturing() # In[11]: r1.calculateMassFlow() r2.calculateMassFlow() r3.calculateMassFlow() # In[12]: print("STATEs:", r1.scenario.keys()) print("Module Keys:", r1.scenario[STATEs[jj]].data.keys()) print("Material Keys: ", r1.scenario[STATEs[jj]].material['glass'].materialdata.keys()) # # OPEN EI # In[13]: kk=0 SFScenarios = [r1, r2, r3] SFScenarios[kk].name # In[14]: # WORK ON THIS FOIR OPENEI keyw=['mat_Virgin_Stock','mat_Total_EOL_Landfilled','mat_Total_MFG_Landfilled', 'mat_Total_Landfilled', 'new_Installed_Capacity_[MW]','Installed_Capacity_[W]'] keywprint = ['VirginMaterialDemand','EOLMaterial', 'ManufacturingScrap','ManufacturingScrapAndEOLMaterial', 'NewInstalledCapacity','InstalledCapacity'] keywunits = ['MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MW','MW'] keywdcumneed = [True,True,True,True, True,False] keywdlevel = ['material','material','material','material', 'module','module'] keywscale = [1000000, 1000000, 1000000, 1000000, 1,1e6] materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials for zz in range (0, len(STATEs)): foo = pd.DataFrame() for jj in range (0, len(keyw)): if keywdlevel[jj] == 'material': for ii in range (0, len(materials)): sentit = '@value|'+keywprint[jj]+'|'+materials[ii].capitalize() +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyw[jj]]/keywscale[jj] if keywdcumneed[jj]: for ii in range (0, len(materials)): sentit = '@value|Cumulative'+keywprint[jj]+'|'+materials[ii].capitalize() +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyw[jj]].cumsum()/keywscale[jj] else: sentit = '@value|'+keywprint[jj]+'|'+'PV' +'#'+keywunits[jj] #sentit = '@value|'+keywprint[jj]+'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]]/keywscale[jj] if keywdcumneed[jj]: sentit = '@value|Cumulative'+keywprint[jj]+'|'+'PV' +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]].cumsum()/keywscale[jj] foo['@states'] = STATEs[zz] foo['@scenario|Solar Futures'] = SFScenarios[kk].name foo['@timeseries|Year'] = SFScenarios[kk].scenario[STATEs[zz]].data.year scenariolist = scenariolist.append(foo) cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] #scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PV ICE OpenEI.csv', index=False) print("Done") # In[15]: # WORK ON THIS FOIR OPENEI keyw=['mat_Virgin_Stock','mat_Total_EOL_Landfilled','mat_Total_MFG_Landfilled', 'mat_Total_Landfilled', 'new_Installed_Capacity_[MW]','Installed_Capacity_[W]'] keywprint = ['VirginMaterialDemand','EOLMaterial', 'ManufacturingScrap','ManufacturingScrapAndEOLMaterial', 'NewInstalledCapacity','InstalledCapacity'] keywunits = ['MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MW','MW'] keywdcumneed = [True,True,True,True, True,False] keywdlevel = ['material','material','material','material', 'module','module'] keywscale = [1000000, 1000000, 1000000, 1000000, 1,1e6] materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials for zz in range (0, len(STATEs)): foo = pd.DataFrame() for jj in range (0, len(keyw)): if keywdlevel[jj] == 'material': for ii in range (0, len(materials)): sentit = '@value|'+keywprint[jj]+'|'+materials[ii].capitalize() +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyw[jj]]/keywscale[jj] else: sentit = '@value|'+keywprint[jj]+'|'+'PV' +'#'+keywunits[jj] #sentit = '@value|'+keywprint[jj]+'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]]/keywscale[jj] foo['@states'] = STATEs[zz] foo['@scenario|Solar Futures'] = SFScenarios[kk].name foo['@timeseries|Year'] = SFScenarios[kk].scenario[STATEs[zz]].data.year scenariolist = scenariolist.append(foo) cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] #scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PV ICE OpenEI Yearly Only.csv', index=False) print("Done") # In[16]: # WORK ON THIS FOIR OPENEI keyw=['mat_Virgin_Stock','mat_Total_EOL_Landfilled','mat_Total_MFG_Landfilled', 'mat_Total_Landfilled', 'new_Installed_Capacity_[MW]','Installed_Capacity_[W]'] keywprint = ['VirginMaterialDemand','EOLMaterial', 'ManufacturingScrap','ManufacturingScrapAndEOLMaterial', 'NewInstalledCapacity','InstalledCapacity'] keywunits = ['MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MW','MW'] keywdcumneed = [True,True,True,True, True,False] keywdlevel = ['material','material','material','material', 'module','module'] keywscale = [1000000, 1000000, 1000000, 1000000, 1,1e6] materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials for zz in range (0, len(STATEs)): foo = pd.DataFrame() for jj in range (0, len(keyw)): if keywdlevel[jj] == 'material': if keywdcumneed[jj]: for ii in range (0, len(materials)): sentit = '@value|Cumulative'+keywprint[jj]+'|'+materials[ii].capitalize() +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyw[jj]].cumsum()/keywscale[jj] else: if keywdcumneed[jj]: sentit = '@value|Cumulative'+keywprint[jj]+'|'+'PV' +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]].cumsum()/keywscale[jj] foo['@states'] = STATEs[zz] foo['@scenario|Solar Futures'] = SFScenarios[kk].name foo['@timeseries|Year'] = SFScenarios[kk].scenario[STATEs[zz]].data.year scenariolist = scenariolist.append(foo) cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] #scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv(title_Method+' OpenEI Cumulatives Only.csv', index=False) print("Done") # In[ ]: # WORK ON THIS FOIR OPENEI # SCENARIO DIFERENCeS keyw=['new_Installed_Capacity_[MW]','Installed_Capacity_[W]'] keywprint = ['NewInstalledCapacity','InstalledCapacity'] keywprint = ['NewInstalledCapacity','InstalledCapacity'] sfprint = ['Reference','Grid Decarbonization', 'High Electrification'] keywunits = ['MW','MW'] keywdcumneed = [True,False] keywdlevel = ['module','module'] keywscale = [1,1e6] materials = [] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for zz in range (0, len(STATEs)): foo = pd.DataFrame() for jj in range (0, len(keyw)): # kk -- scenario for kk in range(0, 3): sentit = '@value|'+keywprint[jj]+'|'+sfprint[kk]+'#'+keywunits[jj] #sentit = '@value|'+keywprint[jj]+'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]]/keywscale[jj] if keywdcumneed[jj]: sentit = '@value|Cumulative'+keywprint[jj]+'|'+sfprint[kk]+'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]].cumsum()/keywscale[jj] # foo['@value|scenario|Solar Futures'] = SFScenarios[kk].name foo['@states'] = STATEs[zz] foo['@timeseries|Year'] = SFScenarios[kk].scenario[STATEs[zz]].data.year scenariolist = scenariolist.append(foo) cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] #scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PV ICE OpenEI ScenarioDifferences.csv', index=False) print("Done") # In[ ]: scenariolist.head() # # SAVE DATA FOR BILLY: STATES # In[ ]: #for 3 significant numbers rounding N = 2 # SFScenarios[kk].scenario[PCAs[zz]].data.year # # Index 20 --> 2030 # # Index 30 --> 2040 # # Index 40 --> 2050 # In[ ]: idx2030 = 20 idx2040 = 30 idx2050 = 40 print("index ", idx2030, " is year ", r1.scenario[STATEs[0]].data['year'].iloc[idx2030]) print("index ", idx2040, " is year ", r1.scenario[STATEs[0]].data['year'].iloc[idx2040]) print("index ", idx2050, " is year ", r1.scenario[STATEs[0]].data['year'].iloc[idx2050]) # #### 6 - STATE Cumulative Virgin Needs by 2050 # # In[ ]: keyword='mat_Virgin_Stock' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium', 'encapsulant', 'backsheet'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = [] for ii in range (0, len(materials)): keywordsum = [] for zz in range (0, len(STATEs)): keywordsum.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword].sum()) materiallist.append(keywordsum) df = pd.DataFrame (materiallist,columns=STATEs, index = materials) df = df.T df = df.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , df], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PV ICE 6 - STATE Cumulative2050 VirginMaterialNeeds_tons.csv') # #### 7 - STATE Cumulative EoL Only Waste by 2050 # In[ ]: keyword='mat_Total_EOL_Landfilled' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium', 'encapsulant', 'backsheet'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = [] for ii in range (0, len(materials)): keywordsum = [] for zz in range (0, len(STATEs)): keywordsum.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword].sum()) materiallist.append(keywordsum) df = pd.DataFrame (materiallist,columns=STATEs, index = materials) df = df.T df = df.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , df], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PV ICE 7 - STATE Cumulative2050 Waste_EOL_tons.csv') # ##### 8 - STATE Yearly Virgin Needs 2030 2040 2050 # In[ ]: keyword='mat_Virgin_Stock' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium', 'encapsulant', 'backsheet'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = pd.DataFrame() for ii in range (0, len(materials)): keywordsum2030 = [] keywordsum2040 = [] keywordsum2050 = [] for zz in range (0, len(STATEs)): keywordsum2030.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2030]) keywordsum2040.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2040]) keywordsum2050.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2050]) yearlylist = pd.DataFrame([keywordsum2030, keywordsum2040, keywordsum2050], columns=STATEs, index = [2030, 2040, 2050]) yearlylist = yearlylist.T yearlylist = yearlylist.add_prefix(materials[ii]+'_') materiallist = pd.concat([materiallist, yearlylist], axis=1) materiallist = materiallist.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , materiallist], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PVICE 8 - STATE Yearly 2030 2040 2050 VirginMaterialNeeds_tons.csv') # #### 9 - STATE Yearly EoL Waste 2030 2040 205 # In[ ]: keyword='mat_Total_EOL_Landfilled' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium', 'encapsulant', 'backsheet'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = pd.DataFrame() for ii in range (0, len(materials)): keywordsum2030 = [] keywordsum2040 = [] keywordsum2050 = [] for zz in range (0, len(STATEs)): keywordsum2030.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2030]) keywordsum2040.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2040]) keywordsum2050.append(SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyword][idx2050]) yearlylist = pd.DataFrame([keywordsum2030, keywordsum2040, keywordsum2050], columns=STATEs, index = [2030, 2040, 2050]) yearlylist = yearlylist.T yearlylist = yearlylist.add_prefix(materials[ii]+'_') materiallist =
pd.concat([materiallist, yearlylist], axis=1)
pandas.concat
import io import time import json from datetime import datetime import pandas as pd from pathlib import Path import requests drop_cols = [ '3-day average of daily number of positive tests (may count people more than once)', 'daily total tests completed (may count people more than once)', '3-day average of new people who tested positive (counts first positive lab per person)', '3-day average of currently hospitalized', 'daily number of vaccine doses administered beyond the primary series ' ] def save_file(df, file_path, current_date): # save/update file if not Path(file_path).exists(): df.to_csv(file_path, index=False) else: # get prior file date prior = pd.read_csv(file_path, parse_dates=['date']) prior_date = pd.to_datetime(prior['date'].max()).date() if current_date > prior_date: df.to_csv(file_path, mode='a', header=False, index=False) return def scrape_sheet(sheet_id): # load previous raw_data and get prior date raw_general = './data/raw/ri-covid-19.csv' df = pd.read_csv(raw_general, parse_dates=['date']) prior_date = df['date'].max().tz_localize('EST').date() # wait till 5:05 then check every 15 mins for update target = datetime.now().replace(hour=17).replace(minute=5) while datetime.now() < target: print(f"[status] waiting for 5pm", end='\r') time.sleep(60) # load data from RI - DOH spreadsheet gen_url = f'https://docs.google.com/spreadsheets/d/{sheet_id}264100583' df = pd.read_csv(gen_url).dropna(axis=1, how='all') date = list(df)[1].strip() date = pd.to_datetime(date).tz_localize('EST').date() if df.shape[0] != 27: print('[ERROR: summary page format changed]') while not prior_date < date: print(f"[status] waiting for update...{time.strftime('%H:%M')}", end='\r') time.sleep(5 * 60) df = pd.read_csv(gen_url) date = list(df)[1].strip() date = pd.to_datetime(date).tz_localize('EST').date() else: print('[status] found new update pausing for 2 mins') time.sleep(2 * 60) ## transform general sheet df['date'] = date df.columns = ['metric', 'count', 'date'] save_file(df, raw_general, date) ## scrape geographic sheet geo_url = f'https://docs.google.com/spreadsheets/d/{sheet_id}901548302' geo_df = pd.read_csv(geo_url) # get grographic date & fix cols geo_date = geo_df.iloc[-1][1] geo_date = pd.to_datetime(geo_date) geo_df['date'] = geo_date cols = [x for x in list(geo_df) if 'Rate' not in x] geo_df = geo_df[cols] geo_df = geo_df.dropna(axis=0) geo_df.columns = ['city_town', 'count', 'hostpialized', 'deaths', 'fully_vaccinated', 'date'] # save file raw_geo = './data/raw/geo-ri-covid-19.csv' save_file(geo_df, raw_geo, geo_date) ## scrape demographics sheet dem_url = f'https://docs.google.com/spreadsheets/d/{sheet_id}31350783' dem_df = pd.read_csv(dem_url) # make sure no columns were added/removed if not dem_df.shape == (31, 9): print('[error] demographics format changed') return else: # get demographics updated date dem_date = dem_df.iloc[-1][1] dem_date = pd.to_datetime(dem_date).tz_localize('EST').date() # drop percentage columns & rename dem_df = dem_df.drop(dem_df.columns[[1, 2, 4, 6, 8]], axis=1) dem_df.columns = ['metric', 'case_count', 'hosptialized', 'deaths'] # get data sex = dem_df[1:4] age = dem_df[5:17] race = dem_df[18:24] dem_df = pd.concat([sex, age, race]) dem_df['date'] = dem_date raw_dem = './data/raw/demographics-covid-19.csv' save_file(dem_df, raw_dem, dem_date) def scrape_revised(sheet_id): # load previous revised_data and get prior date raw_revised = './data/raw/revised-data.csv' df = pd.read_csv(raw_revised, parse_dates=['date']) prior_date = df['date'].max().tz_localize('EST').date() # load revised sheet & fix column names url = f'https://docs.google.com/spreadsheets/d/{sheet_id}1592746937' df = pd.read_csv(url, parse_dates=['Date']) df.columns = [x.lower() for x in list(df)] # test to try and make sure columns dont change if df.shape[1] != 36 or list(df)[6] != 'daily total tests completed (may count people more than once)': print('[error] revised sheet columns changed') return # check if updated if df['date'].max() > prior_date: df = df.drop(columns=drop_cols) # re order columns move_cols = (list(df)[6:11] + list(df)[22:31]) cols = [x for x in list(df) if x not in move_cols] cols.extend(move_cols) df = df[cols] df['date_scraped'] = datetime.strftime(datetime.now(), '%m/%d/%Y') save_file(df, raw_revised, df['date'].max()) def scrape_nursing_homes(sheet_id): # load prior date raw_facility = './data/raw/nurse-homes-covid-19.csv' df = pd.read_csv(raw_facility, parse_dates=['date']) prior_date = df['date'].max().tz_localize('EST').date() url = f'https://docs.google.com/spreadsheets/d/{sheet_id}500394186' df = pd.read_csv(url) # get date of last update date = df.iloc[0,0].split(' ')[-1] date = pd.to_datetime(date).tz_localize('EST').date() if not date > prior_date: print('\n[status] nursing homes:\tno update') return else: # fix headers df.columns = df.iloc[1] # drop past 14 days column df = df.drop(columns='New Resident Cases (in past 14 days)') df['Facility Name'] = df['Facility Name'].str.replace(u'\xa0', ' ') # random unicode appeared # fix dataframe shape assisted = df[df['Facility Name'] == 'Assisted Living Facilities'].index[0] nursing_homes = df[3:assisted].copy() assisted_living = df[assisted+1:-1].copy() # add facility type & recombine nursing_homes['type'] = 'nursing home' assisted_living['type'] = 'assisted living' df = pd.concat([nursing_homes, assisted_living]).reset_index(drop=True) # add date df['date'] = date save_file(df, raw_facility, date) print('[status] nursing homes:\tupdated') def scrape_zip_codes(sheet_id): # load prior date raw_zip = './data/raw/zip-codes-covid-19.csv' df = pd.read_csv(raw_zip, parse_dates=['date']) prior_date = df['date'].max().tz_localize('EST').date() url = f'https://docs.google.com/spreadsheets/d/{sheet_id}365656702' df = pd.read_csv(url) # check if updated date = df.iloc[-1][1].strip() date = pd.to_datetime(date).tz_localize('EST').date() if not date > prior_date: print('[status] zip codes:\tno update') return else: # stop # pending more info df.columns = ['zip_code', 'count', 'rate'] df = df[:df[df.zip_code == 'Pending further info'].index[0]] df = df[['zip_code', 'count']] # add date & save df['date'] = date save_file(df, raw_zip, date) print('[status] zip codes:\tupdated') def scrape_schools(sheet_id): # load prior date raw_school = './data/raw/schools-covid-19.csv' df =
pd.read_csv(raw_school, parse_dates=['date'])
pandas.read_csv
from itertools import product import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal import pytest from solarforecastarbiter.validation import quality_mapping def test_ok_user_flagged(): assert quality_mapping.DESCRIPTION_MASK_MAPPING['OK'] == 0 assert quality_mapping.DESCRIPTION_MASK_MAPPING['USER FLAGGED'] == 1 def test_description_dict_version_compatibility(): for dict_ in quality_mapping.BITMASK_DESCRIPTION_DICT.values(): assert dict_['VERSION IDENTIFIER 0'] == 1 << 1 assert dict_['VERSION IDENTIFIER 1'] == 1 << 2 assert dict_['VERSION IDENTIFIER 2'] == 1 << 3 def test_latest_version_flag(): # test valid while only identifiers 0 - 2 present last_identifier = max( int(vi.split(' ')[-1]) for vi in quality_mapping.DESCRIPTION_MASK_MAPPING.keys() if vi.startswith('VERSION IDENTIFIER')) assert last_identifier == 2 assert (quality_mapping.LATEST_VERSION_FLAG == quality_mapping.LATEST_VERSION << 1) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask(flag_val): flag, mask = flag_val mask |= quality_mapping.LATEST_VERSION_FLAG ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, True) assert_series_equal(flags, pd.Series([ mask, mask, quality_mapping.LATEST_VERSION_FLAG, mask, quality_mapping.LATEST_VERSION_FLAG])) @pytest.mark.parametrize('flag_invert', product( quality_mapping.DESCRIPTION_MASK_MAPPING.keys(), [True, False])) def test_convert_bool_flags_to_flag_mask_none(flag_invert): assert quality_mapping.convert_bool_flags_to_flag_mask( None, *flag_invert) is None @pytest.mark.parametrize('flag_invert', product( quality_mapping.DESCRIPTION_MASK_MAPPING.keys(), [True, False])) def test_convert_bool_flags_to_flag_mask_adds_latest_version(flag_invert): ser = pd.Series([0, 0, 0, 1, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask( ser, *flag_invert) assert (flags & quality_mapping.LATEST_VERSION_FLAG).all() @pytest.fixture() def ignore_latest_version(mocker): mocker.patch( 'solarforecastarbiter.validation.quality_mapping.LATEST_VERSION_FLAG', 0) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask_invert(flag_val, ignore_latest_version): flag, mask = flag_val ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, True) assert_series_equal(flags, pd.Series([mask, mask, 0, mask, 0])) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask_no_invert(flag_val, ignore_latest_version): flag, mask = flag_val ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, False) assert_series_equal(flags, pd.Series([0, 0, mask, 0, mask])) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_mask_flags(flag_val): flag, mask = flag_val latest = quality_mapping.LATEST_VERSION_FLAG mask |= latest @quality_mapping.mask_flags(flag) def f(): return pd.Series([True, True, False, False]) out = f(_return_mask=True) assert_series_equal(out, pd.Series([latest, latest, mask, mask])) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_mask_flags_tuple(flag_val): flag, mask = flag_val latest = quality_mapping.LATEST_VERSION_FLAG mask |= latest @quality_mapping.mask_flags(flag) def f(): return pd.Series([True, True, False, False]), None out = f(_return_mask=True) assert_series_equal(out[0], pd.Series([latest, latest, mask, mask])) assert out[1] is None @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_mask_flags_noop(flag_val): flag, mask = flag_val latest = quality_mapping.LATEST_VERSION_FLAG mask |= latest inp = pd.Series([True, True, False, False]) @quality_mapping.mask_flags(flag) def f(): return inp out = f() assert_series_equal(out, inp) @pytest.mark.parametrize('flag,expected', [ (0b10, 1), (0b11, 1), (0b10010, 1), (0b10010010, 1), (0b100, 2), (0b110, 3), (0b1110001011111, 7) ]) def test_get_version(flag, expected): assert quality_mapping.get_version(flag) == expected def test_has_data_been_validated(): flags = pd.Series([0, 1, 2, 7]) out = quality_mapping.has_data_been_validated(flags) assert_series_equal(out, pd.Series([False, False, True, True])) @pytest.mark.parametrize('flag,desc,result', [ (0, 'OK', True), (1, 'OK', False), (2, 'OK', True), (3, 'OK', False), (0, 'USER FLAGGED', False), (3, 'USER FLAGGED', True), (0, 'CLEARSKY', False), (16, 'OK', False), (1, 'USER FLAGGED', True), (16, 'NIGHTTIME', True), (33, 'CLEARSKY', True), (33, 'NIGHTTIME', False), (33, ['OK', 'NIGHTTIME'], False), (33, ('OK', 'CLEARSKY', 'USER FLAGGED'), True), (2, ('OK', 'NIGHTTIME'), True), (9297, 'USER FLAGGED', True) ]) def test_check_if_single_value_flagged(flag, desc, result): flag |= quality_mapping.LATEST_VERSION_FLAG out = quality_mapping.check_if_single_value_flagged(flag, desc) assert out == result @pytest.mark.parametrize('flag', [0, 1]) def test_check_if_single_value_flagged_validation_error(flag): with pytest.raises(ValueError): quality_mapping.check_if_single_value_flagged(flag, 'OK') @pytest.mark.parametrize('desc', [33, b'OK', [1, 2], []]) def test_check_if_single_value_flagged_type_error(desc): with pytest.raises(TypeError): quality_mapping.check_if_single_value_flagged(2, desc) @pytest.mark.parametrize('desc', ['NOPE', 'MAYBE', ['YES', 'NO']]) def test_check_if_single_value_flagged_key_error(desc): with pytest.raises(KeyError): quality_mapping.check_if_single_value_flagged(2, desc) @pytest.mark.parametrize('flags,expected', [ (pd.Series([0, 1, 0]),
pd.Series([False, False, False])
pandas.Series
# rate_of_rise.py is part of the `ca_img_analyzer' package: # github.com/DanielSchuette/ca_img_analyzer # # this code is MIT licensed # # if you find a bug or want to contribute, please # use the GitHub repository or write an email: # d.schuette(at)online.de import re import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns class Workbook(object): """ class 'Workbook' holds data of (potentially multiple) Excel spread sheets and comprises methods to modify/ manipulate this data; Workbook does not inherit from anything but object. The following methods can be called on Workbook: - calc_derivative() - plot_derivatives() - get_max_derivatives() - plot_max_derivatives() - concat_covslips() """ def __init__(self, path, h=1, order=None, kind="box", plot_style=None, verbose=False, debug=False): """ takes a valid file path to a .xlsx file and reads it in; also iterates over the different sheets in that workbook and appends their names to a newly initialized list. ----------------------------- parameters: TODO! """ # read the excel workbook in self.raw_data = pd.read_excel(path, sheet_name=None) # append individual names to a list of sheet names self.sheet_names = [] for idx, name in enumerate(self.raw_data): if verbose: print("number {}: {}".format(idx + 1, name)) self.sheet_names.append(name) if len(self.sheet_names) < 2: print("""did not get more than one spread sheet to read; is that correct?""") # create empty list to hold dataframes with derivates # and various data formats self.derivative_df_list = [] self.derivatives_table =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Calculating Similarity # # create some transformer embedded vectors, then use a cosine similarity # In[2]: import h import pandas as pd # pd.set_option('display.max_colwidth', None) # use movies dataset df = pd.read_csv('../data/imdb_top_1000.csv')#.head(10) # df[['Series_Title', 'Overview']].head(10) # In[ ]: # In[ ]: # sentences = df['Overview'] # h.compute_similarity(0, sentences) # In[ ]: df['similar_movies'] =
pd.Series(df.index)
pandas.Series
from nose_parameterized import parameterized from unittest import TestCase from pandas import ( Series, DataFrame, DatetimeIndex, date_range, Timedelta, read_csv ) from pandas.util.testing import (assert_frame_equal) import os import gzip from pyfolio.round_trips import (extract_round_trips, add_closing_transactions, _groupby_consecutive, ) class RoundTripTestCase(TestCase): dates = date_range(start='2015-01-01', freq='D', periods=20) dates_intraday = date_range(start='2015-01-01', freq='2BH', periods=8) @parameterized.expand([ (DataFrame(data=[[2, 10., 'A'], [2, 20., 'A'], [-2, 20., 'A'], [-2, 10., 'A'], ], columns=['amount', 'price', 'symbol'], index=dates_intraday[:4]), DataFrame(data=[[4, 15., 'A'], [-4, 15., 'A'], ], columns=['amount', 'price', 'symbol'], index=dates_intraday[[0, 2]]) .rename_axis('dt', axis='index') ), (DataFrame(data=[[2, 10., 'A'], [2, 20., 'A'], [2, 20., 'A'], [2, 10., 'A'], ], columns=['amount', 'price', 'symbol'], index=dates_intraday[[0, 1, 4, 5]]), DataFrame(data=[[4, 15., 'A'], [4, 15., 'A'], ], columns=['amount', 'price', 'symbol'], index=dates_intraday[[0, 4]]) .rename_axis('dt', axis='index') ), ]) def test_groupby_consecutive(self, transactions, expected): grouped_txn = _groupby_consecutive(transactions) assert_frame_equal(grouped_txn.sort_index(axis='columns'), expected.sort_index(axis='columns')) @parameterized.expand([ # Simple round-trip (DataFrame(data=[[2, 10., 'A'], [-2, 15., 'A']], columns=['amount', 'price', 'symbol'], index=dates[:2]), DataFrame(data=[[dates[0], dates[1], Timedelta(days=1), 10., .5, True, 'A']], columns=['open_dt', 'close_dt', 'duration', 'pnl', 'rt_returns', 'long', 'symbol'], index=[0]) ), # Round-trip with left-over txn that shouldn't be counted (DataFrame(data=[[2, 10., 'A'], [2, 15., 'A'], [-9, 10., 'A']], columns=['amount', 'price', 'symbol'], index=dates[:3]), DataFrame(data=[[dates[0], dates[2], Timedelta(days=2), -10., -.2, True, 'A']], columns=['open_dt', 'close_dt', 'duration', 'pnl', 'rt_returns', 'long', 'symbol'], index=[0]) ), # Round-trip with sell that crosses 0 and should be split (DataFrame(data=[[2, 10., 'A'], [-4, 15., 'A'], [3, 20., 'A']], columns=['amount', 'price', 'symbol'], index=dates[:3]), DataFrame(data=[[dates[0], dates[1], Timedelta(days=1), 10., .5, True, 'A'], [dates[1], dates[2],
Timedelta(days=1)
pandas.Timedelta
import sys import nltk nltk.download(['punkt', 'wordnet', 'stopwords']) from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import re import numpy as np import pandas as pd import pickle import sklearn from sqlalchemy import create_engine from sklearn.metrics import classification_report, make_scorer from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.multioutput import MultiOutputClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import LinearSVC def load_data(database_filepath): ''' FUNCTION: Load database file containing the cleaned data INPUTS: database_filepath - database file containing the cleaned data OUTPUTS X - The messages from the database y - the categories the messages fall in marked 0 or 1 y.columns - the names of the categories ''' engine = create_engine('sqlite:///{}'.format(database_filepath)) df = pd.read_sql_table(database_filepath, engine) X = df['message'] y = df.iloc[:,4:] return X, y, y.columns def tokenize(text): ''' FUNCTION: clean the input text, simplify it, and tokenize it INPUTS: text - a string to clean and tokenize OUTPUTS clean_tokens - a list of tokenized words from text ''' #remove punctuation and convert to lowercase message = re.sub(r'[^a-zA-Z0-9]', ' ', text.lower()) #tokenize tokens = word_tokenize(message) #lemmatization lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: if tok not in stopwords.words('english'): clean_tok = lemmatizer.lemmatize(tok).strip() clean_tokens.append(clean_tok) return clean_tokens def gscv_scores(y_test, y_pred): ''' Function: calculate the f-1 score average of all classes to use in GridSearch evaluation Inputs: -y_test: outputs of test data set from train_test_split() -y_pred: pipeline predicted output based on predicted x from train_test_split() Outputs: -average f-1 score of all classes to determine if a parameter improved predictibility ''' y_pred = pd.DataFrame(y_pred, columns = y_test.columns) report = pd.DataFrame() for col in y_test.columns: class_rep = classification_report(y_test.loc[:,col], y_pred.loc[:,col], output_dict=True, zero_division=0) scoring_df = pd.DataFrame.from_dict(class_rep) #print(scoring_df) #drop un-needed columns and rows scoring_df = scoring_df[['macro avg']] scoring_df.drop(index='support', inplace=True) scoring_df = scoring_df.transpose() report = report.append(scoring_df, ignore_index=True) report.index = y_test.columns return report['f1-score'].mean() def build_model(): ''' FUNCTION: create and return a pipeline ''' pipeline = Pipeline([('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()), ('clf', MultiOutputClassifier(RandomForestClassifier()))]) #comment different parameters to decrease run time parameters = { #'vect__ngram_range': ((1,1), (1,2)), #'vect__max_df': (0.5, 0.75, 1.0), 'vect__max_features': (None, 5000, 10000), #'tfidf__use_idf': (True, False), #'tfidf__norm': ('l1', 'l2'), 'clf__estimator__n_estimators': [10, 25, 50], #'clf__estimator__min_samples_split': [2, 4, 6], 'clf__estimator__bootstrap': (True, False) } scorer = make_scorer(gscv_scores) cv = GridSearchCV(pipeline, param_grid=parameters, scoring=scorer, cv=3, verbose=4) return cv def evaluate_model(model, X_test, Y_test, category_names): ''' FUNCTION: Evaluate the effectiveness of the pipeline in modeling the data INPUTS: model - pipeline fit to the data X_test - test set of messages from the train_test_split Y_test - test set of categories from the train_test_split category_names - names of the categories the messages can fit in OUTPUTS report - the precision, recall, and f-1 scores for each category scores - the average precision, recal, and f-1 scores for the data set ''' y_pred = model.predict(X_test) y_pred = pd.DataFrame(y_pred, columns=category_names) report =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import pytest from staircase import Stairs def s1(closed="left"): int_seq1 = Stairs(initial_value=0, closed=closed) int_seq1.layer(1, 10, 2) int_seq1.layer(-4, 5, -1.75) int_seq1.layer(3, 5, 2.5) int_seq1.layer(6, 7, -2.5) int_seq1.layer(7, 10, -2.5) return int_seq1 def s2(): int_seq2 = Stairs(initial_value=0) int_seq2.layer(1, 7, -2.5) int_seq2.layer(8, 10, 5) int_seq2.layer(2, 5, 4.5) int_seq2.layer(2.5, 4, -2.5) int_seq2.layer(-2, 1, -1.75) return int_seq2 def s3(): # boolean int_seq = Stairs(initial_value=0) int_seq.layer(-10, 10, 1) int_seq.layer(-8, -7, -1) int_seq.layer(-5, -2, -1) int_seq.layer(0.5, 1, -1) int_seq.layer(3, 3.5, -1) int_seq.layer(7, 9.5, -1) return int_seq def s4(): # boolean int_seq = Stairs(initial_value=0) int_seq.layer(-11, 9, 1) int_seq.layer(-9.5, -8, -1) int_seq.layer(-7.5, -7, -1) int_seq.layer(0, 3, -1) int_seq.layer(6, 6.5, -1) int_seq.layer(7, 8.5, -1) return int_seq @pytest.fixture def s1_fix(): return s1() @pytest.fixture def s2_fix(): return s2() @pytest.fixture def s3_fix(): return s3() @pytest.fixture def s4_fix(): return s4() @pytest.mark.parametrize( "x, kwargs, expected_val", [ ( [-4, -2, 1, 3], {"aggfunc": "mean", "window": (-0.5, 0.5)}, np.array([-0.875, -1.75, -0.75, 1.5]), ), ( [-4, -2, 1, 3], {"aggfunc": "mean", "window": (-1, 0)}, np.array([0.0, -1.75, -1.75, 0.25]), ), ( [-4, -2, 1, 3], {"aggfunc": "mean", "window": (0, 1)}, np.array([-1.75, -1.75, 0.25, 2.75]), ), ], ) def test_s1_agg_mean(s1_fix, x, kwargs, expected_val): window = kwargs["window"] x = np.array(x) ii = pd.IntervalIndex.from_arrays(x + window[0], x + window[1]) assert np.array_equal(s1_fix.slice(ii).mean().values, expected_val) @pytest.mark.parametrize( "closed, x, kwargs, expected_val", [ ( "left", [0, 2, 7], {"aggfunc": "max", "window": (-1, 1)}, np.array([-1.75, 0.25, -0.5]), ), ( "right", [0, 2, 7], {"aggfunc": "max", "window": (-1, 1), "closed": "left"}, np.array([-1.75, 0.25, 2.0]), ), ( "left", [0, 2, 7], {"aggfunc": "max", "window": (-1, 1), "closed": "right"}, np.array([0.25, 2.75, -0.5]), ), ( "right", [0, 2, 7], {"aggfunc": "max", "window": (-1, 1), "closed": "right"}, np.array([-1.75, 0.25, -0.5]), ), ], ) def test_s1_agg_max(closed, x, kwargs, expected_val): window = kwargs["window"] x = np.array(x) ii = pd.IntervalIndex.from_arrays( x + window[0], x + window[1], closed=kwargs.get("closed", "left") ) assert np.array_equal(s1(closed=closed).slice(ii).max().values, expected_val) def test_slicing_mean(s1_fix): pd.testing.assert_series_equal( s1_fix.slice(range(-4, 11, 2)).mean(), pd.Series( { pd.Interval(-4, -2, closed="left"): -1.75, pd.Interval(-2, 0, closed="left"): -1.75, pd.Interval(0, 2, closed="left"): -0.75, pd.Interval(2, 4, closed="left"): 1.5, pd.Interval(4, 6, closed="left"): 2.375, pd.Interval(6, 8, closed="left"): -0.5, pd.Interval(8, 10, closed="left"): -0.5, } ), check_names=False, check_index_type=False, ) def test_slicing_max(s1_fix): pd.testing.assert_series_equal( s1_fix.slice(range(-4, 11, 2)).max(), pd.Series( { pd.Interval(-4, -2, closed="left"): -1.75, pd.Interval(-2, 0, closed="left"): -1.75, pd.Interval(0, 2, closed="left"): 0.25, pd.Interval(2, 4, closed="left"): 2.75, pd.Interval(4, 6, closed="left"): 2.75,
pd.Interval(6, 8, closed="left")
pandas.Interval
"""Integration tests for the HyperTransformer.""" import re from copy import deepcopy from unittest.mock import patch import numpy as np import pandas as pd import pytest from rdt import HyperTransformer from rdt.errors import Error, NotFittedError from rdt.transformers import ( DEFAULT_TRANSFORMERS, BaseTransformer, BinaryEncoder, FloatFormatter, FrequencyEncoder, OneHotEncoder, UnixTimestampEncoder, get_default_transformer, get_default_transformers) class DummyTransformerNumerical(BaseTransformer): INPUT_SDTYPE = 'categorical' OUTPUT_SDTYPES = { 'value': 'float' } def _fit(self, data): pass def _transform(self, data): return data.astype(float) def _reverse_transform(self, data): return data.astype(str) class DummyTransformerNotMLReady(BaseTransformer): INPUT_SDTYPE = 'datetime' OUTPUT_SDTYPES = { 'value': 'categorical', } def _fit(self, data): pass def _transform(self, data): # Stringify input data return data.astype(str) def _reverse_transform(self, data): return data.astype('datetime64') TEST_DATA_INDEX = [4, 6, 3, 8, 'a', 1.0, 2.0, 3.0] def get_input_data(): datetimes = pd.to_datetime([ '2010-02-01', '2010-02-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-02-01', '2010-01-01', '2010-01-01', ]) data = pd.DataFrame({ 'integer': [1, 2, 1, 3, 1, 4, 2, 3], 'float': [0.1, 0.2, 0.1, 0.2, 0.1, 0.4, 0.2, 0.3], 'categorical': ['a', 'a', 'b', 'b', 'a', 'b', 'a', 'a'], 'bool': [False, False, False, True, False, False, True, False], 'datetime': datetimes, 'names': ['Jon', 'Arya', 'Arya', 'Jon', 'Jon', 'Sansa', 'Jon', 'Jon'], }, index=TEST_DATA_INDEX) return data def get_transformed_data(): datetimes = [ 1.264982e+18, 1.264982e+18, 1.262304e+18, 1.262304e+18, 1.262304e+18, 1.264982e+18, 1.262304e+18, 1.262304e+18 ] return pd.DataFrame({ 'integer.value': [1, 2, 1, 3, 1, 4, 2, 3], 'float.value': [0.1, 0.2, 0.1, 0.2, 0.1, 0.4, 0.2, 0.3], 'categorical.value': [0.3125, 0.3125, .8125, 0.8125, 0.3125, 0.8125, 0.3125, 0.3125], 'bool.value': [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0], 'datetime.value': datetimes, 'names.value': [0.3125, 0.75, 0.75, 0.3125, 0.3125, 0.9375, 0.3125, 0.3125] }, index=TEST_DATA_INDEX) def get_reversed_data(): data = get_input_data() data['bool'] = data['bool'].astype('object') return data DETERMINISTIC_DEFAULT_TRANSFORMERS = deepcopy(DEFAULT_TRANSFORMERS) DETERMINISTIC_DEFAULT_TRANSFORMERS['categorical'] = FrequencyEncoder @patch('rdt.transformers.DEFAULT_TRANSFORMERS', DETERMINISTIC_DEFAULT_TRANSFORMERS) def test_hypertransformer_default_inputs(): """Test the HyperTransformer with default parameters. This tests that if default parameters are provided to the HyperTransformer, the ``default_transformers`` method will be used to determine which transformers to use for each field. Setup: - Patch the ``DEFAULT_TRANSFORMERS`` to use the ``FrequencyEncoder`` for categorical sdtypes, so that the output is predictable. Input: - A dataframe with every sdtype. - A fixed random seed to guarantee the samle values are null. Expected behavior: - The transformed data should contain all the ML ready data. - The reverse transformed data should be the same as the input. """ # Setup datetimes = pd.to_datetime([ np.nan, '2010-02-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-02-01', '2010-01-01', '2010-01-01', ]) data = pd.DataFrame({ 'integer': [1, 2, 1, 3, 1, 4, 2, 3], 'float': [0.1, 0.2, 0.1, np.nan, 0.1, 0.4, np.nan, 0.3], 'categorical': ['a', 'a', np.nan, 'b', 'a', 'b', 'a', 'a'], 'bool': [False, np.nan, False, True, False, np.nan, True, False], 'datetime': datetimes, 'names': ['Jon', 'Arya', 'Arya', 'Jon', 'Jon', 'Sansa', 'Jon', 'Jon'], }, index=TEST_DATA_INDEX) # Run ht = HyperTransformer() ht.detect_initial_config(data) ht.fit(data) transformed = ht.transform(data) reverse_transformed = ht.reverse_transform(transformed) # Assert expected_datetimes = [ 1.263069e+18, 1.264982e+18, 1.262304e+18, 1.262304e+18, 1.262304e+18, 1.264982e+18, 1.262304e+18, 1.262304e+18 ] expected_transformed = pd.DataFrame({ 'integer.value': [1, 2, 1, 3, 1, 4, 2, 3], 'float.value': [0.1, 0.2, 0.1, 0.2, 0.1, 0.4, 0.2, 0.3], 'categorical.value': [0.3125, 0.3125, 0.9375, 0.75, 0.3125, 0.75, 0.3125, 0.3125], 'bool.value': [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0], 'datetime.value': expected_datetimes, 'names.value': [0.3125, 0.75, 0.75, 0.3125, 0.3125, 0.9375, 0.3125, 0.3125] }, index=TEST_DATA_INDEX) pd.testing.assert_frame_equal(transformed, expected_transformed) reversed_datetimes = pd.to_datetime([ '2010-01-09 20:34:17.142857216', '2010-02-01', '2010-01-01', '2010-01-01', '2010-01-01', '2010-02-01', '2010-01-01', '2010-01-01', ]) expected_reversed = pd.DataFrame({ 'integer': [1, 2, 1, 3, 1, 4, 2, 3], 'float': [0.1, 0.2, 0.1, 0.20000000000000004, 0.1, 0.4, 0.20000000000000004, 0.3], 'categorical': ['a', 'a', np.nan, 'b', 'a', 'b', 'a', 'a'], 'bool': [False, False, False, True, False, False, True, False], 'datetime': reversed_datetimes, 'names': ['Jon', 'Arya', 'Arya', 'Jon', 'Jon', 'Sansa', 'Jon', 'Jon'], }, index=TEST_DATA_INDEX) for row in range(reverse_transformed.shape[0]): for column in range(reverse_transformed.shape[1]): expected = expected_reversed.iloc[row, column] actual = reverse_transformed.iloc[row, column] assert pd.isna(actual) or expected == actual assert isinstance(ht._transformers_tree['integer']['transformer'], FloatFormatter) assert ht._transformers_tree['integer']['outputs'] == ['integer.value'] assert isinstance(ht._transformers_tree['float']['transformer'], FloatFormatter) assert ht._transformers_tree['float']['outputs'] == ['float.value'] assert isinstance(ht._transformers_tree['categorical']['transformer'], FrequencyEncoder) assert ht._transformers_tree['categorical']['outputs'] == ['categorical.value'] assert isinstance(ht._transformers_tree['bool']['transformer'], BinaryEncoder) assert ht._transformers_tree['bool']['outputs'] == ['bool.value'] assert isinstance(ht._transformers_tree['datetime']['transformer'], UnixTimestampEncoder) assert ht._transformers_tree['datetime']['outputs'] == ['datetime.value'] assert isinstance(ht._transformers_tree['names']['transformer'], FrequencyEncoder) assert ht._transformers_tree['names']['outputs'] == ['names.value'] get_default_transformers.cache_clear() get_default_transformer.cache_clear() def test_hypertransformer_field_transformers(): """Test the HyperTransformer with ``field_transformers`` provided. This tests that the transformers specified in the ``field_transformers`` argument are used. Any output of a transformer that is not ML ready (not in the ``_transform_output_sdtypes`` list) should be recursively transformed till it is. Setup: - The datetime column is set to use a dummy transformer that stringifies the input. That output is then set to use the categorical transformer. Input: - A dict mapping each field to a transformer. - A dataframe with every sdtype. Expected behavior: - The transformed data should contain all the ML ready data. - The reverse transformed data should be the same as the input. """ # Setup config = { 'sdtypes': { 'integer': 'numerical', 'float': 'numerical', 'categorical': 'categorical', 'bool': 'boolean', 'datetime': 'datetime', 'names': 'categorical' }, 'transformers': { 'integer': FloatFormatter(missing_value_replacement='mean'), 'float': FloatFormatter(missing_value_replacement='mean'), 'categorical': FrequencyEncoder, 'bool': BinaryEncoder(missing_value_replacement='mode'), 'datetime': DummyTransformerNotMLReady, 'names': FrequencyEncoder } } data = get_input_data() # Run ht = HyperTransformer() ht.detect_initial_config(data) ht.set_config(config) ht.fit(data) transformed = ht.transform(data) reverse_transformed = ht.reverse_transform(transformed) # Assert expected_transformed = get_transformed_data() rename = {'datetime.value': 'datetime.value.value'} expected_transformed = expected_transformed.rename(columns=rename) transformed_datetimes = [0.8125, 0.8125, 0.3125, 0.3125, 0.3125, 0.8125, 0.3125, 0.3125] expected_transformed['datetime.value.value'] = transformed_datetimes pd.testing.assert_frame_equal(transformed, expected_transformed) expected_reversed = get_reversed_data() pd.testing.assert_frame_equal(expected_reversed, reverse_transformed) def test_single_category(): """Test that categorical variables with a single value are supported.""" # Setup ht = HyperTransformer() data = pd.DataFrame({ 'a': ['a', 'a', 'a'] }) # Run ht.detect_initial_config(data) ht.update_transformers(column_name_to_transformer={ 'a': OneHotEncoder() }) ht.fit(data) transformed = ht.transform(data) reverse = ht.reverse_transform(transformed) # Assert pd.testing.assert_frame_equal(data, reverse) def test_dtype_category(): """Test that categorical variables of dtype category are supported.""" # Setup data = pd.DataFrame({'a': ['a', 'b', 'c']}, dtype='category') # Run ht = HyperTransformer() ht.detect_initial_config(data) ht.fit(data) transformed = ht.transform(data) reverse = ht.reverse_transform(transformed) # Assert pd.testing.assert_frame_equal(reverse, data) def test_multiple_fits(): """HyperTransformer should be able to be used multiple times. Fitting, transforming and reverse transforming should produce the same results when called on the same data multiple times. """ # Setup data = get_input_data() ht = HyperTransformer() # Run ht.detect_initial_config(data) ht.fit(data) transformed1 = ht.transform(data) reversed1 = ht.reverse_transform(transformed1) ht.detect_initial_config(data) ht.fit(data) transformed2 = ht.transform(data) reversed2 = ht.reverse_transform(transformed2) # Assert pd.testing.assert_frame_equal(transformed1, transformed2) pd.testing.assert_frame_equal(reversed1, reversed2) def test_multiple_fits_different_data(): """HyperTransformer should be able to be used multiple times regardless of the data. Fitting, transforming and reverse transforming should work when called on different data. """ # Setup data = pd.DataFrame({'col1': [1, 2, 3], 'col2': [1.0, 0.0, 0.0]}) new_data = pd.DataFrame({'col2': [1, 2, 3], 'col1': [1.0, 0.0, 0.0]}) ht = HyperTransformer() # Run ht.detect_initial_config(data) ht.fit(data) ht.detect_initial_config(new_data) ht.fit(new_data) transformed1 = ht.transform(new_data) transformed2 = ht.transform(new_data) reverse1 = ht.reverse_transform(transformed1) reverse2 = ht.reverse_transform(transformed2) # Assert expected_transformed = pd.DataFrame({'col2.value': [1, 2, 3], 'col1.value': [1.0, 0.0, 0.0]}) pd.testing.assert_frame_equal(transformed1, expected_transformed) pd.testing.assert_frame_equal(transformed2, expected_transformed) pd.testing.assert_frame_equal(reverse1, new_data) pd.testing.assert_frame_equal(reverse2, new_data) def test_multiple_fits_different_columns(): """HyperTransformer should be able to be used multiple times regardless of the data. Fitting, transforming and reverse transforming should work when called on different data. """ # Setup data = pd.DataFrame({'col1': [1, 2, 3], 'col2': [1.0, 0.0, 0.0]}) new_data = pd.DataFrame({'col3': [1, 2, 3], 'col4': [1.0, 0.0, 0.0]}) ht = HyperTransformer() # Run ht.detect_initial_config(data) ht.fit(data) ht.detect_initial_config(new_data) ht.fit(new_data) transformed1 = ht.transform(new_data) transformed2 = ht.transform(new_data) reverse1 = ht.reverse_transform(transformed1) reverse2 = ht.reverse_transform(transformed2) # Assert expected_transformed = pd.DataFrame({'col3.value': [1, 2, 3], 'col4.value': [1.0, 0.0, 0.0]}) pd.testing.assert_frame_equal(transformed1, expected_transformed) pd.testing.assert_frame_equal(transformed2, expected_transformed) pd.testing.assert_frame_equal(reverse1, new_data) pd.testing.assert_frame_equal(reverse2, new_data) def test_multiple_fits_with_set_config(): """HyperTransformer should be able to be used multiple times regardless of the data. Fitting, transforming and reverse transforming should work when called on different data. """ # Setup data = get_input_data() ht = HyperTransformer() # Run ht.detect_initial_config(data) ht.set_config(config={ 'sdtypes': {'integer': 'categorical'}, 'transformers': {'integer': FrequencyEncoder} }) ht.fit(data) transformed1 = ht.transform(data) reverse1 = ht.reverse_transform(transformed1) ht.fit(data) transformed2 = ht.transform(data) reverse2 = ht.reverse_transform(transformed2) # Assert pd.testing.assert_frame_equal(transformed1, transformed2) pd.testing.assert_frame_equal(reverse1, reverse2) def test_multiple_detect_configs_with_set_config(): """HyperTransformer should be able to be used multiple times regardless of the data. Fitting, transforming and reverse transforming should work when called on different data. """ # Setup data = get_input_data() ht = HyperTransformer() # Run ht.detect_initial_config(data) ht.fit(data) transformed1 = ht.transform(data) reverse1 = ht.reverse_transform(transformed1) ht.set_config(config={ 'sdtypes': {'integers': 'categorical'}, 'transformers': {'integers': FrequencyEncoder} }) ht.detect_initial_config(data) ht.fit(data) transformed2 = ht.transform(data) reverse2 = ht.reverse_transform(transformed2) # Assert pd.testing.assert_frame_equal(transformed1, transformed2) pd.testing.assert_frame_equal(reverse1, reverse2) def test_detect_initial_config_doesnt_affect_fit(): """HyperTransformer should fit the same way regardless of ``detect_initial_config``. Calling the ``detect_initial_config`` method should not affect the results of ``fit``, ``transform`` or ``reverse_transform``. """ # Setup data = get_input_data() ht = HyperTransformer() # Run ht.detect_initial_config(data) ht.fit(data) transformed1 = ht.transform(data) reversed1 = ht.reverse_transform(transformed1) ht.detect_initial_config(data) ht.fit(data) transformed2 = ht.transform(data) reversed2 = ht.reverse_transform(transformed1) # Assert pd.testing.assert_frame_equal(transformed1, transformed2) pd.testing.assert_frame_equal(reversed1, reversed2) def test_multiple_detects(): """HyperTransformer should be able to be used multiple times regardless of the data. Fitting, transforming and reverse transforming should work when called on different data. """ # Setup data = pd.DataFrame({'col2': [1, 2, 3], 'col1': [1.0, 0.0, 0.0]}) new_data = get_input_data() ht = HyperTransformer() # Run ht.detect_initial_config(data) ht.detect_initial_config(new_data) ht.fit(new_data) transformed = ht.transform(new_data) reverse = ht.reverse_transform(transformed) # Assert pd.testing.assert_frame_equal(transformed, get_transformed_data()) pd.testing.assert_frame_equal(reverse, get_reversed_data()) def test_transform_without_fit(): """HyperTransformer should raise an error when transforming without fitting.""" # Setup data = pd.DataFrame() ht = HyperTransformer() ht.detect_initial_config(data) # Run / Assert with pytest.raises(Error): ht.transform(data) def test_fit_data_different_than_detect(): """HyperTransformer should raise an error when transforming without fitting.""" # Setup ht = HyperTransformer() detect_data = pd.DataFrame({'col1': [1, 2], 'col2': ['a', 'b']}) data = pd.DataFrame({'col1': [1, 2], 'col3': ['a', 'b']}) # Run / Assert error_msg = re.escape( 'The data you are trying to fit has different columns than the original ' "detected data (unknown columns: ['col3']). Column names and their " "sdtypes must be the same. Use the method 'get_config()' to see the expected " 'values.' ) ht.detect_initial_config(detect_data) with pytest.raises(Error, match=error_msg): ht.fit(data) def test_transform_without_fitting(): """HyperTransformer shouldn't transform when fit hasn't been called yet.""" # Setup data = pd.DataFrame({'col1': [1, 2], 'col2': ['a', 'b']}) ht = HyperTransformer() # Run / Assert ht.detect_initial_config(data) error_msg = ( 'The HyperTransformer is not ready to use. Please fit your data first using ' "'fit' or 'fit_transform'." ) with pytest.raises(NotFittedError, match=error_msg): ht.transform(data) def test_transform_without_refitting(): """HyperTransformer shouldn't transform when a new config hasn't been fitted.""" # Setup data =
pd.DataFrame({'col1': [1, 2], 'col2': ['a', 'b']})
pandas.DataFrame
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import namedtuple import numpy as np import pandas as pd from .... import opcodes from ....serialization.serializables import BoolField, Float64Field from ..aggregation import BaseDataFrameExpandingAgg _stage_info = namedtuple('_stage_info', ('map_groups', 'map_sources', 'combine_sources', 'combine_columns', 'combine_funcs', 'key_to_funcs', 'valid_columns', 'min_periods_func_name')) _cum_alpha_coeff_func = '_cum_alpha_coeff' _cum_square_alpha_coeff_func = '_cum_square_alpha_coeff' def _add_pred_results(pred_results, local_results, axis=0, alpha=None, order=1, alpha_ignore_na=False, pred_exponent=None, alpha_data=None): if pred_results[0].ndim == 1: df_filler = 0 else: df_filler = pred_results[0].iloc[-1, :].dropna() df_filler[:] = 0 new_locals = [] combine_axis = pred_results[0].ndim - axis - 1 weight = (1 - alpha) ** order pred_coeff = weight ** pred_exponent for idx, (pred_result, local_result) in enumerate(zip(pred_results, local_results)): local_result.fillna(df_filler, inplace=True) pred_result = pred_result.mul(pred_coeff).sum(axis=axis) if alpha_ignore_na: pred_df = pred_result * weight ** alpha_data.notna().cumsum() else: weights = np.arange(1, len(local_result) + 1) if local_result.ndim == 2: weights_df = pd.DataFrame( np.repeat(weights.reshape((len(local_result), 1)), len(local_result.columns), axis=1), columns=local_result.columns, index=local_result.index) else: weights_df = pd.Series(weights, index=local_result.index) weights_df[alpha_data.isna()] = np.nan weights_df.ffill(inplace=True) weights_df.fillna(0, inplace=True) weights_df = weight ** weights_df pred_df = weights_df.mul(pred_result, axis=combine_axis) new_locals.append(local_result.add(pred_df, axis=combine_axis)) return new_locals def _combine_mean(pred_results, local_results, axis=0, alpha=None, alpha_ignore_na=False, pred_exponent=None): if pred_results is None: return (local_results[0] / local_results[1]).ffill() alpha_data = local_results[1] local_results[0] = local_results[0].ffill() local_results[1] = alpha_data.ffill() local_sum_data, local_count_data = local_results if pred_results is not None: local_sum_data, local_count_data = _add_pred_results( pred_results, local_results, axis=axis, alpha=alpha, alpha_ignore_na=alpha_ignore_na, pred_exponent=pred_exponent, alpha_data=alpha_data ) return local_sum_data / local_count_data def _combine_var(pred_results, local_results, axis=0, alpha=None, alpha_ignore_na=False, pred_exponent=None): local_results[0] = local_results[0].ffill() alpha_data = local_results[1] local_results[1] = alpha_data.ffill() local_results[2] = local_results[2].ffill() alpha2_data = local_results[3] local_results[3] = alpha2_data.ffill() local_sum_data, local_count_data, local_sum_square, local_count2_data = local_results if pred_results is None: return (local_sum_square - local_sum_data ** 2 / local_count_data) \ / (local_count_data - local_count2_data / local_count_data) pred_sum_data, pred_count_data, pred_sum_square, pred_count2_data = pred_results local_count2_data, = _add_pred_results( [pred_count2_data], [local_count2_data], axis=axis, alpha=alpha, order=2, alpha_ignore_na=alpha_ignore_na, pred_exponent=pred_exponent, alpha_data=alpha_data) local_sum_square, local_sum_data, local_count_data = \ _add_pred_results( [pred_sum_square, pred_sum_data, pred_count_data], [local_sum_square, local_sum_data, local_count_data], axis=axis, alpha=alpha, alpha_ignore_na=alpha_ignore_na, pred_exponent=pred_exponent, alpha_data=alpha_data ) return (local_sum_square - local_sum_data ** 2 / local_count_data) \ / (local_count_data - local_count2_data / local_count_data) def _combine_std(pred_results, local_results, axis=0, alpha=None, alpha_ignore_na=False, pred_exponent=None): return np.sqrt(_combine_var( pred_results, local_results, axis=axis, alpha=alpha, alpha_ignore_na=alpha_ignore_na, pred_exponent=pred_exponent)) def _combine_data_count(pred_results, local_results, axis=0, **__): if pred_results is None: return local_results[0] return local_results[0].add(pred_results[0].sum(), axis=pred_results[0].ndim - axis - 1) class DataFrameEwmAgg(BaseDataFrameExpandingAgg): _op_type_ = opcodes.EWM_AGG _alpha = Float64Field('alpha') _adjust = BoolField('adjust') _alpha_ignore_na = BoolField('alpha_ignore_na') _validate_columns = BoolField('_validate_columns') _exec_cache = dict() def __init__(self, alpha=None, adjust=None, alpha_ignore_na=None, validate_columns=None, **kw): super().__init__(_alpha=alpha, _adjust=adjust, _alpha_ignore_na=alpha_ignore_na, _validate_columns=validate_columns, **kw) @property def alpha(self) -> float: return self._alpha @property def adjust(self) -> bool: return self._adjust @property def alpha_ignore_na(self) -> bool: return self._alpha_ignore_na @property def validate_columns(self) -> bool: return self._validate_columns @classmethod def _get_stage_functions(cls, op: "DataFrameEwmAgg", func): if func == '_data_count': return ['_data_count'], _combine_data_count elif func == 'mean': return ['cumsum', _cum_alpha_coeff_func], _combine_mean elif func in {'var', 'std'}: return ['cumsum', _cum_alpha_coeff_func, 'cumsum2', _cum_square_alpha_coeff_func], \ _combine_var if func == 'var' else _combine_std else: # pragma: no cover raise NotImplementedError @classmethod def _calc_data_alphas(cls, op: "DataFrameEwmAgg", in_data, order): exec_cache = cls._exec_cache[op.key] cache_key = ('_calc_data_alphas', order, id(in_data)) try: return exec_cache[cache_key] except KeyError: pass cum_df = in_data.copy() cum_df[cum_df.notna()] = 1 if not op.alpha_ignore_na: cum_df.ffill(inplace=True) cum_df = cum_df.cumsum(axis=op.axis) - 1 if not op.alpha_ignore_na: cum_df[in_data.isna()] = np.nan result = exec_cache[cache_key] = (1 - op.alpha) ** (order * cum_df) return result @classmethod def _execute_cum_alpha_coeff(cls, op: "DataFrameEwmAgg", in_data, order, final=True): exec_cache = cls._exec_cache[op.key] cache_key = ('cum_alpha_coeff', order, id(in_data)) summary = None try: result = exec_cache[cache_key] except KeyError: alphas = cls._calc_data_alphas(op, in_data, order) result = alphas.cumsum() exec_cache[cache_key] = result if final: if op.output_agg: summary = result.ffill()[-1:] return result, summary @classmethod def _execute_cumsum(cls, op: "DataFrameEwmAgg", in_data): exec_cache = cls._exec_cache[op.key] cache_key = ('cumsum', id(in_data)) summary = None try: result = exec_cache[cache_key] except KeyError: min_periods = 1 if op.min_periods > 0 else 0 try: data = in_data.ewm(alpha=op.alpha, ignore_na=op.alpha_ignore_na, adjust=op.adjust, min_periods=min_periods).mean() except ValueError: in_data = in_data.copy() data = in_data.ewm(alpha=op.alpha, ignore_na=op.alpha_ignore_na, adjust=op.adjust, min_periods=min_periods).mean() alpha_sum, _ = op._execute_cum_alpha_coeff(op, in_data, 1, final=False) result = exec_cache[cache_key] = data * alpha_sum if op.output_agg: summary = result.ffill()[-1:] return result, summary @classmethod def _execute_cumsum2(cls, op: "DataFrameEwmAgg", in_data): summary = None min_periods = 1 if op.min_periods > 0 else 0 try: data = in_data.ewm(alpha=op.alpha, ignore_na=op.alpha_ignore_na, adjust=op.adjust, min_periods=min_periods).var(bias=True) except ValueError: in_data = in_data.copy() data = in_data.ewm(alpha=op.alpha, ignore_na=op.alpha_ignore_na, adjust=op.adjust, min_periods=min_periods).var(bias=True) alpha_sum, _ = op._execute_cum_alpha_coeff(op, in_data, 1) cumsum, _ = op._execute_cumsum(op, in_data) result = alpha_sum * data + cumsum ** 2 / alpha_sum if op.output_agg: summary = result.ffill()[-1:] return result, summary @classmethod def _execute_map_function(cls, op: "DataFrameEwmAgg", func, in_data): in_data = in_data._get_numeric_data() summary = None min_periods = 1 if op.min_periods > 0 else 0 if func == '_data_count': result = in_data.expanding(min_periods=min_periods).count() elif func in (_cum_alpha_coeff_func, _cum_square_alpha_coeff_func): order = 1 if func == _cum_alpha_coeff_func else 2 result, summary = cls._execute_cum_alpha_coeff(op, in_data, order) elif func == 'cumsum': result, summary = cls._execute_cumsum(op, in_data) elif func == 'cumsum2': result, summary = cls._execute_cumsum2(op, in_data) else: # pragma: no cover raise ValueError('Map function %s not supported') if op.output_agg: summary = summary if summary is not None else result.iloc[-1:] else: summary = None return result, summary @classmethod def _execute_map(cls, ctx, op: "DataFrameEwmAgg"): try: cls._exec_cache[op.key] = dict() super()._execute_map(ctx, op) if op.output_agg: in_data = ctx[op.inputs[0].key] summaries = list(ctx[op.outputs[1].key]) if op.alpha_ignore_na: in_count = in_data.count() if not isinstance(in_count, pd.Series): in_count = pd.Series([in_count]) summary = in_count if in_data.ndim == 2: summary = in_count.to_frame().T summary.index = summaries[-1].index else: remain_counts = in_data.notna()[::-1].to_numpy().argmax(axis=0) if in_data.ndim > 1: remain_counts = remain_counts.reshape((1, len(in_data.columns))) summary =
pd.DataFrame(remain_counts, columns=in_data.columns, index=summaries[-1].index)
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']}) tm.assert_frame_equal(df, expected) data = """\ a,b,c,d 0,NA,1,5 """ xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0]) xp.index.name = 'a' df = self.read_csv(StringIO(data), na_values={}, index_col=0) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2]) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c']) tm.assert_frame_equal(df, xp) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pydata/pandas/master/' 'pandas/io/tests/data/salary.table') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @slow def test_file(self): # FILE if sys.version_info[:2] < (2, 6): raise nose.SkipTest("file:// not supported with Python < 2.6") dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems raise nose.SkipTest("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_parse_tz_aware(self): import pytz # #1693 data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5") # it works result = read_csv(data, index_col=0, parse_dates=True) stamp = result.index[0] self.assertEqual(stamp.minute, 39) try: self.assertIs(result.index.tz, pytz.utc) except AssertionError: # hello Yaroslav arr = result.index.to_pydatetime() result = tools.to_datetime(arr, utc=True)[0] self.assertEqual(stamp.minute, result.minute) self.assertEqual(stamp.hour, result.hour) self.assertEqual(stamp.day, result.day) def test_multiple_date_cols_index(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col='nominal') tm.assert_frame_equal(xp.set_index('nominal'), df) df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col=0) tm.assert_frame_equal(df2, df) df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0) tm.assert_frame_equal(df3, df, check_names=False) def test_multiple_date_cols_chunked(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={ 'nominal': [1, 2]}, index_col='nominal') reader = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal', chunksize=2) chunks = list(reader) self.assertNotIn('nominalTime', df) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_multiple_date_col_named_components(self): xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal') colspec = {'nominal': ['date', 'nominalTime']} df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec, index_col='nominal') tm.assert_frame_equal(df, xp) def test_multiple_date_col_multiple_index(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col=['nominal', 'ID']) xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}) tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df) def test_comment(self): data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) df = self.read_table(StringIO(data), sep=',', comment='#', na_values=['NaN']) tm.assert_almost_equal(df.values, expected) def test_bool_na_values(self): data = """A,B,C True,False,True NA,True,False False,NA,True""" result = self.read_csv(StringIO(data)) expected = DataFrame({'A': np.array([True, nan, False], dtype=object), 'B': np.array([False, True, nan], dtype=object), 'C': [True, False, True]}) tm.assert_frame_equal(result, expected) def test_nonexistent_path(self): # don't segfault pls #2428 path = '%s.csv' % tm.rands(10) self.assertRaises(Exception, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) self.assertTrue(result['D'].isnull()[1:].all()) def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) self.assertTrue(pd.isnull(result.ix[0, 29])) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') self.assertEqual(len(result), 50) if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') self.assertEqual(len(result), 50) def test_converters_corner_with_nas(self): # skip aberration observed on Win64 Python 3.2.2 if hash(np.int64(-1)) != -2: raise nose.SkipTest("skipping because of windows hash on Python" " 3.2.2") csv = """id,score,days 1,2,12 2,2-5, 3,,14+ 4,6-12,2""" def convert_days(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_days_sentinel(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_score(x): x = x.strip() if not x: return np.nan if x.find('-') > 0: valmin, valmax = lmap(int, x.split('-')) val = 0.5 * (valmin + valmax) else: val = float(x) return val fh = StringIO(csv) result = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days}, na_values=['', None]) self.assertTrue(pd.isnull(result['days'][1])) fh = StringIO(csv) result2 = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days_sentinel}, na_values=['', None]) tm.assert_frame_equal(result, result2) def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') self.assertEqual(got, expected) def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') self.assertEqual(result['SEARCH_TERM'][2], 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals serie') self.assertTrue(np.array_equal(result.columns, ['SEARCH_TERM', 'ACTUAL_URL'])) def test_header_names_backward_compat(self): # #2539 data = '1,2,3\n4,5,6' result = self.read_csv(StringIO(data), names=['a', 'b', 'c']) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) tm.assert_frame_equal(result, expected) data2 = 'foo,bar,baz\n' + data result = self.read_csv(StringIO(data2), names=['a', 'b', 'c'], header=0) tm.assert_frame_equal(result, expected) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) self.assertTrue(np.array_equal(result['Numbers'], expected['Numbers'])) def test_usecols_index_col_conflict(self): # Issue 4201 Test that index_col as integer reflects usecols data = """SecId,Time,Price,P2,P3 10000,2013-5-11,100,10,1 500,2013-5-12,101,11,1 """ expected = DataFrame({'Price': [100, 101]}, index=[ datetime(2013, 5, 11), datetime(2013, 5, 12)]) expected.index.name = 'Time' df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) expected = DataFrame( {'P3': [1, 1], 'Price': (100, 101), 'P2': (10, 11)}) expected = expected.set_index(['Price', 'P2']) df = self.read_csv(StringIO(data), usecols=[ 'Price', 'P2', 'P3'], parse_dates=True, index_col=['Price', 'P2']) tm.assert_frame_equal(expected, df) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. self.assertTrue(type(df.a[0]) is np.float64) self.assertEqual(df.a.dtype, np.float) def test_warn_if_chunks_have_mismatched_type(self): # See test in TestCParserLowMemory. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(1, 2)) result2 = self.read_csv(StringIO(data), usecols=('b', 'c')) exp = self.read_csv(StringIO(data)) self.assertEqual(len(result.columns), 2) self.assertTrue((result['b'] == exp['b']).all()) self.assertTrue((result['c'] == exp['c']).all()) tm.assert_frame_equal(result, result2) result = self.read_csv(StringIO(data), usecols=[1, 2], header=0, names=['foo', 'bar']) expected = self.read_csv(StringIO(data), usecols=[1, 2]) expected.columns = ['foo', 'bar'] tm.assert_frame_equal(result, expected) data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), names=['b', 'c'], header=None, usecols=[1, 2]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['b', 'c']] tm.assert_frame_equal(result, expected) result2 = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None, usecols=['b', 'c']) tm.assert_frame_equal(result2, result) # 5766 result = self.read_csv(StringIO(data), names=['a', 'b'], header=None, usecols=[0, 1]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['a', 'b']] tm.assert_frame_equal(result, expected) # length conflict, passed names and usecols disagree self.assertRaises(ValueError, self.read_csv, StringIO(data), names=['a', 'b'], usecols=[1], header=None) def test_integer_overflow_bug(self): # #2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') self.assertTrue(result[0].dtype == np.float64) result = self.read_csv(StringIO(data), header=None, sep='\s+') self.assertTrue(result[0].dtype == np.float64) def test_catch_too_many_names(self): # Issue 5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" tm.assertRaises(Exception, read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # GH 6607, GH 3374 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep='\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_nrows_and_chunksize_raises_notimplemented(self): data = 'a b c' self.assertRaises(NotImplementedError, self.read_csv, StringIO(data), nrows=10, chunksize=5) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # GH 10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) self.assertEqual(len(result), 2) # GH 9735 chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = pd.read_csv(StringIO(chunk1 + chunk2), header=None) expected = pd.DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # GH 10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_emtpy_with_multiindex(self): # GH 10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_index_col_scenarios(self): data = 'x,y,z' # None, no index index_col, expected = None, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # False, no index index_col, expected = False, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, first column index_col, expected = 0, DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, not first column index_col, expected = 1, DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, first column index_col, expected = 'x', DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, not the first column index_col, expected = 'y', DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # list of int index_col, expected = [0, 1], DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str index_col = ['x', 'y'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of int, reversed sequence index_col = [1, 0] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str, reversed sequence index_col = ['y', 'x'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) def test_empty_with_index_col_false(self): # GH 10413 data = 'x,y' result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame([], columns=['x', 'y']) tm.assert_frame_equal(result, expected) def test_float_parser(self): # GH 9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = pd.DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" result = self.read_csv(StringIO(data)) self.assertTrue(result['ID'].dtype == object) self.assertRaises((OverflowError, pandas.parser.OverflowError), self.read_csv, StringIO(data), converters={'ID': np.int64}) # Just inside int64 range: parse as integer i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([x]) tm.assert_frame_equal(result, expected) # Just outside int64 range: parse as string too_big = i_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([str(x)]) tm.assert_frame_equal(result, expected) def test_empty_with_nrows_chunksize(self): # GH 9535 expected = pd.DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) result = pd.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) result = next( iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) def test_eof_states(self): # GH 10728 and 10548 # With skip_blank_lines = True expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) # GH 10728 # WHITESPACE_LINE data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # GH 10548 # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # EAT_CRNL_NOP data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # EAT_COMMENT data = 'a,b,c\n4,5,6#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # SKIP_LINE data = 'a,b,c\n4,5,6\nskipme' result = self.read_csv(StringIO(data), skiprows=[2]) tm.assert_frame_equal(result, expected) # With skip_blank_lines = False # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv( StringIO(data), comment='#', skip_blank_lines=False) expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # IN_FIELD data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [['4', 5, 6], [' ', None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # EAT_CRNL data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [[4, 5, 6], [None, None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # Should produce exceptions # ESCAPED_CHAR data = "a,b,c\n4,5,6\n\\" self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # ESCAPE_IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"\\' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') class TestPythonParser(ParserTests, tm.TestCase): def test_negative_skipfooter_raises(self): text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ with tm.assertRaisesRegexp(ValueError, 'skip footer cannot be negative'): df = self.read_csv(StringIO(text), skipfooter=-1) def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_table(*args, **kwds) def test_sniff_delimiter(self): text = """index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data = self.read_csv(StringIO(text), index_col=0, sep=None) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) data2 = self.read_csv(StringIO(text), index_col=0, delimiter='|') tm.assert_frame_equal(data, data2) text = """ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data3 = self.read_csv(StringIO(text), index_col=0, sep=None, skiprows=2) tm.assert_frame_equal(data, data3) text = u("""ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """).encode('utf-8') s = BytesIO(text) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') data4 = self.read_csv(s, index_col=0, sep=None, skiprows=2, encoding='utf-8') tm.assert_frame_equal(data, data4) def test_regex_separator(self): data = """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """ df = self.read_table(StringIO(data), sep='\s+') expected = self.read_csv(StringIO(re.sub('[ ]+', ',', data)), index_col=0) self.assertIsNone(expected.index.name) tm.assert_frame_equal(df, expected) def test_1000_fwf(self): data = """ 1 2,334.0 5 10 13 10. """ expected = [[1, 2334., 5], [10, 13, 10]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (3, 11), (12, 16)], thousands=',') tm.assert_almost_equal(df.values, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_comment_fwf(self): data = """ 1 2. 4 #hello world 5 NaN 10.0 """ expected = [[1, 2., 4], [5, np.nan, 10.]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (4, 9), (9, 25)], comment='#') tm.assert_almost_equal(df.values, expected) def test_fwf(self): data_expected = """\ 2011,58,360.242940,149.910199,11950.7 2011,59,444.953632,166.985655,11788.4 2011,60,364.136849,183.628767,11806.2 2011,61,413.836124,184.375703,11916.8 2011,62,502.953953,173.237159,12468.3 """ expected = self.read_csv(StringIO(data_expected), header=None) data1 = """\ 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] df = read_fwf(StringIO(data1), colspecs=colspecs, header=None) tm.assert_frame_equal(df, expected) data2 = """\ 2011 58 360.242940 149.910199 11950.7 2011 59 444.953632 166.985655 11788.4 2011 60 364.136849 183.628767 11806.2 2011 61 413.836124 184.375703 11916.8 2011 62 502.953953 173.237159 12468.3 """ df = read_fwf(StringIO(data2), widths=[5, 5, 13, 13, 7], header=None) tm.assert_frame_equal(df, expected) # From <NAME>: apparently some non-space filler characters can # be seen, this is supported by specifying the 'delimiter' character: # http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html data3 = """\ 201158~~~~360.242940~~~149.910199~~~11950.7 201159~~~~444.953632~~~166.985655~~~11788.4 201160~~~~364.136849~~~183.628767~~~11806.2 201161~~~~413.836124~~~184.375703~~~11916.8 201162~~~~502.953953~~~173.237159~~~12468.3 """ df = read_fwf( StringIO(data3), colspecs=colspecs, delimiter='~', header=None) tm.assert_frame_equal(df, expected) with tm.assertRaisesRegexp(ValueError, "must specify only one of"): read_fwf(StringIO(data3), colspecs=colspecs, widths=[6, 10, 10, 7]) with tm.assertRaisesRegexp(ValueError, "Must specify either"): read_fwf(StringIO(data3), colspecs=None, widths=None) def test_fwf_colspecs_is_list_or_tuple(self): with tm.assertRaisesRegexp(TypeError, 'column specifications must be a list or ' 'tuple.+'): pd.io.parsers.FixedWidthReader(StringIO(self.data1), {'a': 1}, ',', '#') def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples(self): with tm.assertRaisesRegexp(TypeError, 'Each column specification must be.+'): read_fwf(StringIO(self.data1), [('a', 1)]) def test_fwf_colspecs_None(self): # GH 7079 data = """\ 123456 456789 """ colspecs = [(0, 3), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, 3), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(0, None), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, None), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) def test_fwf_regression(self): # GH 3594 # turns out 'T060' is parsable as a datetime slice! tzlist = [1, 10, 20, 30, 60, 80, 100] ntz = len(tzlist) tcolspecs = [16] + [8] * ntz tcolnames = ['SST'] + ["T%03d" % z for z in tzlist[1:]] data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192 2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869 2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657 2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379 2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039 """ df = read_fwf(StringIO(data), index_col=0, header=None, names=tcolnames, widths=tcolspecs, parse_dates=True, date_parser=lambda s: datetime.strptime(s, '%Y%j%H%M%S')) for c in df.columns: res = df.loc[:, c] self.assertTrue(len(res)) def test_fwf_for_uint8(self): data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127 1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" df = read_fwf(StringIO(data), colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)], names=['time', 'pri', 'pgn', 'dst', 'src', 'data'], converters={ 'pgn': lambda x: int(x, 16), 'src': lambda x: int(x, 16), 'dst': lambda x: int(x, 16), 'data': lambda x: len(x.split(' '))}) expected = DataFrame([[1421302965.213420, 3, 61184, 23, 40, 8], [1421302964.226776, 6, 61442, None, 71, 8]], columns=["time", "pri", "pgn", "dst", "src", "data"]) expected["dst"] = expected["dst"].astype(object) tm.assert_frame_equal(df, expected) def test_fwf_compression(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest("Need gzip and bz2 to run this test") data = """1111111111 2222222222 3333333333""".strip() widths = [5, 5] names = ['one', 'two'] expected = read_fwf(StringIO(data), widths=widths, names=names) if compat.PY3: data = bytes(data, encoding='utf-8') comps = [('gzip', gzip.GzipFile), ('bz2', bz2.BZ2File)] for comp_name, compresser in comps: with tm.ensure_clean() as path: tmp = compresser(path, mode='wb') tmp.write(data) tmp.close() result = read_fwf(path, widths=widths, names=names, compression=comp_name) tm.assert_frame_equal(result, expected) def test_BytesIO_input(self): if not compat.PY3: raise nose.SkipTest( "Bytes-related test - only needs to work on Python 3") result = pd.read_fwf(BytesIO("שלום\nשלום".encode('utf8')), widths=[ 2, 2], encoding='utf8') expected = pd.DataFrame([["של", "ום"]], columns=["של", "ום"]) tm.assert_frame_equal(result, expected) data = BytesIO("שלום::1234\n562::123".encode('cp1255')) result = pd.read_table(data, sep="::", engine='python', encoding='cp1255') expected = pd.DataFrame([[562, 123]], columns=["שלום", "1234"]) tm.assert_frame_equal(result, expected) def test_verbose_import(self): text = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" buf = StringIO() sys.stdout = buf try: # it works! df = self.read_csv(StringIO(text), verbose=True) self.assertEqual( buf.getvalue(), 'Filled 3 NA values in column a\n') finally: sys.stdout = sys.__stdout__ buf = StringIO() sys.stdout = buf text = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" try: # it works! df = self.read_csv(StringIO(text), verbose=True, index_col=0) self.assertEqual( buf.getvalue(), 'Filled 1 NA values in column a\n') finally: sys.stdout = sys.__stdout__ def test_float_precision_specified(self): # Should raise an error if float_precision (C parser option) is # specified with tm.assertRaisesRegexp(ValueError, "The 'float_precision' option " "is not supported with the 'python' engine"): self.read_csv(StringIO('a,b,c\n1,2,3'), float_precision='high') def test_iteration_open_handle(self): if PY3: raise nose.SkipTest( "won't work in Python 3 {0}".format(sys.version_info)) with tm.ensure_clean() as path: with open(path, 'wb') as f: f.write('AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG') with open(path, 'rb') as f: for line in f: if 'CCC' in line: break try: read_table(f, squeeze=True, header=None, engine='c') except Exception: pass else: raise ValueError('this should not happen') result = read_table(f, squeeze=True, header=None, engine='python') expected = Series(['DDD', 'EEE', 'FFF', 'GGG'], name=0) tm.assert_series_equal(result, expected) def test_iterator(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_single_line(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_malformed(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_skip_footer(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = self.read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_decompression_regex_sep(self): # GH 6607 # This is a copy which should eventually be moved to ParserTests # when the issue with the C parser is fixed try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() data = data.replace(b',', b'::') expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='bz2') tm.assert_frame_equal(result, expected) self.assertRaises(ValueError, self.read_csv, path, compression='bz3') def test_read_table_buglet_4x_multiindex(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with multi-level index is fixed in the C parser. text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) # GH 6893 data = ' A B C\na b c\n1 3 7 0 3 6\n3 1 4 1 5 9' expected = DataFrame.from_records([(1, 3, 7, 0, 3, 6), (3, 1, 4, 1, 5, 9)], columns=list('abcABC'), index=list('abc')) actual = self.read_table(StringIO(data), sep='\s+') tm.assert_frame_equal(actual, expected) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_almost_equal(list(df.values), list(expected)) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = [[1, 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) class TestFwfColspaceSniffing(tm.TestCase): def test_full_file(self): # File with all values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 2000-01-05T00:00:00 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0.487094399463 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 2000-01-11T00:00:00 0.157160753327 34 foo''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_missing(self): # File with missing values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 34''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces(self): # File with spaces in columns test = ''' Account Name Balance CreditLimit AccountCreated 101 <NAME> 9315.45 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 <NAME> 0 17000.00 5/25/1985 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 5000.00 2/5/2007 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces_and_missing(self): # File with spaces and missing values in columsn test = ''' Account Name Balance CreditLimit AccountCreated 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 5/25/1985 761 <NAME>-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_messed_up_data(self): # Completely messed up file test = ''' Account Name Balance Credit Limit Account Created 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 761 <NAME> 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((2, 10), (15, 33), (37, 45), (49, 61), (64, 79)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_multiple_delimiters(self): test = r''' col1~~~~~col2 col3++++++++++++++++++col4 ~~22.....11.0+++foo~~~~~~~~~~<NAME> 33+++122.33\\\bar.........<NAME> ++44~~~~12.01 baz~~<NAME> ~~55 11+++foo++++<NAME>-Smith ..66++++++.03~~~bar <NAME> '''.strip('\r\n') colspecs = ((0, 4), (7, 13), (15, 19), (21, 41)) expected = read_fwf(StringIO(test), colspecs=colspecs, delimiter=' +~.\\') tm.assert_frame_equal(expected, read_fwf(StringIO(test), delimiter=' +~.\\')) def test_variable_width_unicode(self): if not compat.PY3: raise nose.SkipTest( 'Bytes-related test - only needs to work on Python 3') test = ''' שלום שלום ום שלל של ום '''.strip('\r\n') expected = pd.read_fwf(BytesIO(test.encode('utf8')), colspecs=[(0, 4), (5, 9)], header=None, encoding='utf8') tm.assert_frame_equal(expected, read_fwf(BytesIO(test.encode('utf8')), header=None, encoding='utf8')) class CParserTests(ParserTests): """ base class for CParser Testsing """ def test_buffer_overflow(self): # GH9205 # test certain malformed input files that cause buffer overflows in # tokenizer.c malfw = "1\r1\r1\r 1\r 1\r" # buffer overflow in words pointer malfs = "1\r1\r1\r 1\r 1\r11\r" # buffer overflow in stream pointer malfl = "1\r1\r1\r 1\r 1\r11\r1\r" # buffer overflow in lines pointer for malf in (malfw, malfs, malfl): try: df = self.read_table(StringIO(malf)) except Exception as cperr: self.assertIn( 'Buffer overflow caught - possible malformed input file.', str(cperr)) def test_buffer_rd_bytes(self): # GH 12098 # src->buffer can be freed twice leading to a segfault if a corrupt # gzip file is read with read_csv and the buffer is filled more than # once before gzip throws an exception data = '\x1F\x8B\x08\x00\x00\x00\x00\x00\x00\x03\xED\xC3\x41\x09' \ '\x00\x00\x08\x00\xB1\xB7\xB6\xBA\xFE\xA5\xCC\x21\x6C\xB0' \ '\xA6\x4D' + '\x55' * 267 + \ '\x7D\xF7\x00\x91\xE0\x47\x97\x14\x38\x04\x00' \ '\x1f\x8b\x08\x00VT\x97V\x00\x03\xed]\xefO' for i in range(100): try: _ = self.read_csv(StringIO(data), compression='gzip', delim_whitespace=True) except Exception as e: pass class TestCParserHighMemory(CParserTests, tm.TestCase): def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = False return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = False return read_table(*args, **kwds) def test_compact_ints(self): if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) def test_parse_dates_empty_string(self): # #2263 s = StringIO("Date, test\n2012-01-01, 1\n,2") result = self.read_csv(s, parse_dates=["Date"], na_filter=False) self.assertTrue(result['Date'].isnull()[1]) def test_usecols(self): raise nose.SkipTest( "Usecols is not supported in C High Memory engine.") def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) # check with delim_whitespace=True df = self.read_csv(StringIO(data.replace(',', ' ')), comment='#', delim_whitespace=True) tm.assert_almost_equal(df.values, expected) # check with custom line terminator df = self.read_csv(StringIO(data.replace('\n', '*')), comment='#', lineterminator='*') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_skiprows_lineterminator(self): # GH #9079 data = '\n'.join(['SMOSMANIA ThetaProbe-ML2X ', '2007/01/01 01:00 0.2140 U M ', '2007/01/01 02:00 0.2141 M O ', '2007/01/01 04:00 0.2142 D M ']) expected = pd.DataFrame([['2007/01/01', '01:00', 0.2140, 'U', 'M'], ['2007/01/01', '02:00', 0.2141, 'M', 'O'], ['2007/01/01', '04:00', 0.2142, 'D', 'M']], columns=['date', 'time', 'var', 'flag', 'oflag']) # test with the three default lineterminators LF, CR and CRLF df = self.read_csv(StringIO(data), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data.replace('\n', '\r')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data.replace('\n', '\r\n')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) def test_trailing_spaces(self): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" expected = pd.DataFrame([[1., 2., 4.], [5.1, np.nan, 10.]]) # this should ignore six lines including lines with trailing # whitespace and blank lines. issues 8661, 8679 df = self.read_csv(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) # test skipping set of rows after a row with trailing spaces, issue # #8983 expected = pd.DataFrame({"A": [1., 5.1], "B": [2., np.nan], "C": [4., 10]}) df = self.read_table(StringIO(data.replace(',', ' ')), delim_whitespace=True, skiprows=[1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_almost_equal(list(df.values), list(expected)) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = [[1, 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_passing_dtype(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the dtype argument is supported by all engines. df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) # empty frame # GH12048 actual = self.read_csv(StringIO('A,B'), dtype=str) expected = DataFrame({'A': [], 'B': []}, index=[], dtype=str) tm.assert_frame_equal(actual, expected) def test_dtype_and_names_error(self): # GH 8833 # passing both dtype and names resulting in an error reporting issue data = """ 1.0 1 2.0 2 3.0 3 """ # base cases result = self.read_csv(StringIO(data), sep='\s+', header=None) expected = DataFrame([[1.0, 1], [2.0, 2], [3.0, 3]]) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), sep='\s+', header=None, names=['a', 'b']) expected = DataFrame( [[1.0, 1], [2.0, 2], [3.0, 3]], columns=['a', 'b']) tm.assert_frame_equal(result, expected) # fallback casting result = self.read_csv(StringIO( data), sep='\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) expected = DataFrame([[1, 1], [2, 2], [3, 3]], columns=['a', 'b']) expected['a'] = expected['a'].astype(np.int32) tm.assert_frame_equal(result, expected) data = """ 1.0 1 nan 2 3.0 3 """ # fallback casting, but not castable with tm.assertRaisesRegexp(ValueError, 'cannot safely convert'): self.read_csv(StringIO(data), sep='\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) def test_fallback_to_python(self): # GH 6607 data = 'a b c\n1 2 3' # specify C engine with unsupported options (raise) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep=None, delim_whitespace=False) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep='\s') with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', skip_footer=1) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), delim_whitespace=True, skipinitialspace=True) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), lineterminator='\n', skipinitialspace=True) tm.assert_frame_equal(result, expected) class TestCParserLowMemory(CParserTests, tm.TestCase): def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = True kwds['buffer_lines'] = 2 return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = True kwds['buffer_lines'] = 2 return read_table(*args, **kwds) def test_compact_ints(self): data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.to_records(index=False).dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.to_records(index=False).dtype, ex_dtype) def test_compact_ints_as_recarray(self): if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) def test_precise_conversion(self): # GH #8002 tm._skip_if_32bit() from decimal import Decimal normal_errors = [] precise_errors = [] for num in np.linspace(1., 2., num=500): # test numbers between 1 and 2 text = 'a\n{0:.25}'.format(num) # 25 decimal digits of precision normal_val = float(self.read_csv(StringIO(text))['a'][0]) precise_val = float(self.read_csv(
StringIO(text)
pandas.compat.StringIO
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']}) tm.assert_frame_equal(df, expected) data = """\ a,b,c,d 0,NA,1,5 """ xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0]) xp.index.name = 'a' df = self.read_csv(StringIO(data), na_values={}, index_col=0) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2]) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c']) tm.assert_frame_equal(df, xp) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pydata/pandas/master/' 'pandas/io/tests/data/salary.table') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @slow def test_file(self): # FILE if sys.version_info[:2] < (2, 6): raise nose.SkipTest("file:// not supported with Python < 2.6") dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems raise nose.SkipTest("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_parse_tz_aware(self): import pytz # #1693 data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5") # it works result = read_csv(data, index_col=0, parse_dates=True) stamp = result.index[0] self.assertEqual(stamp.minute, 39) try: self.assertIs(result.index.tz, pytz.utc) except AssertionError: # hello Yaroslav arr = result.index.to_pydatetime() result = tools.to_datetime(arr, utc=True)[0] self.assertEqual(stamp.minute, result.minute) self.assertEqual(stamp.hour, result.hour) self.assertEqual(stamp.day, result.day) def test_multiple_date_cols_index(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col='nominal') tm.assert_frame_equal(xp.set_index('nominal'), df) df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col=0) tm.assert_frame_equal(df2, df) df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0) tm.assert_frame_equal(df3, df, check_names=False) def test_multiple_date_cols_chunked(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={ 'nominal': [1, 2]}, index_col='nominal') reader = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal', chunksize=2) chunks = list(reader) self.assertNotIn('nominalTime', df) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_multiple_date_col_named_components(self): xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal') colspec = {'nominal': ['date', 'nominalTime']} df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec, index_col='nominal') tm.assert_frame_equal(df, xp) def test_multiple_date_col_multiple_index(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col=['nominal', 'ID']) xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}) tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df) def test_comment(self): data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) df = self.read_table(StringIO(data), sep=',', comment='#', na_values=['NaN']) tm.assert_almost_equal(df.values, expected) def test_bool_na_values(self): data = """A,B,C True,False,True NA,True,False False,NA,True""" result = self.read_csv(StringIO(data)) expected = DataFrame({'A': np.array([True, nan, False], dtype=object), 'B': np.array([False, True, nan], dtype=object), 'C': [True, False, True]}) tm.assert_frame_equal(result, expected) def test_nonexistent_path(self): # don't segfault pls #2428 path = '%s.csv' % tm.rands(10) self.assertRaises(Exception, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) self.assertTrue(result['D'].isnull()[1:].all()) def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) self.assertTrue(pd.isnull(result.ix[0, 29])) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') self.assertEqual(len(result), 50) if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') self.assertEqual(len(result), 50) def test_converters_corner_with_nas(self): # skip aberration observed on Win64 Python 3.2.2 if hash(np.int64(-1)) != -2: raise nose.SkipTest("skipping because of windows hash on Python" " 3.2.2") csv = """id,score,days 1,2,12 2,2-5, 3,,14+ 4,6-12,2""" def convert_days(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_days_sentinel(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_score(x): x = x.strip() if not x: return np.nan if x.find('-') > 0: valmin, valmax = lmap(int, x.split('-')) val = 0.5 * (valmin + valmax) else: val = float(x) return val fh = StringIO(csv) result = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days}, na_values=['', None]) self.assertTrue(pd.isnull(result['days'][1])) fh = StringIO(csv) result2 = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days_sentinel}, na_values=['', None]) tm.assert_frame_equal(result, result2) def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') self.assertEqual(got, expected) def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') self.assertEqual(result['SEARCH_TERM'][2], 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals serie') self.assertTrue(np.array_equal(result.columns, ['SEARCH_TERM', 'ACTUAL_URL'])) def test_header_names_backward_compat(self): # #2539 data = '1,2,3\n4,5,6' result = self.read_csv(StringIO(data), names=['a', 'b', 'c']) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) tm.assert_frame_equal(result, expected) data2 = 'foo,bar,baz\n' + data result = self.read_csv(StringIO(data2), names=['a', 'b', 'c'], header=0) tm.assert_frame_equal(result, expected) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) self.assertTrue(np.array_equal(result['Numbers'], expected['Numbers'])) def test_usecols_index_col_conflict(self): # Issue 4201 Test that index_col as integer reflects usecols data = """SecId,Time,Price,P2,P3 10000,2013-5-11,100,10,1 500,2013-5-12,101,11,1 """ expected = DataFrame({'Price': [100, 101]}, index=[ datetime(2013, 5, 11), datetime(2013, 5, 12)]) expected.index.name = 'Time' df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) expected = DataFrame( {'P3': [1, 1], 'Price': (100, 101), 'P2': (10, 11)}) expected = expected.set_index(['Price', 'P2']) df = self.read_csv(StringIO(data), usecols=[ 'Price', 'P2', 'P3'], parse_dates=True, index_col=['Price', 'P2']) tm.assert_frame_equal(expected, df) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. self.assertTrue(type(df.a[0]) is np.float64) self.assertEqual(df.a.dtype, np.float) def test_warn_if_chunks_have_mismatched_type(self): # See test in TestCParserLowMemory. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(1, 2)) result2 = self.read_csv(StringIO(data), usecols=('b', 'c')) exp = self.read_csv(StringIO(data)) self.assertEqual(len(result.columns), 2) self.assertTrue((result['b'] == exp['b']).all()) self.assertTrue((result['c'] == exp['c']).all()) tm.assert_frame_equal(result, result2) result = self.read_csv(StringIO(data), usecols=[1, 2], header=0, names=['foo', 'bar']) expected = self.read_csv(StringIO(data), usecols=[1, 2]) expected.columns = ['foo', 'bar'] tm.assert_frame_equal(result, expected) data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), names=['b', 'c'], header=None, usecols=[1, 2]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['b', 'c']] tm.assert_frame_equal(result, expected) result2 = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None, usecols=['b', 'c']) tm.assert_frame_equal(result2, result) # 5766 result = self.read_csv(StringIO(data), names=['a', 'b'], header=None, usecols=[0, 1]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['a', 'b']] tm.assert_frame_equal(result, expected) # length conflict, passed names and usecols disagree self.assertRaises(ValueError, self.read_csv, StringIO(data), names=['a', 'b'], usecols=[1], header=None) def test_integer_overflow_bug(self): # #2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') self.assertTrue(result[0].dtype == np.float64) result = self.read_csv(StringIO(data), header=None, sep='\s+') self.assertTrue(result[0].dtype == np.float64) def test_catch_too_many_names(self): # Issue 5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" tm.assertRaises(Exception, read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # GH 6607, GH 3374 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep='\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_nrows_and_chunksize_raises_notimplemented(self): data = 'a b c' self.assertRaises(NotImplementedError, self.read_csv, StringIO(data), nrows=10, chunksize=5) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # GH 10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) self.assertEqual(len(result), 2) # GH 9735 chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = pd.read_csv(StringIO(chunk1 + chunk2), header=None) expected = pd.DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # GH 10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_emtpy_with_multiindex(self): # GH 10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_index_col_scenarios(self): data = 'x,y,z' # None, no index index_col, expected = None, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # False, no index index_col, expected = False, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, first column index_col, expected = 0, DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, not first column index_col, expected = 1, DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, first column index_col, expected = 'x', DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, not the first column index_col, expected = 'y', DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # list of int index_col, expected = [0, 1], DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str index_col = ['x', 'y'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of int, reversed sequence index_col = [1, 0] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str, reversed sequence index_col = ['y', 'x'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) def test_empty_with_index_col_false(self): # GH 10413 data = 'x,y' result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame([], columns=['x', 'y']) tm.assert_frame_equal(result, expected) def test_float_parser(self): # GH 9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = pd.DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" result = self.read_csv(StringIO(data)) self.assertTrue(result['ID'].dtype == object) self.assertRaises((OverflowError, pandas.parser.OverflowError), self.read_csv, StringIO(data), converters={'ID': np.int64}) # Just inside int64 range: parse as integer i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([x]) tm.assert_frame_equal(result, expected) # Just outside int64 range: parse as string too_big = i_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([str(x)]) tm.assert_frame_equal(result, expected) def test_empty_with_nrows_chunksize(self): # GH 9535 expected = pd.DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) result = pd.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) result = next( iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) def test_eof_states(self): # GH 10728 and 10548 # With skip_blank_lines = True expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) # GH 10728 # WHITESPACE_LINE data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # GH 10548 # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # EAT_CRNL_NOP data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # EAT_COMMENT data = 'a,b,c\n4,5,6#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # SKIP_LINE data = 'a,b,c\n4,5,6\nskipme' result = self.read_csv(StringIO(data), skiprows=[2]) tm.assert_frame_equal(result, expected) # With skip_blank_lines = False # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv( StringIO(data), comment='#', skip_blank_lines=False) expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # IN_FIELD data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [['4', 5, 6], [' ', None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # EAT_CRNL data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [[4, 5, 6], [None, None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # Should produce exceptions # ESCAPED_CHAR data = "a,b,c\n4,5,6\n\\" self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # ESCAPE_IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"\\' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') class TestPythonParser(ParserTests, tm.TestCase): def test_negative_skipfooter_raises(self): text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ with tm.assertRaisesRegexp(ValueError, 'skip footer cannot be negative'): df = self.read_csv(StringIO(text), skipfooter=-1) def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_table(*args, **kwds) def test_sniff_delimiter(self): text = """index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data = self.read_csv(StringIO(text), index_col=0, sep=None) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) data2 = self.read_csv(StringIO(text), index_col=0, delimiter='|') tm.assert_frame_equal(data, data2) text = """ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data3 = self.read_csv(StringIO(text), index_col=0, sep=None, skiprows=2) tm.assert_frame_equal(data, data3) text = u("""ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """).encode('utf-8') s = BytesIO(text) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') data4 = self.read_csv(s, index_col=0, sep=None, skiprows=2, encoding='utf-8') tm.assert_frame_equal(data, data4) def test_regex_separator(self): data = """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """ df = self.read_table(StringIO(data), sep='\s+') expected = self.read_csv(StringIO(re.sub('[ ]+', ',', data)), index_col=0) self.assertIsNone(expected.index.name) tm.assert_frame_equal(df, expected) def test_1000_fwf(self): data = """ 1 2,334.0 5 10 13 10. """ expected = [[1, 2334., 5], [10, 13, 10]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (3, 11), (12, 16)], thousands=',') tm.assert_almost_equal(df.values, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_comment_fwf(self): data = """ 1 2. 4 #hello world 5 NaN 10.0 """ expected = [[1, 2., 4], [5, np.nan, 10.]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (4, 9), (9, 25)], comment='#') tm.assert_almost_equal(df.values, expected) def test_fwf(self): data_expected = """\ 2011,58,360.242940,149.910199,11950.7 2011,59,444.953632,166.985655,11788.4 2011,60,364.136849,183.628767,11806.2 2011,61,413.836124,184.375703,11916.8 2011,62,502.953953,173.237159,12468.3 """ expected = self.read_csv(StringIO(data_expected), header=None) data1 = """\ 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] df = read_fwf(StringIO(data1), colspecs=colspecs, header=None) tm.assert_frame_equal(df, expected) data2 = """\ 2011 58 360.242940 149.910199 11950.7 2011 59 444.953632 166.985655 11788.4 2011 60 364.136849 183.628767 11806.2 2011 61 413.836124 184.375703 11916.8 2011 62 502.953953 173.237159 12468.3 """ df = read_fwf(StringIO(data2), widths=[5, 5, 13, 13, 7], header=None) tm.assert_frame_equal(df, expected) # From <NAME>: apparently some non-space filler characters can # be seen, this is supported by specifying the 'delimiter' character: # http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html data3 = """\ 201158~~~~360.242940~~~149.910199~~~11950.7 201159~~~~444.953632~~~166.985655~~~11788.4 201160~~~~364.136849~~~183.628767~~~11806.2 201161~~~~413.836124~~~184.375703~~~11916.8 201162~~~~502.953953~~~173.237159~~~12468.3 """ df = read_fwf( StringIO(data3), colspecs=colspecs, delimiter='~', header=None) tm.assert_frame_equal(df, expected) with tm.assertRaisesRegexp(ValueError, "must specify only one of"): read_fwf(StringIO(data3), colspecs=colspecs, widths=[6, 10, 10, 7]) with tm.assertRaisesRegexp(ValueError, "Must specify either"): read_fwf(StringIO(data3), colspecs=None, widths=None) def test_fwf_colspecs_is_list_or_tuple(self): with tm.assertRaisesRegexp(TypeError, 'column specifications must be a list or ' 'tuple.+'): pd.io.parsers.FixedWidthReader(StringIO(self.data1), {'a': 1}, ',', '#') def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples(self): with tm.assertRaisesRegexp(TypeError, 'Each column specification must be.+'): read_fwf(StringIO(self.data1), [('a', 1)]) def test_fwf_colspecs_None(self): # GH 7079 data = """\ 123456 456789 """ colspecs = [(0, 3), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, 3), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(0, None), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, None), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) def test_fwf_regression(self): # GH 3594 # turns out 'T060' is parsable as a datetime slice! tzlist = [1, 10, 20, 30, 60, 80, 100] ntz = len(tzlist) tcolspecs = [16] + [8] * ntz tcolnames = ['SST'] + ["T%03d" % z for z in tzlist[1:]] data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192 2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869 2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657 2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379 2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039 """ df = read_fwf(StringIO(data), index_col=0, header=None, names=tcolnames, widths=tcolspecs, parse_dates=True, date_parser=lambda s: datetime.strptime(s, '%Y%j%H%M%S')) for c in df.columns: res = df.loc[:, c] self.assertTrue(len(res)) def test_fwf_for_uint8(self): data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127 1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" df = read_fwf(StringIO(data), colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)], names=['time', 'pri', 'pgn', 'dst', 'src', 'data'], converters={ 'pgn': lambda x: int(x, 16), 'src': lambda x: int(x, 16), 'dst': lambda x: int(x, 16), 'data': lambda x: len(x.split(' '))}) expected = DataFrame([[1421302965.213420, 3, 61184, 23, 40, 8], [1421302964.226776, 6, 61442, None, 71, 8]], columns=["time", "pri", "pgn", "dst", "src", "data"]) expected["dst"] = expected["dst"].astype(object) tm.assert_frame_equal(df, expected) def test_fwf_compression(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest("Need gzip and bz2 to run this test") data = """1111111111 2222222222 3333333333""".strip() widths = [5, 5] names = ['one', 'two'] expected = read_fwf(StringIO(data), widths=widths, names=names) if compat.PY3: data = bytes(data, encoding='utf-8') comps = [('gzip', gzip.GzipFile), ('bz2', bz2.BZ2File)] for comp_name, compresser in comps: with tm.ensure_clean() as path: tmp = compresser(path, mode='wb') tmp.write(data) tmp.close() result = read_fwf(path, widths=widths, names=names, compression=comp_name) tm.assert_frame_equal(result, expected) def test_BytesIO_input(self): if not compat.PY3: raise nose.SkipTest( "Bytes-related test - only needs to work on Python 3") result = pd.read_fwf(BytesIO("שלום\nשלום".encode('utf8')), widths=[ 2, 2], encoding='utf8') expected = pd.DataFrame([["של", "ום"]], columns=["של", "ום"]) tm.assert_frame_equal(result, expected) data = BytesIO("שלום::1234\n562::123".encode('cp1255')) result = pd.read_table(data, sep="::", engine='python', encoding='cp1255') expected = pd.DataFrame([[562, 123]], columns=["שלום", "1234"]) tm.assert_frame_equal(result, expected) def test_verbose_import(self): text = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" buf = StringIO() sys.stdout = buf try: # it works! df = self.read_csv(StringIO(text), verbose=True) self.assertEqual( buf.getvalue(), 'Filled 3 NA values in column a\n') finally: sys.stdout = sys.__stdout__ buf = StringIO() sys.stdout = buf text = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" try: # it works! df = self.read_csv(StringIO(text), verbose=True, index_col=0) self.assertEqual( buf.getvalue(), 'Filled 1 NA values in column a\n') finally: sys.stdout = sys.__stdout__ def test_float_precision_specified(self): # Should raise an error if float_precision (C parser option) is # specified with tm.assertRaisesRegexp(ValueError, "The 'float_precision' option " "is not supported with the 'python' engine"): self.read_csv(StringIO('a,b,c\n1,2,3'), float_precision='high') def test_iteration_open_handle(self): if PY3: raise nose.SkipTest( "won't work in Python 3 {0}".format(sys.version_info)) with tm.ensure_clean() as path: with open(path, 'wb') as f: f.write('AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG') with open(path, 'rb') as f: for line in f: if 'CCC' in line: break try: read_table(f, squeeze=True, header=None, engine='c') except Exception: pass else: raise ValueError('this should not happen') result = read_table(f, squeeze=True, header=None, engine='python') expected = Series(['DDD', 'EEE', 'FFF', 'GGG'], name=0) tm.assert_series_equal(result, expected) def test_iterator(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_single_line(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_malformed(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_skip_footer(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = self.read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_decompression_regex_sep(self): # GH 6607 # This is a copy which should eventually be moved to ParserTests # when the issue with the C parser is fixed try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() data = data.replace(b',', b'::') expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='bz2') tm.assert_frame_equal(result, expected) self.assertRaises(ValueError, self.read_csv, path, compression='bz3') def test_read_table_buglet_4x_multiindex(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with multi-level index is fixed in the C parser. text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) # GH 6893 data = ' A B C\na b c\n1 3 7 0 3 6\n3 1 4 1 5 9' expected = DataFrame.from_records([(1, 3, 7, 0, 3, 6), (3, 1, 4, 1, 5, 9)], columns=list('abcABC'), index=list('abc')) actual = self.read_table(StringIO(data), sep='\s+') tm.assert_frame_equal(actual, expected) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_almost_equal(list(df.values), list(expected)) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = [[1, 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) class TestFwfColspaceSniffing(tm.TestCase): def test_full_file(self): # File with all values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 2000-01-05T00:00:00 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0.487094399463 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 2000-01-11T00:00:00 0.157160753327 34 foo''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_missing(self): # File with missing values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 34''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces(self): # File with spaces in columns test = ''' Account Name Balance CreditLimit AccountCreated 101 <NAME> 9315.45 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 <NAME> 0 17000.00 5/25/1985 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 5000.00 2/5/2007 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces_and_missing(self): # File with spaces and missing values in columsn test = ''' Account Name Balance CreditLimit AccountCreated 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 5/25/1985 761 <NAME>-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_messed_up_data(self): # Completely messed up file test = ''' Account Name Balance Credit Limit Account Created 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 761 <NAME> 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((2, 10), (15, 33), (37, 45), (49, 61), (64, 79)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_multiple_delimiters(self): test = r''' col1~~~~~col2 col3++++++++++++++++++col4 ~~22.....11.0+++foo~~~~~~~~~~<NAME> 33+++122.33\\\bar.........<NAME> ++44~~~~12.01 baz~~<NAME> ~~55 11+++foo++++<NAME>-Smith ..66++++++.03~~~bar <NAME> '''.strip('\r\n') colspecs = ((0, 4), (7, 13), (15, 19), (21, 41)) expected = read_fwf(StringIO(test), colspecs=colspecs, delimiter=' +~.\\') tm.assert_frame_equal(expected, read_fwf(StringIO(test), delimiter=' +~.\\')) def test_variable_width_unicode(self): if not compat.PY3: raise nose.SkipTest( 'Bytes-related test - only needs to work on Python 3') test = ''' שלום שלום ום שלל של ום '''.strip('\r\n') expected = pd.read_fwf(BytesIO(test.encode('utf8')), colspecs=[(0, 4), (5, 9)], header=None, encoding='utf8') tm.assert_frame_equal(expected, read_fwf(BytesIO(test.encode('utf8')), header=None, encoding='utf8')) class CParserTests(ParserTests): """ base class for CParser Testsing """ def test_buffer_overflow(self): # GH9205 # test certain malformed input files that cause buffer overflows in # tokenizer.c malfw = "1\r1\r1\r 1\r 1\r" # buffer overflow in words pointer malfs = "1\r1\r1\r 1\r 1\r11\r" # buffer overflow in stream pointer malfl = "1\r1\r1\r 1\r 1\r11\r1\r" # buffer overflow in lines pointer for malf in (malfw, malfs, malfl): try: df = self.read_table(StringIO(malf)) except Exception as cperr: self.assertIn( 'Buffer overflow caught - possible malformed input file.', str(cperr)) def test_buffer_rd_bytes(self): # GH 12098 # src->buffer can be freed twice leading to a segfault if a corrupt # gzip file is read with read_csv and the buffer is filled more than # once before gzip throws an exception data = '\x1F\x8B\x08\x00\x00\x00\x00\x00\x00\x03\xED\xC3\x41\x09' \ '\x00\x00\x08\x00\xB1\xB7\xB6\xBA\xFE\xA5\xCC\x21\x6C\xB0' \ '\xA6\x4D' + '\x55' * 267 + \ '\x7D\xF7\x00\x91\xE0\x47\x97\x14\x38\x04\x00' \ '\x1f\x8b\x08\x00VT\x97V\x00\x03\xed]\xefO' for i in range(100): try: _ = self.read_csv(StringIO(data), compression='gzip', delim_whitespace=True) except Exception as e: pass class TestCParserHighMemory(CParserTests, tm.TestCase): def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = False return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = False return read_table(*args, **kwds) def test_compact_ints(self): if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) def test_parse_dates_empty_string(self): # #2263 s = StringIO("Date, test\n2012-01-01, 1\n,2") result = self.read_csv(s, parse_dates=["Date"], na_filter=False) self.assertTrue(result['Date'].isnull()[1]) def test_usecols(self): raise nose.SkipTest( "Usecols is not supported in C High Memory engine.") def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) # check with delim_whitespace=True df = self.read_csv(StringIO(data.replace(',', ' ')), comment='#', delim_whitespace=True) tm.assert_almost_equal(df.values, expected) # check with custom line terminator df = self.read_csv(StringIO(data.replace('\n', '*')), comment='#', lineterminator='*') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_skiprows_lineterminator(self): # GH #9079 data = '\n'.join(['SMOSMANIA ThetaProbe-ML2X ', '2007/01/01 01:00 0.2140 U M ', '2007/01/01 02:00 0.2141 M O ', '2007/01/01 04:00 0.2142 D M ']) expected = pd.DataFrame([['2007/01/01', '01:00', 0.2140, 'U', 'M'], ['2007/01/01', '02:00', 0.2141, 'M', 'O'], ['2007/01/01', '04:00', 0.2142, 'D', 'M']], columns=['date', 'time', 'var', 'flag', 'oflag']) # test with the three default lineterminators LF, CR and CRLF df = self.read_csv(StringIO(data), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data.replace('\n', '\r')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data.replace('\n', '\r\n')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) def test_trailing_spaces(self): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" expected = pd.DataFrame([[1., 2., 4.], [5.1, np.nan, 10.]]) # this should ignore six lines including lines with trailing # whitespace and blank lines. issues 8661, 8679 df = self.read_csv(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) # test skipping set of rows after a row with trailing spaces, issue # #8983 expected = pd.DataFrame({"A": [1., 5.1], "B": [2., np.nan], "C": [4., 10]}) df = self.read_table(StringIO(data.replace(',', ' ')), delim_whitespace=True, skiprows=[1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_almost_equal(list(df.values), list(expected)) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = [[1, 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_passing_dtype(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the dtype argument is supported by all engines. df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) # empty frame # GH12048 actual = self.read_csv(StringIO('A,B'), dtype=str) expected = DataFrame({'A': [], 'B': []}, index=[], dtype=str) tm.assert_frame_equal(actual, expected) def test_dtype_and_names_error(self): # GH 8833 # passing both dtype and names resulting in an error reporting issue data = """ 1.0 1 2.0 2 3.0 3 """ # base cases result = self.read_csv(StringIO(data), sep='\s+', header=None) expected = DataFrame([[1.0, 1], [2.0, 2], [3.0, 3]]) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), sep='\s+', header=None, names=['a', 'b']) expected = DataFrame( [[1.0, 1], [2.0, 2], [3.0, 3]], columns=['a', 'b']) tm.assert_frame_equal(result, expected) # fallback casting result = self.read_csv(StringIO( data), sep='\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) expected = DataFrame([[1, 1], [2, 2], [3, 3]], columns=['a', 'b']) expected['a'] = expected['a'].astype(np.int32) tm.assert_frame_equal(result, expected) data = """ 1.0 1 nan 2 3.0 3 """ # fallback casting, but not castable with tm.assertRaisesRegexp(ValueError, 'cannot safely convert'): self.read_csv(StringIO(data), sep='\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) def test_fallback_to_python(self): # GH 6607 data = 'a b c\n1 2 3' # specify C engine with unsupported options (raise) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep=None, delim_whitespace=False) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep='\s') with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', skip_footer=1) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), delim_whitespace=True, skipinitialspace=True) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), lineterminator='\n', skipinitialspace=True) tm.assert_frame_equal(result, expected) class TestCParserLowMemory(CParserTests, tm.TestCase): def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = True kwds['buffer_lines'] = 2 return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = True kwds['buffer_lines'] = 2 return read_table(*args, **kwds) def test_compact_ints(self): data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.to_records(index=False).dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.to_records(index=False).dtype, ex_dtype) def test_compact_ints_as_recarray(self): if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) def test_precise_conversion(self): # GH #8002 tm._skip_if_32bit() from decimal import Decimal normal_errors = [] precise_errors = [] for num in np.linspace(1., 2., num=500): # test numbers between 1 and 2 text = 'a\n{0:.25}'.format(num) # 25 decimal digits of precision normal_val = float(self.read_csv(StringIO(text))['a'][0]) precise_val = float(self.read_csv( StringIO(text), float_precision='high')['a'][0]) roundtrip_val = float(self.read_csv( StringIO(text), float_precision='round_trip')['a'][0]) actual_val = Decimal(text[2:]) def error(val): return abs(Decimal('{0:.100}'.format(val)) - actual_val) normal_errors.append(error(normal_val)) precise_errors.append(error(precise_val)) # round-trip should match float() self.assertEqual(roundtrip_val, float(text[2:])) self.assertTrue(sum(precise_errors) <= sum(normal_errors)) self.assertTrue(max(precise_errors) <= max(normal_errors)) def test_pass_dtype(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}) self.assertEqual(result['one'].dtype, 'u1') self.assertEqual(result['two'].dtype, 'object') def test_pass_dtype_as_recarray(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}, as_recarray=True) self.assertEqual(result['one'].dtype, 'u1') self.assertEqual(result['two'].dtype, 'S1') def test_empty_pass_dtype(self): data = 'one,two' result = self.read_csv(StringIO(data), dtype={'one': 'u1'}) expected = DataFrame({'one': np.empty(0, dtype='u1'), 'two': np.empty(0, dtype=np.object)}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_index_pass_dtype(self): data = 'one,two' result = self.read_csv(StringIO(data), index_col=['one'], dtype={'one': 'u1', 1: 'f'}) expected = DataFrame({'two': np.empty(0, dtype='f')}, index=Index([], dtype='u1', name='one')) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_multiindex_pass_dtype(self): data = 'one,two,three' result = self.read_csv(StringIO(data), index_col=['one', 'two'], dtype={'one': 'u1', 1: 'f8'}) exp_idx = MultiIndex.from_arrays([np.empty(0, dtype='u1'), np.empty(0, dtype='O')], names=['one', 'two']) expected = DataFrame( {'three': np.empty(0, dtype=np.object)}, index=exp_idx) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_mangled_column_pass_dtype_by_names(self): data = 'one,one' result = self.read_csv(StringIO(data), dtype={ 'one': 'u1', 'one.1': 'f'}) expected = DataFrame( {'one': np.empty(0, dtype='u1'), 'one.1': np.empty(0, dtype='f')}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_mangled_column_pass_dtype_by_indexes(self): data = 'one,one' result = self.read_csv(StringIO(data), dtype={0: 'u1', 1: 'f'}) expected = DataFrame( {'one': np.empty(0, dtype='u1'), 'one.1': np.empty(0, dtype='f')}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_dup_column_pass_dtype_by_names(self): data = 'one,one' result = self.read_csv( StringIO(data), mangle_dupe_cols=False, dtype={'one': 'u1'}) expected = pd.concat([Series([], name='one', dtype='u1')] * 2, axis=1) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_dup_column_pass_dtype_by_indexes(self): ### FIXME in GH9424 raise nose.SkipTest( "GH 9424; known failure read_csv with duplicate columns") data = 'one,one' result = self.read_csv( StringIO(data), mangle_dupe_cols=False, dtype={0: 'u1', 1: 'f'}) expected = pd.concat([Series([], name='one', dtype='u1'), Series([], name='one', dtype='f')], axis=1) tm.assert_frame_equal(result, expected, check_index_type=False) def test_usecols_dtypes(self): data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(0, 1, 2), names=('a', 'b', 'c'), header=None, converters={'a': str}, dtype={'b': int, 'c': float}, ) result2 = self.read_csv(StringIO(data), usecols=(0, 2), names=('a', 'b', 'c'), header=None, converters={'a': str}, dtype={'b': int, 'c': float}, ) self.assertTrue((result.dtypes == [object, np.int, np.float]).all()) self.assertTrue((result2.dtypes == [object, np.float]).all()) def test_usecols_implicit_index_col(self): # #2654 data = 'a,b,c\n4,apple,bat,5.7\n8,orange,cow,10' result = self.read_csv(StringIO(data), usecols=['a', 'b']) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(result, expected) def test_usecols_with_whitespace(self): data = 'a b c\n4 apple bat 5.7\n8 orange cow 10' result = self.read_csv(StringIO(data), delim_whitespace=True, usecols=('a', 'b')) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(result, expected) def test_usecols_regex_sep(self): # #2733 data = 'a b c\n4 apple bat 5.7\n8 orange cow 10' df = self.read_csv(StringIO(data), sep='\s+', usecols=('a', 'b')) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(df, expected) def test_pure_python_failover(self): data = "a,b,c\n1,2,3#ignore this!\n4,5,6#ignorethistoo" result = self.read_csv(StringIO(data), comment='#') expected = DataFrame({'a': [1, 4], 'b': [2, 5], 'c': [3, 6]}) tm.assert_frame_equal(result, expected) def test_decompression(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, compression='gzip') tm.assert_frame_equal(result, expected) result = self.read_csv(open(path, 'rb'), compression='gzip') tm.assert_frame_equal(result, expected) with
tm.ensure_clean()
pandas.util.testing.ensure_clean
import os import numpy as np import pandas as pd import streamlit as st import time from datetime import datetime from glob import glob from omegaconf import OmegaConf from pandas.api.types import is_numeric_dtype from streamlit_autorefresh import st_autorefresh from dataloader import read_csv, clear_data from preprocessing.filter import apply_filter from preprocessing.target import apply_target, target_encode_numeric, target_encode_category from preprocessing import delete_nan, replace_nan, delete_outlier, encode_category from model import split_data, get_best_model from analysis import get_shap_value, get_importance, simulation_1d, simulation_2d from graph.evaluation import plot_reg_evaluation, plot_confusion_matrix from graph.importance import plot_importance from graph.explanation import plot_shap, plot_simulation_1d, plot_simulation_2d from graph.matplot import plot_simulation_1d as matplotlib_simulation_1d from graph.matplot import plot_shap as matplotlib_shap from helper import get_session_id, encode, convert_figs2zip # Warning import warnings warnings.filterwarnings('ignore') # # Korean # import matplotlib # from matplotlib import font_manager, rc # font_name = font_manager.FontProperties(fname="c:/Windows/Fonts/malgun.ttf").get_name() # rc('font', family=font_name) # matplotlib.rcParams['axes.unicode_minus'] = False # Create Session if 'config' not in st.session_state: st.session_state['config'] = OmegaConf.load('config.yaml') if 'files' not in st.session_state: st.session_state['files'] = np.sort(glob( os.path.join( st.session_state['config']['file']['root'], '*.csv' ) )) if 'train_file_path' not in st.session_state: st.session_state['train_file_path'] = None if 'filter' not in st.session_state: st.session_state['filter'] = None if 'encoder' not in st.session_state: st.session_state['encoder'] = None if 'target' not in st.session_state: st.session_state['target'] = None if 'feature_all' not in st.session_state: st.session_state['feature_all'] = None if 'feature_selected' not in st.session_state: st.session_state['feature_selected'] = None if 'data_quality' not in st.session_state: st.session_state['data_quality'] = None if 'mode' not in st.session_state: st.session_state['mode'] = None if 'model' not in st.session_state: st.session_state['model'] = None if 'state_0' not in st.session_state: st.session_state['state_0'] = None if '_df_0' not in st.session_state: st.session_state['_df_0'] = None if 'state_1' not in st.session_state: st.session_state['state_1'] = None if '_df_1' not in st.session_state: st.session_state['_df_1'] = None if 'state_2' not in st.session_state: st.session_state['state_2'] = None if '_df_2' not in st.session_state: st.session_state['_df_2'] = None if 'state_3' not in st.session_state: st.session_state['state_3'] = None if '_df_3' not in st.session_state: st.session_state['_df_3'] = None # Title st.markdown('# XAI for tree models') st.write(f'SESSION ID: {get_session_id()}') # STEP 1. st.markdown('### STEP 1. Data preparation') # Start Time start_time = time.time() # State 0: _df_0 state_0 = {} # Select Train train_file_path = st.selectbox( label = 'Train Data', options = st.session_state['files'], index = 0 ) state_0['train_file_path'] = train_file_path # update _df_0 if ( state_0 != st.session_state['state_0'] ): df = read_csv( path = state_0['train_file_path'], max_len = st.session_state['config']['data']['max_len'], add_random_noise = st.session_state['config']['data']['add_random_noise'], random_state = st.session_state['config']['setup']['random_state'], ) df = clear_data(df) # Update session state st.session_state['train_file_path'] = state_0['train_file_path'] st.session_state['_df_0'] = df st.session_state['model'] = None # Print Options st.sidebar.write('Options') # State 1: _df_1 state_1 = {} # Get Filter Number num_filter = st.sidebar.number_input( label = 'Filter', value = 0, min_value = 0, max_value = len(st.session_state['_df_0'].columns), step=1 ) # Get Filter Value filter = {} if num_filter > 0: for i in range(num_filter): column = st.selectbox( label = f'Filtered column #{i+1}', options = [None]+list(st.session_state['_df_0'].columns), ) if column is not None: values = list( np.sort(st.session_state['_df_0'][column].dropna().unique()) ) selected_values = st.multiselect( label = f'Select values #{i+1}', options = values, default = values ) filter[column] = selected_values state_1['filter'] = filter # Get Mode mode = st.selectbox( label = 'Type', options = ['Regression', 'Binary Classification'] ) state_1['mode'] = mode # Get Target target = st.selectbox( label = 'Target', options = list(st.session_state['_df_0'].columns) ) state_1['target'] = target # Target Encoding if mode == 'Binary Classification': values = st.session_state['_df_0'][target].dropna() if is_numeric_dtype(values): column_c0, column_i0, column_c1, column_i1 = st.columns(4) with column_c0: l_q = st.number_input( label = 'Label 0 Upper Limit (%)', value = 20, min_value = 0, max_value = 100, step = 1 ) state_1['l_q'] = l_q with column_c1: h_q = st.number_input( label = 'Label 0 Lower Limit (%)', value = 80, min_value = 0, max_value = 100, step = 1 ) state_1['h_q'] = h_q with column_i0: st.metric( label = 'Label 0 Maximum', value = f"{np.percentile(values, q=l_q):.4f}" ) with column_i1: st.metric( label = 'Label 1 Minimum', value = f"{np.percentile(values, q=h_q):.4f}" ) else: uniques = list(np.sort(np.unique(values))) col_0, col_1 = st.columns(2) with col_0: label_0 = st.selectbox( label = 'Label 0', options = uniques, index = 0 ) state_1['label_0'] = label_0 with col_1: label_1 = st.selectbox( label = 'Label 1', options = [column for column in uniques if column != label_0], index = 0 ) state_1['label_1'] = label_1 # update _df_1 if ( state_0 != st.session_state['state_0'] or state_1 != st.session_state['state_1'] ): # Get DF df = st.session_state['_df_0'].copy() # Apply Filter df = apply_filter( df = df, filter = filter ) # Apply Target df = apply_target( df = df, target = target ) # Encode target if the mode is binary classification if state_1['mode'] == 'Binary Classification': if ('l_q' in state_1) and ('h_q' in state_1): df = target_encode_numeric( df = df, target = state_1['target'], l_q = state_1['l_q'], h_q = state_1['h_q'] ) elif ('label_0' in state_1) and ('label_1' in state_1): df = target_encode_category( df = df, target = state_1['target'], label_0 = state_1['label_0'], label_1 = state_1['label_1'] ) # Update session state st.session_state['filter'] = state_1['filter'] st.session_state['target'] = state_1['target'] st.session_state['feature_all'] = [column for column in df.columns if column != state_1['target']] st.session_state['data_quality'] = df.notnull().sum() / len(df) st.session_state['mode'] = state_1['mode'] if ('l_q' in state_1) and ('h_q' in state_1): st.session_state['l_q'] = state_1['l_q'] st.session_state['h_q'] = state_1['h_q'] st.session_state['label_0'] = None st.session_state['label_1'] = None elif ('label_0' in state_1) and ('label_1' in state_1): st.session_state['l_q'] = None st.session_state['h_q'] = None st.session_state['label_0'] = state_1['label_0'] st.session_state['label_1'] = state_1['label_1'] else: st.session_state['l_q'] = None st.session_state['h_q'] = None st.session_state['label_0'] = None st.session_state['label_1'] = None st.session_state['_df_1'] = df st.session_state['model'] = None # State 2: _df_2 state_2 = {} # NaN Data nan_data = st.sidebar.selectbox( label = 'NaN Data', options = ['Delete', 'Replace'] ) state_2['nan_data'] = nan_data # Auto Feature Selection auto_feature_selection = st.sidebar.selectbox( label = 'Auto Feature Selection', options = [False, True] ) state_2['auto_feature_selection'] = auto_feature_selection # update _df_2 if ( state_0 != st.session_state['state_0'] or state_1 != st.session_state['state_1'] or state_2 != st.session_state['state_2'] ): # Get DF df = st.session_state['_df_1'].copy() # Encode Data df, encoder = encode_category(df) # Update session state st.session_state['nan_data'] = state_2['nan_data'] st.session_state['auto_feature_selection'] = auto_feature_selection st.session_state['encoder'] = encoder st.session_state['_df_2'] = df.reset_index(drop=True) st.session_state['model'] = None # State 3: _df_3 state_3 = {} # Select Features st.sidebar.markdown("""---""") st.sidebar.write('Features') st.sidebar.text(f'Data quality | name') index = [ st.sidebar.checkbox( label = f"{st.session_state['data_quality'][column]:.2f} | {column}", key = f"_{column}", value = True, ) for column in st.session_state['feature_all'] ] feature_selected = list(np.array(st.session_state['feature_all'])[index]) state_3['feature_selected'] = feature_selected # Magage Features def uncheck(): for column in st.session_state['feature_all']: st.session_state[f'_{column}'] = False def check(): for column in st.session_state['feature_all']: st.session_state[f'_{column}'] = True _, col_1, col_2 = st.sidebar.columns([1, 4, 5]) with col_1: st.button( label = 'Check All', on_click = check ) with col_2: st.button( label = 'Uncheck All', on_click = uncheck ) # update _df_3 if ( state_0 != st.session_state['state_0'] or state_1 != st.session_state['state_1'] or state_2 != st.session_state['state_2'] or state_3 != st.session_state['state_3'] ): # Get DF df = st.session_state['_df_2'].copy() # Select columns columns = state_3['feature_selected'] + [st.session_state['target']] df = df[columns] # Update session state st.session_state['feature_selected'] = state_3['feature_selected'] st.session_state['_df_3'] = df st.session_state['model'] = None # Update states st.session_state['state_0'] = state_0 st.session_state['state_1'] = state_1 st.session_state['state_2'] = state_2 st.session_state['state_3'] = state_3 # Data wall time wall_time = time.time() - start_time # Print Information st.sidebar.markdown("""---""") st.sidebar.write(f"Wall time: {wall_time:.4f} sec") st.sidebar.write(f"Data Num: {len(st.session_state['_df_3'])}") st.sidebar.write(f"Target: {st.session_state['target']}") st.sidebar.write(f"Feature Num: {len(feature_selected)}") # Print Encoder columns = st.session_state['feature_selected'] + [st.session_state['target']] encoder = {} if len(st.session_state['encoder']) > 0: for column in columns: if column in st.session_state['encoder']: encoder[column] = st.session_state['encoder'][column] if len(encoder) > 0: st.sidebar.write('Encoded Features') st.sidebar.write(encoder) # Print DF st.write('Sample Data (5)') st.write(st.session_state['_df_3'].iloc[:5]) # Train Model if st.session_state['model'] is None: st.markdown("""---""") if st.button('Start Model Training'): # Log time_now = str(datetime.now())[:19] print(f'START | {time_now} | {get_session_id()} | {st.session_state["train_file_path"]}') # Load Data df = st.session_state['_df_3'].copy() features = st.session_state['feature_selected'] target = st.session_state['target'] if st.session_state['mode'] == 'Regression': mode = 'reg' if st.session_state['mode'] == 'Binary Classification': mode = 'clf' # NaN Data df = df[features+[target]].copy() if df.isna().sum().sum() == 0: st.session_state['nan_processed'] = False else: if st.session_state['nan_data'] == 'Delete': df = delete_nan(df) elif st.session_state['nan_data'] == 'Replace': df = replace_nan( df = df, random_state = st.session_state['config']['setup']['random_state'] ) st.session_state['nan_processed'] = True st.session_state['data_num'] = len(df) # Dataset datasets = split_data( df = df, features = features, target = target, mode = mode, n_splits = st.session_state['config']['split']['n_splits'], shuffle = True, random_state = st.session_state['config']['setup']['random_state'] ) # Best Model best_model, history = get_best_model( datasets = datasets, mode = mode, random_state = st.session_state['config']['setup']['random_state'], n_jobs = st.session_state['config']['setup']['n_jobs'] ) best_model['features'] = features best_model['target'] = target best_model['datasets'] = datasets # SHAP source, shap_value = get_shap_value( config = best_model, max_num = st.session_state['config']['shap']['max_num'] ) output = get_importance( shap_value, sort = st.session_state['config']['importance']['sort'], normalize = st.session_state['config']['importance']['normalize'] ) shap = {} shap['features'] = output['features'] shap['importance'] = output['importance'] shap['source'] = source shap['shap_value'] = shap_value if ( st.session_state['auto_feature_selection'] and 'random_noise' in shap['features'] ): features = shap['features'] index = np.where(np.array(features)=='random_noise')[0][0] if index != 0: # Print Info st.write('Auto Feature Selection is ON.') # Set new features features = features[:index] # Dataset datasets = split_data( df = df, features = features, target = target, mode = mode, n_splits = st.session_state['config']['split']['n_splits'], shuffle = True, random_state = st.session_state['config']['setup']['random_state'] ) # Best Model best_model, history = get_best_model( datasets = datasets, mode = mode, random_state = st.session_state['config']['setup']['random_state'], n_jobs = st.session_state['config']['setup']['n_jobs'] ) best_model['features'] = features best_model['target'] = target best_model['datasets'] = datasets # SHAP source, shap_value = get_shap_value( config = best_model, max_num = st.session_state['config']['shap']['max_num'] ) output = get_importance( shap_value, sort = st.session_state['config']['importance']['sort'], normalize = st.session_state['config']['importance']['normalize'] ) shap = {} shap['features'] = output['features'] shap['importance'] = output['importance'] shap['source'] = source shap['shap_value'] = shap_value # Update session state st.session_state['history'] = history st.session_state['model'] = best_model st.session_state['shap'] = shap # Refresh page st_autorefresh(interval=100, limit=2) # Result else: # STEP 2. Evaluation st.markdown('### STEP 2. Evaluation') # NaN Data if st.session_state['nan_processed']: st.write(f"NaN Data process mode is {st.session_state['nan_data']}.") # Data number st.write(f"Data Number: {st.session_state['data_num']}") # Print Best Model best = {} best['name'] = st.session_state['model']['name'] best.update(st.session_state['model']['score']) st.write('Best Model') st.write(best) # Print Score st.write(st.session_state['history']) # Graph if st.session_state['mode'] == 'Regression': st.altair_chart( plot_reg_evaluation( true = st.session_state['model']['oob_true'], pred = st.session_state['model']['oob_pred'], target = st.session_state['model']['target'] ), use_container_width = True ) elif st.session_state['mode'] == 'Binary Classification': st.pyplot( plot_confusion_matrix( true = st.session_state['model']['oob_true'], pred = st.session_state['model']['oob_pred'], target = st.session_state['model']['target'] ) ) # STEP 3. Feature Importance features = st.session_state['shap']['features'] importance = st.session_state['shap']['importance'] col_1, col_2 = st.columns([3, 1]) with col_1: st.markdown('### STEP 3. Feature Importance') with col_2: show_number = st.number_input( label = 'Number', value = np.minimum(10, len(features)), min_value = 1, max_value = len(features), step = 1 ) st.altair_chart( plot_importance( features = features, importance = importance, target = st.session_state['model']['target'], num = show_number ), use_container_width=True ) # Download CSV df_importance =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 import nose import numpy as np from numpy import nan import pandas as pd from distutils.version import LooseVersion from pandas import (Index, Series, DataFrame, Panel, isnull, date_range, period_range) from pandas.core.index import MultiIndex import pandas.core.common as com from pandas.compat import range, zip from pandas import compat from pandas.util.testing import (assert_series_equal, assert_frame_equal, assert_panel_equal, assert_equal) import pandas.util.testing as tm def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: raise nose.SkipTest('scipy.interpolate.pchip missing') # ---------------------------------------------------------------------- # Generic types test cases class Generic(object): _multiprocess_can_split_ = True def setUp(self): pass @property def _ndim(self): return self._typ._AXIS_LEN def _axes(self): """ return the axes for my object typ """ return self._typ._AXIS_ORDERS def _construct(self, shape, value=None, dtype=None, **kwargs): """ construct an object for the given shape if value is specified use that if its a scalar if value is an array, repeat it as needed """ if isinstance(shape, int): shape = tuple([shape] * self._ndim) if value is not None: if np.isscalar(value): if value == 'empty': arr = None # remove the info axis kwargs.pop(self._typ._info_axis_name, None) else: arr = np.empty(shape, dtype=dtype) arr.fill(value) else: fshape = np.prod(shape) arr = value.ravel() new_shape = fshape / arr.shape[0] if fshape % arr.shape[0] != 0: raise Exception("invalid value passed in _construct") arr = np.repeat(arr, new_shape).reshape(shape) else: arr = np.random.randn(*shape) return self._typ(arr, dtype=dtype, **kwargs) def _compare(self, result, expected): self._comparator(result, expected) def test_rename(self): # single axis for axis in self._axes(): kwargs = {axis: list('ABCD')} obj = self._construct(4, **kwargs) # no values passed # self.assertRaises(Exception, o.rename(str.lower)) # rename a single axis result = obj.rename(**{axis: str.lower}) expected = obj.copy() setattr(expected, axis, list('abcd')) self._compare(result, expected) # multiple axes at once def test_get_numeric_data(self): n = 4 kwargs = {} for i in range(self._ndim): kwargs[self._typ._AXIS_NAMES[i]] = list(range(n)) # get the numeric data o = self._construct(n, **kwargs) result = o._get_numeric_data() self._compare(result, o) # non-inclusion result = o._get_bool_data() expected = self._construct(n, value='empty', **kwargs) self._compare(result, expected) # get the bool data arr = np.array([True, True, False, True]) o = self._construct(n, value=arr, **kwargs) result = o._get_numeric_data() self._compare(result, o) # _get_numeric_data is includes _get_bool_data, so can't test for # non-inclusion def test_get_default(self): # GH 7725 d0 = "a", "b", "c", "d" d1 = np.arange(4, dtype='int64') others = "e", 10 for data, index in ((d0, d1), (d1, d0)): s = Series(data, index=index) for i, d in zip(index, data): self.assertEqual(s.get(i), d) self.assertEqual(s.get(i, d), d) self.assertEqual(s.get(i, "z"), d) for other in others: self.assertEqual(s.get(other, "z"), "z") self.assertEqual(s.get(other, other), other) def test_nonzero(self): # GH 4633 # look at the boolean/nonzero behavior for objects obj = self._construct(shape=4) self.assertRaises(ValueError, lambda: bool(obj == 0)) self.assertRaises(ValueError, lambda: bool(obj == 1)) self.assertRaises(ValueError, lambda: bool(obj)) obj = self._construct(shape=4, value=1) self.assertRaises(ValueError, lambda: bool(obj == 0)) self.assertRaises(ValueError, lambda: bool(obj == 1)) self.assertRaises(ValueError, lambda: bool(obj)) obj = self._construct(shape=4, value=np.nan) self.assertRaises(ValueError, lambda: bool(obj == 0)) self.assertRaises(ValueError, lambda: bool(obj == 1)) self.assertRaises(ValueError, lambda: bool(obj)) # empty obj = self._construct(shape=0) self.assertRaises(ValueError, lambda: bool(obj)) # invalid behaviors obj1 = self._construct(shape=4, value=1) obj2 = self._construct(shape=4, value=1) def f(): if obj1: com.pprint_thing("this works and shouldn't") self.assertRaises(ValueError, f) self.assertRaises(ValueError, lambda: obj1 and obj2) self.assertRaises(ValueError, lambda: obj1 or obj2) self.assertRaises(ValueError, lambda: not obj1) def test_numpy_1_7_compat_numeric_methods(self): # GH 4435 # numpy in 1.7 tries to pass addtional arguments to pandas functions o = self._construct(shape=4) for op in ['min', 'max', 'max', 'var', 'std', 'prod', 'sum', 'cumsum', 'cumprod', 'median', 'skew', 'kurt', 'compound', 'cummax', 'cummin', 'all', 'any']: f = getattr(np, op, None) if f is not None: f(o) def test_downcast(self): # test close downcasting o = self._construct(shape=4, value=9, dtype=np.int64) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, o) o = self._construct(shape=4, value=9.) expected = o.astype(np.int64) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, expected) o = self._construct(shape=4, value=9.5) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, o) # are close o = self._construct(shape=4, value=9.000000000005) result = o.copy() result._data = o._data.downcast(dtypes='infer') expected = o.astype(np.int64) self._compare(result, expected) def test_constructor_compound_dtypes(self): # GH 5191 # compound dtypes should raise not-implementederror def f(dtype): return self._construct(shape=3, dtype=dtype) self.assertRaises(NotImplementedError, f, [("A", "datetime64[h]"), ("B", "str"), ("C", "int32")]) # these work (though results may be unexpected) f('int64') f('float64') f('M8[ns]') def check_metadata(self, x, y=None): for m in x._metadata: v = getattr(x, m, None) if y is None: self.assertIsNone(v) else: self.assertEqual(v, getattr(y, m, None)) def test_metadata_propagation(self): # check that the metadata matches up on the resulting ops o = self._construct(shape=3) o.name = 'foo' o2 = self._construct(shape=3) o2.name = 'bar' # TODO # Once panel can do non-trivial combine operations # (currently there is an a raise in the Panel arith_ops to prevent # this, though it actually does work) # can remove all of these try: except: blocks on the actual operations # ---------- # preserving # ---------- # simple ops with scalars for op in ['__add__', '__sub__', '__truediv__', '__mul__']: result = getattr(o, op)(1) self.check_metadata(o, result) # ops with like for op in ['__add__', '__sub__', '__truediv__', '__mul__']: try: result = getattr(o, op)(o) self.check_metadata(o, result) except (ValueError, AttributeError): pass # simple boolean for op in ['__eq__', '__le__', '__ge__']: v1 = getattr(o, op)(o) self.check_metadata(o, v1) try: self.check_metadata(o, v1 & v1) except (ValueError): pass try: self.check_metadata(o, v1 | v1) except (ValueError): pass # combine_first try: result = o.combine_first(o2) self.check_metadata(o, result) except (AttributeError): pass # --------------------------- # non-preserving (by default) # --------------------------- # add non-like try: result = o + o2 self.check_metadata(result) except (ValueError, AttributeError): pass # simple boolean for op in ['__eq__', '__le__', '__ge__']: # this is a name matching op v1 = getattr(o, op)(o) v2 = getattr(o, op)(o2) self.check_metadata(v2) try: self.check_metadata(v1 & v2) except (ValueError): pass try: self.check_metadata(v1 | v2) except (ValueError): pass def test_head_tail(self): # GH5370 o = self._construct(shape=10) # check all index types for index in [tm.makeFloatIndex, tm.makeIntIndex, tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex]: axis = o._get_axis_name(0) setattr(o, axis, index(len(getattr(o, axis)))) # Panel + dims try: o.head() except (NotImplementedError): raise nose.SkipTest('not implemented on {0}'.format( o.__class__.__name__)) self._compare(o.head(), o.iloc[:5]) self._compare(o.tail(), o.iloc[-5:]) # 0-len self._compare(o.head(0), o.iloc[0:0]) self._compare(o.tail(0), o.iloc[0:0]) # bounded self._compare(o.head(len(o) + 1), o) self._compare(o.tail(len(o) + 1), o) # neg index self._compare(o.head(-3), o.head(7)) self._compare(o.tail(-3), o.tail(7)) def test_sample(self): # Fixes issue: 2419 o = self._construct(shape=10) ### # Check behavior of random_state argument ### # Check for stability when receives seed or random state -- run 10 # times. for test in range(10): seed = np.random.randint(0, 100) self._compare( o.sample(n=4, random_state=seed), o.sample(n=4, random_state=seed)) self._compare( o.sample(frac=0.7, random_state=seed), o.sample( frac=0.7, random_state=seed)) self._compare( o.sample(n=4, random_state=np.random.RandomState(test)), o.sample(n=4, random_state=np.random.RandomState(test))) self._compare( o.sample(frac=0.7, random_state=np.random.RandomState(test)), o.sample(frac=0.7, random_state=np.random.RandomState(test))) # Check for error when random_state argument invalid. with tm.assertRaises(ValueError): o.sample(random_state='astring!') ### # Check behavior of `frac` and `N` ### # Giving both frac and N throws error with tm.assertRaises(ValueError): o.sample(n=3, frac=0.3) # Check that raises right error for negative lengths with tm.assertRaises(ValueError): o.sample(n=-3) with tm.assertRaises(ValueError): o.sample(frac=-0.3) # Make sure float values of `n` give error with tm.assertRaises(ValueError): o.sample(n=3.2) # Check lengths are right self.assertTrue(len(o.sample(n=4) == 4)) self.assertTrue(len(o.sample(frac=0.34) == 3)) self.assertTrue(len(o.sample(frac=0.36) == 4)) ### # Check weights ### # Weight length must be right with tm.assertRaises(ValueError): o.sample(n=3, weights=[0, 1]) with tm.assertRaises(ValueError): bad_weights = [0.5] * 11 o.sample(n=3, weights=bad_weights) with tm.assertRaises(ValueError): bad_weight_series = Series([0, 0, 0.2]) o.sample(n=4, weights=bad_weight_series) # Check won't accept negative weights with tm.assertRaises(ValueError): bad_weights = [-0.1] * 10 o.sample(n=3, weights=bad_weights) # Check inf and -inf throw errors: with tm.assertRaises(ValueError): weights_with_inf = [0.1] * 10 weights_with_inf[0] = np.inf o.sample(n=3, weights=weights_with_inf) with tm.assertRaises(ValueError): weights_with_ninf = [0.1] * 10 weights_with_ninf[0] = -np.inf o.sample(n=3, weights=weights_with_ninf) # All zeros raises errors zero_weights = [0] * 10 with tm.assertRaises(ValueError): o.sample(n=3, weights=zero_weights) # All missing weights nan_weights = [np.nan] * 10 with tm.assertRaises(ValueError): o.sample(n=3, weights=nan_weights) # A few dataframe test with degenerate weights. easy_weight_list = [0] * 10 easy_weight_list[5] = 1 df = pd.DataFrame({'col1': range(10, 20), 'col2': range(20, 30), 'colString': ['a'] * 10, 'easyweights': easy_weight_list}) sample1 = df.sample(n=1, weights='easyweights') assert_frame_equal(sample1, df.iloc[5:6]) # Ensure proper error if string given as weight for Series, panel, or # DataFrame with axis = 1. s = Series(range(10)) with tm.assertRaises(ValueError): s.sample(n=3, weights='weight_column') panel = pd.Panel(items=[0, 1, 2], major_axis=[2, 3, 4], minor_axis=[3, 4, 5]) with tm.assertRaises(ValueError): panel.sample(n=1, weights='weight_column') with tm.assertRaises(ValueError): df.sample(n=1, weights='weight_column', axis=1) # Check weighting key error with tm.assertRaises(KeyError): df.sample(n=3, weights='not_a_real_column_name') # Check np.nan are replaced by zeros. weights_with_nan = [np.nan] * 10 weights_with_nan[5] = 0.5 self._compare( o.sample(n=1, axis=0, weights=weights_with_nan), o.iloc[5:6]) # Check None are also replaced by zeros. weights_with_None = [None] * 10 weights_with_None[5] = 0.5 self._compare( o.sample(n=1, axis=0, weights=weights_with_None), o.iloc[5:6]) # Check that re-normalizes weights that don't sum to one. weights_less_than_1 = [0] * 10 weights_less_than_1[0] = 0.5 tm.assert_frame_equal( df.sample(n=1, weights=weights_less_than_1), df.iloc[:1]) ### # Test axis argument ### # Test axis argument df = pd.DataFrame({'col1': range(10), 'col2': ['a'] * 10}) second_column_weight = [0, 1] assert_frame_equal( df.sample(n=1, axis=1, weights=second_column_weight), df[['col2']]) # Different axis arg types assert_frame_equal(df.sample(n=1, axis='columns', weights=second_column_weight), df[['col2']]) weight = [0] * 10 weight[5] = 0.5 assert_frame_equal(df.sample(n=1, axis='rows', weights=weight), df.iloc[5:6]) assert_frame_equal(df.sample(n=1, axis='index', weights=weight), df.iloc[5:6]) # Check out of range axis values with tm.assertRaises(ValueError): df.sample(n=1, axis=2) with tm.assertRaises(ValueError): df.sample(n=1, axis='not_a_name') with tm.assertRaises(ValueError): s = pd.Series(range(10)) s.sample(n=1, axis=1) # Test weight length compared to correct axis with tm.assertRaises(ValueError): df.sample(n=1, axis=1, weights=[0.5] * 10) # Check weights with axis = 1 easy_weight_list = [0] * 3 easy_weight_list[2] = 1 df = pd.DataFrame({'col1': range(10, 20), 'col2': range(20, 30), 'colString': ['a'] * 10}) sample1 = df.sample(n=1, axis=1, weights=easy_weight_list) assert_frame_equal(sample1, df[['colString']]) # Test default axes p = pd.Panel(items=['a', 'b', 'c'], major_axis=[2, 4, 6], minor_axis=[1, 3, 5]) assert_panel_equal( p.sample(n=3, random_state=42), p.sample(n=3, axis=1, random_state=42)) assert_frame_equal( df.sample(n=3, random_state=42), df.sample(n=3, axis=0, random_state=42)) # Test that function aligns weights with frame df = DataFrame( {'col1': [5, 6, 7], 'col2': ['a', 'b', 'c'], }, index=[9, 5, 3]) s = Series([1, 0, 0], index=[3, 5, 9]) assert_frame_equal(df.loc[[3]], df.sample(1, weights=s)) # Weights have index values to be dropped because not in # sampled DataFrame s2 = Series([0.001, 0, 10000], index=[3, 5, 10]) assert_frame_equal(df.loc[[3]], df.sample(1, weights=s2)) # Weights have empty values to be filed with zeros s3 = Series([0.01, 0], index=[3, 5]) assert_frame_equal(df.loc[[3]], df.sample(1, weights=s3)) # No overlap in weight and sampled DataFrame indices s4 = Series([1, 0], index=[1, 2]) with tm.assertRaises(ValueError): df.sample(1, weights=s4) def test_size_compat(self): # GH8846 # size property should be defined o = self._construct(shape=10) self.assertTrue(o.size == np.prod(o.shape)) self.assertTrue(o.size == 10 ** len(o.axes)) def test_split_compat(self): # xref GH8846 o = self._construct(shape=10) self.assertTrue(len(np.array_split(o, 5)) == 5) self.assertTrue(len(np.array_split(o, 2)) == 2) def test_unexpected_keyword(self): # GH8597 from pandas.util.testing import assertRaisesRegexp df = DataFrame(np.random.randn(5, 2), columns=['jim', 'joe']) ca = pd.Categorical([0, 0, 2, 2, 3, np.nan]) ts = df['joe'].copy() ts[2] = np.nan with assertRaisesRegexp(TypeError, 'unexpected keyword'): df.drop('joe', axis=1, in_place=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): df.reindex([1, 0], inplace=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): ca.fillna(0, inplace=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): ts.fillna(0, in_place=True) class TestSeries(tm.TestCase, Generic): _typ = Series _comparator = lambda self, x, y: assert_series_equal(x, y) def setUp(self): self.ts = tm.makeTimeSeries() # Was at top level in test_series self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' def test_rename_mi(self): s = Series([11, 21, 31], index=MultiIndex.from_tuples( [("A", x) for x in ["a", "B", "c"]])) s.rename(str.lower) def test_get_numeric_data_preserve_dtype(self): # get the numeric data o = Series([1, 2, 3]) result = o._get_numeric_data() self._compare(result, o) o = Series([1, '2', 3.]) result = o._get_numeric_data() expected = Series([], dtype=object, index=pd.Index([], dtype=object)) self._compare(result, expected) o = Series([True, False, True]) result = o._get_numeric_data() self._compare(result, o) o = Series([True, False, True]) result = o._get_bool_data() self._compare(result, o) o = Series(date_range('20130101', periods=3)) result = o._get_numeric_data() expected = Series([], dtype='M8[ns]', index=pd.Index([], dtype=object)) self._compare(result, expected) def test_nonzero_single_element(self): # allow single item via bool method s = Series([True]) self.assertTrue(s.bool()) s = Series([False]) self.assertFalse(s.bool()) # single item nan to raise for s in [Series([np.nan]), Series([pd.NaT]), Series([True]), Series([False])]: self.assertRaises(ValueError, lambda: bool(s)) for s in [Series([np.nan]), Series([pd.NaT])]: self.assertRaises(ValueError, lambda: s.bool()) # multiple bool are still an error for s in [Series([True, True]), Series([False, False])]: self.assertRaises(ValueError, lambda: bool(s)) self.assertRaises(ValueError, lambda: s.bool()) # single non-bool are an error for s in [Series([1]), Series([0]), Series(['a']), Series([0.0])]: self.assertRaises(ValueError, lambda: bool(s)) self.assertRaises(ValueError, lambda: s.bool()) def test_metadata_propagation_indiv(self): # check that the metadata matches up on the resulting ops o = Series(range(3), range(3)) o.name = 'foo' o2 = Series(range(3), range(3)) o2.name = 'bar' result = o.T self.check_metadata(o, result) # resample ts = Series(np.random.rand(1000), index=date_range('20130101', periods=1000, freq='s'), name='foo') result = ts.resample('1T').mean() self.check_metadata(ts, result) result = ts.resample('1T').min() self.check_metadata(ts, result) result = ts.resample('1T').apply(lambda x: x.sum()) self.check_metadata(ts, result) _metadata = Series._metadata _finalize = Series.__finalize__ Series._metadata = ['name', 'filename'] o.filename = 'foo' o2.filename = 'bar' def finalize(self, other, method=None, **kwargs): for name in self._metadata: if method == 'concat' and name == 'filename': value = '+'.join([getattr( o, name) for o in other.objs if getattr(o, name, None) ]) object.__setattr__(self, name, value) else: object.__setattr__(self, name, getattr(other, name, None)) return self Series.__finalize__ = finalize result = pd.concat([o, o2]) self.assertEqual(result.filename, 'foo+bar') self.assertIsNone(result.name) # reset Series._metadata = _metadata Series.__finalize__ = _finalize def test_interpolate(self): ts = Series(np.arange(len(self.ts), dtype=float), self.ts.index) ts_copy = ts.copy() ts_copy[5:10] = np.NaN linear_interp = ts_copy.interpolate(method='linear') self.assert_numpy_array_equal(linear_interp, ts) ord_ts = Series([d.toordinal() for d in self.ts.index], index=self.ts.index).astype(float) ord_ts_copy = ord_ts.copy() ord_ts_copy[5:10] = np.NaN time_interp = ord_ts_copy.interpolate(method='time') self.assert_numpy_array_equal(time_interp, ord_ts) # try time interpolation on a non-TimeSeries # Only raises ValueError if there are NaNs. non_ts = self.series.copy() non_ts[0] = np.NaN self.assertRaises(ValueError, non_ts.interpolate, method='time') def test_interp_regression(self): tm._skip_if_no_scipy() _skip_if_no_pchip() ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index.union(Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])) interp_s = ser.reindex(new_index).interpolate(method='pchip') # does not blow up, GH5977 interp_s[49:51] def test_interpolate_corners(self): s = Series([np.nan, np.nan]) assert_series_equal(s.interpolate(), s) s = Series([]).interpolate() assert_series_equal(s.interpolate(), s) tm._skip_if_no_scipy() s = Series([np.nan, np.nan]) assert_series_equal(s.interpolate(method='polynomial', order=1), s) s = Series([]).interpolate() assert_series_equal(s.interpolate(method='polynomial', order=1), s) def test_interpolate_index_values(self): s = Series(np.nan, index=np.sort(np.random.rand(30))) s[::3] = np.random.randn(10) vals = s.index.values.astype(float) result = s.interpolate(method='index') expected = s.copy() bad = isnull(expected.values) good = ~bad expected = Series(np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad]) assert_series_equal(result[bad], expected) # 'values' is synonymous with 'index' for the method kwarg other_result = s.interpolate(method='values') assert_series_equal(other_result, result) assert_series_equal(other_result[bad], expected) def test_interpolate_non_ts(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) with tm.assertRaises(ValueError): s.interpolate(method='time') # New interpolation tests def test_nan_interpolate(self): s = Series([0, 1, np.nan, 3]) result = s.interpolate() expected = Series([0., 1., 2., 3.]) assert_series_equal(result, expected) tm._skip_if_no_scipy() result = s.interpolate(method='polynomial', order=1) assert_series_equal(result, expected) def test_nan_irregular_index(self): s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9]) result = s.interpolate() expected = Series([1., 2., 3., 4.], index=[1, 3, 5, 9]) assert_series_equal(result, expected) def test_nan_str_index(self): s = Series([0, 1, 2, np.nan], index=list('abcd')) result = s.interpolate() expected = Series([0., 1., 2., 2.], index=list('abcd')) assert_series_equal(result, expected) def test_interp_quad(self): tm._skip_if_no_scipy() sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4]) result = sq.interpolate(method='quadratic') expected = Series([1., 4., 9., 16.], index=[1, 2, 3, 4]) assert_series_equal(result, expected) def test_interp_scipy_basic(self): tm._skip_if_no_scipy() s = Series([1, 3, np.nan, 12, np.nan, 25]) # slinear expected = Series([1., 3., 7.5, 12., 18.5, 25.]) result = s.interpolate(method='slinear') assert_series_equal(result, expected) result = s.interpolate(method='slinear', downcast='infer') assert_series_equal(result, expected) # nearest expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method='nearest') assert_series_equal(result, expected.astype('float')) result = s.interpolate(method='nearest', downcast='infer') assert_series_equal(result, expected) # zero expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method='zero') assert_series_equal(result, expected.astype('float')) result = s.interpolate(method='zero', downcast='infer') assert_series_equal(result, expected) # quadratic expected = Series([1, 3., 6.769231, 12., 18.230769, 25.]) result = s.interpolate(method='quadratic') assert_series_equal(result, expected) result = s.interpolate(method='quadratic', downcast='infer') assert_series_equal(result, expected) # cubic expected = Series([1., 3., 6.8, 12., 18.2, 25.]) result = s.interpolate(method='cubic') assert_series_equal(result, expected) def test_interp_limit(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) expected = Series([1., 3., 5., 7., np.nan, 11.]) result = s.interpolate(method='linear', limit=2) assert_series_equal(result, expected) def test_interp_limit_forward(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) # Provide 'forward' (the default) explicitly here. expected = Series([1., 3., 5., 7., np.nan, 11.]) result = s.interpolate(method='linear', limit=2, limit_direction='forward') assert_series_equal(result, expected) result = s.interpolate(method='linear', limit=2, limit_direction='FORWARD') assert_series_equal(result, expected) def test_interp_limit_bad_direction(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) self.assertRaises(ValueError, s.interpolate, method='linear', limit=2, limit_direction='abc') # raises an error even if no limit is specified. self.assertRaises(ValueError, s.interpolate, method='linear', limit_direction='abc') def test_interp_limit_direction(self): # These tests are for issue #9218 -- fill NaNs in both directions. s = Series([1, 3, np.nan, np.nan, np.nan, 11]) expected = Series([1., 3., np.nan, 7., 9., 11.]) result = s.interpolate(method='linear', limit=2, limit_direction='backward') assert_series_equal(result, expected) expected = Series([1., 3., 5., np.nan, 9., 11.]) result = s.interpolate(method='linear', limit=1, limit_direction='both') assert_series_equal(result, expected) # Check that this works on a longer series of nans. s = Series([1, 3, np.nan, np.nan, np.nan, 7, 9, np.nan, np.nan, 12, np.nan]) expected = Series([1., 3., 4., 5., 6., 7., 9., 10., 11., 12., 12.]) result = s.interpolate(method='linear', limit=2, limit_direction='both') assert_series_equal(result, expected) expected = Series([1., 3., 4., np.nan, 6., 7., 9., 10., 11., 12., 12.]) result = s.interpolate(method='linear', limit=1, limit_direction='both') assert_series_equal(result, expected) def test_interp_limit_to_ends(self): # These test are for issue #10420 -- flow back to beginning. s = Series([np.nan, np.nan, 5, 7, 9, np.nan]) expected = Series([5., 5., 5., 7., 9., np.nan]) result = s.interpolate(method='linear', limit=2, limit_direction='backward') assert_series_equal(result, expected) expected = Series([5., 5., 5., 7., 9., 9.]) result = s.interpolate(method='linear', limit=2, limit_direction='both') assert_series_equal(result, expected) def test_interp_limit_before_ends(self): # These test are for issue #11115 -- limit ends properly. s = Series([np.nan, np.nan, 5, 7, np.nan, np.nan]) expected = Series([np.nan, np.nan, 5., 7., 7., np.nan]) result = s.interpolate(method='linear', limit=1, limit_direction='forward') assert_series_equal(result, expected) expected = Series([np.nan, 5., 5., 7., np.nan, np.nan]) result = s.interpolate(method='linear', limit=1, limit_direction='backward') assert_series_equal(result, expected) expected = Series([np.nan, 5., 5., 7., 7., np.nan]) result = s.interpolate(method='linear', limit=1, limit_direction='both') assert_series_equal(result, expected) def test_interp_all_good(self): # scipy tm._skip_if_no_scipy() s = Series([1, 2, 3]) result = s.interpolate(method='polynomial', order=1) assert_series_equal(result, s) # non-scipy result = s.interpolate() assert_series_equal(result, s) def test_interp_multiIndex(self): idx = MultiIndex.from_tuples([(0, 'a'), (1, 'b'), (2, 'c')]) s = Series([1, 2, np.nan], index=idx) expected = s.copy() expected.loc[2] = 2 result = s.interpolate() assert_series_equal(result, expected) tm._skip_if_no_scipy() with tm.assertRaises(ValueError): s.interpolate(method='polynomial', order=1) def test_interp_nonmono_raise(self): tm._skip_if_no_scipy() s = Series([1, np.nan, 3], index=[0, 2, 1]) with tm.assertRaises(ValueError): s.interpolate(method='krogh') def test_interp_datetime64(self): tm._skip_if_no_scipy() df = Series([1, np.nan, 3], index=date_range('1/1/2000', periods=3)) result = df.interpolate(method='nearest') expected = Series([1., 1., 3.], index=date_range('1/1/2000', periods=3)) assert_series_equal(result, expected) def test_interp_limit_no_nans(self): # GH 7173 s = pd.Series([1., 2., 3.]) result = s.interpolate(limit=1) expected = s assert_series_equal(result, expected) def test_describe(self): self.series.describe() self.ts.describe() def test_describe_objects(self): s = Series(['a', 'b', 'b', np.nan, np.nan, np.nan, 'c', 'd', 'a', 'a']) result = s.describe() expected = Series({'count': 7, 'unique': 4, 'top': 'a', 'freq': 3}, index=result.index) assert_series_equal(result, expected) dt = list(self.ts.index) dt.append(dt[0]) ser = Series(dt) rs = ser.describe() min_date = min(dt) max_date = max(dt) xp = Series({'count': len(dt), 'unique': len(self.ts.index), 'first': min_date, 'last': max_date, 'freq': 2, 'top': min_date}, index=rs.index) assert_series_equal(rs, xp) def test_describe_empty(self): result = pd.Series().describe() self.assertEqual(result['count'], 0) self.assertTrue(result.drop('count').isnull().all()) nanSeries = Series([np.nan]) nanSeries.name = 'NaN' result = nanSeries.describe() self.assertEqual(result['count'], 0) self.assertTrue(result.drop('count').isnull().all()) def test_describe_none(self): noneSeries = Series([None]) noneSeries.name = 'None' expected = Series([0, 0], index=['count', 'unique'], name='None') assert_series_equal(noneSeries.describe(), expected) class TestDataFrame(tm.TestCase, Generic): _typ = DataFrame _comparator = lambda self, x, y: assert_frame_equal(x, y) def test_rename_mi(self): df = DataFrame([ 11, 21, 31 ], index=MultiIndex.from_tuples([("A", x) for x in ["a", "B", "c"]])) df.rename(str.lower) def test_nonzero_single_element(self): # allow single item via bool method df = DataFrame([[True]]) self.assertTrue(df.bool()) df = DataFrame([[False]]) self.assertFalse(df.bool()) df = DataFrame([[False, False]]) self.assertRaises(ValueError, lambda: df.bool()) self.assertRaises(ValueError, lambda: bool(df)) def test_get_numeric_data_preserve_dtype(self): # get the numeric data o = DataFrame({'A': [1, '2', 3.]}) result = o._get_numeric_data() expected = DataFrame(index=[0, 1, 2], dtype=object) self._compare(result, expected) def test_interp_basic(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) expected = DataFrame({'A': [1., 2., 3., 4.], 'B': [1., 4., 9., 9.], 'C': [1, 2, 3, 5], 'D': list('abcd')}) result = df.interpolate() assert_frame_equal(result, expected) result = df.set_index('C').interpolate() expected = df.set_index('C') expected.loc[3, 'A'] = 3 expected.loc[5, 'B'] = 9 assert_frame_equal(result, expected) def test_interp_bad_method(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) with tm.assertRaises(ValueError): df.interpolate(method='not_a_method') def test_interp_combo(self): df = DataFrame({'A': [1., 2., np.nan, 4.], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) result = df['A'].interpolate() expected = Series([1., 2., 3., 4.], name='A') assert_series_equal(result, expected) result = df['A'].interpolate(downcast='infer') expected = Series([1, 2, 3, 4], name='A') assert_series_equal(result, expected) def test_interp_nan_idx(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [np.nan, 2, 3, 4]}) df = df.set_index('A') with tm.assertRaises(NotImplementedError): df.interpolate(method='values') def test_interp_various(self): tm._skip_if_no_scipy() df = DataFrame({'A': [1, 2, np.nan, 4, 5, np.nan, 7], 'C': [1, 2, 3, 5, 8, 13, 21]}) df = df.set_index('C') expected = df.copy() result = df.interpolate(method='polynomial', order=1) expected.A.loc[3] = 2.66666667 expected.A.loc[13] = 5.76923076 assert_frame_equal(result, expected) result = df.interpolate(method='cubic') expected.A.loc[3] = 2.81621174 expected.A.loc[13] = 5.64146581 assert_frame_equal(result, expected) result = df.interpolate(method='nearest') expected.A.loc[3] = 2 expected.A.loc[13] = 5 assert_frame_equal(result, expected, check_dtype=False) result = df.interpolate(method='quadratic') expected.A.loc[3] = 2.82533638 expected.A.loc[13] = 6.02817974 assert_frame_equal(result, expected) result = df.interpolate(method='slinear') expected.A.loc[3] = 2.66666667 expected.A.loc[13] = 5.76923077 assert_frame_equal(result, expected) result = df.interpolate(method='zero') expected.A.loc[3] = 2. expected.A.loc[13] = 5 assert_frame_equal(result, expected, check_dtype=False) result = df.interpolate(method='quadratic') expected.A.loc[3] = 2.82533638 expected.A.loc[13] = 6.02817974 assert_frame_equal(result, expected) def test_interp_alt_scipy(self): tm._skip_if_no_scipy() df = DataFrame({'A': [1, 2, np.nan, 4, 5, np.nan, 7], 'C': [1, 2, 3, 5, 8, 13, 21]}) result = df.interpolate(method='barycentric') expected = df.copy() expected.ix[2, 'A'] = 3 expected.ix[5, 'A'] = 6 assert_frame_equal(result, expected) result = df.interpolate(method='barycentric', downcast='infer') assert_frame_equal(result, expected.astype(np.int64)) result = df.interpolate(method='krogh') expectedk = df.copy() expectedk['A'] = expected['A'] assert_frame_equal(result, expectedk) _skip_if_no_pchip() import scipy result = df.interpolate(method='pchip') expected.ix[2, 'A'] = 3 if LooseVersion(scipy.__version__) >= '0.17.0': expected.ix[5, 'A'] = 6.0 else: expected.ix[5, 'A'] = 6.125 assert_frame_equal(result, expected) def test_interp_rowwise(self): df = DataFrame({0: [1, 2, np.nan, 4], 1: [2, 3, 4, np.nan], 2: [np.nan, 4, 5, 6], 3: [4, np.nan, 6, 7], 4: [1, 2, 3, 4]}) result = df.interpolate(axis=1) expected = df.copy() expected.loc[3, 1] = 5 expected.loc[0, 2] = 3 expected.loc[1, 3] = 3 expected[4] = expected[4].astype(np.float64) assert_frame_equal(result, expected) # scipy route tm._skip_if_no_scipy() result = df.interpolate(axis=1, method='values') assert_frame_equal(result, expected) result = df.interpolate(axis=0) expected = df.interpolate() assert_frame_equal(result, expected) def test_rowwise_alt(self): df = DataFrame({0: [0, .5, 1., np.nan, 4, 8, np.nan, np.nan, 64], 1: [1, 2, 3, 4, 3, 2, 1, 0, -1]}) df.interpolate(axis=0) def test_interp_leading_nans(self): df = DataFrame({"A": [np.nan, np.nan, .5, .25, 0], "B": [np.nan, -3, -3.5, np.nan, -4]}) result = df.interpolate() expected = df.copy() expected['B'].loc[3] = -3.75 assert_frame_equal(result, expected) tm._skip_if_no_scipy() result = df.interpolate(method='polynomial', order=1) assert_frame_equal(result, expected) def test_interp_raise_on_only_mixed(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': ['a', 'b', 'c', 'd'], 'C': [np.nan, 2, 5, 7], 'D': [np.nan, np.nan, 9, 9], 'E': [1, 2, 3, 4]}) with tm.assertRaises(TypeError): df.interpolate(axis=1) def test_interp_inplace(self): df = DataFrame({'a': [1., 2., np.nan, 4.]}) expected = DataFrame({'a': [1., 2., 3., 4.]}) result = df.copy() result['a'].interpolate(inplace=True) assert_frame_equal(result, expected) result = df.copy() result['a'].interpolate(inplace=True, downcast='infer') assert_frame_equal(result, expected.astype('int64')) def test_interp_inplace_row(self): # GH 10395 result = DataFrame({'a': [1., 2., 3., 4.], 'b': [np.nan, 2., 3., 4.], 'c': [3, 2, 2, 2]}) expected = result.interpolate(method='linear', axis=1, inplace=False) result.interpolate(method='linear', axis=1, inplace=True) assert_frame_equal(result, expected) def test_interp_ignore_all_good(self): # GH df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 2, 3, 4], 'C': [1., 2., np.nan, 4.], 'D': [1., 2., 3., 4.]}) expected = DataFrame({'A': np.array( [1, 2, 3, 4], dtype='float64'), 'B': np.array( [1, 2, 3, 4], dtype='int64'), 'C': np.array( [1., 2., 3, 4.], dtype='float64'), 'D': np.array( [1., 2., 3., 4.], dtype='float64')}) result = df.interpolate(downcast=None) assert_frame_equal(result, expected) # all good result = df[['B', 'D']].interpolate(downcast=None) assert_frame_equal(result, df[['B', 'D']]) def test_describe(self): tm.makeDataFrame().describe() tm.makeMixedDataFrame().describe() tm.makeTimeDataFrame().describe() def test_describe_percentiles_percent_or_raw(self): msg = 'percentiles should all be in the interval \\[0, 1\\]' df = tm.makeDataFrame() with tm.assertRaisesRegexp(ValueError, msg): df.describe(percentiles=[10, 50, 100]) with tm.assertRaisesRegexp(ValueError, msg): df.describe(percentiles=[2]) with tm.assertRaisesRegexp(ValueError, msg): df.describe(percentiles=[-2]) def test_describe_percentiles_equivalence(self): df = tm.makeDataFrame() d1 = df.describe() d2 = df.describe(percentiles=[.25, .75]) assert_frame_equal(d1, d2) def test_describe_percentiles_insert_median(self): df = tm.makeDataFrame() d1 = df.describe(percentiles=[.25, .75]) d2 = df.describe(percentiles=[.25, .5, .75]) assert_frame_equal(d1, d2) self.assertTrue('25%' in d1.index) self.assertTrue('75%' in d2.index) # none above d1 = df.describe(percentiles=[.25, .45]) d2 = df.describe(percentiles=[.25, .45, .5]) assert_frame_equal(d1, d2) self.assertTrue('25%' in d1.index) self.assertTrue('45%' in d2.index) # none below d1 = df.describe(percentiles=[.75, 1]) d2 = df.describe(percentiles=[.5, .75, 1]) assert_frame_equal(d1, d2) self.assertTrue('75%' in d1.index) self.assertTrue('100%' in d2.index) # edge d1 = df.describe(percentiles=[0, 1]) d2 = df.describe(percentiles=[0, .5, 1]) assert_frame_equal(d1, d2) self.assertTrue('0%' in d1.index) self.assertTrue('100%' in d2.index) def test_describe_no_numeric(self): df = DataFrame({'A': ['foo', 'foo', 'bar'] * 8, 'B': ['a', 'b', 'c', 'd'] * 6}) desc = df.describe() expected = DataFrame(dict((k, v.describe()) for k, v in compat.iteritems(df)), columns=df.columns) assert_frame_equal(desc, expected) ts = tm.makeTimeSeries() df = DataFrame({'time': ts.index}) desc = df.describe() self.assertEqual(desc.time['first'], min(ts.index)) def test_describe_empty_int_columns(self): df = DataFrame([[0, 1], [1, 2]]) desc = df[df[0] < 0].describe() # works assert_series_equal(desc.xs('count'), Series([0, 0], dtype=float, name='count')) self.assertTrue(isnull(desc.ix[1:]).all().all()) def test_describe_objects(self): df = DataFrame({"C1": ['a', 'a', 'c'], "C2": ['d', 'd', 'f']}) result = df.describe() expected = DataFrame({"C1": [3, 2, 'a', 2], "C2": [3, 2, 'd', 2]}, index=['count', 'unique', 'top', 'freq']) assert_frame_equal(result, expected) df = DataFrame({"C1": pd.date_range('2010-01-01', periods=4, freq='D') }) df.loc[4] = pd.Timestamp('2010-01-04') result = df.describe() expected = DataFrame({"C1": [5, 4, pd.Timestamp('2010-01-04'), 2, pd.Timestamp('2010-01-01'), pd.Timestamp('2010-01-04')]}, index=['count', 'unique', 'top', 'freq', 'first', 'last']) assert_frame_equal(result, expected) # mix time and str df['C2'] = ['a', 'a', 'b', 'c', 'a'] result = df.describe() expected['C2'] = [5, 3, 'a', 3, np.nan, np.nan] assert_frame_equal(result, expected) # just str expected = DataFrame({'C2': [5, 3, 'a', 4]}, index=['count', 'unique', 'top', 'freq']) result = df[['C2']].describe() # mix of time, str, numeric df['C3'] = [2, 4, 6, 8, 2] result = df.describe() expected = DataFrame({"C3": [5., 4.4, 2.607681, 2., 2., 4., 6., 8.]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) assert_frame_equal(result, expected) assert_frame_equal(df.describe(), df[['C3']].describe()) assert_frame_equal(df[['C1', 'C3']].describe(), df[['C3']].describe()) assert_frame_equal(df[['C2', 'C3']].describe(), df[['C3']].describe()) def test_describe_typefiltering(self): df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8, 'catB': ['a', 'b', 'c', 'd'] * 6, 'numC': np.arange(24, dtype='int64'), 'numD': np.arange(24.) + .5, 'ts': tm.makeTimeSeries()[:24].index}) descN = df.describe() expected_cols = ['numC', 'numD', ] expected = DataFrame(dict((k, df[k].describe()) for k in expected_cols), columns=expected_cols) assert_frame_equal(descN, expected) desc = df.describe(include=['number']) assert_frame_equal(desc, descN) desc = df.describe(exclude=['object', 'datetime']) assert_frame_equal(desc, descN) desc = df.describe(include=['float']) assert_frame_equal(desc, descN.drop('numC', 1)) descC = df.describe(include=['O']) expected_cols = ['catA', 'catB'] expected = DataFrame(dict((k, df[k].describe()) for k in expected_cols), columns=expected_cols) assert_frame_equal(descC, expected) descD = df.describe(include=['datetime']) assert_series_equal(descD.ts, df.ts.describe()) desc = df.describe(include=['object', 'number', 'datetime']) assert_frame_equal(desc.loc[:, ["numC", "numD"]].dropna(), descN) assert_frame_equal(desc.loc[:, ["catA", "catB"]].dropna(), descC) descDs = descD.sort_index() # the index order change for mixed-types assert_frame_equal(desc.loc[:, "ts":].dropna().sort_index(), descDs) desc = df.loc[:, 'catA':'catB'].describe(include='all') assert_frame_equal(desc, descC) desc = df.loc[:, 'numC':'numD'].describe(include='all') assert_frame_equal(desc, descN) desc = df.describe(percentiles=[], include='all') cnt = Series(data=[4, 4, 6, 6, 6], index=['catA', 'catB', 'numC', 'numD', 'ts']) assert_series_equal(desc.count(), cnt) self.assertTrue('count' in desc.index) self.assertTrue('unique' in desc.index) self.assertTrue('50%' in desc.index) self.assertTrue('first' in desc.index) desc = df.drop("ts", 1).describe(percentiles=[], include='all') assert_series_equal(desc.count(), cnt.drop("ts")) self.assertTrue('first' not in desc.index) desc = df.drop(["numC", "numD"], 1).describe(percentiles=[], include='all') assert_series_equal(desc.count(), cnt.drop(["numC", "numD"])) self.assertTrue('50%' not in desc.index) def test_describe_typefiltering_category_bool(self): df = DataFrame({'A_cat': pd.Categorical(['foo', 'foo', 'bar'] * 8), 'B_str': ['a', 'b', 'c', 'd'] * 6, 'C_bool': [True] * 12 + [False] * 12, 'D_num': np.arange(24.) + .5, 'E_ts': tm.makeTimeSeries()[:24].index}) # bool is considered numeric in describe, although not an np.number desc = df.describe() expected_cols = ['C_bool', 'D_num'] expected = DataFrame(dict((k, df[k].describe()) for k in expected_cols), columns=expected_cols) assert_frame_equal(desc, expected) desc = df.describe(include=["category"]) self.assertTrue(desc.columns.tolist() == ["A_cat"]) # 'all' includes numpy-dtypes + category desc1 = df.describe(include="all") desc2 = df.describe(include=[np.generic, "category"]) assert_frame_equal(desc1, desc2) def test_describe_timedelta(self): df = DataFrame({"td": pd.to_timedelta(np.arange(24) % 20, "D")}) self.assertTrue(df.describe().loc["mean"][0] == pd.to_timedelta( "8d4h")) def test_describe_typefiltering_dupcol(self): df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8, 'catB': ['a', 'b', 'c', 'd'] * 6, 'numC': np.arange(24), 'numD': np.arange(24.) + .5, 'ts': tm.makeTimeSeries()[:24].index}) s = df.describe(include='all').shape[1] df = pd.concat([df, df], axis=1) s2 = df.describe(include='all').shape[1] self.assertTrue(s2 == 2 * s) def test_describe_typefiltering_groupby(self): df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8, 'catB': ['a', 'b', 'c', 'd'] * 6, 'numC': np.arange(24), 'numD': np.arange(24.) + .5, 'ts': tm.makeTimeSeries()[:24].index}) G = df.groupby('catA') self.assertTrue(G.describe(include=['number']).shape == (16, 2)) self.assertTrue(G.describe(include=['number', 'object']).shape == (22, 3)) self.assertTrue(G.describe(include='all').shape == (26, 4)) def test_describe_multi_index_df_column_names(self): """ Test that column names persist after the describe operation.""" df = pd.DataFrame( {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) # GH 11517 # test for hierarchical index hierarchical_index_df = df.groupby(['A', 'B']).mean().T self.assertTrue(hierarchical_index_df.columns.names == ['A', 'B']) self.assertTrue(hierarchical_index_df.describe().columns.names == ['A', 'B']) # test for non-hierarchical index non_hierarchical_index_df = df.groupby(['A']).mean().T self.assertTrue(non_hierarchical_index_df.columns.names == ['A']) self.assertTrue(non_hierarchical_index_df.describe().columns.names == ['A']) def test_no_order(self): tm._skip_if_no_scipy() s = Series([0, 1, np.nan, 3]) with tm.assertRaises(ValueError): s.interpolate(method='polynomial') with tm.assertRaises(ValueError): s.interpolate(method='spline') def test_spline(self): tm._skip_if_no_scipy() s = Series([1, 2, np.nan, 4, 5, np.nan, 7]) result = s.interpolate(method='spline', order=1) expected = Series([1., 2., 3., 4., 5., 6., 7.]) assert_series_equal(result, expected) def test_spline_extrapolate(self): tm.skip_if_no_package( 'scipy', '0.15', 'setting ext on scipy.interpolate.UnivariateSpline') s = Series([1, 2, 3, 4, np.nan, 6, np.nan]) result3 = s.interpolate(method='spline', order=1, ext=3) expected3 = Series([1., 2., 3., 4., 5., 6., 6.]) assert_series_equal(result3, expected3) result1 = s.interpolate(method='spline', order=1, ext=0) expected1 = Series([1., 2., 3., 4., 5., 6., 7.]) assert_series_equal(result1, expected1) def test_spline_smooth(self): tm._skip_if_no_scipy() s = Series([1, 2, np.nan, 4, 5.1, np.nan, 7]) self.assertNotEqual(s.interpolate(method='spline', order=3, s=0)[5], s.interpolate(method='spline', order=3)[5]) def test_spline_interpolation(self): tm._skip_if_no_scipy() s = Series(np.arange(10) ** 2) s[np.random.randint(0, 9, 3)] = np.nan result1 = s.interpolate(method='spline', order=1) expected1 = s.interpolate(method='spline', order=1) assert_series_equal(result1, expected1) # GH #10633 def test_spline_error(self): tm._skip_if_no_scipy() s = pd.Series(np.arange(10) ** 2) s[np.random.randint(0, 9, 3)] = np.nan with tm.assertRaises(ValueError): s.interpolate(method='spline') with tm.assertRaises(ValueError): s.interpolate(method='spline', order=0) def test_metadata_propagation_indiv(self): # groupby df = DataFrame( {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) result = df.groupby('A').sum() self.check_metadata(df, result) # resample df = DataFrame(np.random.randn(1000, 2), index=date_range('20130101', periods=1000, freq='s')) result = df.resample('1T') self.check_metadata(df, result) # merging with override # GH 6923 _metadata = DataFrame._metadata _finalize = DataFrame.__finalize__ np.random.seed(10) df1 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=['a', 'b']) df2 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=['c', 'd']) DataFrame._metadata = ['filename'] df1.filename = 'fname1.csv' df2.filename = 'fname2.csv' def finalize(self, other, method=None, **kwargs): for name in self._metadata: if method == 'merge': left, right = other.left, other.right value = getattr(left, name, '') + '|' + getattr(right, name, '') object.__setattr__(self, name, value) else: object.__setattr__(self, name, getattr(other, name, '')) return self DataFrame.__finalize__ = finalize result = df1.merge(df2, left_on=['a'], right_on=['c'], how='inner') self.assertEqual(result.filename, 'fname1.csv|fname2.csv') # concat # GH 6927 DataFrame._metadata = ['filename'] df1 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=list('ab')) df1.filename = 'foo' def finalize(self, other, method=None, **kwargs): for name in self._metadata: if method == 'concat': value = '+'.join([getattr( o, name) for o in other.objs if getattr(o, name, None) ]) object.__setattr__(self, name, value) else: object.__setattr__(self, name, getattr(other, name, None)) return self DataFrame.__finalize__ = finalize result = pd.concat([df1, df1]) self.assertEqual(result.filename, 'foo+foo') # reset DataFrame._metadata = _metadata DataFrame.__finalize__ = _finalize def test_tz_convert_and_localize(self): l0 = date_range('20140701', periods=5, freq='D') # TODO: l1 should be a PeriodIndex for testing # after GH2106 is addressed with tm.assertRaises(NotImplementedError): period_range('20140701', periods=1).tz_convert('UTC') with tm.assertRaises(NotImplementedError): period_range('20140701', periods=1).tz_localize('UTC') # l1 = period_range('20140701', periods=5, freq='D') l1 = date_range('20140701', periods=5, freq='D') int_idx = Index(range(5)) for fn in ['tz_localize', 'tz_convert']: if fn == 'tz_convert': l0 = l0.tz_localize('UTC') l1 = l1.tz_localize('UTC') for idx in [l0, l1]: l0_expected = getattr(idx, fn)('US/Pacific') l1_expected = getattr(idx, fn)('US/Pacific') df1 = DataFrame(np.ones(5), index=l0) df1 = getattr(df1, fn)('US/Pacific') self.assertTrue(df1.index.equals(l0_expected)) # MultiIndex # GH7846 df2 = DataFrame(np.ones(5), MultiIndex.from_arrays([l0, l1])) df3 = getattr(df2, fn)('US/Pacific', level=0) self.assertFalse(df3.index.levels[0].equals(l0)) self.assertTrue(df3.index.levels[0].equals(l0_expected)) self.assertTrue(df3.index.levels[1].equals(l1)) self.assertFalse(df3.index.levels[1].equals(l1_expected)) df3 = getattr(df2, fn)('US/Pacific', level=1) self.assertTrue(df3.index.levels[0].equals(l0)) self.assertFalse(df3.index.levels[0].equals(l0_expected)) self.assertTrue(df3.index.levels[1].equals(l1_expected)) self.assertFalse(df3.index.levels[1].equals(l1)) df4 = DataFrame(np.ones(5), MultiIndex.from_arrays([int_idx, l0])) # TODO: untested df5 = getattr(df4, fn)('US/Pacific', level=1) # noqa self.assertTrue(df3.index.levels[0].equals(l0)) self.assertFalse(df3.index.levels[0].equals(l0_expected)) self.assertTrue(df3.index.levels[1].equals(l1_expected)) self.assertFalse(df3.index.levels[1].equals(l1)) # Bad Inputs for fn in ['tz_localize', 'tz_convert']: # Not DatetimeIndex / PeriodIndex with tm.assertRaisesRegexp(TypeError, 'DatetimeIndex'): df = DataFrame(index=int_idx) df = getattr(df, fn)('US/Pacific') # Not DatetimeIndex / PeriodIndex with tm.assertRaisesRegexp(TypeError, 'DatetimeIndex'): df = DataFrame(np.ones(5), MultiIndex.from_arrays([int_idx, l0])) df = getattr(df, fn)('US/Pacific', level=0) # Invalid level with tm.assertRaisesRegexp(ValueError, 'not valid'): df = DataFrame(index=l0) df = getattr(df, fn)('US/Pacific', level=1) def test_set_attribute(self): # Test for consistent setattr behavior when an attribute and a column # have the same name (Issue #8994) df = DataFrame({'x': [1, 2, 3]}) df.y = 2 df['y'] = [2, 4, 6] df.y = 5 assert_equal(df.y, 5) assert_series_equal(df['y'], Series([2, 4, 6], name='y')) def test_pct_change(self): # GH 11150 pnl = DataFrame([np.arange(0, 40, 10), np.arange(0, 40, 10), np.arange( 0, 40, 10)]).astype(np.float64) pnl.iat[1, 0] = np.nan pnl.iat[1, 1] = np.nan pnl.iat[2, 3] = 60 mask = pnl.isnull() for axis in range(2): expected = pnl.ffill(axis=axis) / pnl.ffill(axis=axis).shift( axis=axis) - 1 expected[mask] = np.nan result = pnl.pct_change(axis=axis, fill_method='pad') self.assert_frame_equal(result, expected) class TestPanel(tm.TestCase, Generic): _typ = Panel _comparator = lambda self, x, y: assert_panel_equal(x, y) class TestNDFrame(tm.TestCase): # tests that don't fit elsewhere def test_squeeze(self): # noop for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: tm.assert_series_equal(s.squeeze(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.squeeze(), df) for p in [tm.makePanel()]: tm.assert_panel_equal(p.squeeze(), p) for p4d in [tm.makePanel4D()]: tm.assert_panel4d_equal(p4d.squeeze(), p4d) # squeezing df = tm.makeTimeDataFrame().reindex(columns=['A']) tm.assert_series_equal(df.squeeze(), df['A']) p = tm.makePanel().reindex(items=['ItemA']) tm.assert_frame_equal(p.squeeze(), p['ItemA']) p = tm.makePanel().reindex(items=['ItemA'], minor_axis=['A']) tm.assert_series_equal(p.squeeze(), p.ix['ItemA', :, 'A']) p4d = tm.makePanel4D().reindex(labels=['label1']) tm.assert_panel_equal(p4d.squeeze(), p4d['label1']) p4d = tm.makePanel4D().reindex(labels=['label1'], items=['ItemA']) tm.assert_frame_equal(p4d.squeeze(), p4d.ix['label1', 'ItemA']) # don't fail with 0 length dimensions GH11229 & GH8999 empty_series = pd.Series([], name='five') empty_frame = pd.DataFrame([empty_series]) empty_panel = pd.Panel({'six': empty_frame}) [tm.assert_series_equal(empty_series, higher_dim.squeeze()) for higher_dim in [empty_series, empty_frame, empty_panel]] def test_equals(self): s1 = pd.Series([1, 2, 3], index=[0, 2, 1]) s2 = s1.copy() self.assertTrue(s1.equals(s2)) s1[1] = 99 self.assertFalse(s1.equals(s2)) # NaNs compare as equal s1 = pd.Series([1, np.nan, 3, np.nan], index=[0, 2, 1, 3]) s2 = s1.copy() self.assertTrue(s1.equals(s2)) s2[0] = 9.9 self.assertFalse(s1.equals(s2)) idx = MultiIndex.from_tuples([(0, 'a'), (1, 'b'), (2, 'c')]) s1 = Series([1, 2, np.nan], index=idx) s2 = s1.copy() self.assertTrue(s1.equals(s2)) # Add object dtype column with nans index = np.random.random(10) df1 = DataFrame( np.random.random(10, ), index=index, columns=['floats']) df1['text'] = 'the sky is so blue. we could use more chocolate.'.split( ) df1['start'] = date_range('2000-1-1', periods=10, freq='T') df1['end'] = date_range('2000-1-1', periods=10, freq='D') df1['diff'] = df1['end'] - df1['start'] df1['bool'] = (np.arange(10) % 3 == 0) df1.ix[::2] = nan df2 = df1.copy() self.assertTrue(df1['text'].equals(df2['text'])) self.assertTrue(df1['start'].equals(df2['start'])) self.assertTrue(df1['end'].equals(df2['end'])) self.assertTrue(df1['diff'].equals(df2['diff'])) self.assertTrue(df1['bool'].equals(df2['bool'])) self.assertTrue(df1.equals(df2)) self.assertFalse(df1.equals(object)) # different dtype different = df1.copy() different['floats'] = different['floats'].astype('float32') self.assertFalse(df1.equals(different)) # different index different_index = -index different = df2.set_index(different_index) self.assertFalse(df1.equals(different)) # different columns different = df2.copy() different.columns = df2.columns[::-1] self.assertFalse(df1.equals(different)) # DatetimeIndex index = pd.date_range('2000-1-1', periods=10, freq='T') df1 = df1.set_index(index) df2 = df1.copy() self.assertTrue(df1.equals(df2)) # MultiIndex df3 = df1.set_index(['text'], append=True) df2 = df1.set_index(['text'], append=True) self.assertTrue(df3.equals(df2)) df2 = df1.set_index(['floats'], append=True) self.assertFalse(df3.equals(df2)) # NaN in index df3 = df1.set_index(['floats'], append=True) df2 = df1.set_index(['floats'], append=True) self.assertTrue(df3.equals(df2)) # GH 8437 a = pd.Series([False, np.nan]) b = pd.Series([False, np.nan]) c = pd.Series(index=range(2)) d = pd.Series(index=range(2)) e = pd.Series(index=range(2)) f = pd.Series(index=range(2)) c[:-1] = d[:-1] = e[0] = f[0] = False self.assertTrue(a.equals(a)) self.assertTrue(a.equals(b)) self.assertTrue(a.equals(c)) self.assertTrue(a.equals(d)) self.assertFalse(a.equals(e)) self.assertTrue(e.equals(f)) def test_describe_raises(self): with tm.assertRaises(NotImplementedError): tm.makePanel().describe() def test_pipe(self): df =
DataFrame({'A': [1, 2, 3]})
pandas.DataFrame
import os import sys import datetime from pkg_resources import resource_filename import numpy as np import matplotlib.pyplot as plt import pandas import nose.tools as nt import numpy.testing as nptest from matplotlib.testing.decorators import image_comparison, cleanup import pandas.util.testing as pdtest import wqio from pycvc import samples, info from wqio.tests.core_tests import samples_tests, hydro_tests class _wq_sample_mixin(object): def test__res_with_units(self): nt.assert_equal(self.wqs._res_with_units(0.12, 'mg/L'), '0.120 mg/L') nt.assert_equal(self.wqs._res_with_units(np.nan, 'mg/L'), '--') def test_siteid(self): nt.assert_true(hasattr(self.wqs, 'siteid')) nt.assert_equal(self.wqs.siteid, self.known_siteid) def test_general_tex_table(self): nt.assert_true(hasattr(self.wqs, 'general_tex_table')) nt.assert_equal(self.wqs.general_tex_table, self.known_general_tex_table) def test_hydro_tex_table(self): nt.assert_true(hasattr(self.wqs, 'hydro_tex_table')) nt.assert_equal(self.wqs.hydro_tex_table, self.known_hydro_tex_table) def test_wq_tex_table(self): nt.assert_true(hasattr(self.wqs, 'wq_tex_table')) nt.assert_equal(self.wqs.wq_tex_table, self.known_wq_tex_table) def test_storm_figure(self): nt.assert_true(hasattr(self.wqs, 'storm_figure')) nt.assert_equal(self.wqs.storm_figure, self.known_storm_figure) def test_other_props(self): nt.assert_true(hasattr(self.wqs, 'templateISR')) self.wqs.templateISR = 'test' nt.assert_equal(self.wqs.templateISR, 'test') nt.assert_true(hasattr(self.wqs, 'tocentry')) self.wqs.tocentry = 'test' nt.assert_equal(self.wqs.tocentry, 'test') nt.assert_true(hasattr(self.wqs, 'wqstd')) self.wqs.wqstd = 'test' nt.assert_equal(self.wqs.wqstd, 'test') def test_wq_table(self): df = self.wqs.wq_table(writeToFiles=False) pdtest.assert_frame_equal(df, self.known_wqtable[df.columns]) class test_CompositeSample(samples_tests.test_CompositeSample_NoStorm, _wq_sample_mixin): def setup(self): self.basic_setup() self.known_siteid = 'Test Site' self.known_general_tex_table = 'TestSite-2013-02-24-1659-1-General' self.known_hydro_tex_table = 'TestSite-2013-02-24-1659-2-Hydro' self.known_wq_tex_table = 'TestSite-2013-02-24-1659-3-WQComposite' self.known_storm_figure = 'TestSite-2013-02-24-1659-Composite' self.test_name = 'CompositeNoStorm' self.known_yfactor = 0.25 self.known_starttime = '2013-02-24 16:59' self.known_endtime = '2013-02-25 02:59' self.known_season = 'winter' self.known_sample_ts_len = 31 self.known_samplefreq = pandas.tseries.offsets.Minute(20) self.known_samplefreq_type = pandas.tseries.offsets.Minute self.known_marker = 'x' self.known_label = 'Composite Sample' self.known_wqtable = pandas.DataFrame({ 'Effluent EMC': { 0: '786 ug/L', 1: '0.160 ug/L', 2: '8.60 ug/L', 3: '140 mg/L', 4: '1,350 ug/L', 5: '6.13 ug/L', 6: '2.20 ug/L', 7: '1.40 mg/L', 8: '1.50 mg/L', 9: '0.0520 mg/L', 10: '1.20 mg/L', 11: '0.500 mg/L', 12: '0.130 mg/L', 13: '110 mg/L', 14: '43.4 ug/L' }, 'Detection Limit': { 0: '0.500 ug/L', 1: '0.0100 ug/L', 2: '0.200 ug/L', 3: '1.00 mg/L', 4: '5.00 ug/L', 5: '0.0500 ug/L', 6: '0.200 ug/L', 7: '0.100 mg/L', 8: '0.100 mg/L', 9: '0.00200 mg/L', 10: '0.100 mg/L', 11: '0.500 mg/L', 12: '0.100 mg/L', 13: '3.00 mg/L', 14: '0.500 ug/L' }, 'Effluent Load': { 0: '40.6 g', 1: '0.00827 g', 2: '0.445 g', 3: '7,240 g', 4: '69.8 g', 5: '0.317 g', 6: '0.114 g', 7: '72.4 g', 8: '77.6 g', 9: '2.69 g', 10: '62.0 g', 11: '0.0259 g', 12: '6.72 g', 13: '5,690 g', 14: '2.24 g'}, 'WQ Guideline': { 0: '10.0 ug/L', 1: '10.0 ug/L', 2: '10.0 ug/L', 3: '10.0 mg/L', 4: '10.0 ug/L', 5: '10.0 ug/L', 6: '10.0 ug/L', 7: '10.0 mg/L', 8: '10.0 mg/L', 9: '10.0 mg/L', 10: '10.0 mg/L', 11: '10.0 mg/L', 12: '10.0 mg/L', 13: '10.0 mg/L', 14: '10.0 ug/L' }, 'Parameter': { 0: 'Aluminum (Al)', 1: 'Cadmium (Cd)', 2: 'Copper (Cu)', 3: 'Dissolved Chloride (Cl)', 4: 'Iron (Fe)', 5: 'Lead (Pb)', 6: 'Nickel (Ni)', 7: 'Nitrate (N)', 8: 'Nitrate + Nitrite', 9: 'Orthophosphate (P)', 10: 'Total Kjeldahl Nitrogen (TKN)', 11: 'Total Oil & Grease', 12: 'Total Phosphorus', 13: 'Total Suspended Solids', 14: 'Zinc (Zn)' } }) data = pandas.DataFrame({ 'concentration': { 0: 786.0, 1: 0.16, 2: 8.60, 3: 140.0, 4: 9000.0, 5: 1350.0, 6: 6.13, 7: 2.20, 8: 1.40, 9: 1.5, 10: 0.052, 11: 1.2, 12: 0.5, 13: 0.13, 14: 110.0, 15: 43.4 }, 'detectionlimit': { 0: 0.5, 1: 0.01, 2: 0.20, 3: 1.0, 4: np.nan, 5: 5.0, 6: 0.05, 7: 0.2, 8: 0.1, 9: 0.1, 10: 0.002, 11: 0.1, 12: 0.5, 13: 0.1, 14: 3.0, 15: 0.5 }, 'load_outflow': { 0: 40.642016399999555, 1: 0.0082731839999999109, 2: 0.44468363999999516, 3: 7239.0359999999218, 4: 4653665999.9999495, 5: 69.80498999999925, 6: 0.31696636199999656, 7: 0.11375627999999877, 8: 72.390359999999205, 9: 77.561099999999158, 10: 2.6887847999999708, 11: 62.048879999999322, 12: 0.025853699999999719, 13: 6.7219619999999276, 14: 5687.8139999999385, 15: 2.2441011599999756 }, 'load_units': { 0: 'g', 1: 'g', 2: 'g', 3: 'g', 4: 'CFU', 5: 'g', 6: 'g', 7: 'g', 8: 'g', 9: 'g', 10: 'g', 11: 'g', 12: 'g', 13: 'g', 14: 'g', 15: 'g' }, 'parameter': { 0: 'Aluminum (Al)', 1: 'Cadmium (Cd)', 2: 'Copper (Cu)', 3: 'Dissolved Chloride (Cl)', 4: 'Escherichia coli', 5: 'Iron (Fe)', 6: 'Lead (Pb)', 7: 'Nickel (Ni)', 8: 'Nitrate (N)', 9: 'Nitrate + Nitrite', 10: 'Orthophosphate (P)', 11: 'Total Kjeldahl Nitrogen (TKN)', 12: 'Total Oil & Grease', 13: 'Total Phosphorus', 14: 'Total Suspended Solids', 15: 'Zinc (Zn)' }, 'units': { 0: 'ug/L', 1: 'ug/L', 2: 'ug/L', 3: 'mg/L', 4: 'CFU/100mL', 5: 'ug/L', 6: 'ug/L', 7: 'ug/L', 8: 'mg/L', 9: 'mg/L', 10: 'mg/L', 11: 'mg/L', 12: 'mg/L', 13: 'mg/L', 14: 'mg/L', 15: 'ug/L' } }) self.wqs = samples.CompositeSample(data, self.known_starttime, endtime=self.known_endtime, samplefreq=self.known_samplefreq, storm=None) self.wqs.siteid = self.known_siteid self.wqs.label = self.known_label self.wqs.wqstd = ( info.wqstd_template() .assign(upper_limit=10) .query("season == 'summer'") ) class test_GrabSample(samples_tests.test_GrabSample_NoStorm, _wq_sample_mixin): def setup(self): self.basic_setup() self.known_siteid = 'Test Site' self.known_general_tex_table = 'TestSite-2013-02-24-1659-1-General' self.known_hydro_tex_table = 'TestSite-2013-02-24-1659-2-Hydro' self.known_wq_tex_table = 'TestSite-2013-02-24-1659-3-WQGrab' self.known_storm_figure = 'TestSite-2013-02-24-1659-Grab' self.test_name = 'GrabNoStorm' self.known_yfactor = 0.25 self.known_starttime = '2013-02-24 16:59' self.known_endtime = '2013-02-25 02:59' self.known_season = 'winter' self.known_sample_ts_len = 2 self.known_samplefreq = None self.known_samplefreq_type = type(None) self.known_marker = '+' self.known_label = 'Grab Sample' self.known_wqtable = pandas.DataFrame({ 'Effluent EMC': { 0: '786 ug/L', 1: '0.160 ug/L', 2: '8.60 ug/L', 3: '140 mg/L', 4: '1,350 ug/L', 5: '6.13 ug/L', 6: '2.20 ug/L', 7: '1.40 mg/L', 8: '1.50 mg/L', 9: '0.0520 mg/L', 10: '1.20 mg/L', 11: '0.500 mg/L', 12: '0.130 mg/L', 13: '110 mg/L', 14: '43.4 ug/L' }, 'Detection Limit': { 0: '0.500 ug/L', 1: '0.0100 ug/L', 2: '0.200 ug/L', 3: '1.00 mg/L', 4: '5.00 ug/L', 5: '0.0500 ug/L', 6: '0.200 ug/L', 7: '0.100 mg/L', 8: '0.100 mg/L', 9: '0.00200 mg/L', 10: '0.100 mg/L', 11: '0.500 mg/L', 12: '0.100 mg/L', 13: '3.00 mg/L', 14: '0.500 ug/L' }, 'Effluent Load': { 0: '40.6 g', 1: '0.00827 g', 2: '0.445 g', 3: '7,240 g', 4: '69.8 g', 5: '0.317 g', 6: '0.114 g', 7: '72.4 g', 8: '77.6 g', 9: '2.69 g', 10: '62.0 g', 11: '0.0259 g', 12: '6.72 g', 13: '5,690 g', 14: '2.24 g'}, 'WQ Guideline': { 0: '10.0 ug/L', 1: '10.0 ug/L', 2: '10.0 ug/L', 3: '10.0 mg/L', 4: '10.0 ug/L', 5: '10.0 ug/L', 6: '10.0 ug/L', 7: '10.0 mg/L', 8: '10.0 mg/L', 9: '10.0 mg/L', 10: '10.0 mg/L', 11: '10.0 mg/L', 12: '10.0 mg/L', 13: '10.0 mg/L', 14: '10.0 ug/L' }, 'Parameter': { 0: 'Aluminum (Al)', 1: 'Cadmium (Cd)', 2: 'Copper (Cu)', 3: 'Dissolved Chloride (Cl)', 4: 'Iron (Fe)', 5: 'Lead (Pb)', 6: 'Nickel (Ni)', 7: 'Nitrate (N)', 8: 'Nitrate + Nitrite', 9: 'Orthophosphate (P)', 10: 'Total Kjeldahl Nitrogen (TKN)', 11: 'Total Oil & Grease', 12: 'Total Phosphorus', 13: 'Total Suspended Solids', 14: 'Zinc (Zn)' } }) data = pandas.DataFrame({ 'concentration': { 0: 786.0, 1: 0.16, 2: 8.60, 3: 140.0, 4: 9000.0, 5: 1350.0, 6: 6.13, 7: 2.20, 8: 1.40, 9: 1.5, 10: 0.052, 11: 1.2, 12: 0.5, 13: 0.13, 14: 110.0, 15: 43.4 }, 'detectionlimit': { 0: 0.5, 1: 0.01, 2: 0.20, 3: 1.0, 4: np.nan, 5: 5.0, 6: 0.05, 7: 0.2, 8: 0.1, 9: 0.1, 10: 0.002, 11: 0.1, 12: 0.5, 13: 0.1, 14: 3.0, 15: 0.5 }, 'load_outflow': { 0: 40.642016399999555, 1: 0.0082731839999999109, 2: 0.44468363999999516, 3: 7239.0359999999218, 4: 4653665999.9999495, 5: 69.80498999999925, 6: 0.31696636199999656, 7: 0.11375627999999877, 8: 72.390359999999205, 9: 77.561099999999158, 10: 2.6887847999999708, 11: 62.048879999999322, 12: 0.025853699999999719, 13: 6.7219619999999276, 14: 5687.8139999999385, 15: 2.2441011599999756 }, 'load_units': { 0: 'g', 1: 'g', 2: 'g', 3: 'g', 4: 'CFU', 5: 'g', 6: 'g', 7: 'g', 8: 'g', 9: 'g', 10: 'g', 11: 'g', 12: 'g', 13: 'g', 14: 'g', 15: 'g' }, 'parameter': { 0: 'Aluminum (Al)', 1: 'Cadmium (Cd)', 2: 'Copper (Cu)', 3: 'Dissolved Chloride (Cl)', 4: 'Escherichia coli', 5: 'Iron (Fe)', 6: 'Lead (Pb)', 7: 'Nickel (Ni)', 8: 'Nitrate (N)', 9: 'Nitrate + Nitrite', 10: 'Orthophosphate (P)', 11: 'Total Kjeldahl Nitrogen (TKN)', 12: 'Total Oil & Grease', 13: 'Total Phosphorus', 14: 'Total Suspended Solids', 15: 'Zinc (Zn)' }, 'units': { 0: 'ug/L', 1: 'ug/L', 2: 'ug/L', 3: 'mg/L', 4: 'CFU/100mL', 5: 'ug/L', 6: 'ug/L', 7: 'ug/L', 8: 'mg/L', 9: 'mg/L', 10: 'mg/L', 11: 'mg/L', 12: 'mg/L', 13: 'mg/L', 14: 'mg/L', 15: 'ug/L' } }) self.wqs = samples.GrabSample(data, self.known_starttime, endtime=self.known_endtime, samplefreq=self.known_samplefreq, storm=None) self.wqs.siteid = self.known_siteid self.wqs.label = self.known_label self.wqs.wqstd = ( info.wqstd_template() .assign(upper_limit=10) .query("season == 'summer'") ) class test_Storm(hydro_tests.test_Storm): def setup(self): # path stuff self.storm_file = resource_filename('wqio.data', 'teststorm_simple.csv') self.orig_record = pandas.read_csv( self.storm_file, index_col='date', parse_dates=True ).resample('5T').fillna(0) self.hr = wqio.HydroRecord(self.orig_record, precipcol='rain', inflowcol='influent', outflowcol='effluent', outputfreqMinutes=5, intereventHours=2, stormclass=samples.Storm) self.storm = samples.Storm(self.hr.data, 2, precipcol=self.hr.precipcol, inflowcol=self.hr.inflowcol, outflowcol=self.hr.outflowcol, freqMinutes=self.hr.outputfreq.n) self.known_columns = ['rain', 'influent', 'effluent', 'storm'] self.known_index_type = pandas.DatetimeIndex self.known_start =
pandas.Timestamp('2013-05-19 06:10')
pandas.Timestamp
import itertools import pandas as pd from pandas.testing import assert_series_equal import pytest from solarforecastarbiter.reference_forecasts import forecast def assert_none_or_series(out, expected): assert len(out) == len(expected) for o, e in zip(out, expected): if e is None: assert o is None else: assert_series_equal(o, e) def test_resample(): index = pd.date_range(start='20190101', freq='15min', periods=5) arg = pd.Series([1, 0, 0, 0, 2], index=index) idx_exp = pd.date_range(start='20190101', freq='1h', periods=2) expected = pd.Series([0.25, 2.], index=idx_exp) out = forecast.resample(arg) assert_series_equal(out, expected) assert forecast.resample(None) is None @pytest.fixture def rfs_series(): return pd.Series([1, 2], index=pd.DatetimeIndex(['20190101 01', '20190101 02'])) @pytest.mark.parametrize( 'start,end,start_slice,end_slice,fill_method,exp_val,exp_idx', [ (None, None, None, None, 'interpolate', [1, 1.5, 2], ['20190101 01', '20190101 0130', '20190101 02']), ('20190101', '20190101 0230', None, None, 'interpolate', [1, 1, 1, 1.5, 2, 2], ['20190101', '20190101 0030', '20190101 01', '20190101 0130', '20190101 02', '20190101 0230']), ('20190101', '20190101 02', '20190101 0030', '20190101 0130', 'bfill', [1., 1, 2], ['20190101 0030', '20190101 01', '20190101 0130']) ] ) def test_reindex_fill_slice(rfs_series, start, end, start_slice, end_slice, fill_method, exp_val, exp_idx): exp = pd.Series(exp_val, index=pd.DatetimeIndex(exp_idx)) out = forecast.reindex_fill_slice( rfs_series, freq='30min', start=start, end=end, start_slice=start_slice, end_slice=end_slice, fill_method=fill_method) assert_series_equal(out, exp) def test_reindex_fill_slice_some_nan(): rfs_series = pd.Series([1, 2, None, 4], index=pd.DatetimeIndex([ '20190101 01', '20190101 02', '20190101 03', '20190101 04', ])) start, end, start_slice, end_slice, fill_method = \ None, None, None, None, 'interpolate' exp_val = [1, 1.5, 2, 2.5, 3, 3.5, 4] exp_idx = [ '20190101 01', '20190101 0130', '20190101 02', '20190101 0230', '20190101 03', '20190101 0330', '20190101 04'] exp = pd.Series(exp_val, index=pd.DatetimeIndex(exp_idx)) out = forecast.reindex_fill_slice( rfs_series, freq='30min', start=start, end=end, start_slice=start_slice, end_slice=end_slice, fill_method=fill_method) assert_series_equal(out, exp) def test_reindex_fill_slice_all_nan(): arg = pd.Series([None]*3, index=pd.DatetimeIndex( ['20190101 01', '20190101 02', '20190101 03'])) out = forecast.reindex_fill_slice(arg, freq='30min') exp = pd.Series([None]*5, index=pd.DatetimeIndex( ['20190101 01', '20190101 0130', '20190101 02', '20190101 0230', '20190101 03']))
assert_series_equal(out, exp)
pandas.testing.assert_series_equal
import glob import os import sys import subprocess from configparser import ConfigParser import numpy as np import pandas as pd from astropy import units as u from astropy.io import ascii from astropy.io import fits as pyfits from radio_beam import Beam, Beams, commonbeam import fits_magic as fm def load_config(config_object, file_=None): """ Function to load the config file """ config = ConfigParser() # Initialise the config parser config.readfp(open(file_)) for s in config.sections(): for o in config.items(s): setattr(config_object, o[0], eval(o[1])) return config # Save the loaded config file as defaults for later usage def set_mosdirs(self): """ Creates the directory names for the subdirectories to make scripting easier """ self.qacontdir = os.path.join(self.qadir, 'continuum') self.qapoldir = os.path.join(self.qadir, 'polarisation') self.contworkdir = os.path.join(self.basedir, self.obsid, self.mossubdir, self.moscontdir) self.contimagedir = os.path.join(self.contworkdir, 'images') self.contbeamdir = os.path.join(self.contworkdir, 'beams') self.contmosaicdir = os.path.join(self.contworkdir, 'mosaic') self.polworkdir = os.path.join(self.basedir, self.obsid, self.mossubdir, self.mospoldir) self.polimagedir = os.path.join(self.polworkdir, 'images') self.polbeamdir = os.path.join(self.polworkdir, 'beams') self.polmosaicdir = os.path.join(self.polworkdir, 'mosaic') def gen_contdirs(self): """ Function to generate the necessary continuum directories """ if os.path.isdir(self.contworkdir): pass else: os.makedirs(self.contworkdir) if os.path.isdir(self.contimagedir): pass else: os.makedirs(self.contimagedir) if os.path.isdir(self.contbeamdir): pass else: os.makedirs(self.contbeamdir) if os.path.isdir(self.contmosaicdir): pass else: os.makedirs(self.contmosaicdir) def copy_contimages(self): """ Function to copy the continuum images to the working directory """ if self.cont_mode == 'all': # copy all the images from the continuum directory print('Copying images for all available beams') for image in range(40): os.system('cp ' + os.path.join(self.basedir, self.obsid) + '/' + str(image).zfill(2) + '/continuum/image_mf_*.fits ' + self.contimagedir + '/I' + str(image).zfill(2) + '.fits') elif self.cont_mode == 'qa': # Load the qa-continuum file and only copy the images with good quality c_arr = np.full(40, True) if os.path.isfile(os.path.join(self.qacontdir, self.obsid, 'dynamicRange.dat')): data = ascii.read(os.path.join(self.qacontdir, self.obsid, 'dynamicRange.dat')) c_arr[np.where(data['col2'] == 'X')] = False for image in range(40): if c_arr[image]: os.system('cp ' + os.path.join(self.basedir, self.obsid) + '/' + str(image).zfill(2) + '/continuum/image_mf_*.fits ' + self.contimagedir + '/I' + str(image).zfill(2) + '.fits') else: print('Image for beam ' + str(image).zfill(2) + ' not available or validated as bad!') else: print('No continuum quality assurance available for observation id ' + str(self.obsid) + '. Copying all available images.') for image in range(40): os.system('cp ' + os.path.join(self.basedir, self.obsid) + '/' + str(image).zfill(2) + '/continuum/image_mf_*.fits ' + self.contimagedir + '/I' + str(image).zfill(2) + '.fits') elif self.cont_mode == 'param': # Copy all images fullfilling the criteria given for the continuum mosaic print('Copying all images with a synthesised beam with a maximum size of bmaj=' + str(self.cont_bmaj) + ' and bmin=' + str(self.cont_bmin) + ' and a maximum image rms of ' + str(self.cont_rms)) for image in range(40): os.system('cp ' + os.path.join(self.basedir, self.obsid) + '/' + str(image).zfill(2) + '/continuum/image_mf_*.fits ' + self.contimagedir + '/I' + str(image).zfill(2) + '.fits') if os.path.isfile(self.contimagedir + '/I' + str(image).zfill(2) + '.fits'): bmaj, bmin = fm.get_beam(self.contimagedir + '/I' + str(image).zfill(2) + '.fits') rms = fm.get_rms(self.contimagedir + '/I' + str(image).zfill(2) + '.fits') if (bmaj*3600.0 > self.cont_bamj) or (bmin*3600.0 > self.cont_bmin) or (rms > self.cont_rmsclip): print('Total power image of Beam ' + str(image).zfill(2) + ' exceeds the specified parameters and is not used!') os.remove(self.contimagedir + '/I' + str(image).zfill(2) + '.fits') else: pass else: print('Image for Beam ' + str(image).zfill(2) + ' is not available!') elif (type(self.cont_mode) == list): # Copy only the beams given as a list for image in self.cont_mode: os.system('cp ' + os.path.join(self.basedir, self.obsid) + '/' + str(image).zfill(2) + '/continuum/image_mf_*.fits ' + self.contimagedir + '/I' + str(image).zfill(2) + '.fits') if os.path.isfile(self.contimagedir + '/I00.fits'): if self.cont_use00: print('Using Beam 00 for mosaicking!') else: print('Not using Beam 00 for mosiacking!') os.remove(self.contimagedir + '/I00.fits') else: pass def copy_contbeams(self): """ Find the right beam models in time and frequency for the appropriate beams and copy them over to the working directory """ if self.cont_pbtype == 'drift': # Get the right directory with the minimum difference in time with regard to the observation beamtimes = sorted(glob.glob(self.beamsrcdir + '*')) beamtimes_arr = [float(bt.split('/')[-1][:6]) for bt in beamtimes] bt_array = np.unique(beamtimes_arr) obstime = float(self.obsid[:6]) deltat = np.abs(bt_array - obstime) loc_min = np.argmin(deltat) rightbeamdir = beamtimes[loc_min] # Get the frequencies of the beam models channs = sorted(glob.glob(os.path.join(rightbeamdir, 'beam_models/chann_[0-9]'))) freqs = np.full(len(channs), np.nan) for b, beam in enumerate(channs): hdul = pyfits.open(os.path.join(beam, rightbeamdir.split('/')[-1] + '_00_I_model.fits')) freqs[b] = hdul[0].header['CRVAL3'] hdul.close() # Copy the beam models with the right frequency over to the working directory and regrid them to the image size for beam in range(40): if os.path.isfile(self.contimagedir + '/I' + str(beam).zfill(2) + '.fits'): hdulist = pyfits.open(self.contimagedir + '/I' + str(beam).zfill(2) + '.fits') freq = hdulist[0].header['CRVAL3'] nchann = np.argmin(np.abs(freqs - freq)) + 1 os.system('cp ' + os.path.join(rightbeamdir, 'beam_models/chann_' + str(nchann) + '/') + rightbeamdir.split('/')[-1] + '_' + str(beam).zfill(2) + '_I_model.fits ' + self.contbeamdir + '/B' + str(beam).zfill(2) + '.fits') elif self.cont_pbtype == 'gaussian': for beam in range(40): if os.path.isfile(self.contimagedir + '/I' + str(beam).zfill(2) + '.fits'): # Get the frequency from the image hdu_cont = pyfits.open(self.contimagedir + '/I' + str(beam).zfill(2) + '.fits') freq = hdu_cont[0].header['CRVAL3'] # Get the cellsize from the beam images and recalculate it based on the frequency of the image hdu_beam = pyfits.open(self.beamsrcdir + str(beam).zfill(2) + '_gp_avg_orig.fits') hdu_beam_hdr = hdu_beam[0].header hdu_beam_data = hdu_beam[0].data cs1 = hdu_beam_hdr['CDELT1'] cs2 = hdu_beam_hdr['CDELT2'] new_cs1 = cs1 * (1.36063551903e09 / freq) new_cs2 = cs2 * (1.36063551903e09 / freq) hdu_beam_hdr['CDELT1'] = new_cs1 hdu_beam_hdr['CDELT2'] = new_cs2 # Write the new not regridded beam to a temporary file pyfits.writeto(self.contbeamdir + '/B' + str(beam).zfill(2) + '.fits', data=hdu_beam_data, header=hdu_beam_hdr, overwrite=True) else: print('Mode ' + str(self.cont_pbtype) + ' is not supported. Exiting script!') sys.exit() def get_contfiles(self): """ Get a list of the images and pbimages in the continuum working directory """ images = sorted(glob.glob(self.contimagedir + '/I[0-9][0-9].fits')) pbimages = sorted(glob.glob(self.contbeamdir + '/B[0-9][0-9].fits')) return images, pbimages def clean_contmosaic_tmp_data(self): os.system('rm -rf ' + self.contimagedir + '/*_reconv_tmp.fits') os.system('rm -rf ' + self.contimagedir + '/*_reconv_tmp_pbcorr.fits') os.system('rm -rf ' + self.contimagedir + '/*_mos.fits') os.system('rm -rf ' + self.contimagedir + '/*_reconv_tmp_uncorr.fits') os.system('rm -rf ' + self.contimagedir + '/*_uncorr.fits') def gen_poldirs(self): """ Function to generate the necessary polarisation directories """ if os.path.isdir(self.polworkdir): pass else: os.makedirs(self.polworkdir) if os.path.isdir(self.polimagedir): pass else: os.makedirs(self.polimagedir) if os.path.isdir(self.polbeamdir): pass else: os.makedirs(self.polbeamdir) if os.path.isdir(self.polmosaicdir): pass else: os.makedirs(self.polmosaicdir) def copy_polimages(self, veri): """ Function to copy the polarisation images of a specific subband to the working directory """ for b in range(40): for sb in range(self.pol_start_sb, self.pol_end_sb + 1): if veri[b, sb]: qcube = pyfits.open(os.path.join(self.basedir, self.obsid, str(b).zfill(2), 'polarisation/Qcube.fits')) ucube = pyfits.open(os.path.join(self.basedir, self.obsid, str(b).zfill(2), 'polarisation/Ucube.fits')) qhdu = qcube[0] uhdu = ucube[0] qhdr = qhdu.header uhdr = uhdu.header qplane = qhdu.data[sb,:,:] uplane = uhdu.data[sb,:,:] newqfreq = qhdr['CRVAL3'] + float(sb) * qhdr['CDELT3'] newufreq = uhdr['CRVAL3'] + float(sb) * uhdr['CDELT3'] qhdr.update(NAXIS3=1, CRVAL3=newqfreq) uhdr.update(NAXIS3=1, CRVAL3=newufreq) # Get the beam synthesised beam parameters and put them into the header qbmaj = get_param(self, 'polarisation_B' + str(b).zfill(2) + '_targetbeams_qu_beamparams')[:, 0, 0][sb] qbmin = get_param(self, 'polarisation_B' + str(b).zfill(2) + '_targetbeams_qu_beamparams')[:, 1, 0][sb] qbpa = get_param(self, 'polarisation_B' + str(b).zfill(2) + '_targetbeams_qu_beamparams')[:, 2, 0][sb] ubmaj = get_param(self, 'polarisation_B' + str(b).zfill(2) + '_targetbeams_qu_beamparams')[:, 0, 1][sb] ubmin = get_param(self, 'polarisation_B' + str(b).zfill(2) + '_targetbeams_qu_beamparams')[:, 1, 1][sb] ubpa = get_param(self, 'polarisation_B' + str(b).zfill(2) + '_targetbeams_qu_beamparams')[:, 2, 1][sb] qhdr.update(BMAJ=qbmaj / 3600.0, BMIN=qbmin / 3600.0, BPA=qbpa) uhdr.update(BMAJ=ubmaj / 3600.0, BMIN=ubmin / 3600.0, BPA=ubpa) pyfits.writeto(self.polimagedir + '/Q_B' + str(b).zfill(2) + '_SB' + str(sb).zfill(2) + '.fits', data=qplane, header=qhdr, overwrite=True) pyfits.writeto(self.polimagedir + '/U_B' + str(b).zfill(2) + '_SB' + str(sb).zfill(2) + '.fits', data=uplane, header=uhdr, overwrite=True) qlist = glob.glob(self.polimagedir + '/Q_B00_SB*.fits') ulist = glob.glob(self.polimagedir + '/U_B00_SB*.fits') if len(qlist) == 0 and len(ulist) == 0: pass else: if self.pol_use00: print('Using Beam 00 for polarisation mosaicking!') else: print('Not using Beam 00 for polarisation mosaicking!') for qim in qlist: os.remove(qim) for uim in ulist: os.remove(uim) def copy_polbeams(self): """ Find the right beam models in time and frequency for the appropriate beams and copy them over to the working directory """ if self.pol_pbtype == 'drift': # Get the right directory with the minimum difference in time with regard to the observation beamtimes = sorted(glob.glob(self.beamsrcdir + '*')) beamtimes_arr = [float(bt.split('/')[-1][:6]) for bt in beamtimes] bt_array = np.unique(beamtimes_arr) obstime = float(self.obsid[:6]) deltat = np.abs(bt_array - obstime) loc_min = np.argmin(deltat) rightbeamdir = beamtimes[loc_min] # Get the frequencies of the beam models channs = sorted(glob.glob(os.path.join(rightbeamdir, 'beam_models/chann_[0-9]'))) freqs = np.full(len(channs), np.nan) for b, beam in enumerate(channs): hdul = pyfits.open(os.path.join(beam, rightbeamdir.split('/')[-1] + '_00_I_model.fits')) freqs[b] = hdul[0].header['CRVAL3'] hdul.close() # Copy the beam models with the right frequency over to the working directory for b in range(40): for sb in range(self.pol_start_sb, self.pol_end_sb + 1): if os.path.isfile(self.polimagedir + '/Q_B' + str(b).zfill(2) + '_SB' + str(sb).zfill(2) + '.fits'): hdulist = pyfits.open(self.polimagedir + '/Q_B' + str(b).zfill(2) + '_SB' + str(sb).zfill(2) + '.fits') freq = hdulist[0].header['CRVAL3'] nchann = np.argmin(np.abs(freqs - freq)) + 1 os.system('cp ' + os.path.join(rightbeamdir, 'beam_models/chann_' + str(nchann) + '/') + rightbeamdir.split('/')[-1] + '_' + str(b).zfill(2) + '_I_model.fits ' + self.polbeamdir + '/PB_B' + str(b).zfill(2) + '_SB' + str(sb).zfill(2) + '.fits') elif self.pol_pbtype == 'gaussian': for b in range(40): for sb in range(self.pol_start_sb, self.pol_end_sb + 1): if os.path.isfile(self.polimagedir + '/Q_B' + str(b).zfill(2) + '_SB' + str(sb).zfill(2) + '.fits'): # Get the frequency from the image hdu_pol = pyfits.open(self.polimagedir + '/Q_B' + str(b).zfill(2) + '_SB' + str(sb).zfill(2) + '.fits') freq = hdu_pol[0].header['CRVAL3'] # Get the cellsize from the beam images and recalculate it based on the frequency of the image hdu_beam = pyfits.open(self.beamsrcdir + str(b).zfill(2) + '_gp_avg_orig.fits') hdu_beam_hdr = hdu_beam[0].header hdu_beam_data = hdu_beam[0].data cs1 = hdu_beam_hdr['CDELT1'] cs2 = hdu_beam_hdr['CDELT2'] new_cs1 = cs1 * (1.36063551903e09 / freq) new_cs2 = cs2 * (1.36063551903e09 / freq) hdu_beam_hdr['CDELT1'] = new_cs1 hdu_beam_hdr['CDELT2'] = new_cs2 # Write the new not regridded beam to a temporary file pyfits.writeto(self.polbeamdir + '/PB_B' + str(b).zfill(2) + '_SB' + str(sb).zfill(2) + '.fits', data=hdu_beam_data, header=hdu_beam_hdr, overwrite=True) def get_polfiles(self, sb): """ Get a list of the images and pbimages in the polarisation working directory """ qimages = sorted(glob.glob(self.polimagedir + '/Q_B[0-9][0-9]_SB' + str(sb).zfill(2) + '.fits')) uimages = sorted(glob.glob(self.polimagedir + '/U_B[0-9][0-9]_SB' + str(sb).zfill(2) + '.fits')) pbimages = sorted(glob.glob(self.polbeamdir + '/PB_B[0-9][0-9]_SB' + str(sb).zfill(2) + '.fits')) return qimages, uimages, pbimages def get_common_psf(self, veri, format='fits'): """ Common psf for the list of fits files """ beams = [] if format == 'fits': bmajes = [] bmines = [] bpas = [] for f in veri: ih = pyfits.getheader(f) bmajes.append(ih['BMAJ']) bmines.append(ih['BMIN']) bpas.append(ih['BPA']) bmajarr = np.array(bmajes) bminarr = np.array(bmines) bpaarr = np.array(bpas) for i in range(0, len(bmajes) - 1): ni = i + 1 beams = Beams((bmajarr[[i, ni]]) * u.deg, (bminarr[[i, ni]]) * u.deg, bpaarr[[i, ni]] * u.deg) common = commonbeam.commonbeam(beams) bmajarr[ni] = common.major/u.deg bminarr[ni] = common.minor / u.deg bpaarr[ni] = common.pa / u.deg elif format == 'array': bmajes = np.empty(0) bmines = np.empty(0) bpas = np.empty(0) for b in range(40): for sb in range(self.pol_start_sb, self.pol_end_sb + 1): if veri[b,sb]: bmajes = np.append(bmajes, (get_param(self, 'polarisation_B' + str(b).zfill(2) + '_targetbeams_qu_beamparams')[:, 0, 0][sb])) bmines = np.append(bmines, (get_param(self, 'polarisation_B' + str(b).zfill(2) + '_targetbeams_qu_beamparams')[:, 1, 0][sb])) bpas = np.append(bpas, (get_param(self, 'polarisation_B' + str(b).zfill(2) + '_targetbeams_qu_beamparams')[:, 2, 0][sb])) bmajarr = bmajes[~pd.isnull(bmajes)] bminarr = bmines[~pd.isnull(bmines)] bpaarr = bpas[~
pd.isnull(bpas)
pandas.isnull
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import timedelta from numpy import nan import numpy as np import pandas as pd from pandas import (Series, isnull, date_range, MultiIndex, Index) from pandas.tseries.index import Timestamp from pandas.compat import range from pandas.util.testing import assert_series_equal import pandas.util.testing as tm from .common import TestData def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') def _skip_if_no_akima(): try: from scipy.interpolate import Akima1DInterpolator # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.Akima1DInterpolator missing') class TestSeriesMissingData(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_timedelta_fillna(self): # GH 3371 s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) td = s.diff() # reg fillna result = td.fillna(0) expected = Series([timedelta(0), timedelta(0), timedelta(1), timedelta( days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) # interprested as seconds result = td.fillna(1) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(timedelta(days=1, seconds=1)) expected = Series([timedelta(days=1, seconds=1), timedelta( 0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(np.timedelta64(int(1e9))) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) from pandas import tslib result = td.fillna(tslib.NaT) expected = Series([tslib.NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)], dtype='m8[ns]') assert_series_equal(result, expected) # ffill td[2] = np.nan result = td.ffill() expected = td.fillna(0) expected[0] = np.nan assert_series_equal(result, expected) # bfill td[2] = np.nan result = td.bfill() expected = td.fillna(0) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) assert_series_equal(result, expected) def test_datetime64_fillna(self): s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) s[2] = np.nan # reg fillna result = s.fillna(Timestamp('20130104')) expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) from pandas import tslib result = s.fillna(tslib.NaT) expected = s assert_series_equal(result, expected) # ffill result = s.ffill() expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) # bfill result = s.bfill() expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01'), Timestamp( '20130103 9:01:01')]) assert_series_equal(result, expected) # GH 6587 # make sure that we are treating as integer when filling # this also tests inference of a datetime-like with NaT's s = Series([pd.NaT, pd.NaT, '2013-08-05 15:30:00.000001']) expected = Series( ['2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001'], dtype='M8[ns]') result = s.fillna(method='backfill') assert_series_equal(result, expected) def test_datetime64_tz_fillna(self): for tz in ['US/Eastern', 'Asia/Tokyo']: # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp( '2011-01-03 10:00'), pd.NaT]) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-02 10:00', tz=tz)]) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00'), 'AAA', Timestamp('2011-01-03 10:00'), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00'), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-04 10:00')]) self.assert_series_equal(expected, result) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz=tz) s = pd.Series(idx) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp( '2011-01-02 10:00', tz=tz).to_pydatetime()) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00', tz=tz), 'AAA', Timestamp('2011-01-03 10:00', tz=tz), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp( '2011-01-03 10:00', tz=tz), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00', tz=tz)}) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp( '2011-01-03 10:00', tz=tz), Timestamp('2011-01-04 10:00', tz=tz)]) self.assert_series_equal(expected, result) # filling with a naive/other zone, coerce to object result = s.fillna(Timestamp('20130101')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2013-01-01'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp( '2013-01-01')]) self.assert_series_equal(expected, result) result = s.fillna(Timestamp('20130101', tz='US/Pacific')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp('2013-01-01', tz='US/Pacific'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2013-01-01', tz='US/Pacific')]) self.assert_series_equal(expected, result) def test_fillna_int(self): s = Series(np.random.randint(-100, 100, 50)) s.fillna(method='ffill', inplace=True) assert_series_equal(s.fillna(method='ffill', inplace=False), s) def test_fillna_raise(self): s = Series(np.random.randint(-100, 100, 50)) self.assertRaises(TypeError, s.fillna, [1, 2]) self.assertRaises(TypeError, s.fillna, (1, 2)) def test_isnull_for_inf(self): s = Series(['a', np.inf, np.nan, 1.0]) with pd.option_context('mode.use_inf_as_null', True): r = s.isnull() dr = s.dropna() e = Series([False, True, True, False]) de = Series(['a', 1.0], index=[0, 3]) tm.assert_series_equal(r, e) tm.assert_series_equal(dr, de) def test_fillna(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) self.assert_series_equal(ts, ts.fillna(method='ffill')) ts[2] = np.NaN exp = Series([0., 1., 1., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(method='ffill'), exp) exp = Series([0., 1., 3., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(method='backfill'), exp) exp = Series([0., 1., 5., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(value=5), exp) self.assertRaises(ValueError, ts.fillna) self.assertRaises(ValueError, self.ts.fillna, value=0, method='ffill') # GH 5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.]) assert_series_equal(result, expected) result = s1.fillna({}) assert_series_equal(result, s1) result = s1.fillna(Series(())) assert_series_equal(result, s1) result = s2.fillna(s1) assert_series_equal(result, s2) result = s1.fillna({0: 1}) assert_series_equal(result, expected) result = s1.fillna({1: 1}) assert_series_equal(result, Series([np.nan])) result = s1.fillna({0: 1, 1: 1}) assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1})) assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) assert_series_equal(result, s1) s1 = Series([0, 1, 2], list('abc')) s2 = Series([0, np.nan, 2], list('bac')) result = s2.fillna(s1) expected = Series([0, 0, 2.], list('bac')) assert_series_equal(result, expected) # limit s = Series(np.nan, index=[0, 1, 2]) result = s.fillna(999, limit=1) expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) assert_series_equal(result, expected) result = s.fillna(999, limit=2) expected = Series([999, 999, np.nan], index=[0, 1, 2]) assert_series_equal(result, expected) # GH 9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ['0', '1.5', '-0.3'] for val in vals: s = Series([0, 1, np.nan, np.nan, 4], dtype='float64') result = s.fillna(val) expected = Series([0, 1, val, val, 4], dtype='object') assert_series_equal(result, expected) def test_fillna_bug(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) filled = x.fillna(method='ffill') expected = Series([nan, 1., 1., 3., 3.], x.index) assert_series_equal(filled, expected) filled = x.fillna(method='bfill') expected = Series([1., 1., 3., 3., nan], x.index) assert_series_equal(filled, expected) def test_fillna_inplace(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) y = x.copy() y.fillna(value=0, inplace=True) expected = x.fillna(value=0) assert_series_equal(y, expected) def test_fillna_invalid_method(self): try: self.ts.fillna(method='ffil') except ValueError as inst: self.assertIn('ffil', str(inst)) def test_ffill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.ffill(), ts.fillna(method='ffill')) def test_bfill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.bfill(), ts.fillna(method='bfill')) def test_timedelta64_nan(self): from pandas import tslib td = Series([timedelta(days=i) for i in range(10)]) # nan ops on timedeltas td1 = td.copy() td1[0] = np.nan self.assertTrue(isnull(td1[0])) self.assertEqual(td1[0].value, tslib.iNaT) td1[0] = td[0] self.assertFalse(isnull(td1[0])) td1[1] = tslib.iNaT self.assertTrue(isnull(td1[1])) self.assertEqual(td1[1].value, tslib.iNaT) td1[1] = td[1] self.assertFalse(isnull(td1[1])) td1[2] = tslib.NaT self.assertTrue(isnull(td1[2])) self.assertEqual(td1[2].value, tslib.iNaT) td1[2] = td[2] self.assertFalse(isnull(td1[2])) # boolean setting # this doesn't work, not sure numpy even supports it # result = td[(td>np.timedelta64(timedelta(days=3))) & # td<np.timedelta64(timedelta(days=7)))] = np.nan # self.assertEqual(isnull(result).sum(), 7) # NumPy limitiation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= self.ts <= 0.5 # expected = (self.ts >= -0.5) & (self.ts <= 0.5) # assert_series_equal(selector, expected) def test_dropna_empty(self): s = Series([]) self.assertEqual(len(s.dropna()), 0) s.dropna(inplace=True) self.assertEqual(len(s), 0) # invalid axis self.assertRaises(ValueError, s.dropna, axis=1) def test_datetime64_tz_dropna(self): # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp( '2011-01-03 10:00'), pd.NaT]) result = s.dropna() expected = Series([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-03 10:00')], index=[0, 2]) self.assert_series_equal(result, expected) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz='Asia/Tokyo') s = pd.Series(idx) self.assertEqual(s.dtype, 'datetime64[ns, Asia/Tokyo]') result = s.dropna() expected = Series([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-03 10:00', tz='Asia/Tokyo')], index=[0, 2]) self.assertEqual(result.dtype, 'datetime64[ns, Asia/Tokyo]') self.assert_series_equal(result, expected) def test_dropna_no_nan(self): for s in [Series([1, 2, 3], name='x'), Series( [False, True, False], name='x')]: result = s.dropna() self.assert_series_equal(result, s) self.assertFalse(result is s) s2 = s.copy() s2.dropna(inplace=True) self.assert_series_equal(s2, s) def test_valid(self): ts = self.ts.copy() ts[::2] = np.NaN result = ts.valid() self.assertEqual(len(result), ts.count()) tm.assert_series_equal(result, ts[1::2]) tm.assert_series_equal(result, ts[pd.notnull(ts)]) def test_isnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal(ser.isnull(), Series([False, False, False, True, False]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.isnull(), Series([False, False, True]).values) def test_notnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal(ser.notnull(), Series([True, True, True, False, True]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.notnull(), Series([True, True, False]).values) def test_pad_nan(self): x = Series([np.nan, 1., np.nan, 3., np.nan], ['z', 'a', 'b', 'c', 'd'], dtype=float) x.fillna(method='pad', inplace=True) expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], ['z', 'a', 'b', 'c', 'd'], dtype=float) assert_series_equal(x[1:], expected[1:]) self.assertTrue(np.isnan(x[0]), np.isnan(expected[0])) def test_dropna_preserve_name(self): self.ts[:5] = np.nan result = self.ts.dropna() self.assertEqual(result.name, self.ts.name) name = self.ts.name ts = self.ts.copy() ts.dropna(inplace=True) self.assertEqual(ts.name, name) def test_fill_value_when_combine_const(self): # GH12723 s = Series([0, 1, np.nan, 3, 4, 5]) exp = s.fillna(0).add(2) res = s.add(2, fill_value=0) assert_series_equal(res, exp) class TestSeriesInterpolateData(TestData, tm.TestCase): def test_interpolate(self): ts = Series(np.arange(len(self.ts), dtype=float), self.ts.index) ts_copy = ts.copy() ts_copy[5:10] = np.NaN linear_interp = ts_copy.interpolate(method='linear') self.assert_series_equal(linear_interp, ts) ord_ts = Series([d.toordinal() for d in self.ts.index], index=self.ts.index).astype(float) ord_ts_copy = ord_ts.copy() ord_ts_copy[5:10] = np.NaN time_interp = ord_ts_copy.interpolate(method='time') self.assert_series_equal(time_interp, ord_ts) # try time interpolation on a non-TimeSeries # Only raises ValueError if there are NaNs. non_ts = self.series.copy() non_ts[0] = np.NaN self.assertRaises(ValueError, non_ts.interpolate, method='time') def test_interpolate_pchip(self): tm._skip_if_no_scipy() _skip_if_no_pchip() ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index.union(Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])) interp_s = ser.reindex(new_index).interpolate(method='pchip') # does not blow up, GH5977 interp_s[49:51] def test_interpolate_akima(self): tm._skip_if_no_scipy() _skip_if_no_akima() ser = Series([10, 11, 12, 13]) expected = Series([11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0])) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])) interp_s = ser.reindex(new_index).interpolate(method='akima') assert_series_equal(interp_s[1:3], expected) def test_interpolate_piecewise_polynomial(self): tm._skip_if_no_scipy() ser = Series([10, 11, 12, 13]) expected = Series([11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0])) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])) interp_s = ser.reindex(new_index).interpolate( method='piecewise_polynomial') assert_series_equal(interp_s[1:3], expected) def test_interpolate_from_derivatives(self): tm._skip_if_no_scipy() ser = Series([10, 11, 12, 13]) expected = Series([11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0])) # interpolate at new_index new_index = ser.index.union(
Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])
pandas.Index
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all =
pd.concat([df1, s3, df2], axis=1)
pandas.concat
# generate features import networkx as nx import pandas as pd import numpy as np from networkx.algorithms import node_classification import time from collections import Counter from utils import normalize_features def dayday_feature(data, n_class=2, label_most_common_1=19, flag_unlabel=0): t1 = time.time() data = data.copy() x = data['fea_table'].copy() num_nodes = x.shape[0] nodes_all = list(x.index) df = data['edge_file'].copy() max_weight = max(df['edge_weight']) df.rename(columns={'edge_weight': 'weight'}, inplace=True) degree_in_1st = np.zeros(num_nodes) degree_out_1st = np.zeros(num_nodes) weight_in_1st = np.zeros(num_nodes) weight_out_1st = np.zeros(num_nodes) for source, target, weight in df.values: source = int(source) target = int(target) degree_in_1st[target] += 1 degree_out_1st[source] += 1 weight_in_1st[target] += weight weight_out_1st[source] += weight degree_1st_diff = degree_in_1st - degree_out_1st weight_1st_diff = weight_in_1st - weight_out_1st features_1 = np.concatenate([ degree_in_1st.reshape(-1, 1), degree_out_1st.reshape(-1, 1), weight_in_1st.reshape(-1, 1), weight_out_1st.reshape(-1, 1), degree_1st_diff.reshape(-1, 1), weight_1st_diff.reshape(-1, 1) ], axis=1) features_in_1st = pd.DataFrame({"node_index": np.arange(num_nodes), "degree_in_1st": degree_in_1st, "weight_in_1st": weight_in_1st}) df_degree_in_1st = pd.merge(left=df, right=features_in_1st, left_on="src_idx", right_on="node_index", how="left") df_degree_in_1st_info = df_degree_in_1st.groupby('dst_idx')['degree_in_1st'].agg({ 'degree_in_1st_sum': np.sum, 'degree_in_1st_mean': np.mean, 'degree_in_1st_min': np.min, 'degree_in_1st_max': np.max, 'degree_in_1st_median': np.median }) df_weight_in_1st_info = df_degree_in_1st.groupby('dst_idx')['weight_in_1st'].agg({ 'weight_in_1st_sum': np.sum, 'weight_in_1st_mean': np.mean, 'weight_in_1st_min': np.min, 'weight_in_1st_max': np.max, 'weight_in_1st_median': np.median }) df_degree_in_2nd = pd.DataFrame({"node_index": df_degree_in_1st_info.index, "degree_in_2nd": df_degree_in_1st_info['degree_in_1st_sum']}) df_degree_in_2nd = pd.merge(left=df, right=df_degree_in_2nd, how="left", left_on="src_idx", right_on="node_index") df_degree_in_2nd_info = df_degree_in_2nd.groupby('dst_idx')['degree_in_2nd'].agg({ 'degree_in_2nd_sum': np.sum, 'degree_in_2nd_mean': np.mean, 'degree_in_2nd_min': np.min, 'degree_in_2nd_max': np.max, 'degree_in_2nd_median': np.median }) features_2_index = df_degree_in_1st_info.index features_2_t = np.hstack([df_degree_in_1st_info.values, df_weight_in_1st_info.values, df_degree_in_2nd_info.values]) features_2 = np.zeros((num_nodes, features_2_t.shape[1])) for i, index in enumerate(features_2_index): features_2[index] = features_2_t[i] train_y = data['train_label'].copy() df_info_in = pd.merge(left=df, right=train_y, how='left', left_on='src_idx', right_on='node_index') if flag_unlabel == 0: df_info_in.dropna(inplace=True) else: df_info_in.fillna(-1, inplace=True) df_labels_in_count = df_info_in.pivot_table(index=["dst_idx"], columns='label', aggfunc='size', fill_value=0) df_labels_in_precent = pd.crosstab(index=df_info_in.dst_idx, columns=df_info_in.label, normalize='index') df_labels_in_without_most_common = df_info_in.copy() df_labels_in_without_most_common = df_labels_in_without_most_common[df_labels_in_without_most_common.label != label_most_common_1] df_labels_in_precent_without_most_common = pd.crosstab(index=df_labels_in_without_most_common.dst_idx, columns=df_labels_in_without_most_common.label, normalize='index') df_labels_weight_count_in = df_info_in.pivot_table(index=['dst_idx'], columns='label', values='weight', aggfunc='sum', fill_value=0) df_labels_weight_percent_in = pd.crosstab(index=df_info_in.dst_idx, columns=df_info_in.label, values=df_info_in.weight, aggfunc='sum', normalize='index') df_labels_weight_percent_in_without_most_common = pd.crosstab( index=df_labels_in_without_most_common.dst_idx, columns=df_labels_in_without_most_common.label, values=df_labels_in_without_most_common.weight, aggfunc='sum', normalize='index') features_3_index = list(df_labels_in_count.index) features_3_t = np.hstack((df_labels_in_count.values, df_labels_in_precent.values, df_labels_weight_count_in.values, df_labels_weight_percent_in.values)) features_3 = np.zeros((num_nodes, features_3_t.shape[1])) for i, index in enumerate(features_3_index): features_3[index] = features_3_t[i] labels_in_temp = features_3[:, :n_class] labels_weight_in_temp = features_3[:, 2*n_class:3*n_class] features_labels_all_in_2nd = np.zeros((num_nodes, n_class)) features_labels_weight_all_in_2nd = np.zeros((num_nodes, n_class)) for source, target, weight in df.values: source = int(source) target = int(target) features_labels_all_in_2nd[source] += labels_in_temp[target] features_labels_weight_all_in_2nd[source] += labels_weight_in_temp[target] features_labels_all_in_2nd_percent = np.delete(features_labels_all_in_2nd, label_most_common_1, axis=1) features_labels_all_in_2nd_percent = normalize_features(features_labels_all_in_2nd_percent) features_out_1st = pd.DataFrame({"node_index": np.arange(num_nodes), "degree_out_1st": degree_out_1st, "weight_out_1st": weight_out_1st}) df_degree_out_1st = pd.merge(left=df, right=features_out_1st, left_on="dst_idx", right_on="node_index", how="left") df_degree_out_1st_info = df_degree_out_1st.groupby('src_idx')['degree_out_1st'].agg({ 'degree_out_1st_sum': np.sum, 'degree_out_1st_mean': np.mean, 'degree_out_1st_min': np.min, 'degree_out_1st_max': np.max, 'degree_out_1st_median': np.median }) df_weight_out_1st_info = df_degree_out_1st.groupby('src_idx')['weight_out_1st'].agg({ 'weight_out_1st_sum': np.sum, 'weight_out_1st_mean': np.mean, 'weight_out_1st_min': np.min, 'weight_out_1st_max': np.max, 'weight_out_1st_median': np.median }) df_degree_out_2nd = pd.DataFrame({"node_index": df_degree_out_1st_info.index, "degree_out_2nd": df_degree_out_1st_info['degree_out_1st_sum']}) df_degree_out_2nd = pd.merge(left=df, right=df_degree_out_2nd, how="left", left_on="dst_idx", right_on="node_index") df_degree_out_2nd_info = df_degree_out_2nd.groupby('src_idx')['degree_out_2nd'].agg({ 'degree_out_2nd_sum': np.sum, 'degree_out_2nd_mean': np.mean, 'degree_out_2nd_min': np.min, 'degree_out_2nd_max': np.max, 'degree_out_2nd_median': np.median }) features_4_index = df_degree_out_1st_info.index features_4_t = np.hstack([df_degree_out_1st_info.values, df_weight_out_1st_info.values, df_degree_out_2nd_info.values]) features_4 = np.zeros((num_nodes, features_4_t.shape[1])) for i, index in enumerate(features_4_index): features_4[index] = features_4_t[i] df_info_out = pd.merge(left=df, right=train_y, how='left', left_on='dst_idx', right_on='node_index') if flag_unlabel == 0: df_info_out.dropna(inplace=True) else: df_info_out.fillna(-1, inplace=True) df_labels_out_count = df_info_out.pivot_table(index=["src_idx"], columns='label', aggfunc='size', fill_value=0) df_labels_out_precent = pd.crosstab(index=df_info_out.src_idx, columns=df_info_out.label, normalize='index') df_labels_out_without_most_common = df_info_out.copy() df_labels_out_without_most_common = df_labels_out_without_most_common[df_labels_out_without_most_common.label != label_most_common_1] df_labels_out_precent_without_most_common = pd.crosstab(index=df_labels_out_without_most_common.src_idx, columns=df_labels_out_without_most_common.label, normalize='index') df_labels_weight_count_out = df_info_out.pivot_table(index=['src_idx'], columns='label', values='weight', aggfunc='sum', fill_value=0) df_labels_weight_percent_out = pd.crosstab(index=df_info_out.src_idx, columns=df_info_out.label, values=df_info_out.weight, aggfunc='sum', normalize='index') df_labels_weight_percent_out_without_most_common = pd.crosstab( index=df_labels_out_without_most_common.src_idx, columns=df_labels_out_without_most_common.label, values=df_labels_out_without_most_common.weight, aggfunc='sum', normalize='index') features_5_index = list(df_labels_out_count.index) features_5_t = np.hstack((df_labels_out_count.values, df_labels_out_precent.values, df_labels_weight_count_out.values, df_labels_weight_percent_out.values)) features_5 = np.zeros((num_nodes, features_5_t.shape[1])) for i, index in enumerate(features_5_index): features_5[index] = features_5_t[i] features_merge = np.concatenate([ features_1, features_2, features_3, features_4, features_5, features_labels_all_in_2nd, features_labels_all_in_2nd_percent ], axis=1) features_merge = np.unique(features_merge, axis=1) features_merge = np.delete(features_merge, np.argwhere(np.sum(features_merge, axis=0)==0), axis=1) return features_merge def dayday_feature_old(data, flag_unlabel=0): t1 = time.time() data = data.copy() x = data['fea_table'].copy() num_nodes = x.shape[0] nodes_all = list(x.index) df = data['edge_file'].copy() max_weight = max(df['edge_weight']) df.rename(columns={'edge_weight': 'weight'}, inplace=True) degree_in_1st = np.zeros(num_nodes) degree_out_1st = np.zeros(num_nodes) weight_in_1st = np.zeros(num_nodes) weight_out_1st = np.zeros(num_nodes) for source, target, weight in df.values: source = int(source) target = int(target) degree_in_1st[target] += 1 degree_out_1st[source] += 1 weight_in_1st[target] += weight weight_out_1st[source] += weight degree_1st_diff = degree_in_1st - degree_out_1st weight_1st_diff = weight_in_1st - weight_out_1st features_1 = np.concatenate([ degree_in_1st.reshape(-1, 1), degree_out_1st.reshape(-1, 1), weight_in_1st.reshape(-1, 1), weight_out_1st.reshape(-1, 1), degree_1st_diff.reshape(-1, 1), weight_1st_diff.reshape(-1, 1) ], axis=1) features_in_1st = pd.DataFrame({"node_index": np.arange(num_nodes), "degree_in_1st": degree_in_1st, "weight_in_1st": weight_in_1st}) df_degree_in_1st =
pd.merge(left=df, right=features_in_1st, left_on="src_idx", right_on="node_index", how="left")
pandas.merge
#!/usr/bin/env python ''' <NAME> October 2018 Scripts for looking at and evaluating input data files for dvmdostem. Generally data has been prepared by M. Lindgren of SNAP for the IEM project and consists of directories of well labled .tif images, with one image for each timestep. This script has (or will have) a variety of routines for summarizing the data and displaying plots that will let us look for problems, missing data, or anomolies. ''' import os import sys import subprocess import glob import pickle import multiprocessing import datetime as dt from osgeo import gdal import numpy as np import pandas as pd import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.ticker as ticker TMP_DATA = 'climatology-intermediate-data' def timeseries_summary_stats_and_plots(base_path, secondary_path_list): ''' ''' # Decades for projected, truncated first fx_periods = [ (2006,2010),(2010,2020),(2020,2030),(2030,2040),(2040,2050), (2050,2060),(2060,2070),(2070,2080),(2080,2090),(2090,2100) ] # Decades for historic, truncated at end hist_periods = [ (1901,1911),(1911,1921),(1921,1931),(1931,1941),(1941,1951), (1951,1961),(1961,1971),(1971,1981),(1981,1991),(1991,2001), (2001,2011),(2011,2015) ] procs = [] for i in secondary_path_list: if 'pr_total' in i.lower(): units = 'mm month-1' elif 'tas_mean' in i.lower(): units = 'degrees C' elif 'vap_mean' in i.lower(): units = 'hPa' elif 'rsds_mean' in i.lower(): units = 'MJ-m2-d1' elif 'hurs_mean' in i.lower(): units = 'percent' else: print("ERROR! hmmm can't find variable in {}".format(i)) if '_cru' in i.lower(): periods = hist_periods elif '_mri' in i.lower(): periods = fx_periods elif '_ncar' in i.lower(): periods = fx_periods secondary_path = i print("MAIN PROCESS! [{}] Starting worker...".format(os.getpid())) p = multiprocessing.Process(target=worker_func, args=(base_path, secondary_path, units, periods)) procs.append(p) p.start() print("Done starting processes. Looping to set join on each process...") for p in procs: p.join() print("DONE! Plots should be saved...") def worker_func(base_path, secondary_path, units, periods): ''' ''' print("worker function! pid:{}".format(os.getpid())) print(" [{}] {}".format(os.getpid(), base_path)) print(" [{}] {}".format(os.getpid(), secondary_path)) print(" [{}] {}".format(os.getpid(), units)) monthlies_figure = get_monthlies_figure( base_path, secondary_path, title='\n'.join((base_path, secondary_path)), units=units, src='fresh', save_intermediates=False, madata=None ) overveiw_figure, period_averages = get_overview_figure( periods, base_path, secondary_path, title='\n'.join((base_path, secondary_path)), units=units, src='fresh', # can be: fresh, pickle, or passed save_intermediates=False, padata=None ) individual_figs, _ = get_period_avg_figures( periods, base_path, secondary_path, title=os.path.dirname(secondary_path), units=units, src='passed', padata=period_averages ) # Create multi-page pdf document import matplotlib.backends.backend_pdf ofname = "climatology_{}.pdf".format(secondary_path.split("/")[0]) print("Building PDF with many images: {}".format(ofname)) pdf = matplotlib.backends.backend_pdf.PdfPages(ofname) pdf.savefig(monthlies_figure) pdf.savefig(overveiw_figure) for f in individual_figs: pdf.savefig(f) pdf.close() print("Done saving pdf: {}".format(ofname)) def create_vrt(filelist, ofname): ''' Creates a GDAL vrt (virtual file format) for a series of input files. Expects the each of the files in the filelist to be a single band GeoTiff. The files will be combined into a single .vrt file with one Band for each of the input files. The single VRT file may then be further manipulated with GDAL (i.e take the average over all the bands). Parameters ---------- filelist : list of strings (paths) to files that will be combined ofname : string for a filename that will be written Returns ------- None Use Cases, Examples ------------------- - Create a monthly or decadal summary file for a set of images representing a timeseries (e.g. tifs that will be pre-processed and turned to netcdf files for dvmdostem runs). ''' basename = os.path.basename(ofname) basename_noext, ext = os.path.splitext(basename) temporary_filelist_file = os.path.join("/tmp/", "filelist-pid-{}-{}.txt".format(os.getpid(), basename_noext)) with open(temporary_filelist_file, 'w') as f: f.write("\n".join(filelist)) result = subprocess.check_call([ 'gdalbuildvrt', '-overwrite', '-separate', ofname, '-input_file_list', temporary_filelist_file ]) os.remove(temporary_filelist_file) def average_over_bands(ifname, bands='all'): ''' Given an input file (`ifname`), this function computes the average over all the bands and returns the result. Assumes the bands are named Band1, Band2, etc. Parameters ---------- ifname : str A multi-band file that can be opened and read with GDAL. Expects that all bands have data and are the same spatial extents. Ignored data less than -9999. bands : str One of 'all', 'first10', or 'first3'. Selects a subset of bands for faster processing for testing and development. Returns ------- avg : numpy masked array Returned array is the same shape as an individual band in the input file, and with each pixel being the average of the pixel values in all of the input file's bands. ''' ds = gdal.Open(ifname) print(" [ DESCRIPTION ]: ", ds.GetDescription()) print(" [ RASTER BAND COUNT ]: ", ds.RasterCount) print(" [ RASTER Y SIZE ]: ", ds.RasterYSize) print(" [ RASTER X SIZE ]: ", ds.RasterXSize) if bands == 'all': band_range = list(range(1, ds.RasterCount+1)) elif bands == 'first10': band_range = list(range(1, 10+1)) elif bands == 'first3': band_range = list(range(1, 3+1)) print(" [ AVERAGE OVER BANDS ]: {}".format(len(band_range))) print(" [ START BAND ]: {}".format(band_range[0])) print(" [ END BAND ]: {}".format(band_range[-1])) # allocate a storage location running_sum = np.ma.masked_less_equal(np.zeros((ds.RasterYSize, ds.RasterXSize)), -9999) for band in band_range: dsb = ds.GetRasterBand(band) if dsb is None: print("huh??") # continue (? as per example here: https://pcjericks.github.io/py-gdalogr-cookbook/raster_layers.html) masked_data = np.ma.masked_less_equal(dsb.ReadAsArray(), -9999) running_sum += masked_data print("adding band: {} band min/max: {}/{} running_sum min/max: {}/{}".format( band, masked_data.min(), masked_data.max(), running_sum.min(), running_sum.max() )) # Compute average avg = running_sum / float(len(band_range)+1) # Close gdal file ds = None return avg def read_period_averages(periods): ''' Reads pickled period average data from the TMP_DATA directory. Expects files to be in a further sub-directory, period-averages, and have names like: "pa-{start}-{end}.pickle". Parameters ---------- periods : list of tuples Each tuple should have values (start, end) that are used to define the period. Returns ------- period_averages : list A list of (masked) numpy arrays that have been un-pickled from the TMP_DATA directory. The pickles are expected to be the period averages built using other routines in this script. ''' print("Reading period average pickles into list...") period_averages = [] for i, (start, end) in enumerate(periods): path = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid()), 'pa-{}-{}.pickle'.format(start, end)) pa = pickle.load(file(path)) period_averages.append(pa) print("Done reading period average pickles into list.") return period_averages def read_monthly_pickles(months=list(range(1,13))): print("reading monthly pickle files for months {}...".format(months)) mavgs = [] for m in months: path = os.path.join( TMP_DATA, 'month-averages-pid{}'.format(os.getpid()), 'month-{:02d}.pickle'.format(m) ) ma = pickle.load(file(path)) mavgs.append(ma) print("Returning monthly averages list..") return mavgs def calculate_period_averages(periods, base_path, secondary_path, save_intermediates=False): '''Given a stack of tif files, one file for each month, this routine will calculate the averages for the supplied periods. Periods are expected to be selections of years, i.e. 1901 to 1911. Parameters ---------- periods : list of tuples each tuple has a start and end year for the period base_path : str path on the file system where files are located secondary_path : str remainder of path on file system where files will be found. The secondary path string is expected to be somethign like this: "ar5_MRI-CGCM3_rcp85_{month:}_{year:}.tif" with the one set of braces for the month one set of braces for the year. This function will fill the braces to match any month and the years specified in the periods tuples save_intermediates : bool when true, period average array will be pickled for each period. Will be saved like so 'climatology/period-averages/pa-{}-{}.pickle' Returns ------- list of 2D masked numpy arrays ''' # Ensure there is a place to put the vrt files path = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid())) try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise # Make the VRTs for the periods for i, (start, end) in enumerate(periods): print("[ period {} ] Making vrt for period {} to {} (range {})".format(i, start, end, list(range(start, end)))) filelist = [] for year in range(start, end): final_secondary_path = secondary_path.format(month="*", year="{:04d}") #print os.path.join(base_path, final_secondary_path.format(year)) single_year_filelist = sorted(glob.glob(os.path.join(base_path, final_secondary_path.format(year)))) #print "Length of single year filelist {}".format(len(single_year_filelist)) filelist += single_year_filelist print("Length of full filelist: {} ".format(len(filelist))) vrtp = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid()), "period-{}-{}.vrt".format(start, end)) create_vrt(filelist, vrtp) # Calculate the period averages from the VRT files period_averages = [] for i, (start, end) in enumerate(periods): # Find the average over the selected range vrtp = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid()), "period-{}-{}.vrt".format(start, end)) pa = average_over_bands(vrtp, bands='all') period_averages.append(pa) if save_intermediates: # Make sure there is a place to put our pickles path = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid())) try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise print("Dumping pickle for period {} to {}".format(start, end)) pickle.dump(pa, file(os.path.join(path, "pa-{}-{}.pickle".format(start, end)), 'wb')) # Clean up any intermediate files. if not save_intermediates: papath = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid())) for f in os.listdir(papath): os.remove(os.path.join(papath, f)) os.rmdir(papath) print("Returning period averages list...") return period_averages def calculate_monthly_averages(months, base_path, secondary_path, save_intermediates=False): ''' ''' # Make sure there is a place to put our pickles and vrt files intermediates_path = os.path.join(TMP_DATA, 'month-averages-pid{}'.format(os.getpid())) try: os.makedirs(intermediates_path) except OSError: if not os.path.isdir(intermediates_path): raise # Build the vrt files print("Creating monthly VRT files...") for im, MONTH in enumerate(months[:]): final_secondary_path = secondary_path.format(month="{:02d}", year="*").format(im+1) filelist = sorted(glob.glob(os.path.join(base_path, final_secondary_path))) if len(filelist) < 1: print("ERROR! No files found in {}".format( os.path.join(base_path, final_secondary_path) )) vrt_path = os.path.join(intermediates_path,"month-{:02d}.vrt".format(im+1)) create_vrt(filelist, vrt_path) print("Computing monthly averages from monthly VRT files...") # make list of expected input vrt paths ivp_list = [os.path.join(intermediates_path,"month-{:02d}.vrt".format(im)) for im in range(1, len(months)+1)] monthly_averages = [average_over_bands(ivp, bands='all') for ivp in ivp_list] if save_intermediates: print("Saving pickles...") for im, ma in enumerate(monthly_averages): pp = os.path.join(intermediates_path, "month-{:02d}.pickle".format(im+1)) pickle.dump(ma, file(pp, 'wb')) print("Done saving pickles...") # Clean up any intermediate files. if not save_intermediates: mapath = os.path.join(TMP_DATA, 'month-averages-pid{}'.format(os.getpid())) for f in os.listdir(mapath): os.remove(os.path.join(mapath, f)) os.rmdir(mapath) print("Returning monthly_averages list...") return monthly_averages def get_monthlies_figure(base_path, secondary_path, title, units, src='fresh', save_intermediates=True, madata=None ): ''' Creates a single figure with 12 subplots, each showing the average for that month across the timeseries. ''' months = ['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'] if src == 'fresh': monthly_averages = calculate_monthly_averages(months, base_path, secondary_path, save_intermediates=save_intermediates) elif src == 'pickle': monthly_averages = read_monthly_pickles(months=list(range(1,13))) elif src == 'passed': monthly_averages = madata else: print("Invalid argument for src! '{}'".format(src)) vmax = np.max([avg.max() for avg in monthly_averages]) vmin = np.min([avg.min() for avg in monthly_averages]) print("vmax: {} vmin: {}".format(vmax, vmin)) print("Creating monthlies figure...") fig, axes = plt.subplots(figsize=(11,8.5), nrows=3, ncols=4, sharex=True, sharey=True) imgs = [] for ax, avg, month in zip(axes.flat, monthly_averages, months): im = ax.imshow(avg, vmin=vmin, vmax=vmax, cmap='gist_ncar') imgs.append(im) ax.set_title(month) cbar = fig.colorbar(imgs[0], ax=axes.ravel().tolist()) cbar.set_label(units) fig.suptitle(title) print("Done creating monthlies figure.") return fig def get_overview_figure(periods, base_path, secondary_path, title='', units='', src='fresh', save_intermediates=True, padata=None): ''' Creates and returns a matplotlib figure that has ?? Parameters ---------- Returns ------- fig : matplotlib figure instance ''' if src == 'fresh': period_averages = calculate_period_averages(periods, base_path, secondary_path, save_intermediates=save_intermediates) elif src == 'pickle': period_averages = read_period_averages(periods) elif src == 'passed': period_averages = padata else: print("Invalid argument for src! '{}'".format(src)) print("Converting to stacked masked array...") pa2 = np.ma.stack(period_averages) vmax = pa2.max() vmin = pa2.min() print("vmax: {} vmin: {}".format(vmax, vmin)) NCOLS = 4 # fixed number of cols, may add more rows NROWS = len(period_averages)/NCOLS if (len(period_averages) % NCOLS) > 0: NROWS += 1 if len(period_averages) < NCOLS: NCOLS = len(period_averages) NROWS = 1 overview_fig, axes = plt.subplots(nrows=NROWS, ncols=NCOLS, sharex=True, sharey=True) overview_fig.set_size_inches((11, 8.5), forward=True) imgs = [] # in case we need to manipulate the images all at once for ax, avg, period in zip(axes.flat, period_averages, periods): print("plotting image for period:", period) # Setting vmax and vmin normalized the colorbars across all images im = ax.imshow(avg, vmin=vmin, vmax=vmax, cmap='gist_ncar') ax.set_title('{} to {}'.format(period[0], period[1])) imgs.append(im) # set a colorbar on the first axes cbar = overview_fig.colorbar(imgs[0], ax=axes.ravel().tolist()) cbar.set_label(units) overview_fig.suptitle(title) return overview_fig, period_averages def get_period_avg_figures(periods, base_path, secondary_path, title='', units='', src='fresh', save_intermediates=True, padata=None): ''' Parameters ---------- Returns ------- ''' if src == 'fresh': period_averages = calculate_period_averages(periods, base_path, secondary_path, save_intermediates=save_intermediates) elif src == 'pickle': period_averages = read_period_averages(periods) elif src == 'passed': period_averages = padata else: print("Invalid argument for src! '{}'".format(src)) print("Converting to stacked masked array...") pa2 = np.ma.stack(period_averages) vmax = pa2.max() vmin = pa2.min() print("vmax: {} vmin: {}".format(vmax, vmin)) ind_figures = [] for i, ((start,end), periodavg) in enumerate(zip(periods, pa2)): fig = plt.figure() fig.suptitle(title) #fontsize=8 im = plt.imshow(periodavg, vmin=vmin, vmax=vmax, cmap='gist_ncar') ax = fig.axes[0] ax.set_title('Average, {} to {}'.format(start, end)) cbar = plt.colorbar() cbar.set_label(units) ind_figures.append(fig) return ind_figures, padata def worker_func2(f): if f == 'file3': time.sleep(1) if f == 'file7': time.sleep(5) print("will open, read, average {}".format(f)) return f def worker_func3(in_file_path): ''' ''' # Deduce month and year from file name bname = os.path.basename(in_file_path) n, ext = os.path.splitext(bname) parts = n.split('_') month, year = [int(p) for p in parts[-2:]] date = dt.date(year=year, month=month, day=1) # Open the file, get some stats ds = gdal.Open(in_file_path) ds_array = ds.ReadAsArray() ds_m = np.ma.masked_less_equal(ds_array, -9999) data_dict = dict( fname=bname, date=date, statewide_mean=ds_m.mean(), statewide_min=ds_m.min(), statewide_max=ds_m.max(), statewide_std=ds_m.std() ) return data_dict def generate_spatial_summary_stats(base_path, secondary_path): ''' ''' # This produces a bunch of csv files with statewide averages for sec_path in secondary_path_list[0:]: files = sorted(glob.glob(os.path.join(base_path, sec_path.format(month='*', year='*')))) p = multiprocessing.Pool() results = p.map(worker_func3, files[0:]) p.close() p.join() s_results = sorted(results, key=lambda k: k['date']) stats_path = "SPATIAL_SUMMARY_STATS_{}.csv".format(sec_path.split('/')[0]) import pandas as pd df = pd.DataFrame(s_results) df.to_csv(stats_path) def plot_timeseries_of_spatial_summary_stats(): ''' ''' # Build this automatically: # - look for SPATIAL_SUMMARY_STATS_* ss_file_list = [ 'SPATIAL_SUMMARY_STATS_hurs_mean_pct_ar5_MRI-CGCM3_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_hurs_mean_pct_ar5_NCAR-CCSM4_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_hurs_mean_pct_iem_CRU-TS40_historical_1901_2015_fix.csv', 'SPATIAL_SUMMARY_STATS_pr_total_mm_ar5_MRI-CGCM3_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_pr_total_mm_ar5_NCAR-CCSM4_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_pr_total_mm_iem_cru_TS40_1901_2015.csv', 'SPATIAL_SUMMARY_STATS_rsds_mean_MJ-m2-d1_ar5_MRI-CGCM3_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_rsds_mean_MJ-m2-d1_ar5_NCAR-CCSM4_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_rsds_mean_MJ-m2-d1_iem_CRU-TS40_historical_1901_2015_fix.csv', 'SPATIAL_SUMMARY_STATS_tas_mean_C_ar5_MRI-CGCM3_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_tas_mean_C_ar5_NCAR-CCSM4_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_tas_mean_C_iem_cru_TS40_1901_2015.csv', 'SPATIAL_SUMMARY_STATS_vap_mean_hPa_ar5_MRI-CGCM3_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_vap_mean_hPa_ar5_NCAR-CCSM4_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_vap_mean_hPa_iem_CRU-TS40_historical_1901_2015_fix.csv', ] # Create multi-page pdf document import matplotlib.backends.backend_pdf ofname = "climatology_statewide_averages.pdf".format() print("Saving PDF: {}".format(ofname)) pdf = matplotlib.backends.backend_pdf.PdfPages(ofname) var_list = ['tas_mean','pr_total','rsds_mean','vap_mean','hurs_mean'] unit_list = ['celsius', 'mm month-1', 'MJ-m2-d1','hPa', 'percent'] for var, units in zip(var_list, unit_list): # Figure out the right files to work on var_files = [x for x in ss_file_list if var in x.lower()] print(var_files) print() h_file = [x for x in var_files if 'cru' in x.lower()] pmri_file = [x for x in var_files if 'mri' in x.lower()] pncar_file = [x for x in var_files if 'ncar' in x.lower()] # Filtering above should result in single item lists, unpack for convenience. h_file = h_file[0] pmri_file = pmri_file[0] pncar_file = pncar_file[0] print("var: ", var) print("hfile: ", h_file) print("pmri_file: ", pmri_file) print("pncar_file: ", pncar_file) print() # Read data into DataFrames hdf = pd.read_csv( h_file ) hdf.set_index( pd.to_datetime(hdf['date']), inplace=True ) pmri_df = pd.read_csv( pmri_file ) pmri_df.set_index( pd.to_datetime(pmri_df['date']), inplace=True ) pncar_df = pd.read_csv( pncar_file ) pncar_df.set_index(
pd.to_datetime(pncar_df['date'])
pandas.to_datetime
import os # os.environ["OMP_NUM_THREADS"] = "16" import logging logging.basicConfig(filename=snakemake.log[0], level=logging.INFO) import pandas as pd import numpy as np # seak imports from seak.data_loaders import intersect_ids, EnsemblVEPLoader, VariantLoaderSnpReader, CovariatesLoaderCSV from seak.scoretest import ScoretestNoK from seak.lrt import LRTnoK, pv_chi2mixture, fit_chi2mixture from pysnptools.snpreader import Bed from util.association import BurdenLoaderHDF5 from util import Timer class GotNone(Exception): pass # set up the covariatesloader covariatesloader = CovariatesLoaderCSV(snakemake.params.phenotype, snakemake.input.covariates_tsv, snakemake.params.covariate_column_names, sep='\t', path_to_phenotypes=snakemake.input.phenotypes_tsv) # initialize the null models Y, X = covariatesloader.get_one_hot_covariates_and_phenotype('noK') null_model_score = ScoretestNoK(Y, X) null_model_lrt = LRTnoK(X, Y) # set up function to filter variants: def maf_filter(mac_report): # load the MAC report, keep only observed variants with MAF below threshold mac_report = pd.read_csv(mac_report, sep='\t', usecols=['SNP', 'MAF', 'Minor', 'alt_greater_ref']) if snakemake.params.filter_highconfidence: vids = mac_report.SNP[(mac_report.MAF < snakemake.params.max_maf) & (mac_report.Minor > 0) & ~(mac_report.alt_greater_ref.astype(bool)) & (mac_report.hiconf_reg.astype(bool))] else: vids = mac_report.SNP[(mac_report.MAF < snakemake.params.max_maf) & (mac_report.Minor > 0) & ~(mac_report.alt_greater_ref.astype(bool))] # this has already been done in filter_variants.py # load the variant annotation, keep only variants in high-confidece regions # anno = pd.read_csv(anno_tsv, sep='\t', usecols=['Name', 'hiconf_reg']) # vids_highconf = anno.Name[anno.hiconf_reg.astype(bool).values] # vids = np.intersect1d(vids, vids_highconf) return mac_report.set_index('SNP').loc[vids] # genotype path, vep-path: assert len(snakemake.params.ids) == len \ (snakemake.input.bed), 'Error: length of chromosome IDs does not match length of genotype files' geno_vep = zip(snakemake.params.ids, snakemake.input.bed, snakemake.input.vep_tsv, snakemake.input.ensembl_vep_tsv, snakemake.input.mac_report, snakemake.input.h5_lof, snakemake.input.iid_lof, snakemake.input.gid_lof) stats = [] simulations = [] i_gene = 0 # enter the chromosome loop: timer = Timer() for i, (chromosome, bed, vep_tsv, ensembl_vep_tsv, mac_report, h5_lof, iid_lof, gid_lof) in enumerate(geno_vep): if snakemake.params.debug: # skip most chromosomes if we are debugging... if chromosome not in ['chr9','chr16','chr21']: continue # set up the ensembl vep loader for the chromosome spliceaidf = pd.read_csv(vep_tsv, sep='\t', usecols=['name', 'chrom', 'end', 'gene', 'max_effect'], index_col='name') # get set of variants for the chromosome: mac_report = maf_filter(mac_report) filter_vids = mac_report.index.values # filter by MAF keep = intersect_ids(filter_vids, spliceaidf.index.values) spliceaidf = spliceaidf.loc[keep] spliceaidf.reset_index(inplace=True) # filter by impact: spliceaidf = spliceaidf[spliceaidf.max_effect >= snakemake.params.min_impact] # set up the regions to loop over for the chromosome regions = pd.read_csv(snakemake.input.regions_bed, sep='\t', header=None, usecols=[0 ,1 ,2 ,3], dtype={0 :str, 1: np.int32, 2 :np.int32, 3 :str}) regions.columns = ['chrom', 'start', 'end', 'name'] # discard all genes for which we don't have annotations gene_ids = regions.name.str.split('_', expand=True) # table with two columns, ensembl-id and gene-name regions['gene'] = gene_ids[1] # this is the gene name regions['ensembl_id'] = gene_ids[0] regions.set_index('gene', inplace=True) genes = intersect_ids(np.unique(regions.index.values), np.unique(spliceaidf.gene)) # intersection of gene names regions = regions.loc[genes].reset_index() # subsetting regions = regions.sort_values(['chrom' ,'start' ,'end'])[['chrom' ,'start' ,'end' ,'name' ,'gene','ensembl_id']] # check if the variants are protein LOF variants, load the protein LOF variants: ensemblvepdf = pd.read_csv(ensembl_vep_tsv, sep='\t', usecols=['Uploaded_variation', 'Gene']) # this column will contain the gene names: genes = intersect_ids(np.unique(ensemblvepdf.Gene.values), regions.ensembl_id) # intersection of ensembl gene ids ensemblvepdf = ensemblvepdf.set_index('Gene').loc[genes].reset_index() ensemblvepdf['gene'] = gene_ids.set_index(0).loc[ensemblvepdf.Gene.values].values # set up the merge ensemblvepdf.drop(columns=['Gene'], inplace=True) # get rid of the ensembl ids, will use gene names instead ensemblvepdf.rename(columns={'Uploaded_variation':'name'}, inplace=True) ensemblvepdf['is_plof'] = 1. ensemblvepdf = ensemblvepdf[~ensemblvepdf.duplicated()] # if multiple ensembl gene ids map to the same gene names, this prevents a crash. # we add a column to the dataframe indicating whether the variant is already annotated as protein loss of function by the ensembl variant effect predictor spliceaidf = pd.merge(spliceaidf, ensemblvepdf, on=['name','gene'], how='left', validate='one_to_one') spliceaidf['is_plof'] = spliceaidf['is_plof'].fillna(0.).astype(bool) # initialize the loader # Note: we use "end" here because the start + 1 = end, and we need 1-based coordiantes (this would break if we had indels) eveploader = EnsemblVEPLoader(spliceaidf['name'], spliceaidf['chrom'].astype('str') + ':' + spliceaidf['end'].astype('str'), spliceaidf['gene'], data=spliceaidf[['max_effect','is_plof']].values) # set up the variant loader (splice variants) for the chromosome plinkloader = VariantLoaderSnpReader(Bed(bed, count_A1=True, num_threads=4)) plinkloader.update_variants(eveploader.get_vids()) plinkloader.update_individuals(covariatesloader.get_iids()) # set up the protein LOF burden loader bloader_lof = BurdenLoaderHDF5(h5_lof, iid_lof, gid_lof) bloader_lof.update_individuals(covariatesloader.get_iids()) # set up the splice genotype + vep loading function def get_splice(interval): try: V1 = eveploader.anno_by_interval(interval, gene=interval['name'].split('_')[1]) except KeyError: raise GotNone if V1.index.empty: raise GotNone vids = V1.index.get_level_values('vid') V1 = V1.droplevel(['gene']) temp_genotypes, temp_vids = plinkloader.genotypes_by_id(vids, return_pos=False) temp_genotypes -= np.nanmean(temp_genotypes, axis=0) G1 = np.ma.masked_invalid(temp_genotypes).filled(0.) ncarrier = np.sum(G1 > 0.5, axis=0) cummac = mac_report.loc[vids].Minor # spliceAI max score weights = V1[0].values.astype(np.float64) is_plof = V1[1].values.astype(bool) # "standardized" positions -> codon start positions # pos = V1[0].values.astype(np.int32) return G1, vids, weights, ncarrier, cummac, is_plof # set up the protein-LOF loading function def get_plof(interval): try: G2 = bloader_lof.genotypes_by_id(interval['name']).astype(np.float) except KeyError: G2 = None return G2 # set up the test-function for a single gene def test_gene(interval, seed): pval_dict = {} sim_dict = {} pval_dict['gene'] = interval['name'] sim_dict['gene'] = interval['name'] def call_score(GV, name): pv = null_model_score.pv_alt_model(GV) if pv < 0.: logging.warning('negative value encountered in p-value computation for gene {}, p-value: {}, using saddle instead.'.format(interval['name'], pv)) pv = null_model_score.pv_alt_model(GV, method='saddle') pval_dict['pv_score_' + name] = pv def call_lrt(GV, name): lik = null_model_lrt.altmodel(GV) sim = null_model_lrt.pv_sim(100, seed=seed) pval_dict['lrtstat_' + name] = lik['stat'] pval_dict['alteqnull_' + name] = float(lik['alteqnull']) sim_dict[name] = sim['res'] # load splice variants G1, vids, weights, ncarrier, cummac, is_plof = get_splice(interval) # keep indicates which variants are NOT "protein LOF" variants, i.e. variants already identified by the ensembl VEP keep = ~is_plof # do a score burden test (max weighted), this is different than the baseline! G1_burden = np.max(np.where(G1 > 0.5, np.sqrt(weights), 0.), axis=1, keepdims=True) call_score(G1_burden, 'linwb') # linear weighted kernel G1 = G1.dot(np.diag(np.sqrt(weights), k=0)) # do a score test (local collapsing) call_score(G1, 'linw') # if gene is nominally significant: if (pval_dict['pv_score_linwb'] < snakemake.params.sclrt_nominal_significance_cutoff) | (pval_dict['pv_score_linw'] < snakemake.params.sclrt_nominal_significance_cutoff): # do lrt tests call_lrt(G1_burden, 'linwb') call_lrt(G1, 'linw') # load plof burden G2 = get_plof(interval) if G2 is not None: if np.any(keep): # merged (single variable) G1_burden_mrg = np.maximum(G2, G1_burden) call_score(G1_burden_mrg, 'linwb_mrgLOF') call_lrt(G1_burden_mrg, 'linwb_mrgLOF') # concatenated ( >= 2 variables) # we separate out the ones that are already part of the protein LOF variants! G1 = np.concatenate([G1[:,keep], G2], axis=1) call_score(G1, 'linw_cLOF') call_lrt(G1, 'linw_cLOF') else: logging.info('All Splice-AI variants for gene {} where already identified by the Ensembl variant effect predictor'.format(interval['name'])) pval_dict['nCarrier'] = ncarrier.sum() pval_dict['cumMAC'] = cummac.sum() pval_dict['n_snp'] = len(vids) # we add some extra metadata columns pval_dict['n_snp_notLOF'] = np.sum(keep) # print(keep) # print(len(keep)) pval_dict['nCarrier_notLOF'] = ncarrier[keep].sum() pval_dict['cumMAC_notLOF'] = cummac[keep].sum() # 0.5 is the recommended spliceAI cutoff pval_dict['n_greater_05'] = np.sum(weights >= 0.5) pval_dict['n_greater_05_notLOF'] = np.sum(weights[keep] >= 0.5) # sanity check assert pval_dict['cumMAC'] >= pval_dict['nCarrier'], 'Error: something is broken.' return pval_dict, sim_dict logging.info('loaders for chromosome {} initialized in {:.1f} seconds.'.format(chromosome, timer.check())) # run tests for all genes on the chromosome for _, region in regions.iterrows(): try: gene_stats, sims = test_gene(region, i_gene) except GotNone: continue stats.append(gene_stats) simulations.append(sims) i_gene += 1 if (i_gene % 100) == 0: logging.info('tested {} genes...'.format(i_gene)) # print(i_gene) logging.info('all tests for chromosome {} performed in {:.2f} minutes.'.format(chromosome, timer.check( ) /60.)) logging.info('genes tested so far: {}'.format(i_gene + 1)) # when all chromosomes are done: # generate results table: stats =
pd.DataFrame.from_dict(stats)
pandas.DataFrame.from_dict
# License: BSD 3 clause """ In this example, we simulate a unidimensional (ground truth) MHP with a multimodal Gaussian kernel with three modes. We estimate the parameters of this MHP using ASLSD, with a SBF Gaussian model with ten modes. """ import os import sys # add the path of packages to system path nb_dir = os.path.split(os.getcwd())[0] if nb_dir not in sys.path: sys.path.append(nb_dir) import matplotlib.pyplot as plt import numpy as np import pandas as pd from aslsd.basis_kernels.basis_kernel_gaussian import GaussianKernel from aslsd.kernels.kernel import KernelModel from aslsd.models.mhp import MHP # Define a ground truth MHP true_kernel = KernelModel([GaussianKernel(), GaussianKernel(), GaussianKernel()]) true_mhp = MHP([[true_kernel]]) # Define true parameter values true_mu = np.array([0.01]) true_omega = np.array([0.2, 0.3, 0.4]) true_beta = np.array([0.4, 0.6, 0.8]) true_delta = np.array([1., 3., 8.]) true_ker_param = [[np.zeros(9)]] for ix in range(3): true_ker_param[0][0][3*ix] = true_omega[ix] true_ker_param[0][0][3*ix+1] = true_beta[ix] true_ker_param[0][0][3*ix+2] = true_delta[ix] # Simulate a path of the ground truth T_f = 10**7 list_times = true_mhp.simulate(T_f, mu=true_mu, kernel_param=true_ker_param, seed=1234, verbose=True) # Visualize simulated data inter_arrivals =
pd.Series(list_times[0][1:]-list_times[0][:-1])
pandas.Series
import pandas as pd import os # this file contains variables and names given in turkish words # blood transfusions related data writer = pd.ExcelWriter('tümü.xlsx', engine='xlsxwriter') writer2 = pd.ExcelWriter('ozet.xlsx', engine='xlsxwriter') writer3 = pd.ExcelWriter('hasta başı toplam transfüzyon sayısı.xlsx', engine='xlsxwriter') file_list = [] for file in os.listdir("veriler"): if file.endswith(".xls") or file.endswith(".xlsx"): file_list.append(file) continue else: continue print(file_list) hast_list = [s.strip('.xls') for s in file_list] print(hast_list) pivot = pd.DataFrame(columns=['HGB > 10', "Kanıtsız ES Sayı", "Son 24s Kanıtsız ES", 'Toplam ES Sayısı', "PLT > 100.000", "Kanıtsız PLT Sayı", "Son 24s Kanıtsız PLT", "Toplam PLT Trans.", "INR < 1,5", "Kanıtsız TDP Sayı", "Son 24s Kanıtsız TDP", "Top TDP Trans.", "Toplam End. Dışı", "Toplam Kanıtsız", " Toplam Son 24s Kanıtsız", "Toplam Transfüzyon", "Toplam Hasta Sayısı"], index=hast_list) for adi in hast_list: print(f'Şu an {adi} hastanesi işlenmekte...') kan_ham_tablo = pd.read_excel("veriler/" + adi + ".xlsx", dtype='object') kan_ham_tablo['Çıkış Tarihi'] = pd.DatetimeIndex(kan_ham_tablo['Çıkış Tarihi'], dayfirst=True) print(kan_ham_tablo.info()) hasta_sayisi = kan_ham_tablo['Dosya No'].nunique() toplam_transfuzyon = kan_ham_tablo['Dosya No'].count() kan_ham_tablo['HGB'] = kan_ham_tablo["Geçmiş"].str.extract(r'(HGB = \d+\.\d+|HGB = \d+)', expand=False) kan_ham_tablo['HGB Değer'] = kan_ham_tablo["HGB"].str.extract(r'(\d+\.\d+|\d+)', expand=False) kan_ham_tablo['PLT'] = kan_ham_tablo["Geçmiş"].str.extract(r'(PLT = \d+\.\d+|PLT = \d+)', expand=False) kan_ham_tablo['PLT Değer'] = kan_ham_tablo["PLT"].str.extract(r'(\d+\.\d+|\d+)', expand=False) kan_ham_tablo['aPTT'] = kan_ham_tablo["Geçmiş"].str.extract(r'(aPTT = \d+\.\d+|aPTT = \d+)', expand=False) kan_ham_tablo['aPTT Değer'] = kan_ham_tablo["aPTT"].str.extract(r'(\d+\.\d+|\d+)', expand=False) kan_ham_tablo['PT'] = kan_ham_tablo["Geçmiş"].str.extract(r'(PT = \d+\.\d+|PT = \d+)', expand=False) kan_ham_tablo['PT Değer'] = kan_ham_tablo["PT"].str.extract(r'(\d+\.\d+|\d+)', expand=False) kan_ham_tablo['INR'] = kan_ham_tablo["Geçmiş"].str.extract(r'(INR = \d+\.\d+|INR = \d+)', expand=False) kan_ham_tablo['INR Değer'] = kan_ham_tablo["INR"].str.extract(r'(\d+\.\d+|\d+)', expand=False) kan_ham_tablo['HGB Değer'] = kan_ham_tablo['HGB Değer'].astype(float) kan_ham_tablo['PLT Değer'] = kan_ham_tablo['PLT Değer'].astype(float) kan_ham_tablo['aPTT Değer'] = kan_ham_tablo['aPTT Değer'].astype(float) kan_ham_tablo['PT Değer'] = kan_ham_tablo['PT Değer'].astype(float) kan_ham_tablo['INR Değer'] = kan_ham_tablo['INR Değer'].astype(float) kayit_icin = kan_ham_tablo.drop(["HGB", "PLT", "aPTT", "PT", "INR"], 1) kayit_icin.to_excel(writer, sheet_name=adi) pivot_hasta = pd.pivot_table(kayit_icin, values='Kan Ürünü Cinsi', index='Dosya No', aggfunc='count') pivot_hasta = pivot_hasta.sort_values(by='Kan Ürünü Cinsi', ascending=False) pivot_hasta.to_excel(writer3, sheet_name=adi) kayit_icin['gecmis_tarih'] = kayit_icin["Geçmiş"].str.extract(r'(\d+\.\d+.\d+ \d+:\d+)', expand=False) kayit_icin['gecmis_tarih'] = pd.DatetimeIndex(kayit_icin['gecmis_tarih'], dayfirst=True) kayit_icin['tarih_fark'] = kayit_icin['Çıkış Tarihi'] - kayit_icin['gecmis_tarih'] hgb_trans_toplam = kayit_icin[kayit_icin['Kan Ürünü Cinsi'].str.contains('ritrosit')] hgb_end_disi = hgb_trans_toplam[hgb_trans_toplam['HGB Değer'] > 10] hgb_end_disi = len(hgb_end_disi) hgb_no_kanit = hgb_trans_toplam[~hgb_trans_toplam["Geçmiş"].str.contains('HGB', na=False)] hgb_no_kanit = len(hgb_no_kanit) hgb_dolu_gecmis = hgb_trans_toplam[hgb_trans_toplam["Geçmiş"].str.contains('HGB', na=False)] hgb_date_diff = hgb_dolu_gecmis[hgb_dolu_gecmis['tarih_fark'] > pd.Timedelta(days=1)] print(hgb_date_diff) hgb_no_kanit_24 = len(hgb_date_diff) hgb_trans_toplam = len(hgb_trans_toplam) if hgb_trans_toplam == 0: hgb_oran = 0 else: hgb_oran = hgb_end_disi / hgb_trans_toplam plt_trans_toplam = kayit_icin[kayit_icin['Kan Ürünü Cinsi'].str.contains('rombosit|PLT')] plt_end_disi = plt_trans_toplam[plt_trans_toplam['PLT Değer'] > 100] plt_end_disi = len(plt_end_disi) plt_no_kanit = plt_trans_toplam[~plt_trans_toplam["Geçmiş"].str.contains('PLT', na=False)] plt_no_kanit = len(plt_no_kanit) plt_dolu_gecmis = plt_trans_toplam[plt_trans_toplam["Geçmiş"].str.contains('PLT', na=False)] plt_date_diff = plt_dolu_gecmis[plt_dolu_gecmis['tarih_fark'] > pd.Timedelta(days=1)] print(plt_date_diff) plt_no_kanit_24 = len(plt_date_diff) plt_trans_toplam = len(plt_trans_toplam) if plt_trans_toplam == 0: plt_oran = 0 else: plt_oran = plt_end_disi / plt_trans_toplam inr_trans_toplam = kayit_icin[kayit_icin['Kan Ürünü Cinsi'].str.contains('lazma')] inr_end_disi = inr_trans_toplam[inr_trans_toplam['INR Değer'] < 1.5] inr_end_disi = len(inr_end_disi) inr_no_kanit = inr_trans_toplam[~inr_trans_toplam["Geçmiş"].str.contains('INR', na=False)] inr_no_kanit = len(inr_no_kanit) inr_dolu_gecmis = inr_trans_toplam[inr_trans_toplam["Geçmiş"].str.contains('INR', na=False)] inr_date_diff = inr_dolu_gecmis[inr_dolu_gecmis['tarih_fark'] >
pd.Timedelta(days=1)
pandas.Timedelta
import os import numpy as np from itertools import product from collections import defaultdict import pandas as pd import json from nlafl import common class HeatMapValue: IsSet = False def set_dir_version(dir,version): HeatMapValue.dir = dir HeatMapValue.version = version HeatMapValue.IsSet = True def __init__(self,num_pop_client,remove_pop_client,poison_count,trial_ind,file_path,upsample_count=0): if not HeatMapValue.IsSet: raise ValueError("First set directory and version") self.num_pop_client = num_pop_client self.remove_pop_client = remove_pop_client self.poison_count = poison_count self.trial_ind = trial_ind self.file_path = file_path self.upsample_count = upsample_count self.readValues() def readValues(self,): fullPath = os.path.expanduser(os.path.join(HeatMapValue.dir,HeatMapValue.version,self.file_path)) try: data = np.load(fullPath,allow_pickle=True)[()] self.targetAcc_50 = np.mean([data["pop_accs"][49+i][1] for i in range(5)]) self.targetAcc_100 = np.mean([data["pop_accs"][99+i][1] for i in range(5)]) try: self.targetAcc_200 = np.mean([data["pop_accs"][199+i][1] for i in range(5)]) except: self.targetAcc_200 = np.nan except FileNotFoundError : # print(fullPath) # print('notFound') self.targetAcc_50=np.nan self.targetAcc_100=np.nan self.targetAcc_200=np.nan def averageByTrialIndex(list_heatvalue): acc50 = defaultdict(list) acc100 = defaultdict(list) acc200 = defaultdict(list) for value in list_heatvalue: acc50[(value.num_pop_client,value.remove_pop_client,value.poison_count,value.upsample_count)].append(value.targetAcc_50) acc100[(value.num_pop_client,value.remove_pop_client,value.poison_count,value.upsample_count)].append(value.targetAcc_100) acc200[(value.num_pop_client,value.remove_pop_client,value.poison_count,value.upsample_count)].append(value.targetAcc_200) # acc100= {k:np.mean(v) for k,v in acc100} # acc200= {k:np.mean(v) for k,v in acc200} return acc50,acc100,acc200 def getDf(dir,version,mode,agg): dir = os.path.join(dir,version) HeatMapValue.set_dir_version(dir,version) poisonRatios = [0,3,7] removePopClientRatios = [0,3,7] trialInds = [0,1,2,4,42] numPopClients = [15] if mode == 'c1': cmd = os.path.join(dir , "results_upsample_multitarget_0_{numPopClient}_0_{remove_pop_client}_15_{poison_count}_{trialInd}_{agg}_10.0_-1_0_each_each.npy") elif mode == 'c2': cmd = os.path.join(dir , "results_upsample_multitarget_0_{numPopClient}_0_{remove_pop_client}_30_{poison_count}_{trialInd}_{agg}_10.0_-1_0_agg_each.npy" ) elif mode == 'pk': cmd = os.path.join(dir , "results_upsample_multitarget_0_{numPopClient}_{remove_pop_client}_0_-1_{poison_count}_{trialInd}_{agg}_10.0_-1_0_each_each.npy") filesnames = list() for numPopClient in numPopClients: for poisonRatio, removePopClientRatio,trial_ind in product(poisonRatios,removePopClientRatios,trialInds): poisonCount = poisonRatio removePopClientCount = removePopClientRatio filePath = cmd.format(numPopClient=numPopClient,trialInd= trial_ind,remove_pop_client =removePopClientCount, poison_count= poisonCount,agg=agg ) filesnames.append(HeatMapValue(numPopClient,removePopClientCount,poisonCount,trial_ind,filePath)) acc50,acc100,acc200 = HeatMapValue.averageByTrialIndex(filesnames) df = defaultdict(list) for k,v in acc100.items(): num_pop_client,remove_pop_client,poison_count,upsample_count = k acc100_ = removeNanAndAverage(v) acc50_ = removeNanAndAverage(acc50[k]) acc200_ = removeNanAndAverageSilent(acc200[k]) # df["num_pop_client"].append(num_pop_client) df["remove_pop_client"].append(remove_pop_client) df["poison_count"].append(poison_count) df["acc50"].append(acc50_ ) df["acc100"].append(acc100_) df["acc200"].append(acc200_ ) df =
pd.DataFrame(df)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Bootstrap - Top Gun Stochastic Modelling Class Created on Tue Sep 8 08:17:30 2020 @author: <NAME> """ # %% IMPORTs CELL # Default Imports import numpy as np import pandas as pd import scipy.linalg as LA # Plotly for charting import plotly.express as px import plotly.graph_objs as go import plotly.io as pio # %% CLASS MODULE class Bootstrap(object): """ Portfolio Stochastic Modelling Class Modules Currently offers empirical ONLY stochastic modelling for individual ports as well as across a range of ports (called frontiers) as well as a range of charts, analysis and markdown-report outputs (you need to go run the markdown elsewhere). INPUTS: wgts - dataframe where indices are asset classes & cols are portfolios mu - vector of expected returns (as pd.Series) vol - vector of expected volatilies (as pd.Series) hist - dataframe of historic returns (NOT index px/levels) cor - dataframe of correlation matrix nsims - number of Monte Carlo simulations psims - no of periods to run simulation over (default = 260w) f - annualisation factor (default = 52 for weekly returns data) MAIN FUNCTIONS: empirical() - runs emperical sims for 1 vector of weights sim_stats() - calc descriptive stats for 1 simulation output port_stats() - rtn, vol & marginal-contribution given inputs emperical_frontier() - runs empirical analysis across all ports in wgts will do stochastic sims, sim_stats, port_stats & return a dictionary with all the outputs (stored as self.results) correl_rmt_filtered() - allows us to build RMT filtered correl matrix for other correl work look at correls module CHARTING FUNCTIONS: plot_collection_all(): runs default plots for frontier & ports plot_collection_frontier(): runs plots to analyse across portfolios plot_collection_port(): runs plots to analyse timeseries of simulations NB/ for details of individual charts go look below, or run collection then load each plotly figures from the collection to see what it is REPORTING: In all cases we produce a templated markdown script with Plotly plots already embedded as HTML - these can be fed to report_writer or anything which turns markdown to a static html/pdf. markdown_master(): combines frontier report with all ports; options avail markdown_frontier_report(): frontier analysis markdown_port_report(): individual portfolio report DEVELOPMENT: - check correlation matrix PSD in class properties Author: <NAME> """ ## Initialise class def __init__(self, wgts, mu, vol, # these aren't optional alpha=None, te=None, tgts=None, # optional hist=None, cor=None, # Need something nsims=1000, f=52, psims=260, # standard params **kwargs): ### ORDER OF INITIALISATION IS IMPORTANT ### ### Non-optional class inputs self.wgts = wgts self.mu = mu # [has @property] self.vol = vol # [has @property] # From required inputs we set these self.universe = mu.index # list of asset classes [has @property] self.port_names = wgts.columns # useful to have names of portfolios ### Optional class inputs # alpha - set to vector of zeros of None passed [has @property] if alpha is None: alpha = pd.Series(np.zeros(len(mu)), index=mu.index, name='alpha') self.alpha = alpha # tracking error - set to vector of zeros if None passed [has @property] if te is None: te = pd.Series(np.zeros(len(mu)), index=mu.index, name='te') self.te = te # tgts set to vector of of zeros of length the numper of portfolios if tgts is None: tgts = pd.Series(np.zeros(len(wgts.columns)), index=wgts.columns, name='tgts') self.tgts = tgts # Historical Timeseries Data & Correlation # ORDER IMPORTANT HERE # if hist provided set a default correlation matrix as RMT # if cor also provided we then override the default # this is a little inefficient, but meh... hardly matters if hist is not None: self.cor = self.correl_rmt_filtered(hist.corr()) self.hist = hist # Override default correl (from hist) if cor specifically passed if cor is not None: self.cor = cor # check symmetrical in properties ### STANDARD SETTINGS self.nsims = nsims # number of simulations self.f = f # annualisation factor self.psims = psims # no of periods in MC simulation self.plots = dict() # initisalise dict for plotly plots (useful later) ## Update Plotly template colourmap = ['grey', 'teal', 'purple', 'black', 'deeppink', 'skyblue', 'lime', 'green','darkorange', 'gold', 'navy', 'darkred',] fig = go.Figure(layout=dict( font={'family':'Garamond', 'size':14}, plot_bgcolor= 'white', colorway=colourmap, showlegend=True, legend={'orientation':'v'}, margin = {'l':75, 'r':50, 'b':25, 't':50}, xaxis= {'anchor': 'y1', 'title': '', 'hoverformat':'.1%', 'tickformat':'.0%', 'showline':True, 'linecolor': 'gray', 'zeroline':True, 'zerolinewidth':1 , 'zerolinecolor':'whitesmoke', 'showgrid': True, 'gridcolor': 'whitesmoke', }, yaxis= {'anchor': 'x1', 'title': '', 'hoverformat':'.1%', 'tickformat':'.0%', 'showline':True, 'linecolor':'gray', 'zeroline':True, 'zerolinewidth':1 , 'zerolinecolor':'whitesmoke', 'showgrid': True, 'gridcolor': 'whitesmoke' }, updatemenus= [dict(type='buttons', active=-1, showactive = True, direction='down', y=0.5, x=1.1, pad = {'l':0, 'r':0, 't':0, 'b':0}, buttons=[])], annotations=[{'text': 'Source: STANLIB Multi-Strategy', 'xref': 'paper', 'x': 0.5, 'ax': 0, 'yref': 'paper', 'y': 0.5, 'ay': 0, 'align':'right'}],)) # Save template pio.templates['multi_strat'] = pio.to_templated(fig).layout.template return # %% CLASS PROPERTIES # Expected Returns (mu) - Ideally pd.Series but MUST be a (1xN) vector @property def mu(self): return self.__mu @mu.getter def mu(self): return self.__mu @mu.setter def mu(self, x): if isinstance(x, pd.Series): x.name = 'mu' elif len(np.shape(x)) != 1: raise ValueError('mu input is non-vector: {} given'.format(x)) self.__mu = x # Alpha (alpha) - Ideally pd.Series but MUST be a (1xN) vector @property def alpha(self): return self.__alpha @alpha.getter def alpha(self): return self.__alpha @alpha.setter def alpha(self, x): if isinstance(x, pd.Series): x.name = 'alpha' elif len(np.shape(x)) != 1: raise ValueError('alpha input is non-vector: {} given'.format(x)) self.__alpha = x # Volatility (vol) - Ideally pd.Series but MUST be a (1xN) vector @property def vol(self): return self.__vol @vol.getter def vol(self): return self.__vol @vol.setter def vol(self, x): if isinstance(x, pd.Series): x.name = 'vol' elif len(np.shape(x)) != 1: raise ValueError('vol input is non-vector: {} given'.format(x)) self.__vol = x # Tracking Error (te) - Ideally pd.Series but MUST be a (1xN) vector @property def te(self): return self.__te @te.getter def te(self): return self.__te @te.setter def te(self, x): if isinstance(x, pd.Series): x.name = 'te' elif len(np.shape(x)) != 1: raise ValueError('te input is non-vector: {} given'.format(x)) self.__te = x # Correlation Matrix # Currently just check if symmetrical # Add test positive semi-definate @property def cor(self): return self.__cor @cor.getter def cor(self): return self.__cor @cor.setter def cor(self, x): if x.shape[0] != x.shape[1]: raise ValueError('Correl Matrix non-symmetrical: {} given'.format(x)) self.__cor = x # nsims - number of simulations to run - needs to be an integer @property def nsims(self): return self.__nsims @nsims.getter def nsims(self): return self.__nsims @nsims.setter def nsims(self, x): if not isinstance(x, int): raise ValueError('nsims needs to be an integer: {} given'.format(x)) self.__nsims = int(x) # psims - number of periods per MC Sim - needs to be an integer @property def psims(self): return self.__psims @psims.getter def psims(self): return self.__psims @psims.setter def psims(self, x): if not isinstance(x, int): raise ValueError('psims needs to be an integer: {} given'.format(x)) self.__psims = int(x) # f - annualisation factor needs to be an integer @property def f(self): return self.__f @f.getter def f(self): return self.__f @f.setter def f(self, x): if not isinstance(x, int): raise ValueError('annualisation factor needs to be an integer: {} given'.format(x)) self.__f = int(x) # %% Emperical Bootstrap def empirical(self, **kwargs): """ Monte-Carlo Simulation using Scaled Empirical Data Jacos idea to take the historical timeseries and standardise, then once standardised we can input our own means and volatility estimates. This will maintain higher moments (skew & kurtosis) from the original ts but allow us to use our own forward estimates. Note a serious problem of this approach is the length of the historical data. Correlation is essentially taken by picking x random periods from this data - as a result we are literally just recycling the same periods over and over in a new order making this analysis less useful for longer simulations or sims where this historical period is short. OUTPUT: pd.DataFrame with each simulation being a row (starting at 0) and each column being a period along the sim. Column[0] representing time-0 is set at a portfolio value of 1 INPUTS: w = vector of port wgts ideally pd.Series() mu = vector of exp rtns idieally pd.Series() alpha (OPTIONAL) = vector of asset class alpha expectations vol = vector of annualised volatilities te (OPTIONAL) tracking error of alpha sources to asset class beta f = int() annualisation factor (default=52) nsims = int() number of simulations psims = int() no of observation periods simulation DEVELOPMENTS: * Correlation of Alpha sources == 0; could incorporate alpha correl matrix * Converting hist_rtns to np.array may speed things up; rest is already np Author: Jaco's brainpower; adapted by David """ ## INPUTS w = kwargs['w'] if 'w' in kwargs else self.w mu = kwargs['mu'] if 'mu' in kwargs else self.mu vol = kwargs['vol'] if 'vol' in kwargs else self.vol hist = kwargs['hist'] if 'hist' in kwargs else self.hist nsims = kwargs['nsims'] if 'nims' in kwargs else self.nsims f = kwargs['f'] if 'f' in kwargs else self.f psims = kwargs['psims'] if 'psims' in kwargs else self.psims ## OPTIONAL INPUTS alpha = np.zeros(len(w)) if 'alpha' not in kwargs else kwargs['alpha'] te = np.zeros(len(w)) if 'te' not in kwargs else kwargs['te'] # De-Annualise Returns & Vols mu, alpha = (mu / f), (alpha / f) vol, te = (vol / np.sqrt(f)), (te / np.sqrt(f)) # Re-scale historical return series std_rtn = (hist - hist.mean()) / hist.std() # standardise std_rtn = std_rtn.mul(vol, axis=1).add(mu, axis=1) # re-scale for i in range(0, nsims): #irtn = std_rtn.iloc[:simlength] irtn = std_rtn.sample(psims) ialpha = np.random.normal(alpha, te, (psims, len(w))) irtn = irtn + ialpha # Build simulated path & add to simulations array path = (1 + (irtn @ w)).cumprod(axis=0) # create sims array on 1st iteration # add to sims stack on further iterations if i == 0: sims = path else: sims = np.vstack((sims, path)) # Convert to DataFrame - adjust columns to start at 1 not 0 # insert vec PortValue==1 at col.0; concat because pd.insert is crap df = pd.DataFrame(sims, columns=range(1, psims+1)) v1 = pd.DataFrame(np.ones((nsims, 1)), columns=[0]) # round on the output to save space in chart memory later return pd.concat([v1, df], axis=1).round(5) def sim_stats(self, sims, tgt=0, method='annualise', **kwargs): """ Descriptive Statistics for dataframe of Monte Carlo Sims INPUTS: sims - df with rows as sims; columns as periods along sim path tgt - numerical return bogie (default = 0) periods - list periods on sim path to calc (default = all > 1yr) note column varnames must be numerical as used in annualisation method annualise (default) - annualises periodic return relative - subtracts annualised return by target terminal - looks at terminal value Author: <NAME> """ # percentiles we want to see pc = [0.01, 0.05, 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.9, 0.95, 0.99] # periods from simulations to analyse if 'periods' in kwargs: periods = kwargs['periods'] else: periods = sims.columns[self.f:] ## SUBSET & ANNUALISE # subset sims to required dates; if len(periods) is 1 this will return # a pandas series so need to convert back to df (to access cols later) sims = sims.loc[:, periods] sims = sims.to_frame() if isinstance(sims, pd.Series) else sims anns = sims ** (self.f / sims.columns) - 1 # annualised rtns from paths # Alternative calc methods available # 0. 'annualise' (default) annualised returns # 1. relative reduces returns by target (& tgt == 0) # 2. terminal assumes portval rtns to sims (& tgt == 1) if method == 'relative': anns, tgt = (anns - tgt), 0 elif method == 'terminal': anns, tgt = sims, 1 # Stats (not computed by pd.describe) stats = pd.DataFrame(index=anns.columns) stats['median'] = anns.median() stats['skew'] = anns.skew() stats['kurtosis'] = anns.kurtosis() stats['target'] = tgt stats['prob'] = anns[anns > tgt].count() / anns.count() return pd.concat([stats.T, anns.describe(percentiles=pc)], axis=0) def port_stats(self, w=None, mu=None, vol=None, cor=None, **kwargs): """ Portfolio Risk & Return Stats including MCR NB/ This function ought to be elsewhere in the package; it may therefore get replicated and then removed in the fullness of time. INPUT: w - wgts df with assets in index & ports as cols mu - pd.Series of expected returns vol - pd.Series of volatilities cor - np.array or pd.Dataframe correlation matrix OUTPUT: dictionary with keys risk, rtn, mcr, tcr & pcr REFERENCES: [1] http://webuser.bus.umich.edu/ppasquar/shortpaper6.pdf Author: David (whilst loitering in the Scottish sunshine) """ ## INPUTS - from self if None provided if w is None: w = self.wgts if mu is None: mu = self.mu if vol is None: vol = self.vol if cor is None: cor = self.cor ## CALCULATIONS rtn = w.multiply(mu, axis=0).sum() # expected return # convert w to dataframe if series passed # this is a problem with the change in dimensions if isinstance(w, pd.Series): w = w.to_frame() wa = np.array(w) # wgts to arrays for matrix algebra vcv = np.diag(vol) @ cor @ np.diag(vol) # covariance matrix v = np.sqrt(np.diag(wa.T @ vcv @ wa)) # portfolio volatility # Marginal Contribution to Risk # where MCR = (w.T * VCV) / vol mcr = np.transpose((wa.T @ vcv) / v.reshape((w.shape[1],1))) mcr.columns, mcr.index = w.columns, mu.index tcr = mcr * wa # total contibution to risk pcr = tcr / v # percentage TCR (sums to 100%) # convert vol pack to pandas series v = pd.Series(data=v, index=[rtn.index]) # Ingest to class self.port_rtn = rtn self.port_vol = v self.mcr = mcr self.tcr = tcr self.pcr = pcr return dict(risk=v, rtn=rtn, mcr=mcr, tcr=tcr, pcr=pcr) def empirical_frontier(self, wgts=None, tgts=None, alpha=True, **kwargs): """ Runs Stochastic Modelling on whole Frontier Frontier here refers to any set of portfolio weights - original use case was to run analysis on each port on an MVO efficient frontier """ ## INPUTS # pull wgts dataframe from self if None provided wgts = self.wgts if wgts is None else wgts # Return Targets can be provided, pulled from object or zeros if tgts is None: # if None provided grab tgts from self tgts = self.tgts elif tgts == 0: # array of zeros otherwise tgts = np.zeros(wgts.shape[1]) # Alpha # Remember that alpha & te are set ONLY via kwargs in emperical bootstrap # For frontier if alpha is false create 2x series of zeros if alpha: alpha, te = self.alpha, self.te else: alpha = pd.Series(name='alpha', index=wgts.index, data=np.zeros(wgts.shape[0])) te = pd.Series(name='te', index=wgts.index, data=np.zeros(wgts.shape[0])) # Output storage dictionary # keys as names of ports being tested, values will be dicts themselves data = dict.fromkeys(wgts.columns) # port_stats() works on whole frontier anyway to do before iteration portstats = self.port_stats(w=wgts) # NB/ not part of MC sim ## iterate across frontier (columns of wgts df) for i, port in enumerate(wgts): # Pull inputs from self - for the bootstrap # Not technically required; useful to store so we know exactly # which inputs went into a given model # also append some portstats stuff (MCR, TCR, PCR) which is useful # although not used at all in the stochastic modelling df = pd.concat([wgts[port], self.mu, self.vol, alpha, te,
pd.Series(portstats['mcr'][port], name='mcr')
pandas.Series
# -*- coding: utf-8 -*- # This file as well as the whole tsfresh package are licenced under the MIT licence (see the LICENCE.txt) # <NAME> (<EMAIL>), Blue Yonder Gmbh, 2016 from unittest import TestCase import numpy as np import pandas as pd import pandas.testing as pdt from tests.fixtures import DataTestCase from tsfresh import extract_features, extract_relevant_features, select_features from tsfresh.feature_extraction.settings import ComprehensiveFCParameters from tsfresh.utilities.dataframe_functions import impute class RelevantFeatureExtractionDataTestCase(DataTestCase): """ Test case for the relevant_feature_extraction function """ def test_functional_equality(self): """ `extract_relevant_features` should be equivalent to running first `extract_features` with impute and `select_features` afterwards. Meaning it should produce the same relevant features and the values of these features should be identical. :return: """ df, y = self.create_test_data_sample_with_target() relevant_features = extract_relevant_features( df, y, column_id="id", column_value="val", column_kind="kind", column_sort="sort", ) extracted_features = extract_features( df, column_id="id", column_value="val", column_kind="kind", column_sort="sort", impute_function=impute, ) selected_features = select_features(extracted_features, y) self.assertEqual( set(relevant_features.columns), set(selected_features.columns), "Should select the same columns:\n\t{}\n\nvs.\n\n\t{}".format( relevant_features.columns, selected_features.columns ), ) relevant_columns = relevant_features.columns relevant_index = relevant_features.index self.assertTrue( relevant_features.equals( selected_features.loc[relevant_index][relevant_columns] ), "Should calculate the same feature values", ) class RelevantFeatureExtractionTestCase(TestCase): def setUp(self): np.random.seed(42) y = pd.Series(np.random.binomial(1, 0.5, 20), index=range(20)) df = pd.DataFrame(index=range(100)) df["a"] = np.random.normal(0, 1, 100) df["b"] = np.random.normal(0, 1, 100) df["id"] = np.repeat(range(20), 5) X = pd.DataFrame(index=range(20)) X["f1"] = np.random.normal(0, 1, 20) X["f2"] = np.random.normal(0, 1, 20) self.df = df self.X = X self.y = y def test_extracted_features_contain_X_features(self): X = extract_relevant_features(self.df, self.y, self.X, column_id="id") self.assertIn("f1", X.columns) self.assertIn("f2", X.columns) pdt.assert_series_equal(self.X["f1"], X["f1"]) pdt.assert_series_equal(self.X["f2"], X["f2"]) pdt.assert_index_equal(self.X["f1"].index, X["f1"].index) pdt.assert_index_equal(self.X["f2"].index, X["f2"].index) def test_extraction_null_as_column_name(self): df1 = pd.DataFrame( data={ 0: range(10), 1: np.repeat([0, 1], 5), 2: np.repeat([0, 1, 2, 3, 4], 2), } ) X1 = extract_features(df1, column_id=1, column_sort=2) self.assertEqual(len(X1), 2) df2 = pd.DataFrame( data={ 1: range(10), 0: np.repeat([0, 1], 5), 2: np.repeat([0, 1, 2, 3, 4], 2), } ) X2 = extract_features(df2, column_id=0, column_sort=2) self.assertEqual(len(X2), 2) df3 = pd.DataFrame( data={ 0: range(10), 2: np.repeat([0, 1], 5), 1: np.repeat([0, 1, 2, 3, 4], 2), } ) X3 = extract_features(df3, column_id=2, column_sort=1) self.assertEqual(len(X3), 2) def test_raises_mismatch_index_df_and_y_df_more(self): y = pd.Series(range(3), index=[1, 2, 3]) df_dict = { "a": pd.DataFrame({"val": [1, 2, 3, 4, 10, 11], "id": [1, 1, 1, 1, 2, 2]}), "b": pd.DataFrame({"val": [5, 6, 7, 8, 12, 13], "id": [4, 4, 3, 3, 2, 2]}), } self.assertRaises( ValueError, extract_relevant_features, df_dict, y, None, None, None, "id", None, "val", ) def test_raises_mismatch_index_df_and_y_y_more(self): y = pd.Series(range(4), index=[1, 2, 3, 4]) df = pd.DataFrame({"val": [1, 2, 3, 4, 10, 11], "id": [1, 1, 1, 1, 2, 2]}) self.assertRaises( ValueError, extract_relevant_features, df, y, None, None, None, "id", None, "val", ) def test_raises_y_not_series(self): y = np.arange(10) df_dict = { "a": pd.DataFrame({"val": [1, 2, 3, 4, 10, 11], "id": [1, 1, 1, 1, 2, 2]}), "b":
pd.DataFrame({"val": [5, 6, 7, 8, 12, 13], "id": [4, 4, 3, 3, 2, 2]})
pandas.DataFrame
import os import pandas as pd #for data analysis import matplotlib.pyplot as plt import cv2 import numpy as np import math import pydicom as pydicom import tensorflow as tf import tensorflow_addons as tfa import sklearn from sklearn.model_selection import train_test_split import tensorflow.keras.backend as K import matplotlib.pyplot as plt from tqdm import tqdm import argparse import gdcm import random import scipy.ndimage import collections import imblearn import numpy from sklearn.model_selection import GridSearchCV from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from keras import utils as np_utils from keras.utils.np_utils import to_categorical from random import seed from random import random from random import randint from keras.wrappers.scikit_learn import KerasClassifier from sklearn.model_selection import GridSearchCV from tensorflow import keras from tensorflow.keras.applications.vgg16 import preprocess_input from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.models import load_model from tensorflow.keras import preprocessing from tensorflow.keras import models ## ---------- Data set up functions, balancing data, and spliting dataset ------------ ###### #this function extracts the pixel_data and resizes it to a user defined size defult is 50, and the associated vector for classification is generated #NOTE: Slight changes are made to all of the code to make futher improvements using better libraries def getImagesAndLabels(imageArray, labelArray, img_px_size=50, visualize=False): np.random.seed = 1 images = [] labels = [] uids = [] idx = 0 print("getting images and labels") for file, mortality in tqdm(zip(imageArray.iteritems(), labelArray.iteritems()),total = len(imageArray)): uid = file[1] label=mortality[1] path = uid image = pydicom.read_file(path) if image.Modality != "SR": if "PixelData" in image: idx += 1 resized_image = cv2.resize(np.array(image.pixel_array),(img_px_size,img_px_size)) value = randint(1, 10) factor = random() if value == 3: fig, ax = plt.subplots(1,2) ax[0].imshow(resized_image) resized_image = np.fliplr(resized_image) ax[1].imshow(resized_image) #NOTE: within a docker container you will not be able to see these visualization #uncomment this line if you would like to see what the image looks like when flipped accross the y axis # plt.show() #this set of code is commented out as visuilization is not possible within a docker container but if you run this seperatly or within jupyter you are able to visulize every 15th image, change 15 to what ever number you like if you want to visulize more or less if visualize: #every 15th image is "visualized" changing the 15 will allow you view every xth image if idx%15==0: fig = plt.figure() plt.imshow(resized_image) # plt.show() images.append(resized_image) labels.append(label) uids.append(uid) print("total subjects avilable: ", idx) print("lenth of images", len(images)) return images, labels, uids #this function will balance data however compared to the TrainModel-Container, after gaining futher understanding, test data is not blanced to mimic real world work. Credit for help understanding this Sotiras, A. Assistant Professor of Radiology @WASHU #as the dataset was imbalanced, balancing tehniques were applied, in this case the number of dicom for each class is counted and then balanced according to user's preference, it can either be undersampeled or over sampeled def balanceData(imageArray, labelArray, underSample = False,): # print(imageArray, labelArray) concatinatedArrray = pd.concat([imageArray, labelArray], axis=1) count_class_0, count_class_1 = concatinatedArrray.mortality.value_counts() df_class_0 = concatinatedArrray[concatinatedArrray['mortality'] == 0] df_class_1 = concatinatedArrray[concatinatedArrray['mortality'] == 1] print("alive", len(df_class_0), "dead", len(df_class_1)) # print("before balancing") concatinatedArrray.mortality.value_counts().plot(kind='bar', title='before balancing'); #undersampleling of data is done if user cooses to under sample if underSample: df_class_0_under = df_class_0.sample(count_class_1) df_test_under =
pd.concat([df_class_0_under, df_class_1], axis=0)
pandas.concat
import numpy as np import pandas as pd from collections import OrderedDict from .utils import is_list, to_list, is_fitted class Attributes: """ The Attributes class handles checking and setting the attributes for the InterpretToolkit, GlobalInterpret, and LocalInterpret classes. Attributes is a base class to be inherited by those classes and should never be instantiated """ def set_estimator_attribute(self, estimator_objs, estimator_names): """ Checks the type of the estimators and estimator_names attributes. If a list or not a dict, then the estimator argument is converted to a dict for processing. Parameters ---------- estimators : object, list of objects A fitted estimator object or list thereof implementing `predict` or `predict_proba`. Multioutput-multiclass classifiers are not supported. estimator_names : string, list Names of the estimators (for internal and plotting purposes) """ estimator_is_none = estimator_objs == None # Convert the estimator_objs to a list, if it is not already. if not is_list(estimator_objs): estimator_objs = to_list(estimator_objs) # Convert the name of the estimator_objs to a list, # if is not already. if not is_list(estimator_names): estimator_names = to_list(estimator_names) # Check that the estimator_objs and estimator_names are the same size. if not estimator_is_none: assert len(estimator_objs) == len( estimator_names ), "Number of estimator objects is not equal to the number of estimator names given!" # Check that the estimator objects have been fit! if not estimator_is_none: if not all([is_fitted(m) for m in estimator_objs]): raise ValueError( "One or more of the estimators given has NOT been fit!" ) # Create a dictionary from the estimator_objs and estimator_names. # Then set the attributes. self.estimators = OrderedDict( [(name, obj) for name, obj in zip(estimator_names, estimator_objs)] ) self.estimator_names = estimator_names def set_y_attribute(self, y): """ Checks the type of the y attribute. """ # check that y are assigned correctly if type(y) == type(None): raise ValueError("y is required!") if is_list(y): self.y = np.array(y) elif isinstance(y, np.ndarray): self.y = y elif isinstance(y, (pd.DataFrame, pd.Series)): self.y = y.values else: if y is not None: raise TypeError("y must be an numpy array or pandas.DataFrame.") else: self.y = None def set_X_attribute(self, X, feature_names=None): """ Check the type of the X attribute. """ # make sure data is the form of a pandas dataframe regardless of input type if type(X) == type(None): raise ValueError("X are required!") if isinstance(X, np.ndarray): if feature_names is None: raise Exception("Feature names must be specified if using NumPy array.") else: self.X =
pd.DataFrame(data=X, columns=feature_names)
pandas.DataFrame
import pandas as pd import numpy as np import os import datetime def process_diagnostics(save=0): df_ms1 = pd.read_csv('..\\data\\raw\\transfer_2018-03-08\\diagnostic\\2018-03-02 - MS1 - Database Merge.csv') df_ms2 =
pd.read_csv('..\\data\\raw\\transfer_2018-03-08\\diagnostic\\2018-03-05 - MS2 - Database Merge.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ """ import os from datetime import datetime from oemof.tabular.datapackage import building import pandas as pd def eGo_offshore_wind_profiles( buses, weather_year, scenario_year, datapackage_dir, raw_data_path, correction_factor=0.8, ): """ Parameter --------- buses: array like List with buses represented by iso country code weather_year: integer or string Year to select from raw data source scenario_year: integer or string Year to use for timeindex in tabular resource datapackage_dir: string Directory for tabular resource raw_data_path: string """ filepath = building.download_data( "https://github.com/znes/FlEnS/archive/master.zip", unzip_file="FlEnS-master/open_eGo/NEP_2035/nep_2035_seq.csv", directory=raw_data_path, ) wind = pd.read_csv( filepath, parse_dates=True, index_col=0, header=[0, 1, 2, 3, 4] ) wind.columns = wind.columns.droplevel([0, 2, 3, 4]) wind.reset_index(inplace=True) sequences_df = pd.DataFrame() # use vernetzen data filepath_2050 = building.download_data( "https://github.com/znes/FlEnS/archive/master.zip", unzip_file="FlEnS-master/Socio-ecologic/2050_seq.csv", directory=raw_data_path, ) wind_2050 = pd.read_csv( filepath_2050, parse_dates=True, index_col=0, header=[0, 1, 2, 3, 4] ) wind_2050.columns = wind_2050.columns.droplevel([0, 2, 3, 4]) wind_2050["DE_wind_offshore"] = ( wind_2050["DEdr19_wind_offshore"] * 0.2 + wind_2050["DEdr20_wind_offshore"] * 0.4 + wind_2050["DEdr21_wind_offshore"] * 0.4 ) wind_2050.reset_index(inplace=True) wind_2050["DE_wind_onshore"] = wind["DE_wind_onshore"] wind = wind_2050 for c in buses: if c + "_wind_offshore" in wind.columns: sequences_df[c + "-offshore-profile"] = ( wind[c + "_wind_offshore"] * correction_factor ) # correction factor sequences_df.index = building.timeindex(year=str(scenario_year)) building.write_sequences( "volatile_profile.csv", sequences_df, directory=os.path.join(datapackage_dir, "data", "sequences"), ) def ninja_pv_profiles( buses, weather_year, scenario_year, datapackage_dir, raw_data_path ): """ Parameter --------- buses: array like List with buses represented by iso country code weather_year: integer or string Year to select from raw data source scenario_year: integer or string Year to use for timeindex in tabular resource datapackage_dir: string Directory for tabular resource raw_data_path: string Path where raw data file `ninja_pv_europe_v1.1_merra2.csv` is located """ filepath = building.download_data( "https://www.renewables.ninja/static/downloads/ninja_europe_pv_v1.1.zip", unzip_file="ninja_pv_europe_v1.1_merra2.csv", directory=raw_data_path, ) year = str(weather_year) countries = buses raw_data =
pd.read_csv(filepath, index_col=[0], parse_dates=True)
pandas.read_csv
import datetime as dt import pandas as pd from bs4 import BeautifulSoup import re import requests import time today = dt.date.today() zenhan = str.maketrans("1234567890","1234567890","") token = "***<PASSWORD>***" auth = {"Authorization": token} query = "unit_id:133089874031904245 全裸 OR 下半身露出 " limit = "50" url = "https://api.nordot.jp/v1.0/search/contentsholder/posts.list" csvDir = "(Directory)" cur = "" # 月初からの検索 today = today.replace(day=1) today_iso = dt.datetime.combine(today, dt.time(0,0,0)).isoformat()+"+09:00" created_at_d1 = "created_at:>=" + today_iso query += created_at_d1 parameter = {"query": query, "limit": limit} def apiGet(page, cursor=""): para = parameter if (page >= 2) and (len(cursor) != 0): para["cursor"] = cursor r = requests.get(url, params = para, headers = auth) j = r.json() if j["paging"]["has_next"] == 1: c = j["paging"]["next_cursor"] else: c = "" return j, c def parse(req): posts = [] for post in req["posts"]: entry = {} aid = post["id"] title = post["title"].translate(zenhan) desc = post["description"].translate(zenhan) pub_at = dt.datetime.strptime(post["published_at"], "%Y-%m-%dT%H:%M:%S+00:00") pub_at += dt.timedelta(hours=9) #Japan if len(desc) == 0: r = requests.get(url="https://nordot.app/"+str(aid)) s = BeautifulSoup(r.text, "html.parser") desc = s.find(class_="ma__p").text.translate(zenhan) time.sleep(1) # 露出時刻 if "ごろ" not in desc: naked = "AM 12:00" elif "分ごろ" not in desc: naked = re.sub(r".+(午[前後]1?[0-9])時ごろ.+", r"\1:00", desc) else: naked = re.sub(r".+(午[前後]1?[0-9])時([0-9]{1,2})分ごろ.+", r"\1:\2", desc) naked = naked.replace("午前", "AM ") naked = naked.replace("午後", "PM ") naked = re.sub(r"M 0:", "M 12:", naked) ntime = dt.datetime.strptime(naked, "%p %I:%M") #露出都道府県 place = re.match(r"^((.{1,3}?))", title).group(1) #露出日 tsuki = re.match(r".+、([0-9]{1,2})月.+", desc) nichi = re.match(r".+((?<![0-9])([0-9])(?![0-9])|[12][0-9]|3[01])日.+", desc) if tsuki != None: ndate = dt.date(pub_at.year, int(tsuki.group(1)), int(nichi.group(1))) else: ndate = dt.date(pub_at.year, pub_at.month, int(nichi.group(1))) if dt.date.today() - ndate < dt.timedelta(0): ndate = ndate.replace(year=pub_at.year - 1) #全裸かどうか if "全裸" in title: zenra = "全裸" else: zenra = "下半身露出" #事案の格納 entry["article_id"] = aid entry["naked_at"] = dt.datetime( ndate.year, ndate.month, ndate.day, ntime.hour, ntime.minute, ntime.second ) entry["created_at"] = pub_at entry["zenra"] = zenra entry["place"] = place posts.append(entry) return posts def json2DF(jsonInput): df =
pd.json_normalize(jsonInput)
pandas.json_normalize
import base64 import io import textwrap import dash import dash_core_components as dcc import dash_html_components as html import gunicorn import plotly.graph_objs as go from dash.dependencies import Input, Output, State import flask import pandas as pd import urllib.parse from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA import numpy as np import math import scipy.stats import dash_table from dash_table.Format import Format, Scheme from colour import Color import dash_bootstrap_components as dbc # from waitress import serve external_stylesheets = [dbc.themes.BOOTSTRAP, 'https://codepen.io/chriddyp/pen/bWLwgP.css', "https://codepen.io/sutharson/pen/dyYzEGZ.css", "https://fonts.googleapis.com/css2?family=Raleway&display=swap", "https://codepen.io/chriddyp/pen/brPBPO.css"] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server # "external_url": "https://codepen.io/chriddyp/pen/brPBPO.css" # https://raw.githubusercontent.com/aaml-analytics/pca-explorer/master/LoadingStatusStyleSheet.css styles = { 'pre': { 'border': 'thin lightgrey solid', 'overflowX': 'scroll' } } tabs_styles = {'height': '40px', 'font-family': 'Raleway', 'fontSize': 14} tab_style = { 'borderBottom': '1px solid #d6d6d6', 'padding': '6px', 'Weight': 'bold' } tab_selected_style = { 'borderTop': '3px solid #333333', 'borderBottom': '1px solid #d6d6d6 ', 'backgroundColor': '#f6f6f6', 'color': '#333333', # 'fontColor': '#004a4a', 'fontWeight': 'bold', 'padding': '6px' } # APP ABOUT DESCRIPTION MOF_tool_about = textwrap.wrap(' These tools aim to provide a reproducible and consistent data visualisation platform ' 'where experimental and computational researchers can use big data and statistical ' 'analysis to find the best materials for specific applications. Principal Component ' 'Analysis (PCA) is a dimension reduction technique that can be used to reduce a large ' 'set of observable variables to a smaller set of latent variables that still contain ' 'most of the information in the large set (feature extraction). This is done by ' 'transforming a number of (possibly) correlated variables into some number of orthogonal ' '(uncorrelated) variables called principal components to find the directions of maximal ' 'variance. PCA can be used to ease data visualisation by having fewer dimensions to plot ' 'or be used as a pre-processing step before using another Machine Learning (ML)' ' algorithm for regression ' 'and classification tasks. PCA can be used to improve an ML algorithm performance, ' 'reduce overfitting and reduce noise in data.', width=50) Scree_plot_about = textwrap.wrap(' The Principal Component Analysis Visualisation Tools runs PCA for the user and ' 'populates a Scree plot. This plot allows the user to determine if PCA is suitable ' 'for ' 'their dataset and if can compromise an X% drop in explained variance to ' 'have fewer dimensions.', width=50) Feature_correlation_filter = textwrap.wrap("Feature correlation heatmaps provide users with feature analysis and " "feature principal component analysis. This tool will allow users to see the" " correlation between variables and the" " covariances/correlations between original variables and the " "principal components (loadings)." , width=50) plots_analysis = textwrap.wrap('Users can keep all variables as features or drop certain variables to produce a ' 'Biplot, cos2 plot and contribution plot. The score plot is used to look for clusters, ' 'trends, and outliers in the first two principal components. The loading plot is used to' ' visually interpret the first two principal components. The biplot overlays the score ' 'plot and the loading plot on the same graph. The squared cosine (cos2) plot shows ' 'the importance of a component for a given observation i.e. measures ' 'how much a variable is represented in a component. The contribution plot contains the ' 'contributions (%) of the variables to the principal components', width=50, ) data_table_download = textwrap.wrap("The user's inputs from the 'Plots' tab will provide the output of the data tables." " The user can download the scores, eigenvalues, explained variance, " "cumulative explained variance, loadings, " "cos2 and contributions from the populated data tables. " "Note: Wait for user inputs to be" " computed (faded tab app will return to the original colour) before downloading the" " data tables. ", width=50) MOF_GH = textwrap.wrap(" to explore AAML's sample data and read more on" " AAML's Principal Component Analysis Visualisation Tool Manual, FAQ's & Troubleshooting" " on GitHub... ", width=50) #################### # APP LAYOUT # #################### fig = go.Figure() fig1 = go.Figure() app.layout = html.Div([ html.Div([ html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/UOC.png', height='35', width='140', style={'display': 'inline-block', 'padding-left': '1%'}), html.Img(src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/A2ML-logo.png', height='50', width='125', style={'float': 'right', 'display': 'inline-block', 'padding-right': '2%'}), html.H1("Principal Component Analysis Visualisation Tools", style={'display': 'inline-block', 'padding-left': '11%', 'text-align': 'center', 'fontSize': 36, 'color': 'white', 'font-family': 'Raleway'}), html.H1("...", style={'fontColor': '#3c3c3c', 'fontSize': 6}) ], style={'backgroundColor': '#333333'}), html.Div([html.A('Refresh', href='/')], style={}), html.Div([ html.H2("Upload Data", style={'fontSize': 24, 'font-family': 'Raleway', 'color': '#333333'}, ), html.H3("Upload .txt, .csv or .xls files to starting exploring data...", style={'fontSize': 16, 'font-family': 'Raleway'}), dcc.Store(id='csv-data', storage_type='session', data=None), html.Div([dcc.Upload( id='data-table-upload', children=html.Div([html.Button('Upload File')], style={'height': "60px", 'borderWidth': '1px', 'borderRadius': '5px', 'textAlign': 'center', }), multiple=False ), html.Div(id='output-data-upload'), ]), ], style={'display': 'inline-block', 'padding-left': '1%', }), html.Div([dcc.Tabs([ dcc.Tab(label='About', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.H2(" What are AAML's Principal Component Analysis Visualisation Tools?", style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold' }), html.Div([' '.join(MOF_tool_about)] , style={'font-family': 'Raleway'}), html.H2(["Scree Plot"], style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold'}), html.Div([' '.join(Scree_plot_about)], style={'font-family': 'Raleway'}), html.H2(["Feature Correlation"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(Feature_correlation_filter)], style={'font-family': 'Raleway', }), html.H2(["Plots"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(plots_analysis)], style={'font-family': 'Raleway'}), html.H2(["Data tables"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(data_table_download)], style={'font-family': 'Raleway'}), # ADD LINK html.Div([html.Plaintext( [' Click ', html.A('here ', href='https://github.com/aaml-analytics/pca-explorer')], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Div([' '.join(MOF_GH)], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof' '-explorer/master/github.png', height='40', width='40', style={'display': 'inline-block', 'float': "right" }) ] , style={'display': 'inline-block'}) ], style={'backgroundColor': '#ffffff', 'padding-left': '1%'} )]), dcc.Tab(label='Scree Plot', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='PC-Eigen-plot') ], style={'display': 'inline-block', 'width': '49%'}), html.Div([dcc.Graph(id='PC-Var-plot') ], style={'display': 'inline-block', 'float': 'right', 'width': '49%'}), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '49%', 'padding-left': '1%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-scree', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Label(["You should attempt to use at least..." , html.Div(id='var-output-container-filter')]) ], style={'padding-left': '1%'} ), html.Div([ html.Label(["As a rule of thumb for the Scree Plot" " Eigenvalues, the point where the slope of the curve " "is clearly " "leveling off (the elbow), indicates the number of " "components that " "should be retained as significant."]) ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Feature correlation', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.Div([dcc.Graph(id='PC-feature-heatmap') ], style={'width': '47%', 'display': 'inline-block', 'float': 'right'}), html.Div([dcc.Graph(id='feature-heatmap') ], style={'width': '51%', 'display': 'inline-block', 'float': 'left'}), html.Div([html.Label(["Loading colour bar range:" , html.Div( id='color-range-container')]) ], style={ 'fontSize': 12, 'float': 'right', 'width': '100%', 'padding-left': '85%'} ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='PC-feature-outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label( ["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-heatmap', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([html.Label(["Select color scale:", dcc.RadioItems( id='colorscale', options=[{'label': i, 'value': i} for i in ['Viridis', 'Plasma']], value='Plasma' )]), ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("There are usually two ways multicollinearity, " "which is when there are a number of variables " "that are highly correlated, is dealt with:"), html.P("1) Use PCA to obtain a set of orthogonal (" "not correlated) variables to analyse."), html.P("2) Use correlation of determination (R²) to " "determine which variables are highly " "correlated and use only 1 in analysis. " "Cut off for highly correlated variables " "is ~0.7."), html.P( "In any case, it depends on the machine learning algorithm you may apply later. For correlation robust algorithms," " such as Random Forest, correlation of features will not be a concern. For non-correlation robust algorithms such as Linear Discriminant Analysis, " "all high correlation variables should be removed.") ], style={'padding-left': '1%'} ), html.Div([ html.Label(["Note: Data has been standardised (scale)"]) ], style={'padding-left': '1%'}) ]) ]), dcc.Tab(label='Plots', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([html.P("Selecting Features")], style={'padding-left': '1%', 'font-weight': 'bold'}), html.Div([ html.P("Input here affects all plots, datatables and downloadable data output"), html.Label([ "Would you like to analyse all variables or choose custom variables to " "analyse:", dcc.RadioItems( id='all-custom-choice', options=[{'label': 'All', 'value': 'All'}, {'label': 'Custom', 'value': 'Custom'}], value='All' )]) ], style={'padding-left': '1%'}), html.Div([ html.P("For custom variables input variables you would not like as features in your PCA:"), html.Label( [ "Note: Only input numerical variables (non-numerical variables have already " "been removed from your dataframe)", dcc.Dropdown(id='feature-input', multi=True, )]) ], style={'padding': 10, 'padding-left': '1%'}), ]), dcc.Tabs(id='sub-tabs1', style=tabs_styles, children=[ dcc.Tab(label='Biplot (Scores + loadings)', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='biplot', figure=fig) ], style={'height': '100%', 'width': '75%', 'padding-left': '20%'}, ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-biplot', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-biplot', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([ html.Label([ "Graph Update to show either loadings (Loading Plot) or " "scores and loadings (Biplot):", dcc.RadioItems( id='customvar-graph-update', options=[{'label': 'Biplot', 'value': 'Biplot'}, {'label': 'Loadings', 'value': 'Loadings'}], value='Biplot') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix. PCA is an unsupervised machine learning technique - it only " "looks at the input features and does not take " "into account the output or the target" " (response) variable.")], style={'padding-left': '1%'}), html.Div([ html.P("For variables you have dropped..."), html.Label([ "Would you like to introduce a first target variable" " into your data visualisation?" " (Graph type must be Biplot): " "", dcc.RadioItems( id='radio-target-item', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select first target variable for color scale of scores: ", dcc.Dropdown( id='color-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Would you like to introduce a second target variable" " into your data visualisation??" " (Graph type must be Biplot):", dcc.RadioItems( id='radio-target-item-second', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select second target variable for size scale of scores:", dcc.Dropdown( id='size-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([html.Label(["Size range:" , html.Div( id='size-second-target-container')]) ], style={'display': 'inline-block', 'float': 'right', 'padding-right': '5%'} ), html.Div([ html.Br(), html.P( "A loading plot shows how " "strongly each characteristic (variable)" " influences a principal component. The angles between the vectors" " tell us how characteristics correlate with one another: "), html.P("1) When two vectors are close, forming a small angle, the two " "variables they represent are positively correlated. "), html.P( "2) If they meet each other at 90°, they are not likely to be correlated. "), html.P( "3) When they diverge and form a large angle (close to 180°), they are negative correlated."), html.P( "The Score Plot involves the projection of the data onto the PCs in two dimensions." "The plot contains the original data but in the rotated (PC) coordinate system"), html.P( "A biplot merges a score plot and loading plot together.") ], style={'padding-left': '1%'} ), ]), dcc.Tab(label='Cos2', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='cos2-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-cos2', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'padding-left': '1%', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-cos2', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The squared cosine shows the importance of a " "component for a given observation i.e. " "measures " " how much a variable is represented in a " "component") ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Contribution', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='contrib-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-contrib', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ], style={'padding-left': '1%'}) ], style={'display': 'inline-block', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-contrib', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The contribution plot contains the " "contributions (in percentage) of the " "variables to the principal components") ], style={'padding-left': '1%'}), ]) ]) ]), dcc.Tab(label='Data tables', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([ html.Label( ["Note: Input in 'Plots' tab will provide output of data tables and the" " downloadable PCA data"]) ], style={'font-weight': 'bold', 'padding-left': '1%'}), html.Div([html.A( 'Download PCA Data (scores for each principal component)', id='download-link', href="", target="_blank" )], style={'padding-left': '1%'}), html.Div([html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems(id="eigenA-outlier", options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )])], style={'padding-left': '1%', 'display': 'inline-block', 'width': '49%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-data-table', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Div([ html.Label(["Correlation between Features"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-correlation', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-correlation-container'), ]), html.Div([html.A( 'Download Feature Correlation data', id='download-link-correlation', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Eigen Analysis of the correlation matrix"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-eigenA', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-eigenA-container'), ]), html.Div([html.A( 'Download Eigen Analysis data', id='download-link-eigenA', href="", download='Eigen_Analysis_data.csv', target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Loadings (Feature and PC correlation) from PCA"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-loadings', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-loadings-container'), ]), html.Div([html.A( 'Download Loadings data', id='download-link-loadings', download='Loadings_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Cos2 from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-cos2', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-cos2-container'), ]), html.Div([html.A( 'Download Cos2 data', id='download-link-cos2', download='Cos2_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Contributions from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-contrib', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-contrib-container'), ]), html.Div([html.A( 'Download Contributions data', id='download-link-contrib', download='Contributions_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), ])]) ]) ], style={'font-family': 'Raleway'})]) # READ FILE def parse_contents(contents, filename): content_type, content_string = contents.split(',') decoded = base64.b64decode(content_string) try: if 'csv' in filename: # Assume that the user uploaded a CSV file df = pd.read_csv(io.StringIO(decoded.decode('utf-8'))) df.fillna(0) elif 'xls' in filename: # Assume that the user uploaded an excel file df = pd.read_excel(io.BytesIO(decoded)) df.fillna(0) elif 'txt' or 'tsv' in filename: df = pd.read_csv(io.StringIO(decoded.decode('utf-8')), delimiter=r'\s+') df.fillna(0) except Exception as e: print(e) return html.Div([ 'There was an error processing this file.' ]) return df @app.callback(Output('csv-data', 'data'), [Input('data-table-upload', 'contents')], [State('data-table-upload', 'filename')]) def parse_uploaded_file(contents, filename): if not filename: return dash.no_update df = parse_contents(contents, filename) df.fillna(0) return df.to_json(date_format='iso', orient='split') @app.callback(Output('PC-Var-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) data = Var_dff elif outlier == 'Yes' and matrix_type == 'Correlation': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) data = Var_dff_outlier elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) data = Var_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) data = Var_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Cumulative Proportion of Explained Variance'], mode='lines', line=dict(color='Red'))) return {'data': traces, 'layout': go.Layout(title='<b>Cumulative Scree Plot Proportion of Explained Variance</b>', titlefont=dict(family='Helvetica', size=16), xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True }, yaxis={'title': 'Cumulative Explained Variance', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True, 'range': [0, 100]}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white") } @app.callback( Output('var-output-container-filter', 'children'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_output(outlier, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int) elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_covar) elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) @app.callback(Output('PC-Eigen-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')] ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) eigenvalues = pca.explained_variance_ Eigen_df = pd.DataFrame(data=eigenvalues, columns=['Eigenvalues']) Eigen_dff = pd.concat([PC_df, Eigen_df], axis=1) data = Eigen_dff elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier = pca_outlier.explained_variance_ Eigen_df_outlier = pd.DataFrame(data=eigenvalues_outlier, columns=['Eigenvalues']) Eigen_dff_outlier = pd.concat([PC_df_outlier, Eigen_df_outlier], axis=1) data = Eigen_dff_outlier elif outlier == 'No' and matrix_type == "Covariance": features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) eigenvalues_covar = pca_covar.explained_variance_ Eigen_df_covar = pd.DataFrame(data=eigenvalues_covar, columns=['Eigenvalues']) Eigen_dff_covar = pd.concat([PC_df_covar, Eigen_df_covar], axis=1) data = Eigen_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier_covar = pca_outlier_covar.explained_variance_ Eigen_df_outlier_covar = pd.DataFrame(data=eigenvalues_outlier_covar, columns=['Eigenvalues']) Eigen_dff_outlier_covar = pd.concat([PC_df_outlier_covar, Eigen_df_outlier_covar], axis=1) data = Eigen_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Eigenvalues'], mode='lines')) return {'data': traces, 'layout': go.Layout(title='<b>Scree Plot Eigenvalues</b>', xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, titlefont=dict(family='Helvetica', size=16), yaxis={'title': 'Eigenvalues', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white", ) } def round_up(n, decimals=0): multiplier = 10 ** decimals return math.ceil(n * multiplier) / multiplier def round_down(n, decimals=0): multiplier = 10 ** decimals return math.floor(n * multiplier) / multiplier @app.callback([Output('PC-feature-heatmap', 'figure'), Output('color-range-container', 'children')], [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input("matrix-type-heatmap", "value"), Input('csv-data', 'data')] ) def update_graph_stat(outlier, colorscale, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] # INCLUDING OUTLIERS features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf # explained variance of the the two principal components # print(pca.explained_variance_ratio_) # Explained variance tells us how much information (variance) can be attributed to each of the principal components # loading of each feature in principle components loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T # OUTLIERS REMOVED z_scores_hm = scipy.stats.zscore(dff) abs_z_scores_hm = np.abs(z_scores_hm) filtered_entries_hm = (abs_z_scores_hm < 3).all(axis=1) outlier_dff_hm = dff[filtered_entries_hm] features1_outlier_hm = outlier_dff_hm.columns features_outlier2 = list(features1_outlier_hm) outlier_names1_hm = df[filtered_entries_hm] outlier_names_hm = outlier_names1_hm.iloc[:, 0] x_outlier_hm = outlier_dff_hm.loc[:, features_outlier2].values # Separating out the target (if any) # Standardizing the features x_outlier_hm = StandardScaler().fit_transform(x_outlier_hm) pca_outlier_hm = PCA(n_components=len(features_outlier2)) principalComponents_outlier_hm = pca_outlier_hm.fit_transform(x_outlier_hm) principalDf_outlier_hm = pd.DataFrame(data=principalComponents_outlier_hm , columns=['PC' + str(i + 1) for i in range(len(features_outlier2))]) # combining principle components and target finalDf_outlier_hm = pd.concat([outlier_names_hm, principalDf_outlier_hm], axis=1) dfff_outlier_hm = finalDf_outlier_hm # calculating loading loading_outlier_hm = pca_outlier_hm.components_.T * np.sqrt(pca_outlier_hm.explained_variance_) loading_df_outlier_hm = pd.DataFrame(data=loading_outlier_hm[0:, 0:], index=features_outlier2, columns=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])]) loading_dff_outlier_hm = loading_df_outlier_hm.T # COVAR MATRIX features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) loading_dff_covar = loading_df_covar.T # COVAR MATRIX OUTLIERS REMOVED if outlier == 'No' and matrix_type == "Correlation": data = loading_dff elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_dff_outlier_hm elif outlier == 'No' and matrix_type == "Covariance": data = loading_dff_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) loading_dff_outlier_covar = loading_df_outlier_covar.T data = loading_dff_outlier_covar size_range = [round_up(data.values.min(), 2),round_down(data.values.max(),2) ] traces.append(go.Heatmap( z=data, x=features_outlier2, y=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])], colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "Loading", # 'tickvals': [round_up(data.values.min(), 2), # round_up((data.values.min() + (data.values.max() + data.values.min())/2)/2, 2), # round_down((data.values.max() + data.values.min())/2,2), # round_down((data.values.max() + (data.values.max() + data.values.min())/2)/2, 2), # round_down(data.values.max(),2), ] } )) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>PC and Feature Correlation Analysis</b>'), xaxis=dict(title_text='Features', title_standoff=50), titlefont=dict(family='Helvetica', size=16), hovermode='closest', margin={'b': 110, 't': 50, 'l': 75}, font=dict(family="Helvetica", size=11), annotations=[ dict(x=-0.16, y=0.5, showarrow=False, text="Principal Components", xref='paper', yref='paper', textangle=-90, font=dict(size=12))] ), }, '{}'.format(size_range) @app.callback(Output('feature-heatmap', 'figure'), [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input('csv-data', 'data')]) def update_graph_stat(outlier, colorscale, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] if outlier == 'No': features1 = dff.columns features = list(features1) # correlation coefficient and coefficient of determination correlation_dff = dff.corr(method='pearson', ) r2_dff = correlation_dff * correlation_dff data = r2_dff feat = features elif outlier == 'Yes': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier = correlation_dff_outlier * correlation_dff_outlier data = r2_dff_outlier feat = features_outlier traces.append(go.Heatmap( z=data, x=feat, y=feat, colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "R²", 'tickvals': [0, 0.2, 0.4, 0.6, 0.8, 1]})) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>Feature Correlation Analysis</b>', y=0.97, x=0.6), xaxis={}, titlefont=dict(family='Helvetica', size=16), yaxis={}, hovermode='closest', margin={'b': 110, 't': 50, 'l': 180, 'r': 50}, font=dict(family="Helvetica", size=11)), } @app.callback(Output('feature-input', 'options'), [Input('all-custom-choice', 'value'), Input('csv-data', 'data')]) def activate_input(all_custom, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': options = [] elif all_custom == 'Custom': options = [{'label': i, 'value': i} for i in dff.columns] return options @app.callback(Output('color-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')], ) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options @app.callback(Output('size-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item-second', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')]) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options # resume covar matrix... @app.callback(Output('biplot', 'figure'), [ Input('outlier-value-biplot', 'value'), Input('feature-input', 'value'), Input('customvar-graph-update', 'value'), Input('color-scale-scores', 'value'), Input('radio-target-item', 'value'), Input('size-scale-scores', 'value'), Input('radio-target-item-second', 'value'), Input('all-custom-choice', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data') ] ) def update_graph_custom(outlier, input, graph_update, color, target, size, target2, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_dff = pd.concat([zero_scale_df, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # calculating loading Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar trace2_all = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, showscale=False, size=12, line=dict(width=0.5, color='DarkSlateGrey'), ), ) #################################################################################################### # INCLUDE THIS if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_covar variance = Var_outlier_scale_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], line=dict(color="#4f4f4f"), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12) ) lists[counter] = trace1_all counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2_all) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_dff = pd.concat([zero_scale_input_df, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier variance = Var_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar variance = Var_scale_input_outlier_covar trace2 = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', marker_color=dat[color] if target == 'Yes' else None, marker_size=dat[size] if target2 == 'Yes' else 12, text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, colorscale='Plasma', sizeref=max(dat[size]) / (15 ** 2) if target2 == 'Yes' else None, sizemode='area', showscale=True if target == 'Yes' else False, line=dict(width=0.5, color='DarkSlateGrey'), colorbar=dict(title=dict(text=color if target == 'Yes' else None, font=dict(family='Helvetica'), side='right'), ypad=0), ), ) #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_scale_input_outlier_line_graph elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], line=dict(color="#666666" if target == 'Yes' else '#4f4f4f'), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12), ) lists[counter] = trace1 counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback( Output('size-second-target-container', 'children'), [Input('size-scale-scores', 'value'), Input('outlier-value-biplot', 'value'), Input('csv-data', 'data') ] ) def update_output(size, outlier, data): if not data: return dash.no_update if size is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) z_scores_dff_size = scipy.stats.zscore(dff) abs_z_scores_dff_size = np.abs(z_scores_dff_size) filtered_entries_dff_size = (abs_z_scores_dff_size < 3).all(axis=1) dff_target_outlier_size = dff[filtered_entries_dff_size] if outlier == 'Yes': size_range = [round(dff_target_outlier_size[size].min(), 2), round(dff_target_outlier_size[size].max(), 2)] elif outlier == 'No': size_range = [round(dff[size].min(), 2), round(dff[size].max(), 2)] return '{}'.format(size_range) @app.callback(Output('cos2-plot', 'figure'), [ Input('outlier-value-cos2', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-cos2", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df['cos2'] = (loading_scale_df["PC1"] ** 2) + (loading_scale_df["PC2"] ** 2) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_df.iloc[:, 2], columns=['cos2']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["cos2"] = (loading_outlier_scale_df["PC1"] ** 2) + ( loading_outlier_scale_df["PC2"] ** 2) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_df.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='cos2') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar['cos2'] = (loading_scale_df_covar["PC1"] ** 2) + (loading_scale_df_covar["PC2"] ** 2) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["cos2"] = (loading_outlier_scale_df_covar["PC1"] ** 2) + ( loading_outlier_scale_df_covar["PC2"] ** 2) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='cos2') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", textposition='bottom right', textfont=dict(size=12) ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["cos2"] = (loading_scale_input_df["PC1"] ** 2) + (loading_scale_input_df["PC2"] ** 2) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_df.iloc[:, 2], columns=['cos2']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["cos2"] = (loading_scale_input_outlier_df["PC1"] ** 2) + \ (loading_scale_input_outlier_df["PC2"] ** 2) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_df.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='cos2') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["cos2"] = (loading_scale_input_df_covar["PC1"] ** 2) + ( loading_scale_input_df_covar["PC2"] ** 2) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["cos2"] = (loading_scale_input_outlier_df_covar["PC1"] ** 2) + \ (loading_scale_input_outlier_df_covar["PC2"] ** 2) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='cos2') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": variance = Var_scale_input_outlier_covar data = loading_scale_input_outlier_line_graph_sort_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('contrib-plot', 'figure'), [ Input('outlier-value-contrib', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-contrib", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df["PC1_cos2"] = loading_scale_df["PC1"] ** 2 loading_scale_df["PC2_cos2"] = loading_scale_df["PC2"] ** 2 loading_scale_df["PC1_contrib"] = \ (loading_scale_df["PC1_cos2"] * 100) / (loading_scale_df["PC1_cos2"].sum(axis=0)) loading_scale_df["PC2_contrib"] = \ (loading_scale_df["PC2_cos2"] * 100) / (loading_scale_df["PC2_cos2"].sum(axis=0)) loading_scale_df["contrib"] = loading_scale_df["PC1_contrib"] + loading_scale_df["PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_scale_dataf = pd.concat([loading_scale_df.iloc[:, 0:2], loading_scale_df.iloc[:, 6]], axis=1) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_dataf, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_dataf.iloc[:, 2], columns=['contrib']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["PC1_cos2"] = loading_outlier_scale_df["PC1"] ** 2 loading_outlier_scale_df["PC2_cos2"] = loading_outlier_scale_df["PC2"] ** 2 loading_outlier_scale_df["PC1_contrib"] = \ (loading_outlier_scale_df["PC1_cos2"] * 100) / (loading_outlier_scale_df["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df["PC2_contrib"] = \ (loading_outlier_scale_df["PC2_cos2"] * 100) / (loading_outlier_scale_df["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df["contrib"] = loading_outlier_scale_df["PC1_contrib"] + loading_outlier_scale_df[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf = pd.concat( [loading_outlier_scale_df.iloc[:, 0:2], loading_outlier_scale_df.iloc[:, 6]], axis=1) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_dataf, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_dataf.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='contrib') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar["PC1_cos2"] = loading_scale_df_covar["PC1"] ** 2 loading_scale_df_covar["PC2_cos2"] = loading_scale_df_covar["PC2"] ** 2 loading_scale_df_covar["PC1_contrib"] = \ (loading_scale_df_covar["PC1_cos2"] * 100) / (loading_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_df_covar["PC2_contrib"] = \ (loading_scale_df_covar["PC2_cos2"] * 100) / (loading_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_df_covar["contrib"] = loading_scale_df_covar["PC1_contrib"] + loading_scale_df_covar[ "PC2_contrib"] loading_scale_dataf_covar = pd.concat([loading_scale_df_covar.iloc[:, 0:2], loading_scale_df_covar.iloc[:, 6]], axis=1) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_dataf_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX OUTLIERS REMOVED x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["PC1_cos2"] = loading_outlier_scale_df_covar["PC1"] ** 2 loading_outlier_scale_df_covar["PC2_cos2"] = loading_outlier_scale_df_covar["PC2"] ** 2 loading_outlier_scale_df_covar["PC1_contrib"] = \ (loading_outlier_scale_df_covar["PC1_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["PC2_contrib"] = \ (loading_outlier_scale_df_covar["PC2_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["contrib"] = loading_outlier_scale_df_covar["PC1_contrib"] + \ loading_outlier_scale_df_covar[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf_covar = pd.concat( [loading_outlier_scale_df_covar.iloc[:, 0:2], loading_outlier_scale_df_covar.iloc[:, 6]], axis=1) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_dataf_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff_covar = pd.concat( [zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='contrib') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['contrib'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["contrib"].min(), data["contrib"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Contribution", side='right'), ypad=0), ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["PC1_cos2"] = loading_scale_input_df["PC1"] ** 2 loading_scale_input_df["PC2_cos2"] = loading_scale_input_df["PC2"] ** 2 loading_scale_input_df["PC1_contrib"] = \ (loading_scale_input_df["PC1_cos2"] * 100) / (loading_scale_input_df["PC1_cos2"].sum(axis=0)) loading_scale_input_df["PC2_contrib"] = \ (loading_scale_input_df["PC2_cos2"] * 100) / (loading_scale_input_df["PC2_cos2"].sum(axis=0)) loading_scale_input_df["contrib"] = loading_scale_input_df["PC1_contrib"] + loading_scale_input_df[ "PC2_contrib"] loading_scale_input_dataf = pd.concat( [loading_scale_input_df.iloc[:, 0:2], loading_scale_input_df.iloc[:, 6]], axis=1) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_dataf, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_dataf.iloc[:, 2], columns=['contrib']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["PC1_cos2"] = loading_scale_input_outlier_df["PC1"] ** 2 loading_scale_input_outlier_df["PC2_cos2"] = loading_scale_input_outlier_df["PC2"] ** 2 loading_scale_input_outlier_df["PC1_contrib"] = \ (loading_scale_input_outlier_df["PC1_cos2"] * 100) / ( loading_scale_input_outlier_df["PC1_cos2"].sum(axis=0)) loading_scale_input_outlier_df["PC2_contrib"] = \ (loading_scale_input_outlier_df["PC2_cos2"] * 100) / ( loading_scale_input_outlier_df["PC2_cos2"].sum(axis=0)) loading_scale_input_outlier_df["contrib"] = loading_scale_input_outlier_df["PC1_contrib"] + \ loading_scale_input_outlier_df[ "PC2_contrib"] loading_scale_input_outlier_dataf = pd.concat( [loading_scale_input_outlier_df.iloc[:, 0:2], loading_scale_input_outlier_df.iloc[:, 6]], axis=1) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat( [loading_scale_input_outlier_dataf, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_dataf.iloc[:, 2], columns=['contrib']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='contrib') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["PC1_cos2"] = loading_scale_input_df_covar["PC1"] ** 2 loading_scale_input_df_covar["PC2_cos2"] = loading_scale_input_df_covar["PC2"] ** 2 loading_scale_input_df_covar["PC1_contrib"] = \ (loading_scale_input_df_covar["PC1_cos2"] * 100) / (loading_scale_input_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_input_df_covar["PC2_contrib"] = \ (loading_scale_input_df_covar["PC2_cos2"] * 100) / (loading_scale_input_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_input_df_covar["contrib"] = loading_scale_input_df_covar["PC1_contrib"] + \ loading_scale_input_df_covar[ "PC2_contrib"] loading_scale_input_dataf_covar = pd.concat( [loading_scale_input_df_covar.iloc[:, 0:2], loading_scale_input_df_covar.iloc[:, 6]], axis=1) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_dataf_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["PC1_cos2"] = loading_scale_input_outlier_df_covar["PC1"] ** 2 loading_scale_input_outlier_df_covar["PC2_cos2"] = loading_scale_input_outlier_df_covar["PC2"] ** 2 loading_scale_input_outlier_df_covar["PC1_contrib"] = \ (loading_scale_input_outlier_df_covar["PC1_cos2"] * 100) / ( loading_scale_input_outlier_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_input_outlier_df_covar["PC2_contrib"] = \ (loading_scale_input_outlier_df_covar["PC2_cos2"] * 100) / ( loading_scale_input_outlier_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_input_outlier_df_covar["contrib"] = loading_scale_input_outlier_df_covar["PC1_contrib"] + \ loading_scale_input_outlier_df_covar[ "PC2_contrib"] loading_scale_input_outlier_dataf_covar = pd.concat( [loading_scale_input_outlier_df_covar.iloc[:, 0:2], loading_scale_input_outlier_df_covar.iloc[:, 6]], axis=1) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat( [loading_scale_input_outlier_dataf_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_input_outlier_dff_covar = pd.concat( [zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='contrib') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_sort_covar variance = Var_scale_input_outlier_covar N = len(data['contrib'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["contrib"].min(), data["contrib"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Contribution", side='right'), ypad=0) )) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('download-link', 'download'), [Input('all-custom-choice', 'value'), Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value')]) def update_filename(all_custom, outlier, matrix_type): if all_custom == 'All' and outlier == 'Yes' and matrix_type == "Correlation": download = 'all_variables_correlation_matrix_outliers_removed_data.csv' elif all_custom == 'All' and outlier == 'Yes' and matrix_type == "Covariance": download = 'all_variables_covariance_matrix_outliers_removed_data.csv' elif all_custom == 'All' and outlier == 'No' and matrix_type == "Correlation": download = 'all_variables_correlation_matrix_data.csv' elif all_custom == 'All' and outlier == 'No' and matrix_type == "Covariance": download = 'all_variables_covariance_matrix_data.csv' elif all_custom == 'Custom' and outlier == 'Yes' and matrix_type == "Correlation": download = 'custom_variables_correlation_matrix_outliers_removed_data.csv' elif all_custom == 'Custom' and outlier == 'Yes' and matrix_type == "Covariance": download = 'custom_variables_covariance_matrix_outliers_removed_data.csv' elif all_custom == 'Custom' and outlier == 'No' and matrix_type == "Correlation": download = 'custom_variables_correlation_matrix_data.csv' elif all_custom == 'Custom' and outlier == 'No' and matrix_type == "Covariance": download = 'custom_variables_covariance_matrix_data.csv' return download @app.callback(Output('download-link', 'href'), [Input('all-custom-choice', 'value'), Input('feature-input', 'value'), Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')]) def update_link(all_custom, input, outlier, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) # COVARIANCE MATRIX REMOVING OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) # COVARIANCE MATRIX OUTLIERS REMOVED x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar csv_string = dat.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return csv_string @app.callback(Output('download-link-correlation', 'download'), [Input('eigenA-outlier', 'value'), ]) def update_filename(outlier): if outlier == 'Yes': download = 'feature_correlation_removed_outliers_data.csv' elif outlier == 'No': download = 'feature_correlation_data.csv' return download @app.callback([Output('data-table-correlation', 'data'), Output('data-table-correlation', 'columns'), Output('download-link-correlation', 'href')], [Input("eigenA-outlier", 'value'), Input('csv-data', 'data')], ) def update_output(outlier, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No': features1 = dff.columns features = list(features1) # correlation coefficient and coefficient of determination correlation_dff = dff.corr(method='pearson', ) r2_dff_table = correlation_dff * correlation_dff r2_dff_table.insert(0, 'Features', features) data_frame = r2_dff_table if outlier == 'Yes': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier_table = correlation_dff_outlier * correlation_dff_outlier r2_dff_outlier_table.insert(0, 'Features', features_outlier) data_frame = r2_dff_outlier_table data = data_frame.to_dict('records') columns = [{"name": i, "id": i, "deletable": True, "selectable": True, 'type': 'numeric', 'format': Format(precision=3, scheme=Scheme.fixed)} for i in data_frame.columns] csv_string = data_frame.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return data, columns, csv_string @app.callback(Output('download-link-eigenA', 'download'), [Input("matrix-type-data-table", 'value'), Input('eigenA-outlier', 'value')]) def update_filename(matrix_type, outlier): if outlier == 'Yes' and matrix_type == "Correlation": download = 'Eigen_Analysis_correlation_matrix_removed_outliers_data.csv' elif outlier == 'Yes' and matrix_type == "Covariance": download = 'Eigen_Analysis_covariance_matrix_removed_outliers_data.csv' elif outlier == 'No' and matrix_type == "Correlation": download = 'Eigen_Analysis_correlation_matrix_data.csv' elif outlier == "No" and matrix_type == "Covariance": download = 'Eigen_Analysis_covariance_matrix_data.csv' return download @app.callback([Output('data-table-eigenA', 'data'), Output('data-table-eigenA', 'columns'), Output('download-link-eigenA', 'href')], [Input('all-custom-choice', 'value'), Input("eigenA-outlier", 'value'), Input('feature-input', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')], ) def update_output(all_custom, outlier, input, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) eigenvalues = pca.explained_variance_ Eigen_df = pd.DataFrame(data=eigenvalues, columns=['Eigenvalues']) Eigen_dff = pd.concat([PC_df, Eigen_df], axis=1) Var_dfff = pd.concat([(Var_cumsum * 100)], axis=1) Eigen_Analysis = pd.concat([PC_df.T, Eigen_df.T, Var_df.T, Var_dfff.T], axis=0) Eigen_Analysis = Eigen_Analysis.rename(columns=Eigen_Analysis.iloc[0]) Eigen_Analysis = Eigen_Analysis.drop(Eigen_Analysis.index[0]) Eigen_Analysis.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier = correlation_dff_outlier * correlation_dff_outlier x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier = pca_outlier.explained_variance_ Eigen_df_outlier = pd.DataFrame(data=eigenvalues_outlier, columns=['Eigenvalues']) Eigen_dff_outlier = pd.concat([PC_df_outlier, Eigen_df_outlier], axis=1) Var_dfff_outlier = pd.concat([Var_cumsum_outlier * 100], axis=1) Eigen_Analysis_Outlier = pd.concat( [PC_df_outlier.T, Eigen_df_outlier.T, Var_df_outlier.T, Var_dfff_outlier.T], axis=0) Eigen_Analysis_Outlier = Eigen_Analysis_Outlier.rename(columns=Eigen_Analysis_Outlier.iloc[0]) Eigen_Analysis_Outlier = Eigen_Analysis_Outlier.drop(Eigen_Analysis_Outlier.index[0]) Eigen_Analysis_Outlier.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_Outlier elif outlier == "No" and matrix_type == "Covariance": features1 = dff.columns features = list(features1) x_covar = dff.loc[:, features].values pca_covar = PCA(n_components=len(features)) principalComponents_covar = pca_covar.fit_transform(x_covar) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) dfff_covar = finalDf_covar loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) loading_dff_covar = loading_df_covar.T Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) eigenvalues_covar = pca_covar.explained_variance_ Eigen_df_covar = pd.DataFrame(data=eigenvalues_covar, columns=['Eigenvalues']) Eigen_dff_covar = pd.concat([PC_df_covar, Eigen_df_covar], axis=1) Var_dfff_covar = pd.concat([(Var_cumsum_covar * 100)], axis=1) Eigen_Analysis_covar = pd.concat([PC_df_covar.T, Eigen_df_covar.T, Var_df_covar.T, Var_dfff_covar.T], axis=0) Eigen_Analysis_covar = Eigen_Analysis_covar.rename(columns=Eigen_Analysis_covar.iloc[0]) Eigen_Analysis_covar = Eigen_Analysis_covar.drop(Eigen_Analysis_covar.index[0]) Eigen_Analysis_covar.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier_covar = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier_covar = outlier_dff.loc[:, ].values pca_outlier_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier_covar) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) dfff_outlier_covar = finalDf_outlier_covar # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) loading_dff_outlier_covar = loading_df_outlier_covar.T Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier_covar = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier_covar = math.ceil(PC_interp_outlier_covar) eigenvalues_outlier_covar = pca_outlier_covar.explained_variance_ Eigen_df_outlier_covar = pd.DataFrame(data=eigenvalues_outlier_covar, columns=['Eigenvalues']) Eigen_dff_outlier_covar = pd.concat([PC_df_outlier_covar, Eigen_df_outlier_covar], axis=1) Var_dfff_outlier_covar = pd.concat([Var_cumsum_outlier_covar * 100], axis=1) Eigen_Analysis_Outlier_covar = pd.concat( [PC_df_outlier_covar.T, Eigen_df_outlier_covar.T, Var_df_outlier_covar.T, Var_dfff_outlier_covar.T], axis=0) Eigen_Analysis_Outlier_covar = Eigen_Analysis_Outlier_covar.rename( columns=Eigen_Analysis_Outlier_covar.iloc[0]) Eigen_Analysis_Outlier_covar = Eigen_Analysis_Outlier_covar.drop(Eigen_Analysis_Outlier_covar.index[0]) Eigen_Analysis_Outlier_covar.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_Outlier_covar elif all_custom == "Custom": if outlier == 'No' and matrix_type == "Correlation": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # INPUT DATA WITH OUTLIERS pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ eigenvalues_scale_input = pca_scale_input.explained_variance_ Eigen_df_scale_input = pd.DataFrame(data=eigenvalues_scale_input, columns=["Eigenvaues"]) PC_df_scale_input = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_input))], columns=['Principal Component']) Var_df_scale_input = pd.DataFrame(data=Var_scale_input, columns=['Cumulative Proportion of Explained Ratio']) Var_cumsum_scale_input = Var_df_scale_input.cumsum() Var_dfff_scale_input = pd.concat([Var_cumsum_scale_input * 100], axis=1) Eigen_Analysis_scale_input = pd.concat([PC_df_scale_input.T, Eigen_df_scale_input.T, Var_df_scale_input.T, Var_dfff_scale_input.T], axis=0) Eigen_Analysis_scale_input = Eigen_Analysis_scale_input.rename(columns=Eigen_Analysis_scale_input.iloc[0]) Eigen_Analysis_scale_input = Eigen_Analysis_scale_input.drop(Eigen_Analysis_scale_input.index[0]) Eigen_Analysis_scale_input.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_scale_input elif outlier == "Yes" and matrix_type == "Correlation": dff_input = dff.drop(columns=dff[input]) z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] dff_target = dff[input] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # INPUT DATA WITH REMOVING OUTLIERS pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ eigenvalues_scale_input_outlier = pca_scale_input_outlier.explained_variance_ Eigen_df_scale_input_outlier = pd.DataFrame(data=eigenvalues_scale_input_outlier, columns=["Eigenvaues"]) PC_df_scale_input_outlier = pd.DataFrame( data=['PC' + str(i + 1) for i in range(len(features_input_outlier))], columns=['Principal Component']) Var_df_scale_input_outlier = pd.DataFrame(data=Var_scale_input_outlier, columns=['Cumulative Proportion of Explained ' 'Ratio']) Var_cumsum_scale_input_outlier = Var_df_scale_input_outlier.cumsum() Var_dfff_scale_input_outlier = pd.concat([Var_cumsum_scale_input_outlier * 100], axis=1) Eigen_Analysis_scale_input_outlier = pd.concat([PC_df_scale_input_outlier.T, Eigen_df_scale_input_outlier.T, Var_df_scale_input_outlier.T, Var_dfff_scale_input_outlier.T], axis=0) Eigen_Analysis_scale_input_outlier = Eigen_Analysis_scale_input_outlier.rename( columns=Eigen_Analysis_scale_input_outlier.iloc[0]) Eigen_Analysis_scale_input_outlier = Eigen_Analysis_scale_input_outlier.drop( Eigen_Analysis_scale_input_outlier.index[0]) Eigen_Analysis_scale_input_outlier.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] x_scale_input_covar = dff_input.loc[:, features_input].values # INPUT DATA WITH OUTLIERS pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ eigenvalues_scale_input_covar = pca_scale_input_covar.explained_variance_ Eigen_df_scale_input_covar = pd.DataFrame(data=eigenvalues_scale_input_covar, columns=["Eigenvaues"]) PC_df_scale_input_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_input))], columns=['Principal Component']) Var_df_scale_input_covar = pd.DataFrame(data=Var_scale_input_covar, columns=['Cumulative Proportion of Explained Ratio']) Var_cumsum_scale_input_covar = Var_df_scale_input_covar.cumsum() Var_dfff_scale_input_covar = pd.concat([Var_cumsum_scale_input_covar * 100], axis=1) Eigen_Analysis_scale_input_covar = pd.concat([PC_df_scale_input_covar.T, Eigen_df_scale_input_covar.T, Var_df_scale_input_covar.T, Var_dfff_scale_input_covar.T], axis=0) Eigen_Analysis_scale_input_covar = Eigen_Analysis_scale_input_covar.rename( columns=Eigen_Analysis_scale_input_covar.iloc[0]) Eigen_Analysis_scale_input_covar = Eigen_Analysis_scale_input_covar.drop( Eigen_Analysis_scale_input_covar.index[0]) Eigen_Analysis_scale_input_covar.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dff_input = dff.drop(columns=dff[input]) z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] dff_target = dff[input] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values # INPUT DATA WITH REMOVING OUTLIERS pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ eigenvalues_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ Eigen_df_scale_input_outlier_covar = pd.DataFrame(data=eigenvalues_scale_input_outlier_covar, columns=["Eigenvaues"]) PC_df_scale_input_outlier_covar = pd.DataFrame( data=['PC' + str(i + 1) for i in range(len(features_input_outlier))], columns=['Principal Component']) Var_df_scale_input_outlier_covar = pd.DataFrame(data=Var_scale_input_outlier_covar, columns=['Cumulative Proportion of Explained ' 'Ratio']) Var_cumsum_scale_input_outlier_covar = Var_df_scale_input_outlier_covar.cumsum() Var_dfff_scale_input_outlier_covar = pd.concat([Var_cumsum_scale_input_outlier_covar * 100], axis=1) Eigen_Analysis_scale_input_outlier_covar = pd.concat( [PC_df_scale_input_outlier_covar.T, Eigen_df_scale_input_outlier_covar.T, Var_df_scale_input_outlier_covar.T, Var_dfff_scale_input_outlier_covar.T], axis=0) Eigen_Analysis_scale_input_outlier_covar = Eigen_Analysis_scale_input_outlier_covar.rename( columns=Eigen_Analysis_scale_input_outlier_covar.iloc[0]) Eigen_Analysis_scale_input_outlier_covar = Eigen_Analysis_scale_input_outlier_covar.drop( Eigen_Analysis_scale_input_outlier_covar.index[0]) Eigen_Analysis_scale_input_outlier_covar.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_scale_input_outlier_covar data = data_frame_EigenA.to_dict('records') columns = [{"name": i, "id": i, "deletable": True, "selectable": True, 'type': 'numeric', 'format': Format(precision=3, scheme=Scheme.fixed)} for i in data_frame_EigenA.columns] csv_string = data_frame_EigenA.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return data, columns, csv_string @app.callback(Output('download-link-loadings', 'download'), [Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value')]) def update_filename(outlier, matrix_type): if outlier == 'Yes' and matrix_type == "Correlation": download = 'Loadings_correlation_matrix_removed_outliers_data.csv' elif outlier == 'Yes' and matrix_type == "Covariance": download = 'Loadings_covariance_matrix_removed_outliers_data.csv' elif outlier == 'No' and matrix_type == "Correlation": download = 'Loadings_correlation_matrix_data.csv' elif outlier == 'No' and matrix_type == "Covariance": download = 'Loadings_covariance_matrix_data.csv' return download @app.callback([Output('data-table-loadings', 'data'), Output('data-table-loadings', 'columns'), Output('download-link-loadings', 'href')], [Input('all-custom-choice', 'value'), Input("eigenA-outlier", 'value'), Input('feature-input', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')], ) def update_output(all_custom, outlier, input, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale, columns=["PC" + str(i + 1) for i in range(len(features))]) line_group_scale_df = pd.DataFrame(data=features, columns=['Features']) loading_scale_dataf = pd.concat([line_group_scale_df, loading_scale_df], axis=1) data_frame = loading_scale_dataf elif outlier == 'Yes' and matrix_type == "Correlation": # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale, columns=["PC" + str(i + 1) for i in range(len(features_outlier))]) line_group_outlier_scale_df = pd.DataFrame(data=features_outlier, columns=['Features']) loading_outlier_scale_dataf = pd.concat([line_group_outlier_scale_df, loading_outlier_scale_df], axis=1) data_frame = loading_outlier_scale_dataf elif outlier == "No" and matrix_type == "Covariance": features1 = dff.columns features = list(features1) x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar, columns=["PC" + str(i + 1) for i in range(len(features))]) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['Features']) loading_scale_dataf_covar = pd.concat([line_group_scale_df_covar, loading_scale_df_covar], axis=1) data_frame = loading_scale_dataf_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values # uses covariance matrix pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar, columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar, columns=["PC" + str(i + 1) for i in range(len(features_outlier))]) line_group_outlier_scale_df_covar = pd.DataFrame(data=features_outlier, columns=['Features']) loading_outlier_scale_dataf_covar = pd.concat( [line_group_outlier_scale_df_covar, loading_outlier_scale_df_covar], axis=1) data_frame = loading_outlier_scale_dataf_covar if all_custom == 'Custom': if outlier == 'No' and matrix_type == "Correlation": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input, columns=["PC" + str(i + 1) for i in range(len(features_input))]) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['Features']) loading_scale_input_dataf = pd.concat([line_group_scale_input_df, loading_scale_input_df], axis=1) data_frame = loading_scale_input_dataf elif outlier == 'Yes' and matrix_type == "Correlation": dff_input = dff.drop(columns=dff[input]) dff_target = dff[input] z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier, columns=["PC" + str(i + 1) for i in range(len(features_input_outlier))]) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['Features']) loading_scale_input_outlier_dataf = pd.concat([line_group_scale_input_outlier_df, loading_scale_input_outlier_df], axis=1) data_frame = loading_scale_input_outlier_dataf elif outlier == "No" and matrix_type == "Covariance": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # INPUT DATA WITH OUTLIERS x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar, columns=["PC" + str(i + 1) for i in range(len(features_input))]) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['Features']) loading_scale_input_dataf_covar = pd.concat([line_group_scale_input_df_covar, loading_scale_input_df_covar], axis=1) data_frame = loading_scale_input_dataf_covar elif outlier == "Yes" and matrix_type == "Covariance": dff_input = dff.drop(columns=dff[input]) dff_target = dff[input] z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar, columns=["PC" + str(i + 1) for i in range(len(features_input_outlier))]) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['Features']) loading_scale_input_outlier_dataf_covar = pd.concat([line_group_scale_input_outlier_df_covar, loading_scale_input_outlier_df_covar], axis=1) data_frame = loading_scale_input_outlier_dataf_covar data = data_frame.to_dict('records') columns = [{"name": i, "id": i, "deletable": True, "selectable": True, 'type': 'numeric', 'format': Format(precision=3, scheme=Scheme.fixed)} for i in data_frame.columns] csv_string = data_frame.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return data, columns, csv_string @app.callback(Output('download-link-cos2', 'download'), [Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value')]) def update_filename(outlier, matrix_type): if outlier == 'Yes' and matrix_type == "Correlation": download = 'Cos2_correlation_matrix_removed_outliers_data.csv' elif outlier == 'Yes' and matrix_type == "Covariance": download = 'Cos2_covariance_matrix_removed_outliers_data.csv' elif outlier == 'No' and matrix_type == "Correlation": download = 'Cos2_correlation_matrix_data.csv' elif outlier == "No" and matrix_type == "Covariance": download = 'Cos2_covariance_matrix_data.csv' return download @app.callback([Output('data-table-cos2', 'data'), Output('data-table-cos2', 'columns'), Output('download-link-cos2', 'href'), ], [Input('all-custom-choice', 'value'), Input("eigenA-outlier", 'value'), Input('feature-input', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')], ) def update_output(all_custom, outlier, input, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == "All": if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale, columns=["PC" + str(i + 1) for i in range(len(features))]) for i in loading_scale_df.columns: loading_scale_df[i] = (loading_scale_df[i] ** 2) line_group_scale_df = pd.DataFrame(data=features, columns=['Features']) loading_scale_dataf = pd.concat([line_group_scale_df, loading_scale_df], axis=1) data_frame = loading_scale_dataf elif outlier == 'Yes' and matrix_type == "Correlation": # ORIGINAL DATA WITH REMOVING OUTLIERS # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale =
pd.concat([outlier_names, principalDf_outlier_scale], axis=1)
pandas.concat
import json import pickle import glob import numpy as np import pandas as pd from tabulate import tabulate from datetime import datetime from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import StandardScaler def load_json(path): """Load json file. Args: path (str): file location Returns: data (dict) """ with open(path, 'r') as f: data = json.load(f) return data def to_sec(ts): """Format time string to seconds. Args: ts (string): time string. Returns: time (float): second format """ try: return datetime.strptime(ts, '%Y-%m-%d %H:%M:%S').timestamp() except: return datetime.strptime(ts, '%Y-%m-%d %H:%M:%S.%f').timestamp() def three_random_split(DATA_DIR, multi_class=False): """Combine results from three random seed trainings. Args: DATA_DIR (str): data pickle file location. multi_class (bool): if the regression has multi-class. Returns: train_true (np.array): training data true labels. train_pred (np.array): training data predicted labels. valid_true (np.array): validation data true labels. valid_pred (np.array): validation data predicted labels. test_true (np.array): testing data true labels. test_pred (np.array): testing data predicted labels. """ y_true = [] y_pred = [] files = sorted(glob.glob(DATA_DIR + 'best_archs_result_0_*.pickle')) for file in files: with open(file, 'rb') as f: _ = pickle.load(f) for _ in range(3): if multi_class: y_true.append(pickle.load(f)[np.newaxis, ...]) y_pred.append(pickle.load(f).squeeze()[np.newaxis, ...]) else: y_true.append(pickle.load(f).ravel()) y_pred.append(pickle.load(f).ravel().squeeze()) train_true = np.vstack([y_true[i] for i in [0, 3, 6]]) train_pred = np.vstack([y_pred[i] for i in [0, 3, 6]]) valid_true = np.vstack([y_true[i] for i in [1, 4, 7]]) valid_pred = np.vstack([y_pred[i] for i in [1, 4, 7]]) test_true = np.vstack([y_true[i] for i in [2, 5, 8]]) test_pred = np.vstack([y_pred[i] for i in [2, 5, 8]]) return train_true, train_pred, valid_true, valid_pred, test_true, test_pred def three_random_mean_std(DATA_DIR, multi_class=False): """Calculate the mean and standard deviation of three random seed trainings. Args: DATA_DIR (str): data pickle file location. multi_class (bool): if the regression has multi-class. Returns: m (float): mean value. s (float): standard deviation value. """ output = three_random_split(DATA_DIR, multi_class=multi_class) funcs = [mean_absolute_error, mean_squared_error, r2_score] if not multi_class: result = [] for func in funcs: for i in range(3): result.append([func(output[i * 2][j], output[i * 2 + 1][j]) for j in range(len(output[0]))]) result = np.array(result) m = result.mean(axis=1) s = result.std(axis=1) print(tabulate( [['Train', f'{m[0]:0.4f}+/-{s[0]:0.4f}', f'{m[3]:0.4f}+/-{s[3]:0.4f}', f'{m[6]:0.4f}+/-{s[6]:0.4f}'], ['Valid', f'{m[1]:0.4f}+/-{s[1]:0.4f}', f'{m[4]:0.4f}+/-{s[4]:0.4f}', f'{m[7]:0.4f}+/-{s[7]:0.4f}'], ['Test', f'{m[2]:0.4f}+/-{s[2]:0.4f}', f'{m[5]:0.4f}+/-{s[5]:0.4f}', f'{m[8]:0.4f}+/-{s[8]:0.4f}']], headers=['', 'MAE', 'MSE', 'R2'])) else: for c in range(output[0].shape[-1]): result = [] for func in funcs: for i in range(3): result.append( [func(output[i * 2][j, :, c], output[i * 2 + 1][j, :, c]) for j in range(len(output[0]))]) result = np.array(result) m = result.mean(axis=1) s = result.std(axis=1) print(tabulate( [['Train', f'{m[0]:0.4f}+/-{s[0]:0.4f}', f'{m[3]:0.4f}+/-{s[3]:0.4f}', f'{m[6]:0.4f}+/-{s[6]:0.4f}'], ['Valid', f'{m[1]:0.4f}+/-{s[1]:0.4f}', f'{m[4]:0.4f}+/-{s[4]:0.4f}', f'{m[7]:0.4f}+/-{s[7]:0.4f}'], ['Test', f'{m[2]:0.4f}+/-{s[2]:0.4f}', f'{m[5]:0.4f}+/-{s[5]:0.4f}', f'{m[8]:0.4f}+/-{s[8]:0.4f}']], headers=['', 'MAE', 'MSE', 'R2'])) return m, s def create_csv(DATA_DIR, data): """Create a csv file of the architecture components. Args: DATA_DIR (str): data file location. data (dict): the dictionary file containing the operations for each architecture. """ # Task specific state_dims = ['dim(4)', 'dim(8)', 'dim(16)', 'dim(32)'] Ts = ['repeat(1)', 'repeat(2)', 'repeat(3)', 'repeat(4)'] attn_methods = ['attn(const)', 'attn(gcn)', 'attn(gat)', 'attn(sym-gat)', 'attn(linear)', 'attn(gen-linear)', 'attn(cos)'] attn_heads = ['head(1)', 'head(2)', 'head(4)', 'head(6)'] aggr_methods = ['aggr(max)', 'aggr(mean)', 'aggr(sum)'] update_methods = ['update(gru)', 'update(mlp)'] activations = ['act(sigmoid)', 'act(tanh)', 'act(relu)', 'act(linear)', 'act(elu)', 'act(softplus)', 'act(leaky_relu)', 'act(relu6)'] out = [] for state_dim in state_dims: for T in Ts: for attn_method in attn_methods: for attn_head in attn_heads: for aggr_method in aggr_methods: for update_method in update_methods: for activation in activations: out.append( [state_dim, T, attn_method, attn_head, aggr_method, update_method, activation]) out_pool = [] for functions in ['GlobalSumPool', 'GlobalMaxPool', 'GlobalAvgPool']: for axis in ['(feature)', '(node)']: # Pool in terms of nodes or features out_pool.append(functions + axis) out_pool.append('flatten') for state_dim in [16, 32, 64]: out_pool.append(f'AttentionPool({state_dim})') out_pool.append('AttentionSumPool') out_connect = ['skip', 'connect'] def get_gat(index): return out[index] def get_pool(index): return out_pool[index] def get_connect(index): return out_connect[index] archs = np.array(data['arch_seq']) rewards = np.array(data['raw_rewards']) a = np.empty((len(archs), 0), dtype=np.object) a = np.append(a, archs, axis=-1) a = np.append(a, rewards[..., np.newaxis], axis=-1) b = np.empty((0, 29), dtype=np.object) for i in range(len(a)): temp = a[i, :] b0 = [get_gat(temp[0])[i] + '[cell1]' for i in range(len(get_gat(temp[0])))] b1 = [get_connect(temp[1]) + '[link1]'] b2 = [get_gat(temp[2])[i] + '[cell2]' for i in range(len(get_gat(temp[2])))] b3 = [get_connect(temp[3]) + '[link2]'] b4 = [get_connect(temp[4]) + '[link3]'] b5 = [get_gat(temp[5])[i] + '[cell3]' for i in range(len(get_gat(temp[5])))] b6 = [get_connect(temp[6]) + '[link4]'] b7 = [get_connect(temp[7]) + '[link5]'] b8 = [get_connect(temp[8]) + '[link6]'] b9 = [get_pool(temp[9])] bout = b0 + b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9 + [temp[10]] bout = np.array(bout, dtype=object) b = np.append(b, bout[np.newaxis, ...], axis=0) table = pd.DataFrame(data=b) table.to_csv(DATA_DIR + 'nas_result.csv', encoding='utf-8', index=False, header=False) def moving_average(time_list, data_list, window_size=100): """Calculate the moving average. Args: time_list (list): a list of timestamps. data_list (list): a list of data points. window_size (int): the window size. Returns: time array and data array """ res_list = [] times_list = [] for i in range(len(data_list) - window_size): times_list.append(sum(time_list[i:i + window_size]) / window_size) res_list.append(sum(data_list[i:i + window_size]) / window_size) return np.array(times_list), np.array(res_list) def plot_reward_vs_time(data, PLOT_DIR, ylim=None, time=True, plot=False, metric='MAE'): """Generate plot of search trajectory. Args: data (dict): the data dictionary. PLOT_DIR (str): the location to store the figure. ylim (float): the minimum value of the y axis. time (bool): True if want time as x axis, else want instance number. plot (bool): if want to create a plot. metric (str): the type of metric on y axis. """ start_infos = data['start_infos'][0] try: start_time = to_sec(data['workload']['times'][0]) except: start_time = to_sec(start_infos['timestamp']) times = [to_sec(ts) - start_time for ts in data['timestamps']] x = times y = data['raw_rewards'] plt.figure(figsize=(5, 4)) if time: plt.plot(np.array(x) / 60, y, 'o', markersize=3) plt.xlabel('Time (min)') else: plt.plot(y, 'o', markersize=3) plt.xlabel('Iterations') plt.ylabel(f'Reward (-{metric})') plt.xlim(left=0) if ylim is not None: plt.ylim(ylim) plt.locator_params(axis='y', nbins=4) plt.savefig(PLOT_DIR + 'reward.png', dpi=300, bbox_inches='tight') plt.savefig(PLOT_DIR+'reward.svg', bbox_inches='tight') if not plot: plt.close(); def three_random_parity_plot(DATA_DIR, PLOT_DIR, multi_class=False, limits=None, plot=False, ticks=None): """Generate parity plots from three random seed trainings. Args: DATA_DIR (str): the location of the data file. PLOT_DIR (str): the location to store the figure. multi_class (bool): if it is multi-class regression. limits (list): the y limits you want to set. plot (bool): if want to create a plot. ticks (list): the x axis ticks. """ _, _, _, _, y_true_raw, y_pred_raw = three_random_split(DATA_DIR, multi_class=multi_class) if not multi_class: y_true = y_true_raw.ravel() y_pred = y_pred_raw.ravel() scaler = StandardScaler() y_true = scaler.fit_transform(y_true[..., np.newaxis]).squeeze() y_pred = scaler.fit_transform(y_pred[..., np.newaxis]).squeeze() fig, ax = plt.subplots(figsize=(4, 4)) min_value = np.min([y_true.min(), y_pred.min()]) max_value = np.max([y_true.max(), y_pred.max()]) dist = max_value - min_value min_value -= 0.03 * dist max_value += 0.03 * dist if limits is not None: min_value, max_value = limits ax.plot(np.linspace(min_value, max_value, 100), np.linspace(min_value, max_value, 100), 'k--', alpha=0.5) ax.scatter(y_true.ravel(), y_pred.ravel(), s=5, alpha=0.9) plt.xlim(min_value, max_value) plt.ylim(min_value, max_value) plt.xlabel("True") plt.ylabel("Predicted") print(min_value, max_value) from matplotlib import ticker formatter = ticker.ScalarFormatter(useMathText=True) formatter.set_scientific(True) formatter.set_powerlimits((-1, 1)) if ticks is not None: plt.xticks(ticks, ticks) plt.yticks(ticks, ticks) else: plt.locator_params(axis='x', nbins=5) plt.locator_params(axis='y', nbins=5) ax.xaxis.set_major_formatter(formatter) ax.yaxis.set_major_formatter(formatter) # plt.tight_layout() plt.savefig(PLOT_DIR + "parity_plot.png", bbox_inches='tight') plt.savefig(PLOT_DIR + "parity_plot.svg", bbox_inches='tight') if not plot: plt.close(); else: for c in range(y_true_raw.shape[-1]): y_true = y_true_raw[..., c].ravel() y_pred = y_pred_raw[..., c].ravel() plt.figure(figsize=(4, 4)) min_value = np.min([y_true.min(), y_pred.min()]) max_value = np.max([y_true.max(), y_pred.max()]) dist = max_value - min_value min_value -= 0.03 * dist max_value += 0.03 * dist if limits is not None: min_value, max_value = limits plt.plot(np.linspace(min_value, max_value, 100), np.linspace(min_value, max_value, 100), 'k--', alpha=0.5) plt.scatter(y_true.ravel(), y_pred.ravel(), s=5, alpha=0.9) plt.xlim(min_value, max_value) plt.ylim(min_value, max_value) plt.xlabel("True") plt.ylabel("Predicted") plt.locator_params(axis='x', nbins=5) plt.locator_params(axis='y', nbins=5) plt.savefig(PLOT_DIR + f"parity_plot_{c}.png", bbox_inches='tight') if not plot: plt.close(); def feature_importance(DATA_DIR, PLOT_DIR, plot=False): """Generate feature importance plots. Args: DATA_DIR (str): the location of the data file. PLOT_DIR (str): the location to store the figure. plot (bool): if want to create a plot. """ train_data = pd.read_csv(DATA_DIR + 'nas_result.csv', header=None) df = train_data df_new =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ AIDeveloper --------- @author: maikherbig """ import os,sys,gc os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'#suppress warnings/info from tensorflow if not sys.platform.startswith("win"): from multiprocessing import freeze_support freeze_support() # Make sure to get the right icon file on win,linux and mac if sys.platform=="darwin": icon_suff = ".icns" else: icon_suff = ".ico" import pyqtgraph as pg from pyqtgraph.Qt import QtCore, QtWidgets, QtGui from pyqtgraph import Qt import aid_start dir_root = os.path.dirname(aid_start.__file__)#ask the module for its origin dir_settings = os.path.join(dir_root,"aid_settings.json")#dir to settings Default_dict = aid_start.get_default_dict(dir_settings) #try: # splashapp = QtWidgets.QApplication(sys.argv) # #splashapp.setWindowIcon(QtGui.QIcon("."+os.sep+"art"+os.sep+Default_dict["Icon theme"]+os.sep+"main_icon_simple_04_256.ico")) # # Create and display the splash screen # splash_pix = os.path.join(dir_root,"art",Default_dict["Icon theme"],"main_icon_simple_04_256"+icon_suff) # splash_pix = QtGui.QPixmap(splash_pix) # #splash_pix = QtGui.QPixmap("."+os.sep+"art"+os.sep+Default_dict["Icon theme"]+os.sep+"main_icon_simple_04_256"+icon_suff) # splash = QtWidgets.QSplashScreen(splash_pix, QtCore.Qt.WindowStaysOnTopHint) # splash.setMask(splash_pix.mask()) # splash.show() #except: # pass #BEFORE importing tensorflow or anything from keras: make sure the keras.json has #certain properties keras_json_path = os.path.expanduser('~')+os.sep+'.keras'+os.sep+'keras.json' if not os.path.isdir(os.path.expanduser('~')+os.sep+'.keras'): os.mkdir(os.path.expanduser('~')+os.sep+'.keras') aid_start.banner() #show a fancy banner in console aid_start.keras_json_check(keras_json_path) import traceback,shutil,re,ast,io,platform import h5py,json,time,copy,urllib,datetime from stat import S_IREAD,S_IRGRP,S_IROTH,S_IWRITE,S_IWGRP,S_IWOTH import tensorflow as tf from tensorboard import program from tensorboard import default from tensorflow.python.client import device_lib devices = device_lib.list_local_devices() device_types = [devices[i].device_type for i in range(len(devices))] #Get the number of CPU cores and GPUs cpu_nr = os.cpu_count() gpu_nr = device_types.count("GPU") print("Nr. of GPUs detected: "+str(gpu_nr)) print("Found "+str(len(devices))+" device(s):") print("------------------------") for i in range(len(devices)): print("Device "+str(i)+": "+devices[i].name) print("Device type: "+devices[i].device_type) print("Device description: "+devices[i].physical_device_desc) print("------------------------") #Split CPU and GPU into two lists of devices devices_cpu = [] devices_gpu = [] for dev in devices: if dev.device_type=="CPU": devices_cpu.append(dev) elif dev.device_type=="GPU": devices_gpu.append(dev) else: print("Unknown device type:"+str(dev)+"\n") import numpy as np rand_state = np.random.RandomState(117) #to get the same random number on diff. PCs from scipy import ndimage,misc from sklearn import metrics,preprocessing import PIL import dclab import cv2 import pandas as pd import openpyxl,xlrd import psutil from keras.models import model_from_json,model_from_config,load_model,clone_model from keras import backend as K if 'GPU' in device_types: keras_gpu_avail = K.tensorflow_backend._get_available_gpus() if len(keras_gpu_avail)>0: print("Following GPU is used:") print(keras_gpu_avail) print("------------------------") else: print("TensorFlow detected GPU, but Keras didn't") print("------------------------") from keras.preprocessing.image import load_img from keras.utils import np_utils,multi_gpu_model from keras.utils.conv_utils import convert_kernel import keras_metrics #side package for precision, recall etc during training global keras_metrics import model_zoo from keras2onnx import convert_keras from onnx import save_model as save_onnx import aid_img, aid_dl, aid_bin import aid_frontend from partial_trainability import partial_trainability import aid_imports VERSION = "0.2.3" #Python 3.5.6 Version model_zoo_version = model_zoo.__version__() print("AIDeveloper Version: "+VERSION) print("model_zoo.py Version: "+model_zoo.__version__()) try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtWidgets.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtWidgets.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtWidgets.QApplication.translate(context, text, disambig) tooltips = aid_start.get_tooltips() class MyPopup(QtWidgets.QWidget): def __init__(self): QtWidgets.QWidget.__init__(self) class WorkerSignals(QtCore.QObject): ''' Code inspired from here: https://www.learnpyqt.com/courses/concurrent-execution/multithreading-pyqt-applications-qthreadpool/ Defines the signals available from a running worker thread. Supported signals are: finished No data error `tuple` (exctype, value, traceback.format_exc() ) result `object` data returned from processing, anything progress `int` indicating % progress history `dict` containing keras model history.history resulting from .fit ''' finished = QtCore.pyqtSignal() error = QtCore.pyqtSignal(tuple) result = QtCore.pyqtSignal(object) progress = QtCore.pyqtSignal(int) history = QtCore.pyqtSignal(dict) class Worker(QtCore.QRunnable): ''' Code inspired/copied from: https://www.learnpyqt.com/courses/concurrent-execution/multithreading-pyqt-applications-qthreadpool/ Worker thread Inherits from QRunnable to handler worker thread setup, signals and wrap-up. :param callback: The function callback to run on this worker thread. Supplied args and kwargs will be passed through to the runner. :type callback: function :param args: Arguments to pass to the callback function :param kwargs: Keywords to pass to the callback function ''' def __init__(self, fn, *args, **kwargs): super(Worker, self).__init__() # Store constructor arguments (re-used for processing) self.fn = fn self.args = args self.kwargs = kwargs self.signals = WorkerSignals() # Add the callback to our kwargs self.kwargs['progress_callback'] = self.signals.progress self.kwargs['history_callback'] = self.signals.history @QtCore.pyqtSlot() def run(self): ''' Initialise the runner function with passed args, kwargs. ''' # Retrieve args/kwargs here; and fire processing using them try: result = self.fn(*self.args, **self.kwargs) except: traceback.print_exc() exctype, value = sys.exc_info()[:2] self.signals.error.emit((exctype, value, traceback.format_exc())) else: self.signals.result.emit(result) # Return the result of the processing finally: self.signals.finished.emit() # Done class MainWindow(QtWidgets.QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) self.setupUi() def setupUi(self): aid_frontend.setup_main_ui(self,gpu_nr) def retranslateUi(self): aid_frontend.retranslate_main_ui(self,gpu_nr,VERSION) def dataDropped(self, l): #If there is data stored on ram tell user that RAM needs to be refreshed! if len(self.ram)>0: self.statusbar.showMessage("Newly added data is not yet in RAM. Only RAM data will be used. Use ->'File'->'Data to RAM now' to update RAM",5000) #l is a list of some filenames (.rtdc) or folders (containing .jpg, jpeg, .png) #Iterate over l and check if it is a folder or a file (directory) isfile = [os.path.isfile(str(url)) for url in l] isfolder = [os.path.isdir(str(url)) for url in l] #####################For folders with images:########################## #where are folders? ind_true = np.where(np.array(isfolder)==True)[0] foldernames = list(np.array(l)[ind_true]) #select the indices that are valid #On mac, there is a trailing / in case of folders; remove them foldernames = [os.path.normpath(url) for url in foldernames] basename = [os.path.basename(f) for f in foldernames] #Look quickly inside the folders and ask the user if he wants to convert #to .rtdc (might take a while!) if len(foldernames)>0: #User dropped (also) folders (which may contain images) # filecounts = [] # for i in range(len(foldernames)): # url = foldernames[i] # files = os.listdir(url) # files_full = [os.path.join(url,files[i]) for i in range(len(files))] # filecounts.append(len([f for f in files_full if os.path.isfile(f)])) # Text = [] # for b,n in zip(basename,filecounts): # Text.append(b+": "+str(n)+" images") # Text = "\n".join(Text) Text = "Images from single folders are read and saved to individual \ .rtdc files with the same name like the corresponding folder.<b>If \ you have RGB images you can either save the full RGB information, \ or do a conversion to Grayscale (saves some diskspace but information \ about color is lost). RGB is recommended since AID will automatically\ do the conversion to grayscale later if required.<b>If you have \ Grayscale images, a conversion to RGB will just copy the info to all \ channels, which allows you to use RGB-mode and Grayscale-mode lateron." Text = Text+"\nImages from following folders will be converted:\n"+"\n".join(basename) #Show the user a summary with all the found folders and how many files are #contained. Ask if he want to convert msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "<html><head/><body><p>Should the images of the chosen folder(s)\ be converted to .rtdc using <b>RGB</b> or <b>Grayscale</b> format? <b>\ (RGB is recommended!)</b> Either option might take some time. You can \ reuse the .rtdc file next time.</p></body></html>" msg.setText(text) msg.setDetailedText(Text) msg.setWindowTitle("Format for conversion to .rtdc (RGB/Grayscale)") msg.addButton(QtGui.QPushButton('Convert to Grayscale'), QtGui.QMessageBox.YesRole) msg.addButton(QtGui.QPushButton('Convert to RGB'), QtGui.QMessageBox.NoRole) msg.addButton(QtGui.QPushButton('Cancel'), QtGui.QMessageBox.RejectRole) retval = msg.exec_() #Conversion of images in folders is (almost) independent from what #is going to be fitted (So I leave the option menu still!) #In options: Color Mode one can still use RGB mode and export here as #Grayscale (but this would actually not work since RGB information is lost). #The other way around works. Therefore it is recommended to export RGB! if retval==0: color_mode = "Grayscale" channels = 1 elif retval==1: color_mode = "RGB" channels = 3 else: return self.statusbar.showMessage("Color mode' "+color_mode+"' is used",5000) url_converted = [] for i in range(len(foldernames)): url = foldernames[i] print("Start converting images in\n"+url) #try: #get a list of files inside this directory: images,pos_x,pos_y = [],[],[] for root, dirs, files in os.walk(url): for file in files: try: path = os.path.join(root, file) img = load_img(path,color_mode=color_mode.lower()) #This uses PIL and supports many many formats! images.append(np.array(img)) #append nice numpy array to list #create pos_x and pos_y pos_x.append( int(np.round(img.width/2.0,0)) ) pos_y.append( int(np.round(img.height/2.0,0)) ) except: pass #Thanks to andko76 for pointing that unequal image sizes cause an error: #https://github.com/maikherbig/AIDeveloper/issues/1 #Check that all images have the same size # img_shape_errors = 0 # text_error = "Images have unequal dimensions:" # img_h = [a.shape[0] for a in images] # img_h_uni = len(np.unique(img_h)) # if img_h_uni!=1: # text_error += "\n- found unequal heights" # img_shape_errors=1 # img_w = [a.shape[1] for a in images] # img_w_uni = len(np.unique(img_w)) # if img_w_uni!=1: # text_error += "\n- found unequal widths" # img_shape_errors=1 # img_c = [len(a.shape) for a in images] # img_c_uni = len(np.unique(img_c)) # if img_c_uni!=1: # text_error += "\n- found unequal numbers of channels" # img_shape_errors=1 # #If there were issues detected, show error message # if img_shape_errors==1: # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Warning) # msg.setText(str(text_error)) # msg.setWindowTitle("Error: Unequal image shapes") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() # return #Get a list of occuring image dimensions (width and height) img_shape = [a.shape[0] for a in images] + [a.shape[1] for a in images] dims = np.unique(img_shape) #Get a list of occurences of image shapes img_shape = [str(a.shape[0])+" x "+str(a.shape[1]) for a in images] occurences = np.unique(img_shape,return_counts=True) #inform user if there is more than one img shape if len(occurences[0])>1 or len(dims)>1: text_detail = "Path: "+url text_detail += "\nFollowing image shapes are present" for i in range(len(occurences[0])): text_detail+="\n- "+str(occurences[1][i])+" times: "+str(occurences[0][i]) self.popup_imgRes = QtGui.QDialog() self.popup_imgRes_ui = aid_frontend.popup_imageLoadResize() self.popup_imgRes_ui.setupUi(self.popup_imgRes) #open a popup to show options for image resizing (make image equally sized) #self.popup_imgRes.setWindowModality(QtCore.Qt.WindowModal) self.popup_imgRes.setWindowModality(QtCore.Qt.ApplicationModal) #Insert information into textBrowser self.popup_imgRes_ui.textBrowser_imgResize_occurences.setText(text_detail) Image_import_dimension = Default_dict["Image_import_dimension"] self.popup_imgRes_ui.spinBox_ingResize_h_1.setValue(Image_import_dimension) self.popup_imgRes_ui.spinBox_ingResize_h_2.setValue(Image_import_dimension) self.popup_imgRes_ui.spinBox_ingResize_w_1.setValue(Image_import_dimension) self.popup_imgRes_ui.spinBox_ingResize_w_2.setValue(Image_import_dimension) Image_import_interpol_method = Default_dict["Image_import_interpol_method"] index = self.popup_imgRes_ui.comboBox_resizeMethod.findText(Image_import_interpol_method, QtCore.Qt.MatchFixedString) if index >= 0: self.popup_imgRes_ui.comboBox_resizeMethod.setCurrentIndex(index) #Define function for the OK button: def popup_imgRes_ok(images,channels,pos_x,pos_y): print("Start resizing operation") #Get info from GUI final_h = int(self.popup_imgRes_ui.spinBox_ingResize_h_1.value()) print("Height:"+str(final_h)) final_w = int(self.popup_imgRes_ui.spinBox_ingResize_w_1.value()) print("Width:"+str(final_w)) Default_dict["Image_import_dimension"] = final_h pix = 1 if self.popup_imgRes_ui.radioButton_imgResize_cropPad.isChecked():#cropping and padding method images = aid_img.image_crop_pad_cv2(images,pos_x,pos_y,pix,final_h,final_w,padding_mode="cv2.BORDER_CONSTANT") elif self.popup_imgRes_ui.radioButton_imgResize_interpolate.isChecked(): interpolation_method = str(self.popup_imgRes_ui.comboBox_resizeMethod.currentText()) Default_dict["Image_import_interpol_method"] = interpolation_method images = aid_img.image_resize_scale(images,pos_x,pos_y,final_h,final_w,channels,interpolation_method,verbose=False) else: print("Invalid image resize method!") #Save the Default_dict aid_bin.save_aid_settings(Default_dict) self.popup_imgRes.accept() return images #Define function for the Cancel button: def popup_imgRes_cancel(): self.popup_imgRes.close() return self.popup_imgRes_ui.pushButton_imgResize_ok.clicked.connect(lambda: popup_imgRes_ok(images,channels,pos_x,pos_y)) self.popup_imgRes_ui.pushButton_imgResize_cancel.clicked.connect(popup_imgRes_cancel) retval = self.popup_imgRes.exec_() #retval is 0 if the user clicked cancel or just closed the window; in this case just exist the function if retval==0: return #get new pos_x, pos_y (after cropping, the pixel value for the middle of the image is different!) pos_x = [int(np.round(img.shape[1]/2.0,0)) for img in images] pos_y = [int(np.round(img.shape[0]/2.0,0)) for img in images] #Now, all images are of identical shape and can be converted to a numpy array images = np.array((images), dtype="uint8") pos_x = np.array((pos_x), dtype="uint8") pos_y = np.array((pos_y), dtype="uint8") #Save as foldername.rtdc fname = url+".rtdc" if os.path.isfile(fname): #ask user if file can be overwritten msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "<html><head/><body><p>File:"+fname+" already exists. Should it be overwritten?</p></body></html>" msg.setText(text) msg.setWindowTitle("Overwrite file?") msg.addButton(QtGui.QPushButton('Yes'), QtGui.QMessageBox.YesRole) msg.addButton(QtGui.QPushButton('No'), QtGui.QMessageBox.NoRole) msg.addButton(QtGui.QPushButton('Cancel'), QtGui.QMessageBox.RejectRole) retval = msg.exec_() if retval==0: try: os.remove(fname) aid_img.imgs_2_rtdc(fname,images,pos_x,pos_y) url_converted.append(fname) except Exception as e: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error") retval = msg.exec_() elif retval==1: pass else: pass else:#file does not yet exist. Create it aid_img.imgs_2_rtdc(fname,images,pos_x,pos_y) url_converted.append(fname) print("Finished converting! Final dimension of image tensor is:"+str(images.shape)) #Now load the created files directly to drag/drop-region! self.dataDropped(url_converted) #####################For .rtdc files:################################## #where are files? ind_true = np.where(np.array(isfile)==True)[0] filenames = list(np.array(l)[ind_true]) #select the indices that are valid #check if the file can be opened and get some information fileinfo = [] for i in range(len(filenames)): rtdc_path = filenames[i] try: failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return features = list(rtdc_ds["events"].keys()) #Make sure that there is "images", "pos_x" and "pos_y" available if "image" in features and "pos_x" in features and "pos_y" in features: nr_images = rtdc_ds["events"]["image"].len() pix = rtdc_ds.attrs["imaging:pixel size"] xtra_in_available = len(rtdc_ds.keys())>2 #Is True, only if there are more than 2 elements. fileinfo.append({"rtdc_ds":rtdc_ds,"rtdc_path":rtdc_path,"features":features,"nr_images":nr_images,"pix":pix,"xtra_in":xtra_in_available}) else: missing = [] for feat in ["image","pos_x","pos_y"]: if feat not in features: missing.append(feat) msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Essential feature(s) are missing in data-set") msg.setDetailedText("Data-set: "+rtdc_path+"\nis missing "+str(missing)) msg.setWindowTitle("Missing essential features") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() except Exception as e: print(e) #Add the stuff to the combobox on Plot/Peak Tab url_list = [fileinfo[iterator]["rtdc_path"] for iterator in range(len(fileinfo))] self.comboBox_chooseRtdcFile.addItems(url_list) self.comboBox_selectData.addItems(url_list) if len(url_list)==0: #This fixes the issue that the prog. crashes if accidentially a tableitem is dragged and "dropped" on the table return width=self.comboBox_selectData.fontMetrics().boundingRect(max(url_list, key=len)).width() self.comboBox_selectData.view().setFixedWidth(width+10) for rowNumber in range(len(fileinfo)):#for url in l: url = fileinfo[rowNumber]["rtdc_path"] #add to table rowPosition = self.table_dragdrop.rowCount() self.table_dragdrop.insertRow(rowPosition) columnPosition = 0 line = QtWidgets.QLabel(self.table_dragdrop) line.setText(url) line.setDisabled(True) line.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter) self.table_dragdrop.setCellWidget(rowPosition, columnPosition, line) # item = QtWidgets.QTableWidgetItem(url) # item.setFlags( QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) # print(item.textAlignment()) # item.setTextAlignment(QtCore.Qt.AlignRight) # change the alignment # #item.setTextAlignment(QtCore.Qt.AlignLeading | QtCore.Qt.AnchorRight) # change the alignment # self.table_dragdrop.setItem(rowPosition , columnPosition, item ) # columnPosition = 1 spinb = QtWidgets.QSpinBox(self.table_dragdrop) spinb.valueChanged.connect(self.dataOverviewOn) self.table_dragdrop.setCellWidget(rowPosition, columnPosition, spinb) for columnPosition in range(2,4): #for each item, also create 2 checkboxes (train/valid) item = QtWidgets.QTableWidgetItem()#("item {0} {1}".format(rowNumber, columnNumber)) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Unchecked) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 4 #Place a button which allows to show a plot (scatter, histo...lets see) btn = QtWidgets.QPushButton(self.table_dragdrop) btn.setMinimumSize(QtCore.QSize(50, 30)) btn.setMaximumSize(QtCore.QSize(50, 30)) btn.clicked.connect(self.button_hist) btn.setText('Plot') self.table_dragdrop.setCellWidget(rowPosition, columnPosition, btn) self.table_dragdrop.resizeRowsToContents() # columnPosition = 5 # #Place a combobox with the available features # cb = QtWidgets.QComboBox(self.table_dragdrop) # cb.addItems(fileinfo[rowNumber]["features"]) # cb.setMinimumSize(QtCore.QSize(70, 30)) # cb.setMaximumSize(QtCore.QSize(70, 30)) # width=cb.fontMetrics().boundingRect(max(fileinfo[rowNumber]["features"], key=len)).width() # cb.view().setFixedWidth(width+30) # self.table_dragdrop.setCellWidget(rowPosition, columnPosition, cb) columnPosition = 5 #Place a combobox with the available features item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, fileinfo[rowNumber]["nr_images"]) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 6 #Field to user-define nr. of cells/epoch item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole,100) #item.cellChanged.connect(self.dataOverviewOn) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 7 #Pixel size item = QtWidgets.QTableWidgetItem() pix = float(fileinfo[rowNumber]["pix"]) #print(pix) item.setData(QtCore.Qt.EditRole,pix) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 8 #Should data be shuffled (random?) item = QtWidgets.QTableWidgetItem()#("item {0} {1}".format(rowNumber, columnNumber)) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Checked) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 9 #Zooming factor item = QtWidgets.QTableWidgetItem() zoom = 1.0 item.setData(QtCore.Qt.EditRole,zoom) self.table_dragdrop.setItem(rowPosition, columnPosition, item) columnPosition = 10 #Should xtra_data be used? item = QtWidgets.QTableWidgetItem()#("item {0} {1}".format(rowNumber, columnNumber)) xtra_in_available = fileinfo[rowNumber]["xtra_in"] if xtra_in_available: item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) else: item.setFlags( QtCore.Qt.ItemIsUserCheckable ) item.setCheckState(QtCore.Qt.Unchecked) self.table_dragdrop.setItem(rowPosition, columnPosition, item) #Functions for Keras augmentation checkboxes def keras_changed_rotation(self,on_or_off): if on_or_off==0: self.lineEdit_Rotation.setText(str(0)) self.lineEdit_Rotation.setEnabled(False) elif on_or_off==2: self.lineEdit_Rotation.setText(str(Default_dict ["rotation"])) self.lineEdit_Rotation.setEnabled(True) else: return def keras_changed_width_shift(self,on_or_off): if on_or_off==0: self.lineEdit_widthShift.setText(str(0)) self.lineEdit_widthShift.setEnabled(False) elif on_or_off==2: self.lineEdit_widthShift.setText(str(Default_dict ["width_shift"])) self.lineEdit_widthShift.setEnabled(True) else: return def keras_changed_height_shift(self,on_or_off): if on_or_off==0: self.lineEdit_heightShift.setText(str(0)) self.lineEdit_heightShift.setEnabled(False) elif on_or_off==2: self.lineEdit_heightShift.setText(str(Default_dict ["height_shift"])) self.lineEdit_heightShift.setEnabled(True) else: return def keras_changed_zoom(self,on_or_off): if on_or_off==0: self.lineEdit_zoomRange.setText(str(0)) self.lineEdit_zoomRange.setEnabled(False) elif on_or_off==2: self.lineEdit_zoomRange.setText(str(Default_dict ["zoom"])) self.lineEdit_zoomRange.setEnabled(True) else: return def keras_changed_shear(self,on_or_off): if on_or_off==0: self.lineEdit_shearRange.setText(str(0)) self.lineEdit_shearRange.setEnabled(False) elif on_or_off==2: self.lineEdit_shearRange.setText(str(Default_dict ["shear"])) self.lineEdit_shearRange.setEnabled(True) else: return def keras_changed_brightplus(self,on_or_off): if on_or_off==0: self.spinBox_PlusLower.setValue(0) self.spinBox_PlusLower.setEnabled(False) self.spinBox_PlusUpper.setValue(0) self.spinBox_PlusUpper.setEnabled(False) elif on_or_off==2: self.spinBox_PlusLower.setValue(Default_dict ["Brightness add. lower"]) self.spinBox_PlusLower.setEnabled(True) self.spinBox_PlusUpper.setValue(Default_dict ["Brightness add. upper"]) self.spinBox_PlusUpper.setEnabled(True) else: return def keras_changed_brightmult(self,on_or_off): if on_or_off==0: self.doubleSpinBox_MultLower.setValue(1.0) self.doubleSpinBox_MultLower.setEnabled(False) self.doubleSpinBox_MultUpper.setValue(1.0) self.doubleSpinBox_MultUpper.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_MultLower.setValue(Default_dict ["Brightness mult. lower"]) self.doubleSpinBox_MultLower.setEnabled(True) self.doubleSpinBox_MultUpper.setValue(Default_dict ["Brightness mult. upper"]) self.doubleSpinBox_MultUpper.setEnabled(True) else: return def keras_changed_noiseMean(self,on_or_off): if on_or_off==0: self.doubleSpinBox_GaussianNoiseMean.setValue(0.0) self.doubleSpinBox_GaussianNoiseMean.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_GaussianNoiseMean.setValue(Default_dict ["Gaussnoise Mean"]) self.doubleSpinBox_GaussianNoiseMean.setEnabled(True) else: return def keras_changed_noiseScale(self,on_or_off): if on_or_off==0: self.doubleSpinBox_GaussianNoiseScale.setValue(0.0) self.doubleSpinBox_GaussianNoiseScale.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_GaussianNoiseScale.setValue(Default_dict ["Gaussnoise Scale"]) self.doubleSpinBox_GaussianNoiseScale.setEnabled(True) else: return def keras_changed_contrast(self,on_or_off): if on_or_off==0: self.doubleSpinBox_contrastLower.setEnabled(False) self.doubleSpinBox_contrastHigher.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_contrastLower.setEnabled(True) self.doubleSpinBox_contrastHigher.setEnabled(True) else: return def keras_changed_saturation(self,on_or_off): if on_or_off==0: self.doubleSpinBox_saturationLower.setEnabled(False) self.doubleSpinBox_saturationHigher.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_saturationLower.setEnabled(True) self.doubleSpinBox_saturationHigher.setEnabled(True) else: return def keras_changed_hue(self,on_or_off): if on_or_off==0: self.doubleSpinBox_hueDelta.setEnabled(False) elif on_or_off==2: self.doubleSpinBox_hueDelta.setEnabled(True) else: return def expert_mode_off(self,on_or_off): """ Reset all values on the expert tab to the default values, excluding the metrics metrics are defined only once when starting fitting and should not be changed """ if on_or_off==0: #switch off self.spinBox_batchSize.setValue(Default_dict["spinBox_batchSize"]) self.spinBox_epochs.setValue(1) self.checkBox_expt_loss.setChecked(False) self.expert_loss_off(0) self.groupBox_learningRate.setChecked(False) self.expert_learningrate_off(0) self.checkBox_optimizer.setChecked(False) self.expert_optimizer_off(0) def expert_loss_off(self,on_or_off): if on_or_off==0: #switch off #switch back to categorical_crossentropy index = self.comboBox_expt_loss.findText("categorical_crossentropy", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_expt_loss.setCurrentIndex(index) def expert_learningrate_off(self,on_or_off): if on_or_off==0: #switch off #which optimizer is used? (there are different default learning-rates #for each optimizer!) optimizer = str(self.comboBox_optimizer.currentText()) self.doubleSpinBox_learningRate.setValue(Default_dict["doubleSpinBox_learningRate_"+optimizer]) self.radioButton_LrCycl.setChecked(False) self.radioButton_LrExpo.setChecked(False) self.radioButton_LrConst.setChecked(True) def expert_optimizer_off(self,on_or_off): if on_or_off==0: #switch off, set back to categorical_crossentropy optimizer = "Adam" index = self.comboBox_optimizer.findText(optimizer, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_optimizer.setCurrentIndex(index) #also reset the learning rate to the default self.doubleSpinBox_learningRate.setValue(Default_dict["doubleSpinBox_learningRate_"+optimizer]) def expert_optimizer_changed(self,optimizer_text,listindex): # print("optimizer_text: "+str(optimizer_text)) # print("listindex: "+str(listindex)) if optimizer_text=="": return if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] #set the learning rate to the default for this optimizer value_current = float(item_ui.doubleSpinBox_learningRate.value()) value_wanted = Default_dict["doubleSpinBox_learningRate_"+optimizer_text] #insert the current value in the optimizer_settings: item_ui.optimizer_settings["doubleSpinBox_lr_"+optimizer_text.lower()] = value_current item_ui.optimizer_settings["comboBox_optimizer"] = optimizer_text try: #only works on the fitting-popup text = str(item_ui.textBrowser_FittingInfo.toPlainText()) except: text = "Epoch" # print("text: "+str(text)) if value_current!=value_wanted and "Epoch" in text:#avoid that the message pops up when window is created item_ui.doubleSpinBox_learningRate.setValue(value_wanted) item_ui.doubleSpinBox_expDecInitLr.setValue(value_wanted) #Inform user msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setWindowTitle("Learning rate to default") msg.setText("Learning rate was set to the default for "+optimizer_text) msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return def expert_lr_changed(self,value,optimizer_text,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.optimizer_settings["doubleSpinBox_lr_"+optimizer_text.lower()] = value def update_hist1(self): feature = str(self.comboBox_feat1.currentText()) feature_values = self.rtdc_ds["events"][feature] #if len(feature_values)==len(self.rtdc_ds['area_cvx']): # self.histogram = pg.GraphicsWindow() #plt1 = self.histogram.addPlot() y,x = np.histogram(feature_values, bins='auto') self.plt1.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150),clear=True) # self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) # self.w.show() def update_hist2(self): feature = str(self.comboBox_feat2.currentText()) feature_values = self.rtdc_ds["events"][feature] #if len(feature_values)==len(self.rtdc_ds['area_cvx']): #self.histogram = pg.GraphicsWindow() #plt1 = self.histogram.addPlot() y,x = np.histogram(feature_values, bins='auto') self.plt1.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150),clear=True) # self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) # self.w.show() def update_scatter(self): feature_x = str(self.comboBox_feat1.currentText()) feature_x_values = self.rtdc_ds["events"][feature_x] feature_y = str(self.comboBox_feat2.currentText()) feature_y_values = self.rtdc_ds["events"][feature_y] if len(feature_x_values)==len(feature_y_values): #self.histogram = pg.GraphicsWindow() #plt1 = self.histogram.addPlot() #y,x = np.histogram(feature_values, bins='auto') self.plt1.plot(feature_x_values, feature_y_values,pen=None,symbol='o',clear=True) # self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) # self.w.show() def button_hist(self,item): buttonClicked = self.sender() index = self.table_dragdrop.indexAt(buttonClicked.pos()) rowPosition = index.row() rtdc_path = self.table_dragdrop.cellWidget(rowPosition, 0).text() rtdc_path = str(rtdc_path) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.rtdc_ds = rtdc_ds # feature_values = rtdc_ds[feature] #Init a popup window self.w = MyPopup() self.w.setWindowTitle(rtdc_path) self.w.setObjectName(_fromUtf8("w")) self.gridLayout_w2 = QtWidgets.QGridLayout(self.w) self.gridLayout_w2.setContentsMargins(0, 0, 0, 0) self.gridLayout_w2.setObjectName(_fromUtf8("gridLayout_w2")) self.widget = QtWidgets.QWidget(self.w) self.widget.setMinimumSize(QtCore.QSize(0, 65)) self.widget.setMaximumSize(QtCore.QSize(16777215, 65)) self.widget.setObjectName(_fromUtf8("widget")) self.horizontalLayout_w3 = QtWidgets.QHBoxLayout(self.widget) self.horizontalLayout_w3.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_w3.setObjectName(_fromUtf8("horizontalLayout_w3")) self.verticalLayout_w = QtWidgets.QVBoxLayout() self.verticalLayout_w.setObjectName(_fromUtf8("verticalLayout_w")) self.horizontalLayout_w = QtWidgets.QHBoxLayout() self.horizontalLayout_w.setObjectName(_fromUtf8("horizontalLayout_w")) self.comboBox_feat1 = QtWidgets.QComboBox(self.widget) self.comboBox_feat1.setObjectName(_fromUtf8("comboBox_feat1")) features = list(self.rtdc_ds["events"].keys()) self.comboBox_feat1.addItems(features) self.horizontalLayout_w.addWidget(self.comboBox_feat1) self.comboBox_feat2 = QtWidgets.QComboBox(self.widget) self.comboBox_feat2.setObjectName(_fromUtf8("comboBox_feat2")) self.comboBox_feat2.addItems(features) self.horizontalLayout_w.addWidget(self.comboBox_feat2) self.verticalLayout_w.addLayout(self.horizontalLayout_w) self.horizontalLayout_w2 = QtWidgets.QHBoxLayout() self.horizontalLayout_w2.setObjectName(_fromUtf8("horizontalLayout_w2")) self.pushButton_Hist1 = QtWidgets.QPushButton(self.widget) self.pushButton_Hist1.setObjectName(_fromUtf8("pushButton_Hist1")) self.horizontalLayout_w2.addWidget(self.pushButton_Hist1) self.pushButton_Hist2 = QtWidgets.QPushButton(self.widget) self.pushButton_Hist2.setObjectName(_fromUtf8("pushButton_Hist2")) self.horizontalLayout_w2.addWidget(self.pushButton_Hist2) self.verticalLayout_w.addLayout(self.horizontalLayout_w2) self.horizontalLayout_w3.addLayout(self.verticalLayout_w) self.verticalLayout_w2 = QtWidgets.QVBoxLayout() self.verticalLayout_w2.setObjectName(_fromUtf8("verticalLayout_w2")) self.pushButton_Scatter = QtWidgets.QPushButton(self.widget) self.pushButton_Scatter.setObjectName(_fromUtf8("pushButton_Scatter")) self.verticalLayout_w2.addWidget(self.pushButton_Scatter) self.checkBox_ScalePix = QtWidgets.QCheckBox(self.widget) self.checkBox_ScalePix.setObjectName(_fromUtf8("checkBox_ScalePix")) self.verticalLayout_w2.addWidget(self.checkBox_ScalePix) self.horizontalLayout_w3.addLayout(self.verticalLayout_w2) self.gridLayout_w2.addWidget(self.widget, 0, 0, 1, 1) self.pushButton_Hist1.setText("Hist") self.pushButton_Hist1.clicked.connect(self.update_hist1) self.pushButton_Hist2.setText("Hist") self.pushButton_Hist2.clicked.connect(self.update_hist2) self.pushButton_Scatter.setText("Scatter") self.pushButton_Scatter.clicked.connect(self.update_scatter) self.checkBox_ScalePix.setText("Scale by pix") self.histogram = pg.GraphicsWindow() self.plt1 = self.histogram.addPlot() # y,x = np.histogram(feature_values, bins='auto') # plt1.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150)) self.gridLayout_w2.addWidget(self.histogram,1, 0, 1, 1) self.w.show() def update_historyplot_pop(self,listindex): #listindex = self.popupcounter-1 #len(self.fittingpopups_ui)-1 #After the first epoch there are checkboxes available. Check, if user checked some: colcount = int(self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.columnCount()) #Collect items that are checked selected_items,Colors = [],[] for colposition in range(colcount): #is it checked for train? cb = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.item(0, colposition) if not cb==None: if cb.checkState() == QtCore.Qt.Checked: selected_items.append(str(cb.text())) Colors.append(cb.background()) self.Colors = Colors Histories = self.fittingpopups_ui[listindex].Histories DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) # if len(DF1)>0: # DF1 = pd.concat(DF1) # else: # return self.fittingpopups_ui[listindex].widget_pop.clear() #Create fresh plot plt1 = self.fittingpopups_ui[listindex].widget_pop.addPlot() plt1.showGrid(x=True,y=True) plt1.addLegend() plt1.setLabel('bottom', 'Epoch', units='') #Create a dict that stores plots for each metric (for real time plotting) self.fittingpopups_ui[listindex].historyscatters = dict() for i in range(len(selected_items)): key = selected_items[i] df = DF1[key] color = self.Colors[i] pen_rollmedi = list(color.color().getRgb()) pen_rollmedi = pg.mkColor(pen_rollmedi) pen_rollmedi = pg.mkPen(color=pen_rollmedi,width=6) color = list(color.color().getRgb()) color[-1] = int(0.6*color[-1]) color = tuple(color) pencolor = pg.mkColor(color) brush = pg.mkBrush(color=pencolor) #print(df) historyscatter = plt1.plot(range(len(df)), df.values, pen=None,symbol='o',symbolPen=None,symbolBrush=brush,name=key,clear=False) #self.fittingpopups_ui[listindex].historyscatters.append(historyscatter) self.fittingpopups_ui[listindex].historyscatters[key]=historyscatter def stop_fitting_pop(self,listindex): #listindex = len(self.fittingpopups_ui)-1 epochs = self.fittingpopups_ui[listindex].epoch_counter #Stop button on the fititng popup #Should stop the fitting process and save the metafile #1. Change the nr. requested epochs to a smaller number self.fittingpopups_ui[listindex].spinBox_NrEpochs.setValue(epochs-1) #2. Check the box which will cause that the new parameters are applied at next epoch self.fittingpopups_ui[listindex].checkBox_ApplyNextEpoch.setChecked(True) def pause_fitting_pop(self,listindex): #Just change the text on the button if str(self.fittingpopups_ui[listindex].pushButton_Pause_pop.text())==" ": #If the the text on the button was Pause, change it to Continue self.fittingpopups_ui[listindex].pushButton_Pause_pop.setText("") self.fittingpopups_ui[listindex].pushButton_Pause_pop.setStyleSheet("background-color: green") self.fittingpopups_ui[listindex].pushButton_Pause_pop.setIcon(QtGui.QIcon(os.path.join(dir_root,"art",Default_dict["Icon theme"],"continue.png"))) elif str(self.fittingpopups_ui[listindex].pushButton_Pause_pop.text())=="": #If the the text on the button was Continue, change it to Pause self.fittingpopups_ui[listindex].pushButton_Pause_pop.setText(" ") self.fittingpopups_ui[listindex].pushButton_Pause_pop.setIcon(QtGui.QIcon(os.path.join(dir_root,"art",Default_dict["Icon theme"],"pause.png"))) self.fittingpopups_ui[listindex].pushButton_Pause_pop.setStyleSheet("") def saveTextWindow_pop(self,listindex): #Get the entire content of textBrowser_FittingInfo text = str(self.fittingpopups_ui[listindex].textBrowser_FittingInfo.toPlainText()) #Ask the user where to save the stuff filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Fitting info', Default_dict["Path of last model"]," (*.txt)") filename = filename[0] #Save to this filename if len(filename)>0: f = open(filename,'w') f.write(text) f.close() def clearTextWindow_pop(self,listindex): self.fittingpopups_ui[listindex].textBrowser_FittingInfo.clear() def showModelSumm_pop(self,listindex): text5 = "Model summary:\n" summary = [] self.model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) text = text5+summary self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) def saveModelSumm_pop(self,listindex): text5 = "Model summary:\n" summary = [] self.model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) text = text5+summary #Ask the user where to save the stuff filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Model summary', Default_dict["Path of last model"]," (*.txt)") filename = filename[0] #Save to this filename f = open(filename,'w') f.write(text) f.close() #class_weight = self.get_class_weight(self.fittingpopups_ui[listindex].SelectedFiles,lossW_expert) # def get_class_weight(self,SelectedFiles,lossW_expert,custom_check_classes=False): t1 = time.time() print("Getting dictionary for class_weight") if lossW_expert=="None": return None elif lossW_expert=="": return None elif lossW_expert=="Balanced": #Which are training files? ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = list(np.array(SelectedFiles)[ind]) classes = [int(selectedfile["class"]) for selectedfile in SelectedFiles_train] nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train] classes_uni = np.unique(classes) counter = {} for class_ in classes_uni: ind = np.where(np.array(classes)==class_)[0] nr_events_epoch_class = np.array(nr_events_epoch)[ind] counter[class_] = np.sum(nr_events_epoch_class) max_val = float(max(counter.values())) return {class_id : max_val/num_images for class_id, num_images in counter.items()} elif lossW_expert.startswith("{"):#Custom loss weights class_weights = eval(lossW_expert) if custom_check_classes:#Check that each element in classes_uni is contained in class_weights.keys() ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = list(np.array(SelectedFiles)[ind]) classes = [int(selectedfile["class"]) for selectedfile in SelectedFiles_train] classes_uni = np.unique(classes) classes_uni = np.sort(classes_uni) class_weights_keys = np.sort([int(a) for a in class_weights.keys()]) #each element in classes_uni has to be equal to class_weights_keys equal = np.array_equal(classes_uni,class_weights_keys) if equal == True: return class_weights else: #If the equal is false I'm really in trouble... #run the function again, but request 'Balanced' weights. I'm not sure if this should be the default... class_weights = self.get_class_weight(SelectedFiles,"Balanced") return ["Balanced",class_weights] else: return class_weights t2 = time.time() dt = np.round(t2-t1,2) print("Comp. time = "+str(dt)) def accept_lr_range(self): lr_start = str(self.popup_lrfinder_ui.lineEdit_LrMin.text()) lr_stop = str(self.popup_lrfinder_ui.lineEdit_LrMax.text()) if len(lr_start)>0 and len(lr_stop)>0: self.lineEdit_cycLrMin.setText(lr_start) self.lineEdit_cycLrMax.setText(lr_stop) else: print("Found no values for LR range") def accept_lr_value(self): single_lr = self.popup_lrfinder_ui.lineEdit_singleLr.text() if len(single_lr)>0: lr_value = float(single_lr) self.doubleSpinBox_learningRate.setValue(lr_value) self.doubleSpinBox_expDecInitLr.setValue(lr_value) else: print("Found no value for single LR!") def reset_lr_settings(self): self.popup_lrfinder_ui.lineEdit_startLr.setText(_translate("Form_LrFinder", "1e-10", None)) self.popup_lrfinder_ui.lineEdit_stopLr.setText(_translate("Form_LrFinder", "0.1", None)) self.popup_lrfinder_ui.doubleSpinBox_percDataT.setProperty("value", 100.0) self.popup_lrfinder_ui.doubleSpinBox_percDataV.setProperty("value", 100.0) self.popup_lrfinder_ui.spinBox_batchSize.setValue(Default_dict["spinBox_batchSize"]) self.popup_lrfinder_ui.spinBox_lineWidth.setProperty("value", 6) self.popup_lrfinder_ui.spinBox_epochs.setProperty("value", 5) def reset_lr_value(self): self.popup_lrfinder_ui.lineEdit_singleLr.setText("") #Uncheck and Check the groupbox to refresh the line self.popup_lrfinder_ui.groupBox_singleLr.setChecked(False) self.popup_lrfinder_ui.groupBox_singleLr.setChecked(True) def reset_lr_range(self): self.popup_lrfinder_ui.lineEdit_LrMin.setText("") self.popup_lrfinder_ui.lineEdit_LrMax.setText("") #Uncheck and Check the groupbox to refresh the range self.popup_lrfinder_ui.groupBox_LrRange.setChecked(False) self.popup_lrfinder_ui.groupBox_LrRange.setChecked(True) def popup_lr_finder(self): SelectedFiles = self.items_clicked() self.popup_lrfinder = MyPopup() self.popup_lrfinder_ui = aid_frontend.popup_lrfinder() self.popup_lrfinder_ui.setupUi(self.popup_lrfinder) #open a popup for lr finder #Get information about the model #check, which radiobutton is clicked and just copy paste the text from there if self.radioButton_NewModel.isChecked(): modelname = str(self.comboBox_ModelSelection.currentText()) if modelname==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No model specified!") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return elif self.radioButton_LoadContinueModel.isChecked(): modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_LoadRestartModel.isChecked(): modelname = str(self.lineEdit_LoadModelPath.text()) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please specify a model using the radiobuttons on the 'Define Model' -tab") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return in_dim = int(self.spinBox_imagecrop.value()) #Put information onto UI self.popup_lrfinder_ui.lineEdit_loadModel.setText(modelname) self.popup_lrfinder_ui.spinBox_Crop_inpImgSize.setValue(in_dim) color_mode = self.get_color_mode() self.popup_lrfinder_ui.comboBox_colorMode.addItem(color_mode) loss_str = str(self.comboBox_expt_loss.currentText()) self.popup_lrfinder_ui.comboBox_expt_loss.addItem(loss_str) optimizer_str = str(self.comboBox_optimizer.currentText()) self.popup_lrfinder_ui.comboBox_optimizer.addItem(optimizer_str) batch_size = self.spinBox_batchSize.value() self.popup_lrfinder_ui.spinBox_batchSize.setValue(batch_size) #Connect action_lr_finder function to button self.popup_lrfinder_ui.pushButton_LrFindRun.clicked.connect(lambda: self.action_initialize_model(duties="initialize_lrfind")) self.popup_lrfinder_ui.pushButton_rangeAccept.clicked.connect(self.accept_lr_range) self.popup_lrfinder_ui.pushButton_singleAccept.clicked.connect(self.accept_lr_value) self.popup_lrfinder_ui.pushButton_LrReset.clicked.connect(self.reset_lr_settings) self.popup_lrfinder_ui.pushButton_singleReset.clicked.connect(self.reset_lr_value) self.popup_lrfinder_ui.pushButton_rangeReset.clicked.connect(self.reset_lr_range) #Update the plot when any plotting option is changed self.popup_lrfinder_ui.comboBox_metric.currentIndexChanged.connect(self.update_lrfind_plot) self.popup_lrfinder_ui.spinBox_lineWidth.valueChanged.connect(self.update_lrfind_plot) self.popup_lrfinder_ui.checkBox_smooth.toggled.connect(self.update_lrfind_plot) #LR single value when groupbox is toggled self.popup_lrfinder_ui.groupBox_singleLr.toggled.connect(self.get_lr_single) #LR range when groupbox is toggled self.popup_lrfinder_ui.groupBox_LrRange.toggled.connect(self.get_lr_range) #compute the number of steps/epoch ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) nr_events_train_total = np.sum([int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train]) def update_stepsPerEpoch(): batch_size = self.popup_lrfinder_ui.spinBox_batchSize.value() perc_data = self.popup_lrfinder_ui.doubleSpinBox_percDataT.value() nr_events = (perc_data/100)*nr_events_train_total stepsPerEpoch = np.ceil(nr_events / float(batch_size)) self.popup_lrfinder_ui.spinBox_stepsPerEpoch.setValue(stepsPerEpoch) update_stepsPerEpoch() self.popup_lrfinder_ui.spinBox_batchSize.valueChanged.connect(update_stepsPerEpoch) self.popup_lrfinder_ui.doubleSpinBox_percDataT.valueChanged.connect(update_stepsPerEpoch) self.popup_lrfinder.show() def popup_clr_settings(self,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.popup_clrsettings = MyPopup() item_ui.popup_clrsettings_ui = aid_frontend.Ui_Clr_settings() item_ui.popup_clrsettings_ui.setupUi(item_ui.popup_clrsettings) #open a popup for lr plotting ##Manual insertion## item_ui.popup_clrsettings_ui.spinBox_stepSize.setProperty("value", item_ui.clr_settings["step_size"]) item_ui.popup_clrsettings_ui.doubleSpinBox_gamma.setProperty("value", item_ui.clr_settings["gamma"]) def clr_settings_ok(): step_size = int(item_ui.popup_clrsettings_ui.spinBox_stepSize.value()) gamma = float(item_ui.popup_clrsettings_ui.doubleSpinBox_gamma.value()) item_ui.clr_settings["step_size"] = step_size #Number of epochs to fulfill half a cycle item_ui.clr_settings["gamma"] = gamma #gamma factor for Exponential decrease method (exp_range) print("Settings for cyclical learning rates were changed.") #close the popup item_ui.popup_clrsettings = None item_ui.popup_clrsettings_ui = None def clr_settings_cancel():#close the popup item_ui.popup_clrsettings = None item_ui.popup_clrsettings_ui = None item_ui.popup_clrsettings_ui.pushButton_ok.clicked.connect(clr_settings_ok) item_ui.popup_clrsettings_ui.pushButton_cancel.clicked.connect(clr_settings_cancel) item_ui.popup_clrsettings.show() def popup_lr_plot(self,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.popup_lrplot = MyPopup() item_ui.popup_lrplot_ui = aid_frontend.popup_lrplot() item_ui.popup_lrplot_ui.setupUi(item_ui.popup_lrplot) #open a popup for lr plotting #compute total number of epochs that will be fitted spinBox_NrEpochs = item_ui.spinBox_NrEpochs.value() #my own loop spinBox_epochs = item_ui.spinBox_epochs.value() #inside model.fit() nr_epochs = spinBox_NrEpochs*spinBox_epochs item_ui.popup_lrplot_ui.spinBox_totalEpochs.setValue(nr_epochs) #Get the number of training examples SelectedFiles = self.items_clicked() ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) nr_events_train_total = np.sum([int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train]) if nr_events_train_total==0 and item_ui.radioButton_LrConst.isChecked()==False: #for Cyclical learning rates and Exponential learning rates, the #number of training images is needed msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no training data. Nr. of training images is required for this plot.") msg.setWindowTitle("Nr. of training images = 0") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return text_info = "" if item_ui.radioButton_LrConst.isChecked(): text_info+="Constant learning rate\n" epochs_plot = np.array(range(nr_epochs)) const_lr = float(self.doubleSpinBox_learningRate.value()) learningrates = np.repeat(const_lr,nr_epochs) elif item_ui.radioButton_LrCycl.isChecked(): text_info+="Cyclical learning rates\n" base_lr = float(item_ui.lineEdit_cycLrMin.text()) max_lr = float(item_ui.lineEdit_cycLrMax.text()) batch_size = int(item_ui.spinBox_batchSize.value()) step_size = item_ui.clr_settings["step_size"] #batch updates in a half cycle step_size_ = step_size*int(np.round(nr_events_train_total / batch_size))#number of steps in one epoch mode = str(item_ui.comboBox_cycLrMethod.currentText()) clr_iterations = nr_epochs*int(np.round(nr_events_train_total / batch_size))#number of cycles nr_cycles = (clr_iterations/step_size_)/2.0#number of cycles gamma = item_ui.clr_settings["gamma"] #gamma factor for the exp_range #Generate text to diplay the settings used text_info+="Nr. of training images: "+str(nr_events_train_total)+"\n" text_info+="base_lr: "+str(base_lr)+"\n" text_info+="max_lr: "+str(max_lr)+"\n" text_info+="batch_size: "+str(batch_size)+"\n" text_info+="mode: "+str(mode)+"\n" text_info+="gamma: "+str(gamma)+"\n" text_info+="Nr. of epochs to fulfill one cycle: "+str(2*step_size)+"\n" #text_info+="Total nr. of lr adjustmend: "+str(step_size_)+"\n" text_info+="Total nr. of lr adjustments: "+str(clr_iterations)+"\n" text_info+="Total nr. of cycles: "+str(nr_cycles)+"\n" #Request the learning rates from the class cyclicLR clr_iterations = np.arange(clr_iterations) clr_1 = aid_dl.cyclicLR(base_lr=base_lr,max_lr=max_lr,step_size=step_size_,mode=mode,gamma=gamma) clr_1.clr_iterations=clr_iterations#pass the number of clr iterations to the class learningrates = clr_1.clr() #compute the learning rates for each iteration #convert clr_iterations back to "epochs" epochs_plot = clr_iterations/int(np.round(nr_events_train_total / batch_size)) elif item_ui.radioButton_LrExpo.isChecked(): text_info+="Exponentially decreased learning rates\n" initial_lr = float(item_ui.doubleSpinBox_expDecInitLr.value()) decay_steps = int(item_ui.spinBox_expDecSteps.value()) decay_rate = float(item_ui.doubleSpinBox_expDecRate.value()) batch_size = int(item_ui.spinBox_batchSize.value()) text_info+="Nr. of training images: "+str(nr_events_train_total)+"\n" text_info+="initial_lr: "+str(initial_lr)+"\n" text_info+="decay_steps: "+str(decay_steps)+"\n" text_info+="decay_rate: "+str(decay_rate)+"\n" #epochs_plot = np.array(range(nr_epochs)) epochs_plot = nr_epochs * int(np.round(nr_events_train_total / batch_size)) epochs_plot = np.arange(epochs_plot) exp_decay = aid_dl.exponentialDecay(initial_lr=initial_lr, decay_steps=decay_steps, decay_rate=decay_rate) exp_decay.iterations=epochs_plot#pass the number of clr iterations to the class learningrates = exp_decay.exp_decay() epochs_plot = epochs_plot/int(np.round(nr_events_train_total / batch_size)) #learningrates = aid_dl.exponentialDecay(epochs_plot,initial_lr=initial_lr, decay_steps=decay_steps, decay_rate=decay_rate) def refreshPlot(): try: # try to empty the plot item_ui.popup_lrplot_ui.lr_plot.removeItem(item_ui.lr_line2) except: pass #Get design settings color = item_ui.popup_lrplot_ui.pushButton_color.palette().button().color() width = int(item_ui.popup_lrplot_ui.spinBox_lineWidth.value()) color = list(color.getRgb()) color = tuple(color) pencolor=pg.mkPen(color, width=width) #define curve and add to plot item_ui.lr_line2 = pg.PlotCurveItem(x=epochs_plot, y=learningrates,pen=pencolor) item_ui.popup_lrplot_ui.lr_plot.addItem(item_ui.lr_line2) refreshPlot() item_ui.popup_lrplot_ui.pushButton_refreshPlot.clicked.connect(refreshPlot) item_ui.popup_lrplot_ui.textBrowser_lrSettings.setText(text_info) item_ui.popup_lrplot.show() def lossWeights_activated(self,on_or_off,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] if on_or_off==False:#0 means switched OFF item_ui.lineEdit_lossW.setText("") item_ui.pushButton_lossW.setEnabled(False) #this happens when the user activated the expert option "loss weights" elif on_or_off==True:#2 means switched ON #Activate button item_ui.pushButton_lossW.setEnabled(True) self.lossWeights_popup(listindex) def lossWeights_popup(self,listindex): if listindex==-1: item_ui = self SelectedFiles = self.items_clicked() else: item_ui = self.fittingpopups_ui[listindex] SelectedFiles = item_ui.SelectedFiles item_ui.popup_lossW = MyPopup() item_ui.popup_lossW_ui = aid_frontend.popup_lossweights() item_ui.popup_lossW_ui.setupUi(item_ui.popup_lossW) #open a popup to show the numbers of events in each class in a table indices = [SelectedFiles[i]["class"] for i in range(len(SelectedFiles))] #Initiate the table with 4 columns : this will be ["Index","Nr of cells","Clr","Name"] item_ui.popup_lossW_ui.tableWidget_lossW.setColumnCount(5) nr_ind = len(set(indices)) #each index could occur for train and valid nr_rows = nr_ind item_ui.popup_lossW_ui.tableWidget_lossW.setRowCount(nr_rows) #Wich selected file has the most features? header_labels = ["Class", "Events tot." ,"Events/Epoch", "Events/Epoch[%]", "Loss weight"] item_ui.popup_lossW_ui.tableWidget_lossW.setHorizontalHeaderLabels(header_labels) header = item_ui.popup_lossW_ui.tableWidget_lossW.horizontalHeader() for i in range(len(header_labels)): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) #Fill the table rowPosition = 0 #Training info ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] nr_events_train_total = np.sum([int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train]) #Total nr of cells for each index for index in np.unique(indices_train): colPos = 0 #"Class" #put the index (class!) in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole,str(index)) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) #Get the training files of that index ind = np.where(indices_train==index)[0] SelectedFiles_train_index = np.array(SelectedFiles_train)[ind] colPos = 1 #"Events tot." nr_events = [int(selectedfile["nr_events"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events))) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) colPos = 2 #"Events/Epoch" nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) colPos = 3 #"Events/Epoch[%]" item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole, str(np.round(np.sum(nr_events_epoch)/float(nr_events_train_total),2))) item_ui.popup_lossW_ui.tableWidget_lossW.setItem(rowPosition, colPos, item) colPos = 4 #"Loss weights" #for each item create a spinbopx (trainability) spinb = QtWidgets.QDoubleSpinBox(item_ui.popup_lossW_ui.tableWidget_lossW) spinb.setEnabled(False) spinb.setMinimum(-99999) spinb.setMaximum(99999) spinb.setSingleStep(0.1) spinb.setValue(1.0) #Default in Keras is "None", which means class_weight=1.0 item_ui.popup_lossW_ui.tableWidget_lossW.setCellWidget(rowPosition, colPos, spinb) rowPosition += 1 item_ui.popup_lossW_ui.tableWidget_lossW.resizeColumnsToContents() item_ui.popup_lossW_ui.tableWidget_lossW.resizeRowsToContents() item_ui.popup_lossW.show() item_ui.popup_lossW_ui.pushButton_pop_lossW_cancel.clicked.connect(lambda: self.lossW_cancel(listindex)) item_ui.popup_lossW_ui.pushButton_pop_lossW_ok.clicked.connect(lambda: self.lossW_ok(listindex)) item_ui.popup_lossW_ui.comboBox_lossW.currentIndexChanged.connect(lambda on_or_off: self.lossW_comboB(on_or_off,listindex)) def optimizer_change_settings_popup(self,listindex): if listindex==-1: item_ui = self else: item_ui = self.fittingpopups_ui[listindex] item_ui.popup_optim = MyPopup() item_ui.popup_optim_ui = aid_frontend.Ui_Form_expt_optim() item_ui.popup_optim_ui.setupUi(item_ui.popup_optim) #open a popup to show advances settings for optimizer ##Manual insertion## optimizer_name = item_ui.optimizer_settings["comboBox_optimizer"].lower() if optimizer_name=='sgd': item_ui.popup_optim_ui.radioButton_sgd.setChecked(True) elif optimizer_name=='rmsprop': item_ui.popup_optim_ui.radioButton_rms.setChecked(True) elif optimizer_name=='adagrad': item_ui.popup_optim_ui.radioButton_adagrad.setChecked(True) elif optimizer_name=='adadelta': item_ui.popup_optim_ui.radioButton_adadelta.setChecked(True) elif optimizer_name=='adam': item_ui.popup_optim_ui.radioButton_adam.setChecked(True) elif optimizer_name=='adamax': item_ui.popup_optim_ui.radioButton_adamax.setChecked(True) elif optimizer_name=='nadam': item_ui.popup_optim_ui.radioButton_nadam.setChecked(True) item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_sgd"]) item_ui.popup_optim_ui.doubleSpinBox_sgd_momentum.setValue(item_ui.optimizer_settings["doubleSpinBox_sgd_momentum"]) item_ui.popup_optim_ui.checkBox_sgd_nesterov.setChecked(item_ui.optimizer_settings["checkBox_sgd_nesterov"]) item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_rmsprop"]) item_ui.popup_optim_ui.doubleSpinBox_rms_rho.setValue(item_ui.optimizer_settings["doubleSpinBox_rms_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adam.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adam"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta1.setValue(item_ui.optimizer_settings["doubleSpinBox_adam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta2.setValue(item_ui.optimizer_settings["doubleSpinBox_adam_beta2"]) item_ui.popup_optim_ui.checkBox_adam_amsgrad.setChecked(item_ui.optimizer_settings["checkBox_adam_amsgrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_nadam"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta1.setValue(item_ui.optimizer_settings["doubleSpinBox_nadam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta2.setValue(item_ui.optimizer_settings["doubleSpinBox_nadam_beta2"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adadelta"]) item_ui.popup_optim_ui.doubleSpinBox_adadelta_rho.setValue(item_ui.optimizer_settings["doubleSpinBox_adadelta_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adagrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.setValue(item_ui.optimizer_settings["doubleSpinBox_lr_adamax"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta1.setValue(item_ui.optimizer_settings["doubleSpinBox_adamax_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta2.setValue(item_ui.optimizer_settings["doubleSpinBox_adamax_beta2"]) def change_lr(lr): item_ui.doubleSpinBox_learningRate.setValue(lr) item_ui.doubleSpinBox_expDecInitLr.setValue(lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adam.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.valueChanged.connect(change_lr) item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.valueChanged.connect(change_lr) def change_optimizer(optimizer_name): index = item_ui.comboBox_optimizer.findText(optimizer_name, QtCore.Qt.MatchFixedString) if index >= 0: item_ui.comboBox_optimizer.setCurrentIndex(index) #get the learning rate for that optimizer lr = item_ui.optimizer_settings["doubleSpinBox_lr_"+optimizer_name.lower()] change_lr(lr) item_ui.popup_optim_ui.radioButton_adam.toggled.connect(lambda: change_optimizer("Adam")) item_ui.popup_optim_ui.radioButton_sgd.toggled.connect(lambda: change_optimizer("SGD")) item_ui.popup_optim_ui.radioButton_rms.toggled.connect(lambda: change_optimizer("RMSprop")) item_ui.popup_optim_ui.radioButton_adagrad.toggled.connect(lambda: change_optimizer("Adagrad")) item_ui.popup_optim_ui.radioButton_adadelta.toggled.connect(lambda: change_optimizer("Adadelta")) item_ui.popup_optim_ui.radioButton_adamax.toggled.connect(lambda: change_optimizer("Adamax")) item_ui.popup_optim_ui.radioButton_nadam.toggled.connect(lambda: change_optimizer("Nadam")) def ok(): doubleSpinBox_lr_sgd = float(item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.value()) doubleSpinBox_sgd_momentum = float(item_ui.popup_optim_ui.doubleSpinBox_sgd_momentum.value()) checkBox_sgd_nesterov = bool(item_ui.popup_optim_ui.checkBox_sgd_nesterov.isChecked()) doubleSpinBox_lr_rmsprop = float(item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.value()) doubleSpinBox_rms_rho = float(item_ui.popup_optim_ui.doubleSpinBox_rms_rho.value()) doubleSpinBox_lr_adam = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adam.value()) doubleSpinBox_adam_beta1 = float(item_ui.popup_optim_ui.doubleSpinBox_adam_beta1.value()) doubleSpinBox_adam_beta2 = float(item_ui.popup_optim_ui.doubleSpinBox_adam_beta2.value()) checkBox_adam_amsgrad = bool(item_ui.popup_optim_ui.checkBox_adam_amsgrad.isChecked()) doubleSpinBox_lr_adadelta = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.value()) doubleSpinBox_adadelta_rho = float(item_ui.popup_optim_ui.doubleSpinBox_adadelta_rho.value()) doubleSpinBox_lr_nadam = float(item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.value()) doubleSpinBox_nadam_beta1 = float(item_ui.popup_optim_ui.doubleSpinBox_nadam_beta1.value()) doubleSpinBox_nadam_beta2 = float(item_ui.popup_optim_ui.doubleSpinBox_nadam_beta2.value()) doubleSpinBox_lr_adagrad = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.value()) doubleSpinBox_lr_adamax = float(item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.value()) doubleSpinBox_adamax_beta2 = float(item_ui.popup_optim_ui.doubleSpinBox_adamax_beta2.value()) doubleSpinBox_adamax_beta1 = float(item_ui.popup_optim_ui.doubleSpinBox_adamax_beta1.value()) item_ui.optimizer_settings["doubleSpinBox_lr_sgd"] = doubleSpinBox_lr_sgd item_ui.optimizer_settings["doubleSpinBox_sgd_momentum"] = doubleSpinBox_sgd_momentum item_ui.optimizer_settings["checkBox_sgd_nesterov"] = checkBox_sgd_nesterov item_ui.optimizer_settings["doubleSpinBox_lr_rmsprop"] = doubleSpinBox_lr_rmsprop item_ui.optimizer_settings["doubleSpinBox_rms_rho"] = doubleSpinBox_rms_rho item_ui.optimizer_settings["doubleSpinBox_lr_adam"] = doubleSpinBox_lr_adam item_ui.optimizer_settings["doubleSpinBox_adam_beta1"] = doubleSpinBox_adam_beta1 item_ui.optimizer_settings["doubleSpinBox_adam_beta2"] = doubleSpinBox_adam_beta2 item_ui.optimizer_settings["checkBox_adam_amsgrad"] = checkBox_adam_amsgrad item_ui.optimizer_settings["doubleSpinBox_lr_adadelta"] = doubleSpinBox_lr_adadelta item_ui.optimizer_settings["doubleSpinBox_adadelta_rho"] = doubleSpinBox_adadelta_rho item_ui.optimizer_settings["doubleSpinBox_lr_nadam"] = doubleSpinBox_lr_nadam item_ui.optimizer_settings["doubleSpinBox_nadam_beta1"] = doubleSpinBox_nadam_beta1 item_ui.optimizer_settings["doubleSpinBox_nadam_beta2"] = doubleSpinBox_nadam_beta2 item_ui.optimizer_settings["doubleSpinBox_lr_adagrad"] = doubleSpinBox_lr_adagrad item_ui.optimizer_settings["doubleSpinBox_lr_adamax"] = doubleSpinBox_lr_adamax item_ui.optimizer_settings["doubleSpinBox_adamax_beta1"] = doubleSpinBox_adamax_beta1 item_ui.optimizer_settings["doubleSpinBox_adamax_beta2"] = doubleSpinBox_adamax_beta2 #close the popup item_ui.popup_optim = None item_ui.popup_optim_ui = None print("Advanced settings for optimizer were changed.") def cancel():#close the popup item_ui.popup_optim = None item_ui.popup_optim_ui = None def reset(): print("Reset optimizer settings (in UI). To accept, click OK") optimizer_default = aid_dl.get_optimizer_settings() item_ui.popup_optim_ui.doubleSpinBox_lr_sgd.setValue(optimizer_default["doubleSpinBox_lr_sgd"]) item_ui.popup_optim_ui.doubleSpinBox_sgd_momentum.setValue(optimizer_default["doubleSpinBox_sgd_momentum"]) item_ui.popup_optim_ui.checkBox_sgd_nesterov.setChecked(optimizer_default["checkBox_sgd_nesterov"]) item_ui.popup_optim_ui.doubleSpinBox_lr_rmsprop.setValue(optimizer_default["doubleSpinBox_lr_rmsprop"]) item_ui.popup_optim_ui.doubleSpinBox_rms_rho.setValue(optimizer_default["doubleSpinBox_rms_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adam.setValue(optimizer_default["doubleSpinBox_lr_adam"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta1.setValue(optimizer_default["doubleSpinBox_adam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adam_beta2.setValue(optimizer_default["doubleSpinBox_adam_beta2"]) item_ui.popup_optim_ui.checkBox_adam_amsgrad.setChecked(optimizer_default["checkBox_adam_amsgrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_nadam.setValue(optimizer_default["doubleSpinBox_lr_nadam"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta1.setValue(optimizer_default["doubleSpinBox_nadam_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_nadam_beta2.setValue(optimizer_default["doubleSpinBox_nadam_beta2"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adadelta.setValue(optimizer_default["doubleSpinBox_lr_adadelta"]) item_ui.popup_optim_ui.doubleSpinBox_adadelta_rho.setValue(optimizer_default["doubleSpinBox_adadelta_rho"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adagrad.setValue(optimizer_default["doubleSpinBox_lr_adagrad"]) item_ui.popup_optim_ui.doubleSpinBox_lr_adamax.setValue(optimizer_default["doubleSpinBox_lr_adamax"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta1.setValue(optimizer_default["doubleSpinBox_adamax_beta1"]) item_ui.popup_optim_ui.doubleSpinBox_adamax_beta2.setValue(optimizer_default["doubleSpinBox_adamax_beta2"]) item_ui.popup_optim_ui.pushButton_ok.clicked.connect(ok) item_ui.popup_optim_ui.pushButton_cancel.clicked.connect(cancel) item_ui.popup_optim_ui.pushButton_reset.clicked.connect(reset) item_ui.popup_optim.show() def onLayoutChange(self,app): #Get the text of the triggered layout layout_trig = (self.sender().text()).split(" layout")[0] layout_current = Default_dict["Layout"] if layout_trig == layout_current: self.statusbar.showMessage(layout_current+" layout is already in use",2000) return elif layout_trig == "Normal": #Change Layout in Defaultdict to "Normal", such that next start will use Normal layout Default_dict["Layout"] = "Normal" app.setStyleSheet("") #Standard is with tooltip self.actionTooltipOnOff.setChecked(True) elif layout_trig == "Dark": #Change Layout in Defaultdict to "Dark", such that next start will use Dark layout Default_dict["Layout"] = "Dark" dir_layout = os.path.join(dir_root,"layout_dark.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/ColinDuquesnoy/QDarkStyleSheet/blob/master/qdarkstyle/style.qss f = f.read() app.setStyleSheet(f) #Standard is with tooltip self.actionTooltipOnOff.setChecked(True) elif layout_trig == "DarkOrange": #Change Layout in Defaultdict to "Dark", such that next start will use Dark layout Default_dict["Layout"] = "DarkOrange" dir_layout = os.path.join(dir_root,"layout_darkorange.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/nphase/qt-ping-grapher/blob/master/resources/darkorange.stylesheet f = f.read() app.setStyleSheet(f) #Standard is with tooltip self.actionTooltipOnOff.setChecked(True) #Save the layout to Default_dict with open(dir_settings, 'w') as f: json.dump(Default_dict,f) def onTooltipOnOff(self,app): #what is the current layout? if bool(self.actionLayout_Normal.isChecked())==True: #use normal layout if bool(self.actionTooltipOnOff.isChecked())==True: #with tooltips app.setStyleSheet("") elif bool(self.actionTooltipOnOff.isChecked())==False: #no tooltips app.setStyleSheet("""QToolTip { opacity: 0 }""") elif bool(self.actionLayout_Dark.isChecked())==True: #use dark layout if bool(self.actionTooltipOnOff.isChecked())==True: #with tooltips dir_layout = os.path.join(dir_root,"layout_dark.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/ColinDuquesnoy/QDarkStyleSheet/blob/master/qdarkstyle/style.qss f = f.read() app.setStyleSheet(f) elif bool(self.actionTooltipOnOff.isChecked())==False: #no tooltips dir_layout = os.path.join(dir_root,"layout_dark_notooltip.txt")#dir to settings f = open(dir_layout, "r")#I obtained the layout file from: https://github.com/ColinDuquesnoy/QDarkStyleSheet/blob/master/qdarkstyle/style.qss f = f.read() app.setStyleSheet(f) elif bool(self.actionLayout_DarkOrange.isChecked())==True: #use darkorange layout if bool(self.actionTooltipOnOff.isChecked())==True: #with tooltips dir_layout = os.path.join(dir_root,"layout_darkorange.txt")#dir to settings f = open(dir_layout, "r") #I obtained the layout file from: https://github.com/nphase/qt-ping-grapher/blob/master/resources/darkorange.stylesheet f = f.read() app.setStyleSheet(f) elif bool(self.actionTooltipOnOff.isChecked())==False: #no tooltips dir_layout = os.path.join(dir_root,"layout_darkorange_notooltip.txt")#dir to settings f = open(dir_layout, "r") f = f.read() app.setStyleSheet(f) def onIconThemeChange(self): #Get the text of the triggered icon theme icontheme_trig = self.sender().text() icontheme_currenent = Default_dict["Icon theme"] if icontheme_trig == icontheme_currenent: self.statusbar.showMessage(icontheme_currenent+" is already in use",2000) return elif icontheme_trig == "Icon theme 1": Default_dict["Icon theme"] = "Icon theme 1" self.statusbar.showMessage("Icon theme 1 will be used after restart",2000) elif icontheme_trig == "Icon theme 2": Default_dict["Icon theme"] = "Icon theme 2" self.statusbar.showMessage("Icon theme 2 will be used after restart",2000) #Save the layout to Default_dict with open(dir_settings, 'w') as f: json.dump(Default_dict,f) def items_clicked(self): #This function checks, which data has been checked on table_dragdrop and returns the necessary data rowCount = self.table_dragdrop.rowCount() #Collect urls to files that are checked SelectedFiles = [] for rowPosition in range(rowCount): #get the filename/path rtdc_path = str(self.table_dragdrop.cellWidget(rowPosition, 0).text()) #get the index (celltype) of it index = int(self.table_dragdrop.cellWidget(rowPosition, 1).value()) #is it checked for train? cb_t = self.table_dragdrop.item(rowPosition, 2) #How many Events contains dataset in total? nr_events = int(self.table_dragdrop.item(rowPosition, 5).text()) #how many cells/epoch during training or validation? nr_events_epoch = int(self.table_dragdrop.item(rowPosition, 6).text()) #should the dataset be randomized (shuffled?) shuffle = bool(self.table_dragdrop.item(rowPosition, 8).checkState()) #should the images be zoomed in/out by a factor? zoom_factor = float(self.table_dragdrop.item(rowPosition, 9).text()) #should xtra_data be used for training? xtra_in = bool(self.table_dragdrop.item(rowPosition, 10).checkState()) if cb_t.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: #add to training files if the user wants more than 0 images per epoch failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return hash_ = aid_bin.hashfunction(rtdc_path)#rtdc_ds.hash features = list(rtdc_ds["events"].keys()) nr_images = rtdc_ds["events"]["image"].len() SelectedFiles.append({"rtdc_ds":rtdc_ds,"rtdc_path":rtdc_path,"features":features,"nr_images":nr_images,"class":index,"TrainOrValid":"Train","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"hash":hash_,"xtra_in":xtra_in}) cb_v = self.table_dragdrop.item(rowPosition, 3) if cb_v.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return hash_ = aid_bin.hashfunction(rtdc_path) features = list(rtdc_ds["events"].keys()) nr_images = rtdc_ds["events"]["image"].len() SelectedFiles.append({"rtdc_ds":rtdc_ds,"rtdc_path":rtdc_path,"features":features,"nr_images":nr_images,"class":index,"TrainOrValid":"Valid","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"hash":hash_,"xtra_in":xtra_in}) return SelectedFiles def items_available(self): """ Function grabs all information from table_dragdrop. Checked and Unchecked Does not load rtdc_ds (save time) """ rowCount = self.table_dragdrop.rowCount() #Collect urls to files that are checked SelectedFiles = [] for rowPosition in range(rowCount): #get the filename/path rtdc_path = str(self.table_dragdrop.cellWidget(rowPosition, 0).text()) #get the index (celltype) of it index = int(self.table_dragdrop.cellWidget(rowPosition, 1).value()) #How many Events contains dataset in total? nr_events = int(self.table_dragdrop.item(rowPosition, 5).text()) #how many cells/epoch during training or validation? nr_events_epoch = int(self.table_dragdrop.item(rowPosition, 6).text()) #should the dataset be randomized (shuffled?) shuffle = bool(self.table_dragdrop.item(rowPosition, 8).checkState()) #should the images be zoomed in/out by a factor? zoom_factor = float(self.table_dragdrop.item(rowPosition, 9).text()) #should xtra_data be used for training? xtra_in = bool(self.table_dragdrop.item(rowPosition, 10).checkState()) SelectedFiles.append({"rtdc_path":rtdc_path,"class":index,"TrainOrValid":"NotSpecified","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"xtra_in":xtra_in}) return SelectedFiles def items_clicked_no_rtdc_ds(self): #This function checks, which data has been checked on table_dragdrop and returns the necessary data rowCount = self.table_dragdrop.rowCount() #Collect urls to files that are checked SelectedFiles = [] for rowPosition in range(rowCount): #get the filename/path rtdc_path = str(self.table_dragdrop.cellWidget(rowPosition, 0).text()) #get the index (celltype) of it index = int(self.table_dragdrop.cellWidget(rowPosition, 1).value()) #How many Events contains dataset in total? nr_events = int(self.table_dragdrop.item(rowPosition, 5).text()) #how many cells/epoch during training or validation? nr_events_epoch = int(self.table_dragdrop.item(rowPosition, 6).text()) #should the dataset be randomized (shuffled?) shuffle = bool(self.table_dragdrop.item(rowPosition, 8).checkState()) #should the images be zoomed in/out by a factor? zoom_factor = float(self.table_dragdrop.item(rowPosition, 9).text()) #should xtra_data be used for training? xtra_in = bool(self.table_dragdrop.item(rowPosition, 10).checkState()) #is it checked for train? cb_t = self.table_dragdrop.item(rowPosition, 2) if cb_t.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: #add to training files if the user wants more than 0 images per epoch #SelectedFiles.append({"nr_images":nr_events,"class":index,"TrainOrValid":"Train","nr_events":nr_events,"nr_events_epoch":nr_events_epoch}) SelectedFiles.append({"rtdc_path":rtdc_path,"class":index,"TrainOrValid":"Train","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"xtra_in":xtra_in}) cb_v = self.table_dragdrop.item(rowPosition, 3) if cb_v.checkState() == QtCore.Qt.Checked and nr_events_epoch>0: #SelectedFiles.append({"nr_images":nr_events,"class":index,"TrainOrValid":"Valid","nr_events":nr_events,"nr_events_epoch":nr_events_epoch}) SelectedFiles.append({"rtdc_path":rtdc_path,"class":index,"TrainOrValid":"Valid","nr_events":nr_events,"nr_events_epoch":nr_events_epoch,"shuffle":shuffle,"zoom_factor":zoom_factor,"xtra_in":xtra_in}) return SelectedFiles def uncheck_if_zero(self,item): #If the Nr. of epochs is changed to zero: #uncheck the dataset for train/valid row = item.row() col = item.column() #if the user changed Nr. of cells per epoch to zero if col==6 and int(item.text())==0: #get the checkstate of the coresponding T/V cb_t = self.table_dragdrop.item(row, 2) if cb_t.checkState() == QtCore.Qt.Checked: cb_t.setCheckState(False) cb_v = self.table_dragdrop.item(row, 3) if cb_v.checkState() == QtCore.Qt.Checked: cb_v.setCheckState(False) def item_click(self,item): colPosition = item.column() rowPosition = item.row() #if Shuffle was clicked (col=8), check if this checkbox is not deactivated if colPosition==8: if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==False: rtdc_path = self.table_dragdrop.cellWidget(rowPosition, 0).text() rtdc_path = str(rtdc_path) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return nr_images = rtdc_ds["events"]["image"].len() columnPosition = 6 item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, nr_images) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.table_dragdrop.setItem(rowPosition, columnPosition, item) if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==True: #Inspect this table item. If shuffle was checked before, it will be grayed out. Invert normal cell then item = self.table_dragdrop.item(rowPosition, 6) item.setFlags(item.flags() |QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) if len(self.ram)>0: self.statusbar.showMessage("Make sure to update RAM (->Edit->Data to RAM now) after changing Data-set",2000) self.ram = dict() #clear the ram, since the data was changed self.dataOverviewOn() #When data is clicked, always reset the validation set (only important for 'Assess Model'-tab) self.ValidationSet = None self.Metrics = dict() #Also reset the metrics def dataOverviewOn(self): if self.groupBox_DataOverview.isChecked()==True: if self.threadpool_single_queue == 0: SelectedFiles = self.items_clicked_no_rtdc_ds() self.update_data_overview(SelectedFiles) self.update_data_overview_2(SelectedFiles) def dataOverviewOn_OnChange(self,item): #When a value is entered in Events/Epoch and enter is hit #there is no update of the table called if self.groupBox_DataOverview.isChecked()==True: if self.threadpool_single_queue == 0: rowPosition = item.row() colPosition = item.column() if colPosition==6:#one when using the spinbox (Class),or when entering a new number in "Events/Epoch", the table is not updated. #get the new value nr_cells = self.table_dragdrop.cellWidget(rowPosition, colPosition) if nr_cells==None: return else: SelectedFiles = self.items_clicked_no_rtdc_ds() self.update_data_overview(SelectedFiles) self.update_data_overview_2(SelectedFiles) def update_data_overview(self,SelectedFiles): #Check if there are custom class names (determined by user) rows = self.tableWidget_Info.rowCount() self.classes_custom = [] #by default assume there are no custom classes classes_custom_bool = False if rows>0:#if >0, then there is already a table existing classes,self.classes_custom = [],[] for row in range(rows): try: class_ = self.tableWidget_Info.item(row,0).text() if class_.isdigit(): classes.append(class_)#get the classes except: pass try: self.classes_custom.append(self.tableWidget_Info.item(row,3).text())#get the classes except: pass classes = np.unique(classes) if len(classes)==len(self.classes_custom):#equal in length same = [i for i, j in zip(classes, self.classes_custom) if i == j] #which items are identical? if len(same)==0: #apparently there are custom classes! Save them classes_custom_bool = True if len(SelectedFiles)==0:#reset the table #Table1 #Prepare a table in tableWidget_Info self.tableWidget_Info.setColumnCount(0) self.tableWidget_Info.setRowCount(0) self.tableWidget_Info.setColumnCount(4) header = self.tableWidget_Info.horizontalHeader() header_labels = ["Class","Events tot.","Events/Epoch","Name"] self.tableWidget_Info.setHorizontalHeaderLabels(header_labels) header = self.tableWidget_Info.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) return #Prepare a table in tableWidget_Info self.tableWidget_Info.setColumnCount(0) self.tableWidget_Info.setRowCount(0) indices = [SelectedFiles[i]["class"] for i in range(len(SelectedFiles))] self.tableWidget_Info.setColumnCount(4) header = self.tableWidget_Info.horizontalHeader() nr_ind = len(set(indices)) #each index could occur for train and valid nr_rows = 2*nr_ind+2 #add two rows for intermediate headers (Train/Valid) self.tableWidget_Info.setRowCount(nr_rows) #Wich selected file has the most features? header_labels = ["Class","Events tot.","Events/Epoch","Name"] self.tableWidget_Info.setHorizontalHeaderLabels(header_labels) #self.tableWidget_Info.resizeColumnsToContents() header = self.tableWidget_Info.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) #Training info rowPosition = 0 self.tableWidget_Info.setSpan(rowPosition, 0, 1, 2) item = QtWidgets.QTableWidgetItem("Train. data") item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) self.tableWidget_Info.setItem(rowPosition, 0, item) rowPosition += 1 ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] classes = np.unique(indices_train) if len(classes)==len(self.classes_custom): classes_custom_bool = True else: classes_custom_bool = False #display information for each individual class for index_ in range(len(classes)): #for index in np.unique(indices_train): index = classes[index_] #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info.setItem(rowPosition, 0, item) #Get the training files of that index ind = np.where(indices_train==index)[0] SelectedFiles_train_index = np.array(SelectedFiles_train)[ind] #Total nr of cells for each class nr_events = [int(selectedfile["nr_events"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events))) self.tableWidget_Info.setItem(rowPosition, 1, item) nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_train_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) self.tableWidget_Info.setItem(rowPosition, 2, item) item = QtWidgets.QTableWidgetItem() if classes_custom_bool==False: item.setData(QtCore.Qt.EditRole,str(index)) else: item.setData(QtCore.Qt.EditRole,self.classes_custom[index_]) self.tableWidget_Info.setItem(rowPosition, 3, item) rowPosition += 1 #Validation info self.tableWidget_Info.setSpan(rowPosition, 0, 1, 2) item = QtWidgets.QTableWidgetItem("Val. data") item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) self.tableWidget_Info.setItem(rowPosition, 0, item) rowPosition += 1 ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] #Total nr of cells for each index for index in np.unique(indices_valid): #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info.setItem(rowPosition, 0, item) #Get the validation files of that index ind = np.where(indices_valid==index)[0] SelectedFiles_valid_index = np.array(SelectedFiles_valid)[ind] nr_events = [int(selectedfile["nr_events"]) for selectedfile in SelectedFiles_valid_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events))) self.tableWidget_Info.setItem(rowPosition, 1, item) nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_valid_index] item = QtWidgets.QTableWidgetItem() item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) self.tableWidget_Info.setItem(rowPosition, 2, item) rowPosition += 1 self.tableWidget_Info.resizeColumnsToContents() self.tableWidget_Info.resizeRowsToContents() def update_data_overview_2(self,SelectedFiles): if len(SelectedFiles)==0: #Table2 self.tableWidget_Info_2.setColumnCount(0) self.tableWidget_Info_2.setRowCount(0) #In case user specified X_valid and y_valid before, delete it again: self.ValidationSet = None self.Metrics = dict() #Also reset the metrics #Initiate the table with 4 columns : this will be ["Index","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setColumnCount(4) header_labels = ["Class","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setHorizontalHeaderLabels(header_labels) header = self.tableWidget_Info_2.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) return #Prepare a table in tableWidget_Info self.tableWidget_Info_2.setColumnCount(0) self.tableWidget_Info_2.setRowCount(0) #In case user specified X_valid and y_valid before, delete it again: self.ValidationSet = None self.Metrics = dict() #Also reset the metrics indices = [SelectedFiles[i]["class"] for i in range(len(SelectedFiles))] #Initiate the table with 4 columns : this will be ["Index","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setColumnCount(4) nr_ind = len(set(indices)) #each index could occur for train and valid nr_rows = nr_ind self.tableWidget_Info_2.setRowCount(nr_rows) #Wich selected file has the most features? header_labels = ["Class","Nr of cells","Clr","Name"] self.tableWidget_Info_2.setHorizontalHeaderLabels(header_labels) header = self.tableWidget_Info_2.horizontalHeader() for i in range(4): header.setResizeMode(i, QtWidgets.QHeaderView.ResizeToContents) rowPosition = 0 #Validation info ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] #Total nr of cells for each index for index in np.unique(indices_valid): #put the index in column nr. 0 item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info_2.setItem(rowPosition, 0, item) #Get the validation files of that index ind = np.where(indices_valid==index)[0] SelectedFiles_valid_index = np.array(SelectedFiles_valid)[ind] nr_events_epoch = [int(selectedfile["nr_events_epoch"]) for selectedfile in SelectedFiles_valid_index] item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, str(np.sum(nr_events_epoch))) self.tableWidget_Info_2.setItem(rowPosition, 1, item) #Column for color item = QtWidgets.QTableWidgetItem() item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole, "") item.setBackground(QtGui.QColor(self.colorsQt[index])) self.tableWidget_Info_2.setItem(rowPosition, 2, item) #Column for User specified name item = QtWidgets.QTableWidgetItem() #item.setFlags(QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable) item.setData(QtCore.Qt.EditRole,str(index)) self.tableWidget_Info_2.setItem(rowPosition, 3, item) rowPosition += 1 self.tableWidget_Info_2.resizeColumnsToContents() self.tableWidget_Info_2.resizeRowsToContents() def tableWidget_Info_2_click(self,item): if item is not None: if item.column()==2: tableitem = self.tableWidget_Info_2.item(item.row(), item.column()) color = QtGui.QColorDialog.getColor() if color.getRgb()==(0, 0, 0, 255):#no black! return else: tableitem.setBackground(color) def tableWidget_HistoryItems_dclick(self,item): if item is not None: tableitem = self.tableWidget_HistoryItems.item(item.row(), item.column()) if str(tableitem.text())!="Show saved only": color = QtGui.QColorDialog.getColor() if color.getRgb()==(0, 0, 0, 255):#no black! return else: tableitem.setBackground(color) self.update_historyplot() def select_all(self,col): """ Check/Uncheck items on table_dragdrop """ apply_at_col = [2,3,8,10] if col not in apply_at_col: return #otherwiese continue rows = range(self.table_dragdrop.rowCount()) #Number of rows of the table tableitems = [self.table_dragdrop.item(row, col) for row in rows] checkStates = [tableitem.checkState() for tableitem in tableitems] #Checked? checked = [state==QtCore.Qt.Checked for state in checkStates] if set(checked)=={True}:#all are checked! #Uncheck all! for tableitem in tableitems: tableitem.setCheckState(QtCore.Qt.Unchecked) else:#otherwise check all for tableitem in tableitems: tableitem.setCheckState(QtCore.Qt.Checked) #If shuffle column was clicked do some extra if col==8: for rowPosition in rows: if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==False: rtdc_path = self.table_dragdrop.cellWidget(rowPosition, 0).text() rtdc_path = str(rtdc_path) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return nr_images = rtdc_ds["events"]["image"].len() columnPosition = 6 item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, nr_images) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.table_dragdrop.setItem(rowPosition, columnPosition, item) if bool(self.table_dragdrop.item(rowPosition, 8).checkState())==True: #Inspect this table item. If shuffle was checked before, it will be grayed out. Invert normal cell then item = self.table_dragdrop.item(rowPosition, 6) item.setFlags(item.flags() |QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) #Finally, update the Data-Overview-Box self.dataOverviewOn()#update the overview box def item_dclick(self, item): #Check/Uncheck if item is from column 2 or 3 tableitem = self.table_dragdrop.item(item.row(), item.column()) if item.column() in [2,3]: #If the item is unchecked ->check it! if tableitem.checkState() == QtCore.Qt.Unchecked: tableitem.setCheckState(QtCore.Qt.Checked) #else, the other way around elif tableitem.checkState() == QtCore.Qt.Checked: tableitem.setCheckState(QtCore.Qt.Unchecked) #Show example image if item on column 0 was dclicked if item.column() == 0: #rtdc_path = str(item.text()) #rtdc_path = tableitem.text() rtdc_path = self.table_dragdrop.cellWidget(item.row(), item.column()).text() failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() nr_images = rtdc_ds["events"]["image"].len() ind = np.random.randint(0,nr_images) img = rtdc_ds["events"]["image"][ind] if len(img.shape)==2: height, width = img.shape channels = 1 elif len(img.shape)==3: height, width, channels = img.shape else: print("Invalid image format: "+str(img.shape)) return self.w = MyPopup() self.gridLayout_w = QtWidgets.QGridLayout(self.w) self.label_image = QtWidgets.QLabel(self.w) self.label_cropimage = QtWidgets.QLabel(self.w) #zoom image such that longest side is 512 zoom_factor = np.round(float(512.0/np.max(img.shape)),0) #Get the order, specified in Image processing->Zoom Order zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order #Convert to corresponding cv2 zooming method zoom_interpol_method = aid_img.zoom_arguments_scipy2cv(zoom_factor,zoom_order) img_zoomed = cv2.resize(img, dsize=None,fx=zoom_factor, fy=zoom_factor, interpolation=eval(zoom_interpol_method)) if channels==1: height, width = img_zoomed.shape if channels==3: height, width, _ = img_zoomed.shape if channels==1: qi=QtGui.QImage(img_zoomed.data, width, height,width, QtGui.QImage.Format_Indexed8) if channels==3: qi = QtGui.QImage(img_zoomed.data,img_zoomed.shape[1], img_zoomed.shape[0], QtGui.QImage.Format_RGB888) self.label_image.setPixmap(QtGui.QPixmap.fromImage(qi)) self.gridLayout_w.addWidget(self.label_image, 1,1) #get the location of the cell rowPosition = item.row() pix = float(self.table_dragdrop.item(rowPosition, 7).text()) #pix = rtdc_ds.config["imaging"]["pixel size"] PIX = pix pos_x,pos_y = rtdc_ds["events"]["pos_x"][ind]/PIX,rtdc_ds["events"]["pos_y"][ind]/PIX cropsize = self.spinBox_imagecrop.value() y1 = int(round(pos_y))-cropsize/2 x1 = int(round(pos_x))-cropsize/2 y2 = y1+cropsize x2 = x1+cropsize #Crop the image img_crop = img[int(y1):int(y2),int(x1):int(x2)] #zoom image such that the height gets the same as for non-cropped img zoom_factor = float(img_zoomed.shape[0])/img_crop.shape[0] if zoom_factor == np.inf: factor = 1 if self.actionVerbose.isChecked()==True: print("Set resize factor to 1. Before, it was: "+str(factor)) #Get the order, specified in Image processing->Zoom Order zoom_order = str(self.comboBox_zoomOrder.currentText()) # zoom_interpol_method = aid_img.zoom_arguments_scipy2cv(zoom_factor,zoom_order) img_crop = cv2.resize(img_crop, dsize=None,fx=zoom_factor, fy=zoom_factor, interpolation=eval(zoom_interpol_method)) if channels==1: height, width = img_crop.shape qi=QtGui.QImage(img_crop.data, width, height,width, QtGui.QImage.Format_Indexed8) if channels==3: height, width, _ = img_crop.shape qi = QtGui.QImage(img_crop.data,width, height, QtGui.QImage.Format_RGB888) self.label_cropimage.setPixmap(QtGui.QPixmap.fromImage(qi)) self.gridLayout_w.addWidget(self.label_cropimage, 1,2) self.w.show() def get_norm_from_modelparafile(self): #Get the normalization method from a modelparafile filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open meta-data', Default_dict["Path of last model"],"AIDeveloper Meta file (*meta.xlsx)") filename = filename[0] if len(str(filename))==0: return norm = pd.read_excel(filename,sheet_name='Parameters')["Normalization"] norm = str(norm[0]) index = self.comboBox_Normalization.findText(norm, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_Normalization.setCurrentIndex(index) self.w.close() else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Invalid normalization method was specified.\ Likely this version of AIDeveloper does not support that normalization method\ Please define a valid normalization method") msg.setDetailedText("Supported normalization methods are: "+"\n".join(self.norm_methods)) msg.setWindowTitle("Invalid Normalization method") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("Invalid Normalization method") def update_plottingTab(self): #Get current text of combobox (url to data set) url = str(self.comboBox_chooseRtdcFile.currentText()) if len(url)==0: return failed,rtdc_ds = aid_bin.load_rtdc(url) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return keys = list(rtdc_ds["events"].keys()) #find keys of image_channels keys_0d,keys_1d,keys_2d = [],[],[] for key in keys: if type(rtdc_ds["events"][key])==h5py._hl.dataset.Dataset: shape = rtdc_ds["events"][key].shape if len(shape)==1: #zero-dimensional info (single number per cell) keys_0d.append(key) elif len(shape)==2: #one-dimensional info (multiple numbers per cell) keys_1d.append(key) elif len(shape)==3: #two-dimensional info (images) keys_2d.append(key) #add the traces to the 1d features if "trace" in keys: for key_trace in list(rtdc_ds["events"]["trace"].keys()): keys_1d.append(key_trace+" (RTFDC)") #Sort keys_2d: "image" first; "mask" last keys_2d.insert(0, keys_2d.pop(keys_2d.index("image"))) keys_2d.insert(len(keys_2d), keys_2d.pop(keys_2d.index("mask"))) #Fill those feautues in the comboboxes at the scatterplot self.comboBox_featurex.addItems(keys_0d) self.comboBox_featurey.addItems(keys_0d) #check if masks or contours are available cont_available = "mask" in keys or "contour" in keys self.checkBox_contour.setEnabled(cont_available) self.checkBox_contour.setChecked(cont_available) #Centroid is always available (prerequisite for AIDeveloper) self.checkBox_centroid.setEnabled(True) self.checkBox_centroid.setChecked(True) #Intialize option menus self.contour_options_nr = 0 self.centroid_options_nr = 0 self.show_1d_options_nr = 0 self.show_2d_options_nr = 0 self.init_contour_options(keys_2d) self.init_centroid_options(keys_1d) self.init_2d_options(keys_2d) self.init_1d_options(keys_1d) def init_contour_options(self,keys_2d): print("Work in progress") # self.popup_layercontrols = MyPopup() # self.popup_layercontrols_ui = frontend.Ui_LayerControl() # self.popup_layercontrols_ui.setupUi(self.popup_layercontrols,keys_2d) #open a popup def init_centroid_options(self,keys_image): print("Work in progress") # self.popup_centroid_options = MyPopup() # self.popup_centroid_options_ui = aid_frontend.Ui_centroid_options() # self.popup_centroid_options_ui.setupUi(self.popup_centroid_options,keys_image) #open a popup def init_2d_options(self,keys_2d): #Initialize 2d Option Menu. Range values are saved and manipulated here self.popup_2dOptions = MyPopup() self.popup_2dOptions_ui = aid_frontend.Ui_2dOptions() self.popup_2dOptions_ui.setupUi(self.popup_2dOptions,keys_2d) #open a popup def init_1d_options(self,keys_1d): self.popup_1dOptions = MyPopup() self.popup_1dOptions_ui = aid_frontend.Ui_1dOptions() self.popup_1dOptions_ui.setupUi(self.popup_1dOptions,keys_1d) #open a popup def show_contour_options(): self.contour_options_nr += 1 print("Work in progress") def show_centroid_options(self): print("Work in progress") self.centroid_options_nr += 1 #self.popup_layercontrols_ui.pushButton_close.clicked.connect(self.visualization_settings) if self.centroid_options_nr==1: for iterator in range(len(self.popup_layercontrols_ui.spinBox_minChX)): print(1) def show_2d_options(self): self.show_2d_options_nr += 1 #self.popup_layercontrols_ui.pushButton_close.clicked.connect(self.visualization_settings) if self.show_2d_options_nr==1: for iterator in range(len(self.popup_2dOptions_ui.spinBox_minChX)): slider = self.popup_2dOptions_ui.horizontalSlider_chX[iterator] slider.startValueChanged.connect(lambda _, b=None: self.put_image(ind=b)) slider.endValueChanged.connect(lambda _, b=None: self.put_image(ind=b)) checkBox = self.popup_2dOptions_ui.checkBox_show_chX[iterator] checkBox.stateChanged.connect(lambda _, b=None: self.put_image(ind=b)) comboBox = self.popup_2dOptions_ui.comboBox_cmap_chX[iterator] comboBox.currentIndexChanged.connect(lambda _, b=None: self.put_image(ind=b)) checkBox = self.popup_2dOptions_ui.checkBox_auto_chX[iterator] checkBox.stateChanged.connect(lambda _, b=None: self.put_image(ind=b)) self.popup_2dOptions.show() def show_1d_options(self): self.show_1d_options_nr += 1 #self.popup_layercontrols_ui.pushButton_close.clicked.connect(self.visualization_settings) if self.show_1d_options_nr==1: for iterator in range(len(self.popup_1dOptions_ui.checkBox_show_chX)): checkBox = self.popup_1dOptions_ui.checkBox_show_chX[iterator] checkBox.stateChanged.connect(lambda _, b=None: self.put_line(index=b)) comboBox = self.popup_1dOptions_ui.comboBox_cmap_chX[iterator] comboBox.clicked.connect(lambda _, b=None: self.put_line(index=b)) self.popup_1dOptions.show() def activate_deactivate_spinbox(self,newstate): #get the checkstate of the Input model crop if newstate==2: #activate the spinbox self.spinBox_imagecrop.setEnabled(True) elif newstate==0: self.spinBox_imagecrop.setEnabled(False) def gray_or_rgb_augmentation(self,index): #When Color-Mode is changed: #Get the new colormode: new_colormode = self.colorModes[index] #when the new Color Mode is Grayscale, disable saturation and hue augmentation if new_colormode=="Grayscale": self.checkBox_contrast.setEnabled(True) self.checkBox_contrast.setChecked(True) self.doubleSpinBox_contrastLower.setEnabled(True) self.doubleSpinBox_contrastHigher.setEnabled(True) self.checkBox_saturation.setEnabled(False) self.checkBox_saturation.setChecked(False) self.doubleSpinBox_saturationLower.setEnabled(False) self.doubleSpinBox_saturationHigher.setEnabled(False) self.checkBox_hue.setEnabled(False) self.checkBox_hue.setChecked(False) self.doubleSpinBox_hueDelta.setEnabled(False) elif new_colormode=="RGB": self.checkBox_contrast.setEnabled(True) self.checkBox_contrast.setChecked(True) self.doubleSpinBox_contrastLower.setEnabled(True) self.doubleSpinBox_contrastHigher.setEnabled(True) self.checkBox_saturation.setEnabled(True) self.checkBox_saturation.setChecked(True) self.doubleSpinBox_saturationLower.setEnabled(True) self.doubleSpinBox_saturationHigher.setEnabled(True) self.checkBox_hue.setEnabled(True) self.checkBox_hue.setChecked(True) self.doubleSpinBox_hueDelta.setEnabled(True) else: print("Invalid Color Mode") def onClick(self,points,pointermethod): #delete the last item if the user selected already one: try: self.scatter_xy.removeItem(self.point_clicked) except: pass if pointermethod=="point": points = points[0] p = points.pos() clicked_x, clicked_y = p.x(), p.y() a1 = (clicked_x)/float(np.max(self.feature_x)) a2 = (clicked_y)/float(np.max(self.feature_y)) #Which is the closest scatter point? dist = np.sqrt(( a1-self.scatter_x_norm )**2 + ( a2-self.scatter_y_norm )**2) index = np.argmin(dist) elif pointermethod=="index": index = points clicked_x = self.feature_x[index] clicked_y = self.feature_y[index] self.point_clicked = pg.ScatterPlotItem() self.point_clicked.setData([clicked_x], [clicked_y],brush="r",symbol='o',symbolPen="w",size=15) self.scatter_xy.addItem(self.point_clicked) #self.scatter_xy.plot([clicked_x], [clicked_y],pen=None,symbol='o',symbolPen='w',clear=False) self.point_was_selected_before = True #I dont care if the user click or used the slider->always adjust spinbox and slider without running the onChange functions self.changedbyuser = False self.spinBox_cellInd.setValue(index) self.horizontalSlider_cellInd.setValue(index) self.changedbyuser = True self.put_image(index) self.put_line(index) def put_image(self,ind): #check that the user is looking at the plotting tab curr_ind = self.tabWidget_Modelbuilder.currentIndex() if curr_ind!=3: return try: self.widget_showCell.removeItem(self.dot) except: pass try: self.widget_showCell.removeItem(self.plot_contour) except: pass if ind==None: index = int(self.spinBox_cellInd.value()) else: index = ind rtdc_ds = self.rtdc_ds #which channel shouldbe displayed channels = len(self.popup_2dOptions_ui.spinBox_minChX) keys_2d = [self.popup_2dOptions_ui.label_layername_chX[i].text() for i in range(channels)] #Define variable on self that carries all image information if channels==1: img = np.expand_dims(rtdc_ds["events"]["image"][index],-1) elif channels>1: img = np.stack( [rtdc_ds["events"][key][index] for key in keys_2d] ,axis=-1) if len(img.shape)==2: channels = 1 elif len(img.shape)==3: height, width, channels = img.shape else: print("Invalid image format: "+str(img.shape)) return color_mode = str(self.comboBox_GrayOrRGB_2.currentText()) if color_mode=="Grayscale": #Slider allows to show individual layers: each is shown as grayscale img = img elif color_mode == "RGB":#User can define, which layers are shown in R,G,and B #Retrieve the setting from self.popup_layercontrols_ui ui_item = self.popup_2dOptions_ui layer_names = [obj.text() for obj in ui_item.label_layername_chX] layer_active = [obj.isChecked() for obj in ui_item.checkBox_show_chX] layer_range = [obj.getRange() for obj in ui_item.horizontalSlider_chX] layer_auto = [obj.isChecked() for obj in ui_item.checkBox_auto_chX] layer_cmap = [obj.currentText() for obj in ui_item.comboBox_cmap_chX] #Assemble the image according to the settings in self.popup_layercontrols_ui #Find activated layers for each color: ind_active_r,ind_active_g,ind_active_b = [],[],[] for ch in range(len(layer_cmap)): #for color,active in zip(layer_cmap,layer_active): if layer_cmap[ch]=="Red" and layer_active[ch]==True: ind_active_r.append(ch) if layer_cmap[ch]=="Green" and layer_active[ch]==True: ind_active_g.append(ch) if layer_cmap[ch]=="Blue" and layer_active[ch]==True: ind_active_b.append(ch) if len(ind_active_r)>0: img_ch = img[:,:,np.array(ind_active_r)] layer_range_ch = np.array(layer_range)[np.array(ind_active_r)] #Range of all red channels layer_auto_ch = np.array(layer_auto)[np.array(ind_active_r)] #Automatic range #Scale each red channel according to layer_range for layer in range(img_ch.shape[-1]): limits,auto = layer_range_ch[layer],layer_auto_ch[layer] img_ch[:,:,layer] = aid_img.clip_contrast(img=img_ch[:,:,layer],low=limits[0],high=limits[1],auto=auto) img_r = np.mean(img_ch,axis=-1).astype(np.uint8) else: img_r = np.zeros(shape=(img.shape[0],img.shape[1]),dtype=np.uint8) if len(ind_active_g)>0: img_ch = img[:,:,np.array(ind_active_g)] layer_range_ch = np.array(layer_range)[np.array(ind_active_g)] #Range of all red channels layer_auto_ch = np.array(layer_auto)[np.array(ind_active_g)] #Automatic range #Scale each red channel according to layer_range for layer in range(img_ch.shape[-1]): limits,auto = layer_range_ch[layer],layer_auto_ch[layer] img_ch[:,:,layer] = aid_img.clip_contrast(img=img_ch[:,:,layer],low=limits[0],high=limits[1],auto=auto) img_g = np.mean(img_ch,axis=-1).astype(np.uint8) else: img_g = np.zeros(shape=(img.shape[0],img.shape[1]),dtype=np.uint8) if len(ind_active_b)>0: img_ch = img[:,:,np.array(ind_active_b)] layer_range_ch = np.array(layer_range)[np.array(ind_active_b)] #Range of all red channels layer_auto_ch = np.array(layer_auto)[np.array(ind_active_b)] #Automatic range #Scale each red channel according to layer_range for layer in range(img_ch.shape[-1]): limits,auto = layer_range_ch[layer],layer_auto_ch[layer] img_ch[:,:,layer] = aid_img.clip_contrast(img=img_ch[:,:,layer],low=limits[0],high=limits[1],auto=auto) img_b = np.mean(img_ch,axis=-1).astype(np.uint8) else: img_b = np.zeros(shape=(img.shape[0],img.shape[1]),dtype=np.uint8) #Assemble image by stacking all layers img = np.stack([img_r,img_g,img_b],axis=-1) #Get the levels of the previous frame levels_init = self.widget_showCell.getLevels() if levels_init==(0,1.0): levels_init = (0,255) #Get the layer index of the previous frame index_ = self.widget_showCell.currentIndex if color_mode=="Grayscale": self.widget_showCell.setImage(img.T,autoRange=False,levels=levels_init,levelMode="mono") self.widget_showCell.setCurrentIndex(index_) elif color_mode=="RGB": self.widget_showCell.setImage(np.swapaxes(img,0,1)) pix = rtdc_ds.attrs["imaging:pixel size"] pos_x = rtdc_ds["events"]["pos_x"][index]/pix pos_y = rtdc_ds["events"]["pos_y"][index]/pix #Indicate the centroid of the cell if self.checkBox_centroid.isChecked(): self.dot = pg.CircleROI(pos=(pos_x-2, pos_y-2), size=4, pen=QtGui.QPen(QtCore.Qt.red, 0.1), movable=False) self.widget_showCell.getView().addItem(self.dot) self.widget_showCell.show() if self.checkBox_contour.isChecked(): #get the contour based on the mask contour,_ = cv2.findContours(rtdc_ds["events"]["mask"][index], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) contour = contour[0][:,0,:] self.plot_contour = pg.PlotCurveItem(contour[:,0],contour[:,1],width=6,pen="r") self.widget_showCell.getView().addItem(self.plot_contour) def put_line(self,index): curr_ind = self.tabWidget_Modelbuilder.currentIndex() if curr_ind!=3: return #Fluorescence traces: clear first try: self.plot_fl_trace_.clear() #clear the plot self.plot_fl_trace.clear() #clear the plot except: pass if index==None: index = int(self.spinBox_cellInd.value()) rtdc_ds = self.rtdc_ds feature_keys = list(rtdc_ds.keys()) #which features shouldbe displayed features_nr = len(self.popup_1dOptions_ui.checkBox_show_chX) keys_1d = [self.popup_1dOptions_ui.checkBox_show_chX[i].text() for i in range(features_nr)] keys_1d_on = [self.popup_1dOptions_ui.checkBox_show_chX[i].isChecked() for i in range(features_nr)] colors = [self.popup_1dOptions_ui.comboBox_cmap_chX[i].palette().button().color() for i in range(features_nr)] colors = [list(c.getRgb()) for c in colors] colors = [tuple(c) for c in colors] ind = np.where(np.array(keys_1d_on)==True)[0] keys_1d = list(np.array(keys_1d)[ind]) colors = list(np.array(colors)[ind]) for key_1d,color in zip(keys_1d,colors): if key_1d.endswith(" (RTFDC)"): key_1d = key_1d.split(" (RTFDC)")[0] trace_flx = rtdc_ds["events"]["trace"][key_1d][index] pencolor = pg.mkPen(color, width=2) self.plot_fl_trace_ = self.plot_fl_trace.plot(range(len(trace_flx)),trace_flx,width=6,pen=pencolor,clear=False) # if "fl1_max" in feature_keys and "fl1_pos" in feature_keys: #if also the maxima and position of the max are available: use it to put the region accordingly # fl1_max,fl1_pos = rtdc_ds["events"]["fl1_max"][index],rtdc_ds["events"]["fl1_pos"][index] else: values = rtdc_ds["events"][key_1d][index] pencolor = pg.mkPen(color, width=2) self.plot_fl_trace_ = self.plot_fl_trace.plot(range(len(trace_flx)),trace_flx,width=6,pen=pencolor,clear=False) #get the maximum of [fl1_max,fl2_max,fl3_max] and put the region to the corresponding fl-position # ind = np.argmax(np.array([fl1_max,fl2_max,fl3_max])) # region_pos = np.array([fl1_pos,fl2_pos,fl3_pos])[ind] #this region is already given in us. translate this back to range # peak_height = np.array([fl1_max,fl2_max,fl3_max])[ind] # sample_rate = rtdc_ds.attrs["fluorescence:sample rate"] # fl_pos_ind = float((sample_rate*region_pos))/1E6 # # #Indicate the used flx_max and flx_pos by a scatter dot # self.peak_dot = self.plot_fl_trace.plot([float(fl_pos_ind)], [float(peak_height)],pen=None,symbol='o',symbolPen='w',clear=False) def onScatterClick(self,event, points): pointermethod = 'point' if self.changedbyuser: self.onClick(points,pointermethod) def onIndexChange(self,index): pointermethod = 'index' if self.changedbyuser: self.onClick(index,pointermethod) #Set self.changedbyuser to False and change the spinbox and slider. changedbyuser=False prevents onClick function self.changedbyuser = False self.spinBox_cellInd.setValue(index) self.horizontalSlider_cellInd.setValue(index) self.changedbyuser = True def updateScatterPlot(self): #If the Plot is updated, delete the dot in the cell-image try: self.widget_showCell.removeItem(self.dot) except: pass try: self.scatter_xy.removeItem(self.point_clicked) except: pass self.point_was_selected_before = False #read url from current comboBox_chooseRtdcFile url = str(self.comboBox_chooseRtdcFile.currentText()) if len(url)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please use the 'Build' tab to load files first") msg.setWindowTitle("No file selected") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return failed,rtdc_ds = aid_bin.load_rtdc(url) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.rtdc_ds = rtdc_ds feature_x_name = str(self.comboBox_featurex.currentText()) feature_y_name = str(self.comboBox_featurey.currentText()) features = list(self.rtdc_ds["events"].keys()) if feature_x_name in features: self.feature_x = self.rtdc_ds["events"][feature_x_name] else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Feature on x axis is not contained in data set") msg.setWindowTitle("Invalid x feature") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if feature_y_name in features: self.feature_y = self.rtdc_ds["events"][feature_y_name] else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Feature on y axis is not contained in data set") msg.setWindowTitle("Invalid y feature") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.changedbyuser = True #variable used to prevent plotting if spinbox or slider is changed programmatically #density estimation kde = self.comboBox_kde.currentText() if kde=="None": brush = "b" elif kde=="2d Histogram" or kde=="Gauss": if kde=="2d Histogram": density = aid_bin.kde_histogram(np.array(self.feature_x), np.array(self.feature_y)) elif kde=="Gauss": density = aid_bin.kde_gauss(np.array(self.feature_x), np.array(self.feature_y)) density_min,density_max = np.min(density),np.max(density) density = (density-density_min)/density_max # define colormap brush = [] from pyqtgraph.graphicsItems.GradientEditorItem import Gradients cmap = pg.ColorMap(*zip(*Gradients["viridis"]["ticks"])) for k in density: brush.append(cmap.mapToQColor(k)) #Add plot #self.scatter = self.scatter_xy.plot(np.array(self.feature_x), np.array(self.feature_y),symbolPen=None,pen=None,symbol='o',brush=brush[100],clear=True) #try to remove existing scatterplot try: self.scatter_xy.removeItem(self.scatter) except: print("Not cleared") self.scatter = pg.ScatterPlotItem() self.scatter.setData(np.array(self.feature_x), np.array(self.feature_y),brush=brush,symbolPen=None,pen=None,symbol='o',size=10) self.scatter_xy.addItem(self.scatter) #pen=None,symbol='o',symbolPen=None,symbolBrush=density,clear=True) self.scatter.sigClicked.connect(self.onScatterClick) #When scatterplot is clicked, show the desired cell #Fill histogram for x-axis; widget_histx y,x = np.histogram(self.feature_x, bins='auto') self.hist_x.plot(x, y, stepMode=True, fillLevel=0, brush=(0,0,255,150),clear=True) #Manually clear y hist first. Only clear=True did not do the job self.hist_y.clear() #Fill histogram for y-axis; widget_histy y,x = np.histogram(self.feature_y, bins='auto') curve = pg.PlotCurveItem(-1.*x, y, stepMode=True, fillLevel=0, brush=(0, 0, 255, 150),clear=True) curve.rotate(-90) self.hist_y.addItem(curve) self.scatter_x_norm = (np.array(self.feature_x).astype(np.float32))/float(np.max(self.feature_x)) self.scatter_y_norm = (np.array(self.feature_y).astype(np.float32))/float(np.max(self.feature_y)) #Adjust the horizontalSlider_cellInd and spinBox_cellInd self.horizontalSlider_cellInd.setSingleStep(1) self.horizontalSlider_cellInd.setMinimum(0) self.horizontalSlider_cellInd.setMaximum(len(self.feature_x)-1) self.spinBox_cellInd.setMinimum(0) self.spinBox_cellInd.setMaximum(len(self.feature_x)-1) def selectPeakPos(self): #Check if self.region exists #If not, show a message and return: if not hasattr(self, 'region'): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no region defined yet") msg.setWindowTitle("No region defined") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Try to get the user defined peak position if not hasattr(self, 'new_peak'): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no peak defined yet") msg.setWindowTitle("No peak defined") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #how much rows are already in table? rowcount = self.tableWidget_showSelectedPeaks.rowCount() self.tableWidget_showSelectedPeaks.setRowCount(rowcount+1) rowPosition = rowcount item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.new_peak["fl_max"])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 0, item) item = QtWidgets.QTableWidgetItem() fl_pos_us = float(float(self.new_peak["fl_pos"])*float(1E6))/float(self.rtdc_ds.attrs["fluorescence:sample rate"]) item.setData(QtCore.Qt.EditRole,fl_pos_us) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 1, item) item = QtWidgets.QTableWidgetItem() pos_x_um = float(self.new_peak["pos_x"])*float(self.rtdc_ds.attrs["imaging:pixel size"]) item.setData(QtCore.Qt.EditRole,pos_x_um) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 2, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.new_peak["fl_pos"])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 3, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.new_peak["pos_x"])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 4, item) self.tableWidget_showSelectedPeaks.resizeColumnsToContents() self.tableWidget_showSelectedPeaks.resizeRowsToContents() #Update the widget_showSelectedPeaks self.update_peak_plot() def selectPeakRange(self): new_region = self.region.getRegion() region_width = np.max(new_region) - np.min(new_region) #in [samples] sample_rate = self.rtdc_ds.attrs["fluorescence:sample rate"] region_width = (float(region_width)/float(sample_rate))*1E6 #range[samples]*(1/sample_rate[1/s]) = range[s]; div by 1E6 to conver to us self.region_width = region_width #put this in the table item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Range [us]") self.tableWidget_peakModelParameters.setItem(1, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.region_width)) self.tableWidget_peakModelParameters.setItem(1, 1, item) item = QtWidgets.QTableWidgetItem() def onPeaksPlotClick(self,event, points): points = points[0] p = points.pos() clicked_x, clicked_y = p.x(), p.y() a1 = (clicked_x)/float(np.max(self.Pos_x)) a2 = (clicked_y)/float(np.max(self.Fl_pos)) #Which is the closest scatter point? pos_x_norm = self.Pos_x/np.max(self.Pos_x)#normalized pos_x fl_pos_norm = self.Fl_pos/np.max(self.Fl_pos)#normalized fl_pos dist = np.sqrt(( a1-pos_x_norm )**2 + ( a2-fl_pos_norm )**2) index = np.argmin(dist) #Highlight this row self.tableWidget_showSelectedPeaks.selectRow(index) #Delete the highlighted rows # try: # self.actionRemoveSelectedPeaks_function() # except: # pass def update_peak_plot(self): #This function reads tableWidget_showSelectedPeaks and #fits a function and #puts fitting parameters on tableWidget_peakModelParameters #read the data on tableWidget_showSelectedPeaks rowcount = self.tableWidget_showSelectedPeaks.rowCount() Fl_pos,Pos_x = [],[] for row in range(rowcount): line = [float(self.tableWidget_showSelectedPeaks.item(row, col).text()) for col in [1,2]] #use the values for [us] and [um] Fl_pos.append(line[0]) Pos_x.append(line[1]) self.Fl_pos = np.array(Fl_pos) self.Pos_x = np.array(Pos_x) self.selectedPeaksPlotPlot = self.selectedPeaksPlot.plot(self.Pos_x, self.Fl_pos,pen=None,symbol='o',symbolPen=None,symbolBrush='b',clear=True) #if user clicks in the plot, show him the corresponding row in the table self.selectedPeaksPlotPlot.sigPointsClicked.connect(self.onPeaksPlotClick) if not hasattr(self, 'region_width'): #if there was no region_width defined yet... #to get a reasonable initial range, use 20% of the nr. of availeble samples samples_per_event = self.rtdc_ds.attrs["fluorescence:samples per event"] self.region_width = 0.2*samples_per_event #width of the region in samples #Convert to SI unit: sample_rate = self.rtdc_ds.attrs["fluorescence:sample rate"] self.region_width = (float(self.region_width)/float(sample_rate))*1E6 #range[samples]*(1/sample_rate[1/s]) = range[s]; div by 1E6 to convert to us #which model should be used? if str(self.comboBox_peakDetModel.currentText()) == "Linear dependency and max in range" and len(Pos_x)>1: slope,intercept = np.polyfit(Pos_x, Fl_pos,deg=1) #Linear FIT, y=mx+n; y=FL_pos[us] x=Pos_x[um] xlin = np.round(np.linspace(np.min(Pos_x),np.max(Pos_x),25),1) ylin = intercept + slope*xlin self.selectedPeaksPlot.plot(xlin, ylin,width=6,pen='b',clear=False) #Put info to tableWidget_peakModelParameters self.tableWidget_peakModelParameters.setColumnCount(2) self.tableWidget_peakModelParameters.setRowCount(5) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Model") self.tableWidget_peakModelParameters.setItem(0, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Linear dependency and max in range") self.tableWidget_peakModelParameters.setItem(0, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Range [us]") self.tableWidget_peakModelParameters.setItem(1, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(self.region_width)) self.tableWidget_peakModelParameters.setItem(1, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Intercept [us]") self.tableWidget_peakModelParameters.setItem(2, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(intercept)) self.tableWidget_peakModelParameters.setItem(2, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Slope [us/um]") self.tableWidget_peakModelParameters.setItem(3, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(slope)) self.tableWidget_peakModelParameters.setItem(3, 1, item) #Calculate velocity item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Velocity[m/s]") self.tableWidget_peakModelParameters.setItem(4, 0, item) velocity = float(1.0/float(slope)) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(velocity)) self.tableWidget_peakModelParameters.setItem(4, 1, item) def addHighestXPctPeaks(self): #how many x%? x_pct = float(self.doubleSpinBox_highestXPercent.value()) #Get the flourescence traces and maxima/positions of maxima #->it could be that the user did not yet load the dataset: if not hasattr(self,"rtdc_ds"): #run the function updateScatterPlot() self.updateScatterPlot() trace = self.rtdc_ds["events"]["trace"] fl_keys = list(trace.keys()) fl1_max,fl1_pos,fl2_max,fl2_pos,fl3_max,fl3_pos,pos_x = [],[],[],[],[],[],[] for i in range(len(fl_keys)): if "fl1_median" in fl_keys[i] and self.checkBox_fl1.isChecked(): for index in range(len(trace[fl_keys[i]])): trace_flx = trace[fl_keys[i]][index] ind = np.argmax(trace_flx) fl1_max.append(trace_flx[ind]) fl1_pos.append(ind) #Get the x% maxima fl1_max = np.array(fl1_max) fl1_pos = np.array(fl1_pos) sorter = np.argsort(fl1_max)[::-1] sorter = sorter[0:int(x_pct/100.0*len(fl1_max))] fl1_max = fl1_max[sorter] fl1_pos = fl1_pos[sorter] pos_x.append(self.rtdc_ds["events"]["pos_x"][sorter]) elif "fl2_median" in fl_keys[i] and self.checkBox_fl2.isChecked(): for index in range(len(trace[fl_keys[i]])): trace_flx = trace[fl_keys[i]][index] ind = np.argmax(trace_flx) fl2_max.append(trace_flx[ind]) fl2_pos.append(ind) #Get the x% maxima fl2_max = np.array(fl2_max) fl2_pos = np.array(fl2_pos) sorter = np.argsort(fl2_max)[::-1] sorter = sorter[0:int(x_pct/100.0*len(fl2_max))] fl2_max = fl2_max[sorter] fl2_pos = fl2_pos[sorter] pos_x.append(self.rtdc_ds["events"]["pos_x"][sorter]) elif "fl3_median" in fl_keys[i] and self.checkBox_fl3.isChecked(): for index in range(len(trace[fl_keys[i]])): trace_flx = trace[fl_keys[i]][index] ind = np.argmax(trace_flx) fl3_max.append(trace_flx[ind]) fl3_pos.append(ind) #Get the x% maxima fl3_max = np.array(fl3_max) fl3_pos = np.array(fl3_pos) sorter = np.argsort(fl3_max)[::-1] sorter = sorter[0:int(x_pct/100.0*len(fl3_max))] fl3_max = fl3_max[sorter] fl3_pos = fl3_pos[sorter] pos_x.append(self.rtdc_ds["events"]["pos_x"][sorter]) #Add fl1 fl2 and fl3 information flx_max = np.array(list(fl1_max)+list(fl2_max)+list(fl3_max)) flx_pos = np.array(list(fl1_pos)+list(fl2_pos)+list(fl3_pos)) pos_x_um = np.concatenate(np.atleast_2d(np.array(pos_x))) pix = self.rtdc_ds.attrs["imaging:pixel size"] pos_x = pos_x_um/pix #convert from um to pix rowcount = self.tableWidget_showSelectedPeaks.rowCount() self.tableWidget_showSelectedPeaks.setRowCount(rowcount+len(flx_max)) for i in range(len(flx_max)): rowPosition = rowcount+i item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(flx_max[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 0, item) item = QtWidgets.QTableWidgetItem() fl_pos_us = float(float(flx_pos[i])*float(1E6))/float(self.rtdc_ds.attrs["fluorescence:sample rate"] ) item.setData(QtCore.Qt.EditRole,fl_pos_us) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 1, item) item = QtWidgets.QTableWidgetItem() #pos_x_um = float(pos_x[i])*float(self.rtdc_ds.config["imaging"]["pixel size"]) item.setData(QtCore.Qt.EditRole,float(pos_x_um[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 2, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(flx_pos[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 3, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(pos_x[i])) self.tableWidget_showSelectedPeaks.setItem(rowPosition, 4, item) #Update the widget_showSelectedPeaks self.update_peak_plot() def savePeakDetModel(self): #Get tableWidget_peakModelParameters and write it to excel file #Get filename from user: filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save peak fitting model', Default_dict["Path of last model"],"Excel file (*.xlsx)") filename = filename[0] if len(filename)==0: return #add the suffix .csv if not filename.endswith(".xlsx"): filename = filename +".xlsx" table = self.tableWidget_peakModelParameters cols = table.columnCount() header = range(cols) rows = table.rowCount() model_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: model_df.iloc[i, j] = table.item(i, j).text() except: model_df.iloc[i, j] = np.nan table = self.tableWidget_showSelectedPeaks cols = table.columnCount() header = [table.horizontalHeaderItem(col).text() for col in range(cols)] rows = table.rowCount() peaks_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: peaks_df.iloc[i, j] = table.item(i, j).text() except: peaks_df.iloc[i, j] = np.nan writer = pd.ExcelWriter(filename, engine='openpyxl') #Used files go to a separate sheet on the MetaFile.xlsx pd.DataFrame().to_excel(writer,sheet_name='Model') #initialize empty Sheet model_df.to_excel(writer,sheet_name='Model') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='Peaks') #initialize empty Sheet peaks_df.to_excel(writer,sheet_name='Peaks') writer.save() writer.close() def loadPeakDetModel(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open peak fitting model', Default_dict["Path of last model"],"Excel file (*.xlsx)") filename = filename[0] if len(str(filename))==0: return peak_model_df = pd.read_excel(filename,sheet_name='Model') model = peak_model_df.iloc[0,1] if model=="Linear dependency and max in range": #set the combobox accordingly index = self.comboBox_peakDetModel.findText(model, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_peakDetModel.setCurrentIndex(index) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Could not find a valid model in the chosen file. Did you accidentially load a session or history file?!") msg.setWindowTitle("No valid model found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return range_ = float(peak_model_df.iloc[1,1]) intercept = float(peak_model_df.iloc[2,1]) slope = float(peak_model_df.iloc[3,1]) velocity = float(peak_model_df.iloc[4,1]) #put the information in the table xlin = np.round(np.linspace(np.min(0),np.max(100),25),1) ylin = intercept + slope*xlin self.selectedPeaksPlot.plot(xlin, ylin,width=6,pen='b',clear=False) #Put info to tableWidget_peakModelParameters self.tableWidget_peakModelParameters.setColumnCount(2) self.tableWidget_peakModelParameters.setRowCount(5) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Model") self.tableWidget_peakModelParameters.setItem(0, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Linear dependency and max in range") self.tableWidget_peakModelParameters.setItem(0, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Range [us]") self.tableWidget_peakModelParameters.setItem(1, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(range_)) self.tableWidget_peakModelParameters.setItem(1, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Intercept [us]") self.tableWidget_peakModelParameters.setItem(2, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(intercept)) self.tableWidget_peakModelParameters.setItem(2, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Slope [us/um]") self.tableWidget_peakModelParameters.setItem(3, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(slope)) self.tableWidget_peakModelParameters.setItem(3, 1, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, "Velocity[m/s]") self.tableWidget_peakModelParameters.setItem(4, 0, item) item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.EditRole, float(velocity)) self.tableWidget_peakModelParameters.setItem(4, 1, item) def applyPeakModel_and_export(self): #On which files should the action be performed? Files = [] if self.radioButton_exportAll.isChecked(): #Grab all items of comboBox_chooseRtdcFile Files = [self.comboBox_chooseRtdcFile.itemText(i) for i in range(self.comboBox_chooseRtdcFile.count())] else: file = self.comboBox_chooseRtdcFile.currentText() Files.append(str(file)) #Get the model from tableWidget_peakModelParameters table = self.tableWidget_peakModelParameters cols = table.columnCount() header = range(cols) rows = table.rowCount() model_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: model_df.iloc[i, j] = table.item(i, j).text() except: model_df.iloc[i, j] = np.nan model = model_df.iloc[0,1] if model == "Linear dependency and max in range": range_us = float(model_df.iloc[1,1]) #[us] intercept_us = float(model_df.iloc[2,1]) slope_us_um = float(model_df.iloc[3,1]) #velocity_m_s = float(model_df.iloc[4,1]) #Get a directory from the user! folder = QtWidgets.QFileDialog.getExistingDirectory(self, 'Select directory', Default_dict["Path of last model"]) if len(folder)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Invalid directory") msg.setWindowTitle("Invalid directory") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return for rtdc_path in Files: path, rtdc_file = os.path.split(rtdc_path) savename = os.path.join(folder,rtdc_file) #Avoid to save to an existing file: addon = 1 while os.path.isfile(savename): savename = savename.split(".rtdc")[0] if addon>1: savename = savename.split("_"+str(addon-1))[0] savename = savename+"_"+str(addon)+".rtdc" addon += 1 print("Saving to : "+savename) failed,rtdc_ds = aid_bin.load_rtdc(rtdc_path) if failed: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(rtdc_ds)) msg.setWindowTitle("Error occurred during loading file") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Convert quantities to [index] sample_rate = rtdc_ds.attrs["fluorescence:sample rate"] range_ = (range_us*float(sample_rate))/1E6 #range was given in us->Divide by 1E6 to get to s and then multiply by the sample rate # #check if an rtdc_ds is already chosen: # if not hasattr(self,'rtdc_ds'): # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Information) # msg.setText("No measurement chosen yet. Use 'Update' button") # msg.setWindowTitle("No measurement") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() # return trace = rtdc_ds["events"]["trace"] fl_keys = list(trace.keys()) #Which traces are available fl1_max,fl1_pos,fl2_max,fl2_pos,fl3_max,fl3_pos,pos_x = [],[],[],[],[],[],[] #Iterate over the available cells pos_x = rtdc_ds["events"]["pos_x"] #is already given in [um] indices = range(len(pos_x)) if model == "Linear dependency and max in range": #Use the linear model to get the estimated location of the fluorescence peaks fl_peak_position_us = intercept_us+slope_us_um*pos_x #Convert to index fl_peak_position_ = (fl_peak_position_us*float(sample_rate))/1E6 #Now we have the estimated peak position of each cell. Look at the traces on these spots def ind_to_us(x): return x*1E6/sample_rate #iterate over the cells: for cellindex in range(len(pos_x)): #Iterate over the availble traces for i in range(len(fl_keys)): if "_median" in fl_keys[i]: trace_flx = trace[fl_keys[i]][cellindex] trace_pos = np.array(range(len(trace_flx))) left = int(fl_peak_position_[cellindex]-range_/2.0) right = int(fl_peak_position_[cellindex]+range_/2.0) trace_flx_range = trace_flx[left:right] trace_pos_range = trace_pos[left:right] ind = np.argmax(trace_flx_range) if "fl1_median" in fl_keys[i]: fl1_max.append(trace_flx_range[ind]) fl1_pos.append(ind_to_us(trace_pos_range[ind])) if "fl2_median" in fl_keys[i]: fl2_max.append(trace_flx_range[ind]) fl2_pos.append(ind_to_us(trace_pos_range[ind])) if "fl3_median" in fl_keys[i]: fl3_max.append(trace_flx_range[ind]) fl3_pos.append(ind_to_us(trace_pos_range[ind])) #Save those new fluorescence features into free spots in .rtdc file #Those names can be found via dclab.dfn.feature_names called (userdef0...userdef9) #TODO (dont use dclab anymore for saving) #But just in case anyone uses that function?! #get metadata of the dataset meta = {} # only export configuration meta data (no user-defined config) for sec in dclab.definitions.CFG_METADATA: if sec in ["fmt_tdms"]: # ignored sections continue if sec in rtdc_ds.config: meta[sec] = rtdc_ds.config[sec].copy() #features = rtdc_ds._events.keys() #Get the names of the online features compression = 'gzip' nev = len(rtdc_ds) #["Overwrite Fl_max and Fl_pos","Save to userdef"] features = list(rtdc_ds["events"].keys()) if str(self.comboBox_toFlOrUserdef.currentText())=='Save to userdef': features = features+["userdef"+str(i) for i in range(10)] with dclab.rtdc_dataset.write_hdf5.write(path_or_h5file=savename,meta=meta, mode="append") as h5obj: # write each feature individually for feat in features: # event-wise, because # - tdms-based datasets don't allow indexing with numpy # - there might be memory issues if feat == "contour": cont_list = [rtdc_ds["events"]["contour"][ii] for ii in indices] dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"contour": cont_list}, mode="append", compression=compression) elif feat == "userdef0": if "fl1_median" in fl_keys: print("writing fl1_max to userdef0") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef0": np.array(fl1_max)}, mode="append", compression=compression) elif feat == "userdef1": if "fl2_median" in fl_keys: print("writing fl2_max to userdef1") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef1": np.array(fl2_max)}, mode="append", compression=compression) elif feat == "userdef2": if "fl3_median" in fl_keys: print("writing fl3_max to userdef2") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef2": np.array(fl3_max)}, mode="append", compression=compression) elif feat == "userdef3": if "fl1_pos" in features: print("writing fl1_pos to userdef3") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef3": np.array(fl1_pos)}, mode="append", compression=compression) elif feat == "userdef4": if "fl2_pos" in features: print("writing fl2_pos to userdef4") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef4": np.array(fl2_pos)}, mode="append", compression=compression) elif feat == "userdef5": if "fl3_pos" in features: print("writing fl3_pos to userdef5") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"userdef5": np.array(fl3_pos)}, mode="append", compression=compression) elif feat in ["userdef"+str(i) for i in range(5,10)]: pass elif feat == "fl1_max": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl1_max") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl1_max)},mode="append",compression=compression) elif feat == "fl2_max": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl2_max") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl2_max)},mode="append",compression=compression) elif feat == "fl3_max": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl3_max") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl3_max)},mode="append",compression=compression) elif feat == "fl1_pos": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl1_pos") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl1_pos)},mode="append",compression=compression) elif feat == "fl2_pos": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl2_pos") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl2_pos)},mode="append",compression=compression) elif feat == "fl3_pos": if str(self.comboBox_toFlOrUserdef.currentText())=='Overwrite Fl_max and Fl_pos': print("overwriting fl3_pos") dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: np.array(fl3_pos)},mode="append",compression=compression) elif feat == "index": dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"index": np.array(indices)+1}, #ShapeOut likes to start with index=1 mode="append", compression=compression) elif feat in ["mask", "image"]: # store image stacks (reduced file size and save time) m = 64 if feat=='mask': im0 = rtdc_ds["events"][feat][0] if feat=="image": im0 = rtdc_ds["events"][feat][0] imstack = np.zeros((m, im0.shape[0], im0.shape[1]), dtype=im0.dtype) jj = 0 if feat=='mask': image_list = [rtdc_ds["events"][feat][ii] for ii in indices] elif feat=='image': image_list = [rtdc_ds["events"][feat][ii] for ii in indices] for ii in range(len(image_list)): dat = image_list[ii] #dat = rtdc_ds[feat][ii] imstack[jj] = dat if (jj + 1) % m == 0: jj = 0 dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: imstack}, mode="append", compression=compression) else: jj += 1 # write rest if jj: dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: imstack[:jj, :, :]}, mode="append", compression=compression) elif feat == "trace": for tr in rtdc_ds["events"]["trace"].keys(): tr0 = rtdc_ds["events"]["trace"][tr][0] trdat = np.zeros((nev, tr0.size), dtype=tr0.dtype) jj = 0 trace_list = [rtdc_ds["events"]["trace"][tr][ii] for ii in indices] for ii in range(len(trace_list)): trdat[jj] = trace_list[ii] jj += 1 dclab.rtdc_dataset.write_hdf5.write(h5obj, data={"trace": {tr: trdat}}, mode="append", compression=compression) else: dclab.rtdc_dataset.write_hdf5.write(h5obj, data={feat: rtdc_ds["events"][feat][indices]},mode="append") h5obj.close() def partialtrainability_activated(self,on_or_off): if on_or_off==False:#0 means switched OFF self.lineEdit_partialTrainability.setText("") #self.lineEdit_partialTrainability.setEnabled(False)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(False) #Also, remove the model from self! self.model_keras = None self.radioButton_NewModel.setChecked(False) self.radioButton_LoadRestartModel.setChecked(False) self.radioButton_LoadContinueModel.setChecked(False) self.lineEdit_LoadModelPath.setText("")#put the filename in the lineedit #this happens when the user activated the expert option "partial trainability" elif on_or_off==True:#2 means switched ON #Has the user already chosen a model? if self.model_keras == None: #if there is no model yet chosen self.action_initialize_model(duties="initialize") #If there is still no model... if self.model_keras == None:# or self.model_keras_path==None: #if there is no model yet chosen #Tell the user to initiate a model first! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>To use this option please first select and load a model. To do that choose/load a model in 'Define Model'-Tab and hit the button 'Initialize/Fit Model'. Choose to only initialize the model.</p></body></html>") msg.setWindowTitle("Please load a model first") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #Switch off self.lineEdit_partialTrainability.setText("") self.radioButton_NewModel.setChecked(False) self.radioButton_LoadRestartModel.setChecked(False) self.radioButton_LoadContinueModel.setChecked(False) self.lineEdit_LoadModelPath.setText("") #self.lineEdit_partialTrainability.setEnabled(False)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(False) self.checkBox_partialTrainability.setChecked(False) return #Otherwise, there is a model on self and we can continue :) #Collections are not supported if type(self.model_keras)==tuple: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>Partial trainability is not available for collections of models. Please specify a single model.</p></body></html>") msg.setWindowTitle("Collections of models not supported for collections of models") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Switch on lineedit and the button #self.lineEdit_partialTrainability.setEnabled(True)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(True)#enables the lineEdit which shows the trainability status of each layer. #Load trainability states of the model Layer_types = [self.model_keras.layers[i].__class__.__name__ for i in range(len(self.model_keras.layers))] #Count Dense and Conv layers is_dense_or_conv = [layer_type in ["Dense","Conv2D"] for layer_type in Layer_types] index = np.where(np.array(is_dense_or_conv)==True)[0] Layer_train_status = [self.model_keras.layers[layerindex].trainable for layerindex in index] self.lineEdit_partialTrainability.setText(str(Layer_train_status))#enables the lineEdit which shows the trainability status of each layer. def partialTrainability(self): self.popup_trainability = MyPopup() self.popup_trainability_ui = aid_frontend.popup_trainability() self.popup_trainability_ui.setupUi(self.popup_trainability) #open a popup to show the layers in a table #One can only activate this function when there was a model loaded already! #self.model_keras has to exist!!! if self.model_keras == None: #if there is no model yet chosen self.action_initialize_model(duties="initialize") if self.model_keras == None: #if there is still no model... msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>To use this option please first select and load a model. To do that choose/load a model in 'Define Model'-Tab and hit the button 'Initialize/Fit Model'. Choose to only initialize the model.</p></body></html>") msg.setWindowTitle("Please load a model first") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #Switch this On in the final version self.lineEdit_partialTrainability.setText("") self.lineEdit_partialTrainability.setEnabled(False)#enables the lineEdit which shows the trainability status of each layer. self.pushButton_partialTrainability.setEnabled(False) return #Fill information about the model if self.radioButton_NewModel.isChecked():#a new model is loaded self.popup_trainability_ui.lineEdit_pop_pTr_modelPath.setText("New model") elif self.radioButton_LoadRestartModel.isChecked():#a new model is loaded load_model_path = str(self.lineEdit_LoadModelPath.text()) self.popup_trainability_ui.lineEdit_pop_pTr_modelPath.setText("Restart model: "+load_model_path) elif self.radioButton_LoadContinueModel.isChecked():#a new model is loaded load_model_path = str(self.lineEdit_LoadModelPath.text()) self.popup_trainability_ui.lineEdit_pop_pTr_modelPath.setText("Continue model: "+load_model_path) in_dim = self.model_keras.input_shape #Retrieve the color_mode from the model (nr. of channels in last in_dim) channels = in_dim[-1] #TensorFlow: channels in last dimension out_dim = self.model_keras.output_shape[-1] self.popup_trainability_ui.spinBox_pop_pTr_inpSize.setValue(int(in_dim[1])) self.popup_trainability_ui.spinBox_pop_pTr_outpSize.setValue(int(out_dim)) if channels==1: self.popup_trainability_ui.comboBox_pop_pTr_colorMode.addItem("Grayscale") elif channels==3: self.popup_trainability_ui.comboBox_pop_pTr_colorMode.addItem("RGB") #Model summary to textBrowser_pop_pTr_modelSummary summary = [] self.model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) self.popup_trainability_ui.textBrowser_pop_pTr_modelSummary.setText(summary) #Work on the tableWidget_pop_pTr_layersTable Layer_types = [self.model_keras.layers[i].__class__.__name__ for i in range(len(self.model_keras.layers))] #Count Dense and Conv layers is_dense_or_conv = [layer_type in ["Dense","Conv2D"] for layer_type in Layer_types] index = np.where(np.array(is_dense_or_conv)==True)[0] nr_layers = len(index) #total nr. of dense and conv layers with parameters for rowNumber in range(nr_layers): layerindex = index[rowNumber] columnPosition = 0 layer = self.model_keras.layers[layerindex] rowPosition = self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.rowCount() self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.insertRow(rowPosition) Name = layer.name item = QtWidgets.QTableWidgetItem(Name) item.setFlags( QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) item.setTextAlignment(QtCore.Qt.AlignCenter) # change the alignment self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition , columnPosition, item ) # columnPosition = 1 layer_type = layer.__class__.__name__ item = QtWidgets.QTableWidgetItem(layer_type) item.setFlags( QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) item.setTextAlignment(QtCore.Qt.AlignCenter) # change the alignment self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition , columnPosition, item ) # columnPosition = 2 Params = layer.count_params() item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, Params) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition, columnPosition, item) columnPosition = 3 if layer_type == "Dense": split_property = "units" #'units' are the number of nodes in dense layers elif layer_type == "Conv2D": split_property = "filters" else: print("other splitprop!") return layer_config = layer.get_config() nr_units = layer_config[split_property] #units are either nodes or filters for dense and convolutional layer, respectively item = QtWidgets.QTableWidgetItem() item.setData(QtCore.Qt.DisplayRole, int(nr_units)) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setItem(rowPosition, columnPosition, item) columnPosition = 4 #for each item create a spinbopx (trainability) spinb = QtWidgets.QDoubleSpinBox(self.popup_trainability_ui.tableWidget_pop_pTr_layersTable) spinb.setMinimum(0) spinb.setMaximum(1) spinb.setSingleStep(0.1) trainability = int(layer.trainable) #.trainable actually returns True or False. Make it integer spinb.setValue(trainability) #this should be always 1 self.popup_trainability_ui.tableWidget_pop_pTr_layersTable.setCellWidget(rowPosition, columnPosition, spinb) self.popup_trainability.show() #self.popup_trainability_ui.pushButton_pop_pTr_reset.clicked.connect(self.pop_pTr_reset) self.popup_trainability_ui.pushButton_pop_pTr_update.clicked.connect(self.pop_pTr_update_2) self.popup_trainability_ui.pushButton_pop_pTr_ok.clicked.connect(self.pop_pTr_ok) ###############Functions for the partial trainability popup################ def pop_pTr_reset(self): #Reset the model to initial state, with partial trainability print("Not implemented yet") msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("<html><head/><body><p>Not implemented yet.</p></body></html>") msg.setWindowTitle("Not implemented") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def pop_pTr_update_1(self):#main worker function #Apply the requested changes and display updated model in table pTr_table = self.popup_trainability_ui.tableWidget_pop_pTr_layersTable #Read the table: Layer_names,Layer_trainabilities = [],[] rowCount = pTr_table.rowCount() for row in range(rowCount): #Layer_indices.append(str(pTr_table.item(row, 0).text())) Layer_names.append(str(pTr_table.item(row, 0).text())) Layer_trainabilities.append(float(pTr_table.cellWidget(row, 4).value())) Layer_trainabilities = np.array(Layer_trainabilities) #What are the current trainability statuses of the model Layer_trainabilities_orig = np.array([self.model_keras.get_layer(l_name).trainable for l_name in Layer_names]) diff = abs( Layer_trainabilities - Layer_trainabilities_orig ) ind = np.where( diff>0 )[0] #Where do we have a trainability between 0 and 1 #ind = np.where( (Layer_trainabilities>0) & (Layer_trainabilities<1) )[0] if len(ind)>0: Layer_trainabilities = list(Layer_trainabilities[ind]) Layer_names = list(np.array(Layer_names)[ind]) #Update the model using user-specified trainabilities self.model_keras = partial_trainability(self.model_keras,Layer_names,Layer_trainabilities) #Update lineEdit_partialTrainability Layer_types = [self.model_keras.layers[i].__class__.__name__ for i in range(len(self.model_keras.layers))] #Count Dense and Conv layers is_dense_or_conv = [layer_type in ["Dense","Conv2D"] for layer_type in Layer_types] index = np.where(np.array(is_dense_or_conv)==True)[0] Layer_train_status = [self.model_keras.layers[layerindex].trainable for layerindex in index] self.lineEdit_partialTrainability.setText(str(Layer_train_status))#enables the lineEdit which shows the trainability status of each layer. else: print("Nothing to do. All trainabilities are either 0 or 1") def pop_pTr_update_2(self):#call pop_pTr_update_1 to do the work and then update the window try: self.pop_pTr_update_1()#Change the model on self.model_keras according to the table self.partialTrainability()#Update the popup window by calling the partialTrainability function except Exception as e: #There is an issue building the model! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error occured when building model:") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return def pop_pTr_ok(self): self.pop_pTr_update_1()#Change the model on self.model_keras according to the table; If 'Update' was used before, there will not be done work again, but the model is used as it is #To make the model accessible, it has to be saved to a new .model file filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save model', Default_dict["Path of last model"],"AIDeveloper model file (*.model)") filename = filename[0] path, fname = os.path.split(filename) if len(fname)==0: return #add the suffix _session.xlsx if not fname.endswith(".model"): fname = fname +".model" filename = os.path.join(path,fname) self.model_keras.save(filename) #Activate 'load and restart' and put this file #Avoid the automatic popup self.radioButton_NewModel.setChecked(False) self.radioButton_LoadRestartModel.setChecked(False) self.radioButton_LoadContinueModel.setChecked(True) self.lineEdit_LoadModelPath.setText(filename)#put the filename in the lineedit #Destroy the window self.popup_trainability = None msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText(tooltips["modelsaved_success"]) msg.setWindowTitle("Sucessfully created and selected model") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def lossW_comboB(self,state_nr,listindex): if listindex==-1: ui_item = self.popup_lossW_ui else: ui_item = self.fittingpopups_ui[listindex].popup_lossW_ui state_str = ui_item.comboBox_lossW.itemText(int(state_nr)) rows_nr = int(ui_item.tableWidget_lossW.rowCount()) if rows_nr==0: state_str = "None" if state_str=="None": for rowPos in range(rows_nr): colPos = 4 #"Loss weights" ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setEnabled(False) ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setValue(1.0) elif state_str=="Custom": for rowPos in range(rows_nr): colPos = 4 #"Loss weights" ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setEnabled(True) elif state_str=="Balanced": #How many cells in total per epoch events_epoch = [int(ui_item.tableWidget_lossW.item(rowPos,2).text()) for rowPos in range(rows_nr)] classes = [int(ui_item.tableWidget_lossW.item(rowPos,0).text()) for rowPos in range(rows_nr)] counter = {} for i in range(len(classes)): counter[classes[i]]=events_epoch[i] max_val = float(max(counter.values())) class_weights = {class_id : max_val/num_images for class_id, num_images in counter.items()} class_weights = list(class_weights.values()) for rowPos in range(rows_nr): colPos = 4 #"Loss weights" ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setEnabled(False) ui_item.tableWidget_lossW.cellWidget(rowPos,colPos).setValue(class_weights[rowPos]) def lossW_ok(self,listindex): #This happens when the user presses the OK button on the popup for #custom loss weights if listindex==-1: ui_item = self else: ui_item = self.fittingpopups_ui[listindex] #Which option was used on comboBox_lossW? state_str = ui_item.popup_lossW_ui.comboBox_lossW.currentText() if state_str=="None":#User left None. This actually means its off ui_item.lineEdit_lossW.setText("") ui_item.pushButton_lossW.setEnabled(False) ui_item.checkBox_lossW.setChecked(False) elif state_str=="Custom":#User left None. This actually means its off #There are custom values #Read the loss values on the table rows_nr = int(ui_item.popup_lossW_ui.tableWidget_lossW.rowCount()) classes = [int(ui_item.popup_lossW_ui.tableWidget_lossW.item(rowPos,0).text()) for rowPos in range(rows_nr)] loss_weights = [float(ui_item.popup_lossW_ui.tableWidget_lossW.cellWidget(rowPos,4).value()) for rowPos in range(rows_nr)] counter = {} for i in range(len(classes)): counter[classes[i]]=loss_weights[i] #Put counter (its a dictionary) to lineedit ui_item.lineEdit_lossW.setText(str(counter)) elif state_str=="Balanced":#Balanced, the values are computed later fresh, even when user changes the cell-numbers again ui_item.lineEdit_lossW.setText("Balanced") #Destroy the window ui_item.popup_lossW = None def lossW_cancel(self,listindex): #This happens when the user presses the Cancel button on the popup for #custom loss weights if listindex==-1: ui_item = self else: ui_item = self.fittingpopups_ui[listindex] if ui_item.lineEdit_lossW.text()=="": #if state_str=="None":#User left None. This actually means its off ui_item.lineEdit_lossW.setText("") ui_item.pushButton_lossW.setEnabled(False) ui_item.checkBox_lossW.setChecked(False) ui_item.popup_lossW = None return #Destroy the window ui_item.popup_lossW = None def get_norm_from_manualselection(self): norm = self.comboBox_w.currentText() index = self.comboBox_Normalization.findText(norm, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_Normalization.setCurrentIndex(index) self.w.close() def popup_normalization(self): self.w = MyPopup() self.gridLayout_w = QtWidgets.QGridLayout(self.w) self.gridLayout_w.setObjectName(_fromUtf8("gridLayout")) self.verticalLayout_w = QtWidgets.QVBoxLayout() self.verticalLayout_w.setObjectName(_fromUtf8("verticalLayout")) self.label_w = QtWidgets.QLabel(self.w) self.label_w.setAlignment(QtCore.Qt.AlignCenter) self.label_w.setObjectName(_fromUtf8("label_w")) self.verticalLayout_w.addWidget(self.label_w) self.horizontalLayout_2_w = QtWidgets.QHBoxLayout() self.horizontalLayout_2_w.setObjectName(_fromUtf8("horizontalLayout_2")) self.pushButton_w = QtWidgets.QPushButton(self.w) self.pushButton_w.setObjectName(_fromUtf8("pushButton")) self.horizontalLayout_2_w.addWidget(self.pushButton_w) self.horizontalLayout_w = QtWidgets.QHBoxLayout() self.horizontalLayout_w.setObjectName(_fromUtf8("horizontalLayout")) self.label_2_w = QtWidgets.QLabel(self.w) self.label_2_w.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_2_w.setObjectName(_fromUtf8("label_2_w")) self.horizontalLayout_w.addWidget(self.label_2_w) self.comboBox_w = QtWidgets.QComboBox(self.w) self.comboBox_w.setObjectName(_fromUtf8("comboBox")) self.comboBox_w.addItems(["Select"]+self.norm_methods) self.comboBox_w.setMinimumSize(QtCore.QSize(200,22)) self.comboBox_w.setMaximumSize(QtCore.QSize(200, 22)) width=self.comboBox_w.fontMetrics().boundingRect(max(self.norm_methods, key=len)).width() self.comboBox_w.view().setFixedWidth(width+10) self.comboBox_w.currentIndexChanged.connect(self.get_norm_from_manualselection) self.horizontalLayout_w.addWidget(self.comboBox_w) self.horizontalLayout_2_w.addLayout(self.horizontalLayout_w) self.verticalLayout_w.addLayout(self.horizontalLayout_2_w) self.gridLayout_w.addLayout(self.verticalLayout_w, 0, 0, 1, 1) self.w.setWindowTitle("Select normalization method") self.label_w.setText("You are about to continue training a pretrained model\n" "Please select the meta file of that model to load the normalization method\n" "or choose the normalization method manually") self.pushButton_w.setText("Load meta file") self.label_2_w.setText("Manual \n" "selection") #one button that allows to load a meta file containing the norm-method self.pushButton_w.clicked.connect(self.get_norm_from_modelparafile) self.w.show() def action_preview_model(self,enabled):#function runs when radioButton_LoadRestartModel or radioButton_LoadContinueModel was clicked if enabled: #if the "Load and restart" radiobutton was clicked: if self.radioButton_LoadRestartModel.isChecked(): modelname = QtWidgets.QFileDialog.getOpenFileName(self, 'Open model architecture', Default_dict["Path of last model"],"Architecture or model (*.arch *.model)") modelname = modelname[0] #modelname_for_dict = modelname #if the "Load and continue" radiobutton was clicked: elif self.radioButton_LoadContinueModel.isChecked(): modelname = QtWidgets.QFileDialog.getOpenFileName(self, 'Open model with all parameters', Default_dict["Path of last model"],"Keras model (*.model)") modelname = modelname[0] #modelname_for_dict = modelname self.lineEdit_LoadModelPath.setText(modelname) #Put the filename to the line edit #Remember the location for next time if len(str(modelname))>0: Default_dict["Path of last model"] = os.path.split(modelname)[0] aid_bin.save_aid_settings(Default_dict) #If user wants to load and restart a model if self.radioButton_LoadRestartModel.isChecked(): #load the model and print summary if modelname.endswith(".arch"): json_file = open(modelname, 'r') model_config = json_file.read() json_file.close() model_config = json.loads(model_config) #cut the .json off modelname = modelname.split(".arch")[0] #Or a .model (FULL model with trained weights) , but for display only load the architecture elif modelname.endswith(".model"): #Load the model config (this is the architecture) model_full_h5 = h5py.File(modelname, 'r') model_config = model_full_h5.attrs['model_config'] model_full_h5.close() #close the hdf5 model_config = json.loads(str(model_config)[2:-1]) #model = model_from_config(model_config) modelname = modelname.split(".model")[0] else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("No valid file was chosen") text1 = "Architecture: loaded from .arch\nWeights: will be randomly initialized'\n" #Try to find the corresponding .meta #All models have a number: metaname = modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" if chosen_model is not None: #chosen_model is a string that should be contained in comboBox_ModelSelection index = self.comboBox_ModelSelection.findText(chosen_model, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) else: index = self.comboBox_ModelSelection.findText('None', QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) #Otherwise, user wants to load and continue training a model elif self.radioButton_LoadContinueModel.isChecked(): #User can only choose a .model (FULL model with trained weights) , but for display only load the architecture if modelname.endswith(".model"): #Load the model config (this is the architecture) model_full_h5 = h5py.File(modelname, 'r') model_config = model_full_h5.attrs['model_config'] model_full_h5.close() #close the hdf5 model_config = json.loads(str(model_config)[2:-1]) #model = model_from_config(model_config) modelname = modelname.split(".model")[0] #Try to find the corresponding .meta #All models have a number: metaname = modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" else: #Try to get the model architecture and adjust the combobox try: ismlp,chosen_model = model_zoo.mlpconfig_to_str(model_config) except:#No model could be identified chosen_model = "None" if chosen_model is not None: #chosen_model is a string that should be contained in comboBox_ModelSelection index = self.comboBox_ModelSelection.findText(chosen_model, QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) else: index = self.comboBox_ModelSelection.findText('None', QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_ModelSelection.setCurrentIndex(index) text1 = "Architecture: loaded from .model\nWeights: pretrained weights will be loaded and used when hitting button 'Initialize model!'\n" else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("No valid file was chosen") #In both cases (restart or continue) the input dimensions have to fit #The number of output classes should also fit but this is not essential #but most users certainly want the same number of classes (output)->Give Info try: #Sequential Model in_dim = model_config['config'][0]['config']['batch_input_shape'] except: #Functional Api in_dim = model_config['config']["layers"][0]["config"]["batch_input_shape"] try: #Sequential Model out_dim = model_config['config'][-2]['config']['units'] except: #Functional Api out_dim = model_config['config']["layers"][-2]["config"]["units"] # # in_dim = model_config['config'][0]['config']['batch_input_shape'] # out_dim = model_config['config'][-2]['config']['units'] #Retrieve the color_mode from the model (nr. of channels in last in_dim) channels = in_dim[-1] #TensorFlow: channels in last dimension if channels==1: channel_text = "1 channel (Grayscale)" if self.get_color_mode()!="Grayscale": #when model needs Grayscale, set the color mode in comboBox_GrayOrRGB to that index = self.comboBox_GrayOrRGB.findText("Grayscale", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to Grayscale",5000) elif channels==3: channel_text = "3 channels (RGB)" if self.get_color_mode()!="RGB": #when model needs RGB, set the color mode in the ui to that index = self.comboBox_GrayOrRGB.findText("RGB", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to RGB",5000) text2 = "Model Input: loaded Model takes: "+str(in_dim[-3])+" x "+str(in_dim[-2]) + " pixel images and "+channel_text+"\n" if int(self.spinBox_imagecrop.value())!=int(in_dim[-2]): self.spinBox_imagecrop.setValue(in_dim[-2]) text2 = text2+ "'Input image size' in GUI was changed accordingly\n" #check that the nr. of classes are equal to the model out put SelectedFiles = self.items_clicked_no_rtdc_ds() indices = [s["class"] for s in SelectedFiles] nr_classes = np.max(indices)+1 if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" #aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" text = text1+text2+text3 self.textBrowser_Info.setText(text) if self.radioButton_LoadContinueModel.isChecked(): #"Load the parameter file of the model that should be continued and apply the same normalization" #Make a popup: You are about to continue to train a pretrained model #Please select the parameter file of that model to load the normalization method #or choose the normalization method manually: #this is important self.popup_normalization() def get_metrics(self,nr_classes): Metrics = [] f1 = bool(self.checkBox_expertF1.isChecked()) if f1==True: Metrics.append("f1_score") precision = bool(self.checkBox_expertPrecision.isChecked()) if precision==True: Metrics.append("precision") recall = bool(self.checkBox_expertRecall.isChecked()) if recall==True: Metrics.append("recall") metrics = ['accuracy'] + Metrics metrics = aid_dl.get_metrics_tensors(metrics,nr_classes) return metrics def action_set_modelpath_and_name(self): #Get the path and filename for the new model filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save model', Default_dict["Path of last model"],"Keras Model file (*.model)") filename = filename[0] if len(filename)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid filename was chosen.") msg.setWindowTitle("No valid filename was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if filename.endswith(".arch"): filename = filename.split(".arch")[0] #add the suffix .model if not filename.endswith(".model"): filename = filename +".model" self.lineEdit_modelname.setText(filename) #Write to Default_dict Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) def get_dataOverview(self): table = self.tableWidget_Info cols = table.columnCount() header = [table.horizontalHeaderItem(col).text() for col in range(cols)] rows = table.rowCount() tmp_df = pd.DataFrame(columns=header,index=range(rows)) for i in range(rows): for j in range(cols): try: tmp_df.iloc[i, j] = table.item(i, j).text() except: tmp_df.iloc[i, j] = np.nan return tmp_df def action_initialize_model(self,duties="initialize_train"): """ duties: which tasks should be performed: "initialize", "initialize_train", "initialize_lrfind" """ #print("duties: "+str(duties)) #Create config (define which device to use) if self.radioButton_cpu.isChecked(): deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): deviceSelected = str(self.comboBox_gpu.currentText()) gpu_memory = float(self.doubleSpinBox_memory.value()) config_gpu = aid_dl.get_config(cpu_nr,gpu_nr,deviceSelected,gpu_memory) # try: # K.clear_session() # except: # print("Could not clear_session (7)") with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: #Initialize the model #######################Load and restart model########################## if self.radioButton_LoadRestartModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) text0 = "Loaded model: "+load_modelname #load the model and print summary if load_modelname.endswith(".arch"): json_file = open(load_modelname, 'r') model_config = json_file.read() json_file.close() model_keras = model_from_json(model_config) model_config = json.loads(model_config) text1 = "\nArchitecture: loaded from .arch\nWeights: randomly initialized\n" #Or a .model (FULL model with trained weights) , but for display only load the architecture elif load_modelname.endswith(".model"): #Load the model config (this is the architecture) model_full_h5 = h5py.File(load_modelname, 'r') model_config = model_full_h5.attrs['model_config'] model_full_h5.close() #close the hdf5 model_config = json.loads(str(model_config)[2:-1]) model_keras = model_from_config(model_config) text1 = "\nArchitecture: loaded from .model\nWeights: randomly initialized\n" else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return try: metaname = load_modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] except: chosen_model = str(self.comboBox_ModelSelection.currentText()) #In both cases (restart or continue) the input dimensions have to fit #The number of output classes should also fit but this is not essential #but most users certainly want the same number of classes (output)->Give Info try: #Sequential Model in_dim = model_config['config'][0]['config']['batch_input_shape'] except: #Functional Api in_dim = model_config['config']["layers"][0]["config"]["batch_input_shape"] try: #Sequential Model out_dim = model_config['config'][-2]['config']['units'] except: #Functional Api out_dim = model_config['config']["layers"][-2]["config"]["units"] # in_dim = model_config['config'][0]['config']['batch_input_shape'] # out_dim = model_config['config'][-2]['config']['units'] channels = in_dim[-1] #TensorFlow: channels in last dimension #Compile model (consider user-specific metrics) model_metrics = self.get_metrics(out_dim) model_keras.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled if channels==1: channel_text = "1 channel (Grayscale)" if self.get_color_mode()!="Grayscale": #when model needs Grayscale, set the color mode in comboBox_GrayOrRGB to that index = self.comboBox_GrayOrRGB.findText("Grayscale", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to Grayscale",5000) elif channels==3: channel_text = "3 channels (RGB)" if self.get_color_mode()!="RGB": #when model needs RGB, set the color mode in the ui to that index = self.comboBox_GrayOrRGB.findText("RGB", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to RGB",5000) text2 = "Model Input: "+str(in_dim[-3])+" x "+str(in_dim[-2]) + " pixel images and "+channel_text+"\n" if int(self.spinBox_imagecrop.value())!=int(in_dim[-2]): self.spinBox_imagecrop.setValue(in_dim[-2]) text2 = text2+ "'Input image size' in GUI was changed accordingly\n" #check that the nr. of classes are equal to the model out put SelectedFiles = self.items_clicked() indices = [s["class"] for s in SelectedFiles] nr_classes = np.max(indices)+1 if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" ###############Load and continue training the model#################### elif self.radioButton_LoadContinueModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) text0 = "Loaded model: "+load_modelname+"\n" #User can only choose a .model (FULL model with trained weights) , but for display only load the architecture if load_modelname.endswith(".model"): #Load the full model try: model_keras = load_model(load_modelname,custom_objects=aid_dl.get_custom_metrics()) except: K.clear_session() #On linux It happened that there was an error, if another fitting run before model_keras = load_model(load_modelname,custom_objects=aid_dl.get_custom_metrics()) #model_config = model_keras.config() #Load the model config (this is the architecture) #load_modelname = load_modelname.split(".model")[0] text1 = "Architecture: loaded from .model\nWeights: pretrained weights were loaded\n" else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid file was chosen. Please specify a file that was created using AIDeveloper or Keras") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #raise ValueError("No valid file was chosen") try: metaname = load_modelname.rsplit('_',1)[0]+"_meta.xlsx" if os.path.isfile(metaname): #open the metafile meta = pd.read_excel(metaname,sheet_name="Parameters") if "Chosen Model" in list(meta.keys()): chosen_model = meta["Chosen Model"].iloc[-1] else: chosen_model = str(self.comboBox_ModelSelection.currentText()) except: chosen_model = str(self.comboBox_ModelSelection.currentText()) #Check input dimensions #The number of output classes should also fit but this is not essential #but most users certainly want the same number of classes (output)->Give Info # in_dim = model_config['config'][0]['config']['batch_input_shape'] # out_dim = model_config['config'][-2]['config']['units'] in_dim = model_keras.get_input_shape_at(0) out_dim = model_keras.get_output_shape_at(0)[1] channels = in_dim[-1] #TensorFlow: channels in last dimension if channels==1: channel_text = "1 channel (Grayscale)" if self.get_color_mode()!="Grayscale": #when model needs Grayscale, set the color mode in comboBox_GrayOrRGB to that index = self.comboBox_GrayOrRGB.findText("Grayscale", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to Grayscale",5000) elif channels==3: channel_text = "3 channels (RGB)" if self.get_color_mode()!="RGB": #when model needs RGB, set the color mode in the ui to that index = self.comboBox_GrayOrRGB.findText("RGB", QtCore.Qt.MatchFixedString) if index >= 0: self.comboBox_GrayOrRGB.setCurrentIndex(index) self.statusbar.showMessage("Color Mode set to RGB",5000) text2 = "Model Input: "+str(in_dim[-3])+" x "+str(in_dim[-2]) + " pixel images and "+channel_text+"\n" if int(self.spinBox_imagecrop.value())!=int(in_dim[-2]): self.spinBox_imagecrop.setValue(in_dim[-2]) text2 = text2+ "'Input image size' in GUI was changed accordingly\n" #check that the nr. of classes are equal to the model out put SelectedFiles = self.items_clicked() indices = [s["class"] for s in SelectedFiles] nr_classes = np.max(indices)+1 if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" ###########################New model################################### elif self.radioButton_NewModel.isChecked(): load_modelname = "" #No model is loaded text0 = load_modelname #Create a new model! #Get what the user wants from the dropdown menu! chosen_model = str(self.comboBox_ModelSelection.currentText()) if chosen_model==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No model specified!") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return in_dim = int(self.spinBox_imagecrop.value()) SelectedFiles = self.items_clicked() #rtdc_ds = SelectedFiles[0]["rtdc_ds"] if str(self.comboBox_GrayOrRGB.currentText())=="Grayscale": channels=1 elif str(self.comboBox_GrayOrRGB.currentText())=="RGB": channels=3 indices = [s["class"] for s in SelectedFiles] indices_unique = np.unique(np.array(indices)) if len(indices_unique)<2: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Need at least two classes to fit. Please specify .rtdc files and corresponding indeces") msg.setWindowTitle("No valid file was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return out_dim = np.max(indices)+1 nr_classes = out_dim if chosen_model=="None": msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No model specified!") msg.setWindowTitle("No model specified!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return try: model_keras = model_zoo.get_model(chosen_model,in_dim,channels,out_dim) except Exception as e: #There is an issue building the model! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error occured when building model:") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return text1 = "Architecture: created "+chosen_model+" design\nWeights: Initialized random weights\n" if self.get_color_mode()=="Grayscale": channels = 1 channel_text = "1 channel (Grayscale)" elif self.get_color_mode()=="RGB": channels = 3 channel_text = "3 channels (RGB)" text2 = "Model Input: "+str(in_dim)+" x "+str(in_dim) + " pixel images and "+channel_text+"\n" if int(nr_classes)==int(out_dim): text3 = "Output: "+str(out_dim)+" classes\n" elif int(nr_classes)>int(out_dim):#Dataset has more classes than the model provides! text3 = "Loaded model has only "+(str(out_dim))+\ " output nodes (classes) but your selected data has "+str(nr_classes)+\ " classes. Therefore, the model will be adjusted before fitting, by customizing the final Dense layer.\n" aid_dl.model_add_classes(model_keras,nr_classes)#this function changes model_keras inplace elif int(nr_classes)<int(out_dim):#Dataset has less classes than the model provides! text3 = "Model output: The architecture you chose has "+(str(out_dim))+\ " output nodes (classes) and your selected data has only "+str(nr_classes)+\ " classes. This is fine. The model will essentially have some excess classes that are not used.\n" else: #No radio-button was chosen msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please use the radiobuttons to define the model") msg.setWindowTitle("No model defined") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #If expert mode is on, apply the requested options #This affects learning rate, trainability of layers and dropout rate expert_mode = bool(self.groupBox_expertMode.isChecked()) learning_rate_const = float(self.doubleSpinBox_learningRate.value()) learning_rate_expert_on = bool(self.groupBox_learningRate.isChecked()) train_last_layers = bool(self.checkBox_trainLastNOnly.isChecked()) train_last_layers_n = int(self.spinBox_trainLastNOnly.value()) train_dense_layers = bool(self.checkBox_trainDenseOnly.isChecked()) dropout_expert_on = bool(self.checkBox_dropout.isChecked()) loss_expert_on = bool(self.checkBox_expt_loss.isChecked()) loss_expert = str(self.comboBox_expt_loss.currentText()).lower() optimizer_expert_on = bool(self.checkBox_optimizer.isChecked()) optimizer_expert = str(self.comboBox_optimizer.currentText()).lower() optimizer_settings = self.optimizer_settings.copy() #get the current optimizer settings paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() model_metrics = self.get_metrics(nr_classes) if "collection" in chosen_model.lower(): for m in model_keras[1]: #in a collection, model_keras[0] are the names of the models and model_keras[1] is a list of all models aid_dl.model_compile(m,loss_expert,optimizer_settings,learning_rate_const,self.get_metrics(nr_classes),nr_classes) if not "collection" in chosen_model.lower(): aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) try: dropout_expert = str(self.lineEdit_dropout.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] if type(model_keras)==tuple:#when user chose a Collection of models, a tuple is returned by get_model collection = True else: collection = False if collection==False: #if there is a single model: #Original learning rate (before expert mode is switched on!) try: self.learning_rate_original = K.eval(model_keras.optimizer.lr) except: print("Session busy. Try again in fresh session...") #tf.reset_default_graph() #Make sure to start with a fresh session K.clear_session() sess = tf.Session(graph = tf.Graph(), config=config_gpu) #K.set_session(sess) self.learning_rate_original = K.eval(model_keras.optimizer.lr) #Get initial trainability states of model self.trainable_original, self.layer_names = aid_dl.model_get_trainable_list(model_keras) trainable_original, layer_names = self.trainable_original, self.layer_names self.do_list_original = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model do_list_original = self.do_list_original if collection==True: #if there is a collection of models: #Original learning rate (before expert mode is switched on!) self.learning_rate_original = [K.eval(model_keras[1][i].optimizer.lr) for i in range(len(model_keras[1]))] #Get initial trainability states of model trainable_layerName = [aid_dl.model_get_trainable_list(model_keras[1][i]) for i in range(len(model_keras[1]))] self.trainable_original = [trainable_layerName[i][0] for i in range(len(trainable_layerName))] self.layer_names = [trainable_layerName[i][1] for i in range(len(trainable_layerName))] trainable_original, layer_names = self.trainable_original, self.layer_names self.do_list_original = [aid_dl.get_dropout(model_keras[1][i]) for i in range(len(model_keras[1]))]#Get a list of dropout values of the current model do_list_original = self.do_list_original #TODO add expert mode ability for collection of models. Maybe define self.model_keras as a list in general. So, fitting a single model is just a special case if expert_mode==True: #Apply the changes to trainable states: if train_last_layers==True:#Train only the last n layers print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,out_dim,loss_expert,optimizer_settings,learning_rate_const) if train_dense_layers==True:#Train only dense layers print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,out_dim,loss_expert,optimizer_settings,learning_rate_const) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a float dropout_expert_list=len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers") msg.setWindowTitle("Issue with Expert->Dropout") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() dropout_expert_list = [] return else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Could not understand user input at Expert->Dropout") msg.setWindowTitle("Issue with Expert->Dropout") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" print(text_do) text_updates = "" #Learning Rate: Compare current lr and the lr on expert tab: if collection == False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[1][0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: #If there is a difference, change lr accordingly K.set_value(model_keras.optimizer.lr, learning_rate_const) text_updates += "Learning rate: "+str(lr_current)+"\n" recompile = False #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model else: optimizer_current = aid_dl.get_optimizer_name(model_keras[1][0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Optimizer: "+optimizer_expert+"\n" #Loss function: Compare current loss function and the loss-function on expert tab: if collection==False: if model_keras.loss!=loss_expert: recompile = True if collection==True: if model_keras[1][0].loss!=loss_expert: recompile = True text_updates += "Loss function: "+loss_expert+"\n" if recompile==True: if collection==False: print("Recompiling...") aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if collection==True: for m in model_keras[1]: print("Recompiling...") aid_dl.model_compile(m,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) self.model_keras = model_keras #overwrite the model in self if collection == False: #Get user-specified filename for the new model new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)>0: text_new_modelname = "Model will be saved as: "+new_modelname+"\n" else: text_new_modelname = "Please specify a model path (name for the model to be fitted)\n" if collection == True: new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)>0: new_modelname = os.path.split(new_modelname) text_new_modelname = "Collection of Models will be saved into: "+new_modelname[0]+"\n" else: text_new_modelname = "Please specify a model path (name for the model to be fitted)\n" #Info about normalization method norm = str(self.comboBox_Normalization.currentText()) text4 = "Input image normalization method: "+norm+"\n" #Check if there are dropout layers: #do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model if len(do_list_original)>0: text4 = text4+"Found "+str(len(do_list_original)) +" dropout layers with rates: "+str(do_list_original)+"\n" else: text4 = text4+"Found no dropout layers\n" if expert_mode==True: if dropout_expert_on: text4 = text4+text_do+"\n" # if learning_rate_expert_on==True: # if K.eval(model_keras.optimizer.lr) != learning_rate_const: #if the learning rate in UI is NOT equal to the lr of the model... # text_lr = "Changed the learning rate to: "+ str(learning_rate_const)+"\n" # text4 = text4+text_lr text5 = "Model summary:\n" summary = [] if collection==False: model_keras.summary(print_fn=summary.append) summary = "\n".join(summary) text = text_new_modelname+text0+text1+text2+text3+text4+text_updates+text5+summary self.textBrowser_Info.setText(text) #Save the model architecture: serialize to JSON model_json = model_keras.to_json() with open(new_modelname.split(".model")[0]+".arch", "w") as json_file: json_file.write(model_json) elif collection==True: if self.groupBox_expertMode.isChecked()==True: self.groupBox_expertMode.setChecked(False) print("Turned off expert mode. Not implemented yet for collections of models. This does not affect user-specified metrics (precision/recall/f1)") self.model_keras_arch_path = [new_modelname[0]+os.sep+new_modelname[1].split(".model")[0]+"_"+model_keras[0][i]+".arch" for i in range(len(model_keras[0]))] for i in range(len(model_keras[1])): model_keras[1][i].summary(print_fn=summary.append) #Save the model architecture: serialize to JSON model_json = model_keras[1][i].to_json() with open(self.model_keras_arch_path[i], "w") as json_file: json_file.write(model_json) summary = "\n".join(summary) text = text_new_modelname+text0+text1+text2+text3+text4+text_updates+text5+summary self.textBrowser_Info.setText(text) #Save the model to a variable on self self.model_keras = model_keras #Get the user-defined cropping size crop = int(self.spinBox_imagecrop.value()) #Make the cropsize a bit larger since the images will later be rotated cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number #Estimate RAM needed nr_imgs = np.sum([np.array(list(SelectedFiles)[i]["nr_images"]) for i in range(len(list(SelectedFiles)))]) ram_needed = np.round(nr_imgs * aid_bin.calc_ram_need(cropsize2),2) if duties=="initialize":#Stop here if the model just needs to be intialized (for expert mode->partial trainability) return elif duties=="initialize_train": #Tell the user if the data is stored and read from ram or not msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "<html><head/><body><p>Should the model only be initialized,\ or do you want to start fitting right after? For fitting, data will\ be loaded to RAM (since Edit->Data to RAM is enabled), which will\ require "+str(ram_needed)+"MB of RAM.</p></body></html>" msg.setText(text) msg.setWindowTitle("Initialize model or initialize and fit model?") msg.addButton(QtGui.QPushButton('Stop after model initialization'), QtGui.QMessageBox.RejectRole) msg.addButton(QtGui.QPushButton('Start fitting'), QtGui.QMessageBox.ApplyRole) retval = msg.exec_() elif duties=="initialize_lrfind": retval = 1 else: print("Invalid duties: "+duties) return if retval==0: #yes role: Only initialize model print("Closing session") del model_keras sess.close() return elif retval == 1: if self.actionDataToRam.isChecked(): color_mode = self.get_color_mode() zoom_factors = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order #Check if there is data already available in RAM if len(self.ram)==0:#if there is already data stored on ram print("No data on RAM. I have to load") dic = aid_img.crop_imgs_to_ram(list(SelectedFiles),cropsize2,zoom_factors=zoom_factors,zoom_order=zoom_order,color_mode=color_mode) self.ram = dic else: print("There is already some data on RAM") new_fileinfo = {"SelectedFiles":list(SelectedFiles),"cropsize2":cropsize2,"zoom_factors":zoom_factors,"zoom_order":zoom_order,"color_mode":color_mode} identical = aid_bin.ram_compare_data(self.ram,new_fileinfo) if not identical: #Load the data dic = aid_img.crop_imgs_to_ram(list(SelectedFiles),cropsize2,zoom_factors=zoom_factors,zoom_order=zoom_order,color_mode=color_mode) self.ram = dic if identical: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) text = "Data was loaded before! Should same data be reused? If not, click 'Reload data', e.g. if you altered the Data-table." text = "<html><head/><body><p>"+text+"</p></body></html>" msg.setText(text) msg.setWindowTitle("Found data on RAM") msg.addButton(QtGui.QPushButton('Reuse data'), QtGui.QMessageBox.YesRole) msg.addButton(QtGui.QPushButton('Reload data'), QtGui.QMessageBox.NoRole) retval = msg.exec_() if retval==0: print("Re-use data") #Re-use same data elif retval==1: print("Re-load data") dic = aid_img.crop_imgs_to_ram(list(SelectedFiles),cropsize2,zoom_factors=zoom_factors,zoom_order=zoom_order,color_mode=color_mode) self.ram = dic #Finally, activate the 'Fit model' button again #self.pushButton_FitModel.setEnabled(True) if duties=="initialize_train": self.action_fit_model() if duties=="initialize_lrfind": self.action_lr_finder() del model_keras def action_fit_model_worker(self,progress_callback,history_callback): if self.radioButton_cpu.isChecked(): gpu_used = False deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): gpu_used = True deviceSelected = str(self.comboBox_gpu.currentText()) gpu_memory = float(self.doubleSpinBox_memory.value()) #Retrieve more Multi-GPU Options from Menubar: cpu_merge = bool(self.actioncpu_merge.isEnabled()) cpu_relocation = bool(self.actioncpu_relocation.isEnabled()) cpu_weight_merge = bool(self.actioncpu_weightmerge.isEnabled()) #Create config (define which device to use) config_gpu = aid_dl.get_config(cpu_nr,gpu_nr,deviceSelected,gpu_memory) with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: #get an index of the fitting popup listindex = self.popupcounter-1 #Get user-specified filename for the new model new_modelname = str(self.lineEdit_modelname.text()) model_keras_path = self.model_keras_path if type(model_keras_path)==list: collection = True #Take the initialized models model_keras_path = self.model_keras_path model_keras = [load_model(model_keras_path[i],custom_objects=aid_dl.get_custom_metrics()) for i in range(len(model_keras_path)) ] model_architecture_names = self.model_keras[0] print(model_architecture_names) #self.model_keras = None else: collection = False if deviceSelected=="Multi-GPU" and cpu_weight_merge==True: with tf.device("/cpu:0"): model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) else: model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) #self.model_keras = None #Initialize a variable for the parallel model model_keras_p = None #Multi-GPU if deviceSelected=="Multi-GPU": if collection==False: print("Adjusting the model for Multi-GPU") model_keras_p = multi_gpu_model(model_keras, gpus=gpu_nr, cpu_merge=cpu_merge, cpu_relocation=cpu_relocation)#indicate the numbers of gpus that you have if self.radioButton_LoadContinueModel.isChecked():#calling multi_gpu_model resets the weights. Hence, they need to be put in place again model_keras_p.layers[-2].set_weights(model_keras.get_weights()) elif collection==True: print("Collection & Multi-GPU is not supported yet") return # model_keras_p = [] # for m in model_keras_p: # print("Adjusting the model for Multi-GPU") # model_keras_p.append(multi_gpu_model(m, gpus=gpu_nr)) #indicate the numbers of gpus that you have ##############Main function after hitting FIT MODEL#################### if self.radioButton_LoadRestartModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_LoadContinueModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_NewModel.isChecked(): load_modelname = "" #No model is loaded if collection==False: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras.output.shape.dims[1]) if collection==True: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras[0].output.shape.dims[1]) #Metrics to be displayed during fitting (real-time) model_metrics = self.get_metrics(nr_classes) #Compile model if collection==False and deviceSelected=="Single-GPU": model_keras.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif collection==False and deviceSelected=="Multi-GPU": model_keras_p.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif collection==True and deviceSelected=="Single-GPU": #Switch off the expert tab! self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setChecked(False) self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setEnabled(False) for m in model_keras: m.compile(loss='categorical_crossentropy',optimizer='adam',metrics=self.get_metrics(nr_classes))#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif collection==True and deviceSelected=="Multi-GPU": print("Collection & Multi-GPU is not supported yet") return #Original learning rate: #learning_rate_original = self.learning_rate_original#K.eval(model_keras.optimizer.lr) #Original trainable states of layers with parameters trainable_original, layer_names = self.trainable_original, self.layer_names do_list_original = self.do_list_original #Collect all information about the fitting routine that was user #defined if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 new_model = self.radioButton_NewModel.isChecked() chosen_model = str(self.comboBox_ModelSelection.currentText()) crop = int(self.spinBox_imagecrop.value()) color_mode = str(self.comboBox_GrayOrRGB.currentText()) loadrestart_model = self.radioButton_LoadRestartModel.isChecked() loadcontinue_model = self.radioButton_LoadContinueModel.isChecked() norm = str(self.comboBox_Normalization.currentText()) nr_epochs = int(self.spinBox_NrEpochs.value()) keras_refresh_nr_epochs = int(self.spinBox_RefreshAfterEpochs.value()) h_flip = bool(self.checkBox_HorizFlip.isChecked()) v_flip = bool(self.checkBox_VertFlip.isChecked()) rotation = float(self.lineEdit_Rotation.text()) width_shift = float(self.lineEdit_widthShift.text()) height_shift = float(self.lineEdit_heightShift.text()) zoom = float(self.lineEdit_zoomRange.text()) shear = float(self.lineEdit_shearRange.text()) brightness_refresh_nr_epochs = int(self.spinBox_RefreshAfterNrEpochs.value()) brightness_add_lower = float(self.spinBox_PlusLower.value()) brightness_add_upper = float(self.spinBox_PlusUpper.value()) brightness_mult_lower = float(self.doubleSpinBox_MultLower.value()) brightness_mult_upper = float(self.doubleSpinBox_MultUpper.value()) gaussnoise_mean = float(self.doubleSpinBox_GaussianNoiseMean.value()) gaussnoise_scale = float(self.doubleSpinBox_GaussianNoiseScale.value()) contrast_on = bool(self.checkBox_contrast.isChecked()) contrast_lower = float(self.doubleSpinBox_contrastLower.value()) contrast_higher = float(self.doubleSpinBox_contrastHigher.value()) saturation_on = bool(self.checkBox_saturation.isChecked()) saturation_lower = float(self.doubleSpinBox_saturationLower.value()) saturation_higher = float(self.doubleSpinBox_saturationHigher.value()) hue_on = bool(self.checkBox_hue.isChecked()) hue_delta = float(self.doubleSpinBox_hueDelta.value()) avgBlur_on = bool(self.checkBox_avgBlur.isChecked()) avgBlur_min = int(self.spinBox_avgBlurMin.value()) avgBlur_max = int(self.spinBox_avgBlurMax.value()) gaussBlur_on = bool(self.checkBox_gaussBlur.isChecked()) gaussBlur_min = int(self.spinBox_gaussBlurMin.value()) gaussBlur_max = int(self.spinBox_gaussBlurMax.value()) motionBlur_on = bool(self.checkBox_motionBlur.isChecked()) motionBlur_kernel = str(self.lineEdit_motionBlurKernel.text()) motionBlur_angle = str(self.lineEdit_motionBlurAngle.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple if collection==False: expert_mode = bool(self.groupBox_expertMode.isChecked()) elif collection==True: expert_mode = self.groupBox_expertMode.setChecked(False) print("Expert mode was switched off. Not implemented yet for collections") expert_mode = False batchSize_expert = int(self.spinBox_batchSize.value()) epochs_expert = int(self.spinBox_epochs.value()) learning_rate_expert_on = bool(self.groupBox_learningRate.isChecked()) learning_rate_const_on = bool(self.radioButton_LrConst.isChecked()) learning_rate_const = float(self.doubleSpinBox_learningRate.value()) learning_rate_cycLR_on = bool(self.radioButton_LrCycl.isChecked()) try: cycLrMin = float(self.lineEdit_cycLrMin.text()) cycLrMax = float(self.lineEdit_cycLrMax.text()) except: cycLrMin = [] cycLrMax = [] cycLrMethod = str(self.comboBox_cycLrMethod.currentText()) #clr_settings = self.fittingpopups_ui[listindex].clr_settings.copy() cycLrGamma = self.clr_settings["gamma"] SelectedFiles = self.items_clicked()#to compute cycLrStepSize, the number of training images is needed cycLrStepSize = aid_dl.get_cyclStepSize(SelectedFiles,self.clr_settings["step_size"],batchSize_expert) #put clr_settings onto fittingpopup, self.fittingpopups_ui[listindex].clr_settings = self.clr_settings.copy()#assign a copy. Otherwise values in both dicts are changed when manipulating one dict #put optimizer_settings onto fittingpopup, self.fittingpopups_ui[listindex].optimizer_settings = self.optimizer_settings.copy()#assign a copy. Otherwise values in both dicts are changed when manipulating one dict learning_rate_expo_on = bool(self.radioButton_LrExpo.isChecked()) expDecInitLr = float(self.doubleSpinBox_expDecInitLr.value()) expDecSteps = int(self.spinBox_expDecSteps.value()) expDecRate = float(self.doubleSpinBox_expDecRate.value()) loss_expert_on = bool(self.checkBox_expt_loss.isChecked()) loss_expert = str(self.comboBox_expt_loss.currentText()).lower() optimizer_expert_on = bool(self.checkBox_optimizer.isChecked()) optimizer_expert = str(self.comboBox_optimizer.currentText()).lower() optimizer_settings = self.fittingpopups_ui[listindex].optimizer_settings.copy()#make a copy to make sure that changes in the UI are not immediately used paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() train_last_layers = bool(self.checkBox_trainLastNOnly.isChecked()) train_last_layers_n = int(self.spinBox_trainLastNOnly.value()) train_dense_layers = bool(self.checkBox_trainDenseOnly.isChecked()) dropout_expert_on = bool(self.checkBox_dropout.isChecked()) try: dropout_expert = str(self.lineEdit_dropout.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] lossW_expert_on = bool(self.checkBox_lossW.isChecked()) lossW_expert = str(self.lineEdit_lossW.text()) #To get the class weights (loss), the SelectedFiles are required #SelectedFiles = self.items_clicked() #Check if xtra_data should be used for training xtra_in = [s["xtra_in"] for s in SelectedFiles] if len(set(xtra_in))==1: xtra_in = list(set(xtra_in))[0] elif len(set(xtra_in))>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return self.fittingpopups_ui[listindex].SelectedFiles = SelectedFiles #save to self. to make it accessible for popup showing loss weights #Get the class weights. This function runs now the first time in the fitting routine. #It is possible that the user chose Custom weights and then changed the classes. Hence first check if #there is a weight for each class available. class_weight = self.get_class_weight(self.fittingpopups_ui[listindex].SelectedFiles,lossW_expert,custom_check_classes=True) if type(class_weight)==list: #There has been a mismatch between the classes described in class_weight and the classes available in SelectedFiles! lossW_expert = class_weight[0] #overwrite class_weight = class_weight[1] print("class_weight:" +str(class_weight)) print("There has been a mismatch between the classes described in \ Loss weights and the classes available in the selected files! \ Hence, the Loss weights are set to Balanced") #Get callback for the learning rate scheduling callback_lr = aid_dl.get_lr_callback(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) #save a dictionary with initial values lr_dict_original = aid_dl.get_lr_dict(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) if collection==False: #Create an excel file writer = pd.ExcelWriter(new_modelname.split(".model")[0]+'_meta.xlsx', engine='openpyxl') self.fittingpopups_ui[listindex].writer = writer #Used files go to a separate sheet on the MetaFile.xlsx SelectedFiles_df = pd.DataFrame(SelectedFiles) pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df = self.get_dataOverview() DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet elif collection==True: SelectedFiles_df = pd.DataFrame(SelectedFiles) Writers = [] #Create excel files for i in range(len(model_keras_path)): writer = pd.ExcelWriter(model_keras_path[i].split(".model")[0]+'_meta.xlsx', engine='openpyxl') Writers.append(writer) for writer in Writers: #Used files go to a separate sheet on the MetaFile.xlsx pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df = self.get_dataOverview() DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet ###############################Expert Mode values################## expert_mode_before = False #There was no expert mode used before. if expert_mode==True: #activate groupBox_expertMode_pop self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setChecked(True) expert_mode_before = True #Some settings only need to be changed once, after user clicked apply at next epoch #Apply the changes to trainable states: if train_last_layers==True:#Train only the last n layers print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_last_layers==True") text1 = "Expert mode: Request for custom trainability states: train only the last "+str(train_last_layers_n)+ " layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if train_dense_layers==True:#Train only dense layers print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_dense_layers==True") text1 = "Expert mode: Request for custom trainability states: train only dense layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a single float dropout_expert_list = len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): text = "Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) else: text = "Could not understand user input at Expert->Dropout" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change dropout. I'm not sure if this works already!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" print(text_do) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_do) text_updates = "" #Compare current lr and the lr on expert tab: if collection == False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: if collection == False: K.set_value(model_keras.optimizer.lr, learning_rate_const) if collection == True: for m in model_keras: K.set_value(m.optimizer.lr, learning_rate_const) text_updates += "Changed the learning rate to "+ str(learning_rate_const)+"\n" #Check if model has to be compiled again recompile = False #by default, dont recompile (happens for "Load and continue" training a model) if new_model==True: recompile = True #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model if collection==True: optimizer_current = aid_dl.get_optimizer_name(model_keras[0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Changed the optimizer to "+optimizer_expert+"\n" #Compare current loss function and the loss-function on expert tab: if collection==False: if model_keras.loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if collection==True: if model_keras[0].loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if recompile==True: print("Recompiling...") if collection==False: aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if collection==True: for m in model_keras: aid_dl.model_compile(m, loss_expert, optimizer_settings, learning_rate_const,model_metrics, nr_classes) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to adjust learning rate, loss, optimizer") self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_updates) #self.model_keras = model_keras #overwrite the model on self ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] nr_events_epoch_train = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_train] rtdc_path_train = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_train] zoom_factors_train = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_train] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_train = [selectedfile["shuffle"] for selectedfile in SelectedFiles_train] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_train]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False #read self.ram to new variable ; next clear ram. This is required for multitasking (training multiple models with maybe different data) DATA = self.ram if verbose==1: print("Length of DATA (in RAM) = "+str(len(DATA))) #clear the ram again if desired if not self.actionKeep_Data_in_RAM.isChecked(): self.ram = dict() print("Removed data from self.ram. For further training sessions, data has to be reloaded.") #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles_train)): #if Data_to_RAM was not enabled: #if not self.actionDataToRam.isChecked(): if len(DATA)==0: #Here, the entire training set needs to be used! Not only random images! #Replace=true: means individual cells could occur several times gen_train = aid_img.gen_crop_img(crop,rtdc_path_train[i],random_images=False,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) # else: #get a similar generator, using the ram-data # if len(DATA)==0: # gen_train = aid_img.gen_crop_img(crop,rtdc_path_train[i],random_images=False) #Replace true means that individual cells could occur several times else: gen_train = aid_img.gen_crop_img_ram(DATA,rtdc_path_train[i],random_images=False) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen_train)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) text = "<html><head/><body><p>The standard deviation of your training data is zero! This would lead to division by zero. To avoid this, I will divide by 0.0001 instead.</p></body></html>" msg.setText(text) msg.setWindowTitle("Std. is zero") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() Para_dict = pd.DataFrame() def update_para_dict(): #Document changes in the meta-file Para_dict["AIDeveloper_Version"]=VERSION, Para_dict["model_zoo_version"]=model_zoo_version, try: Para_dict["OS"]=platform.platform(), Para_dict["CPU"]=platform.processor(), except: Para_dict["OS"]="Unknown", Para_dict["CPU"]="Unknown", Para_dict["Modelname"]=new_modelname, Para_dict["Chosen Model"]=chosen_model, Para_dict["new_model"]=new_model, Para_dict["loadrestart_model"]=loadrestart_model, Para_dict["loadcontinue_model"]=loadcontinue_model, Para_dict["Continued_Fitting_From"]=load_modelname, Para_dict["Input image size"]=crop, Para_dict["Color Mode"]=color_mode, Para_dict["Zoom order"]=zoom_order, Para_dict["Device"]=deviceSelected, Para_dict["gpu_used"]=gpu_used, Para_dict["gpu_memory"]=gpu_memory, Para_dict["Output Nr. classes"]=nr_classes, Para_dict["Normalization"]=norm, Para_dict["Nr. epochs"]=nr_epochs, Para_dict["Keras refresh after nr. epochs"]=keras_refresh_nr_epochs, Para_dict["Horz. flip"]=h_flip, Para_dict["Vert. flip"]=v_flip, Para_dict["rotation"]=rotation, Para_dict["width_shift"]=width_shift, Para_dict["height_shift"]=height_shift, Para_dict["zoom"]=zoom, Para_dict["shear"]=shear, Para_dict["Brightness refresh after nr. epochs"]=brightness_refresh_nr_epochs, Para_dict["Brightness add. lower"]=brightness_add_lower, Para_dict["Brightness add. upper"]=brightness_add_upper, Para_dict["Brightness mult. lower"]=brightness_mult_lower, Para_dict["Brightness mult. upper"]=brightness_mult_upper, Para_dict["Gaussnoise Mean"]=gaussnoise_mean, Para_dict["Gaussnoise Scale"]=gaussnoise_scale, Para_dict["Contrast on"]=contrast_on, Para_dict["Contrast Lower"]=contrast_lower, Para_dict["Contrast Higher"]=contrast_higher, Para_dict["Saturation on"]=saturation_on, Para_dict["Saturation Lower"]=saturation_lower, Para_dict["Saturation Higher"]=saturation_higher, Para_dict["Hue on"]=hue_on, Para_dict["Hue delta"]=hue_delta, Para_dict["Average blur on"]=avgBlur_on, Para_dict["Average blur Lower"]=avgBlur_min, Para_dict["Average blur Higher"]=avgBlur_max, Para_dict["Gauss blur on"]=gaussBlur_on, Para_dict["Gauss blur Lower"]=gaussBlur_min, Para_dict["Gauss blur Higher"]=gaussBlur_max, Para_dict["Motion blur on"]=motionBlur_on, Para_dict["Motion blur Kernel"]=motionBlur_kernel, Para_dict["Motion blur Angle"]=motionBlur_angle, Para_dict["Epoch_Started_Using_These_Settings"]=counter, Para_dict["expert_mode"]=expert_mode, Para_dict["batchSize_expert"]=batchSize_expert, Para_dict["epochs_expert"]=epochs_expert, Para_dict["learning_rate_expert_on"]=learning_rate_expert_on, Para_dict["learning_rate_const_on"]=learning_rate_const_on, Para_dict["learning_rate_const"]=learning_rate_const, Para_dict["learning_rate_cycLR_on"]=learning_rate_cycLR_on, Para_dict["cycLrMin"]=cycLrMin, Para_dict["cycLrMax"]=cycLrMax, Para_dict["cycLrMethod"] = cycLrMethod, Para_dict["clr_settings"] = self.fittingpopups_ui[listindex].clr_settings, Para_dict["learning_rate_expo_on"]=learning_rate_expo_on, Para_dict["expDecInitLr"]=expDecInitLr, Para_dict["expDecSteps"]=expDecSteps, Para_dict["expDecRate"]=expDecRate, Para_dict["loss_expert_on"]=loss_expert_on, Para_dict["loss_expert"]=loss_expert, Para_dict["optimizer_expert_on"]=optimizer_expert_on, Para_dict["optimizer_expert"]=optimizer_expert, Para_dict["optimizer_settings"]=optimizer_settings, Para_dict["paddingMode"]=paddingMode, Para_dict["train_last_layers"]=train_last_layers, Para_dict["train_last_layers_n"]=train_last_layers_n, Para_dict["train_dense_layers"]=train_dense_layers, Para_dict["dropout_expert_on"]=dropout_expert_on, Para_dict["dropout_expert"]=dropout_expert, Para_dict["lossW_expert_on"]=lossW_expert_on, Para_dict["lossW_expert"]=lossW_expert, Para_dict["class_weight"]=class_weight, Para_dict["metrics"]=model_metrics, #training data cannot be changed during training if norm == "StdScaling using mean and std of all training data": #This needs to be saved into Para_dict since it will be required for inference Para_dict["Mean of training data used for scaling"]=mean_trainingdata, Para_dict["Std of training data used for scaling"]=std_trainingdata, if collection==False: if counter == 0: Para_dict.to_excel(self.fittingpopups_ui[listindex].writer,sheet_name='Parameters') else: Para_dict.to_excel(self.fittingpopups_ui[listindex].writer,sheet_name='Parameters',startrow=self.fittingpopups_ui[listindex].writer.sheets['Parameters'].max_row,header= False) if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH)#change to read/write try: self.fittingpopups_ui[listindex].writer.save() except: pass os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH)#change to only readable if collection==True: for i in range(len(Writers)): Para_dict["Chosen Model"]=model_architecture_names[i], writer = Writers[i] if counter==0: Para_dict.to_excel(Writers[i],sheet_name='Parameters') else: Para_dict.to_excel(writer,sheet_name='Parameters',startrow=writer.sheets['Parameters'].max_row,header= False) if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write try: writer.save() except: pass os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) #read only ######################Load the Validation Data################################ ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] nr_events_epoch_valid = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_valid] rtdc_path_valid = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_valid] zoom_factors_valid = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_valid] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_valid = [selectedfile["shuffle"] for selectedfile in SelectedFiles_valid] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_valid]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False ############Cropping##################### X_valid,y_valid,Indices,xtra_valid = [],[],[],[] for i in range(len(SelectedFiles_valid)): if not self.actionDataToRam.isChecked(): #Replace=true means individual cells could occur several times gen_valid = aid_img.gen_crop_img(crop,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,zoom_factor=zoom_factors_valid[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else: #get a similar generator, using the ram-data if len(DATA)==0: #Replace=true means individual cells could occur several times gen_valid = aid_img.gen_crop_img(crop,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,zoom_factor=zoom_factors_valid[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else: gen_valid = aid_img.gen_crop_img_ram(DATA,rtdc_path_valid[i],nr_events_epoch_valid[i],random_images=shuffle_valid[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") generator_cropped_out = next(gen_valid) X_valid.append(generator_cropped_out[0]) #y_valid.append(np.repeat(indices_valid[i],nr_events_epoch_valid[i])) y_valid.append(np.repeat(indices_valid[i],X_valid[-1].shape[0])) Indices.append(generator_cropped_out[1]) xtra_valid.append(generator_cropped_out[2]) del generator_cropped_out #Save the validation set (BEFORE normalization!) #Write to.rtdc files if bool(self.actionExport_Original.isChecked())==True: print("Export original images") save_cropped = False aid_bin.write_rtdc(new_modelname.split(".model")[0]+'_Valid_Data.rtdc',rtdc_path_valid,X_valid,Indices,cropped=save_cropped,color_mode=self.get_color_mode(),xtra_in=xtra_valid) elif bool(self.actionExport_Cropped.isChecked())==True: print("Export cropped images") save_cropped = True aid_bin.write_rtdc(new_modelname.split(".model")[0]+'_Valid_Data.rtdc',rtdc_path_valid,X_valid,Indices,cropped=save_cropped,color_mode=self.get_color_mode(),xtra_in=xtra_valid) elif bool(self.actionExport_Off.isChecked())==True: print("Exporting is turned off") # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Information) # msg.setText("Use a different Exporting option in ->Edit if you want to export the data") # msg.setWindowTitle("Export is turned off!") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() X_valid = np.concatenate(X_valid) y_valid = np.concatenate(y_valid) Y_valid = np_utils.to_categorical(y_valid, nr_classes)# * 2 - 1 xtra_valid = np.concatenate(xtra_valid) if not bool(self.actionExport_Off.isChecked())==True: #Save the labels np.savetxt(new_modelname.split(".model")[0]+'_Valid_Labels.txt',y_valid.astype(int),fmt='%i') if len(X_valid.shape)==4: channels=3 elif len(X_valid.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_valid.shape)) if channels==1: #Add the "channels" dimension X_valid = np.expand_dims(X_valid,3) #get it to theano image format (channels first) #X_valid = X_valid.swapaxes(-1,-2).swapaxes(-2,-3) if norm == "StdScaling using mean and std of all training data": X_valid = aid_img.image_normalization(X_valid,norm,mean_trainingdata,std_trainingdata) else: X_valid = aid_img.image_normalization(X_valid,norm) #Validation data can be cropped to final size already since no augmentation #will happen on this data set dim_val = X_valid.shape print("Current dim. of validation set (pixels x pixels) = "+str(dim_val[2])) if dim_val[2]!=crop: print("Change dim. (pixels x pixels) of validation set to = "+str(crop)) remove = int(dim_val[2]/2.0 - crop/2.0) X_valid = X_valid[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow if xtra_in==True: print("Add Xtra Data to X_valid") X_valid = [X_valid,xtra_valid] ####################Update the PopupFitting######################## self.fittingpopups_ui[listindex].lineEdit_modelname_pop.setText(new_modelname) #set the progress bar to zero self.fittingpopups_ui[listindex].spinBox_imagecrop_pop.setValue(crop) self.fittingpopups_ui[listindex].spinBox_NrEpochs.setValue(nr_epochs) self.fittingpopups_ui[listindex].comboBox_ModelSelection_pop.addItems(self.predefined_models) chosen_model = str(self.comboBox_ModelSelection.currentText()) index = self.fittingpopups_ui[listindex].comboBox_ModelSelection_pop.findText(chosen_model, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_ModelSelection_pop.setCurrentIndex(index) self.fittingpopups_ui[listindex].comboBox_Normalization_pop.addItems(self.norm_methods) index = self.fittingpopups_ui[listindex].comboBox_Normalization_pop.findText(norm, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_Normalization_pop.setCurrentIndex(index) #padding index = self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.findText(paddingMode, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.setCurrentIndex(index) #zoom_order self.fittingpopups_ui[listindex].comboBox_zoomOrder.setCurrentIndex(zoom_order) #CPU setting self.fittingpopups_ui[listindex].comboBox_cpu_pop.addItem("Default CPU") if gpu_used==False: self.fittingpopups_ui[listindex].radioButton_cpu_pop.setChecked(True) self.fittingpopups_ui[listindex].doubleSpinBox_memory_pop.setValue(gpu_memory) #GPU setting if gpu_used==True: self.fittingpopups_ui[listindex].radioButton_gpu_pop.setChecked(True) self.fittingpopups_ui[listindex].comboBox_gpu_pop.addItem(deviceSelected) self.fittingpopups_ui[listindex].doubleSpinBox_memory_pop.setValue(gpu_memory) self.fittingpopups_ui[listindex].spinBox_RefreshAfterEpochs_pop.setValue(keras_refresh_nr_epochs) self.fittingpopups_ui[listindex].checkBox_HorizFlip_pop.setChecked(h_flip) self.fittingpopups_ui[listindex].checkBox_VertFlip_pop.setChecked(v_flip) self.fittingpopups_ui[listindex].lineEdit_Rotation_pop.setText(str(rotation)) self.fittingpopups_ui[listindex].lineEdit_widthShift_pop.setText(str(width_shift)) self.fittingpopups_ui[listindex].lineEdit_heightShift_pop.setText(str(height_shift)) self.fittingpopups_ui[listindex].lineEdit_zoomRange_pop.setText(str(zoom)) self.fittingpopups_ui[listindex].lineEdit_shearRange_pop.setText(str(shear)) self.fittingpopups_ui[listindex].spinBox_RefreshAfterNrEpochs_pop.setValue(brightness_refresh_nr_epochs) self.fittingpopups_ui[listindex].spinBox_PlusLower_pop.setValue(brightness_add_lower) self.fittingpopups_ui[listindex].spinBox_PlusUpper_pop.setValue(brightness_add_upper) self.fittingpopups_ui[listindex].doubleSpinBox_MultLower_pop.setValue(brightness_mult_lower) self.fittingpopups_ui[listindex].doubleSpinBox_MultUpper_pop.setValue(brightness_mult_upper) self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseMean_pop.setValue(gaussnoise_mean) self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseScale_pop.setValue(gaussnoise_scale) self.fittingpopups_ui[listindex].checkBox_contrast_pop.setChecked(contrast_on) self.fittingpopups_ui[listindex].doubleSpinBox_contrastLower_pop.setValue(contrast_lower) self.fittingpopups_ui[listindex].doubleSpinBox_contrastHigher_pop.setValue(contrast_higher) self.fittingpopups_ui[listindex].checkBox_saturation_pop.setChecked(saturation_on) self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.setValue(saturation_lower) self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.setValue(saturation_higher) self.fittingpopups_ui[listindex].checkBox_hue_pop.setChecked(hue_on) self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.setValue(hue_delta) #Special for saturation and hue. Only enabled for RGB: saturation_enabled = bool(self.checkBox_saturation.isEnabled()) self.fittingpopups_ui[listindex].checkBox_saturation_pop.setEnabled(saturation_enabled) self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.setEnabled(saturation_enabled) self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.setEnabled(saturation_enabled) hue_enabled = bool(self.checkBox_hue.isEnabled()) self.fittingpopups_ui[listindex].checkBox_hue_pop.setEnabled(hue_enabled) self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.setEnabled(hue_enabled) self.fittingpopups_ui[listindex].checkBox_avgBlur_pop.setChecked(avgBlur_on) self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].label_avgBlurMin_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.setValue(avgBlur_min) self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].label_avgBlurMax_pop.setEnabled(avgBlur_on) self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.setValue(avgBlur_max) self.fittingpopups_ui[listindex].checkBox_gaussBlur_pop.setChecked(gaussBlur_on) self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].label_gaussBlurMin_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.setValue(gaussBlur_min) self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].label_gaussBlurMax_pop.setEnabled(gaussBlur_on) self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.setValue(gaussBlur_max) self.fittingpopups_ui[listindex].checkBox_motionBlur_pop.setChecked(motionBlur_on) self.fittingpopups_ui[listindex].label_motionBlurKernel_pop.setEnabled(motionBlur_on) self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.setEnabled(motionBlur_on) self.fittingpopups_ui[listindex].label_motionBlurAngle_pop.setEnabled(motionBlur_on) self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.setEnabled(motionBlur_on) if len(motionBlur_kernel)==1: self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.setText(str(motionBlur_kernel[0])) if len(motionBlur_kernel)==2: self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.setText(str(motionBlur_kernel[0])+","+str(motionBlur_kernel[1])) if len(motionBlur_angle)==1: self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.setText(str(motionBlur_angle[0])) if len(motionBlur_kernel)==2: self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.setText(str(motionBlur_angle[0])+","+str(motionBlur_angle[1])) self.fittingpopups_ui[listindex].groupBox_expertMode_pop.setChecked(expert_mode) self.fittingpopups_ui[listindex].spinBox_batchSize.setValue(batchSize_expert) self.fittingpopups_ui[listindex].spinBox_epochs.setValue(epochs_expert) self.fittingpopups_ui[listindex].groupBox_learningRate_pop.setChecked(learning_rate_expert_on) self.fittingpopups_ui[listindex].radioButton_LrConst.setChecked(learning_rate_const_on) self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.setValue(learning_rate_const) self.fittingpopups_ui[listindex].radioButton_LrCycl.setChecked(learning_rate_cycLR_on) self.fittingpopups_ui[listindex].lineEdit_cycLrMin.setText(str(cycLrMin)) self.fittingpopups_ui[listindex].lineEdit_cycLrMax.setText(str(cycLrMax)) index = self.fittingpopups_ui[listindex].comboBox_cycLrMethod.findText(cycLrMethod, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_cycLrMethod.setCurrentIndex(index) self.fittingpopups_ui[listindex].radioButton_LrExpo.setChecked(learning_rate_expo_on) self.fittingpopups_ui[listindex].doubleSpinBox_expDecInitLr.setValue(expDecInitLr) self.fittingpopups_ui[listindex].spinBox_expDecSteps.setValue(expDecSteps) self.fittingpopups_ui[listindex].doubleSpinBox_expDecRate.setValue(expDecRate) self.fittingpopups_ui[listindex].checkBox_expt_loss_pop.setChecked(loss_expert_on) self.fittingpopups_ui[listindex].checkBox_expt_loss_pop.setChecked(loss_expert_on) index = self.fittingpopups_ui[listindex].comboBox_expt_loss_pop.findText(loss_expert, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_expt_loss_pop.setCurrentIndex(index) self.fittingpopups_ui[listindex].checkBox_optimizer_pop.setChecked(optimizer_expert_on) index = self.fittingpopups_ui[listindex].comboBox_optimizer.findText(optimizer_expert, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_optimizer.setCurrentIndex(index) self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.setValue(learning_rate_const) index = self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.findText(paddingMode, QtCore.Qt.MatchFixedString) if index >= 0: self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.setCurrentIndex(index) self.fittingpopups_ui[listindex].checkBox_trainLastNOnly_pop.setChecked(train_last_layers) self.fittingpopups_ui[listindex].spinBox_trainLastNOnly_pop.setValue(train_last_layers_n) self.fittingpopups_ui[listindex].checkBox_trainDenseOnly_pop.setChecked(train_dense_layers) self.fittingpopups_ui[listindex].checkBox_dropout_pop.setChecked(dropout_expert_on) do_text = [str(do_i) for do_i in dropout_expert] self.fittingpopups_ui[listindex].lineEdit_dropout_pop.setText((', '.join(do_text))) self.fittingpopups_ui[listindex].checkBox_lossW.setChecked(lossW_expert_on) self.fittingpopups_ui[listindex].pushButton_lossW.setEnabled(lossW_expert_on) self.fittingpopups_ui[listindex].lineEdit_lossW.setText(str(lossW_expert)) if channels==1: channel_text = "Grayscale" elif channels==3: channel_text = "RGB" self.fittingpopups_ui[listindex].comboBox_colorMode_pop.addItems([channel_text]) ###############Continue with training data:augmentation############ #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number #Dictionary defining affine image augmentation options: aug_paras = {"v_flip":v_flip,"h_flip":h_flip,"rotation":rotation,"width_shift":width_shift,"height_shift":height_shift,"zoom":zoom,"shear":shear} Histories,Index,Saved,Stopwatch,LearningRate = [],[],[],[],[] if collection==True: HISTORIES = [ [] for model in model_keras] SAVED = [ [] for model in model_keras] counter = 0 saving_failed = False #when saving fails, this becomes true and the user will be informed at the end of training #Save the initial values (Epoch 1) update_para_dict() model_metrics_names = [] for met in model_metrics: if type(met)==str: model_metrics_names.append(met) else: metname = met.name metlabel = met.label if metlabel>0: metname = metname+"_"+str(metlabel) model_metrics_names.append(metname) #Dictionary for records in metrics model_metrics_records = {} model_metrics_records["acc"] = 0 #accuracy starts at zero and approaches 1 during training model_metrics_records["val_acc"] = 0 #accuracy starts at zero and approaches 1 during training model_metrics_records["loss"] = 9E20 ##loss starts very high and approaches 0 during training model_metrics_records["val_loss"] = 9E20 ##loss starts very high and approaches 0 during training for key in model_metrics_names: if 'precision' in key or 'recall' in key or 'f1_score' in key: model_metrics_records[key] = 0 #those metrics start at zero and approach 1 model_metrics_records["val_"+key] = 0 #those metrics start at zero and approach 1 gen_train_refresh = False time_start = time.time() t1 = time.time() #Initialize a timer; this is used to save the meta file every few seconds t2 = time.time() #Initialize a timer; this is used update the fitting parameters while counter < nr_epochs:#nr_epochs: #resample nr_epochs times #Only keep fitting if the respective window is open: isVisible = self.fittingpopups[listindex].isVisible() if isVisible: ############Keras image augmentation##################### #Start the first iteration: X_train,y_train,xtra_train = [],[],[] t3 = time.time() for i in range(len(SelectedFiles_train)): if len(DATA)==0 or gen_train_refresh: #Replace true means that individual cells could occur several times gen_train = aid_img.gen_crop_img(cropsize2,rtdc_path_train[i],nr_events_epoch_train[i],random_images=shuffle_train[i],replace=True,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) gen_train_refresh = False else: gen_train = aid_img.gen_crop_img_ram(DATA,rtdc_path_train[i],nr_events_epoch_train[i],random_images=shuffle_train[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") data_ = next(gen_train) X_train.append(data_[0]) y_train.append(np.repeat(indices_train[i],X_train[-1].shape[0])) if xtra_in==True: xtra_train.append(data_[2]) del data_ X_train = np.concatenate(X_train) X_train = X_train.astype(np.uint8) y_train = np.concatenate(y_train) if xtra_in==True: print("Retrieve Xtra Data...") xtra_train = np.concatenate(xtra_train) t4 = time.time() if verbose == 1: print("Time to load data (from .rtdc or RAM) and crop="+str(t4-t3)) if len(X_train.shape)==4: channels=3 elif len(X_train.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_train.shape)) if channels==1: #Add the "channels" dimension X_train = np.expand_dims(X_train,3) t3 = time.time() #Some parallellization: use nr_threads (number of CPUs) nr_threads = 1 #Somehow for MNIST and CIFAR, processing always took longer for nr_threads>1 . I tried nr_threads=2,4,8,16,24 if nr_threads == 1: X_batch = aid_img.affine_augm(X_train,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear) #Affine image augmentation y_batch = np.copy(y_train) else: #Divde data in 4 batches X_train = np.array_split(X_train,nr_threads) y_train = np.array_split(y_train,nr_threads) self.X_batch = [False] * nr_threads self.y_batch = [False] * nr_threads self.counter_aug = 0 self.Workers_augm = [] def imgaug_worker(aug_paras,progress_callback,history_callback): i = aug_paras["i"] self.X_batch[i] = aid_img.affine_augm(aug_paras["X_train"],v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear) self.y_batch[i] = aug_paras["y_train"] self.counter_aug+=1 t3_a = time.time() for i in range(nr_threads): aug_paras_ = copy.deepcopy(aug_paras) aug_paras_["i"] = i aug_paras_["X_train"]=X_train[i]#augparas contains rotation and so on. X_train and y_train are overwritten in each iteration (for each worker new X_train) aug_paras_["y_train"]=y_train[i] self.Workers_augm.append(Worker(imgaug_worker,aug_paras_)) self.threadpool.start(self.Workers_augm[i]) while self.counter_aug < nr_threads: time.sleep(0.01)#Wait 0.1s, then check the len again t3_b = time.time() if verbose == 1: print("Time to perform affine augmentation_internal ="+str(t3_b-t3_a)) X_batch = np.concatenate(self.X_batch) y_batch = np.concatenate(self.y_batch) Y_batch = np_utils.to_categorical(y_batch, nr_classes)# * 2 - 1 t4 = time.time() if verbose == 1: print("Time to perform affine augmentation ="+str(t4-t3)) t3 = time.time() #Now do the final cropping to the actual size that was set by user dim = X_batch.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) X_batch = X_batch[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow t4 = time.time() # if verbose == 1: # print("Time to crop to final size="+str(t4-t3)) X_batch_orig = np.copy(X_batch) #save into new array and do some iterations with varying noise/brightness #reuse this X_batch_orig a few times since this augmentation was costly keras_iter_counter = 0 while keras_iter_counter < keras_refresh_nr_epochs and counter < nr_epochs: keras_iter_counter+=1 #if t2-t1>5: #check for changed settings every 5 seconds if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 #Another while loop if the user wants to reuse the keras-augmented data #several times and only apply brightness augmentation: brightness_iter_counter = 0 while brightness_iter_counter < brightness_refresh_nr_epochs and counter < nr_epochs: #In each iteration, start with non-augmented data X_batch = np.copy(X_batch_orig)#copy from X_batch_orig, X_batch will be altered without altering X_batch_orig X_batch = X_batch.astype(np.uint8) #########X_batch = X_batch.astype(float)########## No float yet :) !!! brightness_iter_counter += 1 if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 if self.fittingpopups_ui[listindex].checkBox_ApplyNextEpoch.isChecked(): nr_epochs = int(self.fittingpopups_ui[listindex].spinBox_NrEpochs.value()) #Keras stuff keras_refresh_nr_epochs = int(self.fittingpopups_ui[listindex].spinBox_RefreshAfterEpochs_pop.value()) h_flip = bool(self.fittingpopups_ui[listindex].checkBox_HorizFlip_pop.isChecked()) v_flip = bool(self.fittingpopups_ui[listindex].checkBox_VertFlip_pop.isChecked()) rotation = float(self.fittingpopups_ui[listindex].lineEdit_Rotation_pop.text()) width_shift = float(self.fittingpopups_ui[listindex].lineEdit_widthShift_pop.text()) height_shift = float(self.fittingpopups_ui[listindex].lineEdit_heightShift_pop.text()) zoom = float(self.fittingpopups_ui[listindex].lineEdit_zoomRange_pop.text()) shear = float(self.fittingpopups_ui[listindex].lineEdit_shearRange_pop.text()) #Brightness stuff brightness_refresh_nr_epochs = int(self.fittingpopups_ui[listindex].spinBox_RefreshAfterNrEpochs_pop.value()) brightness_add_lower = float(self.fittingpopups_ui[listindex].spinBox_PlusLower_pop.value()) brightness_add_upper = float(self.fittingpopups_ui[listindex].spinBox_PlusUpper_pop.value()) brightness_mult_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultLower_pop.value()) brightness_mult_upper = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultUpper_pop.value()) gaussnoise_mean = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseMean_pop.value()) gaussnoise_scale = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseScale_pop.value()) contrast_on = bool(self.fittingpopups_ui[listindex].checkBox_contrast_pop.isChecked()) contrast_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastLower_pop.value()) contrast_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastHigher_pop.value()) saturation_on = bool(self.fittingpopups_ui[listindex].checkBox_saturation_pop.isChecked()) saturation_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.value()) saturation_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.value()) hue_on = bool(self.fittingpopups_ui[listindex].checkBox_hue_pop.isChecked()) hue_delta = float(self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.value()) avgBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_avgBlur_pop.isChecked()) avgBlur_min = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.value()) avgBlur_max = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.value()) gaussBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_gaussBlur_pop.isChecked()) gaussBlur_min = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.value()) gaussBlur_max = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.value()) motionBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_motionBlur_pop.isChecked()) motionBlur_kernel = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.text()) motionBlur_angle = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple #Expert mode stuff expert_mode = bool(self.fittingpopups_ui[listindex].groupBox_expertMode_pop.isChecked()) batchSize_expert = int(self.fittingpopups_ui[listindex].spinBox_batchSize.value()) epochs_expert = int(self.fittingpopups_ui[listindex].spinBox_epochs.value()) learning_rate_expert_on = bool(self.fittingpopups_ui[listindex].groupBox_learningRate_pop.isChecked()) learning_rate_const_on = bool(self.fittingpopups_ui[listindex].radioButton_LrConst.isChecked()) learning_rate_const = float(self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.value()) learning_rate_cycLR_on = bool(self.fittingpopups_ui[listindex].radioButton_LrCycl.isChecked()) try: cycLrMin = float(self.fittingpopups_ui[listindex].lineEdit_cycLrMin.text()) cycLrMax = float(self.fittingpopups_ui[listindex].lineEdit_cycLrMax.text()) except: cycLrMin = [] cycLrMax = [] cycLrMethod = str(self.fittingpopups_ui[listindex].comboBox_cycLrMethod.currentText()) clr_settings = self.fittingpopups_ui[listindex].clr_settings.copy() #Get a copy of the current optimizer_settings. .copy prevents that changes in the UI have immediate effect cycLrStepSize = aid_dl.get_cyclStepSize(SelectedFiles,clr_settings["step_size"],batchSize_expert) cycLrGamma = clr_settings["gamma"] learning_rate_expo_on = bool(self.fittingpopups_ui[listindex].radioButton_LrExpo.isChecked()) expDecInitLr = float(self.fittingpopups_ui[listindex].doubleSpinBox_expDecInitLr.value()) expDecSteps = int(self.fittingpopups_ui[listindex].spinBox_expDecSteps.value()) expDecRate = float(self.fittingpopups_ui[listindex].doubleSpinBox_expDecRate.value()) loss_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_expt_loss_pop.isChecked()) loss_expert = str(self.fittingpopups_ui[listindex].comboBox_expt_loss_pop.currentText()) optimizer_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_optimizer_pop.isChecked()) optimizer_expert = str(self.fittingpopups_ui[listindex].comboBox_optimizer.currentText()) optimizer_settings = self.fittingpopups_ui[listindex].optimizer_settings.copy() #Get a copy of the current optimizer_settings. .copy prevents that changes in the UI have immediate effect paddingMode_ = str(self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.currentText()) print("paddingMode_:"+str(paddingMode_)) if paddingMode_ != paddingMode: print("Changed the padding mode!") gen_train_refresh = True#otherwise changing paddingMode will not have any effect paddingMode = paddingMode_ train_last_layers = bool(self.fittingpopups_ui[listindex].checkBox_trainLastNOnly_pop.isChecked()) train_last_layers_n = int(self.fittingpopups_ui[listindex].spinBox_trainLastNOnly_pop.value()) train_dense_layers = bool(self.fittingpopups_ui[listindex].checkBox_trainDenseOnly_pop.isChecked()) dropout_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_dropout_pop.isChecked()) try: dropout_expert = str(self.fittingpopups_ui[listindex].lineEdit_dropout_pop.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] lossW_expert_on = bool(self.fittingpopups_ui[listindex].checkBox_lossW.isChecked()) lossW_expert = str(self.fittingpopups_ui[listindex].lineEdit_lossW.text()) class_weight = self.get_class_weight(self.fittingpopups_ui[listindex].SelectedFiles,lossW_expert) # print("Updating parameter file (meta.xlsx)!") update_para_dict() #Changes in expert mode can affect the model: apply changes now: if expert_mode==True: if collection==False: #Expert mode is currently not supported for Collections expert_mode_before = True #Apply changes to the trainable states: if train_last_layers==True:#Train only the last n layers if verbose: print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] #Change the trainability states. Model compilation is done inside model_change_trainability summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model due to train_last_layers==True") text1 = "Expert mode: Request for custom trainability states: train only the last "+str(train_last_layers_n)+ " layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if train_dense_layers==True:#Train only dense layers if verbose: print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True #Change the trainability states. Model compilation is done inside model_change_trainability summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model due to train_dense_layers==True") text1 = "Expert mode: Request for custom trainability states: train only dense layer(s)\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a float dropout_expert_list = len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): text = "Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) else: text = "Could not understand user input at Expert->Dropout" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... #Change dropout. Model .compile happens inside change_dropout function do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model due to changed dropout. I'm not sure if this works already!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" if verbose: print(text_do) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_do) if learning_rate_expert_on==True: #get the current lr_dict lr_dict_now = aid_dl.get_lr_dict(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) if not lr_dict_now.equals(lr_dict_original):#in case the dataframes dont equal... #generate a new callback callback_lr = aid_dl.get_lr_callback(learning_rate_const_on,learning_rate_const, learning_rate_cycLR_on,cycLrMin,cycLrMax, cycLrMethod,cycLrStepSize, learning_rate_expo_on, expDecInitLr,expDecSteps,expDecRate,cycLrGamma) #update lr_dict_original lr_dict_original = lr_dict_now.copy() else: callback_lr = None if optimizer_expert_on==True: optimizer_settings_now = self.fittingpopups_ui[listindex].optimizer_settings.copy() if not optimizer_settings_now == optimizer_settings:#in case the dataframes dont equal... #grab these new optimizer values optimizer_settings = optimizer_settings_now.copy() ############################Invert 'expert' settings######################### if expert_mode==False and expert_mode_before==True: #if the expert mode was selected before, change the parameters back to original vlaues if verbose: print("Expert mode was used before and settings are now inverted") #Re-set trainable states back to original state if verbose: print("Change 'trainable' layers back to original state") summary = aid_dl.model_change_trainability(model_keras,trainable_original,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change 'trainable' layers back to original state") text1 = "Expert mode turns off: Request for orignal trainability states:\n" #text2 = "\n--------------------\n" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text1+summary) if verbose: print("Change dropout rates in dropout layers back to original values") callback_lr = None#remove learning rate callback if verbose: print("Set learning rate callback to None") if len(do_list_original)>0: do_changed = aid_dl.change_dropout(model_keras,do_list_original,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change dropout values back to original state. I'm not sure if this works!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to original values: "+str(do_list_original) else: text_do = "Dropout rate(s) in model was/were not changed" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_do+"\n") text_updates = "" #Compare current lr and the lr on expert tab: if collection==False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: if collection==False: K.set_value(model_keras.optimizer.lr, learning_rate_const) else: K.set_value(model_keras[0].optimizer.lr, learning_rate_const) text_updates += "Changed the learning rate to "+ str(learning_rate_const)+"\n" recompile = False #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model else: optimizer_current = aid_dl.get_optimizer_name(model_keras[0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Changed the optimizer to "+optimizer_expert+"\n" #Compare current loss function and the loss-function on expert tab: if collection==False: loss_ = model_keras.loss else: loss_ = model_keras[0].loss if loss_!=loss_expert: recompile = True model_metrics_records["loss"] = 9E20 #Reset the record for loss because new loss function could converge to a different min. value model_metrics_records["val_loss"] = 9E20 #Reset the record for loss because new loss function could converge to a different min. value text_updates+="Changed the loss function to "+loss_expert+"\n" if recompile==True and collection==False: print("Recompiling...") aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change optimizer, loss and learninig rate.") elif recompile==True and collection==True: if model_keras_p!=None:#if model_keras_p is NOT None, there exists a parallel model, which also needs to be re-compiled print("Altering learning rate is not suported for collections (yet)") return print("Recompiling...") for m in model_keras: aid_dl.model_compile(m,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text_updates) #self.model_keras = model_keras #overwrite the model in self self.fittingpopups_ui[listindex].checkBox_ApplyNextEpoch.setChecked(False) ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? X_batch = X_batch.astype(np.uint8) if contrast_on: t_con_aug_1 = time.time() X_batch = aid_img.contrast_augm_cv2(X_batch,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! t_con_aug_2 = time.time() if verbose == 1: print("Time to augment contrast="+str(t_con_aug_2-t_con_aug_1)) if saturation_on or hue_on: t_sat_aug_1 = time.time() X_batch = aid_img.satur_hue_augm_cv2(X_batch.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) #Gray and RGB; both values >0! t_sat_aug_2 = time.time() if verbose == 1: print("Time to augment saturation/hue="+str(t_sat_aug_2-t_sat_aug_1)) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: t_avgBlur_1 = time.time() X_batch = aid_img.avg_blur_cv2(X_batch,avgBlur_min,avgBlur_max) t_avgBlur_2 = time.time() if verbose == 1: print("Time to perform average blurring="+str(t_avgBlur_2-t_avgBlur_1)) if gaussBlur_on: t_gaussBlur_1 = time.time() X_batch = aid_img.gauss_blur_cv(X_batch,gaussBlur_min,gaussBlur_max) t_gaussBlur_2 = time.time() if verbose == 1: print("Time to perform gaussian blurring="+str(t_gaussBlur_2-t_gaussBlur_1)) if motionBlur_on: t_motionBlur_1 = time.time() X_batch = aid_img.motion_blur_cv(X_batch,motionBlur_kernel,motionBlur_angle) t_motionBlur_2 = time.time() if verbose == 1: print("Time to perform motion blurring="+str(t_motionBlur_2-t_motionBlur_1)) ##########Brightness noise######### t3 = time.time() X_batch = aid_img.brightn_noise_augm_cv2(X_batch,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) t4 = time.time() if verbose == 1: print("Time to augment brightness="+str(t4-t3)) t3 = time.time() if norm == "StdScaling using mean and std of all training data": X_batch = aid_img.image_normalization(X_batch,norm,mean_trainingdata,std_trainingdata) else: X_batch = aid_img.image_normalization(X_batch,norm) t4 = time.time() if verbose == 1: print("Time to apply normalization="+str(t4-t3)) #Fitting can be paused while str(self.fittingpopups_ui[listindex].pushButton_Pause_pop.text())=="": time.sleep(2) #wait 2 seconds and then check the text on the button again if verbose == 1: print("X_batch.shape") print(X_batch.shape) if xtra_in==True: print("Add Xtra Data to X_batch") X_batch = [X_batch,xtra_train] #generate a list of callbacks, get empty list if callback_lr is none callbacks = [] if callback_lr!=None: callbacks.append(callback_lr) ################################################### ###############Actual fitting###################### ################################################### if collection==False: if model_keras_p == None: history = model_keras.fit(X_batch, Y_batch, batch_size=batchSize_expert, epochs=epochs_expert,verbose=verbose, validation_data=(X_valid, Y_valid),class_weight=class_weight,callbacks=callbacks) elif model_keras_p != None: history = model_keras_p.fit(X_batch, Y_batch, batch_size=batchSize_expert, epochs=epochs_expert,verbose=verbose, validation_data=(X_valid, Y_valid),class_weight=class_weight,callbacks=callbacks) Histories.append(history.history) Stopwatch.append(time.time()-time_start) learningrate = K.get_value(history.model.optimizer.lr) LearningRate.append(learningrate) #Check if any metric broke a record record_broken = False #initially, assume there is no new record for key in history.history.keys(): value = history.history[key][-1] record = model_metrics_records[key] if 'val_acc' in key or 'val_precision' in key or 'val_recall' in key or 'val_f1_score' in key: #These metrics should go up (towards 1) if value>record: model_metrics_records[key] = value record_broken = True print(key+" broke record -> Model will be saved" ) elif 'val_loss' in key: #This metric should go down (towards 0) if value<record: model_metrics_records[key] = value record_broken = True print(key+" broke record -> Model will be saved") #self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) if record_broken:#if any record was broken... if deviceSelected=="Multi-GPU":#in case of Multi-GPU... #In case of multi-GPU, first copy the weights of the parallel model to the normal model model_keras.set_weights(model_keras_p.layers[-2].get_weights()) #Save the model text = "Save model to following directory: \n"+os.path.dirname(new_modelname) print(text) if os.path.exists(os.path.dirname(new_modelname)): model_keras.save(new_modelname.split(".model")[0]+"_"+str(counter)+".model") text = "Record was broken -> saved model" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) else:#in case the folder does not exist (anymore), create a folder in temp #what is the foldername of the model? text = "Saving failed. Create folder in temp" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) saving_failed = True temp_path = aid_bin.create_temp_folder()#create a temp folder if it does not already exist text = "Your temp. folder is here: "+str(temp_path) print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) parentfolder = aid_bin.splitall(new_modelname)[-2] fname = os.path.split(new_modelname)[-1] #create that folder in temp if it not exists already if not os.path.exists(os.path.join(temp_path,parentfolder)): text = "Create folder in temp:\n"+os.path.join(temp_path,parentfolder) print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) os.mkdir(os.path.join(temp_path,parentfolder)) #change the new_modelname to a path in temp new_modelname = os.path.join(temp_path,parentfolder,fname) #inform user! text = "Could not find original folder. Files are now saved to "+new_modelname text = "<span style=\' color: red;\'>" +text+"</span>" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) text = "<span style=\' color: black;\'>" +""+"</span>" self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #Save the model model_keras.save(new_modelname.split(".model")[0]+"_"+str(counter)+".model") text = "Model saved successfully to temp" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #Also update the excel writer! writer = pd.ExcelWriter(new_modelname.split(".model")[0]+'_meta.xlsx', engine='openpyxl') self.fittingpopups_ui[listindex].writer = writer pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet Saved.append(1) #Also save the model upon user-request elif bool(self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.isChecked())==True: if deviceSelected=="Multi-GPU":#in case of Multi-GPU... #In case of multi-GPU, first copy the weights of the parallel model to the normal model model_keras.set_weights(model_keras_p.layers[-2].get_weights()) model_keras.save(new_modelname.split(".model")[0]+"_"+str(counter)+".model") Saved.append(1) self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.setChecked(False) else: Saved.append(0) elif collection==True: for i in range(len(model_keras)): #Expert-settings return automatically to default values when Expert-mode is unchecked history = model_keras[i].fit(X_batch, Y_batch, batch_size=batchSize_expert, epochs=epochs_expert,verbose=verbose, validation_data=(X_valid, Y_valid),class_weight=class_weight,callbacks=callbacks) HISTORIES[i].append(history.history) learningrate = K.get_value(history.model.optimizer.lr) print("model_keras_path[i]") print(model_keras_path[i]) #Check if any metric broke a record record_broken = False #initially, assume there is no new record for key in history.history.keys(): value = history.history[key][-1] record = model_metrics_records[key] if 'val_acc' in key or 'val_precision' in key or 'val_recall' in key or 'val_f1_score' in key: #These metrics should go up (towards 1) if value>record: model_metrics_records[key] = value record_broken = True text = key+" broke record -> Model will be saved" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #one could 'break' here, but I want to update all records elif 'val_loss' in key: #This metric should go down (towards 0) if value<record: model_metrics_records[key] = value record_broken = True text = key+" broke record -> Model will be saved" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #For collections of models: if record_broken: #Save the model model_keras[i].save(model_keras_path[i].split(".model")[0]+"_"+str(counter)+".model") SAVED[i].append(1) elif bool(self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.isChecked())==True: model_keras[i].save(model_keras_path[i].split(".model")[0]+"_"+str(counter)+".model") SAVED[i].append(1) self.fittingpopups_ui[listindex].checkBox_saveEpoch_pop.setChecked(False) else: SAVED[i].append(0) callback_progessbar = float(counter)/nr_epochs progress_callback.emit(100.0*callback_progessbar) history_emit = history.history history_emit["LearningRate"] = [learningrate] history_callback.emit(history_emit) Index.append(counter) t2 = time.time() if collection==False: if counter==0: #If this runs the first time, create the file with header DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1["Time"] = Stopwatch DF1["LearningRate"] = LearningRate DF1.index = Index #If this runs the first time, create the file with header if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write DF1.to_excel(writer,sheet_name='History') writer.save() os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) meta_saving_t = int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()) text = "meta.xlsx was saved (automatic saving every "+str(meta_saving_t)+"s)" print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #self.fittingpopups_ui[listindex].backup.append({"DF1":DF1}) Index,Histories,Saved,Stopwatch,LearningRate = [],[],[],[],[]#reset the lists #Get a sensible frequency for saving the dataframe (every 20s) elif t2-t1>int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()): #elif counter%50==0: #otherwise save the history to excel after each n epochs DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1["Time"] = Stopwatch DF1["LearningRate"] = LearningRate DF1.index = Index #Saving if os.path.exists(os.path.dirname(new_modelname)):#check if folder is (still) available if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write DF1.to_excel(writer,sheet_name='History', startrow=writer.sheets['History'].max_row,header= False) writer.save() os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) #make read only meta_saving_t = int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()) text = "meta.xlsx was saved (automatic saving every "+str(meta_saving_t)+"s to directory:\n)"+new_modelname print(text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) Index,Histories,Saved,Stopwatch,LearningRate = [],[],[],[],[]#reset the lists t1 = time.time() else:#If folder not available, create a folder in temp text = "Failed to save meta.xlsx. -> Create folder in temp\n" saving_failed = True temp_path = aid_bin.create_temp_folder()#create a temp folder if it does not already exist text += "Your temp folder is here: "+str(temp_path)+"\n" folder = os.path.split(new_modelname)[-2] folder = os.path.split(folder)[-1] fname = os.path.split(new_modelname)[-1] #create that folder in temp if it does'nt exist already if not os.path.exists(os.path.join(temp_path,folder)): os.mkdir(os.path.join(temp_path,folder)) text +="Created directory in temp:\n"+os.path.join(temp_path,folder) print(text) #change the new_modelname to a path in temp new_modelname = os.path.join(temp_path,folder,fname) #inform user! text = "Could not find original folder. Files are now saved to "+new_modelname text = "<span style=\' color: red;\'>" +text+"</span>"#put red text to the infobox self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) text = "<span style=\' color: black;\'>" +""+"</span>"#reset textcolor to black self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) #update the excel writer writer = pd.ExcelWriter(new_modelname.split(".model")[0]+'_meta.xlsx', engine='openpyxl') self.fittingpopups_ui[listindex].writer = writer pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet pd.DataFrame().to_excel(writer,sheet_name='Parameters') #initialize empty Sheet pd.DataFrame().to_excel(writer,sheet_name='History') #initialize empty Sheet if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): print("There is already such a file...AID will add new data to it. Please check if this is OK") os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write DF1.to_excel(writer,sheet_name='History') writer.save() os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) print("meta.xlsx was saved") Index,Histories,Saved,Stopwatch,LearningRate = [],[],[],[],[]#reset the lists if collection==True: if counter==0: for i in range(len(HISTORIES)): Histories = HISTORIES[i] Saved = SAVED[i] #If this runs the first time, create the file with header DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1.index = Index HISTORIES[i] = []#reset the Histories list SAVED[i] = [] #If this runs the first time, create the file with header if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #read/write DF1.to_excel(Writers[i],sheet_name='History') Writers[i].save() os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) print("meta.xlsx was saved") Index = []#reset the Index list #Get a sensible frequency for saving the dataframe (every 20s) elif t2-t1>int(self.fittingpopups_ui[listindex].spinBox_saveMetaEvery.value()): for i in range(len(HISTORIES)): Histories = HISTORIES[i] Saved = SAVED[i] DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1.index = Index HISTORIES[i] = []#reset the Histories list SAVED[i] = [] #Saving #TODO: save to temp, if harddisk not available to prevent crash. if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write DF1.to_excel(Writers[i],sheet_name='History', startrow=Writers[i].sheets['History'].max_row,header= False) Writers[i].save() os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH) #make read only print("meta.xlsx was saved") t1 = time.time() Index = []#reset the Index list counter+=1 progress_callback.emit(100.0) #If the original storing locating became inaccessible (folder name changed, HD unplugged...) #the models and meta are saved to temp folder. Inform the user!!! if saving_failed==True: path_orig = str(self.fittingpopups_ui[listindex].lineEdit_modelname_pop.text()) text = "<html><head/><body><p>Original path:<br>"+path_orig+\ "<br>became inaccessible during training! Files were then saved to:<br>"+\ new_modelname.split(".model")[0]+"<br>To bring both parts back together\ , you have manually open the meta files (excel) and copy;paste each sheet. \ Sorry for the inconvenience.<br>If that happens often, you may contact \ the main developer and ask him to improve that.</p></body></html>" text = "<span style=\' font-weight:600; color: red;\'>" +text+"</span>"#put red text to the infobox self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) print('\a')#make a noise self.fittingpopups_ui[listindex].textBrowser_FittingInfo.setStyleSheet("background-color: yellow;") self.fittingpopups_ui[listindex].textBrowser_FittingInfo.moveCursor(QtGui.QTextCursor.End) if collection==False: if len(Histories)>0: #if the list for History files is not empty, process it! DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1["Time"] = Stopwatch DF1["LearningRate"] = LearningRate DF1.index = Index Index = []#reset the Index list Histories = []#reset the Histories list Saved = [] #does such a file exist already? append! if not os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): DF1.to_excel(writer,sheet_name='History') else: # else it exists so append without writing the header DF1.to_excel(writer,sheet_name='History', startrow=writer.sheets['History'].max_row,header= False) if os.path.isfile(new_modelname.split(".model")[0]+'_meta.xlsx'): os.chmod(new_modelname.split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write writer.save() writer.close() if collection==True: for i in range(len(HISTORIES)): Histories = HISTORIES[i] Saved = SAVED[i] if len(Histories)>0: #if the list for History files is not empty, process it! DF1 = [[ h[h_i][-1] for h_i in h] for h in Histories] #if nb_epoch in .fit() is >1, only save the last history item, beacuse this would a model that could be saved DF1 = np.r_[DF1] DF1 = pd.DataFrame( DF1,columns=Histories[0].keys() ) DF1["Saved"] = Saved DF1.index = Index HISTORIES[i] = []#reset the Histories list SAVED[i] = [] #does such a file exist already? append! if not os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): DF1.to_excel(Writers[i],sheet_name='History') else: # else it exists so append without writing the header DF1.to_excel(writer,sheet_name='History', startrow=writer.sheets['History'].max_row,header= False) if os.path.isfile(model_keras_path[i].split(".model")[0]+'_meta.xlsx'): os.chmod(model_keras_path[i].split(".model")[0]+'_meta.xlsx', S_IREAD|S_IRGRP|S_IROTH|S_IWRITE|S_IWGRP|S_IWOTH) #make read/write Writers[i].save() Writers[i].close() Index = []#reset the Index list sess.close() # try: # aid_dl.reset_keras(model_keras) # except: # pass def action_fit_model(self): #Take the initialized model #Unfortunately, in TensorFlow it is not possile to pass a model from #one thread to another. Therefore I have to load and save the models each time :( model_keras = self.model_keras if type(model_keras)==tuple: collection=True else: collection=False #Check if there was a model initialized: new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define a path/filename for the model to be fitted!") msg.setWindowTitle("Model path/ filename missing!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if model_keras==None:#in case the model got deleted in another task self.action_initialize_model(duties="initialize_train") print("Had to re-run action_initialize_model!") model_keras = self.model_keras self.model_keras = None#delete this copy if model_keras==None: # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Information) # msg.setText("Model could not be initialized") # msg.setWindowTitle("Error") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() return if not model_keras==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Model is now initialized for you, Please check Model summary window below if everything is correct and then press Fit again!") msg.setWindowTitle("No initilized model found!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #There should be at least two outputs (index 0 and 1) if collection==False: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras.output.shape.dims[1]) if collection==True: #model_config = model_keras[1][0].get_config()#["layers"] nr_classes = int(model_keras[1][0].output.shape.dims[1]) if nr_classes<2: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define at least two classes") msg.setWindowTitle("Not enough classes") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if collection==False: #define a variable on self which allows the fit_model_worker to load this model and fit #(sorry, this is necessary since TensorFlow does not support passing models between threads) self.model_keras_path = new_modelname.split(".model")[0]+"_0.model" #save a first version of the .model model_keras.save(self.model_keras_path) #Delete the variable to save RAM model_keras = None #Since this uses TensorFlow, I have to reload the model action_fit_model_worker anyway if collection==True: #define a variable on self which allows the fit_model_worker to load this model and fit #(sorry, this is necessary since TensorFlow does not support passing models between threads) self.model_keras_path = [new_modelname.split(".model")[0]+"_"+model_keras[0][i]+".model" for i in range(len(model_keras[0]))] for i in range(len(self.model_keras_path)): #save a first version of the .model model_keras[1][i].save(self.model_keras_path[i]) #Delete the variable to save RAM model_keras = None #Since this uses TensorFlow, I have to reload the model action_fit_model_worker anyway #Check that Data is on RAM DATA_len = len(self.ram) #this returns the len of a dictionary. The dictionary is supposed to contain the training/validation data; otherwise the data is read from .rtdc data directly (SLOW unless you have ultra-good SSD) def popup_data_to_ram(button): yes_or_no = button.text() if yes_or_no == "&Yes": print("Moving data to ram") self.actionDataToRamNow_function() elif yes_or_no == "&No": pass if DATA_len==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Would you like transfer the Data to RAM now?\n(Currently the data is not in RAM and would be read from .rtdc, which slows down fitting dramatically unless you have a super-fast SSD.)") msg.setWindowTitle("Data to RAM now?") msg.setStandardButtons(QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No) msg.buttonClicked.connect(popup_data_to_ram) msg.exec_() ###################Popup Window#################################### self.fittingpopups.append(MyPopup()) ui = aid_frontend.Fitting_Ui() ui.setupUi(self.fittingpopups[-1]) #append the ui to the last element on the list self.fittingpopups_ui.append(ui) # Increase the popupcounter by one; this will help to coordinate the data flow between main ui and popup self.popupcounter += 1 listindex=self.popupcounter-1 ##############################Define functions######################### self.fittingpopups_ui[listindex].pushButton_UpdatePlot_pop.clicked.connect(lambda: self.update_historyplot_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_Stop_pop.clicked.connect(lambda: self.stop_fitting_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_Pause_pop.clicked.connect(lambda: self.pause_fitting_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_saveTextWindow_pop.clicked.connect(lambda: self.saveTextWindow_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_clearTextWindow_pop.clicked.connect(lambda: self.clearTextWindow_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_showModelSumm_pop.clicked.connect(lambda: self.showModelSumm_pop(listindex)) self.fittingpopups_ui[listindex].pushButton_saveModelSumm_pop.clicked.connect(lambda: self.saveModelSumm_pop(listindex)) #Expert mode functions #self.fittingpopups_ui[listindex].checkBox_pTr_pop.toggled.connect(lambda on_or_off: self.partialtrainability_activated_pop(on_or_off,listindex)) self.fittingpopups_ui[listindex].pushButton_lossW.clicked.connect(lambda: self.lossWeights_popup(listindex)) self.fittingpopups_ui[listindex].checkBox_lossW.clicked.connect(lambda on_or_off: self.lossWeights_activated(on_or_off,listindex)) self.fittingpopups_ui[listindex].Form.setWindowTitle(os.path.split(new_modelname)[1]) self.fittingpopups_ui[listindex].progressBar_Fitting_pop.setValue(0) #set the progress bar to zero self.fittingpopups_ui[listindex].pushButton_ShowExamleImgs_pop.clicked.connect(lambda: self.action_show_example_imgs_pop(listindex)) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.doubleClicked.connect(lambda item: self.tableWidget_HistoryInfo_pop_dclick(item,listindex)) #Cyclical learning rate extra settings self.fittingpopups_ui[listindex].pushButton_cycLrPopup.clicked.connect(lambda: self.popup_clr_settings(listindex)) self.fittingpopups_ui[listindex].comboBox_optimizer.currentTextChanged.connect(lambda: self.expert_optimizer_changed(optimizer_text=self.fittingpopups_ui[listindex].comboBox_optimizer.currentText(),listindex=listindex)) self.fittingpopups_ui[listindex].pushButton_LR_plot.clicked.connect(lambda: self.popup_lr_plot(listindex)) self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.valueChanged.connect(lambda: self.expert_lr_changed(value=self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.value(),optimizer_text=self.fittingpopups_ui[listindex].comboBox_optimizer.currentText(),listindex=listindex)) self.fittingpopups_ui[listindex].doubleSpinBox_expDecInitLr.valueChanged.connect(lambda: self.expert_lr_changed(value=self.fittingpopups_ui[listindex].doubleSpinBox_learningRate.value(),optimizer_text=self.fittingpopups_ui[listindex].comboBox_optimizer.currentText(),listindex=listindex)) self.fittingpopups_ui[listindex].pushButton_optimizer_pop.clicked.connect(lambda: self.optimizer_change_settings_popup(listindex)) worker = Worker(self.action_fit_model_worker) #Get a signal from the worker to update the progressbar worker.signals.progress.connect(self.fittingpopups_ui[listindex].progressBar_Fitting_pop.setValue) #Define a func which prints information during fitting to textbrowser #And furthermore provide option to do real-time plotting def real_time_info(dic): self.fittingpopups_ui[listindex].Histories.append(dic) #append to a list. Will be used for plotting in the "Update plot" function OtherMetrics_keys = self.fittingpopups_ui[listindex].RealTime_OtherMetrics.keys() #Append to lists for real-time plotting self.fittingpopups_ui[listindex].RealTime_Acc.append(dic["acc"][0]) self.fittingpopups_ui[listindex].RealTime_ValAcc.append(dic["val_acc"][0]) self.fittingpopups_ui[listindex].RealTime_Loss.append(dic["loss"][0]) self.fittingpopups_ui[listindex].RealTime_ValLoss.append(dic["val_loss"][0]) keys = list(dic.keys()) #sort keys alphabetically keys_ = [l.lower() for l in keys] ind_sort = np.argsort(keys_) keys = list(np.array(keys)[ind_sort]) #First keys should always be acc,loss,val_acc,val_loss -in this order keys_first = ["acc","loss","val_acc","val_loss"] for i in range(len(keys_first)): if keys_first[i] in keys: ind = np.where(np.array(keys)==keys_first[i])[0][0] if ind!=i: del keys[ind] keys.insert(i,keys_first[i]) for key in keys: if "precision" in key or "f1" in key or "recall" in key or "LearningRate" in key: if not key in OtherMetrics_keys: #if this key is missing in self.fittingpopups_ui[listindex].RealTime_OtherMetrics attach it! self.fittingpopups_ui[listindex].RealTime_OtherMetrics[key] = [] self.fittingpopups_ui[listindex].RealTime_OtherMetrics[key].append(dic[key]) dic_text = [("{} {}".format(item, np.round(amount[0],4))) for item, amount in dic.items()] text = "Epoch "+str(self.fittingpopups_ui[listindex].epoch_counter)+"\n"+" ".join(dic_text) self.fittingpopups_ui[listindex].textBrowser_FittingInfo.append(text) self.fittingpopups_ui[listindex].epoch_counter+=1 if self.fittingpopups_ui[listindex].epoch_counter==1: #for each key, put a checkbox on the tableWidget_HistoryInfo_pop rowPosition = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.rowCount() self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.insertRow(rowPosition) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.setColumnCount(len(keys)) for columnPosition in range(len(keys)):#(2,4): key = keys[columnPosition] #for each item, also create 2 checkboxes (train/valid) item = QtWidgets.QTableWidgetItem(str(key))#("item {0} {1}".format(rowNumber, columnNumber)) item.setBackground(QtGui.QColor(self.colorsQt[columnPosition])) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Unchecked) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.setItem(rowPosition, columnPosition, item) self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.resizeColumnsToContents() self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.resizeRowsToContents() ########################Real-time plotting######################### if self.fittingpopups_ui[listindex].checkBox_realTimePlotting_pop.isChecked(): #get the range for the real time fitting if hasattr(self.fittingpopups_ui[listindex], 'historyscatters'):#if update plot was hit before x = range(len(self.fittingpopups_ui[listindex].Histories)) realTimeEpochs = self.fittingpopups_ui[listindex].spinBox_realTimeEpochs.value() if len(x)>realTimeEpochs: x = x[-realTimeEpochs:] #is any metric checked on the table? colcount = int(self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.columnCount()) #Collect items that are checked selected_items,Colors = [],[] for colposition in range(colcount): #is it checked? cb = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.item(0, colposition) if not cb==None: if cb.checkState() == QtCore.Qt.Checked: selected_items.append(str(cb.text())) Colors.append(cb.background()) for i in range(len(self.fittingpopups_ui[listindex].historyscatters)): #iterate over all available plots key = list(self.fittingpopups_ui[listindex].historyscatters.keys())[i] if key in selected_items: if key=="acc": y = np.array(self.fittingpopups_ui[listindex].RealTime_Acc).astype(float) elif key=="val_acc": y = np.array(self.fittingpopups_ui[listindex].RealTime_ValAcc).astype(float) elif key=="loss": y = np.array(self.fittingpopups_ui[listindex].RealTime_Loss).astype(float) elif key=="val_loss": y = np.array(self.fittingpopups_ui[listindex].RealTime_ValLoss).astype(float) elif "precision" in key or "f1" in key or "recall" in key or "LearningRate" in key: y = np.array(self.fittingpopups_ui[listindex].RealTime_OtherMetrics[key]).astype(float).reshape(-1,) else: return #Only show the last 250 epochs if y.shape[0]>realTimeEpochs: y = y[-realTimeEpochs:] if y.shape[0]==len(x): self.fittingpopups_ui[listindex].historyscatters[key].setData(x, y)#,pen=None,symbol='o',symbolPen=None,symbolBrush=brush,clear=False) else: print("x and y are not the same size! Omitted plotting. I will try again to plot after the next epoch.") pg.QtGui.QApplication.processEvents() self.fittingpopups_ui[listindex].epoch_counter = 0 #self.fittingpopups_ui[listindex].backup = [] #backup of the meta information -> in case the original folder is not accessible anymore worker.signals.history.connect(real_time_info) #Finally start the worker! self.threadpool.start(worker) self.fittingpopups[listindex].show() def action_lr_finder(self): #lr_find model_keras = self.model_keras if type(model_keras)==tuple: collection=True msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Warning) msg.setText("LR screening is not supported for Collections of models. Please select single model") msg.setWindowTitle("LR screening not supported for Collections!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return else: collection=False #Check if there was a model initialized: new_modelname = str(self.lineEdit_modelname.text()) if len(new_modelname)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define a path/filename for the model to be fitted!") msg.setWindowTitle("Model path/ filename missing!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if model_keras==None:#in case the model got deleted in another task self.action_initialize_model(duties="initialize_train") print("Had to re-run action_initialize_model!") model_keras = self.model_keras self.model_keras = None#delete this copy if model_keras==None: return if not model_keras==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Model is now initialized for you, Please check Model summary window below if everything is correct and then press Fit again!") msg.setWindowTitle("No initilized model found!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return nr_classes = int(model_keras.output.shape.dims[1]) if nr_classes<2: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please define at least two classes") msg.setWindowTitle("Not enough classes") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #define a variable on self which allows the fit_model_worker to load this model and fit #(sorry, this is necessary since TensorFlow does not support passing models between threads) self.model_keras_path = new_modelname.split(".model")[0]+"_0.model" #save a first version of the .model model_keras.save(self.model_keras_path) #Delete the variable to save RAM model_keras = None #Since this uses TensorFlow, I have to reload the model action_fit_model_worker anyway #Check that Data is on RAM DATA_len = len(self.ram) #this returns the len of a dictionary. The dictionary is supposed to contain the training/validation data; otherwise the data is read from .rtdc data directly (SLOW unless you have ultra-good SSD) def popup_data_to_ram(button): yes_or_no = button.text() if yes_or_no == "&Yes": print("Moving data to ram") self.actionDataToRamNow_function() elif yes_or_no == "&No": pass if DATA_len==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Would you like transfer the Data to RAM now?\n(Currently the data is not in RAM and would be read from .rtdc, which slows down fitting dramatically unless you have a super-fast SSD.)") msg.setWindowTitle("Data to RAM now?") msg.setStandardButtons(QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No) msg.buttonClicked.connect(popup_data_to_ram) msg.exec_() worker = Worker(self.action_lr_finder_worker) #Get a signal from the worker to update the progressbar worker.signals.progress.connect(print) worker.signals.history.connect(print) #Finally start the worker! self.threadpool.start(worker) def action_lr_finder_worker(self,progress_callback,history_callback): if self.radioButton_cpu.isChecked(): gpu_used = False deviceSelected = str(self.comboBox_cpu.currentText()) elif self.radioButton_gpu.isChecked(): gpu_used = True deviceSelected = str(self.comboBox_gpu.currentText()) gpu_memory = float(self.doubleSpinBox_memory.value()) #Retrieve more Multi-GPU Options from Menubar: cpu_merge = bool(self.actioncpu_merge.isEnabled()) cpu_relocation = bool(self.actioncpu_relocation.isEnabled()) cpu_weight_merge = bool(self.actioncpu_weightmerge.isEnabled()) #Create config (define which device to use) config_gpu = aid_dl.get_config(cpu_nr,gpu_nr,deviceSelected,gpu_memory) with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: #get an index of the fitting popup #listindex = self.popupcounter-1 #Get user-specified filename for the new model model_keras_path = self.model_keras_path if type(model_keras_path)==list: collection = True msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Warning) msg.setText("LR screening is currently not supported for Collections of models. Please use single model") msg.setWindowTitle("LR screening not supported for Collections") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return else: collection = False if deviceSelected=="Multi-GPU" and cpu_weight_merge==True: with tf.device("/cpu:0"): model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) else: model_keras = load_model(model_keras_path,custom_objects=aid_dl.get_custom_metrics()) #Initialize a variable for the parallel model model_keras_p = None #Multi-GPU if deviceSelected=="Multi-GPU": if collection==False: print("Adjusting the model for Multi-GPU") model_keras_p = multi_gpu_model(model_keras, gpus=gpu_nr, cpu_merge=cpu_merge, cpu_relocation=cpu_relocation)#indicate the numbers of gpus that you have if self.radioButton_LoadContinueModel.isChecked():#calling multi_gpu_model resets the weights. Hence, they need to be put in place again model_keras_p.layers[-2].set_weights(model_keras.get_weights()) elif collection==True: print("Collection & Multi-GPU is not supported yet") return ##############Main function after hitting FIT MODEL#################### if self.radioButton_LoadRestartModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_LoadContinueModel.isChecked(): load_modelname = str(self.lineEdit_LoadModelPath.text()) elif self.radioButton_NewModel.isChecked(): load_modelname = "" #No model is loaded if collection==False: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras.output.shape.dims[1]) if collection==True: #model_config = model_keras.get_config()#["layers"] nr_classes = int(model_keras[0].output.shape.dims[1]) #Metrics to be displayed during fitting (real-time) model_metrics = self.get_metrics(nr_classes) #Compile model if deviceSelected=="Single-GPU": model_keras.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled elif deviceSelected=="Multi-GPU": model_keras_p.compile(loss='categorical_crossentropy',optimizer='adam',metrics=model_metrics)#dont specify loss and optimizer yet...expert stuff will follow and model will be recompiled #Collect all information about the fitting routine that was user #defined if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 trainable_original, layer_names = self.trainable_original, self.layer_names crop = int(self.spinBox_imagecrop.value()) norm = str(self.comboBox_Normalization.currentText()) nr_epochs = int(self.spinBox_NrEpochs.value()) h_flip = bool(self.checkBox_HorizFlip.isChecked()) v_flip = bool(self.checkBox_VertFlip.isChecked()) rotation = float(self.lineEdit_Rotation.text()) width_shift = float(self.lineEdit_widthShift.text()) height_shift = float(self.lineEdit_heightShift.text()) zoom = float(self.lineEdit_zoomRange.text()) shear = float(self.lineEdit_shearRange.text()) brightness_add_lower = float(self.spinBox_PlusLower.value()) brightness_add_upper = float(self.spinBox_PlusUpper.value()) brightness_mult_lower = float(self.doubleSpinBox_MultLower.value()) brightness_mult_upper = float(self.doubleSpinBox_MultUpper.value()) gaussnoise_mean = float(self.doubleSpinBox_GaussianNoiseMean.value()) gaussnoise_scale = float(self.doubleSpinBox_GaussianNoiseScale.value()) contrast_on = bool(self.checkBox_contrast.isChecked()) contrast_lower = float(self.doubleSpinBox_contrastLower.value()) contrast_higher = float(self.doubleSpinBox_contrastHigher.value()) saturation_on = bool(self.checkBox_saturation.isChecked()) saturation_lower = float(self.doubleSpinBox_saturationLower.value()) saturation_higher = float(self.doubleSpinBox_saturationHigher.value()) hue_on = bool(self.checkBox_hue.isChecked()) hue_delta = float(self.doubleSpinBox_hueDelta.value()) avgBlur_on = bool(self.checkBox_avgBlur.isChecked()) avgBlur_min = int(self.spinBox_avgBlurMin.value()) avgBlur_max = int(self.spinBox_avgBlurMax.value()) gaussBlur_on = bool(self.checkBox_gaussBlur.isChecked()) gaussBlur_min = int(self.spinBox_gaussBlurMin.value()) gaussBlur_max = int(self.spinBox_gaussBlurMax.value()) motionBlur_on = bool(self.checkBox_motionBlur.isChecked()) motionBlur_kernel = str(self.lineEdit_motionBlurKernel.text()) motionBlur_angle = str(self.lineEdit_motionBlurAngle.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple if collection==False: expert_mode = bool(self.groupBox_expertMode.isChecked()) elif collection==True: expert_mode = self.groupBox_expertMode.setChecked(False) print("Expert mode was switched off. Not implemented yet for collections") expert_mode = False learning_rate_const = float(self.doubleSpinBox_learningRate.value()) loss_expert = str(self.comboBox_expt_loss.currentText()).lower() optimizer_expert = str(self.comboBox_optimizer.currentText()).lower() optimizer_settings = self.optimizer_settings.copy() paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() train_last_layers = bool(self.checkBox_trainLastNOnly.isChecked()) train_last_layers_n = int(self.spinBox_trainLastNOnly.value()) train_dense_layers = bool(self.checkBox_trainDenseOnly.isChecked()) dropout_expert_on = bool(self.checkBox_dropout.isChecked()) try: dropout_expert = str(self.lineEdit_dropout.text()) #due to the validator, there are no squ.brackets dropout_expert = "["+dropout_expert+"]" dropout_expert = ast.literal_eval(dropout_expert) except: dropout_expert = [] lossW_expert = str(self.lineEdit_lossW.text()) #To get the class weights (loss), the SelectedFiles are required SelectedFiles = self.items_clicked_no_rtdc_ds() #Check if xtra_data should be used for training xtra_in = [s["xtra_in"] for s in SelectedFiles] if len(set(xtra_in))==1: xtra_in = list(set(xtra_in))[0] elif len(set(xtra_in))>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return #Get the class weights. This function runs now the first time in the fitting routine. #It is possible that the user chose Custom weights and then changed the classes. Hence first check if #there is a weight for each class available. class_weight = self.get_class_weight(SelectedFiles,lossW_expert,custom_check_classes=True) if type(class_weight)==list: #There has been a mismatch between the classes described in class_weight and the classes available in SelectedFiles! lossW_expert = class_weight[0] #overwrite class_weight = class_weight[1] print(class_weight) print("There has been a mismatch between the classes described in \ Loss weights and the classes available in the selected files! \ Hence, the Loss weights are set to Balanced") ###############################Expert Mode values################## if expert_mode==True: #Some settings only need to be changed once, after user clicked apply at next epoch #Apply the changes to trainable states: if train_last_layers==True:#Train only the last n layers print("Train only the last "+str(train_last_layers_n)+ " layer(s)") trainable_new = (len(trainable_original)-train_last_layers_n)*[False]+train_last_layers_n*[True] summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_last_layers==True") text1 = "Expert mode: Request for custom trainability states: train only the last "+str(train_last_layers_n)+ " layer(s)\n" #text2 = "\n--------------------\n" print(text1+summary) if train_dense_layers==True:#Train only dense layers print("Train only dense layers") layer_dense_ind = ["Dense" in x for x in layer_names] layer_dense_ind = np.where(np.array(layer_dense_ind)==True)[0] #at which indices are dropout layers? #create a list of trainable states trainable_new = len(trainable_original)*[False] for index in layer_dense_ind: trainable_new[index] = True summary = aid_dl.model_change_trainability(model_keras,trainable_new,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model for train_dense_layers==True") text1 = "Expert mode: Request for custom trainability states: train only dense layer(s)\n" #text2 = "\n--------------------\n" print(text1+summary) if dropout_expert_on==True: #The user apparently want to change the dropout rates do_list = aid_dl.get_dropout(model_keras)#Get a list of dropout values of the current model #Compare the dropout values in the model to the dropout values requested by user if len(dropout_expert)==1:#if the user gave a single float dropout_expert_list = len(do_list)*dropout_expert #convert to list elif len(dropout_expert)>1: dropout_expert_list = dropout_expert if not len(dropout_expert_list)==len(do_list): text = "Issue with dropout: you defined "+str(len(dropout_expert_list))+" dropout rates, but model has "+str(len(do_list))+" dropout layers" print(text) else: text = "Could not understand user input at Expert->Dropout" print(text) dropout_expert_list = [] if len(dropout_expert_list)>0 and do_list!=dropout_expert_list:#if the dropout rates of the current model is not equal to the required do_list from user... do_changed = aid_dl.change_dropout(model_keras,dropout_expert_list,model_metrics,nr_classes,loss_expert,optimizer_settings,learning_rate_const) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to change dropout. I'm not sure if this works already!") if do_changed==1: text_do = "Dropout rate(s) in model was/were changed to: "+str(dropout_expert_list) else: text_do = "Dropout rate(s) in model was/were not changed" else: text_do = "Dropout rate(s) in model was/were not changed" print(text_do) text_updates = "" #Compare current lr and the lr on expert tab: if collection == False: lr_current = K.eval(model_keras.optimizer.lr) else: lr_current = K.eval(model_keras[0].optimizer.lr) lr_diff = learning_rate_const-lr_current if abs(lr_diff) > 1e-6: if collection == False: K.set_value(model_keras.optimizer.lr, learning_rate_const) if collection == True: for m in model_keras: K.set_value(m.optimizer.lr, learning_rate_const) text_updates += "Changed the learning rate to "+ str(learning_rate_const)+"\n" recompile = False #Compare current optimizer and the optimizer on expert tab: if collection==False: optimizer_current = aid_dl.get_optimizer_name(model_keras).lower()#get the current optimizer of the model if collection==True: optimizer_current = aid_dl.get_optimizer_name(model_keras[0]).lower()#get the current optimizer of the model if optimizer_current!=optimizer_expert.lower():#if the current model has a different optimizer recompile = True text_updates+="Changed the optimizer to "+optimizer_expert+"\n" #Compare current loss function and the loss-function on expert tab: if collection==False: if model_keras.loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if collection==True: if model_keras[0].loss!=loss_expert: recompile = True text_updates+="Changed the loss function to "+loss_expert+"\n" if recompile==True: print("Recompiling...") if collection==False: aid_dl.model_compile(model_keras,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) if collection==True: for m in model_keras[1]: aid_dl.model_compile(m, loss_expert, optimizer_settings, learning_rate_const,model_metrics, nr_classes) if model_keras_p!=None:#if this is NOT None, there exists a parallel model, which also needs to be re-compiled aid_dl.model_compile(model_keras_p,loss_expert,optimizer_settings,learning_rate_const,model_metrics,nr_classes) print("Recompiled parallel model to adjust learning rate, loss, optimizer") print(text_updates) ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_train = np.array(SelectedFiles)[ind] SelectedFiles_train = list(SelectedFiles_train) indices_train = [selectedfile["class"] for selectedfile in SelectedFiles_train] nr_events_epoch_train = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_train] rtdc_path_train = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_train] zoom_factors_train = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_train] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_train = [selectedfile["shuffle"] for selectedfile in SelectedFiles_train] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_train]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False if verbose==1: print("Length of DATA (in RAM) = "+str(len(self.ram))) #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles_train)): if len(self.ram)==0: #Here, the entire training set needs to be used! Not only random images! #Replace=true: means individual cells could occur several times gen_train = aid_img.gen_crop_img(crop,rtdc_path_train[i],random_images=False,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen_train = aid_img.gen_crop_img_ram(self.ram,rtdc_path_train[i],random_images=False) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen_train)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) text = "<html><head/><body><p>The standard deviation of your training data is zero! This would lead to division by zero. To avoid this, I will divide by 0.0001 instead.</p></body></html>" msg.setText(text) msg.setWindowTitle("Std. is zero") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() ######################Load the Validation Data################################ ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles_valid = np.array(SelectedFiles)[ind] SelectedFiles_valid = list(SelectedFiles_valid) indices_valid = [selectedfile["class"] for selectedfile in SelectedFiles_valid] nr_events_epoch_valid = [selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles_valid] rtdc_path_valid = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles_valid] zoom_factors_valid = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles_valid] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle_valid = [selectedfile["shuffle"] for selectedfile in SelectedFiles_valid] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles_valid]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False ############Cropping##################### percDataV = float(self.popup_lrfinder_ui.doubleSpinBox_percDataV.value()) percDataV = percDataV/100.0 X_valid,y_valid,Indices,xtra_valid = [],[],[],[] for i in range(len(SelectedFiles_valid)): if len(self.ram)==0:#if there is no data available on ram #replace=true means individual cells could occur several times gen_valid = aid_img.gen_crop_img(crop,rtdc_path_valid[i],int(np.rint(percDataV*nr_events_epoch_valid[i])),random_images=shuffle_valid[i],replace=True,zoom_factor=zoom_factors_valid[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else:#get a similar generator, using the ram-data gen_valid = aid_img.gen_crop_img_ram(self.ram,rtdc_path_valid[i],int(np.rint(percDataV*nr_events_epoch_valid[i])),random_images=shuffle_valid[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") generator_cropped_out = next(gen_valid) X_valid.append(generator_cropped_out[0]) #y_valid.append(np.repeat(indices_valid[i],nr_events_epoch_valid[i])) y_valid.append(np.repeat(indices_valid[i],X_valid[-1].shape[0])) Indices.append(generator_cropped_out[1]) xtra_valid.append(generator_cropped_out[2]) del generator_cropped_out X_valid = np.concatenate(X_valid) y_valid = np.concatenate(y_valid) Y_valid = np_utils.to_categorical(y_valid, nr_classes)# * 2 - 1 xtra_valid = np.concatenate(xtra_valid) if len(X_valid.shape)==4: channels=3 elif len(X_valid.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_valid.shape)) if channels==1: #Add the "channels" dimension X_valid = np.expand_dims(X_valid,3) if norm == "StdScaling using mean and std of all training data": X_valid = aid_img.image_normalization(X_valid,norm,mean_trainingdata,std_trainingdata) else: X_valid = aid_img.image_normalization(X_valid,norm) #Validation data can be cropped to final size already since no augmentation #will happen on this data set dim_val = X_valid.shape print("Current dim. of validation set (pixels x pixels) = "+str(dim_val[2])) if dim_val[2]!=crop: print("Change dim. (pixels x pixels) of validation set to = "+str(crop)) remove = int(dim_val[2]/2.0 - crop/2.0) X_valid = X_valid[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow if xtra_in==True: print("Add Xtra Data to X_valid") X_valid = [X_valid,xtra_valid] ###################Load training data#################### #####################and perform######################### ##################Image augmentation##################### #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number #Should only a certain percentage of the numbers given in the table be sampled? percDataT = float(self.popup_lrfinder_ui.doubleSpinBox_percDataT.value()) percDataT = percDataT/100.0 X_train,y_train,xtra_train = [],[],[] t3 = time.time() for i in range(len(SelectedFiles_train)): if len(self.ram)==0: #Replace true means that individual cells could occur several times gen_train = aid_img.gen_crop_img(cropsize2,rtdc_path_train[i],int(np.rint(percDataT*nr_events_epoch_train[i])),random_images=shuffle_train[i],replace=True,zoom_factor=zoom_factors_train[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) else: gen_train = aid_img.gen_crop_img_ram(self.ram,rtdc_path_train[i],int(np.rint(percDataT*nr_events_epoch_train[i])),random_images=shuffle_train[i],replace=True,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") data_ = next(gen_train) X_train.append(data_[0]) y_train.append(np.repeat(indices_train[i],X_train[-1].shape[0])) if xtra_in==True: xtra_train.append(data_[2]) del data_ X_train = np.concatenate(X_train) X_train = X_train.astype(np.uint8) y_train = np.concatenate(y_train) if xtra_in==True: print("Retrieve Xtra Data...") xtra_train = np.concatenate(xtra_train) t4 = time.time() if verbose == 1: print("Time to load data (from .rtdc or RAM) and crop="+str(t4-t3)) if len(X_train.shape)==4: channels=3 elif len(X_train.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X_train.shape)) if channels==1: #Add the "channels" dimension X_train = np.expand_dims(X_train,3) t3 = time.time() #Affine augmentation X_train = aid_img.affine_augm(X_train,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear) #Affine image augmentation y_train = np.copy(y_train) Y_train = np_utils.to_categorical(y_train, nr_classes)# * 2 - 1 t4 = time.time() if verbose == 1: print("Time to perform affine augmentation ="+str(t4-t3)) t3 = time.time() #Now do the final cropping to the actual size that was set by user dim = X_train.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) X_train = X_train[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow t4 = time.time() #X_train = np.copy(X_train) #save into new array and do some iterations with varying noise/brightness #reuse this X_batch_orig a few times since this augmentation was costly if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 #In each iteration, start with non-augmented data #X_batch = np.copy(X_batch_orig)#copy from X_batch_orig, X_batch will be altered without altering X_batch_orig #X_train = X_train.astype(np.uint8) ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? X_train = X_train.astype(np.uint8) if contrast_on: t_con_aug_1 = time.time() X_train = aid_img.contrast_augm_cv2(X_train,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! t_con_aug_2 = time.time() if verbose == 1: print("Time to augment contrast="+str(t_con_aug_2-t_con_aug_1)) if saturation_on or hue_on: t_sat_aug_1 = time.time() X_train = aid_img.satur_hue_augm_cv2(X_train.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) #Gray and RGB; both values >0! t_sat_aug_2 = time.time() if verbose == 1: print("Time to augment saturation/hue="+str(t_sat_aug_2-t_sat_aug_1)) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: t_avgBlur_1 = time.time() X_train = aid_img.avg_blur_cv2(X_train,avgBlur_min,avgBlur_max) t_avgBlur_2 = time.time() if verbose == 1: print("Time to perform average blurring="+str(t_avgBlur_2-t_avgBlur_1)) if gaussBlur_on: t_gaussBlur_1 = time.time() X_train = aid_img.gauss_blur_cv(X_train,gaussBlur_min,gaussBlur_max) t_gaussBlur_2 = time.time() if verbose == 1: print("Time to perform gaussian blurring="+str(t_gaussBlur_2-t_gaussBlur_1)) if motionBlur_on: t_motionBlur_1 = time.time() X_train = aid_img.motion_blur_cv(X_train,motionBlur_kernel,motionBlur_angle) t_motionBlur_2 = time.time() if verbose == 1: print("Time to perform motion blurring="+str(t_motionBlur_2-t_motionBlur_1)) ##########Brightness noise######### t3 = time.time() X_train = aid_img.brightn_noise_augm_cv2(X_train,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) t4 = time.time() if verbose == 1: print("Time to augment brightness="+str(t4-t3)) t3 = time.time() if norm == "StdScaling using mean and std of all training data": X_train = aid_img.image_normalization(X_train,norm,mean_trainingdata,std_trainingdata) else: X_train = aid_img.image_normalization(X_train,norm) t4 = time.time() if verbose == 1: print("Time to apply normalization="+str(t4-t3)) if verbose == 1: print("X_train.shape") print(X_train.shape) if xtra_in==True: print("Add Xtra Data to X_train") X_train = [X_train,xtra_train] ################################################### ###############Actual fitting###################### ################################################### batch_size = int(self.popup_lrfinder_ui.spinBox_batchSize.value()) stepsPerEpoch = int(self.popup_lrfinder_ui.spinBox_stepsPerEpoch.value()) epochs = int(self.popup_lrfinder_ui.spinBox_epochs.value()) start_lr = float(self.popup_lrfinder_ui.lineEdit_startLr.text()) stop_lr = float(self.popup_lrfinder_ui.lineEdit_stopLr.text()) valMetrics = bool(self.popup_lrfinder_ui.checkBox_valMetrics.isChecked()) ####################lr_find algorithm#################### if model_keras_p == None: lrf = aid_dl.LearningRateFinder(model_keras) elif model_keras_p != None: lrf = aid_dl.LearningRateFinder(model_keras_p) if valMetrics==True: lrf.find([X_train,Y_train],[X_valid,Y_valid],start_lr,stop_lr,stepsPerEpoch=stepsPerEpoch,batchSize=batch_size,epochs=epochs) else: lrf.find([X_train,Y_train],None,start_lr,stop_lr,stepsPerEpoch=stepsPerEpoch,batchSize=batch_size,epochs=epochs) skipBegin,skipEnd = 10,1 self.learning_rates = lrf.lrs[skipBegin:-skipEnd] self.losses_or = lrf.losses_or[skipBegin:-skipEnd] self.losses_sm = lrf.losses_sm[skipBegin:-skipEnd] self.accs_or = lrf.accs_or[skipBegin:-skipEnd] self.accs_sm = lrf.accs_sm[skipBegin:-skipEnd] self.val_losses_sm = lrf.val_losses_sm[skipBegin:-skipEnd] self.val_losses_or = lrf.val_losses_or[skipBegin:-skipEnd] self.val_accs_sm = lrf.val_accs_sm[skipBegin:-skipEnd] self.val_accs_or = lrf.val_accs_or[skipBegin:-skipEnd] # Enable the groupboxes self.popup_lrfinder_ui.groupBox_singleLr.setEnabled(True) self.popup_lrfinder_ui.groupBox_LrRange.setEnabled(True) self.update_lrfind_plot() def update_lrfind_plot(self): if not hasattr(self, 'learning_rates'): return metric = str(self.popup_lrfinder_ui.comboBox_metric.currentText()) color = self.popup_lrfinder_ui.pushButton_color.palette().button().color() width = int(self.popup_lrfinder_ui.spinBox_lineWidth.value()) color = list(color.getRgb()) color = tuple(color) pencolor = pg.mkPen(color, width=width) smooth = bool(self.popup_lrfinder_ui.checkBox_smooth.isChecked()) try:# try to empty the plot self.popup_lrfinder_ui.lr_plot.clear() #self.popup_lrfinder_ui.lr_plot.removeItem(self.lr_line) except: pass if metric=="Loss" and smooth==True: self.y_values = self.losses_sm elif metric=="Loss" and smooth==False: self.y_values = self.losses_or elif metric=="Loss 1st derivative" and smooth==True: self.y_values = np.diff(self.losses_sm,n=1) elif metric=="Loss 1st derivative" and smooth==False: self.y_values = np.diff(self.losses_or,n=1) elif metric=="Accuracy" and smooth==True: self.y_values = self.accs_sm elif metric=="Accuracy" and smooth==False: self.y_values = self.accs_or elif metric=="Accuracy 1st derivative" and smooth==True: self.y_values = np.diff(self.accs_sm,n=1) elif metric=="Accuracy 1st derivative" and smooth==False: self.y_values = np.diff(self.accs_or,n=1) elif metric=="Val. loss" and smooth==True: self.y_values = self.val_losses_sm elif metric=="Val. loss" and smooth==False: self.y_values = self.val_losses_or elif metric=="Val. loss 1st derivative" and smooth==True: self.y_values = np.diff(self.val_losses_sm,n=1) elif metric=="Val. loss 1st derivative" and smooth==False: self.y_values = np.diff(self.val_losses_or,n=1) elif metric=="Val. accuracy" and smooth==True: self.y_values = self.val_accs_sm elif metric=="Val. accuracy" and smooth==False: self.y_values = self.val_accs_or elif metric=="Val. accuracy 1st derivative" and smooth==True: self.y_values = np.diff(self.val_accs_sm,n=1) elif metric=="Val. accuracy 1st derivative" and smooth==False: self.y_values = np.diff(self.val_accs_or,n=1) else: print("The combination of "+str(metric)+" and smooth="+str(smooth)+" is not supported!") if len(self.learning_rates)==len(self.y_values): self.lr_line = pg.PlotCurveItem(x=np.log10(self.learning_rates), y=self.y_values,pen=pencolor,name=metric) elif len(self.learning_rates)-1==len(self.y_values): self.lr_line = pg.PlotCurveItem(x=np.log10(self.learning_rates)[1:], y=self.y_values,pen=pencolor,name=metric) else: print("No data available. Probably, validation metrics were not computed. Please click Run again.") return self.popup_lrfinder_ui.lr_plot.addItem(self.lr_line) #In case the groupBox_singleLr is already checked, carry out the function: if self.popup_lrfinder_ui.groupBox_singleLr.isChecked(): self.get_lr_single(on_or_off=True) #In case the groupBox_LrRange is already checked, carry out the function: if self.popup_lrfinder_ui.groupBox_LrRange.isChecked(): self.get_lr_range(on_or_off=True) def get_lr_single(self,on_or_off): if on_or_off==True: #bool(self.popup_lrfinder_ui.groupBox_LrRange.isChecked()): ind = np.argmin(self.y_values)#find location of loss-minimum mini_x = self.learning_rates[ind] mini_x = np.log10(mini_x) pen = pg.mkPen(color="w") self.lr_single = pg.InfiniteLine(pos=mini_x, angle=90, pen=pen, movable=True) self.popup_lrfinder_ui.lr_plot.addItem(self.lr_single) def position_changed(): #where did the user drag the region_linfit to? new_position = 10**(self.lr_single.value()) self.popup_lrfinder_ui.lineEdit_singleLr.setText(str(new_position)) self.lr_single.sigPositionChangeFinished.connect(position_changed) if on_or_off==False: #user unchecked the groupbox->remove the InfiniteLine if possible try: self.popup_lrfinder_ui.lr_plot.removeItem(self.lr_single) except: pass def get_lr_range(self,on_or_off): #print(on_or_off) #start_lr = float(self.popup_lrfinder_ui.lineEdit_startLr.text()) #stop_lr = float(self.popup_lrfinder_ui.lineEdit_stopLr.text()) if on_or_off==True: #bool(self.popup_lrfinder_ui.groupBox_LrRange.isChecked()): start_x = 0.00001 start_x = np.log10(start_x) ind = np.argmin(self.y_values)#find location of loss-minimum end_x = self.learning_rates[ind] end_x = np.log10(end_x) self.lr_region = pg.LinearRegionItem([start_x, end_x], movable=True) self.popup_lrfinder_ui.lr_plot.addItem(self.lr_region) def region_changed(): #where did the user drag the region_linfit to? new_region = self.lr_region.getRegion() new_region_left = 10**(new_region[0]) new_region_right = 10**(new_region[1]) self.popup_lrfinder_ui.lineEdit_LrMin.setText(str(new_region_left)) self.popup_lrfinder_ui.lineEdit_LrMax.setText(str(new_region_right)) self.lr_region.sigRegionChangeFinished.connect(region_changed) if on_or_off==False: #bool(self.popup_lrfinder_ui.groupBox_LrRange.isChecked()): try: self.popup_lrfinder_ui.lr_plot.removeItem(self.lr_region) except: pass def action_show_example_imgs(self): #this function is only for the main window if self.actionVerbose.isChecked()==True: verbose = 1 else: verbose = 0 #Get state of the comboboxes! tr_or_valid = str(self.comboBox_ShowTrainOrValid.currentText()) w_or_wo_augm = str(self.comboBox_ShowWOrWoAug.currentText()) #most of it should be similar to action_fit_model_worker #Used files go to a separate sheet on the MetaFile.xlsx SelectedFiles = self.items_clicked_no_rtdc_ds() #Collect all information about the fitting routine that was user defined crop = int(self.spinBox_imagecrop.value()) norm = str(self.comboBox_Normalization.currentText()) h_flip = bool(self.checkBox_HorizFlip.isChecked()) v_flip = bool(self.checkBox_VertFlip.isChecked()) rotation = float(self.lineEdit_Rotation.text()) width_shift = float(self.lineEdit_widthShift.text()) height_shift = float(self.lineEdit_heightShift.text()) zoom = float(self.lineEdit_zoomRange.text()) shear = float(self.lineEdit_shearRange.text()) brightness_add_lower = float(self.spinBox_PlusLower.value()) brightness_add_upper = float(self.spinBox_PlusUpper.value()) brightness_mult_lower = float(self.doubleSpinBox_MultLower.value()) brightness_mult_upper = float(self.doubleSpinBox_MultUpper.value()) gaussnoise_mean = float(self.doubleSpinBox_GaussianNoiseMean.value()) gaussnoise_scale = float(self.doubleSpinBox_GaussianNoiseScale.value()) contrast_on = bool(self.checkBox_contrast.isChecked()) contrast_lower = float(self.doubleSpinBox_contrastLower.value()) contrast_higher = float(self.doubleSpinBox_contrastHigher.value()) saturation_on = bool(self.checkBox_saturation.isChecked()) saturation_lower = float(self.doubleSpinBox_saturationLower.value()) saturation_higher = float(self.doubleSpinBox_saturationHigher.value()) hue_on = bool(self.checkBox_hue.isChecked()) hue_delta = float(self.doubleSpinBox_hueDelta.value()) avgBlur_on = bool(self.checkBox_avgBlur.isChecked()) avgBlur_min = int(self.spinBox_avgBlurMin.value()) avgBlur_max = int(self.spinBox_avgBlurMax.value()) gaussBlur_on = bool(self.checkBox_gaussBlur.isChecked()) gaussBlur_min = int(self.spinBox_gaussBlurMin.value()) gaussBlur_max = int(self.spinBox_gaussBlurMax.value()) motionBlur_on = bool(self.checkBox_motionBlur.isChecked()) motionBlur_kernel = str(self.lineEdit_motionBlurKernel.text()) motionBlur_angle = str(self.lineEdit_motionBlurAngle.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple paddingMode = str(self.comboBox_paddingMode.currentText())#.lower() #which index is requested by user:? req_index = int(self.spinBox_ShowIndex.value()) if tr_or_valid=='Training': ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] elif tr_or_valid=='Validation': ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles = np.array(SelectedFiles)[ind] SelectedFiles = list(SelectedFiles) indices = [selectedfile["class"] for selectedfile in SelectedFiles] ind = np.where(np.array(indices)==req_index)[0] if len(ind)<1: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no data for this class available") msg.setWindowTitle("Class not available") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return indices = list(np.array(indices)[ind]) SelectedFiles = list(np.array(SelectedFiles)[ind]) nr_events_epoch = len(indices)*[10] #[selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles] rtdc_path = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles] zoom_factors = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle = [selectedfile["shuffle"] for selectedfile in SelectedFiles] #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],random_images=False) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 print("std_trainingdata was zero and is now set to 0.0001 to avoid div. by zero!") if self.actionVerbose.isChecked(): print("Used all training data to get mean and std for normalization") if w_or_wo_augm=='With Augmentation': ###############Continue with training data:augmentation############ #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number ############Cropping and image augmentation##################### #Start the first iteration: X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=True,replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") try: #When all cells are at the border of the image, the generator will be empty. Avoid program crash by try, except X.append(next(gen)[0]) except StopIteration: print("All events at border of image and discarded") return y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) X = X.astype(np.uint8) #make sure we stay in uint8 y = np.concatenate(y) if len(X.shape)==4: channels=3 elif len(X.shape)==3: channels=1 X = np.expand_dims(X,3)#Add the "channels" dimension else: print("Invalid data dimension:" +str(X.shape)) X_batch, y_batch = aid_img.affine_augm(X,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear), y #Affine image augmentation X_batch = X_batch.astype(np.uint8) #make sure we stay in uint8 #Now do the final cropping to the actual size that was set by user dim = X_batch.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) #X_batch = X_batch[:,:,remove:-remove,remove:-remove] #crop to crop x crop pixels #Theano X_batch = X_batch[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? if contrast_on: X_batch = aid_img.contrast_augm_cv2(X_batch,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! if saturation_on or hue_on: X_batch = aid_img.satur_hue_augm_cv2(X_batch.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: X_batch = aid_img.avg_blur_cv2(X_batch,avgBlur_min,avgBlur_max) if gaussBlur_on: X_batch = aid_img.gauss_blur_cv(X_batch,gaussBlur_min,gaussBlur_max) if motionBlur_on: X_batch = aid_img.motion_blur_cv(X_batch,motionBlur_kernel,motionBlur_angle) X_batch = aid_img.brightn_noise_augm_cv2(X_batch,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) if norm == "StdScaling using mean and std of all training data": X_batch = aid_img.image_normalization(X_batch,norm,mean_trainingdata,std_trainingdata) else: X_batch = aid_img.image_normalization(X_batch,norm) X = X_batch if verbose: print("Shape of the shown images is:"+str(X.shape)) elif w_or_wo_augm=='Original image': ############Cropping##################### X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=True,replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=True,replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") try: X.append(next(gen)[0]) except: return y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) y = np.concatenate(y) if len(X.shape)==4: channels=3 elif len(X.shape)==3: channels=1 X = np.expand_dims(X,3) #Add the "channels" dimension else: print("Invalid data dimension: " +str(X.shape)) if norm == "StdScaling using mean and std of all training data": X = aid_img.image_normalization(X,norm,mean_trainingdata,std_trainingdata) else: X = aid_img.image_normalization(X,norm) if verbose: print("Shape of the shown images is: "+str(X.shape)) #Is there already anything shown on the widget? children = self.widget_ViewImages.findChildren(QtWidgets.QGridLayout) if len(children)>0: #if there is something, delete it! for i in reversed(range(self.gridLayout_ViewImages.count())): widgetToRemove = self.gridLayout_ViewImages.itemAt(i).widget() widgetToRemove.setParent(None) widgetToRemove.deleteLater() else: #else, create a Gridlayout to put the images self.gridLayout_ViewImages = QtWidgets.QGridLayout(self.widget_ViewImages) for i in range(5): if channels==1: img = X[i,:,:,0] #TensorFlow if channels==3: img = X[i,:,:,:] #TensorFlow #Stretch pixel value to full 8bit range (0-255); only for display img = img-np.min(img) fac = np.max(img) img = (img/fac)*255.0 img = img.astype(np.uint8) if channels==1: height, width = img.shape if channels==3: height, width, _ = img.shape # qi=QtGui.QImage(img_zoom.data, width, height,width, QtGui.QImage.Format_Indexed8) # self.label_image_show = QtWidgets.QLabel(self.widget_ViewImages) # self.label_image_show.setPixmap(QtGui.QPixmap.fromImage(qi)) # self.gridLayout_ViewImages.addWidget(self.label_image_show, 1,i) # self.label_image_show.show() #Use pygtgraph instead, in order to allow for exporting images self.image_show = pg.ImageView(self.widget_ViewImages) self.image_show.show() if verbose: print("Shape of zoomed image: "+str(img.shape)) if channels==1: self.image_show.setImage(img.T,autoRange=False) if channels==3: self.image_show.setImage(np.swapaxes(img,0,1),autoRange=False) self.image_show.ui.histogram.hide() self.image_show.ui.roiBtn.hide() self.image_show.ui.menuBtn.hide() self.gridLayout_ViewImages.addWidget(self.image_show, 1,i) self.widget_ViewImages.show() def tableWidget_HistoryInfo_pop_dclick(self,item,listindex): if item is not None: tableitem = self.fittingpopups_ui[listindex].tableWidget_HistoryInfo_pop.item(item.row(), item.column()) if str(tableitem.text())!="Show saved only": color = QtGui.QColorDialog.getColor() if color.getRgb()==(0, 0, 0, 255):#no black! return else: tableitem.setBackground(color) #self.update_historyplot_pop(listindex) def action_show_example_imgs_pop(self,listindex): #this function is only for the main window #Get state of the comboboxes! tr_or_valid = str(self.fittingpopups_ui[listindex].comboBox_ShowTrainOrValid_pop.currentText()) w_or_wo_augm = str(self.fittingpopups_ui[listindex].comboBox_ShowWOrWoAug_pop.currentText()) #most of it should be similar to action_fit_model_worker #Used files go to a separate sheet on the MetaFile.xlsx SelectedFiles = self.items_clicked_no_rtdc_ds() #Collect all information about the fitting routine that was user defined crop = int(self.fittingpopups_ui[listindex].spinBox_imagecrop_pop.value()) norm = str(self.fittingpopups_ui[listindex].comboBox_Normalization_pop.currentText()) h_flip = bool(self.fittingpopups_ui[listindex].checkBox_HorizFlip_pop.isChecked()) v_flip = bool(self.fittingpopups_ui[listindex].checkBox_VertFlip_pop.isChecked()) rotation = float(self.fittingpopups_ui[listindex].lineEdit_Rotation_pop.text()) width_shift = float(self.fittingpopups_ui[listindex].lineEdit_widthShift_pop.text()) height_shift = float(self.fittingpopups_ui[listindex].lineEdit_heightShift_pop.text()) zoom = float(self.fittingpopups_ui[listindex].lineEdit_zoomRange_pop.text()) shear = float(self.fittingpopups_ui[listindex].lineEdit_shearRange_pop.text()) brightness_add_lower = float(self.fittingpopups_ui[listindex].spinBox_PlusLower_pop.value()) brightness_add_upper = float(self.fittingpopups_ui[listindex].spinBox_PlusUpper_pop.value()) brightness_mult_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultLower_pop.value()) brightness_mult_upper = float(self.fittingpopups_ui[listindex].doubleSpinBox_MultUpper_pop.value()) gaussnoise_mean = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseMean_pop.value()) gaussnoise_scale = float(self.fittingpopups_ui[listindex].doubleSpinBox_GaussianNoiseScale_pop.value()) contrast_on = bool(self.fittingpopups_ui[listindex].checkBox_contrast_pop.isChecked()) contrast_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastLower_pop.value()) contrast_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_contrastHigher_pop.value()) saturation_on = bool(self.fittingpopups_ui[listindex].checkBox_saturation_pop.isChecked()) saturation_lower = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationLower_pop.value()) saturation_higher = float(self.fittingpopups_ui[listindex].doubleSpinBox_saturationHigher_pop.value()) hue_on = bool(self.fittingpopups_ui[listindex].checkBox_hue_pop.isChecked()) hue_delta = float(self.fittingpopups_ui[listindex].doubleSpinBox_hueDelta_pop.value()) avgBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_avgBlur_pop.isChecked()) avgBlur_min = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMin_pop.value()) avgBlur_max = int(self.fittingpopups_ui[listindex].spinBox_avgBlurMax_pop.value()) gaussBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_gaussBlur_pop.isChecked()) gaussBlur_min = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMin_pop.value()) gaussBlur_max = int(self.fittingpopups_ui[listindex].spinBox_gaussBlurMax_pop.value()) motionBlur_on = bool(self.fittingpopups_ui[listindex].checkBox_motionBlur_pop.isChecked()) motionBlur_kernel = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurKernel_pop.text()) motionBlur_angle = str(self.fittingpopups_ui[listindex].lineEdit_motionBlurAngle_pop.text()) motionBlur_kernel = tuple(ast.literal_eval(motionBlur_kernel)) #translate string in the lineEdits to a tuple motionBlur_angle = tuple(ast.literal_eval(motionBlur_angle)) #translate string in the lineEdits to a tuple paddingMode = str(self.fittingpopups_ui[listindex].comboBox_paddingMode_pop.currentText()).lower() #which index is requested by user:? req_index = int(self.fittingpopups_ui[listindex].spinBox_ShowIndex_pop.value()) if tr_or_valid=='Training': ######################Load the Training Data################################ ind = [selectedfile["TrainOrValid"] == "Train" for selectedfile in SelectedFiles] elif tr_or_valid=='Validation': ind = [selectedfile["TrainOrValid"] == "Valid" for selectedfile in SelectedFiles] ind = np.where(np.array(ind)==True)[0] SelectedFiles = np.array(SelectedFiles)[ind] SelectedFiles = list(SelectedFiles) indices = [selectedfile["class"] for selectedfile in SelectedFiles] ind = np.where(np.array(indices)==req_index)[0] if len(ind)<1: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no data for this class available") msg.setWindowTitle("Class not available") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return indices = list(np.array(indices)[ind]) SelectedFiles = list(np.array(SelectedFiles)[ind]) nr_events_epoch = len(indices)*[10] #[selectedfile["nr_events_epoch"] for selectedfile in SelectedFiles] rtdc_path = [selectedfile["rtdc_path"] for selectedfile in SelectedFiles] zoom_factors = [selectedfile["zoom_factor"] for selectedfile in SelectedFiles] #zoom_order = [self.actionOrder0.isChecked(),self.actionOrder1.isChecked(),self.actionOrder2.isChecked(),self.actionOrder3.isChecked(),self.actionOrder4.isChecked(),self.actionOrder5.isChecked()] #zoom_order = int(np.where(np.array(zoom_order)==True)[0]) zoom_order = int(self.comboBox_zoomOrder.currentIndex()) #the combobox-index is already the zoom order shuffle = [selectedfile["shuffle"] for selectedfile in SelectedFiles] xtra_in = set([selectedfile["xtra_in"] for selectedfile in SelectedFiles]) if len(xtra_in)>1:# False and True is present. Not supported print("Xtra data is used only for some files. Xtra data needs to be used either by all or by none!") return xtra_in = list(xtra_in)[0]#this is either True or False #If the scaling method is "divide by mean and std of the whole training set": if norm == "StdScaling using mean and std of all training data": mean_trainingdata,std_trainingdata = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) #Replace true means that individual cells could occur several times else: if len(self.ram)==0: gen = aid_img.gen_crop_img(crop,rtdc_path[i],random_images=False,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode,xtra_in=xtra_in) #Replace true means that individual cells could occur several times else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],random_images=False,xtra_in=xtra_in) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") images = next(gen)[0] mean_trainingdata.append(np.mean(images)) std_trainingdata.append(np.std(images)) mean_trainingdata = np.mean(np.array(mean_trainingdata)) std_trainingdata = np.mean(np.array(std_trainingdata)) if np.allclose(std_trainingdata,0): std_trainingdata = 0.0001 print("std_trainingdata turned out to be zero. I set it to 0.0001, to avoid division by zero!") if self.actionVerbose.isChecked(): print("Used all training data to get mean and std for normalization") if w_or_wo_augm=='With Augmentation': ###############Continue with training data:augmentation############ #Rotating could create edge effects. Avoid this by making crop a bit larger for now #Worst case would be a 45degree rotation: cropsize2 = np.sqrt(crop**2+crop**2) cropsize2 = np.ceil(cropsize2 / 2.) * 2 #round to the next even number ############Get cropped images with image augmentation##################### #Start the first iteration: X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(cropsize2,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=shuffle[i],replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") X.append(next(gen)[0]) #y.append(np.repeat(indices[i],nr_events_epoch[i])) y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) y = np.concatenate(y) if len(X.shape)==4: channels=3 elif len(X.shape)==3: channels=1 else: print("Invalid data dimension:" +str(X.shape)) if channels==1: #Add the "channels" dimension X = np.expand_dims(X,3) X_batch, y_batch = aid_img.affine_augm(X,v_flip,h_flip,rotation,width_shift,height_shift,zoom,shear), y #Affine image augmentation X_batch = X_batch.astype(np.uint8) #make sure we stay in uint8 #Now do the final cropping to the actual size that was set by user dim = X_batch.shape if dim[2]!=crop: remove = int(dim[2]/2.0 - crop/2.0) #X_batch = X_batch[:,:,remove:-remove,remove:-remove] #crop to crop x crop pixels #Theano X_batch = X_batch[:,remove:remove+crop,remove:remove+crop,:] #crop to crop x crop pixels #TensorFlow ##########Contrast/Saturation/Hue augmentation######### #is there any of contrast/saturation/hue augmentation to do? if contrast_on: X_batch = aid_img.contrast_augm_cv2(X_batch,contrast_lower,contrast_higher) #this function is almost 15 times faster than random_contrast from tf! if saturation_on or hue_on: X_batch = aid_img.satur_hue_augm_cv2(X_batch.astype(np.uint8),saturation_on,saturation_lower,saturation_higher,hue_on,hue_delta) ##########Average/Gauss/Motion blurring######### #is there any of blurring to do? if avgBlur_on: X_batch = aid_img.avg_blur_cv2(X_batch,avgBlur_min,avgBlur_max) if gaussBlur_on: X_batch = aid_img.gauss_blur_cv(X_batch,gaussBlur_min,gaussBlur_max) if motionBlur_on: X_batch = aid_img.motion_blur_cv(X_batch,motionBlur_kernel,motionBlur_angle) X_batch = aid_img.brightn_noise_augm_cv2(X_batch,brightness_add_lower,brightness_add_upper,brightness_mult_lower,brightness_mult_upper,gaussnoise_mean,gaussnoise_scale) if norm == "StdScaling using mean and std of all training data": X_batch = aid_img.image_normalization(X_batch,norm,mean_trainingdata,std_trainingdata) else: X_batch = aid_img.image_normalization(X_batch,norm) X = X_batch elif w_or_wo_augm=='Original image': ############Cropping##################### X,y = [],[] for i in range(len(SelectedFiles)): if not self.actionDataToRam.isChecked(): #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: if len(self.ram)==0: #Replace true means that individual cells could occur several times gen = aid_img.gen_crop_img(crop,rtdc_path[i],10,random_images=shuffle[i],replace=True,zoom_factor=zoom_factors[i],zoom_order=zoom_order,color_mode=self.get_color_mode(),padding_mode=paddingMode) else: gen = aid_img.gen_crop_img_ram(self.ram,rtdc_path[i],10,random_images=shuffle[i],replace=True) #Replace true means that individual cells could occur several times if self.actionVerbose.isChecked(): print("Loaded data from RAM") X.append(next(gen)[0]) #y.append(np.repeat(indices[i],nr_events_epoch[i])) y.append(np.repeat(indices[i],X[-1].shape[0])) X = np.concatenate(X) y = np.concatenate(y) if len(X.shape)==4: channels = 3 elif len(X.shape)==3: channels = 1 X = np.expand_dims(X,3)#Add the "channels" dimension else: print("Invalid data dimension:" +str(X.shape)) if norm == "StdScaling using mean and std of all training data": X = aid_img.image_normalization(X,norm,mean_trainingdata,std_trainingdata) else: X = aid_img.image_normalization(X,norm) #Is there already anything shown on the widget? children = self.fittingpopups_ui[listindex].widget_ViewImages_pop.findChildren(QtWidgets.QGridLayout) if len(children)>0: #if there is something, delete it! for i in reversed(range(self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop.count())): widgetToRemove = self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop.itemAt(i).widget() widgetToRemove.setParent(None) widgetToRemove.deleteLater() else: #else, create a Gridlayout to put the images self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop = QtWidgets.QGridLayout(self.fittingpopups_ui[listindex].widget_ViewImages_pop) for i in range(5): if channels==1: img = X[i,:,:,0] if channels==3: img = X[i,:,:,:] #Normalize image to full 8bit range (from 0 to 255) img = img-np.min(img) fac = np.max(img) img = (img/fac)*255.0 img = img.astype(np.uint8) # height, width = img_zoom.shape # qi=QtGui.QImage(img_zoom.data, width, height,width, QtGui.QImage.Format_Indexed8) # self.label_image_show = QtWidgets.QLabel(self.widget_ViewImages) # self.label_image_show.setPixmap(QtGui.QPixmap.fromImage(qi)) # self.gridLayout_ViewImages_pop.addWidget(self.label_image_show, 1,i) # self.label_image_show.show() #Use pygtgraph instead, in order to allow for exporting images self.fittingpopups_ui[listindex].image_show_pop = pg.ImageView(self.fittingpopups_ui[listindex].widget_ViewImages_pop) self.fittingpopups_ui[listindex].image_show_pop.show() if channels==1: self.fittingpopups_ui[listindex].image_show_pop.setImage(img.T,autoRange=False) if channels==3: self.fittingpopups_ui[listindex].image_show_pop.setImage(np.swapaxes(img,0,1),autoRange=False) self.fittingpopups_ui[listindex].image_show_pop.ui.histogram.hide() self.fittingpopups_ui[listindex].image_show_pop.ui.roiBtn.hide() self.fittingpopups_ui[listindex].image_show_pop.ui.menuBtn.hide() self.fittingpopups_ui[listindex].gridLayout_ViewImages_pop.addWidget(self.fittingpopups_ui[listindex].image_show_pop, 1,i) self.fittingpopups_ui[listindex].widget_ViewImages_pop.show() def get_color_mode(self): if str(self.comboBox_GrayOrRGB.currentText())=="Grayscale": return "Grayscale" elif str(self.comboBox_GrayOrRGB.currentText())=="RGB": return "RGB" else: return None def checkBox_rollingMedian_statechange(self,item):#used in frontend self.horizontalSlider_rollmedi.setEnabled(item) def update_historyplot(self): #After loading a history, there are checkboxes available. Check, if user checked some: colcount = self.tableWidget_HistoryItems.columnCount() #Collect items that are checked selected_items = [] Colors = [] for colposition in range(colcount): #get checkbox item and; is it checked? cb = self.tableWidget_HistoryItems.item(0, colposition) if not cb==None: if cb.checkState() == QtCore.Qt.Checked: selected_items.append(str(cb.text())) Colors.append(cb.background()) #Get a list of the color from the background of the table items DF1 = self.loaded_history #Clear the plot self.widget_Scatterplot.clear() #Add plot self.plt1 = self.widget_Scatterplot.addPlot() self.plt1.showGrid(x=True,y=True) self.plt1.addLegend() self.plt1.setLabel('bottom', 'Epoch', units='') self.plot_rollmedis = [] #list for plots of rolling medians if "Show saved only" in selected_items: #nr_of_selected_items = len(selected_items)-1 #get the "Saved" column from DF1 saved = DF1["Saved"] saved = np.where(np.array(saved==1))[0] # else: # nr_of_selected_items = len(selected_items) self.Colors = Colors scatter_x,scatter_y = [],[] for i in range(len(selected_items)): key = selected_items[i] if key!="Show saved only": df = DF1[key] epochs = range(len(df)) win = int(self.horizontalSlider_rollmedi.value()) rollmedi = df.rolling(window=win).median() if "Show saved only" in selected_items: df = np.array(df)[saved] epochs = np.array(epochs)[saved] rollmedi = pd.DataFrame(df).rolling(window=win).median() scatter_x.append(epochs) scatter_y.append(df) color = self.Colors[i] pen_rollmedi = list(color.color().getRgb()) pen_rollmedi = pg.mkColor(pen_rollmedi) pen_rollmedi = pg.mkPen(color=pen_rollmedi,width=6) color = list(color.color().getRgb()) color[-1] = int(0.6*color[-1]) color = tuple(color) pencolor = pg.mkColor(color) brush = pg.mkBrush(color=pencolor) self.plt1.plot(epochs, df,pen=None,symbol='o',symbolPen=None,symbolBrush=brush,name=key,clear=False) if bool(self.checkBox_rollingMedian.isChecked()):#Should a rolling median be plotted? try: rollmedi = np.array(rollmedi).reshape(rollmedi.shape[0]) rm = self.plt1.plot(np.array(epochs), rollmedi,pen=pen_rollmedi,clear=False) self.plot_rollmedis.append(rm) except Exception as e: #There is an issue for the rolling median plotting! msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Warning) msg.setText(str(e)+"\n->There are likely too few points to have a rolling median with such a window size ("+str(round(win))+")") msg.setWindowTitle("Error occured when plotting rolling median:") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() if len(str(self.lineEdit_LoadHistory.text()))==0: #if DF1==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please load History file first (.meta)") msg.setWindowTitle("No History file loaded") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if len(scatter_x)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Please select at least one of " +"\n".join(list(DF1.keys()))) msg.setWindowTitle("No quantity selected") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Keep the information as lists available for this function self.scatter_x_l, self.scatter_y_l = scatter_x,scatter_y if bool(self.checkBox_linearFit.isChecked()): #Put a liner region on the plot; cover the last 10% of points if np.max(np.concatenate(scatter_x))<12: start_x = 0 end_x = np.max(np.concatenate(scatter_x))+1 else: start_x = int(0.9*np.max(np.concatenate(scatter_x))) end_x = int(1.0*np.max(np.concatenate(scatter_x))) self.region_linfit = pg.LinearRegionItem([start_x, end_x], bounds=[-np.inf,np.inf], movable=True) self.plt1.addItem(self.region_linfit) def region_changed(): try: #clear the plot from other fits if there are any if len(self.plot_fits)>0: for i in range(len(self.plot_fits)): self.plt1.legend.removeItem(self.names[i]) self.plt1.removeItem(self.plot_fits[i]) except: pass #where did the user drag the region_linfit to? new_region = self.region_linfit.getRegion() #for each curve, do a linear regression self.plot_fits,self.names = [], [] for i in range(len(self.scatter_x_l)): scatter_x_vals = np.array(self.scatter_x_l[i]) ind = np.where( (scatter_x_vals<new_region[1]) & (scatter_x_vals>new_region[0]) ) scatter_x_vals = scatter_x_vals[ind] scatter_y_vals = np.array(self.scatter_y_l[i])[ind] if len(scatter_x_vals)>1: fit = np.polyfit(scatter_x_vals,scatter_y_vals,1) fit_y = fit[0]*scatter_x_vals+fit[1] pencolor = pg.mkColor(self.Colors[i].color()) pen = pg.mkPen(color=pencolor,width=6) text = 'y='+("{:.2e}".format(fit[0]))+"x + " +("{:.2e}".format(fit[1])) self.names.append(text) self.plot_fits.append(self.plt1.plot(name=text)) self.plot_fits[i].setData(scatter_x_vals,fit_y,pen=pen,clear=False,name=text) self.region_linfit.sigRegionChangeFinished.connect(region_changed) def slider_changed(): if bool(self.checkBox_rollingMedian.isChecked()): #remove other rolling median lines: for i in range(len(self.plot_rollmedis)): self.plt1.removeItem(self.plot_rollmedis[i]) #Start with fresh list self.plot_rollmedis = [] win = int(self.horizontalSlider_rollmedi.value()) for i in range(len(self.scatter_x_l)): epochs = np.array(self.scatter_x_l[i]) if type(self.scatter_y_l[i]) == pd.core.frame.DataFrame: rollmedi = self.scatter_y_l[i].rolling(window=win).median() else: rollmedi = pd.DataFrame(self.scatter_y_l[i]).rolling(window=win).median() rollmedi = np.array(rollmedi).reshape(rollmedi.shape[0]) pencolor = pg.mkColor(self.Colors[i].color()) pen_rollmedi = pg.mkPen(color=pencolor,width=6) rm = self.plt1.plot(np.array(epochs), rollmedi,pen=pen_rollmedi,clear=False) self.plot_rollmedis.append(rm) self.horizontalSlider_rollmedi.sliderMoved.connect(slider_changed) scatter_x = np.concatenate(scatter_x) scatter_y = np.concatenate(scatter_y) scatter_x_norm = (scatter_x.astype(float))/float(np.max(scatter_x)) scatter_y_norm = (scatter_y.astype(float))/float(np.max(scatter_y)) self.model_was_selected_before = False def onClick(event): #Get all plotting items #if len(self.plt1.listDataItems())==nr_of_selected_items+1: #delete the last item if the user selected already one: if self.model_was_selected_before: self.plt1.removeItem(self.plt1.listDataItems()[-1]) items = self.widget_Scatterplot.scene().items(event.scenePos()) #get the index of the viewbox isviewbox = [type(item)==pg.graphicsItems.ViewBox.ViewBox for item in items] index = np.where(np.array(isviewbox)==True)[0] vb = np.array(items)[index] try: #when user rescaed the vew and clicks somewhere outside, it could appear an IndexError. clicked_x = float(vb[0].mapSceneToView(event.scenePos()).x()) clicked_y = float(vb[0].mapSceneToView(event.scenePos()).y()) except: return try: a1 = (clicked_x)/float(np.max(scatter_x)) a2 = (clicked_y)/float(np.max(scatter_y)) except Exception as e: print(str(e)) return #Which is the closest scatter point? dist = np.sqrt(( a1-scatter_x_norm )**2 + ( a2-scatter_y_norm )**2) index = np.argmin(dist) clicked_x = scatter_x[index] clicked_y = scatter_y[index] #Update the spinBox #self.spinBox_ModelIndex.setValue(int(clicked_x)) #Modelindex for textBrowser_SelectedModelInfo text_index = "\nModelindex: "+str(clicked_x) #Indicate the selected model on the scatter plot self.plt1.plot([clicked_x], [clicked_y],pen=None,symbol='o',symbolPen='w',clear=False) #Get more information about this model Modelname = str(self.loaded_para["Modelname"].iloc[0]) path, filename = os.path.split(Modelname) filename = filename.split(".model")[0]+"_"+str(clicked_x)+".model" path = os.path.join(path,filename) if os.path.isfile(path): text_path = "\nFile is located in:"+path else: text_path = "\nFile not found!:"+path+"\nProbably the .model was deleted or not saved" text_acc = str(DF1.iloc[clicked_x]) self.textBrowser_SelectedModelInfo.setText("Loaded model: "+filename+text_index+text_path+"\nPerformance:\n"+text_acc) self.model_was_selected_before = True self.model_2_convert = path self.widget_Scatterplot.scene().sigMouseClicked.connect(onClick) def action_load_history(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open meta-data', Default_dict["Path of last model"],"AIDeveloper Meta file (*meta.xlsx)") filename = filename[0] if not filename.endswith("meta.xlsx"): return if not os.path.isfile(filename): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("File not found") msg.setWindowTitle("File not found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.lineEdit_LoadHistory.setText(filename) self.action_plot_history(filename) def action_load_history_current(self): if self.model_keras_path==None: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("There is no fitting going on") msg.setWindowTitle("No current fitting process!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return history_path = self.model_keras_path if type(history_path)==list:#collection=True msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Not implemented for collections. Please use 'Load History' button to specify a single .meta file") msg.setWindowTitle("Not implemented for collecitons") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return filename = history_path.split("_0.model")[0]+"_meta.xlsx" if not filename.endswith("meta.xlsx"): return if not os.path.isfile(filename): msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("File not found") msg.setWindowTitle("File not found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return self.lineEdit_LoadHistory.setText(filename) self.action_plot_history(filename) def action_plot_history(self,filename): #If there is a file, it can happen that fitting is currently going on #and with bad luck AID just tries to write to the file. This would cause a crash. #Therfore, first try to copy the file to a temporary folder. If that fails, #wait 1 seconds and try again #There needs to be a "temp" folder. If there os none, create it! #does temp exist? tries = 0 #during fitting, AID sometimes wants to write to the history file. In this case we cant read try: while tries<15:#try a few times try: temp_path = aid_bin.create_temp_folder()#create a temp folder if it does not already exist #Create a random filename for a temp. file someletters = list("STERNBURGPILS") temporaryfile = np.random.choice(someletters,5,replace=True) temporaryfile = "".join(temporaryfile)+".xlsx" temporaryfile = os.path.join(temp_path,temporaryfile) shutil.copyfile(filename,temporaryfile) #copy the original excel file there dic = pd.read_excel(temporaryfile,sheet_name='History',index_col=0) #open it there self.loaded_history = dic para = pd.read_excel(temporaryfile,sheet_name='Parameters') print(temporaryfile) #delete the tempfile os.remove(temporaryfile) self.loaded_para = para tries = 16 except: time.sleep(1.5) tries+=1 except Exception as e: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Check if dic exists now try: keys = list(dic.keys()) except Exception as e: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Critical) msg.setText(str(e)) msg.setWindowTitle("Error") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #Remember the path for next time Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) #sort the list alphabetically keys_ = [l.lower() for l in keys] ind_sort = np.argsort(keys_) keys = list(np.array(keys)[ind_sort]) #First keys should always be acc,loss,val_acc,val_loss -in this order keys_first = ["acc","loss","val_acc","val_loss"] for i in range(len(keys_first)): if keys_first[i] in keys: ind = np.where(np.array(keys)==keys_first[i])[0][0] if ind!=i: del keys[ind] keys.insert(i,keys_first[i]) #Lastly check if there is "Saved" or "Time" present and shift it to the back keys_last = ["Saved","Time"] for i in range(len(keys_last)): if keys_last[i] in keys: ind = np.where(np.array(keys)==keys_last[i])[0][0] if ind!=len(keys): del keys[ind] keys.append(keys_last[i]) self.tableWidget_HistoryItems.setColumnCount(len(keys)+1) #+1 because of "Show saved only" #for each key, put a checkbox on the tableWidget_HistoryInfo_pop rowPosition = self.tableWidget_HistoryItems.rowCount() if rowPosition==0: self.tableWidget_HistoryItems.insertRow(0) else: rowPosition=0 for columnPosition in range(len(keys)):#(2,4): key = keys[columnPosition] item = QtWidgets.QTableWidgetItem(str(key))#("item {0} {1}".format(rowNumber, columnNumber)) item.setBackground(QtGui.QColor(self.colorsQt[columnPosition])) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Unchecked) self.tableWidget_HistoryItems.setItem(rowPosition, columnPosition, item) #One checkbox at the end to switch on/of to show only the models that are saved columnPosition = len(keys) item = QtWidgets.QTableWidgetItem("Show saved only")#("item {0} {1}".format(rowNumber, columnNumber)) item.setFlags( QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsEnabled ) item.setCheckState(QtCore.Qt.Unchecked) self.tableWidget_HistoryItems.setItem(rowPosition, columnPosition, item) self.tableWidget_HistoryItems.resizeColumnsToContents() self.tableWidget_HistoryItems.resizeRowsToContents() def history_tab_get_model_path(self):#Let user define a model he would like to convert #pushButton_LoadModel #Open a QFileDialog filepath = QtWidgets.QFileDialog.getOpenFileName(self, 'Select a trained model you want to convert', Default_dict["Path of last model"],"Keras Model file (*.model)") filepath = filepath[0] if os.path.isfile(filepath): self.model_2_convert = filepath path, filename = os.path.split(filepath) try: modelindex = filename.split(".model")[0] modelindex = int(modelindex.split("_")[-1]) except: modelindex = np.nan self.textBrowser_SelectedModelInfo.setText("Error loading model") return text = "Loaded model: "+filename+"\nModelindex: "+str(modelindex)+"\nFile is located in: "+filepath self.textBrowser_SelectedModelInfo.setText(text) def history_tab_convertModel(self): #Check if there is text in textBrowser_SelectedModelInfo path = self.model_2_convert try: os.path.isfile(path) except: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No file defined!") msg.setWindowTitle("No file defined!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if not os.path.isfile(path): #text_path = "\nFile not found!:"+path+"\nProbably the .model was deleted or not saved" #self.pushButton_convertModel.setEnabled(False) msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("\nFile not found!:"+path+"\nProbably the .model was deleted or not saved") msg.setWindowTitle("File not found") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #If the source format is Keras tensforflow: source_format = str(self.combobox_initial_format.currentText()) target_format = str(self.comboBox_convertTo.currentText()) #What is the target format? ##TODO: All conversion methods to multiprocessing functions! def conversion_successful_msg(text):#Enable the Convert to .nnet button msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText(text) msg.setWindowTitle("Successfully converted model!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() ##################Keras TensorFlow -> .nnet############################ if target_format==".nnet" and source_format=="Keras TensorFlow": ConvertToNnet = 1 worker = Worker(self.history_tab_convertModel_nnet_worker,ConvertToNnet) def get_model_keras_from_worker(dic): self.model_keras = dic["model_keras"] worker.signals.history.connect(get_model_keras_from_worker) def conversion_successful(i):#Enable the Convert to .nnet button msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) text = "Conversion Keras TensorFlow -> .nnet done" msg.setText(text) msg.setWindowTitle("Successfully converted model!") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #self.pushButton_convertModel.setEnabled(True) worker.signals.history.connect(conversion_successful) self.threadpool.start(worker) ##################Keras TensorFlow -> Frozen .pb####################### elif target_format=="Frozen TensorFlow .pb" and source_format=="Keras TensorFlow": #target filename should be like source +_frozen.pb path_new = os.path.splitext(path)[0] + "_frozen.pb" aid_dl.convert_kerastf_2_frozen_pb(path,path_new) text = "Conversion Keras TensorFlow -> Frozen .pb is done" conversion_successful_msg(text) ##################Keras TensorFlow -> Optimized .pb#################### elif target_format=="Optimized TensorFlow .pb" and source_format=="Keras TensorFlow": path_new = os.path.splitext(path)[0] + "_optimized.pb" aid_dl.convert_kerastf_2_optimized_pb(path,path_new) text = "Conversion Keras TensorFlow -> Optimized .pb is done" conversion_successful_msg(text) ####################Frozen -> Optimized .pb############################ elif target_format=="Optimized TensorFlow .pb" and source_format=="Frozen TensorFlow .pb": path_new = os.path.splitext(path)[0] + "_optimized.pb" aid_dl.convert_frozen_2_optimized_pb(path,path_new) text = "Conversion Frozen -> Optimized .pb is done" conversion_successful_msg(text) ##################Keras TensorFlow -> ONNX#################### elif target_format=="ONNX (via keras2onnx)" and source_format=="Keras TensorFlow": path_new = os.path.splitext(path)[0] + ".onnx" aid_dl.convert_kerastf_2_onnx(path,path_new) text = "Conversion Keras TensorFlow -> ONNX (via keras2onnx) is done" conversion_successful_msg(text) ##################Keras TensorFlow -> ONNX via MMdnn#################### elif target_format=="ONNX (via MMdnn)" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_onnx_mmdnn(path) text = "Conversion Keras TensorFlow -> ONNX (via MMdnn) is done" conversion_successful_msg(text) ##################Keras TensorFlow -> PyTorch Script#################### elif target_format=="PyTorch Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"pytorch") text = "Conversion Keras TensorFlow -> PyTorch Script is done. You can now use this script and the saved weights to build the model using your PyTorch installation." conversion_successful_msg(text) ##################Keras TensorFlow -> Caffe Script#################### elif target_format=="Caffe Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"caffe") text = "Conversion Keras TensorFlow -> Caffe Script is done. You can now use this script and the saved weights to build the model using your Caffe installation." conversion_successful_msg(text) ##################Keras TensorFlow -> CNTK Script#################### elif target_format=="CNTK Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"cntk") text = "Conversion Keras TensorFlow -> CNTK Script is done. You can now use this script and the saved weights to build the model using your CNTK installation." conversion_successful_msg(text) ##################Keras TensorFlow -> mxnet Script#################### elif target_format=="MXNet Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"mxnet") text = "Conversion Keras TensorFlow -> MXNet Script is done. You can now use this script and the saved weights to build the model using your MXNet installation." conversion_successful_msg(text) ##################Keras TensorFlow -> onnx Script#################### elif target_format=="ONNX Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"onnx") text = "Conversion Keras TensorFlow -> ONNX Script is done. You can now use this script and the saved weights to build the model using your ONNX installation." conversion_successful_msg(text) ##################Keras TensorFlow -> TensorFlow Script#################### elif target_format=="TensorFlow Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"tensorflow") text = "Conversion Keras TensorFlow -> TensorFlow Script is done. You can now use this script and the saved weights to build the model using your Tensorflow installation." conversion_successful_msg(text) ##################Keras TensorFlow -> Keras Script#################### elif target_format=="Keras Script" and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_script(path,"keras") text = "Conversion Keras TensorFlow -> Keras Script is done. You can now use this script and the saved weights to build the model using your Keras installation." conversion_successful_msg(text) ##################Keras TensorFlow -> CoreML#################### elif "CoreML" in target_format and source_format=="Keras TensorFlow": aid_dl.convert_kerastf_2_coreml(path) text = "Conversion Keras TensorFlow -> CoreML is done." conversion_successful_msg(text) else: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Not implemeted (yet)") msg.setWindowTitle("Not implemeted (yet)") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() #If that worked without error, save the filepath for next time Default_dict["Path of last model"] = os.path.split(path)[0] aid_bin.save_aid_settings(Default_dict) def history_tab_convertModel_nnet_worker(self,ConvertToNnet,progress_callback,history_callback): #Define a new session -> Necessary for threading in TensorFlow #with tf.Session(graph = tf.Graph(), config=config_gpu) as sess: with tf.Session() as sess: path = self.model_2_convert try: model_keras = load_model(path,custom_objects=aid_dl.get_custom_metrics()) except: model_keras = load_model(path) dic = {"model_keras":model_keras} history_callback.emit(dic) progress_callback.emit(1) if ConvertToNnet==1: #Since this happened in a thread, TensorFlow cant access it anywhere else #Therefore perform Conversion to nnet right away: model_config = model_keras.get_config()#["layers"] if type(model_config)==dict: model_config = model_config["layers"]#for keras version>2.2.3, there is a change in the output of get_config() #Convert model to theano weights format (Only necesary for CNNs) for layer in model_keras.layers: if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']: original_w = K.get_value(layer.W) converted_w = convert_kernel(original_w) K.set_value(layer.W, converted_w) nnet_path, nnet_filename = os.path.split(self.model_2_convert) nnet_filename = nnet_filename.split(".model")[0]+".nnet" out_path = os.path.join(nnet_path,nnet_filename) aid_dl.dump_to_simple_cpp(model_keras=model_keras,model_config=model_config,output=out_path,verbose=False) # sess.close() # try: # aid_dl.reset_keras() # except: # print("Could not reset Keras (1)") def history_tab_ConvertToNnet(self): print("Not used") # model_keras = self.model_keras # model_config = model_keras.get_config()["layers"] # #Convert model to theano weights format (Only necesary for CNNs) # for layer in model_keras.layers: # if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']: # original_w = K.get_value(layer.W) # converted_w = convert_kernel(original_w) # K.set_value(layer.W, converted_w) # # nnet_path, nnet_filename = os.path.split(self.model_2_convert) # nnet_filename = nnet_filename.split(".model")[0]+".nnet" # out_path = os.path.join(nnet_path,nnet_filename) # aid_dl.dump_to_simple_cpp(model_keras=model_keras,model_config=model_config,output=out_path,verbose=False) # msg = QtWidgets.QMessageBox() # msg.setIcon(QtWidgets.QMessageBox.Information) # msg.setText("Successfully converted model and saved to\n"+out_path) # msg.setWindowTitle("Successfully converted model!") # msg.setStandardButtons(QtWidgets.QMessageBox.Ok) # msg.exec_() # self.pushButton_convertModel.setEnabled(False) #TODO def test_nnet(self): #I need a function which calls a cpp app that uses the nnet and applies #it on a random image. #The same image is also used as input the the original .model and #both results are then compared print("Not implemented yet") print("Placeholder") print("Building site") def actionDocumentation_function(self): icon = QtGui.QImage(os.path.join(dir_root,"art",Default_dict["Icon theme"],"main_icon_simple_04_256"+icon_suff)) icon = QtGui.QPixmap(icon).scaledToHeight(32, QtCore.Qt.SmoothTransformation) msg = QtWidgets.QMessageBox() msg.setIconPixmap(icon) text = "Currently, there is no detailed written documentation. AIDeveloper instead makes strong use of tooltips." text = "<html><head/><body><p>"+text+"</p></body></html>" msg.setText(text) msg.setWindowTitle("Documentation") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def actionSoftware_function(self): if sys.platform == "win32": plat = "win" elif sys.platform=="darwin": plat = "mac" elif sys.platform=="linux": plat = "linux" else: print("Unknown Operating system") plat = "Win" dir_deps = os.path.join(dir_root,"aid_dependencies_"+plat+".txt")#dir to aid_dependencies f = open(dir_deps, "r") text_modules = f.read() f.close() icon = QtGui.QImage(os.path.join(dir_root,"art",Default_dict["Icon theme"],"main_icon_simple_04_256"+icon_suff)) icon = QtGui.QPixmap(icon).scaledToHeight(32, QtCore.Qt.SmoothTransformation) msg = QtWidgets.QMessageBox() msg.setIconPixmap(icon) text = "<html><head/><body><p>AIDeveloper "+str(VERSION)+"<br>"+sys.version+"<br>Click 'Show Details' to retrieve a list of all Python packages used."+"<br>AID_GPU uses CUDA (NVIDIA) to facilitate GPU processing</p></body></html>" msg.setText(text) msg.setDetailedText(text_modules) msg.setWindowTitle("Software") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def actionAbout_function(self): icon = QtGui.QImage(os.path.join(dir_root,"art",Default_dict["Icon theme"],"main_icon_simple_04_256"+icon_suff)) icon = QtGui.QPixmap(icon).scaledToHeight(32, QtCore.Qt.SmoothTransformation) msg = QtWidgets.QMessageBox() msg.setIconPixmap(icon) text = "AIDeveloper is written and maintained by <NAME>. Use <EMAIL> to contact the main developer if you find bugs or if you wish a particular feature. Icon theme 2 was mainly designed and created by <NAME>." text = "<html><head/><body><p>"+text+"</p></body></html>" msg.setText(text) msg.setWindowTitle("About") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() def actionLoadSession_function(self): #This function should allow to select and load a metafile and #Put the GUI the the corresponing state (place the stuff in the table, click Train/Valid) filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open meta-data', Default_dict["Path of last model"],"AIDeveloper Meta or session file (*meta.xlsx *session.xlsx)") filename = filename[0] if len(filename)==0: return xlsx = pd.ExcelFile(filename) UsedData = pd.read_excel(xlsx,sheet_name="UsedData") Files = list(UsedData["rtdc_path"]) file_exists = [os.path.exists(url) for url in Files] ind_true = np.where(np.array(file_exists)==True)[0] UsedData_true = UsedData.iloc[ind_true] Files_true = list(UsedData_true["rtdc_path"]) #select the indices that are valid #Add stuff to table_dragdrop rowPosition = int(self.table_dragdrop.rowCount()) self.dataDropped(Files_true) #update the index, train/valid checkbox and shuffle checkbox for i in range(len(Files_true)): #set the index (celltype) try: index = int(np.array(UsedData_true["class"])[i]) except: index = int(np.array(UsedData_true["index"])[i]) print("You are using an old version of AIDeveloper. Consider upgrading") self.table_dragdrop.cellWidget(rowPosition+i, 1).setValue(index) #is it checked for train or valid? trorvalid = str(np.array(UsedData_true["TrainOrValid"])[i]) if trorvalid=="Train": self.table_dragdrop.item(rowPosition+i, 2).setCheckState(QtCore.Qt.Checked) elif trorvalid=="Valid": self.table_dragdrop.item(rowPosition+i, 3).setCheckState(QtCore.Qt.Checked) #how many cells/epoch during training or validation? try: nr_events_epoch = str(np.array(UsedData_true["nr_events_epoch"])[i]) except: nr_events_epoch = str(np.array(UsedData_true["nr_cells_epoch"])[i]) self.table_dragdrop.item(rowPosition+i, 6).setText(nr_events_epoch) #Shuffle or not? shuffle = bool(np.array(UsedData_true["shuffle"])[i]) if shuffle==False: self.table_dragdrop.item(rowPosition+i, 8).setCheckState(QtCore.Qt.Unchecked) #Set Cells/Epoch to not editable item = self.table_dragdrop.item(rowPosition+i, 6) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(item.flags() |QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) else: self.table_dragdrop.item(rowPosition+i, 8).setCheckState(QtCore.Qt.Checked) #zoom_factor = float(np.array(UsedData_true["zoom_factor"])[i]) zoom_factor = str(np.array(UsedData_true["zoom_factor"])[i]) self.table_dragdrop.item(rowPosition+i, 9).setText(zoom_factor) #Now take care of missing data #Take care of missing files (they might have been moved to a different location) ind_false = np.where(np.array(file_exists)==False)[0] #Files_false = list(UsedData_false["rtdc_path"]) #select the indices that are valid if len(ind_false)>0: UsedData_false = UsedData.iloc[ind_false] Files_false = list(UsedData_false["rtdc_path"]) #select the indices that are valid self.dataDropped(Files_false) self.user_selected_path = None #Create popup that informs user that there is missing data and let him specify a location #to search for the missing files def add_missing_files(): filename = QtWidgets.QFileDialog.getExistingDirectory(self, 'Select directory', Default_dict["Path of last model"]) user_selected_path = filename if len(filename)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("Invalid directory") msg.setWindowTitle("Invalid directory") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return #get the hashes hashes = list(np.array(UsedData_false["hash"])[ind_false]) paths = list(np.array(UsedData_false["rtdc_path"])[ind_false]) paths_new,info = aid_bin.find_files(user_selected_path,paths,hashes) text = ('\n'.join([str(a) +"\t"+ b for a,b in zip(paths_new,info)])) self.textBrowser_Info_pop2.setText(text) #Add stuff to table_dragdrop rowPosition = int(self.table_dragdrop.rowCount()) self.dataDropped(paths_new) for i in range(len(paths_new)): #set the index (celltype) try: index = int(np.array(UsedData_false["class"])[i]) except: index = int(np.array(UsedData_false["index"])[i]) print("You are using an old version of AIDeveloper. Consider upgrading") self.table_dragdrop.cellWidget(rowPosition+i, 1).setValue(index) #is it checked for train or valid? trorvalid = str(np.array(UsedData_false["TrainOrValid"])[i]) if trorvalid=="Train": self.table_dragdrop.item(rowPosition+i, 2).setCheckState(QtCore.Qt.Checked) elif trorvalid=="Valid": self.table_dragdrop.item(rowPosition+i, 3).setCheckState(QtCore.Qt.Checked) #how many cells/epoch during training or validation? nr_events_epoch = str(np.array(UsedData_false["nr_events_epoch"])[i]) #how many cells/epoch during training or validation? try: nr_events_epoch = str(np.array(UsedData_false["nr_events_epoch"])[i]) except: nr_events_epoch = str(np.array(UsedData_false["nr_cells_epoch"])[i]) print("You are using an old version of AIDeveloper. Consider upgrading") self.table_dragdrop.item(rowPosition+i, 6).setText(nr_events_epoch) #Shuffle or not? shuffle = bool(np.array(UsedData_false["shuffle"])[i]) if shuffle==False: self.table_dragdrop.item(rowPosition+i, 8).setCheckState(QtCore.Qt.Unchecked) #Set Cells/Epoch to not editable item = self.table_dragdrop.item(rowPosition+i, 6) item.setFlags(item.flags() &~QtCore.Qt.ItemIsEnabled &~ QtCore.Qt.ItemIsSelectable ) #item.setFlags(item.flags() |QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsSelectable ) else: self.table_dragdrop.item(rowPosition+i, 8).setCheckState(QtCore.Qt.Checked) #zoom_factor = float(np.array(UsedData_false["zoom_factor"])[i]) zoom_factor = str(np.array(UsedData_false["zoom_factor"])[i]) self.table_dragdrop.item(rowPosition+i, 9).setText(zoom_factor) self.w_pop2 = MyPopup() self.gridLayout_w_pop2 = QtWidgets.QGridLayout(self.w_pop2) self.gridLayout_w_pop2.setObjectName("gridLayout_w_pop2") self.verticalLayout_w_pop2 = QtWidgets.QVBoxLayout() self.verticalLayout_w_pop2.setObjectName("verticalLayout_w_pop2") self.horizontalLayout_w_pop2 = QtWidgets.QHBoxLayout() self.horizontalLayout_w_pop2.setObjectName("horizontalLayout_w_pop2") self.pushButton_Close_pop2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_Close_pop2.setObjectName("pushButton_Close_pop2") self.pushButton_Close_pop2.clicked.connect(self.w_pop2.close) self.horizontalLayout_w_pop2.addWidget(self.pushButton_Close_pop2) self.pushButton_Search_pop2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_Search_pop2.clicked.connect(add_missing_files) self.pushButton_Search_pop2.setObjectName("pushButton_Search") self.horizontalLayout_w_pop2.addWidget(self.pushButton_Search_pop2) self.verticalLayout_w_pop2.addLayout(self.horizontalLayout_w_pop2) self.textBrowser_Info_pop2 = QtWidgets.QTextBrowser(self.centralwidget) self.textBrowser_Info_pop2.setObjectName("textBrowser_Info_pop2") self.verticalLayout_w_pop2.addWidget(self.textBrowser_Info_pop2) self.gridLayout_w_pop2.addLayout(self.verticalLayout_w_pop2, 0, 0, 1, 1) self.w_pop2.setWindowTitle("There are missing files. Do you want to search for them?") self.pushButton_Close_pop2.setText("No") self.pushButton_Search_pop2.setText("Define folder to search files") self.w_pop2.show() #Ask user if only data, or the full set of parameters should be loaded msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Question) msg.setText(tooltips["msg_loadSession"]) msg.setWindowTitle("Load only data table all parameters?") msg.setStandardButtons(QtGui.QMessageBox.Yes | QtGui.QMessageBox.Save)# | QtGui.QMessageBox.Cancel) dataonly = msg.button(QtGui.QMessageBox.Yes) dataonly.setText('Data table only') allparams = msg.button(QtGui.QMessageBox.Save) allparams.setText('Data and all parameters') # cancel = msg.button(QtGui.QMessageBox.Cancel) # cancel.setText('Cancel') msg.exec_() #Only update the data table. if msg.clickedButton()==dataonly: #show image and heatmap overlay pass #Load the parameters elif msg.clickedButton()==allparams: #show image and heatmap overlay Parameters = pd.read_excel(xlsx,sheet_name="Parameters") aid_frontend.load_hyper_params(self,Parameters) # if msg.clickedButton()==cancel: #show image and heatmap overlay # return #If all this run without error, save the path. Default_dict["Path of last model"] = os.path.split(filename)[0] aid_bin.save_aid_settings(Default_dict) #Update the overview-box if self.groupBox_DataOverview.isChecked()==True: self.dataOverviewOn() def actionSaveSession_function(self): filename = QtWidgets.QFileDialog.getSaveFileName(self, 'Save session', Default_dict["Path of last model"],"AIDeveloper Session file (*_session.xlsx)") filename = filename[0] path, fname = os.path.split(filename) if len(fname)==0: msg = QtWidgets.QMessageBox() msg.setIcon(QtWidgets.QMessageBox.Information) msg.setText("No valid filename was chosen.") msg.setWindowTitle("No valid filename was chosen") msg.setStandardButtons(QtWidgets.QMessageBox.Ok) msg.exec_() return if fname.endswith(".xlsx"): fname = fname.split(".xlsx")[0] if fname.endswith("_session"): fname = fname.split("_session")[0] if fname.endswith("_meta"): fname = fname.split("_meta")[0] if fname.endswith(".model"): fname = fname.split(".model")[0] if fname.endswith(".arch"): fname = fname.split(".arch")[0] #add the suffix _session.xlsx if not fname.endswith("_session.xlsx"): fname = fname +"_session.xlsx" filename = os.path.join(path,fname) writer = pd.ExcelWriter(filename, engine='openpyxl') #Used files go to a separate sheet on the -session.xlsx SelectedFiles = self.items_clicked() SelectedFiles_df = pd.DataFrame(SelectedFiles) pd.DataFrame().to_excel(writer,sheet_name='UsedData') #initialize empty Sheet SelectedFiles_df.to_excel(writer,sheet_name='UsedData') DataOverview_df = self.get_dataOverview() DataOverview_df.to_excel(writer,sheet_name='DataOverview') #write data overview to separate sheet #Get all hyper parameters Para_dict =
pd.DataFrame()
pandas.DataFrame
"""K-Means Classifier""" import collections import pandas as pd import numpy as np from sklearn.cluster import KMeans from sklearn.preprocessing import minmax_scale from default_clf import DefaultNSL, COL_NAMES, ATTACKS class KMeansNSL(DefaultNSL): def __init__(self): super(KMeansNSL, self).__init__() self.cols = None self.clusters = {0: None, 1: None, 2: None, 3: None} def load_training_data(self, filepath): data, labels = self.load_data(filepath) self.cols = data.columns self.training = [data, labels] def load_test_data(self, filepath): data, labels = self.load_data(filepath) map_data = pd.DataFrame(columns=self.cols) map_data = map_data.append(data) data = map_data.fillna(0) self.testing = [data[self.cols], labels] @staticmethod def load_data(filepath): data = pd.read_csv(filepath, names=COL_NAMES, index_col=False) # Shuffle data data = data.sample(frac=1).reset_index(drop=True) NOM_IND = [1, 2, 3] BIN_IND = [6, 11, 13, 14, 20, 21] # Need to find the numerical columns for normalization NUM_IND = list(set(range(40)).difference(NOM_IND).difference(BIN_IND)) # Scale all numerical data to [0-1] data.iloc[:, NUM_IND] = minmax_scale(data.iloc[:, NUM_IND]) labels = data['labels'] del data['labels'] data = pd.get_dummies(data) return [data, labels] def train_clf(self): self.clf = KMeans(n_clusters=4, init='random').fit(self.training[0]) self.set_categories() def test_clf(self, train=False): if train: data, labels = self.training else: data, labels = self.testing test_preds = self.clf.predict(data) test_preds = [self.clusters[x] for x in test_preds] bin_labels = labels.apply(lambda x: x if x == 'normal' else 'anomaly') test_acc = sum(test_preds == bin_labels)/(len(test_preds) * 1.0) return [test_preds, test_acc] def set_categories(self): labels = self.training[1] bin_labels = labels.apply(lambda x: x if x == 'normal' else 'anomaly') clust_preds = self.clf.labels_ count = collections.Counter(zip(clust_preds, bin_labels)) num = [0, 0, 0, 0] for k, val in count.items(): clust = k[0] if val > num[clust]: num[clust] = val self.clusters[clust] = k[1] def predict(self, packet): data =
pd.DataFrame([packet], columns=COL_NAMES)
pandas.DataFrame
import os import sys import keras import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from keras.callbacks import CSVLogger, History from keras.layers import BatchNormalization, Dense, Dropout, Input from keras.models import Model # from .IntegratedGradient import integrated_gradients """ Created by <NAME> on 6/15/18. Email : <EMAIL> or <EMAIL> Website: http://ce.sharif.edu/~naghipourfar Github: https://github.com/naghipourfar Skype: mn7697np """ def loadGradients(path="../Results/IntegratedGradient/integrated_gradients.csv"): return pd.read_csv(path, header=None) def save_summaries_for_each_feature(feature_importance, path="./IntegratedGradient/Summaries/"): for i in range(feature_importance.shape[1]): description = feature_importance[i].describe() description.to_csv(path + "feature_{0}.txt".format(i)) def analyze_top_100_features_for_each_sample(feature_importance): top_importances = [] for i in range(feature_importance.shape[0]): importances = feature_importance.iloc[i, :] importances = list(reversed(sorted(abs(importances)))) top_100_importances = importances[:100] top_importances.append(top_100_importances) np.savetxt(fname="./top100_deeplift.csv", X=np.array(top_importances), delimiter=',') def plot_heatmaps(feature_importances, path="./IntegratedGradient/Heatmaps/"): plt.rcParams["figure.figsize"] = 5, 2 for i in range(feature_importances.shape[0]): y = feature_importances.iloc[i, :] fig, ax = plt.subplots(nrows=1, sharex='all') # extent = [x[0] - (x[1] - x[0]) / 2., x[-1] + (x[1] - x[0]) / 2., 0, 1] heatmap = ax.imshow(y[np.newaxis, :], cmap="plasma", aspect="auto") ax.set_yticks([]) # ax.set_xlim(extent[0], extent[1]) plt.tight_layout() plt.colorbar(heatmap) plt.savefig(path + "sample_{0}.png".format(i)) plt.close() def plot_distributions(feature_importance, path="../Results/IntegratedGradient/DistPlots/"): import seaborn as sns for i in range(feature_importance.shape[1]): plt.figure() sns.distplot(feature_importance[i]) plt.xlabel("Feature Importance") plt.ylabel("Density") plt.title("Feature_{0} Distribution of Importance".format(i)) plt.savefig(path + "feature_{0}.png".format(i)) plt.close() def plot_distribution(feature_importance, path="../Results/IntegratedGradient/"): file_name = "distribution.png" feature_importance = feature_importance.as_matrix() # Convert to numpy ndarray new_shape = (feature_importance.shape[0] * feature_importance.shape[1],) feature_importance = np.reshape(feature_importance, newshape=new_shape) import seaborn as sns sns.distplot(feature_importance) plt.xlabel("Feature Importance") plt.ylabel("Density") plt.title("Distribution of all feature importances") plt.savefig(path + file_name) plt.close() def box_plot(feature_importance, path="../Results/IntegratedGradient/"): pass def calculate_statistical_criteria(feature_importance=None, criteria="absolute_error", path="../Results/IntegratedGradient/"): file_name = "intgrad_" + criteria + ".csv" feature_importance = feature_importance.as_matrix() # Convert to np.ndarray statistical_criteria = np.zeros(shape=(feature_importance.shape[1], 1)) if criteria == "absolute_error": num_features = feature_importance.shape[1] statistical_criteria = np.array([[np.max(feature_importance[:, i]) - np.min( feature_importance[:, i])] for i in range(num_features)]) elif criteria == "relative_error": statistical_criteria = np.array([[(np.max(feature_importance[:, i]) - np.min( feature_importance[:, i])) / (np.max(feature_importance[:, i]))] for i in range(feature_importance.shape[1])]) np.savetxt(fname=path + file_name, X=statistical_criteria, delimiter=",") def plot_statistical_criteria(criteria="absolute_error", data_path="../Results/IntegratedGradient/", save_path="../Results/IntegratedGradient/"): data_path = data_path + "intgrad_" + criteria + ".csv" save_path = save_path + "intgrad_" + criteria + ".png" statistical_criteria = pd.read_csv(data_path, header=None).as_matrix() import seaborn as sns sns.distplot(statistical_criteria) if criteria == "absolute_error": plt.xlabel("Absolute Error") plt.title("Distribution of Absolute Error") elif criteria == "relative_error": plt.xlabel("Relative Error") plt.title("Distribution of Relative Error") plt.ylabel("Density") plt.savefig(save_path) plt.close() def make_summary_data(feature_importance, path="../Results/IntegratedGradient/"): file_name = "summaries.csv" feature_importance = feature_importance num_features = feature_importance.shape[1] all_describtions = np.zeros( shape=(num_features, 4)) # mean - std - min - max for i in range(num_features): describtion = feature_importance[i].describe() describtion = describtion.iloc[[1, 2, 3, 7]].as_matrix() all_describtions[i] = describtion.T print(all_describtions.shape) np.savetxt(fname=path + file_name, X=all_describtions, delimiter=',') def compute_integrated_gradient(machine="damavand", save_path="../Results/IntegratedGradient/", verbose=1): file_name = "integrated_gradient.csv" if machine == "damavand": mrna_address = "~/f/Behrooz/dataset_local/fpkm_normalized.csv" else: mrna_address = "../Data/fpkm_normalized.csv" m_rna = pd.read_csv(mrna_address, header=None) model = keras.models.load_model("../Results/classifier.h5") ig = integrated_gradients(model, verbose=verbose) num_samples = m_rna.shape[0] num_features = m_rna.shape[1] feature_importances = np.zeros(shape=(num_samples, num_features)) for i in range(num_samples): feature_importances[i] = ig.explain(m_rna.as_matrix()[i, :]) if verbose == 1: sys.stdout.flush() sys.stdout.write('\r') sys.stdout.write("Progress: " + str((i / 10787) * 100) + " %") sys.stdout.flush() if verbose == 1: sys.stdout.flush() sys.stdout.write('\r') sys.stdout.write("Progress: " + str((10787 / 10787) * 100) + " %") sys.stdout.flush() np.savetxt(fname="../Results/IntegratedGradient/integrated_gradients.csv", X=np.array(feature_importances), delimiter=',') return
pd.DataFrame(feature_importances)
pandas.DataFrame
import os, sys, math, random, time import torch import torch.nn as nn import numpy as np import pandas as pd import pickle as pkl import scipy.sparse as sp from typing import List, Dict, Tuple, Iterable, Type, Union, Callable from tqdm import tqdm import xclib.evaluation.xc_metrics as xc_metrics import xclib.data.data_utils as data_utils def ToD(batch, device): if isinstance(batch, torch.Tensor): batch = batch.to(device) if isinstance(batch, Dict): for outkey in batch: if isinstance(batch[outkey], torch.Tensor): batch[outkey] = batch[outkey].to(device) if isinstance(batch[outkey], Dict): for inkey in batch[outkey]: if isinstance(batch[outkey][inkey], torch.Tensor): batch[outkey][inkey] = batch[outkey][inkey].to(device) return batch def csr_to_pad_tensor(spmat, pad): inds_tensor = torch.LongTensor(spmat.indices) data_tensor = torch.LongTensor(spmat.data) return {'inds': torch.nn.utils.rnn.pad_sequence([inds_tensor[spmat.indptr[i]:spmat.indptr[i+1]] for i in range(spmat.shape[0])], batch_first=True, padding_value=pad), 'vals': torch.nn.utils.rnn.pad_sequence([data_tensor[spmat.indptr[i]:spmat.indptr[i+1]] for i in range(spmat.shape[0])], batch_first=True, padding_value=0.0)} def read_sparse_mat(filename, use_xclib=True): if use_xclib: return xclib.data.data_utils.read_sparse_file(filename) else: with open(filename) as f: nr, nc = map(int, f.readline().split(' ')) data = []; indices = []; indptr = [0] for line in tqdm(f): if len(line) > 1: row = [x.split(':') for x in line.split()] tempindices, tempdata = list(zip(*row)) indices.extend(list(map(int, tempindices))) data.extend(list(map(float, tempdata))) indptr.append(indptr[-1]+len(tempdata)) else: indptr.append(indptr[-1]) score_mat = sp.csr_matrix((data, indices, indptr), (nr, nc)) del data, indices, indptr return score_mat from xclib.utils.sparse import rank as sp_rank def _topk(rank_mat, K, inplace=False): topk_mat = rank_mat if inplace else rank_mat.copy() topk_mat.data[topk_mat.data > K] = 0 topk_mat.eliminate_zeros() return topk_mat def Recall(rank_intrsxn_mat, true_mat, K=[1,3,5,10,20,50,100]): K = sorted(K, reverse=True) topk_intrsxn_mat = rank_intrsxn_mat.copy() res = {} for k in K: topk_intrsxn_mat = _topk(topk_intrsxn_mat, k, inplace=True) res[k] = (topk_intrsxn_mat.getnnz(1)/true_mat.getnnz(1)).mean()*100.0 return res def MRR(rank_intrsxn_mat, true_mat, K=[1,3,5,10,20,50,100]): K = sorted(K, reverse=True) topk_intrsxn_mat = _topk(rank_intrsxn_mat, K[0], inplace=True) rr_topk_intrsxn_mat = topk_intrsxn_mat.copy() rr_topk_intrsxn_mat.data = 1/rr_topk_intrsxn_mat.data max_rr = rr_topk_intrsxn_mat.max(axis=1).toarray().ravel() res = {} for k in K: max_rr[max_rr < 1/k] = 0.0 res[k] = max_rr.mean()*100 return res def XCMetrics(score_mat, X_Y, inv_prop, disp = True, fname = None, method = 'Method'): X_Y = X_Y.tocsr().astype(np.bool_) acc = xc_metrics.Metrics(X_Y, inv_prop) xc_eval_metrics = np.array(acc.eval(score_mat, 5))*100 xc_eval_metrics =
pd.DataFrame(xc_eval_metrics)
pandas.DataFrame
import cPickle as pickle import numpy as np import pandas as pd import functools from scoop import futures from scipy.interpolate import griddata from scipy.signal import convolve2d from sklearn.metrics import average_precision_score, roc_auc_score, precision_recall_curve def calculate_hessian(model, data, step_size): """ Computes the mixed derivative using finite differences mathod :param model: The imported model module :param data: The sampled data in structured form :param step_size: The dx time step taken between each :returns: mixed derivative """ hessian = pd.DataFrame(0, index = np.arange(data.shape[0]), columns=pd.MultiIndex.from_product([model.output_names, model.perturbation_feature_pairs + model.feature_names], names=['model.output_names','model.feature_pairs'])) for output_name in model.output_names: hessian_calculation_helpers = create_hessian_calculation_columns(model, output_name) mixed_derivative = (data.loc[:, hessian_calculation_helpers[0]].values - data.loc[:, hessian_calculation_helpers[1]].values - data.loc[:, hessian_calculation_helpers[2]].values + data.loc[:, hessian_calculation_helpers[3]].values) / (step_size * step_size) mixed_derivative *= np.sign(data.loc[:, hessian_calculation_helpers[1]].values + data.loc[:, hessian_calculation_helpers[2]].values - 2 * data.loc[:, hessian_calculation_helpers[0]].values) hessian.loc[:, zip([output_name] * len(model.perturbation_feature_pairs), model.perturbation_feature_pairs)] = mixed_derivative hessian.loc[:, zip([output_name] * len(model.feature_names), model.feature_names)] = np.array([(data.loc[:, (output_name,f)] - data.loc[:, (output_name,'core')]) / (step_size) for f in model.feature_names]).T return hessian def create_hessian_calculation_columns(model, output_name): hessian_calculation_helpers = [] hessian_calculation_helpers.append([(output_name, 'core') for p in range(len(model.perturbation_feature_pairs))]) hessian_calculation_helpers.append([(output_name, p[:p.find(' ')]) for p in model.perturbation_feature_pairs]) hessian_calculation_helpers.append([(output_name, p[p.find(' and ') + 5:]) for p in model.perturbation_feature_pairs]) hessian_calculation_helpers.append([(output_name, p) for p in model.perturbation_feature_pairs]) return hessian_calculation_helpers def max_filter_activation(matrix, filter_size): kernel = np.ones((filter_size,filter_size)) / np.power(filter_size, 2) out = convolve2d(matrix, kernel, mode='valid') return out.max() def get_max_filters(matrix, num_filters = 100, threshold = 3): matrix_size = matrix.shape[0] filter_sizes = np.linspace(5, matrix_size, num_filters).astype(int) filter_results = list(futures.map(functools.partial(max_filter_activation, np.abs(matrix)), filter_sizes)) if len(np.where(np.array(filter_results) >= threshold)[0]) == 0: return -1 else: return np.where(np.array(filter_results) < threshold)[0][0] - 1 def create_interaction_map(model, hessian, core_feature_vectors, output_name, method, pair): first_feature = pair[:pair.find(' ')] second_feature = pair[pair.find(' and ') + 5:] coordinates = core_feature_vectors.loc[:, (first_feature, second_feature)].values * 99 grid_x, grid_y = np.mgrid[0:100:(100j), 0:100:(100j)] if len(hessian) == 1: values = hessian.loc[:,(output_name, pair)] else: values = hessian.loc[:,(output_name, pair)] / hessian.loc[:, zip([output_name] * len(model.normalization_feature_pairs), model.normalization_feature_pairs)].values.std() grid_z0 = griddata(coordinates, values.values, (grid_x, grid_y), method=method, fill_value=0) return(grid_z0) def rank_samples_in_pair(model, centers, magnitudes, dimensions, interaction_map_and_pair): interaction_map, pair = interaction_map_and_pair first_feature = pair[:pair.find(' ')] second_feature = pair[pair.find(' and ') + 5:] grid_x, grid_y = np.mgrid[0:1:(100j), 0:1:(100j)] y_true = np.zeros(interaction_map.shape) for dim_ind in range(len(dimensions)): if (model.feature_names.index(first_feature) in dimensions[dim_ind]) and (model.feature_names.index(second_feature) in dimensions[dim_ind]): first_v = np.where(dimensions[dim_ind] == model.feature_names.index(first_feature))[0] second_v = np.where(dimensions[dim_ind] == model.feature_names.index(second_feature))[0] y_true += (np.array((np.power(magnitudes[dim_ind][first_v] * (grid_x - centers[dim_ind][first_v]), 2) + np.power(magnitudes[dim_ind][second_v] * (grid_y - centers[dim_ind][second_v]), 2))) < 5.9).astype(int) return(interaction_map.flatten(), np.clip(y_true,0,1).flatten()) def measure_local_accuracy(model, number_of_core_samples, step_size, name, output_path): """ Computes the mixed derivative for each sample, using finite differences mathod :param model: The imported model module :param data: The sampled data in structured form :param step_size: The dx time step taken between each :returns: hessian matrix, with the core sample index as rows and feature pair as column name """ feature_vectors = pd.DataFrame(np.load('{}/feature_vectors_{}_{}_{}.npy'.format(output_path, number_of_core_samples, step_size, name)), index = np.arange(number_of_core_samples), columns=pd.MultiIndex.from_product([model.perturbation_status_columns, model.feature_names], names=['perturbation_status','features'])) outputs = pd.DataFrame(np.load('{}/outputs_{}_{}_{}.npy'.format(output_path, number_of_core_samples, step_size, name)), index = np.arange(number_of_core_samples), columns=pd.MultiIndex.from_product([model.output_names, model.perturbation_status_columns_output], names=['outputs','perturbation_status'])) hessian = calculate_hessian(model, outputs, step_size) (centers, magnitudes, dimensions) = model.get_local_ground_truth(output_path,number_of_core_samples, step_size, name) core_feature_vectors = feature_vectors.loc[:, 'core'] output_name = model.output_names[0] interaction_maps = list(futures.map(functools.partial(create_interaction_map, model, hessian, core_feature_vectors, output_name, 'nearest'), model.feature_pairs)) local_ranking = list(futures.map(functools.partial(rank_samples_in_pair, model, centers, magnitudes, dimensions), zip(interaction_maps, model.feature_pairs))) ranking = np.concatenate(np.array(local_ranking), axis=1) accuracies = average_precision_score(ranking[1,:], np.abs(ranking[0,:])) ROCs = np.array(precision_recall_curve(ranking[1,:], np.abs(ranking[0,:]))) pickle.dump(obj = accuracies, file = open('{}/local_accuracies_{}_{}_{}.pickle'.format(output_path,number_of_core_samples, step_size, name),'wb')) pickle.dump(obj = ROCs, file = open('{}/local_ROCs_{}_{}_{}.pickle'.format(output_path,number_of_core_samples, step_size, name),'wb')) return accuracies def denoise_hessian(hessian): """ Rectifies the uppermost and bottommost 0.1% of the hessian to remove noises """ new_hessian = hessian.copy() s = new_hessian.values.shape c = new_hessian.columns new_hessian = new_hessian.values.flatten() new_hessian[np.argsort(new_hessian.flatten())[int(len(new_hessian.flatten()) * 0.999):]] = np.sign(new_hessian[np.argsort(new_hessian.flatten())[int(len(new_hessian.flatten()) * 0.999):]]) * np.abs(new_hessian.flatten()[np.argsort(new_hessian.flatten())][int(len(new_hessian.flatten()) * 0.999)]) new_hessian[np.argsort(new_hessian.flatten())[::-1][int(len(new_hessian.flatten()) * 0.999):]] = np.sign(new_hessian[np.argsort(new_hessian.flatten())[::-1][int(len(new_hessian.flatten()) * 0.999):]]) * np.abs(new_hessian.flatten()[np.argsort(new_hessian.flatten())][::-1][int(len(new_hessian.flatten()) * 0.999)]) return pd.DataFrame(new_hessian.reshape(s), columns = c) def normalize_outputs(model, outputs): new_outputs = outputs.copy() for output_name in model.output_names: if (outputs.loc[:, output_name].max().max() == outputs.loc[:, output_name].min().min()): new_outputs.loc[:, output_name] = outputs.loc[:, output_name].values else: new_outputs.loc[:, output_name] = ((new_outputs.loc[:, output_name] - new_outputs.loc[:, output_name].min().min()) / np.abs((new_outputs.loc[:, output_name].max().max() - new_outputs.loc[:, output_name].min().min()))).values return new_outputs def normalize_inputs(model, feature_vectors): new_feature_vectors = feature_vectors.copy() for feature in model.feature_names: if (new_feature_vectors.loc[:, (feature)].max().max() == new_feature_vectors.loc[:, (feature)].min().min()): new_feature_vectors.loc[:, (feature)] = new_feature_vectors.loc[:, (feature)] else: new_feature_vectors.loc[:, (feature)] = ((new_feature_vectors.loc[:, (feature)] - new_feature_vectors.loc[:, (feature)].min()) / (new_feature_vectors.loc[:, (feature)].max() - new_feature_vectors.loc[:, (feature)].min())).values return new_feature_vectors def plot_interaction_map(model, name, matrix, output_name, first_variable, second_variable, x_coord, y_coord, output_path): """ Plots a map of the parameter space for two input parameters, with the areas with more nonlinearity colored white :param ax: The axes on which to plot :param args: The arguments for the plot - The matrix to plot, the name of the first variable The name of the second variable, The name of the first variable, as a key to the parameter limits dictionary The name of the second variable, as a key to the parameter limits dictionary the x coordinate of the sample being studied the y coordinate of the sample being studied :returns: The axes with the plotted sample """ import matplotlib import matplotlib.cm as cm import matplotlib.pyplot as plt font = {'size' : 14} matplotlib.rc('font', **font) fig = plt.figure(figsize=(5,5)) ax = plt.subplot() maxValue = np.max(np.abs(matrix)) img = ax.imshow((matrix), cmap = cm.bwr, origin='lower', vmin = -min(maxValue, 6), vmax = min(maxValue, 6), interpolation='spline16') first_variable = '{}'.format(first_variable) second_variable = '{}'.format(second_variable) ax.set_ylabel(r'$x_i$ = ' + first_variable) ax.set_xlabel(r'$y_i$ = ' + second_variable) ax.axes.set_xticks([0, 50, 99]) ax.axes.set_yticks([0, 50, 99]) xticks = np.linspace(np.array(model.feature_limits[first_variable]).min(), np.array(model.feature_limits[first_variable]).max(), 3) yticks = np.linspace(np.array(model.feature_limits[second_variable]).min(), np.array(model.feature_limits[second_variable]).max(), 3) ax.scatter([x_coord], [y_coord], marker='o', color='white', s = 250, edgecolors='black', linewidth=3) ax.set_yticklabels([xticks[tind] for tind in range(3)]) ax.set_xticklabels([yticks[tind] for tind in range(3)]) ax.axis([0, (100) - 1, 0, (100) - 1]) # ax.scatter([x_coord_linear], [y_coord_linear], marker='o', color='blue', s = 250, edgecolors='black', linewidth=3) t = ax.set_title(r'$\mathregular{\frac{\delta ^2 F(\bar{x})}{\delta x_i \delta x_j}}$') # t = ax.set_title('{} and {} - '.format(first_variable, second_variable) + r'$\mathregular{\frac{\delta ^2 F(\bar{x})}{\delta x_i \delta x_j}}$') t.set_position([.5, 1.025]) from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) cb = plt.colorbar(img, cax=cax) cb.set_label("Nomralized mixed derivative", rotation=90) plt.savefig('{}/{}_{}_{}_{}_nonlinear_map.pdf'.format(output_path, name, output_name, first_variable, second_variable), transparent=True, bbox_inches='tight', format='pdf', dpi=600) # plt.close('all') def rank_local(model, number_of_core_samples, step_size, name, threshold, output_path, top_k_to_plot): """ Computes the mixed derivative for each sample, using finite differences mathod :param model: The imported model module :param data: The sampled data in structured form :param step_size: The dx time step taken between each :returns: hessian matrix, with the core sample index as rows and feature pair as column name """ feature_vectors = pd.DataFrame(np.load('{}/feature_vectors_{}_{}_{}.npy'.format(output_path, number_of_core_samples, step_size, name)), index = np.arange(number_of_core_samples), columns=pd.MultiIndex.from_product([model.perturbation_status_columns, model.feature_names], names=['perturbation_status','features'])) core_feature_vectors = feature_vectors.loc[:, 'core'].copy() core_feature_vectors = normalize_inputs(model, core_feature_vectors) raw_outputs = pd.DataFrame(np.load('{}/outputs_{}_{}_{}.npy'.format(output_path, number_of_core_samples, step_size, name)), index = np.arange(number_of_core_samples), columns=pd.MultiIndex.from_product([model.output_names, model.perturbation_status_columns_output], names=['outputs','perturbation_status'])) outputs = normalize_outputs(model,
pd.DataFrame(raw_outputs)
pandas.DataFrame
import os import pandas import logging import datetime import psycopg2 import functools from dotenv import load_dotenv from .utils import classproperty import urllib.request, urllib.error logger = logging.getLogger(__name__) if not hasattr(functools, 'cache'): # Function below is copied straight # from Python 3.9 GitHub # Reference: https://github.com/python/cpython/blob/3.9/Lib/functools.py#L650 def functools_cache(user_function): return functools.lru_cache(maxsize=None)(user_function) functools.cache = functools_cache load_dotenv() class values: @classproperty def raw_data(cls): try: return urllib.request.urlopen(os.environ['bday_data_URL']).read().decode('UTF-8') except (urllib.error.URLError, urllib.error.HTTPError): logger.critical("Failed to access the raw data from drneato.com") raise except KeyError: logger.critical("Failed to access environment variable 'bday_data_URL'") raise @classproperty def bday_df(cls): if not hasattr(cls, 'og_raw_data'): cls.og_raw_data = cls.raw_data if cls.og_raw_data != cls.raw_data or not hasattr(cls, 'og_bday_df'): cls.og_raw_data = cls.raw_data data_dict = dict(((column_name, []) for column_name in ['PeriodNumber', 'Birthdate', 'Birthyear', 'Radio', 'Question#1', 'Question#2', 'Question#3', 'StuID'])) # Eight rows before it's someone elses data keys = list(data_dict.keys()) for index, attr in enumerate(cls.raw_data.splitlines()): index %= 8 if index == 0: continue elif index == 2: unparsed_date = attr.split('-') try: data_dict[keys[index - 1]].append( datetime.date( *map(int, unparsed_date) ).replace(year=datetime.date.today().year) ) data_dict[keys[index]].append(int(unparsed_date[0])) except (ValueError, TypeError): data_dict[keys[index - 1]].append(None) data_dict[keys[index]].append(0) else: try: attr = int(attr) except ValueError: pass data_dict[keys[index - 1 if index == 1 else index]].append(attr) logger.info('Sucessfully parsed the raw data from drneato.com') bday_df = pandas.concat([ pandas.DataFrame(data_dict), pandas.DataFrame({ 'PeriodNumber': [-1], 'Birthdate': [datetime.date.today().replace(month=11, day=15)], 'Birthyear': [0], # Use 0 since we don't know her birthyear 'Radio': [None], 'Question #1': [None], 'Question #2': [None], 'Question #3': [None], 'StuID': [1] }) ]) bday_df['Birthdate'] = pandas.to_datetime(bday_df['Birthdate']) student_df = cls.student_data_df bday_df = bday_df[bday_df['StuID'].isin(student_df['stuid'])] bday_df.drop_duplicates(['StuID'], inplace=True) bday_df['StuID'] = pandas.to_numeric(bday_df['StuID']) bday_df.set_index('StuID', inplace=True) student_df = student_df.set_index('stuid') columns = ['AddrLine1', 'AddrLine2', 'City', 'State', 'Zipcode', 'FirstName', 'LastName'] bday_df[columns] = student_df[map(lambda text: text.lower(), columns)] bday_df = bday_df[['FirstName', 'LastName'] + list(bday_df.columns)[:-2]] logger.info("Sucessfully created and modified the 'bday_df' DataFrame") cls.og_bday_df = bday_df else: bday_df = cls.og_bday_df if bday_df.iloc[0]['Birthdate'].year != datetime.date.today().year: bday_df['Birthdate'] = bday_df['Birthdate'].transform(lambda date: date.replace(year=datetime.date.today().year)) cls.og_bday_df = bday_df def timedelta_today(date): if hasattr(date, 'to_pydatetime'): date = date.to_pydatetime() if hasattr(date, 'date'): date = date.date() delta = date - datetime.date.today() if delta == datetime.timedelta(days=-365): # Condition for edge case with bdays # on Jan 1st return datetime.timedelta(days=1) return delta if delta >= datetime.timedelta() else delta + datetime.timedelta(days=365) bday_df['Timedelta'] = bday_df['Birthdate'].transform(timedelta_today) return bday_df.sort_values(['Timedelta', 'LastName', 'FirstName']) @classproperty @functools.cache def student_data_df(cls): # NOTE: With the current implementation we are storing # A LOT of data in the background, due to the shear size of the # student_data table (it has over 3,000 row). This may or may not # be worth it depending on how often this data is utilized # Might want to not store if this variable is not called very often # INFO: According the `.info()` method for dataframes, the dataframe # takes up roughly 233.1KB of memory try: temp_connection = psycopg2.connect(dbname='botsdb') except psycopg2.OperationalError: temp_connection = psycopg2.connect( dbname='botsdb', host=os.environ['host'], user=os.environ['dbuser'], password=os.environ['password'] ) # NOTE: For some reason using the table name only causes # a syntax error even though in the documentation table names # are supported. It might be because we are using an unsupported # DBAPI df =
pandas.read_sql('SELECT * FROM student_data', temp_connection)
pandas.read_sql
# ,---------------------------------------------------------------------------, # | This module is part of the krangpower electrical distribution simulation | # | suit by <NAME> <<EMAIL>> et al. | # | Please refer to the license file published together with this code. | # | All rights not explicitly granted by the license are reserved. | # '---------------------------------------------------------------------------' # OpendssdirectEnhancer by <NAME> # a wrapper for opendssdirect.py by <NAME> and <NAME> import logging import types from copy import deepcopy as _deepcopy from functools import reduce as _reduce, partial as _partial from inspect import getmembers as _inspect_getmembers from json import load as _json_load from logging import DEBUG as _DBG_LVL from math import sqrt as _sqrt from operator import getitem as _getitem, attrgetter as _attrgetter from re import compile as _re_compile from re import sub as _sub from sys import modules as _sys_modules import numpy as _np import opendssdirect as _odr from pandas import DataFrame as _DataFrame from ._stdout_hijack import stdout_redirected, NullCm from .._aux_fcn import lower as _lower from .._aux_fcn import pairwise as _pairwise from .._components import LineGeometry from .._components import _resolve_unit, _type_recovery, _odssrep, matricize_str from .._components import get_classmap as _get_classmap from .._config_loader import DEFAULT_ENH_NAME, UNIT_MEASUREMENT_PATH, TREATMENTS_PATH, ERROR_STRINGS, DANGEROUS_STACKS, \ UM as _UM, INTERFACE_METHODS_PATH, DEFAULT_COMP as _DEFAULT_COMP, PINT_QTY_TYPE, INTERF_SELECTORS_PATH, \ C_FORCE_UNSAFE_CALLS as _FORCE_UNSAFE_CALLS from .._exceptions import UnsolvedCircuitError from .._logging_init import clog, mlog, bclog, get_log_level try: assert _odr.Basic.Start(0) except TypeError: # retrocompatibility with OpenDSSDirect.py <0.3 assert _odr.Basic.Start() # <editor-fold desc="Auxiliary functions"> def _assign_unit(item, unit: type(_UM.m) or None): if unit is None: return item elif isinstance(item, dict): return {k: v * unit for k, v in item.items()} elif isinstance(item, _DataFrame): # pandas' _DataFrame is a mess together with pint return item # elif hasattr(item, '__iter__'): # # return [el * unit for el in item] # return _asarray(item) * unit else: return item * unit def _asarray(item): return _np.asarray(item) def _couplearray(item): return _np.array(item[0::2]) + _np.array(item[1::2]) * 1j def _terminalize_cpx(item): # note that, when I pass an item to terminalize, I am taking for granted that I can find nterm and ncond in the # respective calls to odr. If you called odr.CktElement.Powers(), for example, I take it that you knew what # you were doing. Calls coming from PackedElements, instead, should perform the cktelement selection just before # the call. nterm = _odr.CktElement.NumTerminals() ncond = _odr.CktElement.NumConductors() assert len(item) == nterm * ncond * 2 cpxr = _np.zeros([nterm, ncond], dtype=_np.complex) for idx, couple in enumerate(_pairwise(item)): real = couple[0] imag = couple[1] cpxr[int(idx / ncond), (idx % ncond)] = _np.sum([_np.multiply(1j, imag), real], axis=0) return cpxr def _terminalize_int(item): nterm = _odr.CktElement.NumTerminals() ncond = _odr.CktElement.NumConductors() assert len(item) == nterm * ncond * 1 int_r = _np.zeros([nterm, ncond], dtype=_np.int) for idx, element in enumerate(item): int_r[int(idx / ncond), (idx % ncond)] = element return int_r def _cpx(item): return item[0] + 1j*item[1] def _dictionize_cktbus(item): return dict(zip(_lower(_odr.Circuit.AllBusNames()), item)) def _dictionize_cktels(item): return dict(zip(_lower(_odr.Circuit.AllElementNames()), item)) def _dictionize_cktnodes(item): return dict(zip(_lower(_odr.Circuit.YNodeOrder()), item)) def _matricize_ybus(item): raw_n_ord = _lower(_odr.Circuit.YNodeOrder()) mtx = _matricize(item) return
_DataFrame(data=mtx, index=raw_n_ord, columns=raw_n_ord)
pandas.DataFrame
import asyncio import io import os import random import shutil from collections import defaultdict import pandas as pd import pytest pa = pytest.importorskip("pyarrow") import dask import dask.dataframe as dd from dask.distributed import Worker from dask.utils import stringify from distributed.shuffle.shuffle_extension import ( dump_batch, list_of_buffers_to_table, load_arrow, split_by_partition, split_by_worker, ) from distributed.utils_test import gen_cluster def clean_worker(worker): """Assert that the worker has no shuffle state""" assert not worker.extensions["shuffle"].shuffles for dirpath, dirnames, filenames in os.walk(worker.local_directory): assert "shuffle" not in dirpath for fn in dirnames + filenames: assert "shuffle" not in fn def clean_scheduler(scheduler): """Assert that the scheduler has no shuffle state""" assert not scheduler.extensions["shuffle"].worker_for assert not scheduler.extensions["shuffle"].heartbeats assert not scheduler.extensions["shuffle"].schemas assert not scheduler.extensions["shuffle"].columns assert not scheduler.extensions["shuffle"].output_workers assert not scheduler.extensions["shuffle"].completed_workers @gen_cluster(client=True) async def test_basic(c, s, a, b): df = dask.datasets.timeseries( start="2000-01-01", end="2000-01-10", dtypes={"x": float, "y": float}, freq="10 s", ) out = dd.shuffle.shuffle(df, "x", shuffle="p2p") x, y = c.compute([df.x.size, out.x.size]) x = await x y = await y assert x == y clean_worker(a) clean_worker(b) clean_scheduler(s) @gen_cluster(client=True) async def test_concurrent(c, s, a, b): df = dask.datasets.timeseries( start="2000-01-01", end="2000-01-10", dtypes={"x": float, "y": float}, freq="10 s", ) x = dd.shuffle.shuffle(df, "x", shuffle="p2p") y = dd.shuffle.shuffle(df, "y", shuffle="p2p") x, y = c.compute([x.x.size, y.y.size]) x = await x y = await y assert x == y clean_worker(a) clean_worker(b) clean_scheduler(s) @gen_cluster(client=True) async def test_bad_disk(c, s, a, b): df = dask.datasets.timeseries( start="2000-01-01", end="2000-01-10", dtypes={"x": float, "y": float}, freq="10 s", ) out = dd.shuffle.shuffle(df, "x", shuffle="p2p") out = out.persist() while not a.extensions["shuffle"].shuffles: await asyncio.sleep(0.01) shutil.rmtree(a.local_directory) while not b.extensions["shuffle"].shuffles: await asyncio.sleep(0.01) shutil.rmtree(b.local_directory) with pytest.raises(FileNotFoundError) as e: out = await c.compute(out) assert os.path.split(a.local_directory)[-1] in str(e.value) or os.path.split( b.local_directory )[-1] in str(e.value) # clean_worker(a) # TODO: clean up on exception # clean_worker(b) # TODO: clean up on exception # clean_scheduler(s) @pytest.mark.xfail @pytest.mark.slow @gen_cluster(client=True) async def test_crashed_worker(c, s, a, b): df = dask.datasets.timeseries( start="2000-01-01", end="2000-01-10", dtypes={"x": float, "y": float}, freq="10 s", ) out = dd.shuffle.shuffle(df, "x", shuffle="p2p") out = out.persist() while ( len( [ ts for ts in s.tasks.values() if "shuffle_transfer" in ts.key and ts.state == "memory" ] ) < 3 ): await asyncio.sleep(0.01) await b.close() with pytest.raises(Exception) as e: out = await c.compute(out) assert b.address in str(e.value) # clean_worker(a) # TODO: clean up on exception # clean_worker(b) # clean_scheduler(s) @gen_cluster(client=True) async def test_heartbeat(c, s, a, b): await a.heartbeat() clean_scheduler(s) df = dask.datasets.timeseries( start="2000-01-01", end="2000-01-10", dtypes={"x": float, "y": float}, freq="10 s", ) out = dd.shuffle.shuffle(df, "x", shuffle="p2p") out = out.persist() while not s.extensions["shuffle"].heartbeats: await asyncio.sleep(0.001) await a.heartbeat() assert s.extensions["shuffle"].heartbeats.values() await out clean_worker(a) clean_worker(b) clean_scheduler(s) def test_processing_chain(): """ This is a serial version of the entire compute chain In practice this takes place on many different workers. Here we verify its accuracy in a single threaded situation. """ workers = ["a", "b", "c"] npartitions = 5 df = pd.DataFrame({"x": range(100), "y": range(100)}) df["_partitions"] = df.x % npartitions schema = pa.Schema.from_pandas(df) worker_for = {i: random.choice(workers) for i in list(range(npartitions))} worker_for = pd.Series(worker_for, name="_worker").astype("category") data = split_by_worker(df, "_partitions", worker_for=worker_for) assert set(data) == set(worker_for.cat.categories) assert sum(map(len, data.values())) == len(df) batches = { worker: [b.serialize().to_pybytes() for b in t.to_batches()] for worker, t in data.items() } # Typically we communicate to different workers at this stage # We then receive them back and reconstute them by_worker = { worker: list_of_buffers_to_table(list_of_batches, schema) for worker, list_of_batches in batches.items() } assert sum(map(len, by_worker.values())) == len(df) # We split them again, and then dump them down to disk splits_by_worker = { worker: split_by_partition(t, "_partitions") for worker, t in by_worker.items() } splits_by_worker = { worker: { partition: [batch.serialize() for batch in t.to_batches()] for partition, t in d.items() } for worker, d in splits_by_worker.items() } # No two workers share data from any partition assert not any( set(a) & set(b) for w1, a in splits_by_worker.items() for w2, b in splits_by_worker.items() if w1 is not w2 ) # Our simple file system filesystem = defaultdict(io.BytesIO) for worker, partitions in splits_by_worker.items(): for partition, batches in partitions.items(): for batch in batches: dump_batch(batch, filesystem[partition], schema) out = {} for k, bio in filesystem.items(): bio.seek(0) out[k] = load_arrow(bio) assert sum(map(len, out.values())) == len(df) @gen_cluster(client=True) async def test_head(c, s, a, b): a_files = list(os.walk(a.local_directory)) b_files = list(os.walk(b.local_directory)) df = dask.datasets.timeseries( start="2000-01-01", end="2000-01-10", dtypes={"x": float, "y": float}, freq="10 s", ) out = dd.shuffle.shuffle(df, "x", shuffle="p2p") out = await out.head(compute=False).persist() # Only ask for one key assert list(os.walk(a.local_directory)) == a_files # cleaned up files? assert list(os.walk(b.local_directory)) == b_files clean_worker(a) clean_worker(b) clean_scheduler(s) def test_split_by_worker(): workers = ["a", "b", "c"] npartitions = 5 df = pd.DataFrame({"x": range(100), "y": range(100)}) df["_partitions"] = df.x % npartitions worker_for = {i: random.choice(workers) for i in range(npartitions)} s =
pd.Series(worker_for, name="_worker")
pandas.Series
import pandas as pd import networkx as nx import pytest from kgextension.feature_selection import hill_climbing_filter, hierarchy_based_filter, tree_based_filter from kgextension.generator import specific_relation_generator, direct_type_generator class TestHillCLimbingFilter: def test1_high_beta(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test1_input.csv") input_DG = nx.DiGraph() labels = ['http://chancellor', 'http://president', 'http://European_politician', 'http://head_of_state', 'http://politician', 'http://man', 'http://person', 'http://being'] input_DG.add_nodes_from(labels) input_DG.add_edges_from([('http://chancellor', 'http://politician'), ('http://president', 'http://politician'), ('http://chancellor', 'http://head_of_state'), ('http://president', 'http://head_of_state'), ('http://head_of_state', 'http://person'), ('http://European_politician', 'http://politician'), ('http://politician', 'http://person'), ('http://man', 'http://person'), ('http://person', 'http://being')]) expected_df = pd.read_csv("test/data/feature_selection/hill_climbing_test1_expected.csv") output_df = hill_climbing_filter(input_df, 'uri_bool_http://class', G= input_DG, beta=0.5, k=2) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test2_generator_data_low_beta(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) input_df = specific_relation_generator( df, columns=['link'], hierarchy_relation='http://www.w3.org/2004/02/skos/core#broader') expected_df = pd.read_csv("test/data/feature_selection/hill_climbing_test2_expected.csv") output_df = hill_climbing_filter(input_df, 'link_in_boolean_http://dbpedia.org/resource/Category:Prefectures_in_France', beta=0.05, k=3) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test3_nan(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test3_input.csv") input_DG = nx.DiGraph() labels = ['http://chancellor', 'http://president', 'http://European_politician', 'http://head_of_state', 'http://politician', 'http://man', 'http://person', 'http://being'] input_DG.add_nodes_from(labels) input_DG.add_edges_from([('http://chancellor', 'http://politician'), ('http://president', 'http://politician'), ('http://chancellor', 'http://head_of_state'), ('http://president', 'http://head_of_state'), ('http://head_of_state', 'http://person'), ('http://European_politician', 'http://politician'), ('http://politician', 'http://person'), ('http://man', 'http://person'), ('http://person', 'http://being')]) expected_df = pd.read_csv("test/data/feature_selection/hill_climbing_test3_expected.csv") output_df = hill_climbing_filter(input_df, 'class', G= input_DG, beta=0.5, k=2) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test4_callable_function(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test1_input.csv") input_DG = nx.DiGraph() labels = ['http://chancellor', 'http://president', 'http://European_politician', 'http://head_of_state', 'http://politician', 'http://man', 'http://person', 'http://being'] input_DG.add_nodes_from(labels) input_DG.add_edges_from([('http://chancellor', 'http://politician'), ('http://president', 'http://politician'), ('http://chancellor', 'http://head_of_state'), ('http://president', 'http://head_of_state'), ('http://head_of_state', 'http://person'), ('http://European_politician', 'http://politician'), ('http://politician', 'http://person'), ('http://man', 'http://person'), ('http://person', 'http://being')]) def fake_metric(df, class_col, param=5): return 1/((df.sum(axis=1)*class_col).sum()/param) expected_df = pd.read_csv("test/data/feature_selection/hill_climbing_test4_expected.csv") output_df = hill_climbing_filter(input_df, 'uri_bool_http://class', metric=fake_metric, G= input_DG, param=6) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test5_no_graph(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test3_input.csv") with pytest.raises(RuntimeError) as excinfo: _ = hill_climbing_filter(input_df, 'class', beta=0.5, k=2) assert "df.attrs['hierarchy]" in str(excinfo.value) class TestHierarchyBasedFilter(): def test1_no_pruning_info_gain_with_G(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test1_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) input_DG = input_df.attrs['hierarchy'] output_df = hierarchy_based_filter(input_df, "link", threshold=0.99, G=input_DG, metric="info_gain", pruning=False) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test2_no_pruning_correlation(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test2_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) output_df = hierarchy_based_filter(input_df, "link", threshold=0.99, G=input_DG, metric="correlation", pruning=False) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test3_pruning_info_gain_all_remove_True(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test3_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) input_DG = input_df.attrs['hierarchy'] output_df = hierarchy_based_filter(input_df, "link", G=input_DG, threshold=0.99, metric="info_gain", pruning=True) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test4_pruning_correlation_all_remove_True(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test4_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) input_DG = input_df.attrs['hierarchy'] output_df = hierarchy_based_filter(input_df, "link", G=input_DG, threshold=0.99, metric="correlation", pruning=True) pd.testing.assert_frame_equal(output_df, expected_df, check_like = True) def test5_pruning_info_gain_all_remove_False(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test5_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) input_DG = input_df.attrs['hierarchy'] output_df = hierarchy_based_filter(input_df, "link", G=input_DG, threshold=0.99, metric="info_gain", pruning=True, all_remove=False) pd.testing.assert_frame_equal(output_df, expected_df, check_like = True) def test6_pruning_correlation_all_remove_False(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test6_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) input_DG = input_df.attrs['hierarchy'] output_df = hierarchy_based_filter(input_df, "link", G=input_DG, threshold=0.99, metric="correlation", pruning=True, all_remove=False) pd.testing.assert_frame_equal(output_df, expected_df, check_like = True) def test7_no_input_G(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test7_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) output_df = hierarchy_based_filter(input_df, "link", threshold=0.99, metric="correlation", pruning=True, all_remove=False) pd.testing.assert_frame_equal(output_df, expected_df, check_like = True) def test8_nan(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test3_input.csv") input_DG = nx.DiGraph() labels = ['http://chancellor', 'http://president', 'http://European_politician', 'http://head_of_state', 'http://politician', 'http://man', 'http://person', 'http://being'] input_DG.add_nodes_from(labels) input_DG.add_edges_from([('http://chancellor', 'http://politician'), ('http://president', 'http://politician'), ('http://chancellor', 'http://head_of_state'), ('http://president', 'http://head_of_state'), ('http://head_of_state', 'http://person'), ('http://European_politician', 'http://politician'), ('http://politician', 'http://person'), ('http://man', 'http://person'), ('http://person', 'http://being')]) expected_df = pd.read_csv("test/data/feature_selection/hierarchy_based_test8_expected.csv") output_df = hierarchy_based_filter(input_df, 'class', G=input_DG, threshold=0.99, metric="info_gain", pruning=True) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test9_callable_function(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test1_input.csv") input_DG = nx.DiGraph() labels = ['http://chancellor', 'http://president', 'http://European_politician', 'http://head_of_state', 'http://politician', 'http://man', 'http://person', 'http://being'] input_DG.add_nodes_from(labels) input_DG.add_edges_from([('http://chancellor', 'http://politician'), ('http://president', 'http://politician'), ('http://chancellor', 'http://head_of_state'), ('http://president', 'http://head_of_state'), ('http://head_of_state', 'http://person'), ('http://European_politician', 'http://politician'), ('http://politician', 'http://person'), ('http://man', 'http://person'), ('http://person', 'http://being')]) def fake_metric(df_from_hierarchy, l, d): equivalence = df_from_hierarchy[l] == df_from_hierarchy[d] return equivalence.sum()/len(equivalence) expected_df =
pd.read_csv("test/data/feature_selection/hierarchy_based_test9_expected.csv")
pandas.read_csv
#Copyright 2019 NUS pathogen genomics #Written by <NAME> (<EMAIL>) import os import sys import gzip import argparse import pandas as pd import statistics import subprocess from statistics import mode from collections import Counter #function to determine repeat number based on total number of mismatches in primer sequence def chooseMode(name, table, CounterList): maxcount = max(CounterList.values()) repeatToCheck = [] for k, v in CounterList.items(): if v == maxcount: repeatToCheck.append(k) x = 0 for i, j in table.items(): if name in i: x += 1 mismatchDict = {} for rp in repeatToCheck: mismatchDict[rp] = 0 for i in range(x): string = name + '_' + str(i+1) if table[string][1] in repeatToCheck: mismatchDict[table[string][1]] += table[string][0] checklist2 = [] for m, n in mismatchDict.items(): checklist2.append(n) duplicates = '' for item in checklist2: if checklist2.count(item) > 1: duplicates = 'yes' finalMode = '' if duplicates == 'yes': finalMode = '/'.join(str(r) for min_value in (min(mismatchDict.values()),) for r in mismatchDict if mismatchDict[r]==min_value) else: finalMode = min(mismatchDict.keys(), key=(lambda k: mismatchDict[k])) return finalMode ''' Main function ''' script_dir = os.path.dirname(os.path.abspath(sys.argv[0])) MIRU_table = script_dir + "/MIRU_table" MIRU_table_0580 = script_dir + "/MIRU_table_0580" MIRU_primers = script_dir + "/MIRU_primers" parser = argparse.ArgumentParser() main_group = parser.add_argument_group('Main options') main_group.add_argument('-r', '--reads', required=True, help='input reads file in fastq/fasta format (required)') main_group.add_argument('-p', '--prefix', required=True, help='sample ID (required)') main_group.add_argument('--table', type=str, default=MIRU_table, help='allele calling table') main_group.add_argument('--primers', type=str, default=MIRU_primers, help='primers sequences') optional_group = parser.add_argument_group('Optional options') optional_group.add_argument('--amplicons', help='provide output from primersearch and summarize MIRU profile directly', action='store_true') optional_group.add_argument('--details', help='for inspection', action='store_true') optional_group.add_argument('--nofasta', help='delete the fasta reads file generated if your reads are in fastq format', action='store_true') args = parser.parse_args() if not os.path.exists(args.reads): sys.exit('Error: ' + args.reads + ' is not found!') sample_prefix = args.prefix sample_dir = os.path.dirname(os.path.abspath(args.reads)) mismatch_allowed = 18 psearchOut = sample_dir + '/' + sample_prefix + '.' + str(mismatch_allowed) + '.primersearch.out' df =
pd.read_csv(MIRU_table, sep='\t')
pandas.read_csv
# -*- coding: utf-8 -*- """ Downloads rfr and stores in sqlite database for future reference """ import datetime import os import zipfile import pandas as pd import urllib from datetime import date import logging from solvency2_data.sqlite_handler import EiopaDB from solvency2_data.util import get_config from solvency2_data.rfr import read_spot, read_spreads, read_govies, read_meta from solvency2_data.scraping import eiopa_link def get_workspace() -> dict: """ Get the workspace for saving xl and the database Args: None Returns: dictionary with workspace data """ config = get_config().get("Directories") path_db = config.get("db_folder") database = os.path.join(path_db, "eiopa.db") path_raw = config.get("raw_data") return {"database": database, "raw_data": path_raw} def download_file(url: str, raw_folder: str, filename: str = "") -> str: """ This function downloads a file and give it a name if not explicitly specified. Args: raw_folder: url of the file to download filename: file path+name to give to the file to download Returns: name of the file """ if filename: extension = url[(url.rfind(".")) :] if extension not in filename: filename = filename + extension else: pass else: # if filename not specified, then the file name will be the original file name filename = url[(url.rfind("/") + 1) :] target_file = os.path.join(raw_folder, filename) if os.path.isfile(target_file): logging.info("file already exists in this location, not downloading") else: if not os.path.exists(raw_folder): os.makedirs(raw_folder) urllib.request.urlretrieve(url, target_file) # simpler for file downloading logging.info( "file downloaded and saved in the following location: " + target_file ) return target_file def download_EIOPA_rates(url: str, ref_date: str) -> dict: """ Download and unzip the EIOPA files Args: url: url from which data is to be downloaded ref_date: the reference date of the data Returns: dictionary with metadata """ workspace = get_workspace() raw_folder = workspace["raw_data"] zip_file = download_file(url, raw_folder) # Change format of ref_date string for EIOPA Excel files from YYYY-mm-dd to YYYYmmdd: reference_date = ref_date.replace('-', '') name_excelfile = "EIOPA_RFR_" + reference_date + "_Term_Structures" + ".xlsx" name_excelfile_spreads = "EIOPA_RFR_" + reference_date + "_PD_Cod" + ".xlsx" with zipfile.ZipFile(zip_file) as zipobj: zipobj.extract(name_excelfile, raw_folder) zipobj.extract(name_excelfile_spreads, raw_folder) return { "rfr": os.path.join(raw_folder, name_excelfile), "meta": os.path.join(raw_folder, name_excelfile), "spreads": os.path.join(raw_folder, name_excelfile_spreads), "govies": os.path.join(raw_folder, name_excelfile_spreads), } def extract_spot_rates(rfr_filepath: str) -> dict: """ Extract spot rates Args: rfr_filepath: path to Excel file with rfr data Returns: dictionary with metadata """ logging.info("Extracting spots: " + rfr_filepath) # TODO: Complete this remap dictionary currency_codes_and_regions = { "EUR": "Euro", "PLN": "Poland", "CHF": "Switzerland", "USD": "United States", "GBP": "United Kingdom", "NOK": "Norway", "SEK": "Sweden", "DKK": "Denmark", "HRK": "Croatia", } currency_dict = dict((v, k) for k, v in currency_codes_and_regions.items()) xls = pd.ExcelFile(rfr_filepath, engine="openpyxl") rates_tables = read_spot(xls) rates_tables = pd.concat(rates_tables) rates_tables = rates_tables.rename(columns=currency_dict)[currency_dict.values()] label_remap = { "RFR_spot_no_VA": "base", "RFR_spot_with_VA": "va", "Spot_NO_VA_shock_UP": "up", "Spot_NO_VA_shock_DOWN": "down", "Spot_WITH_VA_shock_UP": "va_up", "Spot_WITH_VA_shock_DOWN": "va_down", } rates_tables = rates_tables.rename(label_remap) rates_tables = rates_tables.stack().rename("spot") rates_tables.index.names = ["scenario", "duration", "currency_code"] rates_tables.index = rates_tables.index.reorder_levels([0, 2, 1]) rates_tables = rates_tables.sort_index() return rates_tables def extract_meta(rfr_filepath: str) -> dict: """ Extract spot rates Args: rfr_filepath: path to Excel file with rfr data Returns: dictionary with metadata """ logging.info("Extracting meta data :" + rfr_filepath) meta = read_meta(rfr_filepath) meta = pd.concat(meta).T meta.columns = meta.columns.droplevel() meta.index.name = "Country" meta = meta.sort_index() return meta def extract_spreads(spread_filepath): """ Extract spreads data Args: spread_filepath: path to Excel file with spreads data Returns: dictionary with metadata """ logging.info("Extracting spreads: " + spread_filepath) xls = pd.ExcelFile(spread_filepath, engine="openpyxl") spreads = read_spreads(xls) spreads_non_gov = pd.concat( { i: pd.concat(spreads[i]) for i in [ "financial fundamental spreads", "non-financial fundamental spreads", ] } ) spreads_non_gov = spreads_non_gov.stack().rename("spread") spreads_non_gov.index.names = ["type", "currency_code", "duration", "cc_step"] spreads_non_gov.index = spreads_non_gov.index.reorder_levels([0, 1, 3, 2]) spreads_non_gov = spreads_non_gov.rename( { "financial fundamental spreads": "fin", "non-financial fundamental spreads": "non_fin", } ) return spreads_non_gov def extract_govies(govies_filepath): """ Extract govies data Args: govies_filepath: path to Excel file with govies data Returns: dictionary with metadata """ logging.info("Extracting govies: " + govies_filepath) xls = pd.ExcelFile(govies_filepath, engine="openpyxl") cache = read_govies(xls) if cache["central government fundamental spreads"] is not None: spreads_gov = ( cache["central government fundamental spreads"] .stack() .rename("spread") .to_frame() ) spreads_gov.index.names = ["duration", "country_code"] spreads_gov.index = spreads_gov.index.reorder_levels([1, 0]) else: logging.error("No govies found: " + govies_filepath) spreads_gov = None return spreads_gov def extract_sym_adj(sym_adj_filepath: str, ref_date: str) -> pd.DataFrame: """ Extract symmetric adjustment Args: sym_adj_filepath: path to Excel file with symmetric adjustment Returns: DataFrame with symmetric adjustment data """ df = pd.read_excel( sym_adj_filepath, sheet_name="Symmetric_adjustment", usecols="E, K", nrows=1, skiprows=7, header=None, squeeze=True, names=["ref_date", "sym_adj"], ) input_ref = ref_date ref_check = df.at[0, "ref_date"].strftime("%Y-%m-%d") if input_ref != ref_check: logging.warning("Date mismatch in sym_adj file: " + sym_adj_filepath) logging.warning( "Try opening this file and setting the date correctly then save and close, and rerun." ) return None else: df = df.set_index("ref_date") return df def add_to_db(ref_date: str, db: EiopaDB, data_type: str = "rfr"): """ Call this if a set is missing Args: ref_date: reference date db: database to be used data_type: type of the dataset to be added Returns: None """ url = eiopa_link(ref_date, data_type=data_type) set_id = db.get_set_id(url) if data_type != "sym_adj": files = download_EIOPA_rates(url, ref_date) if data_type == "rfr": df = extract_spot_rates(files[data_type]) elif data_type == "meta": df = extract_meta(files[data_type]) elif data_type == "spreads": df = extract_spreads(files[data_type]) elif data_type == "govies": df = extract_govies(files[data_type]) else: raise KeyError elif data_type == "sym_adj": workspace = get_workspace() raw_folder = workspace["raw_data"] file = download_file(url, raw_folder) df = extract_sym_adj(file, ref_date) if df is not None: df = df.reset_index() df["url_id"] = set_id df["ref_date"] = ref_date df.to_sql(data_type, con=db.conn, if_exists="append", index=False) set_types = {"govies": "rfr", "spreads": "rfr", "meta": "rfr"} db.update_catalog( url_id=set_id, dict_vals={ "set_type": set_types.get(data_type, data_type), "primary_set": True, "ref_date": ref_date, }, ) return None def validate_date_string(ref_date): """ This function just converts the input date to a string YYYY-mm-dd for use in SQL e.g. from datetime import date ref_date = validate_date_string(date(2021,12,31)) ref_date = validate_date_string('2021-12-31') Both return the same result """ if type(ref_date) == datetime.date: return ref_date.strftime('%Y-%m-%d') elif type(ref_date) == str: try: return datetime.datetime.strptime(ref_date, "%Y-%m-%d").strftime("%Y-%m-%d") except (TypeError, ValueError): logging.warning("Date type not recognised. Try datetime.date or YYYY-mm-dd") return None else: return None def get(ref_date: str, data_type: str = "rfr"): """ Main API function Args: ref_date: reference date. Can be string or datetime.date. If passed as datetime.date this is converted for use elsewhere. data_type: type of the required dataset Returns: DataFrame with data if not empty dataset, otherwise None """ # Validate the provided ref_date: ref_date = validate_date_string(ref_date) # Check if DB exists, if not, create it: workspace = get_workspace() database = workspace["database"] db = EiopaDB(database) sql_map = { "rfr": "SELECT * FROM rfr WHERE ref_date = '" + ref_date + "'", "meta": "SELECT * FROM meta WHERE ref_date = '" + ref_date + "'", "spreads": "SELECT * FROM spreads WHERE ref_date = '" + ref_date + "'", "govies": "SELECT * FROM govies WHERE ref_date = '" + ref_date + "'", "sym_adj": "SELECT * FROM sym_adj WHERE ref_date = '" + ref_date + "'", } sql = sql_map.get(data_type) df = pd.read_sql(sql, con=db.conn) if df.empty: add_to_db(ref_date, db, data_type) df =
pd.read_sql(sql, con=db.conn)
pandas.read_sql
import numpy as np import pandas as pd import matplotlib.pyplot as plt from Dimension_Reduction import Viewer from Silhouette import Silhouette_viewer from sklearn.cluster import KMeans from sklearn.mixture import GaussianMixture as GMM from sklearn.cluster import DBSCAN from sklearn.cluster import AgglomerativeClustering from sklearn.cluster import SpectralClustering import skfuzzy as fuzz from sklearn.ensemble import IsolationForest suffix = "5" data = pd.read_csv(f"data_preprocess_{suffix}.csv", delimiter=",") data_plot = pd.read_csv(f"pca_dim2_{suffix}.csv", delimiter=",") n_clusters = 2 # Compute Elbow method with K-Means to determine number of clusters. def compute_elbow(max_num_cluster=7): file = f"elbow_{suffix}.png" distortions = [] K = range(1, max_num_cluster) for k in K: print("K-Means with k = ", k) kmeanModel = KMeans(n_clusters=k, random_state=10) kmeanModel.fit(data) distortions.append(kmeanModel.inertia_) plt.figure(figsize=(8, 8)) plt.plot(K, distortions, 'bx-') plt.xlabel('k') plt.ylabel('Distortion') plt.title('The Elbow Method showing the optimal k') plt.savefig(file) def compute_silhouette_profile(): for nn in range(2,4): model = KMeans(n_clusters=nn, random_state=10) labels = model.fit_predict(data) centers = model.cluster_centers_ sil = Silhouette_viewer() sil.silhouette_plot(data, labels, centers, f'silhouette_{suffix}_{nn}.png') def clustering(): view_tool = Viewer() print("kmeans") kmeans = KMeans(n_clusters=n_clusters, random_state=10) labels_km = kmeans.fit_predict(data) labels_km_df = pd.DataFrame(labels_km) labels_km_df.to_csv(f"labels_km_{suffix}.csv", index=False) view_tool.view_vs_target(data_plot, labels_km_df, suffix, 'km') print("fuzz") cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(data.T.values, n_clusters, 2, error=0.005, maxiter=1000) labels_fuz = np.argmax(u, axis=0) labels_fuz_df = pd.DataFrame(labels_fuz) labels_fuz_df.to_csv(f"labels_fuzz_{suffix}.csv", index=False) view_tool.view_vs_target(data_plot, labels_fuz_df, suffix, 'fuzz') print("gmm") gmm = GMM(n_components=n_clusters, random_state=10) labels_gmm = gmm.fit_predict(data) labels_gmm_df = pd.DataFrame(labels_gmm) labels_gmm_df.to_csv(f"labels_gmm_{suffix}.csv", index=False) view_tool.view_vs_target(data_plot, labels_gmm_df, suffix, 'gmm') print("dbsc") dbscan = DBSCAN(eps=2, min_samples=20).fit(data) labels_dbsc = dbscan.labels_ labels_dbsc_df = pd.DataFrame(labels_dbsc) labels_dbsc_df.to_csv(f"labels_dbsc_{suffix}.csv", index=False) view_tool.view_vs_target(data_plot, labels_dbsc_df, suffix, 'dbsc') print("hier") hierarchical = AgglomerativeClustering(n_clusters=n_clusters) hierarchical.fit(data) labels_hier = hierarchical.labels_ labels_hier_df =
pd.DataFrame(labels_hier)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Dec 16 15:46:07 2019 @author: """ import logging import os import sys import numpy as np import pickle import csv import datetime as dt import pandas as pd import matplotlib.pylab as plt file_dir = os.path.dirname(__file__) sys.path.append(file_dir) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) _local_dir = False CUP_WORK = True #%% Dirs variables if _local_dir: working_dir = os.path.join(file_dir, os.pardir) else: working_dir = os.path.abspath(os.path.join(file_dir, f"../../../../Pycodes/")) if CUP_WORK: working_dir = os.path.join(working_dir, "cup_kg") _model_path = os.path.abspath(os.path.join(working_dir, "models")) _3ples_directory = os.path.abspath(os.path.join(working_dir, "3ples")) _dictionay_directory = os.path.abspath(os.path.join(working_dir, "dicts")) _pickle_path = os.path.abspath(os.path.join(working_dir, os.pardir, "pickle")) _csv_path = os.path.abspath( os.path.join( working_dir, os.pardir, "csv", "random_1747_1_True" ) # random_1747_1_True random_100_1_False ) _cup_datasets_path = os.path.abspath( os.path.join(working_dir, os.pardir, "cup_datasets") ) _txt_path = os.path.abspath(os.path.join(working_dir, os.pardir, "txt")) os.makedirs(_txt_path, exist_ok=True) _image_path = os.path.abspath(os.path.join(working_dir, os.pardir, "images")) os.makedirs(_image_path, exist_ok=True) #%% GLOBAL VARIABLES KEYSPACE_NAME = "cup_1747_1" # cup_1747_1 cup_100_1 dict_name_id = { "medical-branch": "medical-branch-id", "appointment-provider": "referral-centre-id", "practitioner": "practitioner-id", "health-service-provision": "refined-health-service-id", "patient": "encrypted-nin-id", "booking-staff": "booking-agent-id", } dict_id_col = { "medical-branch-id": "sa_branca_id", "referral-centre-id": "sa_uop_codice_id", "practitioner-id": "sa_med_id", "refined-health-service-id": "indx_prestazione", "encrypted-nin-id": "sa_ass_cf", "booking-agent-id": "sa_utente_id", } dict_col_name = { "sa_branca_id": "medical-branch", "sa_uop_codice_id": "appointment-provider", "sa_med_id": "practitioner", "indx_prestazione": "health-service-provision", "sa_ass_cf": "patient", "sa_utente_id": "booking-staff", "sa_ut_id": "booking-staff", } dict_col_id = { "sa_branca_id": "medical-branch-id", "sa_uop_codice_id": "referral-centre-id", "sa_med_id": "practitioner-id", "indx_prestazione": "refined-health-service-id", "sa_ass_cf": "encrypted-nin-id", "sa_utente_id": "booking-agent-id", "sa_data_ins": "last-reservation-change-date", "sa_data_prescr": "referral-date", "sa_data_app": "booked-date", "sa_data_pren": "reservation-date", "sa_comune_id": "nuts-istat-code", "sa_branca_id": "medical-branch-id", "sa_sesso_id": "gender", "sa_ut_id": "updating-booking-agent-id", "sa_num_prestazioni": "number-of-health-services", "sa_classe_priorita": "priority-code", "sa_asl": "local-health-department-id", "sa_eta_id": "patient-age", "sa_gg_attesa": "res-waiting-days", "sa_gg_attesa_pdisp": "first-res-waiting-days", } dict_table = { "date_col": ["sa_data_ins", "sa_data_prescr", "sa_data_app", "sa_data_pren"], "category_col": [ "sa_ass_cf", "sa_utente_id", "sa_uop_codice_id", "sa_comune_id", "sa_branca_id", "sa_med_id", "sa_sesso_id", "sa_ut_id", "sa_num_prestazioni", "sa_classe_priorita", "sa_asl", "indx_prestazione", ], "number_col": ["sa_eta_id", "sa_gg_attesa", "sa_gg_attesa_pdisp"], } cup_date_id = "sa_data_pren" time_limit_training = "{year}-{month}-{day}".format(year=2018, month=1, day=1) time_limit_training = dt.datetime.strptime(time_limit_training, "%Y-%m-%d") time_period_days = 365 time_limit_test = time_limit_training + dt.timedelta(days=time_period_days) RSEED = 0 entities_names = [ "medical-branch", "appointment-provider", "practitioner", "health-service-provision", "patient", "booking-staff", ] relations_names = ["referral", "reservation", "health-care", "provision"] cols_first_table = [ "encrypted-nin-id", "gender", "priority-code", "nuts-istat-code", "practitioner-id", "booking-agent-id", "updating-booking-agent-id", ] cols_second_table = [ "referral-centre-id", "number-of-health-services", "local-health-department-id", "refined-health-service-id", ] dict_colors = { "appointment-provider": "#66C2A5", "booking-staff": "#FC8D62", "health-service-provision": "#8DA0CB", "medical-branch": "#E78AC3", "patient": "#A6D854", "practitioner": "#FFD92F", } #%% IMPORT dictionay_name = f"{KEYSPACE_NAME}_dict_embeddings.pkl" dictionay_file = os.path.join(_dictionay_directory, dictionay_name) with open(dictionay_file, "rb") as open_file: dict_emb_concepts = pickle.load(open_file) dictionay_name = f"{KEYSPACE_NAME}_dict_concepts.pkl" dictionay_file = os.path.join(_dictionay_directory, dictionay_name) with open(dictionay_file, "rb") as open_file: dict_entities = pickle.load(open_file) csv_name = f"triples_{KEYSPACE_NAME}.csv" csv_file = os.path.join(_3ples_directory, csv_name) with open(csv_file) as open_file: triples = list(csv.reader(open_file, delimiter=",")) csv_name = f"df_aslC.csv" csv_file = os.path.join(_csv_path, csv_name) df_cup = pd.read_csv(csv_file, index_col=0) # transform to datetime for date_col in ["sa_data_ins", "sa_data_prescr", "sa_data_app", "sa_data_pren"]: df_cup[date_col] = pd.to_datetime(df_cup[date_col], errors="coerce") del date_col csv_name = "prestazioni.csv" csv_file = os.path.join(_cup_datasets_path, csv_name) df_prest = pd.read_csv(csv_file, sep=";", index_col=0) dict_prest = df_prest["descrizione"].to_dict() csv_name = "prestazioni_to_branche_cup3.csv" csv_file = os.path.join(_cup_datasets_path, csv_name) df_prest_to_branche = pd.read_csv(csv_file, sep=",") df_prest_to_branche = ( df_prest_to_branche.fillna("") .groupby("id_prestazione")["id_branca"] .apply(list) .reset_index(name="list_branca") ) df_prest_to_branche = df_prest_to_branche.append( {"id_prestazione": 99999999, "list_branca": []}, ignore_index=True ) df_prest_to_branche = df_prest_to_branche.set_index("id_prestazione")[ "list_branca" ].to_dict() #%% FUNCTIONS # from id to identification def from_id_to_identification(triples, dict_entities, entity_id): dict_map = {} for row in triples: if row[1] == f"@has-{entity_id}": dict_map[row[0]] = dict_entities[row[2]]["value"] return dict_map def create_embedding_dataframe( dict_emb_concepts, entity_name, new_column=False, with_mapping=False, dict_map=None, index_col=None, ): if with_mapping: # create embedding dict with identification dict_new = {} for key, value in dict_emb_concepts[entity_name].items(): dict_new[dict_map[key]] = value # create dataFrame of embedding df_emb = pd.DataFrame.from_dict(dict_new, orient="index") df_emb.index.name = index_col else: # create dataFrame of embedding df_emb =
pd.DataFrame.from_dict(dict_emb_concepts[entity_name], orient="index")
pandas.DataFrame.from_dict
""" """ """ >>> # --- >>> # SETUP >>> # --- >>> import os >>> import logging >>> logger = logging.getLogger('PT3S.Rm') >>> # --- >>> # path >>> # --- >>> if __name__ == "__main__": ... try: ... dummy=__file__ ... logger.debug("{0:s}{1:s}{2:s}".format('DOCTEST: __main__ Context: ','path = os.path.dirname(__file__)'," .")) ... path = os.path.dirname(__file__) ... except NameError: ... logger.debug("{0:s}{1:s}{2:s}".format('DOCTEST: __main__ Context: ',"path = '.' because __file__ not defined and: "," from Rm import Rm")) ... path = '.' ... from Rm import Rm ... else: ... path = '.' ... logger.debug("{0:s}{1:s}".format('Not __main__ Context: ',"path = '.' .")) >>> try: ... from PT3S import Mx ... except ImportError: ... logger.debug("{0:s}{1:s}".format("DOCTEST: from PT3S import Mx: ImportError: ","trying import Mx instead ... maybe pip install -e . is active ...")) ... import Mx >>> try: ... from PT3S import Xm ... except ImportError: ... logger.debug("{0:s}{1:s}".format("DOCTEST: from PT3S import Xm: ImportError: ","trying import Xm instead ... maybe pip install -e . is active ...")) ... import Xm >>> # --- >>> # testDir >>> # --- >>> # globs={'testDir':'testdata'} >>> try: ... dummy= testDir ... except NameError: ... testDir='testdata' >>> # --- >>> # dotResolution >>> # --- >>> # globs={'dotResolution':''} >>> try: ... dummy= dotResolution ... except NameError: ... dotResolution='' >>> import pandas as pd >>> import matplotlib.pyplot as plt >>> pd.set_option('display.max_columns',None) >>> pd.set_option('display.width',666666666) >>> # --- >>> # LocalHeatingNetwork SETUP >>> # --- >>> xmlFile=os.path.join(os.path.join(path,testDir),'LocalHeatingNetwork.XML') >>> xm=Xm.Xm(xmlFile=xmlFile) >>> mx1File=os.path.join(path,os.path.join(testDir,'WDLocalHeatingNetwork\B1\V0\BZ1\M-1-0-1'+dotResolution+'.MX1')) >>> mx=Mx.Mx(mx1File=mx1File,NoH5Read=True,NoMxsRead=True) >>> mx.setResultsToMxsFile(NewH5Vec=True) 5 >>> xm.MxSync(mx=mx) >>> rm=Rm(xm=xm,mx=mx) >>> # --- >>> # Plot 3Classes False >>> # --- >>> plt.close('all') >>> ppi=72 # matplotlib default >>> dpi_screen=2*ppi >>> fig=plt.figure(dpi=dpi_screen,linewidth=1.) >>> timeDeltaToT=mx.df.index[2]-mx.df.index[0] >>> # 3Classes und FixedLimits sind standardmaessig Falsch; RefPerc ist standardmaessig Wahr >>> # die Belegung von MCategory gemaess FixedLimitsHigh/Low erfolgt immer ... >>> pFWVB=rm.pltNetDHUS(timeDeltaToT=timeDeltaToT,pFWVBMeasureCBFixedLimitHigh=0.80,pFWVBMeasureCBFixedLimitLow=0.66,pFWVBGCategory=['BLNZ1u5u7'],pVICsDf=pd.DataFrame({'Kundenname': ['VIC1'],'Knotenname': ['V-K007']})) >>> # --- >>> # Check pFWVB Return >>> # --- >>> f=lambda x: "{0:8.5f}".format(x) >>> print(pFWVB[['Measure','MCategory','GCategory','VIC']].round(2).to_string(formatters={'Measure':f})) Measure MCategory GCategory VIC 0 0.81000 Top BLNZ1u5u7 NaN 1 0.67000 Middle NaN 2 0.66000 Middle BLNZ1u5u7 NaN 3 0.66000 Bottom BLNZ1u5u7 VIC1 4 0.69000 Middle NaN >>> # --- >>> # Print >>> # --- >>> (wD,fileName)=os.path.split(xm.xmlFile) >>> (base,ext)=os.path.splitext(fileName) >>> plotFileName=wD+os.path.sep+base+'.'+'pdf' >>> if os.path.exists(plotFileName): ... os.remove(plotFileName) >>> plt.savefig(plotFileName,dpi=2*dpi_screen) >>> os.path.exists(plotFileName) True >>> # --- >>> # Plot 3Classes True >>> # --- >>> plt.close('all') >>> # FixedLimits wird automatisch auf Wahr gesetzt wenn 3Classes Wahr ... >>> pFWVB=rm.pltNetDHUS(timeDeltaToT=timeDeltaToT,pFWVBMeasure3Classes=True,pFWVBMeasureCBFixedLimitHigh=0.80,pFWVBMeasureCBFixedLimitLow=0.66) >>> # --- >>> # LocalHeatingNetwork Clean Up >>> # --- >>> if os.path.exists(mx.h5File): ... os.remove(mx.h5File) >>> if os.path.exists(mx.mxsZipFile): ... os.remove(mx.mxsZipFile) >>> if os.path.exists(mx.h5FileVecs): ... os.remove(mx.h5FileVecs) >>> if os.path.exists(plotFileName): ... os.remove(plotFileName) """ __version__='172.16.58.3.dev1' import warnings # 3.6 #...\Anaconda3\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. # from ._conv import register_converters as _register_converters warnings.simplefilter(action='ignore', category=FutureWarning) #C:\Users\Wolters\Anaconda3\lib\site-packages\matplotlib\cbook\deprecation.py:107: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. # warnings.warn(message, mplDeprecation, stacklevel=1) import matplotlib.cbook warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation) import os import sys import nbformat from nbconvert.preprocessors import ExecutePreprocessor from nbconvert.preprocessors.execute import CellExecutionError import timeit import xml.etree.ElementTree as ET import re import struct import collections import zipfile import pandas as pd import h5py from collections import namedtuple from operator import attrgetter import subprocess import warnings import tables import math import matplotlib.pyplot as plt from matplotlib import colors from matplotlib.colorbar import make_axes import matplotlib as mpl import matplotlib.gridspec as gridspec import matplotlib.dates as mdates from matplotlib import markers from matplotlib.path import Path from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.backends.backend_pdf import PdfPages import numpy as np import scipy import networkx as nx from itertools import chain import math import sys from copy import deepcopy from itertools import chain import scipy from scipy.signal import savgol_filter import logging # --- # --- PT3S Imports # --- logger = logging.getLogger('PT3S') if __name__ == "__main__": logger.debug("{0:s}{1:s}".format('in MODULEFILE: __main__ Context','.')) else: logger.debug("{0:s}{1:s}{2:s}{3:s}".format('in MODULEFILE: Not __main__ Context: ','__name__: ',__name__," .")) try: from PT3S import Mx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Mx - trying import Mx instead ... maybe pip install -e . is active ...')) import Mx try: from PT3S import Xm except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Xm - trying import Xm instead ... maybe pip install -e . is active ...')) import Xm try: from PT3S import Am except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Am - trying import Am instead ... maybe pip install -e . is active ...')) import Am try: from PT3S import Lx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Lx - trying import Lx instead ... maybe pip install -e . is active ...')) import Lx # --- # --- main Imports # --- import argparse import unittest import doctest import math from itertools import tee # --- Parameter Allgemein # ----------------------- DINA6 = (4.13 , 5.83) DINA5 = (5.83 , 8.27) DINA4 = (8.27 , 11.69) DINA3 = (11.69 , 16.54) DINA2 = (16.54 , 23.39) DINA1 = (23.39 , 33.11) DINA0 = (33.11 , 46.81) DINA6q = ( 5.83, 4.13) DINA5q = ( 8.27, 5.83) DINA4q = ( 11.69, 8.27) DINA3q = ( 16.54,11.69) DINA2q = ( 23.39,16.54) DINA1q = ( 33.11,23.39) DINA0q = ( 46.81,33.11) dpiSize=72 DINA4_x=8.2677165354 DINA4_y=11.6929133858 DINA3_x=DINA4_x*math.sqrt(2) DINA3_y=DINA4_y*math.sqrt(2) linestyle_tuple = [ ('loosely dotted', (0, (1, 10))), ('dotted', (0, (1, 1))), ('densely dotted', (0, (1, 1))), ('loosely dashed', (0, (5, 10))), ('dashed', (0, (5, 5))), ('densely dashed', (0, (5, 1))), ('loosely dashdotted', (0, (3, 10, 1, 10))), ('dashdotted', (0, (3, 5, 1, 5))), ('densely dashdotted', (0, (3, 1, 1, 1))), ('dashdotdotted', (0, (3, 5, 1, 5, 1, 5))), ('loosely dashdotdotted', (0, (3, 10, 1, 10, 1, 10))), ('densely dashdotdotted', (0, (3, 1, 1, 1, 1, 1)))] ylimpD=(-5,70) ylimpDmlc=(600,1350) #(300,1050) ylimQD=(-75,300) ylim3rdD=(0,3) yticks3rdD=[0,1,2,3] yGridStepsD=30 yticksALD=[0,3,4,10,20,30,40] ylimALD=(yticksALD[0],yticksALD[-1]) yticksRD=[0,2,4,10,15,30,45] ylimRD=(-yticksRD[-1],yticksRD[-1]) ylimACD=(-5,5) yticksACD=[-5,0,5] yticksTVD=[0,100,135,180,200,300] ylimTVD=(yticksTVD[0],yticksTVD[-1]) plotTVAmLabelD='TIMER u. AM [Sek. u. (N)m3*100]' def getDerivative(df,col,shiftSize=1,windowSize=60,fct=None,savgol_polyorder=None): """ returns a df df: the df col: the col of df to be derived shiftsize: the Difference between 2 indices for dValue and dt windowSize: size for rolling mean or window_length of savgol_filter; choosen filtertechnique is applied after fct windowsSize must be an even number for savgol_filter windowsSize-1 is used fct: function to be applied on dValue/dt savgol_polyorder: if not None savgol_filter is applied; pandas' rolling.mean() is applied otherwise new cols: dt (with shiftSize) dValue (from col) dValueDt (from col); fct applied dValueDtFiltered; choosen filtertechnique is applied """ mDf=df.dropna().copy(deep=True) try: dt=mDf.index.to_series().diff(periods=shiftSize) mDf['dt']=dt mDf['dValue']=mDf[col].diff(periods=shiftSize) mDf=mDf.iloc[shiftSize:] mDf['dValueDt']=mDf.apply(lambda row: row['dValue']/row['dt'].total_seconds(),axis=1) if fct != None: mDf['dValueDt']=mDf['dValueDt'].apply(fct) if savgol_polyorder == None: mDf['dValueDtFiltered']=mDf['dValueDt'].rolling(window=windowSize).mean() mDf=mDf.iloc[windowSize-1:] else: mDf['dValueDtFiltered']=savgol_filter(mDf['dValueDt'].values,windowSize-1, savgol_polyorder) mDf=mDf.iloc[windowSize/2+1+savgol_polyorder-1:] #mDf=mDf.iloc[windowSize-1:] except Exception as e: raise e finally: return mDf def fCVDNodesFromName(x): Nodes=x.replace('°','~') Nodes=Nodes.split('~') Nodes =[Node.lstrip().rstrip() for Node in Nodes if len(Node)>0] return Nodes def fgetMaxpMinFromName(CVDName,dfSegsNodesNDataDpkt): """ returns max. pMin for alle NODEs in CVDName """ nodeLst=fCVDNodesFromName(CVDName) df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['NODEsName'].isin(nodeLst)][['pMin','pMinMlc']] s=df.max() return s.pMin # --- Funktionen Allgemein # ----------------------- def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) def genTimespans(timeStart ,timeEnd ,timeSpan=pd.Timedelta('12 Minutes') ,timeOverlap=pd.Timedelta('0 Seconds') ,timeStartPraefix=pd.Timedelta('0 Seconds') ,timeEndPostfix=pd.Timedelta('0 Seconds') ): # generates timeSpan-Sections # if timeStart is # an int, it is considered as the number of desired Sections before timeEnd; timeEnd must be a time # a time, it is considered as timeStart # if timeEnd is # an int, it is considered as the number of desired Sections after timeStart; timeStart must be a time # a time, it is considered as timeEnd # if timeSpan is # an int, it is considered as the number of desired Sections # a time, it is considered as timeSpan # returns an array of tuples logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) xlims=[] try: if type(timeStart) == int: numOfDesiredSections=timeStart timeStartEff=timeEnd+timeEndPostfix-numOfDesiredSections*timeSpan+(numOfDesiredSections-1)*timeOverlap-timeStartPraefix else: timeStartEff=timeStart-timeStartPraefix logger.debug("{0:s}timeStartEff: {1:s}".format(logStr,str(timeStartEff))) if type(timeEnd) == int: numOfDesiredSections=timeEnd timeEndEff=timeStart-timeStartPraefix+numOfDesiredSections*timeSpan-(numOfDesiredSections-1)*timeOverlap+timeEndPostfix else: timeEndEff=timeEnd+timeEndPostfix logger.debug("{0:s}timeEndEff: {1:s}".format(logStr,str(timeEndEff))) if type(timeSpan) == int: numOfDesiredSections=timeSpan dt=timeEndEff-timeStartEff timeSpanEff=dt/numOfDesiredSections+(numOfDesiredSections-1)*timeOverlap else: timeSpanEff=timeSpan logger.debug("{0:s}timeSpanEff: {1:s}".format(logStr,str(timeSpanEff))) logger.debug("{0:s}timeOverlap: {1:s}".format(logStr,str(timeOverlap))) timeStartAct = timeStartEff while timeStartAct < timeEndEff: logger.debug("{0:s}timeStartAct: {1:s}".format(logStr,str(timeStartAct))) timeEndAct=timeStartAct+timeSpanEff xlim=(timeStartAct,timeEndAct) xlims.append(xlim) timeStartAct = timeEndAct - timeOverlap except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlims def gen2Timespans( timeStart # Anfang eines "Prozesses" ,timeEnd # Ende eines "Prozesses" ,timeSpan=pd.Timedelta('12 Minutes') ,timeStartPraefix=pd.Timedelta('0 Seconds') ,timeEndPostfix=pd.Timedelta('0 Seconds') ,roundStr=None # i.e. '5min': timeStart.round(roundStr) und timeEnd dito ): """ erzeugt 2 gleich lange Zeitbereiche 1 um timeStart herum 1 um timeEnd herum """ #print("timeStartPraefix: {:s}".format(str(timeStartPraefix))) #print("timeEndPostfix: {:s}".format(str(timeEndPostfix))) xlims=[] logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if roundStr != None: timeStart=timeStart.round(roundStr) timeEnd=timeEnd.round(roundStr) xlims.append((timeStart-timeStartPraefix,timeStart-timeStartPraefix+timeSpan)) xlims.append((timeEnd+timeEndPostfix-timeSpan,timeEnd+timeEndPostfix)) return xlims except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlims def fTotalTimeFromPairs( x ,denominator=None # i.e. pd.Timedelta('1 minute') for totalTime in Minutes ,roundToInt=True # round to and return as int if denominator is specified; else td is rounded by 2 ): tdTotal=pd.Timedelta('0 seconds') for idx,tPairs in enumerate(x): t1,t2=tPairs if idx==0: tLast=t2 else: if t1 <= tLast: print("Zeitpaar überlappt?!") td=t2-t1 if td < pd.Timedelta('1 seconds'): pass #print("Zeitpaar < als 1 Sekunde?!") tdTotal=tdTotal+td if denominator==None: return tdTotal else: td=tdTotal / denominator if roundToInt: td=int(round(td,0)) else: td=round(td,2) return td def findAllTimeIntervalls( df ,fct=lambda row: True if row['col'] == 46 else False ,tdAllowed=None ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) tPairs=[] try: rows,cols=df.shape if df.empty: logger.debug("{:s}df ist leer".format(logStr)) elif rows == 1: logger.debug("{:s}df hat nur 1 Zeile: {:s}".format(logStr,df.to_string())) rowValue=fct(df.iloc[0]) if rowValue: tPair=(df.index[0],df.index[0]) tPairs.append(tPair) else: pass else: tEin=None # paarweise über alle Zeilen for (i1, row1), (i2, row2) in pairwise(df.iterrows()): row1Value=fct(row1) row2Value=fct(row2) # wenn 1 nicht x und 2 x tEin=t2 "geht Ein" if not row1Value and row2Value: tEin=i2 # wenn 1 x und 2 nicht x tAus=t2 "geht Aus" elif row1Value and not row2Value: if tEin != None: # Paar speichern tPair=(tEin,i1) tPairs.append(tPair) else: pass # sonst: Bed. ist jetzt Aus und war nicht Ein # Bed. kann nur im ersten Fall Ein gehen # wenn 1 x und 2 x elif row1Value and row2Value: if tEin != None: pass else: # im ersten Wertepaar ist der Bereich Ein tEin=i1 # letztes Paar if row1Value and row2Value: if tEin != None: tPair=(tEin,i2) tPairs.append(tPair) if tdAllowed != None: tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs def findAllTimeIntervallsSeries( s=pd.Series() ,fct=lambda x: True if x == 46 else False ,tdAllowed=None # if not None all subsequent TimePairs with TimeDifference <= tdAllowed are combined to one TimePair ,debugOutput=True ): """ # if fct: # alle [Zeitbereiche] finden fuer die fct Wahr ist; diese Zeitbereiche werden geliefert; es werden nur Paare geliefert; Wahr-Solitäre gehen nicht verloren sondern werden als Paar (t,t) geliefert # Wahr-Solitäre sind NUR dann enthalten, wenn s nur 1 Wert enthält und dieser Wahr ist; das 1 gelieferte Paar enthaelt dann den Solitär-Zeitstempel für beide Zeiten # tdAllowed can be be specified # dann im Anschluss in Zeitbereiche zusammenfassen, die nicht mehr als tdAllowed auseinander liegen; diese Zeitbereiche werden dann geliefert # if fct None: # tdAllowed must be specified # in Zeitbereiche zerlegen, die nicht mehr als Schwellwert tdAllowed auseinander liegen; diese Zeitbereiche werden geliefert # generell hat jeder gelieferte Zeitbereich Anfang und Ende (d.h. 2 Zeiten), auch dann, wenn dadurch ein- oder mehrfach der Schwellwert ignoriert werden muss # denn es soll kein Zeitbereich verloren gehen, der in s enthalten ist # wenn s nur 1 Wert enthält, wird 1 Zeitpaar mit demselben Zeitstempel für beide Zeiten geliefert, wenn Wert nicht Null # returns array of Time-Pair-Tuples >>> import pandas as pd >>> t=pd.Timestamp('2021-03-19 01:02:00') >>> t1=t +pd.Timedelta('1 second') >>> t2=t1+pd.Timedelta('1 second') >>> t3=t2+pd.Timedelta('1 second') >>> t4=t3+pd.Timedelta('1 second') >>> t5=t4+pd.Timedelta('1 second') >>> t6=t5+pd.Timedelta('1 second') >>> t7=t6+pd.Timedelta('1 second') >>> d = {t1: 46, t2: 0} # geht aus - kein Paar >>> s1PaarGehtAus=pd.Series(data=d, index=[t1, t2]) >>> d = {t1: 0, t2: 46} # geht ein - kein Paar >>> s1PaarGehtEin=pd.Series(data=d, index=[t1, t2]) >>> d = {t5: 46, t6: 0} # geht ausE - kein Paar >>> s1PaarGehtAusE=pd.Series(data=d, index=[t5, t6]) >>> d = {t5: 0, t6: 46} # geht einE - kein Paar >>> s1PaarGehtEinE=pd.Series(data=d, index=[t5, t6]) >>> d = {t1: 46, t2: 46} # geht aus - ein Paar >>> s1PaarEin=pd.Series(data=d, index=[t1, t2]) >>> d = {t1: 0, t2: 0} # geht aus - kein Paar >>> s1PaarAus=pd.Series(data=d, index=[t1, t2]) >>> s2PaarAus=pd.concat([s1PaarGehtAus,s1PaarGehtAusE]) >>> s2PaarEin=pd.concat([s1PaarGehtEin,s1PaarGehtEinE]) >>> s2PaarAusEin=pd.concat([s1PaarGehtAus,s1PaarGehtEinE]) >>> s2PaarEinAus=pd.concat([s1PaarGehtEin,s1PaarGehtAusE]) >>> # 1 Wert >>> d = {t1: 46} # 1 Wert - Wahr >>> s1WertWahr=pd.Series(data=d, index=[t1]) >>> d = {t1: 44} # 1 Wert - Falsch >>> s1WertFalsch=pd.Series(data=d, index=[t1]) >>> d = {t1: None} # 1 Wert - None >>> s1WertNone=pd.Series(data=d, index=[t1]) >>> ### >>> # 46 0 >>> # 0 46 >>> # 0 0 >>> # 46 46 !1 Paar >>> # 46 0 46 0 >>> # 46 0 0 46 >>> # 0 46 0 46 >>> # 0 46 46 0 !1 Paar >>> ### >>> findAllTimeIntervallsSeries(s1PaarGehtAus) [] >>> findAllTimeIntervallsSeries(s1PaarGehtEin) [] >>> findAllTimeIntervallsSeries(s1PaarEin) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarAus) [] >>> findAllTimeIntervallsSeries(s2PaarAus) [] >>> findAllTimeIntervallsSeries(s2PaarEin) [] >>> findAllTimeIntervallsSeries(s2PaarAusEin) [] >>> findAllTimeIntervallsSeries(s2PaarEinAus) [(Timestamp('2021-03-19 01:02:02'), Timestamp('2021-03-19 01:02:05'))] >>> # 1 Wert >>> findAllTimeIntervallsSeries(s1WertWahr) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:01'))] >>> findAllTimeIntervallsSeries(s1WertFalsch) [] >>> ### >>> # 46 0 !1 Paar >>> # 0 46 !1 Paar >>> # 0 0 !1 Paar >>> # 46 46 !1 Paar >>> # 46 0 46 0 !2 Paare >>> # 46 0 0 46 !2 Paare >>> # 0 46 0 46 !2 Paare >>> # 0 46 46 0 !2 Paare >>> ### >>> findAllTimeIntervallsSeries(s1PaarGehtAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarGehtEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s2PaarAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarAusEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarEinAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> # 1 Wert >>> findAllTimeIntervallsSeries(s1WertWahr,fct=None) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:01'))] >>> findAllTimeIntervallsSeries(s1WertNone,fct=None) [] >>> ### >>> d = {t1: 0, t3: 0} >>> s1PaarmZ=pd.Series(data=d, index=[t1, t3]) >>> findAllTimeIntervallsSeries(s1PaarmZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:03'))] >>> d = {t4: 0, t5: 0} >>> s1PaaroZ=pd.Series(data=d, index=[t4, t5]) >>> s2PaarmZoZ=pd.concat([s1PaarmZ,s1PaaroZ]) >>> findAllTimeIntervallsSeries(s2PaarmZoZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:05'))] >>> ### >>> d = {t1: 0, t2: 0} >>> s1PaaroZ=pd.Series(data=d, index=[t1, t2]) >>> d = {t3: 0, t5: 0} >>> s1PaarmZ=pd.Series(data=d, index=[t3, t5]) >>> s2PaaroZmZ=pd.concat([s1PaaroZ,s1PaarmZ]) >>> findAllTimeIntervallsSeries(s2PaaroZmZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:05'))] >>> ### >>> d = {t6: 0, t7: 0} >>> s1PaaroZ2=pd.Series(data=d, index=[t6, t7]) >>> d = {t4: 0} >>> solitaer=pd.Series(data=d, index=[t4]) >>> s5er=pd.concat([s1PaaroZ,solitaer,s1PaaroZ2]) >>> findAllTimeIntervallsSeries(s5er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:04'), Timestamp('2021-03-19 01:02:07'))] >>> s3er=pd.concat([s1PaaroZ,solitaer]) >>> findAllTimeIntervallsSeries(s3er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:04'))] >>> s3er=pd.concat([solitaer,s1PaaroZ2]) >>> findAllTimeIntervallsSeries(s3er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:04'), Timestamp('2021-03-19 01:02:07'))] """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) tPairs=[] try: if s.empty: logger.debug("{:s}Series {!s:s} ist leer".format(logStr,s.name)) elif s.size == 1: logger.debug("{:s}Series {!s:s} hat nur 1 Element: {:s}".format(logStr,s.name,s.to_string())) if fct != None: # 1 Paar mit selben Zeiten wenn das 1 Element Wahr sValue=fct(s.iloc[0]) if sValue: tPair=(s.index[0],s.index[0]) tPairs.append(tPair) else: pass else: # 1 Paar mit selben Zeiten wenn das 1 Element nicht None sValue=s.iloc[0] if sValue != None: tPair=(s.index[0],s.index[0]) tPairs.append(tPair) else: pass else: tEin=None if fct != None: # paarweise über alle Zeiten for idx,((i1, s1), (i2, s2)) in enumerate(pairwise(s.iteritems())): s1Value=fct(s1) s2Value=fct(s2) # wenn 1 nicht x und 2 x tEin=t2 "geht Ein" if not s1Value and s2Value: tEin=i2 if idx > 0: # Info pass else: # beim ersten Paar "geht Ein" pass # wenn 1 x und 2 nicht x tAus=t2 "geht Aus" elif s1Value and not s2Value: if tEin != None: if tEin<i1: # Paar speichern tPair=(tEin,i1) tPairs.append(tPair) else: # singulaeres Ereignis # Paar mit selben Zeiten tPair=(tEin,i1) tPairs.append(tPair) pass else: # geht Aus ohne Ein zu sein if idx > 0: # Info pass else: # im ersten Paar pass # wenn 1 x und 2 x elif s1Value and s2Value: if tEin != None: pass else: # im ersten Wertepaar ist der Bereich Ein tEin=i1 # Behandlung letztes Paar # bleibt Ein am Ende der Series: Paar speichern if s1Value and s2Value: if tEin != None: tPair=(tEin,i2) tPairs.append(tPair) # Behandlung tdAllowed if tdAllowed != None: if debugOutput: logger.debug("{:s}Series {!s:s}: Intervalle werden mit {!s:s} zusammengefasst ...".format(logStr,s.name,tdAllowed)) tPairsOld=tPairs.copy() tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed,debugOutput=debugOutput) if debugOutput: tPairsZusammengefasst=sorted(list(set(tPairsOld) - set(tPairs))) if len(tPairsZusammengefasst)>0: logger.debug("{:s}Series {!s:s}: Intervalle wurden wg. {!s:s} zusammengefasst. Nachfolgend die zusgefassten Intervalle: {!s:s}. Sowie die entsprechenden neuen: {!s:s}".format( logStr ,s.name ,tdAllowed ,tPairsZusammengefasst ,sorted(list(set(tPairs) - set(tPairsOld))) )) else: # paarweise über alle Zeiten # neues Paar beginnen anzInPair=1 # Anzahl der Zeiten in aktueller Zeitspanne for (i1, s1), (i2, s2) in pairwise(s.iteritems()): td=i2-i1 if td > tdAllowed: # Zeit zwischen 2 Zeiten > als Schwelle: Zeitspanne ist abgeschlossen if tEin==None: # erstes Paar liegt bereits > als Schwelle auseinander # Zeitspannenabschluss wird ignoriert, denn sonst Zeitspanne mit nur 1 Wert # aktuelle Zeitspanne beginnt beim 1. Wert und geht über Schwellwert tEin=i1 anzInPair=2 else: if anzInPair>=2: # Zeitspanne abschließen tPair=(tEin,i1) tPairs.append(tPair) # neue Zeitspanne beginnen tEin=i2 anzInPair=1 else: # Zeitspannenabschluss wird ignoriert, denn sonst Zeitspanne mit nur 1 Wert anzInPair=2 else: # Zeitspanne zugelassen, weiter ... if tEin==None: tEin=i1 anzInPair=anzInPair+1 # letztes Zeitpaar behandeln if anzInPair>=2: tPair=(tEin,i2) tPairs.append(tPair) else: # ein letzter Wert wuerde ueber bleiben, letzte Zeitspanne verlängern ... tPair=tPairs[-1] tPair=(tPair[0],i2) tPairs[-1]=tPair except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs def fCombineSubsequenttPairs( tPairs ,tdAllowed=pd.Timedelta('1 second') # all subsequent TimePairs with TimeDifference <= tdAllowed are combined to one TimePair ,debugOutput=False ): # returns tPairs logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: for idx,(tp1,tp2) in enumerate(pairwise(tPairs)): t1Ende=tp1[1] t2Start=tp2[0] if t2Start-t1Ende <= tdAllowed: if debugOutput: logger.debug("{:s} t1Ende: {!s:s} t2Start: {!s:s} Gap: {!s:s}".format(logStr,t1Ende,t2Start,t2Start-t1Ende)) tPairs[idx]=(tp1[0],tp2[1]) # Folgepaar in vorheriges Paar integrieren tPairs.remove(tp2) # Folgepaar löschen tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed) # Rekursion except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs class RmError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) AlarmEvent = namedtuple('alarmEvent','tA,tE,ZHKNR,LDSResBaseType') # --- Parameter und Funktionen LDS Reports # ---------------------------------------- def pltMakeCategoricalColors(color,nOfSubColorsReq=3,reversedOrder=False): """ Returns an array of rgb colors derived from color. Parameter: color: a rgb color nOfSubColorsReq: number of SubColors requested Raises: RmError >>> import matplotlib >>> color='red' >>> c=list(matplotlib.colors.to_rgb(color)) >>> import Rm >>> Rm.pltMakeCategoricalColors(c) array([[1. , 0. , 0. ], [1. , 0.375, 0.375], [1. , 0.75 , 0.75 ]]) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) rgb=None try: chsv = matplotlib.colors.rgb_to_hsv(color[:3]) arhsv = np.tile(chsv,nOfSubColorsReq).reshape(nOfSubColorsReq,3) arhsv[:,1] = np.linspace(chsv[1],0.25,nOfSubColorsReq) arhsv[:,2] = np.linspace(chsv[2],1,nOfSubColorsReq) rgb = matplotlib.colors.hsv_to_rgb(arhsv) if reversedOrder: rgb=list(reversed(rgb)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return rgb # Farben fuer Druecke SrcColorp='green' SrcColorsp=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SrcColorp)),nOfSubColorsReq=4,reversedOrder=False) # erste Farbe ist Original-Farbe SnkColorp='blue' SnkColorsp=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SnkColorp)),nOfSubColorsReq=4,reversedOrder=True) # letzte Farbe ist Original-Farbe # Farben fuer Fluesse SrcColorQ='red' SrcColorsQ=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SrcColorQ)),nOfSubColorsReq=4,reversedOrder=False) # erste Farbe ist Original-Farbe SnkColorQ='orange' SnkColorsQ=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SnkColorQ)),nOfSubColorsReq=4,reversedOrder=True) # letzte Farbe ist Original-Farbe lwBig=4.5 lwSmall=2.5 attrsDct={ 'p Src':{'color':SrcColorp,'lw':lwBig,'where':'post'} ,'p Snk':{'color':SnkColorp,'lw':lwSmall+1.,'where':'post'} ,'p Snk 2':{'color':'mediumorchid','where':'post'} ,'p Snk 3':{'color':'darkviolet','where':'post'} ,'p Snk 4':{'color':'plum','where':'post'} ,'Q Src':{'color':SrcColorQ,'lw':lwBig,'where':'post'} ,'Q Snk':{'color':SnkColorQ,'lw':lwSmall+1.,'where':'post'} ,'Q Snk 2':{'color':'indianred','where':'post'} ,'Q Snk 3':{'color':'coral','where':'post'} ,'Q Snk 4':{'color':'salmon','where':'post'} ,'Q Src RTTM':{'color':SrcColorQ,'lw':matplotlib.rcParams['lines.linewidth']+1.,'ls':'dotted','where':'post'} ,'Q Snk RTTM':{'color':SnkColorQ,'lw':matplotlib.rcParams['lines.linewidth'] ,'ls':'dotted','where':'post'} ,'Q Snk 2 RTTM':{'color':'indianred','ls':'dotted','where':'post'} ,'Q Snk 3 RTTM':{'color':'coral','ls':'dotted','where':'post'} ,'Q Snk 4 RTTM':{'color':'salmon','ls':'dotted','where':'post'} ,'p ISrc 1':{'color':SrcColorsp[-1],'ls':'dashdot','where':'post'} ,'p ISrc 2':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 3':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} # ab hier selbe Farbe ,'p ISrc 4':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 5':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 6':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISnk 1':{'color':SnkColorsp[0],'ls':'dashdot','where':'post'} ,'p ISnk 2':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 3':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} # ab hier selbe Farbe ,'p ISnk 4':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 5':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 6':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'Q xSrc 1':{'color':SrcColorsQ[-1],'ls':'dashdot','where':'post'} ,'Q xSrc 2':{'color':SrcColorsQ[-2],'ls':'dashdot','where':'post'} ,'Q xSrc 3':{'color':SrcColorsQ[-3],'ls':'dashdot','where':'post'} ,'Q xSnk 1':{'color':SnkColorsQ[0],'ls':'dashdot','where':'post'} ,'Q xSnk 2':{'color':SnkColorsQ[1],'ls':'dashdot','where':'post'} ,'Q xSnk 3':{'color':SnkColorsQ[2],'ls':'dashdot','where':'post'} ,'Q (DE) Me':{'color': 'indigo','ls': 'dashdot','where': 'post','lw':1.5} ,'Q (DE) Re':{'color': 'cyan','ls': 'dashdot','where': 'post','lw':3.5} ,'p (DE) SS Me':{'color': 'magenta','ls': 'dashdot','where': 'post'} ,'p (DE) DS Me':{'color': 'darkviolet','ls': 'dashdot','where': 'post'} ,'p (DE) SS Re':{'color': 'magenta','ls': 'dotted','where': 'post'} ,'p (DE) DS Re':{'color': 'darkviolet','ls': 'dotted','where': 'post'} ,'p OPC LDSErgV':{'color':'olive' ,'lw':lwSmall-.5 ,'ms':matplotlib.rcParams['lines.markersize'] ,'marker':'x' ,'mec':'olive' ,'mfc':'olive' ,'where':'post'} ,'p OPC Src':{'color':SrcColorp ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SrcColorp ,'mfc':SrcColorQ ,'where':'post'} ,'p OPC Snk':{'color':SnkColorp ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SnkColorp ,'mfc':SnkColorQ ,'where':'post'} ,'Q OPC Src':{'color':SrcColorQ ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SrcColorQ ,'mfc':SrcColorp ,'where':'post'} ,'Q OPC Snk':{'color':SnkColorQ ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SnkColorQ ,'mfc':SnkColorp ,'where':'post'} } attrsDctLDS={ 'Seg_AL_S_Attrs':{'color':'blue','lw':3.,'where':'post'} ,'Druck_AL_S_Attrs':{'color':'blue','lw':3.,'ls':'dashed','where':'post'} ,'Seg_MZ_AV_Attrs':{'color':'orange','zorder':3,'where':'post'} ,'Druck_MZ_AV_Attrs':{'color':'orange','zorder':3,'ls':'dashed','where':'post'} ,'Seg_LR_AV_Attrs':{'color':'green','zorder':1,'where':'post'} ,'Druck_LR_AV_Attrs':{'color':'green','zorder':1,'ls':'dashed','where':'post'} ,'Seg_LP_AV_Attrs':{'color':'turquoise','zorder':0,'lw':1.50,'where':'post'} ,'Druck_LP_AV_Attrs':{'color':'turquoise','zorder':0,'lw':1.50,'ls':'dashed','where':'post'} ,'Seg_NG_AV_Attrs':{'color':'red','zorder':2,'where':'post'} ,'Druck_NG_AV_Attrs':{'color':'red','zorder':2,'ls':'dashed','where':'post'} ,'Seg_SB_S_Attrs':{'color':'black','alpha':.5,'where':'post'} ,'Druck_SB_S_Attrs':{'color':'black','ls':'dashed','alpha':.75,'where':'post','lw':1.0} ,'Seg_AC_AV_Attrs':{'color':'indigo','where':'post'} ,'Druck_AC_AV_Attrs':{'color':'indigo','ls':'dashed','where':'post'} ,'Seg_ACF_AV_Attrs':{'color':'blueviolet','where':'post','lw':1.0} ,'Druck_ACF_AV_Attrs':{'color':'blueviolet','ls':'dashed','where':'post','lw':1.0} ,'Seg_ACC_Limits_Attrs':{'color':'indigo','ls':linestyle_tuple[2][1]} # 'densely dotted' ,'Druck_ACC_Limits_Attrs':{'color':'indigo','ls':linestyle_tuple[8][1]} # 'densely dashdotted' ,'Seg_TIMER_AV_Attrs':{'color':'chartreuse','where':'post'} ,'Druck_TIMER_AV_Attrs':{'color':'chartreuse','ls':'dashed','where':'post'} ,'Seg_AM_AV_Attrs':{'color':'chocolate','where':'post'} ,'Druck_AM_AV_Attrs':{'color':'chocolate','ls':'dashed','where':'post'} # ,'Seg_DPDT_REF_Attrs':{'color':'violet','ls':linestyle_tuple[2][1]} # 'densely dotted' ,'Druck_DPDT_REF_Attrs':{'color':'violet','ls':linestyle_tuple[8][1]} # 'densely dashdotted' ,'Seg_DPDT_AV_Attrs':{'color':'fuchsia','where':'post','lw':2.0} ,'Druck_DPDT_AV_Attrs':{'color':'fuchsia','ls':'dashed','where':'post','lw':2.0} ,'Seg_QM16_AV_Attrs':{'color':'sandybrown','ls':linestyle_tuple[6][1],'where':'post','lw':1.0} # 'loosely dashdotted' ,'Druck_QM16_AV_Attrs':{'color':'sandybrown','ls':linestyle_tuple[10][1],'where':'post','lw':1.0} # 'loosely dashdotdotted' } pSIDEvents=re.compile('(?P<Prae>IMDI\.)?Objects\.(?P<colRegExMiddle>3S_FBG_ESCHIEBER|FBG_ESCHIEBER{1})\.(3S_)?(?P<colRegExSchieberID>[a-z,A-Z,0-9,_]+)\.(?P<colRegExEventID>(In\.ZUST|In\.LAEUFT|In\.LAEUFT_NICHT|In\.STOER|Out\.AUF|Out\.HALT|Out\.ZU)$)') # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren eventCCmds={ 'Out.AUF':0 ,'Out.ZU':1 ,'Out.HALT':2} eventCStats={'In.LAEUFT':3 ,'In.LAEUFT_NICHT':4 ,'In.ZUST':5 ,'Out.AUF':6 ,'Out.ZU':7 ,'Out.HALT':8 ,'In.STOER':9} valRegExMiddleCmds='3S_FBG_ESCHIEBER' # colRegExMiddle-Auspraegung fuer Befehle (==> eventCCmds) LDSParameter=[ 'ACC_SLOWTRANSIENT' ,'ACC_TRANSIENT' ,'DESIGNFLOW' ,'DT' ,'FILTERWINDOW' #,'L_PERCENT' ,'L_PERCENT_STDY' ,'L_PERCENT_STRAN' ,'L_PERCENT_TRANS' ,'L_SHUTOFF' ,'L_SLOWTRANSIENT' ,'L_SLOWTRANSIENTQP' ,'L_STANDSTILL' ,'L_STANDSTILLQP' ,'L_TRANSIENT' ,'L_TRANSIENTQP' ,'L_TRANSIENTVBIGF' ,'L_TRANSIENTPDNTF' ,'MEAN' ,'NAME' ,'ORDER' ,'TIMER' ,'TTIMERTOALARM' ,'TIMERTOLISS' ,'TIMERTOLIST' ] LDSParameterDataD={ 'ACC_SLOWTRANSIENT':0.1 ,'ACC_TRANSIENT':0.8 ,'DESIGNFLOW':250. ,'DT':1 ,'FILTERWINDOW':180 #,'L_PERCENT':1.6 ,'L_PERCENT_STDY':1.6 ,'L_PERCENT_STRAN':1.6 ,'L_PERCENT_TRANS':1.6 ,'L_SHUTOFF':2. ,'L_SLOWTRANSIENT':4. ,'L_SLOWTRANSIENTQP':4. ,'L_STANDSTILL':2. ,'L_STANDSTILLQP':2. ,'L_TRANSIENT':10. ,'L_TRANSIENTQP':10. ,'L_TRANSIENTVBIGF':3. ,'L_TRANSIENTPDNTF':1.5 ,'MEAN':1 ,'ORDER':1 ,'TIMER':180 ,'TTIMERTOALARM':45 # TIMER/4 ,'TIMERTOLISS':180 ,'TIMERTOLIST':180 ,'NAME':'' } def fSEGNameFromPV_2(Beschr): # fSEGNameFromSWVTBeschr # 2,3,4,5 if Beschr in ['',None]: return None m=re.search(Lx.pID,Beschr) if m == None: return Beschr return m.group('C2')+'_'+m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5') def fSEGNameFromPV_3(PV): # fSEGNameFromPV # ... m=re.search(Lx.pID,PV) return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') def fSEGNameFromPV_3m(PV): # fSEGNameFromPV # ... m=re.search(Lx.pID,PV) #print("C4: {:s} C6: {:s}".format(m.group('C4'),m.group('C6'))) if m.group('C4')=='AAD' and m.group('C6')=='_OHN': return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+'_OHV1' elif m.group('C4')=='OHN' and m.group('C6')=='_NGD': return m.group('C3')+'_'+'OHV2'+'_'+m.group('C5')+m.group('C6') else: return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') # Ableitung eines DIVPipelineNamens von PV def fDIVNameFromPV(PV): m=re.search(Lx.pID,PV) return m.group('C2')+'-'+m.group('C4') # Ableitung eines DIVPipelineNamens von SEGName def fDIVNameFromSEGName(SEGName): if pd.isnull(SEGName): return None # dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(1)+'_'+re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(3) ) m=re.search('(\d+)_(\w+)_(\w+)_(\w+)',SEGName) if m == None: return SEGName return m.group(1)+'_'+m.group(3) #def getNamesFromOPCITEM_ID(dfSegsNodesNDataDpkt # ,OPCITEM_ID): # """ # Returns tuple (DIVPipelineName,SEGName) from OPCITEM_ID PH # """ # df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['OPCITEM_ID']==OPCITEM_ID] # if not df.empty: # return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0]) def fGetBaseIDFromResID( ID='Objects.3S_XXX_DRUCK.3S_6_BNV_01_PTI_01.In.MW.value' ): """ Returns 'Objects.3S_XXX_DRUCK.3S_6_BNV_01_PTI_01.In.' funktioniert im Prinzip fuer SEG- und Druck-Ergs: jede Erg-PV eines Vektors liefert die Basis gueltig fuer alle Erg-PVs des Vektors d.h. die Erg-PVs eines Vektors unterscheiden sich nur hinten siehe auch fGetSEGBaseIDFromSEGName """ if pd.isnull(ID): return None m=re.search(Lx.pID,ID) if m == None: return None try: base=m.group('A')+'.'+m.group('B')\ +'.'+m.group('C1')\ +'_'+m.group('C2')\ +'_'+m.group('C3')\ +'_'+m.group('C4')\ +'_'+m.group('C5')\ +m.group('C6') #print(m.groups()) #print(m.groupdict()) if 'C7' in m.groupdict().keys(): if m.group('C7') != None: base=base+m.group('C7') base=base+'.'+m.group('D')\ +'.' #print(base) except: base=m.group(0)+' (Fehler in fGetBaseIDFromResID)' return base def fGetSEGBaseIDFromSEGName( SEGName='6_AAD_41_OHV1' ): """ Returns 'Objects.3S_FBG_SEG_INFO.3S_L_'+SEGName+'.In.' In some cases SEGName is manipulated ... siehe auch fGetBaseIDFromResID """ if SEGName == '6_AAD_41_OHV1': x='6_AAD_41_OHN' elif SEGName == '6_OHV2_41_NGD': x='6_OHN_41_NGD' else: x=SEGName return 'Objects.3S_FBG_SEG_INFO.3S_L_'+x+'.In.' def getNamesFromSEGResIDBase(dfSegsNodesNDataDpkt ,SEGResIDBase): """ Returns tuple (DIVPipelineName,SEGName) from SEGResIDBase """ df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGResIDBase']==SEGResIDBase] if not df.empty: return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0]) def getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt ,DruckResIDBase): """ Returns tuple (DIVPipelineName,SEGName,SEGResIDBase,SEGOnlyInLDSPara) from DruckResIDBase """ df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['DruckResIDBase']==DruckResIDBase] if not df.empty: #return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0],df['SEGResIDBase'].iloc[0]) tupleLst=[] for index,row in df.iterrows(): tupleItem=(row['DIVPipelineName'],row['SEGName'],row['SEGResIDBase'],row['SEGOnlyInLDSPara']) tupleLst.append(tupleItem) return tupleLst else: return [] def fGetErgIDsFromBaseID( baseID='Objects.3S_FBG_SEG_INFO.3S_L_6_BUV_01_BUA.In.' ,dfODI=pd.DataFrame() # df mit ODI Parametrierungsdaten ,strSep=' ' ,patternPat='^IMDI.' # ,pattern=True # nur ergIDs, fuer die 2ndPatternPat zutrifft liefern ): """ returns string mit strSep getrennten IDs aus dfODI, welche baseID enthalten (und bei pattern WAHR patternPat matchen) baseID (und group(0) von patternPat bei pattern WAHR) sind in den IDs entfernt """ if baseID in [None,'']: return None df=dfODI[dfODI.index.str.contains(baseID)] if df.empty: return None if pattern: ergIDs=''.join([e.replace(baseID,'').replace(re.search(patternPat,e).group(0),'')+' ' for e in df.index if re.search(patternPat,e) != None]) else: ergIDs=''.join([e.replace(baseID,'')+' ' for e in df.index if re.search(patternPat,e) == None]) return ergIDs def dfSegsNodesNDataDpkt( VersionsDir=r"C:\3s\Projekte\Projekt\04 - Versionen\Version82.3" ,Model=r"MDBDOC\FBG.mdb" # a Access Model ,am=None # a Access Model already processed ,SEGsDefPattern='(?P<SEG_Ki>\S+)~(?P<SEG_Kk>\S+)$' # RSLW-Beschreibung: liefert die Knotennamen der Segmentdefinition () ,RIDefPattern='(?P<Prae>\S+)\.(?P<Post>RICHT.S)$' # SWVT-Beschreibung (RICHT-DP): liefert u.a. SEGName ,fSEGNameFromPV_2=fSEGNameFromPV_2 # Funktion, die von SWVT-Beschreibung (RICHT-DP) u.a. SEGName liefert ,fGetBaseIDFromResID=fGetBaseIDFromResID # Funktion, die von OPCITEM-ID des PH-Kanals eines KNOTens den Wortstamm der Knotenergebnisse liefert ,fGetSEGBaseIDFromSEGName=fGetSEGBaseIDFromSEGName # Funktion, die aus SEGName den Wortstamm der Segmentergebnisse liefert ,LDSPara=r"App LDS\Modelle\WDFBG\B1\V0\BZ1\LDS_Para.xml" ,LDSParaPT=r"App LDS\SirOPC\AppLDS_DPDTParams.csv" ,ODI=r"App LDS\SirOPC\AppLDS_ODI.csv" ,LDSParameter=LDSParameter ,LDSParameterDataD=LDSParameterDataD ): """ alle Segmente mit Pfaddaten (Kantenzuege) mit Kanten- und Knotendaten sowie Parametrierungsdaten returns df: DIVPipelineName SEGName SEGNodes (Ki~Kk; Schluessel in LDSPara) SEGOnlyInLDSPara NODEsRef NODEsRef_max NODEsSEGLfdNr NODEsSEGLfdNrType NODEsName OBJTYPE ZKOR Blockname ATTRTYPE (PH) CLIENT_ID OPCITEM_ID NAME (der DPKT-Gruppe) DruckResIDBase SEGResIDBase SEGResIDs SEGResIDsIMDI DruckResIDs DruckResIDsIMDI NODEsSEGDruckErgLfdNr # LDSPara ACC_SLOWTRANSIENT ACC_TRANSIENT DESIGNFLOW DT FILTERWINDOW L_PERCENT_STDY L_PERCENT_STRAN L_PERCENT_TRANS L_SHUTOFF L_SLOWTRANSIENT L_SLOWTRANSIENTQP L_STANDSTILL L_STANDSTILLQP L_TRANSIENT L_TRANSIENTPDNTF L_TRANSIENTQP L_TRANSIENTVBIGF MEAN ORDER TIMER TIMERTOLISS TIMERTOLIST TTIMERTOALARM # LDSParaPT #ID pMin DT_Vorhaltemass TTimer_PMin Faktor_PMin MaxL_PMin pMinMlc pMinMlcMinSEG pMinMlcMaxSEG """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfSegsNodesNDataDpkt=pd.DataFrame() try: ###### --- LDSPara LDSParaFile=os.path.join(VersionsDir,LDSPara) logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'LDSPara',LDSPara)) with open(LDSParaFile) as f: xml = f.read() xmlWellFormed='<root>'+xml+'</root>' root=ET.fromstring(xmlWellFormed) LDSParameterData={} for key in LDSParameterDataD.keys(): LDSParameterData[key]=[] logger.debug("{:s}LDSParameter: {!s:s}.".format(logStr,LDSParameter)) for idx,element in enumerate(root.iter(tag='LDSI')): attribKeysMute=[] for key,value in element.attrib.items(): if key not in LDSParameter: logger.warning("{:s}{:s}: Parameter: {:s} undefiniert.".format(logStr,element.attrib['NAME'],key)) attribKeysMute.append(key) keysIst=element.attrib.keys() keysSoll=set(LDSParameter) keysExplizitFehlend=keysSoll-keysIst LDSIParaDct=element.attrib for key in keysExplizitFehlend: if key=='ORDER': LDSIParaDct[key]=LDSParameterDataD[key] logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) elif key=='TTIMERTOALARM': LDSIParaDct[key]=int(LDSIParaDct['TIMER'])/4 logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) else: LDSIParaDct[key]=LDSParameterDataD[key] logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) keyListToProcess=[key for key in LDSIParaDct.keys() if key not in attribKeysMute] for key in keyListToProcess: LDSParameterData[key].append(LDSIParaDct[key]) df=pd.DataFrame.from_dict(LDSParameterData) df=df.set_index('NAME').sort_index() df.index.rename('SEGMENT', inplace=True) df=df[sorted(df.columns.to_list())] df = df.apply(pd.to_numeric) #logger.debug("{:s}df: {:s}".format(logStr,df.to_string())) logger.debug("{:s}Parameter, die nicht auf Standardwerten sind:".format(logStr)) for index, row in df.iterrows(): for colName, colValue in zip(df.columns.to_list(),row): if colValue != LDSParameterDataD[colName]: logger.debug("Segment: {:30s}: Parameter: {:20s} Wert: {:10s} (Standard: {:s})".format(index,colName,str(colValue),str(LDSParameterDataD[colName]))) dfPara=df # --- Einlesen Modell if am == None: accFile=os.path.join(VersionsDir,Model) logger.info("{:s}###### {:10s}: {:s}: Lesen und verarbeiten ...".format(logStr,'Modell',Model)) am=Am.Am(accFile=accFile) V_BVZ_RSLW=am.dataFrames['V_BVZ_RSLW'] V_BVZ_SWVT=am.dataFrames['V_BVZ_SWVT'] V3_KNOT=am.dataFrames['V3_KNOT'] V3_VBEL=am.dataFrames['V3_VBEL'] V3_DPKT=am.dataFrames['V3_DPKT'] V3_RSLW_SWVT=am.dataFrames['V3_RSLW_SWVT'] # --- Segmente ermitteln # --- per Modell SEGsDefinesPerRICHT=V3_RSLW_SWVT[ (V3_RSLW_SWVT['BESCHREIBUNG'].str.match(SEGsDefPattern).isin([True])) # Muster Ki~Kk ... & #! (V3_RSLW_SWVT['BESCHREIBUNG_SWVT'].str.match(RIDefPattern).isin([True])) # Muster Förderrichtungs-PV ... ].copy(deep=True) SEGsDefinesPerRICHT=SEGsDefinesPerRICHT[['BESCHREIBUNG','BESCHREIBUNG_SWVT']] # --- nur per LDS Para lSEGOnlyInLDSPara=[str(SEGNodes) for SEGNodes in dfPara.index if str(SEGNodes) not in SEGsDefinesPerRICHT['BESCHREIBUNG'].values] for SEGNodes in lSEGOnlyInLDSPara: logger.warning("{:s}LDSPara SEG {:s} ist nicht Modell-definiert!".format(logStr,SEGNodes)) # --- zusammenfassen SEGsDefines=pd.concat([SEGsDefinesPerRICHT,pd.DataFrame(lSEGOnlyInLDSPara,columns=['BESCHREIBUNG'])]) # Knotennamen der SEGDef ergänzen df=SEGsDefines['BESCHREIBUNG'].str.extract(SEGsDefPattern,expand=True) dfCols=df.columns.to_list() SEGsDefines=pd.concat([SEGsDefines,df],axis=1) # ausduennen SEGsDefines=SEGsDefines[dfCols+['BESCHREIBUNG_SWVT','BESCHREIBUNG']] # sortieren SEGsDefines=SEGsDefines.sort_values(by=['BESCHREIBUNG_SWVT','BESCHREIBUNG']).reset_index(drop=True) # SEGName SEGsDefines['BESCHREIBUNG_SWVT']=SEGsDefines.apply(lambda row: row['BESCHREIBUNG_SWVT'] if not pd.isnull(row['BESCHREIBUNG_SWVT']) else row['BESCHREIBUNG'] ,axis=1) #print(SEGsDefines) SEGsDefines['SEGName']=SEGsDefines['BESCHREIBUNG_SWVT'].apply(lambda x: fSEGNameFromPV_2(x)) # --- Segmentkantenzuege ermitteln dfSegsNodeLst={} # nur zu Kontrollzwecken dfSegsNode=[] for index,row in SEGsDefines[~SEGsDefines[dfCols[-1]].isnull()].iterrows(): df=Xm.Xm.constructShortestPathFromNodeList(df=V3_VBEL.reset_index() ,sourceCol='NAME_i' ,targetCol='NAME_k' ,nl=[row[dfCols[0]],row[dfCols[-1]]] ,weight=None,query=None,fmask=None,filterNonQ0Rows=True) s=pd.concat([pd.Series([row[dfCols[0]]]),df['nextNODE']]) s.name=row['SEGName'] dfSegsNodeLst[row['SEGName']]=s.reset_index(drop=True) df2=pd.DataFrame(s.reset_index(drop=True)).rename(columns={s.name:'NODEs'}) df2['SEGName']=s.name df2=df2[['SEGName','NODEs']] sObj=pd.concat([pd.Series(['None']),df['OBJTYPE']]) sObj.name='OBJTYPE' df3=pd.concat([df2,pd.DataFrame(sObj.reset_index(drop=True))],axis=1) df4=df3.reset_index().rename(columns={'index':'NODEsLfdNr','NODEs':'NODEsName'})[['SEGName','NODEsLfdNr','NODEsName','OBJTYPE']] df4['NODEsType']=df4.apply(lambda row: row['NODEsLfdNr'] if row['NODEsLfdNr'] < df4.index[-1] else -1, axis=1) df4=df4[['SEGName','NODEsLfdNr','NODEsType','NODEsName','OBJTYPE']] df4['SEGNodes']=row[dfCols[0]]+'~'+row[dfCols[-1]] dfSegsNode.append(df4) dfSegsNodes=pd.concat(dfSegsNode).reset_index(drop=True) # --- dfSegsNodes['SEGOnlyInLDSPara']=dfSegsNodes.apply(lambda row: True if row['SEGNodes'] in lSEGOnlyInLDSPara else False,axis=1) dfSegsNodes['NODEsRef']=dfSegsNodes.sort_values( by=['NODEsName','SEGOnlyInLDSPara','NODEsType','SEGName'] ,ascending=[True,True,False,True]).groupby(['NODEsName']).cumcount() + 1 dfSegsNodes=pd.merge(dfSegsNodes,dfSegsNodes.groupby(['NODEsName']).max(),left_on='NODEsName',right_index=True,suffixes=('','_max')) dfSegsNodes=dfSegsNodes[['SEGName','SEGNodes','SEGOnlyInLDSPara' ,'NODEsRef' ,'NODEsRef_max' ,'NODEsLfdNr','NODEsType','NODEsName','OBJTYPE']] dfSegsNodes=dfSegsNodes.rename(columns={'NODEsLfdNr':'NODEsSEGLfdNr','NODEsType':'NODEsSEGLfdNrType'}) ### # --- ### dfSegsNodes['SEGOnlyInLDSPara']=dfSegsNodes.apply(lambda row: True if row['SEGNodes'] in lSEGOnlyInLDSPara else False,axis=1) dfSegsNodes=dfSegsNodes[['SEGName','SEGNodes','SEGOnlyInLDSPara' ,'NODEsRef' ,'NODEsRef_max' ,'NODEsSEGLfdNr','NODEsSEGLfdNrType','NODEsName','OBJTYPE']] # --- Knotendaten ergaenzen dfSegsNodesNData=pd.merge(dfSegsNodes,V3_KNOT, left_on='NODEsName',right_on='NAME',suffixes=('','KNOT')) dfSegsNodesNData=dfSegsNodesNData.filter(items=dfSegsNodes.columns.to_list()+['ZKOR','NAME_CONT','NAME_VKNO','pk']) dfSegsNodesNData=dfSegsNodesNData.rename(columns={'NAME_CONT':'Blockname','NAME_VKNO':'Bl.Kn. fuer Block'}) # --- Knotendatenpunktdaten ergänzen V3_DPKT_KNOT=pd.merge(V3_DPKT,V3_KNOT,left_on='fkOBJTYPE',right_on='pk',suffixes=('','_KNOT')) V3_DPKT_KNOT_PH=V3_DPKT_KNOT[V3_DPKT_KNOT['ATTRTYPE'].isin(['PH'])] # Mehrfacheintraege sollte es nicht geben ... # V3_DPKT_KNOT_PH[V3_DPKT_KNOT_PH.duplicated(subset=['fkOBJTYPE'])] df=pd.merge(dfSegsNodesNData,V3_DPKT_KNOT_PH,left_on='pk',right_on='fkOBJTYPE',suffixes=('','_DPKT'),how='left') cols=dfSegsNodesNData.columns.to_list() cols.remove('pk') df=df.filter(items=cols+['ATTRTYPE','CLIENT_ID','OPCITEM_ID','NAME']) dfSegsNodesNDataDpkt=df #dfSegsNodesNDataDpkt # --- colList=dfSegsNodesNDataDpkt.columns.to_list() dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: fDIVNameFromSEGName(x)) ### dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(1)+'_'+re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(3) ) dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt.filter(items=['DIVPipelineName']+colList) dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt.sort_values(by=['DIVPipelineName','SEGName','NODEsSEGLfdNr']).reset_index(drop=True) dfSegsNodesNDataDpkt['DruckResIDBase']=dfSegsNodesNDataDpkt['OPCITEM_ID'].apply(lambda x: fGetBaseIDFromResID(x) ) dfSegsNodesNDataDpkt['SEGResIDBase']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: fGetSEGBaseIDFromSEGName(x) ) ###### --- ODI ODIFile=os.path.join(VersionsDir,ODI) logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'ODI',ODI)) dfODI=Lx.getDfFromODI(ODIFile) dfSegsNodesNDataDpkt['SEGResIDs']=dfSegsNodesNDataDpkt['SEGResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=False)) dfSegsNodesNDataDpkt['SEGResIDsIMDI']=dfSegsNodesNDataDpkt['SEGResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=True)) dfSegsNodesNDataDpkt['DruckResIDs']=dfSegsNodesNDataDpkt['DruckResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=False)) dfSegsNodesNDataDpkt['DruckResIDsIMDI']=dfSegsNodesNDataDpkt['DruckResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=True)) # --- lfd. Nr. der Druckmessstelle im Segment ermitteln df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['DruckResIDBase'].notnull()].copy() df['NODEsSEGDruckErgLfdNr']=df.groupby('SEGName').cumcount() + 1 df['NODEsSEGDruckErgLfdNr']=df['NODEsSEGDruckErgLfdNr'].astype(int) cols=dfSegsNodesNDataDpkt.columns.to_list() cols.append('NODEsSEGDruckErgLfdNr') dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt ,df ,left_index=True ,right_index=True ,how='left' ,suffixes=('','_df') ).filter(items=cols) dfSegsNodesNDataDpkt['NODEsSEGDruckErgLfdNr']=dfSegsNodesNDataDpkt['NODEsSEGDruckErgLfdNr'].astype(int,errors='ignore') # LDSPara ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,dfPara,left_on='SEGNodes',right_index=True,suffixes=('','_LDSPara'),how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) #for SEGNodes in [str(SEGNodes) for SEGNodes in df.index if str(SEGNodes) not in dfSegsNodesNDataDpkt['SEGNodes'].values]: # logger.warning("{:s}LDSPara SEG {:s} ist nicht Modell-definiert!".format(logStr,SEGNodes)) ###### --- LDSParaPT LDSParaPTFile=os.path.join(VersionsDir,LDSParaPT) if os.path.exists(LDSParaPTFile): logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'LDSParaPT',LDSParaPT)) dfDPDTParams=pd.read_csv(LDSParaPTFile,delimiter=';',error_bad_lines=False,warn_bad_lines=True) dfMehrfach=dfDPDTParams.groupby(by='#ID').filter(lambda x: len(x) > 1) rows,cols=dfMehrfach.shape if rows > 0: logger.warning("{:s}Mehrfachkonfigurationen:".format(logStr)) logger.warning("{:s}".format(dfMehrfach.to_string())) dfDPDTParams=dfDPDTParams.groupby(by='#ID').first() # LDSParaPT ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,dfDPDTParams,left_on='CLIENT_ID',right_on='#ID',how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfOhne=dfSegsNodesNDataDpkt[(~pd.isnull(dfSegsNodesNDataDpkt['CLIENT_ID']) & dfSegsNodesNDataDpkt['CLIENT_ID'].str.len()>0 ) & (pd.isnull(dfSegsNodesNDataDpkt['pMin'])) ][['DIVPipelineName','SEGName','NODEsName','ZKOR','CLIENT_ID']].reset_index(drop=True) rows,cols=dfOhne.shape if rows > 0: logger.debug("{:s}Druckmessstellen ohne Mindestdruck:".format(logStr)) logger.debug("{:s}".format(dfOhne.to_string())) dfSegsNodesNDataDpkt['pMinMlc']=dfSegsNodesNDataDpkt.apply(lambda row: row['ZKOR']+row['pMin']*100000/(794.*9.81),axis=1) g=dfSegsNodesNDataDpkt.groupby(by='SEGName') df=g.pMinMlc.agg(pMinMlcMinSEG=np.min,pMinMlcMaxSEG=np.max) # pMinMlcMinSEG, pMinMlcMaxSEG ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,df,left_on='SEGName',right_index=True,how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) # Segmente ohne Mindestdruecke ausgeben df=dfSegsNodesNDataDpkt.groupby(['SEGName']).first() df=df[pd.isnull(df['pMinMlcMinSEG'])][['DIVPipelineName','SEGNodes']] rows,cols=df.shape if rows > 0: logger.debug("{:s}ganze Segmente ohne Mindestdruck:".format(logStr)) logger.debug("{:s}".format(df.to_string())) # Mindestdruecke ausgeben df=dfSegsNodesNDataDpkt[(~pd.isnull(dfSegsNodesNDataDpkt['CLIENT_ID']) & dfSegsNodesNDataDpkt['CLIENT_ID'].str.len()>0 ) & (~pd.isnull(dfSegsNodesNDataDpkt['pMin'])) ][['DIVPipelineName','SEGName','NODEsName','ZKOR','CLIENT_ID','pMin']].reset_index(drop=True) logger.debug("{:s}dfSegsNodesNDataDpkt: Mindestdrücke: {!s:s}".format(logStr,df.to_string())) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfSegsNodesNDataDpkt def fResValidSeriesSTAT_S(x): # STAT_S if pd.isnull(x)==False: if x >=0: return True else: return False else: return False def fResValidSeriesSTAT_S601(x): # STAT_S if pd.isnull(x)==False: if x==601: return True else: return False else: return False def fResValidSeriesAL_S(x,value=20): # AL_S if pd.isnull(x)==False: if x==value: return True else: return False else: return False def fResValidSeriesAL_S10(x): return fResValidSeriesAL_S(x,value=10) def fResValidSeriesAL_S4(x): return fResValidSeriesAL_S(x,value=4) def fResValidSeriesAL_S3(x): return fResValidSeriesAL_S(x,value=3) ResChannelFunctions=[fResValidSeriesSTAT_S,fResValidSeriesAL_S,fResValidSeriesSTAT_S601] ResChannelResultNames=['Zustaendig','Alarm','Stoerung'] ResChannelTypes=['STAT_S','AL_S','STAT_S'] # (fast) alle verfuegbaren Erg-Kanaele ResChannelTypesAll=['AL_S','STAT_S','SB_S','MZ_AV','LR_AV','NG_AV','LP_AV','AC_AV','ACCST_AV','ACCTR_AV','ACF_AV','TIMER_AV','AM_AV','DNTD_AV','DNTP_AV','DPDT_AV' ,'DPDT_REF_AV' ,'DPDT_REF' # Workaround ,'QM_AV','ZHKNR_S'] baseColorsSchieber=[ # Schieberfarben 'g' # 1 ,'b' # 2 ,'m' # 3 ,'r' # 4 ,'c' # 5 # alle Basisfarben außer y gelb ,'tab:blue' # 6 ,'tab:orange' # 7 ,'tab:green' # 8 ,'tab:red' # 9 ,'tab:purple' # 10 ,'tab:brown' # 11 ,'tab:pink' # 12 ,'gold' # 13 ,'fuchsia' # 14 ,'coral' # 15 ] markerDefSchieber=[ # Schiebersymobole '^' # 0 Auf ,'v' # 1 Zu ,'>' # 2 Halt # ab hier Zustaende ,'4' # 3 Laeuft ,'3' # 4 Laeuft nicht ,'P' # 5 Zust ,'1' # 6 Auf ,'2' # 7 Zu ,'+' # 8 Halt ,'x' # 9 Stoer ] # --- Reports LDS: Funktionen und Hilfsfunktionen # ----------------------------------------------- def getLDSResVecDf( ResIDBase='ID.' # i.e. for Segs Objects.3S_XYZ_SEG_INFO.3S_L_6_EL1_39_TUD.In. / i.e. for Drks Objects.3S_XYZ_DRUCK.3S_6_EL1_39_PTI_02_E.In. ,LDSResBaseType='SEG' # or Druck ,lx=None ,timeStart=None,timeEnd=None ,ResChannelTypes=ResChannelTypesAll ,timeShiftPair=None ): """ returns a df: the specified LDSResChannels (AL_S, ...) for an ResIDBase """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfResVec=pd.DataFrame() try: # zu lesende IDs basierend auf ResIDBase bestimmen ErgIDs=[ResIDBase+ext for ext in ResChannelTypes] IMDIErgIDs=['IMDI.'+ID for ID in ErgIDs] ErgIDsAll=[*ErgIDs,*IMDIErgIDs] # Daten lesen von TC-H5s dfFiltered=lx.getTCsFromH5s(timeStart=timeStart,timeEnd=timeEnd,LDSResOnly=True,LDSResColsSpecified=ErgIDsAll,LDSResTypeSpecified=LDSResBaseType,timeShiftPair=timeShiftPair) # Spalten umbenennen colDct={} for col in dfFiltered.columns: m=re.search(Lx.pID,col) colDct[col]=m.group('E') dfResVec=dfFiltered.rename(columns=colDct) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfResVec def fGetResTimes( ResIDBases=[] # Liste der Wortstaemme der Ergebnisvektoren ,df=pd.DataFrame() # TCsLDSRes... ,ResChannelTypes=ResChannelTypes # ['STAT_S','AL_S','STAT_S'] # Liste der Ergebnisvektoren Postfixe ,ResChannelFunctions=ResChannelFunctions # [fResValidSeriesSTAT_S,ResValidSeriesAL_S,fResValidSeriesSTAT_S601] # Liste der Ergebnisvektoren Funktionen ,ResChannelResultNames=ResChannelResultNames # ['Zustaendig','Alarm','Stoerung'] # Liste der key-Namen der Ergebnisse ,tdAllowed=pd.Timedelta('1 second') # erlaubte Zeitspanne zwischen geht und kommt (die beiden an diese Zeitspanne angrenzenden Zeitbereiche werden als 1 Zeit gewertet) ): """ Return: dct key: ResIDBase value: dct: key: ResChannelResultName Value: Liste mit Zeitpaaren (oder leere Liste) """ resTimesDct={} for ResIDBase in ResIDBases: tPairsDct={} for idx,ext in enumerate(ResChannelTypes): ID=ResIDBase+ext if ext == 'AL_S': debugOutput=True else: debugOutput=False if ID in df: #print("{:s} in Ergliste".format(ID)) tPairs=findAllTimeIntervallsSeries( s=df[ID].dropna() #! ,fct=ResChannelFunctions[idx] ,tdAllowed=tdAllowed#pd.Timedelta('1 second') ,debugOutput=debugOutput ) else: #print("{:s} nicht in Ergliste".format(ID)) tPairs=[] tPairsDct[ResChannelResultNames[idx]]=tPairs resTimesDct[ResIDBase]=tPairsDct return resTimesDct def getAlarmStatistikData( h5File='a.h5' ,dfSegsNodesNDataDpkt=pd.DataFrame() ,timeShiftPair=None # z.B. (1,'H') bei Replay ): """ Returns TCsLDSRes1,TCsLDSRes2,dfCVDataOnly """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) TCsLDSRes1=pd.DataFrame() TCsLDSRes2=pd.DataFrame() try: # "connect" to the App Logs lx=Lx.AppLog(h5File=h5File) if hasattr(lx, 'h5FileLDSRes'): logger.error("{0:s}{1:s}".format(logStr,'In den TCs nur Res und nicht Res1 und Res2?!')) raise RmError # zu lesende Daten ermitteln l=dfSegsNodesNDataDpkt['DruckResIDBase'].unique() l = l[~pd.isnull(l)] DruckErgIDs=[*[ID+'AL_S' for ID in l],*[ID+'STAT_S' for ID in l],*[ID+'SB_S' for ID in l],*[ID+'ZHKNR_S' for ID in l]] # l=dfSegsNodesNDataDpkt['SEGResIDBase'].unique() l = l[~pd.isnull(l)] SEGErgIDs=[*[ID+'AL_S' for ID in l],*[ID+'STAT_S' for ID in l],*[ID+'SB_S' for ID in l],*[ID+'ZHKNR_S' for ID in l]] ErgIDs=[*DruckErgIDs,*SEGErgIDs] # Daten lesen TCsLDSRes1,TCsLDSRes2=lx.getTCsFromH5s(LDSResOnly=True,LDSResColsSpecified=ErgIDs,timeShiftPair=timeShiftPair) (preriod,freq)=timeShiftPair timeDeltaStr="{:d} {:s}".format(preriod,freq) timeDelta=pd.Timedelta(timeDeltaStr) dfCVDataOnly=lx.getCVDFromH5(timeDelta=timeDelta,returnDfCVDataOnly=True) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return TCsLDSRes1,TCsLDSRes2,dfCVDataOnly def processAlarmStatistikData( TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,tdAllowed=None # pd.Timedelta('1 second') # Alarm geht ... Alarm kommt (wieder): wenn Zeitspanne ... <= tdAllowed, dann wird dies _gewertet als dieselbe Alarmzeitspanne # d.h. es handelt sich _gewertet inhaltlich um denselben Alarm # None zählt die Alarme strikt getrennt ): """ Returns: SEGResDct,DruckResDct ResDct: key: baseID (i.e. Objects.3S_FBG_SEG_INFO.<KEY>. value: dct key: Zustaendig: value: Zeitbereiche, in denen der Ergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen der Ergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen der Ergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) key: AL_S_SB_S: value: Liste mit Listen (den verschiedenen SB_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) key: <KEY>S: value: Liste mit Listen (den verschiedenen ZHKNR_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # Zeiten SEGErgs mit zustaendig und Alarm ... l=[baseID for baseID in dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']]['SEGResIDBase'].unique() if not pd.isnull(baseID)] SEGResDct=fGetResTimes(ResIDBases=l,df=TCsLDSRes1,tdAllowed=tdAllowed) logger.debug("{:s}SEGResDct: {!s:s}".format(logStr,SEGResDct)) # Zeiten DruckErgs mit zustaendig und Alarm ... l=[baseID for baseID in dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']]['DruckResIDBase'].unique() if not pd.isnull(baseID)] DruckResDct=fGetResTimes(ResIDBases=l,df=TCsLDSRes2,tdAllowed=tdAllowed) logger.debug("{:s}DruckResDct: {!s:s}".format(logStr,DruckResDct)) # verschiedene Auspraegungen pro Alarmzeit ermitteln for ResDct, ResSrc, LDSResBaseType in zip([SEGResDct, DruckResDct],[TCsLDSRes1,TCsLDSRes2],['SEG','Druck']): for idxID,(ID,IDDct) in enumerate(ResDct.items()): # IDDct: das zu erweiternde Dct # Alarme tPairs=IDDct['Alarm'] for keyStr, colExt in zip(['AL_S_SB_S','<KEY>'],['SB_S','ZHKNR_S']): lGes=[] if tPairs != []: for tPair in tPairs: col=ID+colExt lSingle=ResSrc.loc[tPair[0]:tPair[1],col] lSingle=[int(x) for x in lSingle if pd.isnull(x)==False] lSingle=[lSingle[0]]+[lSingle[i] for i in range(1,len(lSingle)) if lSingle[i]!=lSingle[i-1]] lGes.append(lSingle) IDDct[keyStr]=lGes # das erweiterte Dct zuweisen ResDct[ID]=IDDct except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGResDct,DruckResDct def addNrToAlarmStatistikData( SEGResDct={} ,DruckResDct={} ,dfAlarmEreignisse=pd.DataFrame() ): """ Returns: SEGResDct,DruckResDct added with key AL_S_NR ResDct: key: baseID (i.e. Objects.3S_FBG_SEG_INFO.3S_L_6_BUV_01_SPV.In. value: dct key: Zustaendig: value: Zeitbereiche, in denen der Ergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen der Ergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen der Ergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) key: AL_S_SB_S: value: Liste mit Listen (den verschiedenen SB_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) key: AL_S_ZHKNR_S: value: Liste mit Listen (den verschiedenen ZHKNR_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) # ergänzt: key: AL_S_NR: value: Liste mit der Nr. (aus dfAlarmEreignisse) pro Alarm (Länge der Liste == Länge der Liste von Alarm) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # for ResDct, LDSResBaseType in zip([SEGResDct, DruckResDct],['SEG','Druck']): for idxID,(ID,IDDct) in enumerate(ResDct.items()): # IDDct: das zu erweiternde Dct # Alarme tPairs=IDDct['Alarm'] lNr=[] if tPairs != []: ZHKNRnListen=IDDct['AL_S_ZHKNR_S'] for idxAlarm,tPair in enumerate(tPairs): ZHKNRnListe=ZHKNRnListen[idxAlarm] ZHKNR=ZHKNRnListe[0] ae=AlarmEvent(tPair[0],tPair[1],ZHKNR,LDSResBaseType) Nr=dfAlarmEreignisse[dfAlarmEreignisse['AlarmEvent']==ae]['Nr'].iloc[0] lNr.append(Nr) IDDct['AL_S_NR']=lNr # das erweiterte Dct zuweisen ResDct[ID]=IDDct except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGResDct,DruckResDct def processAlarmStatistikData2( DruckResDct=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ): """ Druckergebnisaussagen auf Segmentergebnisaussagen geeignet verdichtet Returns: SEGDruckResDct ResDct: key: baseID value: dct sortiert und direkt angrenzende oder gar ueberlappende Zeiten aus Druckergebnissen zusammenfasst key: Zustaendig: value: Zeitbereiche, in denen ein Druckergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen ein Druckergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen ein Druckergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) voneiander verschiedene Ausprägungen (sortiert) aus Druckergebnissen key: AL_S_SB_S: Liste key: AL_S_ZHKNR_S: Liste key: AL_S_NR: Liste """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # Druckergebnisaussagen auf Segmentergebnisaussagen geeignet verdichtet SEGDruckResDct={} # merken, ob eine ID bereits bei einem SEG gezählt wurde; die Alarme einer ID sollen nur bei einem SEG gezaehlt werden IDBereitsGezaehlt={} # über alle DruckErgs for idx,(ID,tPairsDct) in enumerate(DruckResDct.items()): # SEG ermitteln # ein DruckErg kann zu mehreren SEGs gehoeren z.B. gehoert ein Verzweigungsknoten i.d.R. zu 3 versch. SEGs tupleLst=getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt,ID) for idxTuple,(DIVPipelineName,SEGName,SEGResIDBase,SEGOnlyInLDSPara) in enumerate(tupleLst): # wenn internes SEG if SEGOnlyInLDSPara: logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt da dieses SEG intern.".format(logStr,ID,SEGName)) continue # ID wurde bereits gezählt if ID in IDBereitsGezaehlt.keys(): logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt sondern wurde bereits bei SEGName {:s} gezaehlt.".format(logStr,ID,SEGName,IDBereitsGezaehlt[ID])) continue else: # ID wurde noch nicht gezaehlt IDBereitsGezaehlt[ID]=SEGName #if idxTuple>0: # logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt sondern nur bei SEGName {:s}.".format(logStr,ID,SEGName,tupleLst[0][1])) # continue if len(tPairsDct['Alarm'])>0: logger.debug("{:s}SEGName {:20s}: durch ID {:40s} mit Alarm. Nr des Verweises von ID auf ein Segment: {:d}".format(logStr,SEGName,ID, idxTuple+1)) if SEGResIDBase not in SEGDruckResDct.keys(): # auf dieses SEG wurde noch nie verwiesen SEGDruckResDct[SEGResIDBase]=deepcopy(tPairsDct) # das Segment erhält die Ergebnisse des ersten Druckvektors der zum Segment gehört else: # ergaenzen # Zeitlisten ergänzen for idx2,ext in enumerate(ResChannelTypes): tPairs=tPairsDct[ResChannelResultNames[idx2]] for idx3,tPair in enumerate(tPairs): if True: #tPair not in SEGDruckResDct[SEGResIDBase][ResChannelResultNames[idx2]]: # keine identischen Zeiten mehrfach zaehlen # die Ueberlappung von Zeiten wird weiter unten behandelt SEGDruckResDct[SEGResIDBase][ResChannelResultNames[idx2]].append(tPair) # weitere Listen ergaenzen for ext in ['AL_S_SB_S','AL_S_ZHKNR_S','AL_S_NR']: SEGDruckResDct[SEGResIDBase][ext]=SEGDruckResDct[SEGResIDBase][ext]+tPairsDct[ext] # Ergebnis: sortieren und dann direkt angrenzende oder gar ueberlappende Zeiten zusammenfassen for idx,(ID,tPairsDct) in enumerate(SEGDruckResDct.items()): for idx2,ext in enumerate(tPairsDct.keys()): if ext in ['AL_S_SB_S','AL_S_ZHKNR_S','AL_S_NR']: # keine Zeiten pass else: tPairs=tPairsDct[ResChannelResultNames[idx2]] tPairs=sorted(tPairs,key=lambda tup: tup[0]) tPairs=fCombineSubsequenttPairs(tPairs) SEGDruckResDct[ID][ResChannelResultNames[idx2]]=tPairs # voneiander verschiedene Ausprägungen (sortiert) for idx,(ID,tPairsDct) in enumerate(SEGDruckResDct.items()): for idx2,ext in enumerate(tPairsDct.keys()): v=tPairsDct[ext] if ext in ['AL_S_SB_S','AL_S_ZHKNR_S']: # Liste von Listen l=[*{*chain.from_iterable(v)}] l=sorted(pd.unique(l)) SEGDruckResDct[ID][ext]=l elif ext in ['AL_S_NR']: # Liste l=sorted(pd.unique(v)) SEGDruckResDct[ID][ext]=l else: pass logger.debug("{:s}SEGDruckResDct: {!s:s}".format(logStr,SEGDruckResDct)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGDruckResDct def buildAlarmDataframes( TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,dfCVDataOnly=pd.DataFrame() ,SEGResDct={} ,DruckResDct={} ,replaceTup=('2021-','') ,NrBy=['LDSResBaseType','SEGName','Ort','tA','ZHKNR'] ,NrAsc=[False]+4*[True] ): """ Returns dfAlarmStatistik,dfAlarmEreignisse,SEGDruckResDct """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfAlarmStatistik=pd.DataFrame() dfAlarmEreignisse=pd.DataFrame() try: # Ereignisse dfAlarmEreignisse=buildDfAlarmEreignisse( SEGResDct=SEGResDct ,DruckResDct=DruckResDct ,TCsLDSRes1=TCsLDSRes1 ,TCsLDSRes2=TCsLDSRes2 ,dfCVDataOnly=dfCVDataOnly ,dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt ,replaceTup=replaceTup ,NrBy=NrBy ,NrAsc=NrAsc ) # in dfAlarmEreignisse erzeugte Alarm-Nr. an Dct merken SEGResDct,DruckResDct=addNrToAlarmStatistikData( SEGResDct ,DruckResDct ,dfAlarmEreignisse ) # BZKat der Alarme def fGetAlarmKat(row): """ """ # baseID des Alarms baseID=row['OrteIDs'][0] # dct des Alarms if row['LDSResBaseType']=='SEG': dct=SEGResDct[baseID] else: dct=DruckResDct[baseID] # Nrn der baseID Nrn=dct['AL_S_NR'] # idx dieses Alarms innerhalb der Alarme der baseID idxAl=Nrn.index(row['Nr']) # Zustaende dieses alarms SB_S=dct['AL_S_SB_S'][idxAl] kat='' if 3 in SB_S: kat='instationär' else: if 2 in SB_S: kat = 'schw. instationär' else: if 1 in SB_S: kat = 'stat. Fluss' elif 4 in SB_S: kat = 'stat. Ruhe' return kat dfAlarmEreignisse['BZKat']=dfAlarmEreignisse.apply(lambda row: fGetAlarmKat(row),axis=1) # Segment-verdichtete Druckergebnisse SEGDruckResDct=processAlarmStatistikData2( DruckResDct ,TCsLDSRes2 ,dfSegsNodesNDataDpkt ) # Alarmstatistik bilden dfAlarmStatistik=dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']] dfAlarmStatistik=dfAlarmStatistik[['DIVPipelineName','SEGName','SEGNodes','SEGResIDBase']].drop_duplicates(keep='first').reset_index(drop=True) dfAlarmStatistik['Nr']=dfAlarmStatistik.apply(lambda row: "{:2d}".format(int(row.name)),axis=1) # SEG dfAlarmStatistik['FörderZeiten']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Zustaendig']) dfAlarmStatistik['FörderZeitenAl']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Alarm']) dfAlarmStatistik['FörderZeitenSt']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Stoerung']) dfAlarmStatistik['FörderZeitenAlAnz']=dfAlarmStatistik['FörderZeitenAl'].apply(lambda x: len(x)) dfAlarmStatistik['FörderZeitenAlSbs']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['AL_S_SB_S']) dfAlarmStatistik['FörderZeitenAlNrn']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['AL_S_NR']) # Druck (SEG-verdichtet) dfAlarmStatistik['RuheZeiten']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Zustaendig'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAl']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Alarm'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenSt']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Stoerung'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAlSbs']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['AL_S_SB_S'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAlNrn']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['AL_S_NR'] if x in SEGDruckResDct.keys() else []) #dfAlarmStatistik['RuheZeitenAlAnz']=dfAlarmStatistik['RuheZeitenAl'].apply(lambda x: len(x)) dfAlarmStatistik['RuheZeitenAlAnz']=dfAlarmStatistik['RuheZeitenAlNrn'].apply(lambda x: len(x)) # je 3 Zeiten bearbeitet dfAlarmStatistik['FörderZeit']=dfAlarmStatistik['FörderZeiten'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeit']=dfAlarmStatistik['RuheZeiten'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['FörderZeitAl']=dfAlarmStatistik['FörderZeitenAl'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeitAl']=dfAlarmStatistik['RuheZeitenAl'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['FörderZeitSt']=dfAlarmStatistik['FörderZeitenSt'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeitSt']=dfAlarmStatistik['RuheZeitenSt'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfAlarmEreignisse, dfAlarmStatistik,SEGDruckResDct def plotDfAlarmStatistik( dfAlarmStatistik=pd.DataFrame() ): """ Returns the plt.table """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) df=dfAlarmStatistik[[ 'Nr' ,'DIVPipelineName' ,'SEGName' ,'FörderZeit' ,'FörderZeitenAlAnz' ,'FörderZeitAl' ,'FörderZeitSt' ,'RuheZeit' ,'RuheZeitenAlAnz' ,'RuheZeitAl' ,'RuheZeitSt' ]].copy() # diese Zeiten um (Störzeiten) annotieren df['FörderZeit']=df.apply(lambda row: "{!s:s} ({!s:s})".format(row['FörderZeit'],row['FörderZeitSt']) if row['FörderZeitSt'] > 0. else row['FörderZeit'] ,axis=1) df['RuheZeit']=df.apply(lambda row: "{!s:s} ({!s:s})".format(row['RuheZeit'],row['RuheZeitSt']) if row['RuheZeitSt'] > 0. else row['RuheZeit'],axis=1) # LfdNr. annotieren df['LfdNr']=df.apply(lambda row: "{:2d} - {:s}".format(int(row.Nr)+1,str(row.DIVPipelineName)),axis=1) # Zeiten Alarm um Alarm-Nrn annotieren def fAddZeitMitNrn(zeit,lAlNr): if len(lAlNr) > 0: if len(lAlNr) <= 3: return "{!s:s} (Nrn.: {!s:s})".format(zeit,lAlNr) else: # mehr als 3 Alarme... return "{!s:s} (Nrn.: {!s:s}, ...)".format(zeit,lAlNr[0]) else: return zeit df['FörderZeitAl']=dfAlarmStatistik.apply(lambda row: fAddZeitMitNrn(row['FörderZeitAl'],row['FörderZeitenAlNrn']),axis=1) df['RuheZeitAl']=dfAlarmStatistik.apply(lambda row: fAddZeitMitNrn(row['RuheZeitAl'],row['RuheZeitenAlNrn']),axis=1) df=df[[ 'LfdNr' ,'SEGName' ,'FörderZeit' ,'FörderZeitenAlAnz' ,'FörderZeitAl' ,'RuheZeit' ,'RuheZeitenAlAnz' ,'RuheZeitAl' ]] try: t=plt.table(cellText=df.values, colLabels=df.columns, loc='center') cols=df.columns.to_list() colIdxLfdNr=cols.index('LfdNr') colIdxFoerderZeit=cols.index('FörderZeit') colIdxFoerderZeitenAlAnz=cols.index('FörderZeitenAlAnz') colIdxFoerderZeitAl=cols.index('FörderZeitAl') colIdxRuheZeit=cols.index('RuheZeit') colIdxRuheZeitenAlAnz=cols.index('RuheZeitenAlAnz') colIdxRuheZeitAl=cols.index('RuheZeitAl') cells = t.properties()["celld"] for cellTup,cellObj in cells.items(): cellObj.set_text_props(ha='left') row,col=cellTup # row: 0 fuer Ueberschrift bei Ueberschrift; col mit 0 if row == 0: if col in [colIdxRuheZeit,colIdxRuheZeitenAlAnz,colIdxRuheZeitAl]: pass cellObj.set_text_props(backgroundcolor='plum') elif col in [colIdxFoerderZeit,colIdxFoerderZeitenAlAnz,colIdxFoerderZeitAl]: pass cellObj.set_text_props(backgroundcolor='lightsteelblue') if col == colIdxLfdNr: if row==0: continue if 'color' in dfAlarmStatistik.columns.to_list(): color=dfAlarmStatistik['color'].iloc[row-1] cellObj.set_text_props(backgroundcolor=color) if col == colIdxFoerderZeit: if row==0: continue if dfAlarmStatistik.loc[row-1,'FörderZeit']==0: pass else: if dfAlarmStatistik.loc[row-1,'FörderZeitSt']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: cellObj.set_text_props(backgroundcolor='goldenrod') if col == colIdxFoerderZeitenAlAnz: if row==0: continue if dfAlarmStatistik.loc[row-1,'FörderZeit']==0: cellObj.set_text_props(backgroundcolor='lightgrey') else: # hat Förderzeit if df.loc[row-1,'FörderZeitenAlAnz']==0: cellObj.set_text_props(backgroundcolor='springgreen') else: cellObj.set_text_props(ha='center') cellObj.set_text_props(backgroundcolor='navajowhite') # palegoldenrod #if df.loc[row-1,'FörderZeitAl']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: if dfAlarmStatistik.loc[row-1,'FörderZeitAl']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: cellObj.set_text_props(backgroundcolor='tomato') if col == colIdxRuheZeit: if row==0: continue if dfAlarmStatistik.loc[row-1,'RuheZeit']==0: pass else: if dfAlarmStatistik.loc[row-1,'RuheZeitSt']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: cellObj.set_text_props(backgroundcolor='goldenrod') if col == colIdxRuheZeitenAlAnz: if row==0: continue if dfAlarmStatistik.loc[row-1,'RuheZeit']==0: cellObj.set_text_props(backgroundcolor='lightgrey') else: # hat Ruhezeit if df.loc[row-1,'RuheZeitenAlAnz']==0: cellObj.set_text_props(backgroundcolor='springgreen') else: pass cellObj.set_text_props(ha='center') cellObj.set_text_props(backgroundcolor='navajowhite') # # palegoldenrod #if df.loc[row-1,'RuheZeitAl']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: if dfAlarmStatistik.loc[row-1,'RuheZeitAl']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: cellObj.set_text_props(backgroundcolor='tomato') plt.axis('off') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return t def fOrteStripped(LDSResBaseType,OrteIDs): """ returns Orte stripped """ if LDSResBaseType == 'SEG': # 'Objects.3S_FBG_SEG_INFO.3S_L_6_MHV_02_FUD.In.'] orteStripped=[] for OrtID in OrteIDs: pass m=re.search(Lx.pID,OrtID+'dummy') ortStripped=m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+'_'+m.group('C6') orteStripped.append(ortStripped) return orteStripped elif LDSResBaseType == 'Druck': # Objects.3S_FBG_DRUCK.3S_6_BNV_01_PTI_01.In orteStripped=[] for OrtID in OrteIDs: pass m=re.search(Lx.pID,OrtID+'dummy') ortStripped=m.group('C2')+'_'+m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') orteStripped.append(ortStripped) return orteStripped else: return None def fCVDTime(row,dfSEG,dfDruck,replaceTup=('2021-','')): """ in: dfSEG/dfDruck: TCsLDSRes1/TCsLDSRes2 row: Zeile aus dfAlarmEreignisse von row verwendet: LDSResBaseType: SEG (dfSEG) oder nicht (dfDruck) OrteIDs: ==> ID von ZHKNR_S in dfSEG/dfDruck ZHKNR: ZHKNR returns: string: xZeitA - ZeitEx ZeitA: erste Zeit in der ZHKNR_S in dfSEG/dfDruck den Wert von ZHKNR trägt ZeitE: letzte Zeit in der ZHKNR_S in dfSEG/dfDruck den Wert von ZHKNR trägt xZeitA, wenn ZeitA die erste Zeit in dfSEG/dfDruck ist mit einem von Null verschiedenen Wert xZeitE, wenn ZeitE die letzte Zeit in dfSEG/dfDruck ist mit einem von Null verschiedenen Wert in Zeit wurde replaceTup angewendet """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: Time="" ID=row['OrteIDs'][0]+'ZHKNR_S' ZHKNR=row['ZHKNR'] if row['LDSResBaseType']=='SEG': df=dfSEG else: df=dfDruck s=df[df[ID]==ZHKNR][ID] # eine Spalte; Zeilen in denen ZHKNR_S den Wert von ZHKNR trägt tA=s.index[0] # 1. Zeit tE=s.index[-1] # letzte Zeit Time=" {!s:s} - {!s:s} ".format(tA,tE) try: if tA==df[ID].dropna().index[0]: Time='x'+Time.lstrip() except: logger.debug("{0:s}Time: {1:s}: x-tA Annotation Fehler; keine Annotation".format(logStr,Time)) try: if tE==df[ID].dropna().index[-1]: Time=Time.rstrip()+'x' except: logger.debug("{0:s}Time: {1:s}: x-tE Annotation Fehler; keine Annotation".format(logStr,Time)) Time=Time.replace(replaceTup[0],replaceTup[1]) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return Time def buildDfAlarmEreignisse( SEGResDct={} ,DruckResDct={} ,TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfCVDataOnly=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,replaceTup=('2021-','') ,NrBy=['LDSResBaseType','SEGName','Ort','tA','ZHKNR'] # Sortierspalten für die Nr. der Ereignisse ,NrAsc=[False]+4*[True] # aufsteigend j/n für die o.g. Sortierspalten ): """ Returns dfAlarmEreignisse: Nr: lfd. Nr (gebildet gem. NrBy und NrAsc) tA: Anfangszeit tE: Endezeit tD: Dauer des Alarms ZHKNR: ZHKNR (die zeitlich 1., wenn der Alarm sich über mehrere ZHKNRn erstreckt) tD_ZHKNR: Lebenszeit der ZHKNR; x-Annotationen am Anfang/Ende, wenn ZHK beginnt bei Res12-Anfang / andauert bei Res12-Ende; '-1', wenn Lebenszeit nicht ermittelt werden konnte ZHKNRn: sortierte Liste der ZHKNRn des Alarms; eine davon ist ZHKNR; typischerweise die 1. der Liste LDSResBaseType: SEG oder Druck OrteIDs: OrteIDs des Alarms Orte: Kurzform von OrteIDs des Alarms Ort: der 1. Ort von Orte SEGName: Segment zu dem der 1. Ort des Alarms gehört DIVPipelineName: Voralarm: ermittelter Vorlalarm des Alarms; -1, wenn kein Voralarm in Res12 gefunden werden konnte Type: Typ des Kontrollraumns; z.B. p-p für vollständige Flussbilanzen; '', wenn kein Typ gefunden werden konnte Name: Name des Bilanzraumes NrSD: lfd. Nr Alarm BaseType NrName: lfd. Nr Alarm Name NrSEGName: lfd. Nr Alarm SEGName AlarmEvent: AlarmEvent-Objekt ###BZKat: Betriebszustandskategorie des Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfAlarmEreignisse=pd.DataFrame() try: AlarmEvents=[] # Liste von AlarmEvent AlarmEventsOrte={} # dct der Orte, die diesen (key) AlarmEvent melden AlarmEventsZHKNRn={} # dct der ZHKNRn, die zu diesem (key) gehoeren # über SEG- und Druck-Ergebnisvektoren for ResDct, ResSrc, LDSResBaseType in zip([SEGResDct, DruckResDct],[TCsLDSRes1,TCsLDSRes2],['SEG','Druck']): for ResIDBase,dct in ResDct.items(): AL_S=dct['Alarm'] if len(AL_S) > 0: # eine Erg-ID weist Alarme [(tA,tE),...] auf # korrespondiernede Liste der ZHKs: [(999,1111),...] ZHKNRnListen=dct['AL_S_ZHKNR_S'] ID=ResIDBase+'ZHKNR_S' # fuer nachfolgende Ausgabe # ueber alle Alarme der Erg-ID for idx,AL_S_Timepair in enumerate(AL_S): (t1,t2)=AL_S_Timepair # tA, tE ZHKNR_S_Lst=ZHKNRnListen[idx] # Liste der ZHKs in dieser Zeit if len(ZHKNR_S_Lst) != 1: logger.warning(("{:s}ID:\n\t {:s}: Alarm {:d} der ID\n\t Zeit von {!s:s} bis {!s:s}:\n\t Anzahl verschiedener ZHKNRn !=1: {:d} {:s}:\n\t ZHKNR eines Alarms wechselt waehrend eines Alarms. Alarm wird identifiziert mit 1. ZHKNR.".format(logStr,ID ,idx ,t1 ,t2 ,len(ZHKNR_S_Lst) ,str(ZHKNR_S_Lst) ))) # die erste wird verwendet ZHKNR=int(ZHKNR_S_Lst[0]) # AlarmEvent erzeugen alarmEvent=AlarmEvent(t1,t2,ZHKNR,LDSResBaseType) if alarmEvent not in AlarmEvents: # diesen Alarm gibt es noch nicht in der Ereignisliste ... AlarmEvents.append(alarmEvent) AlarmEventsOrte[alarmEvent]=[] AlarmEventsZHKNRn[alarmEvent]=[] else: pass # Ort ergaenzen (derselbe Alarm wird erst ab V83.5.3 nur an einem Ort - dem lexikalisch kleinsten des Bilanzraumes - ausgegeben; zuvor konnte derselbe Alarm an mehreren Orten auftreten) AlarmEventsOrte[alarmEvent].append(ResIDBase) # ZHKNR(n) ergaenzen (ein Alarm wird unter 1 ZHKNR geführt) AlarmEventsZHKNRn[alarmEvent].append(ZHKNR_S_Lst) # df erzeugen dfAlarmEreignisse=pd.DataFrame.from_records( [alarmEvent for alarmEvent in AlarmEvents], columns=AlarmEvent._fields ) # Liste der EventOrte erstellen, zuweisen l=[] for idx,alarmEvent in enumerate(AlarmEvents): l.append(AlarmEventsOrte[alarmEvent]) dfAlarmEreignisse['OrteIDs']=l # abgekuerzte Orte dfAlarmEreignisse['Orte']=dfAlarmEreignisse.apply(lambda row: fOrteStripped(row.LDSResBaseType,row.OrteIDs),axis=1) dfAlarmEreignisse['Ort']=dfAlarmEreignisse['Orte'].apply(lambda x: x[0]) # Liste der ZHKNRn erstellen, zuweisen l=[] for idx,alarmEvent in enumerate(AlarmEvents): lOfZl=AlarmEventsZHKNRn[alarmEvent] lOfZ=[*{*chain.from_iterable(lOfZl)}] lOfZ=sorted(pd.unique(lOfZ)) l.append(lOfZ) dfAlarmEreignisse['ZHKNRn']=l # Segmentname eines Ereignisses dfAlarmEreignisse['SEGName']=dfAlarmEreignisse.apply(lambda row: dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGResIDBase']==row['OrteIDs'][0]]['SEGName'].iloc[0] if row['LDSResBaseType']=='SEG' else [tuple for tuple in getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt,row['OrteIDs'][0]) if not tuple[-1]][0][1],axis=1) # DIVPipelineName eines Ereignisses dfAlarmEreignisse['DIVPipelineName']=dfAlarmEreignisse.apply(lambda row: dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGName']==row['SEGName']]['DIVPipelineName'].iloc[0] ,axis=1) # Alarm: --- #tA: Anfangszeit #tE: Endezeit #ZHKNR: ZHKNR (1. bei mehreren Alarmen) #LDSResBaseType: SEG oder Druck # Orte: --- #OrteIDs: OrteIDs des Alarms #Orte: Kurzform von OrteIDs des Alarms #ZHKNRn: #SEGName: Segmentname #DIVPipelineName ## Nr. dfAlarmEreignisse.sort_values(by=NrBy,ascending=NrAsc,inplace=True) dfAlarmEreignisse['Nr']=dfAlarmEreignisse.index+1 #dfAlarmEreignisse['Nr']=dfAlarmEreignisse['Nr']+1 logger.debug("{0:s}{1:s}: {2:s}".format(logStr,'dfAlarmEreignisse',dfAlarmEreignisse.to_string())) # Voralarm VoralarmTypen=[] for index, row in dfAlarmEreignisse.iterrows(): # zur Information bei Ausgaben OrteIDs=row['OrteIDs'] OrtID=OrteIDs[0] VoralarmTyp=None try: if row['LDSResBaseType']=='SEG': VoralarmTyp=TCsLDSRes1.loc[:row['tA']-pd.Timedelta('1 second'),OrtID+'AL_S'].iloc[-1] elif row['LDSResBaseType']=='Druck': VoralarmTyp=TCsLDSRes2.loc[:row['tA']-pd.Timedelta('1 second'),OrtID+'AL_S'].iloc[-1] except: pass if pd.isnull(VoralarmTyp): # == None: #?! - ggf. Nachfolger eines neutralen Bilanzraumwechsels VoralarmTyp=-1 logger.warning("{:s}PV: {:40s} Alarm Nr. {:d} ZHKNR {:d}\n\t tA {!s:s}: kein (isnull) Vorlalarm gefunden?! (ggf. neutraler BRWechsel) - Voralarm gesetzt auf: {:d}".format(logStr ,row['OrteIDs'][0] ,int(row['Nr']) ,row['ZHKNR'] ,row['tA'],int(VoralarmTyp))) if int(VoralarmTyp)==0: # == 0: #?! - ggf. Nachfolger eines neutralen Bilanzraumwechsels VoralarmTyp=0 logger.warning("{:s}PV: {:40s} Alarm Nr. {:d} ZHKNR {:d}\n\t tA {!s:s}: Vorlalarm 0?! (ggf. war Bilanz in Stoerung)".format(logStr ,row['OrteIDs'][0] ,int(row['Nr']) ,row['ZHKNR'] ,row['tA'])) if int(VoralarmTyp) not in [-1,0,3,4,10]: logger.warning("{:s}PV: {:s} Alarm Nr. {:d} {:d} tA {!s:s}: unbekannter Vorlalarm gefunden: {:d}".format(logStr,row['OrteIDs'][0],int(row['Nr']),row['ZHKNR'],row['tA'],int(VoralarmTyp))) logger.debug("{:s}{:d} {!s:s} VoralarmTyp:{:d}".format(logStr,int(row['Nr']),row['tA'],int(VoralarmTyp))) VoralarmTypen.append(VoralarmTyp) dfAlarmEreignisse['Voralarm']=[int(x) for x in VoralarmTypen] # Type (aus dfCVDataOnly) und Erzeugungszeit (aus dfCVDataOnly) und Name (aus dfCVDataOnly) dfAlarmEreignisse['ZHKNR']=dfAlarmEreignisse['ZHKNR'].astype('int64') dfAlarmEreignisse['ZHKNRStr']=dfAlarmEreignisse['ZHKNR'].astype('string') dfCVDataOnly['ZHKNRStr']=dfCVDataOnly['ZHKNR'].astype('string') # wg. aelteren App-Log Versionen in denen ZHKNR in dfCVDataOnly nicht ermittelt werden konnte # Type,ScenTime,Name sind dann undefiniert dfAlarmEreignisse=pd.merge(dfAlarmEreignisse,dfCVDataOnly,on='ZHKNRStr',suffixes=('','_CVD'),how='left').filter(items=dfAlarmEreignisse.columns.to_list()+['Type' #,'ScenTime' ,'Name']) dfAlarmEreignisse=dfAlarmEreignisse.drop(['ZHKNRStr'],axis=1) dfAlarmEreignisse=dfAlarmEreignisse.fillna(value='') # lfd. Nummern dfAlarmEreignisse['NrSD']=dfAlarmEreignisse.groupby(['LDSResBaseType']).cumcount() + 1 dfAlarmEreignisse['NrName']=dfAlarmEreignisse.groupby(['Name']).cumcount() + 1 dfAlarmEreignisse['NrSEGName']=dfAlarmEreignisse.groupby(['SEGName']).cumcount() + 1 # Lebenszeit der ZHKNR try: dfAlarmEreignisse['tD_ZHKNR']=dfAlarmEreignisse.apply(lambda row: fCVDTime(row,TCsLDSRes1,TCsLDSRes2,replaceTup),axis=1) except: logger.debug("{:s}Spalte tD_ZHKNR (Lebenszeit einer ZHKNR) konnte nicht ermittelt werden. Vmtl. aeltere App-Log Version.".format(logStr)) dfAlarmEreignisse['tD_ZHKNR']='-1' # Dauer des Alarms dfAlarmEreignisse['tD']=dfAlarmEreignisse.apply(lambda row: row['tE']-row['tA'],axis=1) dfAlarmEreignisse['tD']= dfAlarmEreignisse['tD'].apply(lambda x: "{!s:s}".format(x).replace('days','Tage').replace('0 Tage','').replace('Tage','T')) # AlarmEvent = namedtuple('alarmEvent','tA,tE,ZHKNR,LDSResBaseType') dfAlarmEreignisse=dfAlarmEreignisse[['Nr','tA', 'tE','tD','ZHKNR','tD_ZHKNR','ZHKNRn','LDSResBaseType' ,'OrteIDs', 'Orte', 'Ort', 'SEGName','DIVPipelineName' ,'Voralarm', 'Type', 'Name' ,'NrSD', 'NrName', 'NrSEGName' ]] dfAlarmEreignisse['AlarmEvent']=dfAlarmEreignisse.apply(lambda row: AlarmEvent(row['tA'],row['tE'],row['ZHKNR'],row['LDSResBaseType']),axis=1) # unklar, warum erforderlich dfAlarmEreignisse['Nr']=dfAlarmEreignisse.index+1 except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfAlarmEreignisse def fCVDName(Name ): """ """ lName=len(Name) if len(Name)==0: Name='ZHKName vmtl. nicht in Log' lNameMaxH=20 if lName > 2*lNameMaxH: Name=Name[:lNameMaxH-2]+'....'+Name[lName-lNameMaxH+2:] Name=Name.replace('°','|') return Name def plotDfAlarmEreignisse( dfAlarmEreignisse=pd.DataFrame() ,sortBy=[] ,replaceTup=('2021-','') ,replaceTuptD=('0 days','') ): """ Returns the plt.table """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: df=dfAlarmEreignisse[['Nr','LDSResBaseType','Voralarm','Type','NrSD','tA','tE','tD','ZHKNR','Name','Orte','tD_ZHKNR','NrName','NrSEGName','SEGName','BZKat']].copy() df['tA']=df['tA'].apply(lambda x: str(x).replace(replaceTup[0],replaceTup[1])) df['tE']=df['tE'].apply(lambda x: str(x).replace(replaceTup[0],replaceTup[1])) ###df['Anz']=df['Orte'].apply(lambda x: len(x)) ##df['Orte']=df['Orte'].apply(lambda x: str(x).replace('[','').replace(']','').replace("'","")) df['Orte']=df['Orte'].apply(lambda x: str(x[0])) df['LDSResBaseType']=df.apply(lambda row: "{:s} {:s} - {:d}".format(row['LDSResBaseType'],row['Type'],row['Voralarm']),axis=1) df=df[['Nr','LDSResBaseType','NrSD','tA','tE','tD','ZHKNR','Name','NrName','NrSEGName','SEGName','tD_ZHKNR','Orte','BZKat']] df.rename(columns={'LDSResBaseType':'ResTyp - Voralarm'},inplace=True) df.rename(columns={'tD_ZHKNR':'ZHKZeit','Name':'ZHKName'},inplace=True) ###df['ZHKName']=df['ZHKName'].apply(lambda x: fCVDName(x)) ####df['ZHKName']=df['Orte'].apply(lambda x: x[0]) df['NrSEGName (SEGName)']=df.apply(lambda row: "{!s:2s} ({!s:s})".format(row['NrSEGName'],row['SEGName']),axis=1) df=df[['Nr','ResTyp - Voralarm','NrSD','tA','tD','ZHKNR' ,'Orte' #'ZHKName' ,'BZKat' ,'NrName','NrSEGName (SEGName)','ZHKZeit']] df.rename(columns={'Orte':'ID'},inplace=True) df['tD']=df['tD'].apply(lambda x: str(x).replace(replaceTuptD[0],replaceTuptD[1])) def fGetZHKNRStr(row,dfOrig): """ returns: ZHKNStr in Abhängigkeit der aktuellen Zeile und dfOrig """ s=dfOrig[dfOrig['Nr']==row['Nr']].iloc[0] if len(s.ZHKNRn)>1: if len(s.ZHKNRn)==2: return "{:d} ({!s:s})".format(row['ZHKNR'],s.ZHKNRn[1:]) else: return "{:d} (+{:d})".format(row['ZHKNR'],len(s.ZHKNRn)-1) else: return "{:d}".format(row['ZHKNR']) df['ZHKNR']=df.apply(lambda row: fGetZHKNRStr(row,dfAlarmEreignisse),axis=1) if sortBy!=[]: df=df.sort_values(by=sortBy) t=plt.table(cellText=df.values, colLabels=df.columns ,colWidths=[.03,.1 # Nr ResTyp-Voralarm ,.04 # NrSD ,.08,.08 # tA tD ,.085 # ZHKNR ,.1125,.07 #.1125 # ID BZKat ,.04 # NrName ,.14 # NrSEGName (SEGName) ,.2125] # ZHKZeit , cellLoc='left' , loc='center') t.auto_set_font_size(False) t.set_fontsize(10) cols=df.columns.to_list() #colIdxOrte=cols.index('Orte') #colIdxName=cols.index('ZHKName') colIdxNrSD=cols.index('NrSD') colIdxNrSEG=cols.index('NrSEGName (SEGName)') # ResTyp - Voralarm colIdxResTypVA=cols.index('ResTyp - Voralarm') cells = t.properties()["celld"] for cellTup,cellObj in cells.items(): cellObj.set_text_props(ha='left') row,col=cellTup # row: 0 fuer Ueberschrift bei Ueberschrift; col mit 0 #if col == colIdxName: # cellObj.set_text_props(ha='left') if col == colIdxNrSD: if row > 0: if dfAlarmEreignisse.loc[row-1,'LDSResBaseType']=='SEG': cellObj.set_text_props(backgroundcolor='lightsteelblue') else: cellObj.set_text_props(backgroundcolor='plum') elif col == colIdxNrSEG: if row==0: continue if 'color' in dfAlarmEreignisse.columns.to_list(): color=dfAlarmEreignisse['color'].iloc[row-1] cellObj.set_text_props(backgroundcolor=color) elif col == colIdxResTypVA and row > 0: pass if dfAlarmEreignisse.loc[row-1,'Voralarm'] in [10]: cellObj.set_text_props(backgroundcolor='sandybrown') elif dfAlarmEreignisse.loc[row-1,'Voralarm'] in [4]: cellObj.set_text_props(backgroundcolor='pink') elif dfAlarmEreignisse.loc[row-1,'Voralarm'] in [3]: cellObj.set_text_props(backgroundcolor='lightcoral') else: pass #cellObj.set_text_props(fontsize=16) plt.axis('off') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return t def plotDfAlarmStatistikReportsSEGErgs( h5File='a.h5' ,dfAlarmStatistik=pd.DataFrame() ,SEGResDct={} ,timeStart=None,timeEnd=None ,SEGErgsFile='SEGErgs.pdf' ,stopAtSEGNr=None ,dateFormat='%y.%m.%d: %H:%M:%S' ,byhour=[0,3,6,9,12,15,18,21] ,byminute=None ,bysecond=None ,timeFloorCeilStr=None #'1H' # Runden (1 Stunde) ,timeFloorCeilStrDetailPre='6T' # Runden (3 Minuten) ,timeFloorCeilStrDetailPost='3T' ,timeShiftPair=None ): """ Creates PDF for all SEGs with FörderZeitenAlAnz>0 1 Base Plot and Detail Plots for the Alarms Creates corresponding Single-PNGs Returns xlimsDct: key: BaseID value: list of Timepairs of the Detail Plots for the Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: lx=Lx.AppLog(h5File=h5File) firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal=lx.getTotalLogTime() if timeStart==None: if timeFloorCeilStr != None: timeStart = firstTime.floor(freq=timeFloorCeilStr) else: timeStart = firstTime if timeEnd==None: if timeFloorCeilStr != None: timeEnd = lastTime.ceil(freq=timeFloorCeilStr) else: timeEnd = lastTime logger.debug("{0:s}timeStart (ohne timeShift): {1:s} timeEnd (ohne timeShift): {2:s}".format(logStr,str(timeStart),str(timeEnd))) xlimsDct={} pdf=PdfPages(SEGErgsFile) (fileNameBase,ext)= os.path.splitext(SEGErgsFile) if timeShiftPair != None: (preriod,freq)=timeShiftPair timeDeltaStr="{:d} {:s}".format(preriod,freq) timeDelta=pd.Timedelta(timeDeltaStr) else: timeDelta=pd.Timedelta('0 Seconds') idxSEGPlotted=0 for idx,(index,row) in enumerate(dfAlarmStatistik.iterrows()): if stopAtSEGNr != None: if idxSEGPlotted>=stopAtSEGNr: break titleStr="LfdNr {:2d} - {:s}: {:s}: {:s}".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'] ,row['SEGResIDBase']) if row['FörderZeitenAlAnz']==0: # and row['RuheZeitenAlAnz']==0: logger.info("{:s}: FörderZeitenAlAnz: 0".format(titleStr)) continue # keine SEGs ohne Alarme drucken # Erg lesen ResIDBase=row['SEGResIDBase'] dfSegReprVec=getLDSResVecDf(ResIDBase=ResIDBase,LDSResBaseType='SEG',lx=lx,timeStart=timeStart,timeEnd=timeEnd,timeShiftPair=timeShiftPair) ID='AL_S' if ID not in dfSegReprVec.keys(): continue idxSEGPlotted=idxSEGPlotted+1 xlimsDct[ResIDBase]=[] logger.debug("{:s}ResIDBase: {:s} dfSegReprVec: Spalten: {!s:s}".format(logStr,ResIDBase,dfSegReprVec.columns.to_list())) # Plot Basis ########################################################### fig=plt.figure(figsize=DINA4q,dpi=dpiSize) ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=dfSegReprVec # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=pd.DataFrame() # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStart+timeDelta,timeEnd+timeDelta) ,dateFormat=dateFormat ,byhour=byhour ,byminute=byminute ,bysecond=bysecond ,plotLegend=True ) backgroundcolor='white' if row['FörderZeit']==0: backgroundcolor='lightgrey' else: # hat Förderzeit if row['FörderZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['FörderZeitAl']/row['FörderZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: FörderZeit: {:8.2f} FörderZeitenAlAnz: {:d}".format(row['SEGNodes'],row['FörderZeit'],row['FörderZeitenAlAnz']) if row['FörderZeitenAlAnz'] > 0: if row['FörderZeitenAlAnz'] <= 3: txtNr=" Nrn.: {!s:s}".format(row['FörderZeitenAlNrn']) else: txtNr=" Nrn.: {!s:s} u.w.".format(row['FörderZeitenAlNrn'][0]) txt=txt+txtNr else: txtNr='' ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['FörderZeitSt']>0: backgroundcolor='white' if row['FörderZeitSt']/row['FörderZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: FörderZeitSt: {:8.2f})".format(row['FörderZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) ax.set_title( titleStr,loc='left') fig.tight_layout(pad=2.) # PDF pdf.savefig(fig) # png fileName="{:s} {:2d} - {:s} {:s} {:s}.png".format(fileNameBase ,int(row.Nr)+1 ,str(row.DIVPipelineName) ,row['SEGName'] ,txtNr.replace('Nrn.: ','Nrn ').replace(',','').replace('[','').replace(']','').replace('u.w.','u w')) plt.savefig(fileName) plt.show() ###plt.clf() plt.close() # Plot Alarme ########################################################### dct=SEGResDct[row['SEGResIDBase']] timeFirstAlarmStarts,dummy=dct['Alarm'][0] dummy,timeLastAlarmEnds=dct['Alarm'][-1] for idxAl,AlNr in enumerate(row['FörderZeitenAlNrn']): timeAlarmStarts,timeAlarmEnds=dct['Alarm'][idxAl] timeStartDetail = timeAlarmStarts.floor(freq=timeFloorCeilStrDetailPre) timeEndDetail = timeAlarmEnds.ceil(freq=timeFloorCeilStrDetailPost) # wenn AlarmRand - PlotRand < 3 Minuten: um 3 Minuten erweitern if timeAlarmStarts-timeStartDetail<pd.Timedelta('3 Minutes'): timeStartDetail=timeStartDetail-
pd.Timedelta('3 Minutes')
pandas.Timedelta
from abc import ABCMeta, abstractmethod from abc import ABC import warnings from decimal import Decimal from tqdm import tqdm import numpy as np import pandas as pd import pandas_ta as ta from ..util import huf, pdiff warnings.simplefilter(action='ignore', category=pd.errors.PerformanceWarning) FEE = Decimal(0.6/100) class Stats: wallet: Decimal = Decimal('1000.00') losses: int = 0 wins: int = 0 per_day: dict = { 'fee':{}, 'net_profit':{}, 'percent':{} } sell_log: list = [] class BacktestBase(ABC): def __init__(self, csv_file: str, progress_bar: bool = True, debug: bool = False): self._csv_file = csv_file self._progress_bar = progress_bar self._debug = debug self._df = self._get_dataframe() self._last_timestamp = None self.buys = [] self.fee = FEE self.stats = Stats() @abstractmethod def init(self, *args, **kwargs) -> None: """Setup any extra initialization here (e.g. apply ema to dataframe)""" pass @abstractmethod def backtest(self, timestamp, row) -> None: """Each row is fed into here for applying a backtest strategy on a stream of data""" pass def run(self) -> None: """Run the backtest""" for (timestamp, row) in self._next_row(): self.backtest(timestamp, row) if self.stats.wallet < 1: break def _next_row(self) -> tuple: """Generate from self._df.iterrows()""" if self._progress_bar: progress_bar = tqdm(total=len(self._df)) for (timestamp, row) in self._df.iterrows(): progress_bar.update(1) self._last_timestamp = timestamp yield timestamp, row else: for (timestamp, row) in self._df.iterrows(): self._last_timestamp = timestamp yield timestamp, row def _get_dataframe(self) -> pd.DataFrame: """Read csv file using pandas and convert and set index to timestamp col Expects form: "timestamp","low","high","open","close","volume" """ df =
pd.read_csv(self._csv_file)
pandas.read_csv
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import pandas as pd import numpy as np from tasrif.processing_pipeline.custom import MergeFragmentedActivityOperator from tasrif.processing_pipeline.custom import CreateFeatureOperator # + df = pd.DataFrame([ [0,2,354,27,5,386,0.91,'2016-03-27 03:33:00', '2016-03-27 09:02:00'], [0,4,312,23,7,321,0.93,'2016-03-28 00:40:00', '2016-03-28 01:56:00'], [0,5,312,35,7,193,0.93,'2016-03-29 00:40:00', '2016-03-29 01:56:00'], [0,7,312,52,7,200,0.93,'2016-05-21 00:40:00', '2016-05-21 01:56:00'], [0,8,312,12,7,43,0.93,'2016-05-23 01:57:00', '2016-05-23 01:58:00'], [0,9,312,42,7,100,0.93,'2016-05-23 01:59:00', '2016-05-23 01:59:30'], [0,9,312,21,7,302,0.93,'2016-05-23 03:00:00', '2016-05-23 03:59:30'], [0,10,312,16,7,335,0.93,'2016-05-23 10:57:00', '2016-05-23 20:58:00'], [0,11,312,16,7,335,0.93,'2016-10-24 00:58:00', '2016-05-24 01:58:00'], [1,3,312,16,7,335,0.93,"2016-03-14 08:12:00","2016-03-14 10:15:00"], [1,4,272,26,5,303,0.89,"2016-03-16 03:12:00","2016-03-16 08:14:00"], [1,5,61,2,0,63,0.96,"2016-03-16 19:43:00","2016-03-16 20:45:00"], [1,6,402,34,1,437,0.91,"2016-03-17 01:16:00","2016-03-17 08:32:00"], ], columns=["Id", "logId", "Total Minutes Asleep", "Total Minutes Restless", "Total Minutes Awake", "Total Minutes in Bed", "Sleep Efficiency", "Sleep Start", "Sleep End"]) df['Sleep Start'] = pd.to_datetime(df['Sleep Start']) df['Sleep End'] = pd.to_datetime(df['Sleep End']) # - df # + aggregation_definition = { 'logId': lambda df: df.iloc[0], 'Total Minutes Asleep': np.sum, 'Total Minutes Restless': np.sum, 'Total Minutes Awake': np.sum, 'Total Minutes in Bed': np.sum, } operator = MergeFragmentedActivityOperator( participant_identifier='Id', start_date_feature_name='Sleep Start', end_date_feature_name='Sleep End', threshold="3 hour", aggregation_definition=aggregation_definition) df = operator.process(df)[0] df # + # Test cases: # seq1: a sequence of [0, 0] no merge # seq2: a sequence of [1, 0] no merge # seq3: a sequence of [0, 1] merge # seq4: a sequence of [1, 1] no merge operator = MergeFragmentedActivityOperator( participant_identifier='Id', start_date_feature_name='Sleep Start', end_date_feature_name='Sleep End', threshold="3 hour", return_before_merging=False) seq1 = pd.DataFrame([ [0, '2016-03-27 03:33:00', '2016-03-27 03:34:00'], [0, '2016-03-27 03:34:00', '2016-03-28 03:54:00'], ], columns=["Id", "Sleep Start", "Sleep End"]) seq1['Sleep Start'] = pd.to_datetime(seq1['Sleep Start']) seq1['Sleep End'] =
pd.to_datetime(seq1['Sleep End'])
pandas.to_datetime
import pandas as pd import numpy as np from tensorflow.contrib import layers from tensorflow.contrib import learn import tensorflow as tf def input_fn(df): feature_cols = {} feature_cols['Weight'] = tf.constant(df['Weight'].values) feature_cols['Species'] = tf.SparseTensor( indices=[[i, 0] for i in range(df['Species'].size)], values=df['Species'].values, dense_shape=[df['Species'].size, 1] ) labels = tf.constant(df['Height'].values) return feature_cols, labels N = 10000 weight = np.random.randn(N) * 5 + 70 spec_id = np.random.randint(0, 3, N) bias = [0.9, 1., 1.1] height = np.array([weight[i]/100 + bias[b] for i,b in enumerate(spec_id)]) spec_name = ['Goblin', 'Human', 'ManBears'] spec = [spec_name[s] for s in spec_id] df =
pd.DataFrame({'Species': spec, 'Weight': weight, 'Height': height})
pandas.DataFrame
import logging import os import re import shutil import warnings from datetime import datetime from typing import Union import h5py import numpy as np import pandas as pd from omegaconf import DictConfig from deepethogram.utils import get_subfiles from deepethogram.zscore import zscore_video from . import utils from .file_io import read_labels log = logging.getLogger(__name__) required_keys = ['project', 'augs'] projects_file_directory = os.path.dirname(os.path.abspath(__file__)) def initialize_project(directory: Union[str, os.PathLike], project_name: str, behaviors: list = None, make_subdirectory: bool=True, labeler: str = None): """Initializes a DeepEthogram project. Copies the default configuration file and updates it with the directory, name, and behaviors specified. Makes directories where project info, data, and models will live. Args: directory: str, os.PathLike Directory where DeepEthogram data and models will be made / copied. Should be on an SSD. Should also have plenty of space. project_name: str name of the deepethogram project behaviors: optional list. First should be background. make_subdirectory: bool if True, make a subdirectory like "/path/to/DATA/project_name_deepethogram" if False, keep as the input directory: "/path/to/DATA" Example: intialize_project('C:\DATA', 'grooming', ['background', 'face_groom', 'body_groom', 'rear']) """ assert os.path.isdir(directory), 'Directory does not exist: {}'.format(directory) if behaviors is not None: assert behaviors[0] == 'background' root = os.path.dirname(os.path.abspath(__file__)) project_config = utils.load_yaml(os.path.join(root, 'conf', 'project', 'project_config.yaml')) project_name = project_name.replace(' ', '_') project_config['project']['name'] = project_name project_config['project']['class_names'] = behaviors if make_subdirectory: project_dir = os.path.join(directory, '{}_deepethogram'.format(project_name)) else: project_dir = directory project_config['project']['path'] = project_dir project_config['project']['data_path'] = 'DATA' project_config['project']['model_path'] = 'models' project_config['project']['labeler'] = labeler if not os.path.isdir(project_config['project']['path']): os.makedirs(project_config['project']['path']) os.chdir(project_config['project']['path']) if not os.path.isdir(project_config['project']['data_path']): os.makedirs(project_config['project']['data_path']) if not os.path.isdir(project_config['project']['model_path']): os.makedirs(project_config['project']['model_path']) fname = os.path.join(project_dir, 'project_config.yaml') project_config['project']['config_file'] = fname utils.save_dict_to_yaml(project_config, fname) return project_config def add_video_to_project(project: dict, path_to_video: Union[str, os.PathLike], mode: str = 'copy') -> str: """ Adds a video file to a DEG project. 1. Copies the video file to the project's data directory 2. initializes a record.yaml file 3. Computes per-channel image statistics (for input normalization) Parameters ---------- project: dict pre-loaded configuration dictionary path_to_video: str, PathLike absolute path to a video file. Filetype must be acceptable to deepethogram.file_io.VideoReader mode: str if 'copy': copies files to new directory if 'symlink': tries to make a symlink from the old location to the new location. NOT RECOMMENDED. if you delete the video in its current location, the symlink will break, and we will have errors during training or inference if 'move': moves the file Returns ------- new_path: str path to the video file after moving to the DEG project data directory. """ # assert (os.path.isdir(project_directory)) assert os.path.isfile(path_to_video), 'video not found! {}'.format(path_to_video) assert mode in ['copy', 'symlink', 'move'] # project = utils.load_yaml(os.path.join(project_directory, 'project_config.yaml')) # project = convert_config_paths_to_absolute(project) log.debug('configuration file when adding video: {}'.format(project)) datadir = os.path.join(project['project']['path'], project['project']['data_path']) assert os.path.isdir(datadir), 'data path not found: {}'.format(datadir) basename = os.path.basename(path_to_video) vidname = os.path.splitext(basename)[0] video_directory = os.path.join(datadir, vidname) if os.path.isdir(video_directory): raise ValueError('Directory {} already exists in your data dir! ' \ 'Please rename the video to a unique name'.format(vidname)) os.makedirs(video_directory) new_path = os.path.join(video_directory, basename) if mode == 'copy': shutil.copy(path_to_video, new_path) elif mode == 'symlink': os.symlink(path_to_video, new_path) elif mode == 'move': shutil.move(path_to_video, new_path) record = parse_subdir(video_directory) log.debug('New record after adding: {}'.format(record)) utils.save_dict_to_yaml(record, os.path.join(video_directory, 'record.yaml')) zscore_video(os.path.join(video_directory, basename), project) return new_path def add_label_to_project(path_to_labels: Union[str, os.PathLike], path_to_video) -> str: """Adds an externally created label file to the project. Updates record""" assert os.path.isfile(path_to_labels) assert os.path.isfile(path_to_video) assert is_deg_file(path_to_video) viddir = os.path.dirname(path_to_video) label_dst = os.path.join(viddir, os.path.basename(path_to_labels)) if os.path.isfile(label_dst): warnings.warn('Label already exists in destination {}, overwriting...'.format(label_dst)) df = pd.read_csv(path_to_labels, index_col=0) if 'none' in list(df.columns): df = df.rename(columns={'none': 'background'}) if 'background' not in list(df.columns): array = df.values is_background = np.logical_not(np.any(array == 1, axis=1)).astype(int) df2 = pd.DataFrame(data=is_background, columns=['background']) df = pd.concat([df2, df], axis=1) df.to_csv(label_dst) record = parse_subdir(viddir) utils.save_dict_to_yaml(record, os.path.join(viddir, 'record.yaml')) return label_dst def add_file_to_subdir(file: Union[str, os.PathLike], subdir: Union[str, os.PathLike]): """If you save or move a file into a DEG subdirectory, update the record""" if not is_deg_file(subdir): raise ValueError('directory is not a DEG subdir: {}'.format(subdir)) assert (os.path.isfile(file)) if os.path.dirname(file) != subdir: shutil.copy(file, os.path.join(subdir, os.path.basename(file))) record = parse_subdir(subdir) utils.save_dict_to_yaml(record, os.path.join(subdir, 'record.yaml')) def change_project_directory(config_file: Union[str, os.PathLike], new_directory: Union[str, os.PathLike]): """If you move the project directory to some other location, updates the config file to have the new directories""" assert os.path.isfile(config_file) assert os.path.isdir(new_directory) # make sure that new directory is properly formatted for deepethogram datadir = os.path.join(new_directory, 'DATA') model_path = os.path.join(new_directory, 'models') assert os.path.isdir(datadir) assert os.path.isdir(model_path) project_config = utils.load_yaml(config_file) project_config['project']['path'] = new_directory project_config['project']['model_path'] = os.path.basename(model_path) project_config['project']['data_path'] = os.path.basename(datadir) project_config['project']['config_file'] = os.path.join(new_directory, 'project_config.yaml') utils.save_dict_to_yaml(project_config, project_config['project']['config_file']) def remove_video_from_project(config_file, video_file=None, record_directory=None): # TODO: remove video from split dictionary, remove mean and std from project statistics raise NotImplementedError def is_deg_file(filename: Union[str, os.PathLike]) -> bool: """Quickly assess if a file is part of a well-formatted subdirectory with a records.yaml""" if os.path.isdir(filename): basedir = filename elif os.path.isfile(filename): basedir = os.path.dirname(filename) else: raise ValueError('submit directory or file to is_deg_file, not {}'.format(filename)) recordfile = os.path.join(basedir, 'record.yaml') return os.path.isfile(recordfile) def add_behavior_to_project(config_file: Union[str, os.PathLike], behavior_name: str): """ Adds a behavior (class) to the project. Adds this behavior to the class_names field of your project configuration. Adds -1 column in all labelfiles in current project. Saves the altered project_config to disk. Parameters ---------- config_file: str, PathLike path to the project config file behavior_name: str behavior to add to the project. """ assert (os.path.isfile(config_file)) project_config = utils.load_yaml(config_file) assert 'class_names' in list(project_config['project'].keys()) classes = project_config['project']['class_names'] assert behavior_name not in classes classes.append(behavior_name) records = get_records_from_datadir(os.path.join(project_config['project']['path'], project_config['project']['data_path'])) for key, record in records.items(): labelfile = record['label'] if labelfile is None: continue if os.path.isfile(labelfile): df = pd.read_csv(labelfile, index_col=0) label = df.values N, K = label.shape # label = np.concatenate((label, np.ones((N, 1))*-1), axis=1) df2 = pd.DataFrame(data=np.ones((N, 1)) * -1, columns=[behavior_name]) df = pd.concat([df, df2], axis=1) df.to_csv(labelfile) project_config['project']['class_names'] = classes utils.save_dict_to_yaml(project_config, config_file) def remove_behavior_from_project(config_file: Union[str, os.PathLike], behavior_name: str): """Removes behavior (class) from existing project. Removes behavior name from project configuration file. Decrements num_behaviors by one. Removes this column from existing label files. Saves altered project configuration to disk. Parameters ---------- config_file: str, PathLike path to a deepethogram configuration file behavior_name: str One of the existing behavior_names. """ if behavior_name == 'background': raise ValueError('Cannot remove background class.') assert (os.path.isfile(config_file)) project_config = utils.load_yaml(config_file) assert 'class_names' in list(project_config['project'].keys()) classes = project_config['project']['class_names'] assert behavior_name in classes records = get_records_from_datadir(os.path.join(project_config['project']['path'], project_config['project']['data_path'])) for key, record in records.items(): labelfile = record['label'] if labelfile is None: continue if os.path.isfile(labelfile): df =
pd.read_csv(labelfile, index_col=0)
pandas.read_csv
import os import numpy as np import pandas as pd from common.data_source_from_bundle import __td__, __ds__ def dataframe_to_ndarray(df): """ pd.DataFrame to ndarray, 除去trade_date, wind_code, 其他n列变成n*4000的ndarray :param df: 数据 :return: ndarray """ columns = df.columns assert ("wind_code" in columns) result = pd.merge(pd.DataFrame({'wind_code': __ds__.codes}), df, on=['wind_code'], how="left") res = np.r_[[np.array(result[col]) for col in columns if col not in ["wind_code", "trade_date"]]] if res.shape[0] == 1: return res.ravel() else: return res def ndarray_to_dataframe(array, **kwargs): """ ndarray to pd.DataFrame :param array: 数据 :param kwargs: column_name = str :return: pd.DataFrame """ return pd.DataFrame({'wind_code': __ds__.codes, kwargs.get("column_name", "value"): array}) def read_holding(trade_date, strategy_path, offset=0, return_type="numpy"): """ 读持仓数据 :param trade_date: :param strategy_path: :param offset: 持仓日期的偏移,offset=1为昨日 :param return_type: numpy or pandas :return: """ date = __td__.get_previous_trading_date(trade_date, offset) holding_path = os.path.join(strategy_path, "holding", "%s.csv" % date) # 为了确保中文路径也可以读 with open(holding_path, "r") as infile: holding_df =
pd.read_csv(infile)
pandas.read_csv
# encoding: utf-8 from opendatatools.common import RestAgent from progressbar import ProgressBar import demjson import json import pandas as pd fund_type = { "全部开放基金" : {"t": 1, "lx": 1}, "股票型基金" : {"t": 1, "lx": 2}, "混合型基金" : {"t": 1, "lx": 3}, "债券型基金" : {"t": 1, "lx": 4}, "指数型基金" : {"t": 1, "lx": 5}, "ETF联接基金" : {"t": 1, "lx": 6}, "LOF基金" : {"t": 1, "lx": 8}, "分级基金" : {"t": 1, "lx": 9}, "FOF基金" : {"t": 1, "lx": 15}, "理财基金" : {"t": 5}, "分级A" : {"t": 6}, "货币基金" : {"t": 7}, } class EastMoneyAgent(RestAgent): def __init__(self): RestAgent.__init__(self) def _get_and_parse_js(self, url, prefix, param=None): response = self.do_request(url, param=param) if not response.startswith(prefix): return None else: return response[len(prefix):] def get_fund_company(self): url = 'http://fund.eastmoney.com/Data/Fund_JJJZ_Data.aspx?t=3' prefix = 'var gs=' response = self._get_and_parse_js(url, prefix) if response is None: return None, '获取数据失败' jsonobj = demjson.decode(response) df = pd.DataFrame(jsonobj['op']) df.columns = ['companyid', 'companyname'] return df, '' def _get_fund_list_onepage(self, company='', page_no = 1, page_size = 100): url = 'http://fund.eastmoney.com/Data/Fund_JJJZ_Data.aspx?page=%d,%d&gsid=%s' % (page_no, page_size, company) prefix = 'var db=' response = self.do_request(url) response = self._get_and_parse_js(url, prefix) if response is None: return None, '获取数据失败' jsonobj = demjson.decode(response) rsp = jsonobj['datas'] datestr = jsonobj['showday'] df = pd.DataFrame(rsp) if len(df) > 0: df.drop(df.columns[5:], axis=1, inplace=True) df.columns = ['fundcode', 'fundname', 'pingyin', 'nav', 'accu_nav'] df['date'] = datestr[0] return df, '' else: return None, '' def get_fundlist_by_company(self, companyid): page_no = 1 page_size = 1000 df_result = [] while True: df, msg = self._get_fund_list_onepage(company=companyid, page_no=page_no, page_size=page_size) if df is not None: df_result.append(df) if df is None or len(df) < page_size: break page_no = page_no + 1 if len(df_result) > 0: return pd.concat(df_result), '' else: return None, '' def get_fund_list(self): df_company, msg = self.get_fund_company() if df_company is None: return None, msg df_result = [] process_bar = ProgressBar().start(max_value=len(df_company)) for index, row in df_company.iterrows(): companyid = row['companyid'] companyname = row['companyname'] df, msg = self.get_fundlist_by_company(companyid) if df is not None: df['companyname'] = companyname df['companyid'] = companyid df_result.append(df) process_bar.update(index+1) return pd.concat(df_result), '' def get_fund_type(self): return fund_type.keys() def _get_fundlist_by_type_page(self, type, page_no = 1, page_size = 100): url = 'http://fund.eastmoney.com/Data/Fund_JJJZ_Data.aspx?page=%d,%d' % (page_no, page_size) prefix = 'var db=' type_param = fund_type[type] response = self._get_and_parse_js(url, prefix, param=type_param) jsonobj = demjson.decode(response) rsp = jsonobj['datas'] datestr = jsonobj['showday'] df =
pd.DataFrame(rsp)
pandas.DataFrame
# %%%% import pandas as pd import numpy as np import re # %%%% functions ## Fill missing values def fillmissing(x,col,index,benchmark): for i in range(index,len(x)): # find missing value if x.loc[i,col] == benchmark: # if first is missing, fill using the value next to it if i == index: x.loc[i,col] = x.loc[i+1,col] # if the last one is missing, fill using the value preceeds it elif i == len(x)-1: x.loc[i,col] = x.loc[i-1,col] # otherwise, fill using the average of the two not null values above and after else: j = i-1 k = i+1 while x.loc[j,col] == benchmark: j -= 1 while x.loc[k,col] == benchmark: k += 1 x.loc[i,col] = np.mean([x.loc[j,col],x.loc[k,col]]) return x ## Data Preprocess def preprocess(x,name,Date,column,index,benchmark,q): # select the valid starting day x = x[x['Date'] > Date].copy() x = x.reset_index().copy() x = x.drop('index',axis = 1).copy() # fill na with benchmark we chose x[column] = x[column].fillna(benchmark).copy() # fill missing values x = fillmissing(x,column,index,benchmark).copy() # calculate daily return x['lag_'+column] = x[column].shift(1) x = x.iloc[1:,:].copy().reset_index() x = x.drop('index',axis = 1).copy() x['log_ret'] = np.log(x[column])-np.log(x['lag_'+column]) retm = np.mean(x['log_ret']) x['retv'] = np.square(x['log_ret']-retm)*100 # estimate volatility x[name+'_20day_vol'] = np.sqrt(x['retv'].rolling(window=20,win_type="boxcar").mean())/10 # estimate quantiles of the distribution of log-returns x[name+'_quant_ret'] = np.nan for r in range(len(x)-20): R_quant = np.quantile(x['log_ret'][r:r+20],q) x.loc[r+19,name+'_quant_ret'] = R_quant return x # %%%% Main Dataset: csi300 csi = pd.read_csv('/Users/msstark/Desktop/project/Shanghai Shenzhen CSI 300 Historical Data.csv') # setting date format csi['Date'] = csi['Date'].apply(lambda x: re.sub(r',',r'',x)) csi['Day'] = csi['Date'].apply(lambda x: x.split(' ')[1]).astype(int) csi['Month'] = csi['Date'].apply(lambda x: x.split(' ')[0]) csi['Month'].unique() csi['Month'] = csi['Month'].map({'Jan':1,'Feb':2,'Mar':3,'Apr':4,'May':5,'Jun':6, 'Jul':7,'Aug':8,'Sep':9,'Oct':10,'Nov':11,'Dec':12}) csi['Year'] = csi['Date'].apply(lambda x: x.split(' ')[2]).astype(int) csi['Date'] = csi['Year'].astype(str) +'-'+csi['Month'].astype(str)+'-'+csi['Day'].astype(str) csi['Date'] =
pd.to_datetime(csi['Date'], format='%Y-%m-%d')
pandas.to_datetime
import requests import json import pandas as pd from apscheduler.schedulers.blocking import BlockingScheduler import apscheduler.schedulers.blocking from datetime import datetime,timedelta import time import sqlalchemy import sys import numpy as np # taxa de periodicidade para realizar a operação periodicidade = 1 # indica se a aplicação está rodando dentro ou fora do docker True = docker False = Fora do docker interno = False # Se verdadeiro, deleta os dados da tabela temporaria apos trata-los deleteAfterInsert = False # Engine de conexão com banco de dados database_connection = 'mysql+mysqldb://{user}:{password}@{server}:{port}/{database}' def perMinuteTicker(): #Obtem a data UTC atual (Data de fechamento do candle) dtfechamento = datetime.utcnow() - timedelta(seconds=1) #Obtem a data de abertura do candle dtabertura = dtfechamento - timedelta(minutes=periodicidade) #Busca os dados na tabela TEMP do banco de dados querySelect = "SELECT * \ FROM TEMP WHERE DATETIME BETWEEN '%Y-%m-%d %H:%M:%S' AND '#Y-#m-#d #H:#M:#S'" querySelect = dtabertura.strftime(querySelect) querySelect = querySelect.replace('#','%') querySelect = dtfechamento.strftime(querySelect) #Cria um dataframe dos dados obtidos dataframe = pd.read_sql(querySelect,con=database_connection) dataframe['DATETIME']= pd.to_datetime(dataframe['DATETIME']) #Seleciona os valores de abertura dos candles de todas as crypto abertura = dataframe[(dataframe['DATETIME'] == dtabertura.strftime('%Y-%m-%d %H:%M:%S'))] abertura = abertura[['CRIPTOMOEDA', 'PRECO']] abertura.rename(columns={'PRECO': 'ABERTURA'}, inplace=True) #Seleciona os valores de fechamento dos candles de todas as crypto fechamento = dataframe[(dataframe['DATETIME'] == (dtfechamento - timedelta(seconds=1)).strftime('%Y-%m-%d %H:%M:%S'))] fechamento = fechamento[['CRIPTOMOEDA', 'PRECO']] fechamento.rename(columns={'PRECO': 'FECHAMENTO'}, inplace=True) #Seleciona os valores de maximo dos candles de todas as crypto high = dataframe[['CRIPTOMOEDA', 'PRECO']] high = high.groupby("CRIPTOMOEDA").max() high.rename(columns={'PRECO': 'MAXIMO'}, inplace=True) #Seleciona os valores de minimo dos candles de todas as crypto low = dataframe[['CRIPTOMOEDA', 'PRECO']] low = low.groupby("CRIPTOMOEDA").min() low.rename(columns={'PRECO': 'MINIMO'}, inplace=True) # Realiza o merge dos dataframes de abertura, fechamento, maximo e minimo ticker = pd.merge(pd.merge(
pd.merge(abertura,fechamento,on='CRIPTOMOEDA')
pandas.merge
import requests import base64 import gzip import bz2 from pathlib import Path import pandas as pd from multiprocessing import Pool magic_dict = { b"\x1f\x8b\x08": (gzip.open, 'rb'), b"\x42\x5a\x68": (bz2.BZ2File, 'r'), } max_len = max(len(x) for x in magic_dict) def open_by_magic(filename): with open(filename, "rb") as f: file_start = f.read(max_len) for magic, (fn, flag) in magic_dict.items(): if file_start.startswith(magic): return fn(filename, flag) return open(filename, 'r') equiv = {key.split('\t')[0]: (key.split('\t')[1], key.split('\t')[2].strip()) for key in open('fastmlst_pubmlst_schnum.tsv').readlines()} def get_st_pubmlst(assembly, scheme): fasta = open_by_magic(assembly).read() data = { 'base64': 'true', 'sequence': base64.b64encode(fasta).decode() } pasteur = ['kingella', 'staphlugdunensis', 'listeria'] if equiv[scheme][0] in pasteur: endpoint = f'https://bigsdb.pasteur.fr/api/db/pubmlst_{equiv[scheme][0]}_seqdef/schemes/{equiv[scheme][1]}/sequence' else: endpoint = f'https://rest.pubmlst.org/db/pubmlst_{equiv[scheme][0]}_seqdef/schemes/{equiv[scheme][1]}/sequence' r = requests.post(endpoint, json=data) if 'fields' in r.json().keys(): # Found a ST, make a tuple (Genome, Scheme, ST, {alleles}) rjson = r.json() response = { 'Genome':assembly.name, 'Scheme': scheme, 'ST': rjson['fields']['ST'], } for allel, var in rjson['exact_matches'].items(): response[allel] = var[0]['allele_id'] return(response) elif 'exact_matches' in r.json().keys(): rjson = r.json() response = { 'Genome':assembly.name, 'Scheme': scheme, 'ST': '-', } for allel, var in rjson['exact_matches'].items(): response[allel] = var[0]['allele_id'] return(response) else: print('wtf:',assembly , scheme) print(endpoint) print(r) def process_dir(dirname): directory = Path(str(dirname)) output = Path('pubmlst_output') fastas = list(directory.glob('*.gz')) schemename = dirname.name outfile = f'{schemename}.csv' datadic = [] i = 1 if not (output/outfile).is_file(): for fasta in fastas: datadic.append(get_st_pubmlst(fasta, schemename)) print(f'{schemename}: {i} de {len(fastas)}') i += 1 dfout =
pd.DataFrame(datadic)
pandas.DataFrame
'''This file holds all relevant functions necessary for starting the data analysis. An object class for all account data is established, which will hold the raw data after import, the processed data and all subdata configuration necessary for plotting. The account data is provided through the account identification process in account_ident.py Necessary functions for holiday extraction, roundies calculation as well as merging and cashbook linkage are provided in the Accounts class Excel file is exported at the end exported.''' import datetime import locale import os import platform import numpy as np import pandas as pd from basefunctions import account_ident if platform.system() == 'Windows': locale.setlocale(locale.LC_ALL, 'German') FOLDER_SEP = '\\' elif platform.system() == 'Darwin': locale.setlocale(locale.LC_ALL, 'de_DE.utf-8') FOLDER_SEP = '/' else: locale.setlocale(locale.LC_ALL, 'de_DE.utf8') FOLDER_SEP = '/' #_______________________________________ read in longterm data for training machine learning algorithm _______________ def longtermdata_import(path, decrypt_success): if decrypt_success: longterm_data = pd.read_csv(path, sep=';', parse_dates=[0, 1]) else: empty_dataframe = {'time1':np.datetime64, 'time2':np.datetime64, 'act':str, 'text':str, 'val':float, 'month':str, 'cat':str, 'main cat':str, 'acc_name':str} longterm_data = pd.DataFrame(columns=empty_dataframe.keys()).astype(empty_dataframe) #extract saved account names in longterm_data saved_accnames = list(longterm_data['acc_name'].unique()) saved_dataframe = {} #stored dataframes from import for account_name in saved_accnames: #iterate through list with indices saved_dataframe[account_name] = longterm_data.loc[longterm_data['acc_name'] == account_name] #get saved dataframes return saved_dataframe def longterm_export(path, saved_dataframe):#needs to be outside class in case program is closed before data integration longterm_data = pd.DataFrame(columns=['time1', 'time2', 'act', 'text', 'val', 'month', 'cat', 'main cat', 'acc_name']) for account_name in saved_dataframe.keys(): account_name_concat = saved_dataframe[account_name] account_name_concat['acc_name'] = account_name #set account name in dataframe to be saved longterm_data = pd.concat([longterm_data, account_name_concat]) #concatinated data longterm_data.to_csv(path, index=False, sep=';') #export data class AccountsData: def __init__(self, dir_result, classifier_class, langdict, saved_dataframe): self.langdict = langdict ## set language variable if self.langdict['result_pathvars'][0] == 'Ergebnisse_': self.lang_choice = 'deu' else: self.lang_choice = 'eng' #change locale to English if platform.system() == 'Windows': locale.setlocale(locale.LC_ALL, 'English') elif platform.system() == 'Darwin': locale.setlocale(locale.LC_ALL, 'en_US.utf-8') else: locale.setlocale(locale.LC_ALL, 'en_US.utf8') self.current_date = datetime.datetime.now().strftime("%b'%y") self.acc_names_rec = {} #longterm excel, excel and csv files self.folder_sep = FOLDER_SEP self.dir_result = dir_result+FOLDER_SEP+self.langdict['result_pathvars'][0]+self.current_date+FOLDER_SEP #adjusted complete path self.folder_res = {} self.raw_data = {} self.raw_data_header = {} self.basis_data = {} self.month_data = {} self.cat_data = {} self.plotting_list = {} self.error_codes = {} self.classifier = classifier_class self.saved_dataframe = saved_dataframe def process_data(self, raw_fileinfo, import_type): #unpack tuple with fileinformation filename, filepath = raw_fileinfo ##read in csv-files from different account_types ##start functions for getting csv account type info and data input & adjustment if import_type == 'csv_analyse': #get account information while True: try: acctypename_importedfile, raw_data, account_infos = account_ident.account_info_identifier(filepath) except: self.error_codes[filename] = 'Err01' break ##unpack account read-in info tuple header_columns, column_join, column_drop, acc_subtype, plot_info = account_infos #acc_subtype ('giro' or 'credit') currently not used, but kept in tuple list for possible later use self.raw_data[filename] = raw_data self.raw_data_header[filename] = header_columns #data preprocess try: #select Euro entrys if "Währung" in header_columns: self.basis_data[filename] = self.raw_data[filename][self.raw_data[filename]["Währung"] == "EUR"].copy() elif "currency" in header_columns: self.basis_data[filename] = self.raw_data[filename][self.raw_data[filename]["currency"] == "EUR"].copy() else: self.basis_data[filename] = self.raw_data[filename].copy() ##do adjustment to transactions info (join columns to get more info) for categorization. Output is forced to be string datype if column_join[0] == 'yes': self.basis_data[filename]['text'] = self.basis_data[filename][self.basis_data[filename].columns[column_join[1]]].apply(lambda x: str(' || '.join(x.dropna())), axis=1) else: pass ##drop columns if necessary and reaarange columns if column_drop[0] == 'yes': self.basis_data[filename].drop(self.basis_data[filename].columns[column_drop[1]], axis=1, inplace=True) self.basis_data[filename] = self.basis_data[filename].reindex(columns=self.basis_data[filename].columns[column_drop[2]]) else: pass ##insert "act" column if necessary (currently only dkb_credit) if len(self.basis_data[filename].columns) == 4: self.basis_data[filename].insert(2, 'act', self.langdict['act_value'][0]) else: pass self.basis_data[filename].columns = ["time1", "time2", "act", "text", "val"] #delete row with time1&time2 empty self.basis_data[filename] = self.basis_data[filename].drop(self.basis_data[filename][(self.basis_data[filename]['time1'].isna())&(self.basis_data[filename]['time2'].isna())].index) #adjust for missing time values in "time1"-columns self.basis_data[filename]['time1'].mask(self.basis_data[filename]['time1'].isna(), self.basis_data[filename]['time2'], inplace=True) ##new #make month-column and categorize self.basis_data[filename]['month'] = self.basis_data[filename]['time1'].apply(lambda dates: dates.strftime('%b %Y')) except: self.error_codes[filename] = 'Err02' break #check if all transaction values is Null. If yes, abort and give errorcode '03' if self.basis_data[filename]['val'].isna().all(): self.error_codes[filename] = 'Err03' break else: pass #try categorization else give error code '04' try: self.basis_data[filename] = self.classifier.categorize_rawdata(self.basis_data[filename], 'csvdata') except: self.error_codes[filename] = 'Err04' break #add account name to dictionary with imported data files and their respective account names (for cashbook, savecent and long term data saving) self.acc_names_rec[filename] = acctypename_importedfile #add variables for subsequent handling and plotting self.plotting_list[filename] = plot_info self.folder_res[filename] = self.dir_result+filename break #Plot manually manipulated excel files elif import_type == 'xls_analyse': #read excel try: raw_data = pd.read_excel(filepath, sheet_name=self.langdict['sheetname_basis'][0], engine='openpyxl') #main category is not read-in but separately assigned) try: testname = raw_data[raw_data.columns[8]][0] #get account name if existing #check if testname is nan-value (as nan are not identical it can be checked with !=) if testname != testname: #if imported account name field is Nan-value use "not assigned" acctypename_importedfile = self.langdict['accname_labels'][1] #set acctypename to not assigned else: acctypename_importedfile = testname #take name which was read in except: # if bank name is not existing set it to not assigned# acctypename_importedfile = self.langdict['accname_labels'][1] raw_data = raw_data[raw_data.columns[range(0, 7)]].copy() raw_data.dropna(subset=raw_data.columns[[0, 4]], inplace=True) #delete rows where value in time1 or val column is empty #check if raw data is in the right data format and contains at least one row if (raw_data.columns.tolist() == self.langdict['sheetname_basis'][1][:-2]) and (len(raw_data) != 0): #headers must be identical to those outputted via excel raw_data.columns = ["time1", "time2", "act", "text", "val", 'month', 'cat'] #save histo data to saved file histo_data = raw_data[['act', 'text', 'cat']].copy() #get a copy of relevant data for categorization self.classifier.machineclassifier.adjust_histo_data(histo_data) # add data to existing history dataset del histo_data self.basis_data[filename] = raw_data.copy() self.basis_data[filename] = self.classifier.assign_maincats(self.basis_data[filename]) #assign main categories self.acc_names_rec[filename] = acctypename_importedfile #add account name to dictionary with imported data files and their respective account names (for cashbook, savecent and long term data saving) self.plotting_list[filename] = 'normal' self.folder_res[filename] = self.dir_result+filename else: self.error_codes[filename] = 'Err01' del raw_data except: self.error_codes[filename] = 'Err01' # Excel file for concatenation elif import_type == 'xls_longterm': #Longterm analysis: Read-in excel to concat csvs try: raw_data = pd.read_excel(filepath, sheet_name=self.langdict['sheetname_basis'][0], engine='openpyxl') #main category is not read-in but separately assigned) #variabel "assigned_accname" does not need to be checked, as it is always 'use_acctype' for longterm excel concat try:#try to get the account name from excel testname = raw_data[raw_data.columns[8]][0] #get account name if existing #check if testname is nan-value (as nan are not identical it can be checked with !=) if testname != testname: #if imported account name field is Nan-value use "not assigned" acctypename_importedfile = self.langdict['accname_labels'][1] #set acctypename to not assigned else: acctypename_importedfile = testname #take name which was read in except: # if bank name is not existing set it to not assigned# acctypename_importedfile = self.langdict['accname_labels'][1] raw_data = raw_data[raw_data.columns[range(0, 7)]].copy() raw_data.dropna(subset=raw_data.columns[[0, 4]], inplace=True) #delete rows where value in time1 or val column is empty #check if raw data is in the right data format and contains at least one row if (raw_data.columns.tolist() == self.langdict['sheetname_basis'][1][:-2]) and (len(raw_data) != 0): #headers must be identical to those outputted via excel raw_data.columns = ["time1", "time2", "act", "text", "val", 'month', 'cat'] #save histo data to saved file histo_data = raw_data[['act', 'text', 'cat']].copy() #get a copy of relevant data for categorization self.classifier.machineclassifier.adjust_histo_data(histo_data) # add data to existing history dataset del histo_data self.basis_data[filename] = raw_data.copy() self.basis_data[filename] = self.classifier.assign_maincats(self.basis_data[filename]) #assign main categories #account names for excel-extraimport only needed because of concatination function searching for identical "acc-name" values self.basis_data[filename]['acc_name'] = None #create acctype column and set values to Nan self.basis_data[filename].at[0, 'acc_name'] = acctypename_importedfile #set account name to basis dataframe for possible concatination else: self.error_codes[filename] = 'Err01' del raw_data except: self.error_codes[filename] = 'Err01' # Excel file for concatenation elif import_type == 'xls_cashbook': #cashbok analysis: Read-in to append info to csvs try: raw_data = pd.read_excel(filepath, sheet_name=self.langdict['cashbookvars_name'][0], usecols=[0, 1, 2, 3, 4, 5], engine='openpyxl') raw_data.columns = ["time1", "text", "val", "cat", "acc_name", "cashcat"] raw_data = raw_data[raw_data['time1'].isna() == False] #adjust categories if no value is set if raw_data[['time1', 'text', 'val']].isnull().values.any() == False:#reject cashbook if there are empty values in date, value or text raw_data['val'] = -raw_data['val'] raw_data["time2"] = raw_data["time1"] raw_data['month'] = raw_data['time1'].apply(lambda dates: dates.strftime('%b %Y')) raw_data['act'] = self.langdict['cashbookvars_name'][1] #do categorization for empty values in cashbook, get main cats and reorder dataframe raw_data = self.classifier.categorize_rawdata(raw_data, 'cashbook') raw_data = raw_data.reindex(columns=raw_data.columns[[0, 6, 8, 1, 2, 7, 3, 9, 4, 5]]) self.basis_data[self.langdict['cashbookvars_name'][0]] = raw_data.copy() else: self.error_codes[filename] = 'Err01' del raw_data except: self.error_codes[filename] = 'Err01' else:#no action needed pass def assign_fileaccnames(self, assign_list): for entry in assign_list: #entry[0] equals filename / entry[1] account name #set account name to dictionary holding all account names (needed for cashbook, longterm and savecent) self.acc_names_rec[entry[0]] = entry[1] #create account name column for excel export self.basis_data[entry[0]]['acc_name'] = None #create account name column and set values to Nan self.basis_data[entry[0]].at[0, 'acc_name'] = entry[1] #set account name to basis dataframe (will be exported to excel) def sorting_processor(self, element_name, balance_row_name, group_name, value_name): basis_data_subset = self.basis_data[element_name].copy() #create subset #make month data self.month_data[element_name] = basis_data_subset.groupby('month', sort=False)[value_name].sum().reset_index() ##get monthly overview if element_name == self.langdict['dataname_savecent'][0]: #do sorting of month data differently for savecents self.month_data[element_name] = self.month_data[element_name].sort_values([value_name], ascending=False) self.month_data[element_name].columns = ['month', 'val'] else: #sort monthly data for all other dataframes starting with first month up respective left in monthplot self.month_data[element_name] = self.month_data[element_name][::-1] month_number = self.month_data[element_name]['month'].nunique() #process data and aggregate based on sorting type(category/main category) grouped_data = basis_data_subset.groupby(group_name, sort=False)[value_name].sum().reset_index() balance_row = pd.DataFrame([[balance_row_name, sum(basis_data_subset[value_name])]], columns=list(grouped_data.columns)) grouped_data = grouped_data.sort_values([value_name], ascending=False).reset_index(drop=True) #sort by values to have all positive values at top (necessary to get indices income_data = grouped_data.loc[(grouped_data[value_name] > 0)].copy() #get positive valued entries #get negative valued entries based on length of positive valued dataframe if len(income_data.index) > 0: cost_data = grouped_data[income_data.index[-1]+1:].copy() else: cost_data = grouped_data[0:].copy() cost_data = cost_data.sort_values([value_name]) # sort negative valued dataframe, with most negative at top result_data = income_data.append(cost_data, ignore_index=True) #append negative dataframe to positive dataframe result_data = result_data.append(balance_row, ignore_index=True) # add balance row result_data['val_month'] = result_data[value_name]/(month_number) #create value per month return result_data def month_cat_maker(self): ##categorize data and sort ascending. Same goes for monthly data for element_name in list(self.folder_res.keys()): if element_name == self.langdict['dataname_savecent'][0]: main_cats = "empty" subcats = self.sorting_processor(element_name, self.langdict['balance_savecent'][0], 'acc_origin', 'savecent') subcats.columns = ['cat', 'val', 'val_month'] elif element_name == self.langdict['cashbookvars_name'][0]: subcats = self.sorting_processor(element_name, self.langdict['balance_cashbook'][1], 'cat', 'val') main_cats = self.sorting_processor(element_name, self.langdict['balance_cashbook'][1], 'acc_name', 'val') #main cats equals account name sorting #rename columns maincat cashbook from 'acc_name' to 'cat' main_cats.columns = ['cat', 'val', 'val_month'] elif element_name == self.langdict['holidayvars_name'][0]: main_cats = "empty" subcats = self.sorting_processor(element_name, self.langdict['balance_holiday'][0], 'cat', 'val') else: #make cat data and month data for all other dataframes main_cats = self.sorting_processor(element_name, self.langdict['balance_normal'][0], 'main cat', 'val') # create sorted dataframe for main categories subcats = self.sorting_processor(element_name, self.langdict['balance_normal'][0], 'cat', 'val') # create sorted dataframe for categories subcats = self.classifier.assign_maincats(subcats) #add main category column to cat data for later use subcats.loc[subcats['cat'] == self.langdict['balance_normal'][0], 'main cat'] = self.langdict['balance_normal'][0] #adjust main category for balance category subcats = subcats.reindex(columns=['main cat', 'cat', 'val', 'val_month'])#reorder columns self.cat_data[element_name] = (subcats, main_cats) #take saved long term data into data evaluation process def longterm_evaluate(self): #this function is only called, when user opts for long term data evaluation for account_name in self.saved_dataframe.keys(): account_dataframe = self.saved_dataframe[account_name].copy() account_dataframe.reset_index(drop=True, inplace=True) #reset index to be able to place acc_name on index 0 account_dataframe['acc_name'] = None # clear account name account_dataframe.at[0, 'acc_name'] = account_name#set new account type for this subframe longterm_data_name = self.langdict['longterm_name'][0]+account_name # "Longterm_"+account fullname self.basis_data[longterm_data_name] = account_dataframe #add longterm basis data to be analysed self.acc_names_rec[longterm_data_name] = account_name #add longterm data name to recorded account names list--> makes cashbook evaluation possible self.plotting_list[longterm_data_name] = 'normal' #set plotting info self.folder_res[longterm_data_name] = self.dir_result+longterm_data_name # create export folder # add newly added data to longterm data def longterm_savedata(self): #update saved longterm data, evaluate and output if user opted for it #convert saved dataframes in dict entries into lists for saved_element in self.saved_dataframe.keys(): self.saved_dataframe[saved_element] = [self.saved_dataframe[saved_element]] #get basis dataframe for every assigned account name for element_name in self.acc_names_rec.keys(): if self.acc_names_rec[element_name] != self.langdict['accname_labels'][1]: #check if the name is 'not assigned'. If yes skip, else import basis data try: #if list with account name already exists, add dataframe self.saved_dataframe[self.acc_names_rec[element_name]].append(self.basis_data[element_name]) except: #create list for account name with dataframe self.saved_dataframe[self.acc_names_rec[element_name]] = [self.basis_data[element_name]] else: pass #nothing to do #generate new dataframes longterm_data_prep = {} for account_name in self.saved_dataframe.keys(): account_name_concat =
pd.concat(self.saved_dataframe[account_name])
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Detect audio recordings with rain using MFCC and logistic regression Assuming that rain events are stable during a period of 60s or more, the detector analyzes the first 10 seconds of each recording. It computes the MFCC and uses a trained model to evaluate the probability of having rain in the recording. """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from maad import sound import glob import os from librosa import feature from utils import find_file #%% Set variables fpath_csv = '../../anotaciones_manuales/anotaciones_pkl_consolidado.csv' path_audio = '/Volumes/PAPAYA/ANH/' target_fs = 16000 wl = 10 #%% Compute features df = pd.read_csv(fpath_csv) df_features = pd.DataFrame() for idx_row, row in df.iterrows(): print(idx_row+1, '/', len(df)) full_path_audio = find_file(row.fname, path_audio)[0] s, fs = sound.load(full_path_audio) # transform s = sound.trim(s, fs, 0, wl) mfcc = feature.mfcc(s, sr=target_fs, n_mfcc=20, hop_length=1024, fmax=8000) mfcc = np.median(mfcc, axis=1) # format dataframe idx_names = ['mfcc_' + str(idx).zfill(2) for idx in range(1,mfcc.size+1)] row = row.append(pd.Series(mfcc, index=idx_names)) row.name = idx_row df_features = df_features.append(row) #%% Set train test datasets # assign variables X = df_features.loc[:,df_features.columns.str.startswith('mfcc')] y = (df_features.label=='LLUVIA').astype(int) y.value_counts() #%% Tune classifier with cross validation from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.metrics import f1_score, confusion_matrix from classif_fcns import misclassif_idx import joblib clf = LogisticRegression(solver='liblinear', max_iter=10000, class_weight='balanced') clf = LogisticRegressionCV(Cs=1000, penalty='l2', solver='liblinear', scoring='f1', max_iter=10000, class_weight='balanced', cv=10, random_state=123) # fit classifier clf.fit(X, y) #%% Final evaluation on test set and save model # Note: Do not use the test set to select a model. X = df_features.loc[:,df_features.columns.str.startswith('mfcc')] y = (df_features.label=='LLUVIA').astype(int) y_pred = clf.predict(X) y_prob = clf.predict_proba(X) df_features['y_prob'] = clf.predict_proba(X)[:,1] f1_score(y, y_pred) confusion_matrix(y, y_pred) misclassified = misclassif_idx(y, y_pred) df_features.loc[misclassified['fp'], ['fname', 'y_prob', 'label']] df_features.loc[misclassified['fn'], ['fname', 'y_prob', 'label']] # save model joblib.dump(clf, 'clf_rain_logistic_regression.joblib') #%% Deploy on new data import glob flist = pd.read_csv('../../audio_metadata/audio_metadata_lluvias.csv') flist = flist.fname_audio.tolist() df_pred = dict() for idx, fname in enumerate(flist): print(idx+1, '/', len(flist)) full_path_audio = find_file(fname, path_audio)[0] s, fs = sound.load(full_path_audio) # transform - must be the same as in training s = sound.trim(s, fs, 0, wl) mfcc = feature.mfcc(s, sr=target_fs, n_mfcc=20, hop_length=1024, fmax=8000) mfcc = np.median(mfcc, axis=1) # format dataframe pred_clf = clf.predict_proba(mfcc.reshape(1,20))[:,1] df_pred[os.path.basename(fname)] = np.round(pred_clf,2) df_pred =
pd.DataFrame(df_pred, index=['proba_rain'])
pandas.DataFrame
################################################################ # ---------- Network Gene Name Conversion Functions ---------- # ################################################################ import requests import re import time import pandas as pd # Determine if id to be input is a valid gene name (does not contain parentheses or quotations or whitespace) def exclude_id(name, bad_prefixes=None): excluded_id_regex = re.compile('[(),\'\"\s\/\|\.<>]+') # Remove genes that may also have prefixes that we do not want (e.g. CHEBI) if bad_prefixes: for prefix in bad_prefixes: if name.startswith(prefix): return True return excluded_id_regex.search(name) # Remove the naming system prefix, if there is one def get_identifier_without_prefix(string): elements = string.split(':') length = len(elements) if length is 2: return str(elements[1]) elif length > 2: return None else: return string # Construct string for bach query to MyGene.Info v3.0.0 API def query_constructor(gene_list, exclude_prefixes=None, print_invalid_genes=False): # Find genes that are valid and return only gene identifiers valid_query_genes = [get_identifier_without_prefix( gene) for gene in gene_list if exclude_id(gene, exclude_prefixes) == None] # Find all genes that have invalid names invalid_query_genes = [gene for gene in gene_list if exclude_id( gene, exclude_prefixes) != None] print(len(valid_query_genes), "Valid Query Genes") if print_invalid_genes: print(len(invalid_query_genes), "Invalid Query Genes:") print(invalid_query_genes) else: print(len(invalid_query_genes), "Invalid Query Genes") # Build string of names to input into MyGene.Info query_string = ' '.join(valid_query_genes) return query_string, valid_query_genes, invalid_query_genes # Function for posting batch query to MyGene.info v3.0.0 API def query_batch(query_string, tax_id='9606', scopes="symbol, entrezgene, alias, uniprot", fields="symbol, entrezgene"): query_split = query_string.split(' ') query_n = len(query_split) query_time = time.time() if query_n <= 1000: data = {'species': tax_id, # Human Only 'scopes': scopes, # Default symbol, entrez, alias, uniprot. Alias often returns more genes than needed, return only higest scoring genes 'fields': fields, # Which gene name spaces to convert to 'q': query_string} res = requests.post('http://mygene.info/v3/query', data) json = res.json() else: # If the query is too long, we will need to break it up into chunks of 1000 query genes (MyGene.info cap) if query_n % 1000 == 0: chunks = query_n / 1000 else: chunks = (query_n / 1000) + 1 query_chunks = [] for i in range(chunks): start_i, end_i = i*1000, (i+1)*1000 query_chunks.append(' '.join(query_split[start_i:end_i])) json = [] for chunk in query_chunks: data = {'species': '9606', # Human Only # Default symbol, entrez, alias, uniprot. Alias often returns more genes than needed, return only higest scoring genes 'scopes': "entrezgene, retired", 'fields': "symbol, entrezgene", # Which gene name spaces to convert to 'q': chunk} res = requests.post('http://mygene.info/v3/query', data) json = json+res.json() print(len(json), 'Matched query results') print('Batch query complete:', round(time.time()-query_time, 2), 'seconds') return json # Construct matched queries maps def construct_query_map_table(query_result, query_genes, display_unmatched_queries=False): construction_time = time.time() # Construct DataFrame of matched queries (only keep the results for each query where both symbol and entrez id were mapped) matched_data, matched_genes = [], [] for match in query_result: if match.get('entrezgene') and match.get('symbol'): matched_data.append([match.get('query'), match.get( '_score'), match.get('symbol'), str(match.get('entrezgene'))]) matched_genes.append(match.get('query')) # Add all other partial mappings or non-mappings to the list partial_match_genes = [ gene for gene in query_genes if gene not in matched_genes] partial_match_results = [] for match in query_result: if match.get('query') in partial_match_genes: partial_match_results.append(match) # If there if an entrez gene, we want that that in string form, otherwise we want None if match.get('entrezgene'): matched_data.append([match.get('query'), match.get( '_score'), match.get('symbol'), str(match.get('entrezgene'))]) else: matched_data.append([match.get('query'), match.get( '_score'), match.get('symbol'), match.get('entrezgene')]) print('Queries with partial matching results found:', len(partial_match_results)) if display_unmatched_queries: for entry in partial_match_results: print(entry) # Convert matched data list into data frame table match_table = pd.DataFrame(data=matched_data, columns=[ 'Query', 'Score', 'Symbol', 'EntrezID']) match_table = match_table.set_index('Query') # Some genes will be matched in duplicates (due to alias mapping, generally the highest scoring matches will be correct) # Therefore we remove duplicate mappings to create 1-to-1 mappings for query to genes. duplicate_matched_genes = [] for gene in matched_genes: if type(match_table.loc[gene]) == pd.DataFrame: duplicate_matched_genes.append(gene) print print(len(duplicate_matched_genes), "Queries with mutliple matches found") # Construct mapping table of genes with only one full result single_match_genes = [ gene for gene in query_genes if gene not in duplicate_matched_genes] match_table_single = match_table.loc[single_match_genes] # Keep matches of queries matched only once if there are duplicate matches for genes if len(duplicate_matched_genes) > 0: # Keep maximum scored matches of queries matched more than once max_score_matches = [] for gene in duplicate_matched_genes: matched_duplicates = match_table.loc[gene] max_score = max(matched_duplicates['Score']) max_score_matches.append( matched_duplicates[matched_duplicates['Score'] == max_score]) match_table_duplicate_max = pd.concat(max_score_matches) # Construct Query maps for symbol and entrez match_table_trim = pd.concat( [match_table_single, match_table_duplicate_max]) else: match_table_trim = match_table_single.copy(deep=True) # Construct query map dictionaries query_to_symbol = match_table_trim['Symbol'].to_dict() query_to_entrez = match_table_trim['EntrezID'].to_dict() print print('Query mapping table/dictionary construction complete:', round(time.time()-construction_time, 2), 'seconds') return match_table_trim, query_to_symbol, query_to_entrez # Filter edgelist to remove all genes that contain invalid query names # This function is only required if there are any invalid genes found by query_constructor() def filter_query_edgelist(query_edgelist, invalid_genes): edgelist_filt = [] count = 0 for edge in query_edgelist: if edge[0] in invalid_genes or edge[1] in invalid_genes: count += 1 else: edgelist_filt.append(edge) print(count, '/', len(query_edgelist), 'edges with invalid nodes removed') return edgelist_filt # Convert network edge lists # Third column is for weights if desired to pass weights forward def convert_edgelist(query_edgelist, gene_map, weighted=False): if weighted: converted_edgelist = [sorted( [gene_map[edge[0]], gene_map[edge[1]]])+[edge[2]] for edge in query_edgelist] else: converted_edgelist = [ sorted([gene_map[edge[0]], gene_map[edge[1]]]) for edge in query_edgelist] return converted_edgelist # Sometimes each node needs to be converted by its best match if there are multiple names per node # This function uses the match_table constructed earlier to convert genes to either symbol or entrez format only def convert_custom_namelist(names, field, match_table): # Keep only mappings defined for field of interest if field == 'symbol': # Return match table values that have matched symbol conversion = match_table.loc[names][~( match_table.loc[names]['Symbol'].isnull())] if conversion.shape[0] == 0: return None else: # Return conversion with max score or None if no conversion max_score = conversion['Score'].max() converted_namelist = conversion[conversion['Score'] == max_score].loc[0]['Symbol'] elif field == 'entrez': # Return match table values that have matched symbol conversion = match_table.loc[names][~( match_table.loc[names]['EntrezID'].isnull())] if conversion.shape[0] == 0: return None else: # Return conversion with max score or None if no conversion max_score = conversion['Score'].max() converted_namelist = conversion[conversion['Score'] == max_score].loc[0]['EntrezID'] return converted_namelist # Filter converted edge lists def filter_converted_edgelist(edgelist, remove_self_edges=True, weighted=False): filter_time = time.time() print(len(edgelist), 'input edges') # Remove self-edges if remove_self_edges: edgelist_filt1 = [edge for edge in edgelist if edge[0] != edge[1]] print(len(edgelist)-len(edgelist_filt1), 'self-edges removed') else: edgelist_filt1 = edgelist print('Self-edges not removed') if weighted: # Remove edges where one or both nodes are "None" edgelist_filt2 = pd.DataFrame( data=edgelist_filt1).dropna().values.tolist() print(len(edgelist_filt1)-len(edgelist_filt2), 'edges with un-mapped genes removed') # Remove duplicates by keeping the max score edgelist_filt3_scoremap = {} for edge in edgelist_filt2: if edge[0]+'+'+edge[1] not in edgelist_filt3_scoremap: edgelist_filt3_scoremap[edge[0]+'+'+edge[1]] = edge[2] else: edgelist_filt3_scoremap[edge[0]+'+'+edge[1]] = max( edgelist_filt3_scoremap[edge[0]+'+'+edge[1]], edge[2]) # Convert dictionary of scores to list edgelist_filt3 = [] for edge in edgelist_filt3_scoremap: edgelist_filt3.append(edge.split( '+')+[edgelist_filt3_scoremap[edge]]) print(len(edgelist_filt2)-len(edgelist_filt3), 'duplicate edges removed') else: # Remove edges where one or both nodes are "None" edgelist_filt2 =
pd.DataFrame(data=edgelist_filt1)
pandas.DataFrame
import glob import numpy as np import pandas as pd import re import sys # generate aspect classes based on the MethodAspect0 template def generate_aspects(df): base_path = "./src/main/java/se/kth/castor/pankti/instrument/plugins/MethodAspect" found_aspects = sorted(glob.glob(base_path + "*.java"), key=lambda x:float(re.findall("(\d+)",x)[0])) count = int(re.search(r"(\d+)", found_aspects[-1]).group()) aspects = [] template_file_path = base_path + str(0) + ".java" df.replace(np.nan, '', regex=True, inplace=True) for index, row in df.iterrows(): with open(template_file_path) as template: count += 1 aspect_string = "\"se.kth.castor.pankti.instrument.plugins.MethodAspect" + str(count) + "\"" aspects.append(aspect_string) new_file_path = base_path + str(count) + ".java" with open(new_file_path, "w") as f: for line in template: if ("public class MethodAspect0" in line): line = line.replace("0", str(count)) if ("@Pointcut(className =" in line): line = re.sub(r"=\s\"(.+)\",", "= \"" + row['parent-FQN'] + "\",", line) if ("methodName = " in line): line = re.sub(r"=\s\"(.+)\",", "= \"" + row['method-name'] + "\",", line) if ("String rowInCSVFile" in line): values = [] for col in df.columns: col_value = str(row[col]) if "," in col_value: col_value = "\\\"" + col_value.replace(" ", "") + "\\\"" values.append(col_value) row_as_string = ','.join(values) line = re.sub(r"\"\"", "\"" + row_as_string + "\"", line) # Changes needed for void methods if row['return-type'] == "void": if "boolean isReturnTypeVoid" in line: line = line.replace("false", "true") # if "@OnReturn" in line: if "onReturn(@BindReturn Object returnedObject," in line: line = line.replace("@BindReturn Object returnedObject", "@BindReceiver Object receivingObjectPost") if "writeObjectXMLToFile(returnedObject, returnedObjectFilePath)" in line: line = line.replace("returnedObject", "receivingObjectPost") if ("methodParameterTypes = " in line): if (
pd.isnull(row['param-list'])
pandas.isnull
from sklearn.model_selection import StratifiedKFold from sklearn.pipeline import Pipeline from sklearn.dummy import DummyClassifier from pandas import DataFrame import numpy as np from sklearn.datasets import load_digits import sys from autoclf import auto_utils as au from autoclf.classification import eval_utils as eu from autoclf.classification import evaluate as eva import autoclf.getargs as ga import matplotlib.pyplot as plt # starting program if __name__ == '__main__': plt.style.use('ggplot') print() print("### Probability Calibration Experiment -- CalibratedClassifierCV " "with cv=cv (no prefit) ###") print() print(ga.get_n_epoch()) d_name = ga.get_name() if d_name is None: d_name = 'Digits' seed = 7 np.random.seed(seed) # load digits data digits = load_digits() df = DataFrame(data=digits.data) target = 'class' df_target =
DataFrame(data=digits.target, columns=[target])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest import pandas as pd import pathlib, pickle, json, copy, yaml from emhass.retrieve_hass import retrieve_hass from emhass.forecast import forecast from emhass.optimization import optimization from emhass.utils import get_root, get_yaml_parse, get_days_list, get_logger from emhass.command_line import dayahead_forecast_optim # the root folder root = str(get_root(__file__, num_parent=2)) # create logger logger, ch = get_logger(__name__, root, save_to_file=False) class TestForecast(unittest.TestCase): def setUp(self): self.get_data_from_file = True params = None retrieve_hass_conf, optim_conf, plant_conf = get_yaml_parse(pathlib.Path(root+'/config_emhass.yaml'), use_secrets=False) self.retrieve_hass_conf, self.optim_conf, self.plant_conf = \ retrieve_hass_conf, optim_conf, plant_conf self.rh = retrieve_hass(self.retrieve_hass_conf['hass_url'], self.retrieve_hass_conf['long_lived_token'], self.retrieve_hass_conf['freq'], self.retrieve_hass_conf['time_zone'], params, root, logger) if self.get_data_from_file: with open(pathlib.Path(root+'/data/test_df_final.pkl'), 'rb') as inp: self.rh.df_final, self.days_list, self.var_list = pickle.load(inp) else: self.days_list = get_days_list(self.retrieve_hass_conf['days_to_retrieve']) self.var_list = [self.retrieve_hass_conf['var_load'], self.retrieve_hass_conf['var_PV']] self.rh.get_data(self.days_list, self.var_list, minimal_response=False, significant_changes_only=False) self.rh.prepare_data(self.retrieve_hass_conf['var_load'], load_negative = self.retrieve_hass_conf['load_negative'], set_zero_min = self.retrieve_hass_conf['set_zero_min'], var_replace_zero = self.retrieve_hass_conf['var_replace_zero'], var_interp = self.retrieve_hass_conf['var_interp']) self.df_input_data = self.rh.df_final.copy() self.fcst = forecast(self.retrieve_hass_conf, self.optim_conf, self.plant_conf, params, root, logger, get_data_from_file=self.get_data_from_file) self.df_weather_scrap = self.fcst.get_weather_forecast(method='scrapper') self.P_PV_forecast = self.fcst.get_power_from_weather(self.df_weather_scrap) self.P_load_forecast = self.fcst.get_load_forecast(method=optim_conf['load_forecast_method']) self.df_input_data_dayahead = pd.concat([self.P_PV_forecast, self.P_load_forecast], axis=1) self.df_input_data_dayahead.columns = ['P_PV_forecast', 'P_load_forecast'] self.opt = optimization(retrieve_hass_conf, optim_conf, plant_conf, self.fcst.var_load_cost, self.fcst.var_prod_price, 'profit', root, logger) self.input_data_dict = { 'root': root, 'retrieve_hass_conf': self.retrieve_hass_conf, 'df_input_data': self.df_input_data, 'df_input_data_dayahead': self.df_input_data_dayahead, 'opt': self.opt, 'rh': self.rh, 'fcst': self.fcst, 'P_PV_forecast': self.P_PV_forecast, 'P_load_forecast': self.P_load_forecast, 'params': params } def test_get_weather_forecast(self): self.assertTrue(self.df_input_data.isnull().sum().sum()==0) self.assertIsInstance(self.df_weather_scrap, type(
pd.DataFrame()
pandas.DataFrame
from datetime import timedelta from functools import partial from operator import attrgetter import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs import OutOfBoundsDatetime, conversion import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, date_range, datetime, offsets, to_datetime) from pandas.core.arrays import DatetimeArray, period_array import pandas.util.testing as tm class TestDatetimeIndex(object): @pytest.mark.parametrize('dt_cls', [DatetimeIndex, DatetimeArray._from_sequence]) def test_freq_validation_with_nat(self, dt_cls): # GH#11587 make sure we get a useful error message when generate_range # raises msg = ("Inferred frequency None from passed values does not conform " "to passed frequency D") with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01')], freq='D') with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01').value], freq='D') def test_categorical_preserves_tz(self): # GH#18664 retain tz when going DTI-->Categorical-->DTI # TODO: parametrize over DatetimeIndex/DatetimeArray # once CategoricalIndex(DTA) works dti = pd.DatetimeIndex( [pd.NaT, '2015-01-01', '1999-04-06 15:14:13', '2015-01-01'], tz='US/Eastern') ci = pd.CategoricalIndex(dti) carr = pd.Categorical(dti) cser = pd.Series(ci) for obj in [ci, carr, cser]: result = pd.DatetimeIndex(obj) tm.assert_index_equal(result, dti) def test_dti_with_period_data_raises(self): # GH#23675 data = pd.PeriodIndex(['2016Q1', '2016Q2'], freq='Q') with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(period_array(data)) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(period_array(data)) def test_dti_with_timedelta64_data_deprecation(self): # GH#23675 data = np.array([0], dtype='m8[ns]') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') def test_construction_caching(self): df = pd.DataFrame({'dt': pd.date_range('20130101', periods=3), 'dttz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'dt_with_null': [pd.Timestamp('20130101'), pd.NaT, pd.Timestamp('20130103')], 'dtns': pd.date_range('20130101', periods=3, freq='ns')}) assert df.dttz.dtype.tz.zone == 'US/Eastern' @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} result = DatetimeIndex(i, **kwargs) tm.assert_index_equal(i, result) @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} if str(tz) in ('UTC', 'tzutc()'): warn = None else: warn = FutureWarning with tm.assert_produces_warning(warn, check_stacklevel=False): result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs) expected = DatetimeIndex(i, **kwargs) tm.assert_index_equal(result, expected) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') tm.assert_index_equal(i2, expected) # incompat tz/dtype pytest.raises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_construction_index_with_mixed_timezones(self): # gh-11488: no tz results in DatetimeIndex result = Index([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # Different tz results in Index(dtype=object) result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # length = 1 result = Index([Timestamp('2011-01-01')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # length = 1 with tz result = Index( [Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_index_with_mixed_timezones_with_NaT(self): # see gh-11488 result = Index([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # Same tz results in DatetimeIndex result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), pd.NaT, Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # different tz results in Index(dtype=object) result = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # all NaT result = Index([pd.NaT, pd.NaT], name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # all NaT with tz result = Index([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_dti_with_mixed_timezones(self): # GH 11488 (not changed, added explicit tests) # no tz results in DatetimeIndex result = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # same tz results in DatetimeIndex result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # same tz results in DatetimeIndex (DST) result = DatetimeIndex([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) # tz mismatch affecting to tz-aware raises TypeError/ValueError with pytest.raises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') msg = 'cannot be converted to datetime64' with pytest.raises(ValueError, match=msg): DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') with pytest.raises(ValueError): DatetimeIndex([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='US/Eastern', name='idx') with pytest.raises(ValueError, match=msg): # passing tz should results in DatetimeIndex, then mismatch raises # TypeError Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') def test_construction_base_constructor(self): arr = [pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')] tm.assert_index_equal(pd.Index(arr), pd.DatetimeIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.DatetimeIndex(np.array(arr))) arr = [np.nan, pd.NaT, pd.Timestamp('2011-01-03')] tm.assert_index_equal(pd.Index(arr), pd.DatetimeIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.DatetimeIndex(np.array(arr))) def test_construction_outofbounds(self): # GH 13663 dates = [datetime(3000, 1, 1), datetime(4000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)] exp = Index(dates, dtype=object) # coerces to object tm.assert_index_equal(Index(dates), exp) with pytest.raises(OutOfBoundsDatetime): # can't create DatetimeIndex DatetimeIndex(dates) def test_construction_with_ndarray(self): # GH 5152 dates = [datetime(2013, 10, 7), datetime(2013, 10, 8), datetime(2013, 10, 9)] data = DatetimeIndex(dates, freq=pd.offsets.BDay()).values result = DatetimeIndex(data, freq=pd.offsets.BDay()) expected = DatetimeIndex(['2013-10-07', '2013-10-08', '2013-10-09'], freq='B') tm.assert_index_equal(result, expected) def test_verify_integrity_deprecated(self): # GH#23919 with tm.assert_produces_warning(FutureWarning): DatetimeIndex(['1/1/2000'], verify_integrity=False) def test_range_kwargs_deprecated(self): # GH#23919 with tm.assert_produces_warning(FutureWarning): DatetimeIndex(start='1/1/2000', end='1/10/2000', freq='D') def test_integer_values_and_tz_deprecated(self): # GH-24559 values = np.array([946684800000000000]) with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(values, tz='US/Central') expected = pd.DatetimeIndex(['2000-01-01T00:00:00'], tz="US/Central") tm.assert_index_equal(result, expected) # but UTC is *not* deprecated. with tm.assert_produces_warning(None): result = DatetimeIndex(values, tz='UTC') expected = pd.DatetimeIndex(['2000-01-01T00:00:00'], tz="US/Central") def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) tm.assert_index_equal(rng, exp) msg = 'periods must be a number, got foo' with pytest.raises(TypeError, match=msg): date_range(start='1/1/2000', periods='foo', freq='D') with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): DatetimeIndex(start='1/1/2000', end='1/10/2000') with pytest.raises(TypeError): DatetimeIndex('1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) tm.assert_index_equal(result, expected) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) tm.assert_index_equal(result, expected) from_ints = DatetimeIndex(expected.asi8) tm.assert_index_equal(from_ints, expected) # string with NaT strings = np.array(['2000-01-01', '2000-01-02', 'NaT']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) tm.assert_index_equal(result, expected) from_ints = DatetimeIndex(expected.asi8) tm.assert_index_equal(from_ints, expected) # non-conforming pytest.raises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') pytest.raises(ValueError, date_range, start='2011-01-01', freq='b') pytest.raises(ValueError, date_range, end='2011-01-01', freq='B') pytest.raises(ValueError, date_range, periods=10, freq='D') @pytest.mark.parametrize('freq', ['AS', 'W-SUN']) def test_constructor_datetime64_tzformat(self, freq): # see GH#6572: ISO 8601 format results in pytz.FixedOffset idx = date_range('2013-01-01T00:00:00-05:00', '2016-01-01T23:59:59-05:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(-300)) tm.assert_index_equal(idx, expected) # Unable to use `US/Eastern` because of DST expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='America/Lima') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) idx = date_range('2013-01-01T00:00:00+09:00', '2016-01-01T23:59:59+09:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(540)) tm.assert_index_equal(idx, expected) expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='Asia/Tokyo') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) # Non ISO 8601 format results in dateutil.tz.tzoffset idx = date_range('2013/1/1 0:00:00-5:00', '2016/1/1 23:59:59-5:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(-300)) tm.assert_index_equal(idx, expected) # Unable to use `US/Eastern` because of DST expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='America/Lima') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) idx = date_range('2013/1/1 0:00:00+9:00', '2016/1/1 23:59:59+09:00', freq=freq) expected = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz=pytz.FixedOffset(540)) tm.assert_index_equal(idx, expected) expected_i8 = date_range('2013-01-01T00:00:00', '2016-01-01T23:59:59', freq=freq, tz='Asia/Tokyo') tm.assert_numpy_array_equal(idx.asi8, expected_i8.asi8) def test_constructor_dtype(self): # passing a dtype with a tz should localize idx = DatetimeIndex(['2013-01-01', '2013-01-02'], dtype='datetime64[ns, US/Eastern]') expected = DatetimeIndex(['2013-01-01', '2013-01-02'] ).tz_localize('US/Eastern') tm.assert_index_equal(idx, expected) idx = DatetimeIndex(['2013-01-01', '2013-01-02'], tz='US/Eastern') tm.assert_index_equal(idx, expected) # if we already have a tz and its not the same, then raise idx = DatetimeIndex(['2013-01-01', '2013-01-02'], dtype='datetime64[ns, US/Eastern]') pytest.raises(ValueError, lambda: DatetimeIndex(idx, dtype='datetime64[ns]')) # this is effectively trying to convert tz's pytest.raises(TypeError, lambda: DatetimeIndex(idx, dtype='datetime64[ns, CET]')) pytest.raises(ValueError, lambda: DatetimeIndex( idx, tz='CET', dtype='datetime64[ns, US/Eastern]')) result = DatetimeIndex(idx, dtype='datetime64[ns, US/Eastern]') tm.assert_index_equal(idx, result) def test_constructor_name(self): idx = date_range(start='2000-01-01', periods=1, freq='A', name='TEST') assert idx.name == 'TEST' def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) assert idx.nanosecond[0] == t1.nanosecond def test_disallow_setting_tz(self): # GH 3746 dti = DatetimeIndex(['2010'], tz='UTC') with pytest.raises(AttributeError): dti.tz = pytz.timezone('US/Pacific') @pytest.mark.parametrize('tz', [ None, 'America/Los_Angeles', pytz.timezone('America/Los_Angeles'), Timestamp('2000', tz='America/Los_Angeles').tz]) def test_constructor_start_end_with_tz(self, tz): # GH 18595 start = Timestamp('2013-01-01 06:00:00', tz='America/Los_Angeles') end = Timestamp('2013-01-02 06:00:00', tz='America/Los_Angeles') result = date_range(freq='D', start=start, end=end, tz=tz) expected = DatetimeIndex(['2013-01-01 06:00:00', '2013-01-02 06:00:00'], tz='America/Los_Angeles') tm.assert_index_equal(result, expected) # Especially assert that the timezone is consistent for pytz assert pytz.timezone('America/Los_Angeles') is result.tz @pytest.mark.parametrize('tz', ['US/Pacific', 'US/Eastern', 'Asia/Tokyo']) def test_constructor_with_non_normalized_pytz(self, tz): # GH 18595 non_norm_tz = Timestamp('2010', tz=tz).tz result = DatetimeIndex(['2010'], tz=non_norm_tz) assert pytz.timezone(tz) is result.tz def test_constructor_timestamp_near_dst(self): # GH 20854 ts = [Timestamp('2016-10-30 03:00:00+0300', tz='Europe/Helsinki'), Timestamp('2016-10-30 03:00:00+0200', tz='Europe/Helsinki')] result = DatetimeIndex(ts) expected = DatetimeIndex([ts[0].to_pydatetime(), ts[1].to_pydatetime()]) tm.assert_index_equal(result, expected) # TODO(GH-24559): Remove the xfail for the tz-aware case. @pytest.mark.parametrize('klass', [Index, DatetimeIndex]) @pytest.mark.parametrize('box', [ np.array, partial(np.array, dtype=object), list]) @pytest.mark.parametrize('tz, dtype', [ pytest.param('US/Pacific', 'datetime64[ns, US/Pacific]', marks=[pytest.mark.xfail(), pytest.mark.filterwarnings( "ignore:\\n Passing:FutureWarning")]), [None, 'datetime64[ns]'], ]) def test_constructor_with_int_tz(self, klass, box, tz, dtype): # GH 20997, 20964 ts =
Timestamp('2018-01-01', tz=tz)
pandas.Timestamp
import streamlit as st # streamlit run Location100_RF_streamlit.py import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import warnings from sklearn.model_selection import train_test_split, GridSearchCV, learning_curve, cross_val_score from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn import tree from sklearn import preprocessing from sklearn.metrics import r2_score, mean_squared_error from sklearn.svm import SVR from sklearn.tree import DecisionTreeRegressor from scipy import stats from sklearn.neighbors import KNeighborsRegressor # import config st.title('Pepper ML for Chicago area(location 100) by using random forest') # df = pd.read_csv("C:\PepperPepper\pepperProject.csv", encoding = 'unicode_escape', engine ='python') url = f'https://raw.githubusercontent.com/LeonZly90/myData/main/pepperProject.csv?token=<KEY>' df = pd.read_csv(url, encoding='unicode_escape', engine='python') df_data = df.copy() new_sheet = pd.DataFrame(df_data, columns=['OMOP_COMP_CODE', 'CTRL_JOB', 'STAGE_CODE', 'MARKET_TYPE', 'POTENTIAL_REV_AMT', 'TOTAL_HOURS']) new_sheet = new_sheet[~new_sheet['MARKET_TYPE'].isin(['Select Market', 'Self Performed Work', 'Self Performed Direct'])] new_sheet = new_sheet[new_sheet['POTENTIAL_REV_AMT'] > 0] location_100 = new_sheet[new_sheet.OMOP_COMP_CODE == 100] location_100 = location_100.drop('OMOP_COMP_CODE', 1) # st.write('location_100:\n', location_100) JobHour_by_StageMarket = location_100.groupby(['CTRL_JOB', 'STAGE_CODE', 'MARKET_TYPE'])[ 'POTENTIAL_REV_AMT', 'TOTAL_HOURS'].sum().reset_index() # st.write('JobHour_by_StageMarket:\n', JobHour_by_StageMarket) # [474 rows x 5 columns] revAmt_Hour0 = JobHour_by_StageMarket.iloc[:, -2:].abs() # st.write(revAmt_Hour0) # with st.echo(code_location='below'): # fig1 = plt.figure(1) # plt.scatter(revAmt_Hour0['POTENTIAL_REV_AMT'], revAmt_Hour0['TOTAL_HOURS']) # plt.xlabel('POTENTIAL_REV_AMT') # plt.ylabel('TOTAL_HOURS') # plt.show() # st.write(fig1) # clean outlier [469 rows x 5 columns] z_scores = stats.zscore(revAmt_Hour0) abs_z_scores = np.abs(z_scores) revAmt_Hour1 = revAmt_Hour0[(abs_z_scores < 3).all(axis=1)] # st.write(revAmt_Hour1) # with st.echo(code_location='below'): # fig2=plt.figure(2) # plt.scatter(revAmt_Hour1['POTENTIAL_REV_AMT'], revAmt_Hour1['TOTAL_HOURS']) # plt.xlabel('POTENTIAL_REV_AMT1') # plt.ylabel('TOTAL_HOURS1') # plt.show() # st.write(fig2) rest = JobHour_by_StageMarket.iloc[:, :-2] JobHour_by_StageMarket = rest.join(revAmt_Hour1, how='outer') # @st.cache # 👈 This function will be cached JobHour_by_StageMarket = JobHour_by_StageMarket.dropna() # st.write('Now JobHour_by_StageMarket:\n', JobHour_by_StageMarket) # [469 rows x 5 columns] # @st.cache # 👈 This function will be cached standardscaler = preprocessing.StandardScaler() numer_feature = standardscaler.fit_transform(JobHour_by_StageMarket["POTENTIAL_REV_AMT"].values.reshape(-1, 1)) numer_feature =
pd.DataFrame(numer_feature, columns=["POTENTIAL_REV_AMT"])
pandas.DataFrame
#views.py from flask import abort, jsonify, send_from_directory, render_template, request, redirect, url_for, send_file, make_response from app import app from models import * import os import csv import json import uuid import pandas as pd import requests import requests_cache import metadata_validator import config import pandas as pd import ast from ccmsproteosafepythonapi import proteosafe requests_cache.install_cache('demo_cache', allowable_codes=(200, 404, 500)) black_list_attribute = ["SubjectIdentifierAsRecorded", "UniqueSubjectID", "UBERONOntologyIndex", "DOIDOntologyIndex", "ComorbidityListDOIDIndex"] """Resolving ontologies only if they need to be""" def resolve_ontology(attribute, term): if attribute == "ATTRIBUTE_BodyPart": url = "https://www.ebi.ac.uk/ols/api/ontologies/uberon/terms?iri=http://purl.obolibrary.org/obo/%s" % (term.replace(":", "_")) try: requests.get(url) ontology_json = json.loads(requests.get(url).text) #print(json.dumps(ontology_json)) return ontology_json["_embedded"]["terms"][0]["label"] except KeyboardInterrupt: raise except: return term if attribute == "ATTRIBUTE_Disease": url = "https://www.ebi.ac.uk/ols/api/ontologies/doid/terms?iri=http://purl.obolibrary.org/obo/%s" % (term.replace(":", "_")) try: ontology_json = requests.get(url).json() return ontology_json["_embedded"]["terms"][0]["label"] except KeyboardInterrupt: raise except: return term if attribute == "ATTRIBUTE_DatasetAccession": try: url = f"https://massive.ucsd.edu/ProteoSAFe//proxi/v0.1/datasets?filter={term}&function=datasets" dataset_information = requests.get(url).json() return dataset_information["title"] except: raise #raise Exception(url) return term def count_compounds_in_files(filelist1, filelist2, filelist3, filelist4, filelist5, filelist6): output_list = [] input_fileset1 = set(filelist1) input_fileset2 = set(filelist2) input_fileset3 = set(filelist3) input_fileset4 = set(filelist4) input_fileset5 = set(filelist5) input_fileset6 = set(filelist6) all_compounds = Compound.select() for my_compound in all_compounds: my_files = Filename.select().join(CompoundFilenameConnection).where(CompoundFilenameConnection.compound==my_compound) my_files_set = set([one_file.filepath for one_file in my_files]) intersection_set1 = input_fileset1.intersection(my_files_set) intersection_set2 = input_fileset2.intersection(my_files_set) intersection_set3 = input_fileset3.intersection(my_files_set) intersection_set4 = input_fileset4.intersection(my_files_set) intersection_set5 = input_fileset5.intersection(my_files_set) intersection_set6 = input_fileset6.intersection(my_files_set) output_dict = {} output_dict["compound"] = my_compound.compoundname include_row = False output_dict["count1"] = len(intersection_set1) if len(filelist1) > 0: output_dict["count1_norm"] = int(float(len(intersection_set1)) / float(len(filelist1)) * 100.0) else: output_dict["count1_norm"] = 0 output_dict["count2"] = len(intersection_set2) if len(filelist2) > 0: output_dict["count2_norm"] = int(float(len(intersection_set2)) / float(len(filelist2)) * 100.0) else: output_dict["count2_norm"] = 0 output_dict["count3"] = len(intersection_set3) if len(filelist3) > 0: output_dict["count3_norm"] = int(float(len(intersection_set3)) / float(len(filelist3)) * 100.0) else: output_dict["count3_norm"] = 0 output_dict["count4"] = len(intersection_set4) if len(filelist4) > 0: output_dict["count4_norm"] = int(float(len(intersection_set4)) / float(len(filelist4)) * 100.0) else: output_dict["count4_norm"] = 0 output_dict["count5"] = len(intersection_set5) if len(filelist5) > 0: output_dict["count5_norm"] = int(float(len(intersection_set5)) / float(len(filelist5)) * 100.0) else: output_dict["count5_norm"] = 0 output_dict["count6"] = len(intersection_set6) if len(filelist6) > 0: output_dict["count6_norm"] = int(float(len(intersection_set6)) / float(len(filelist6)) * 100.0) else: output_dict["count6_norm"] = 0 counts_total = output_dict["count1"] + output_dict["count2"] + output_dict["count3"] + output_dict["count4"] + output_dict["count5"] + output_dict["count6"] if counts_total > 0: output_list.append(output_dict) return output_list def count_tags_in_files(filelist1, filelist2, filelist3, filelist4, filelist5, filelist6): output_list = [] input_fileset1 = set(filelist1) input_fileset2 = set(filelist2) input_fileset3 = set(filelist3) input_fileset4 = set(filelist4) input_fileset5 = set(filelist5) input_fileset6 = set(filelist6) all_tags = CompoundTag.select() for my_tag in all_tags: my_files = Filename.select().join(CompoundTagFilenameConnection).where(CompoundTagFilenameConnection.compoundtag==my_tag) my_files_set = set([one_file.filepath for one_file in my_files]) intersection_set1 = input_fileset1.intersection(my_files_set) intersection_set2 = input_fileset2.intersection(my_files_set) intersection_set3 = input_fileset3.intersection(my_files_set) intersection_set4 = input_fileset4.intersection(my_files_set) intersection_set5 = input_fileset5.intersection(my_files_set) intersection_set6 = input_fileset6.intersection(my_files_set) output_dict = {} output_dict["compound"] = my_tag.tagname include_row = False output_dict["count1"] = len(intersection_set1) if len(filelist1) > 0: output_dict["count1_norm"] = int(float(len(intersection_set1)) / float(len(filelist1)) * 100.0) else: output_dict["count1_norm"] = 0 output_dict["count2"] = len(intersection_set2) if len(filelist2) > 0: output_dict["count2_norm"] = int(float(len(intersection_set2)) / float(len(filelist2)) * 100.0) else: output_dict["count2_norm"] = 0 output_dict["count3"] = len(intersection_set3) if len(filelist3) > 0: output_dict["count3_norm"] = int(float(len(intersection_set3)) / float(len(filelist3)) * 100.0) else: output_dict["count3_norm"] = 0 output_dict["count4"] = len(intersection_set4) if len(filelist4) > 0: output_dict["count4_norm"] = int(float(len(intersection_set4)) / float(len(filelist4)) * 100.0) else: output_dict["count4_norm"] = 0 output_dict["count5"] = len(intersection_set5) if len(filelist5) > 0: output_dict["count5_norm"] = int(float(len(intersection_set5)) / float(len(filelist5)) * 100.0) else: output_dict["count5_norm"] = 0 output_dict["count6"] = len(intersection_set6) if len(filelist6) > 0: output_dict["count6_norm"] = int(float(len(intersection_set6)) / float(len(filelist6)) * 100.0) else: output_dict["count6_norm"] = 0 counts_total = output_dict["count1"] + output_dict["count2"] + output_dict["count3"] + output_dict["count4"] + output_dict["count5"] + output_dict["count6"] if counts_total > 0: output_list.append(output_dict) return output_list @app.route('/filename', methods=['GET']) def getfilename(): query_filename = request.args["query"].replace("/spectrum/", "/ccms_peak/") expanded_attributes = request.args.get("expanded", "false") filepath_db = Filename.select().where(Filename.filepath == query_filename) if len(filepath_db) == 0: return "[]" all_connections = FilenameAttributeConnection.select().where(FilenameAttributeConnection.filename == filepath_db) resolved_terms = [] for connection in all_connections: attribute_name = connection.attribute.categoryname attribute_term = connection.attributeterm.term resolved_term = resolve_ontology(attribute_name, attribute_term) if expanded_attributes == "false" and attribute_name: resolved_terms.append(resolved_term) if expanded_attributes == "true" and not(attribute_name): resolved_terms.append(resolved_term) return json.dumps(resolved_terms) @app.route('/filenamedict', methods=['GET']) def queryfilename(): query_filename = request.args["query"].replace("/spectrum/", "/ccms_peak/") expanded_attributes = request.args.get("expanded", "false") all_attributes = request.args.get("allattributes", "false") filepath_db = Filename.select().where(Filename.filepath == query_filename) if len(filepath_db) == 0: return "[]" all_connections = FilenameAttributeConnection.select().where(FilenameAttributeConnection.filename == filepath_db) resolved_terms = [] for connection in all_connections: attribute_name = connection.attribute.categoryname attribute_term = connection.attributeterm.term resolved_term = resolve_ontology(attribute_name, attribute_term) if all_attributes == "true": resolved_terms.append({"attribute_name": attribute_name, "attribute_term" : resolved_term}) else: if expanded_attributes == "false" and attribute_name: resolved_terms.append({"attribute_name": attribute_name, "attribute_term" : resolved_term}) if expanded_attributes == "true" and not(attribute_name): resolved_terms.append({"attribute_name": attribute_name, "attribute_term" : resolved_term}) return json.dumps(resolved_terms) @app.route('/attributes', methods=['GET']) def viewattributes(): all_attributes = Attribute.select() output_list = [] for attribute in all_attributes: all_terms = AttributeTerm.select().join(FilenameAttributeConnection).join(Attribute).where(Attribute.categoryname == attribute.categoryname).group_by(AttributeTerm.term) output_dict = {} output_dict["attributename"] = attribute.categoryname output_dict["attributedisplay"] = attribute.categoryname.replace("ATTRIBUTE_", "").replace("Analysis_", "").replace("Subject_", "").replace("Curated_", "") output_dict["countterms"] = len(all_terms) if attribute.categoryname in black_list_attribute: continue else: output_list.append(output_dict) output_list = sorted(output_list, key=lambda x: x["attributedisplay"], reverse=False) return json.dumps(output_list) #Returns all the terms given an attribute along with file counts for each term @app.route('/attribute/<attribute>/attributeterms', methods=['GET']) def viewattributeterms(attribute): attribute_db = Attribute.select().where(Attribute.categoryname == attribute) all_terms_db = AttributeTerm.select().join(FilenameAttributeConnection).where(FilenameAttributeConnection.attribute == attribute_db).group_by(AttributeTerm.term) filters_list = json.loads(request.values.get('filters', "[]")) output_list = [] for attribute_term_db in all_terms_db: all_files_db = Filename.select().join(FilenameAttributeConnection).where(FilenameAttributeConnection.attributeterm == attribute_term_db).where(FilenameAttributeConnection.attribute == attribute) all_files = set([file_db.filepath for file_db in all_files_db]) #Adding the filter all_filtered_files_list = [all_files] for filterobject in filters_list: new_db = Filename.select().join(FilenameAttributeConnection).where(FilenameAttributeConnection.attributeterm == filterobject["attributeterm"]).where(FilenameAttributeConnection.attribute == filterobject["attributename"]) all_filtered_files_list.append(set([file_db.filepath for file_db in new_db])) intersection_set = set.intersection(*all_filtered_files_list) if len(intersection_set) > 0: output_dict = {} output_dict["attributename"] = attribute output_dict["attributeterm"] = attribute_term_db.term output_dict["ontologyterm"] = resolve_ontology(attribute, attribute_term_db.term) output_dict["countfiles"] = len(intersection_set) output_list.append(output_dict) return json.dumps(output_list) #Returns all the terms given an attribute along with file counts for each term @app.route('/attribute/<attribute>/attributeterm/<term>/files', methods=['GET']) def viewfilesattributeattributeterm(attribute, term): all_files_db = Filename.select().join(FilenameAttributeConnection).where(FilenameAttributeConnection.attributeterm == term).where(FilenameAttributeConnection.attribute == attribute) all_files = set([file_db.filepath for file_db in all_files_db]) filters_list = json.loads(request.args['filters']) all_filtered_files_list = [all_files] for filterobject in filters_list: new_db = Filename.select().join(FilenameAttributeConnection).where(FilenameAttributeConnection.attributeterm == filterobject["attributeterm"]).where(FilenameAttributeConnection.attribute == filterobject["attributename"]) all_filtered_files_list.append(set([file_db.filepath for file_db in new_db])) intersection_set = set.intersection(*all_filtered_files_list) output_list = [] for filepath in intersection_set: output_dict = {} output_dict["attribute"] = attribute output_dict["attributeterm"] = term output_dict["filename"] = filepath output_list.append(output_dict) return json.dumps(output_list) #Summarize Files Per Comparison Group @app.route('/explorer', methods=['POST']) def summarizefiles(): all_files_G1 = json.loads(request.values.get("G1", "[]")) all_files_G2 = json.loads(request.values.get("G2", "[]")) all_files_G3 = json.loads(request.values.get("G3", "[]")) all_files_G4 = json.loads(request.values.get("G4", "[]")) all_files_G5 = json.loads(request.values.get("G5", "[]")) all_files_G6 = json.loads(request.values.get("G6", "[]")) output = count_compounds_in_files(all_files_G1, all_files_G2, all_files_G3, all_files_G4, all_files_G5, all_files_G6) return json.dumps(output) # Lists all Compounds @app.route('/compounds', methods=['GET']) def querycompounds(): file_list = [] try: file_list = ast.literal_eval(request.args["files"])["filenames"] except: pass all_compounds = [] #in the case we display all compounds from all files if len(file_list) == 0: all_compounds_db = CompoundFilenameConnection.select(CompoundFilenameConnection.compound, fn.COUNT(CompoundFilenameConnection.compound).alias('count')).join(Compound).group_by(CompoundFilenameConnection.compound).dicts() for compound in all_compounds_db: compound_dict = {} compound_dict["compound"]= compound["compound"] compound_dict["count"] = compound["count"] all_compounds.append(compound_dict) #in the case of file filtration based on metadata else: all_compounds_db = CompoundFilenameConnection.select(CompoundFilenameConnection.compound, fn.COUNT(CompoundFilenameConnection.compound).alias('count')).where(CompoundFilenameConnection.filename.in_(file_list)).join(Compound).group_by(CompoundFilenameConnection.compound).dicts() for compound in all_compounds_db: compound_dict = {} compound_dict["compound"] = compound["compound"] compound_dict["count"] = compound["count"] all_compounds.append(compound_dict) return json.dumps(all_compounds) @app.route('/compoundfilename', methods=['GET']) def queryfilesbycompound(): compoundname = request.args['compoundname'] compound_db = Compound.select().where(Compound.compoundname == compoundname) filenames_db = Filename.select().join(CompoundFilenameConnection).where(CompoundFilenameConnection.compound==compound_db) output_filenames = [] for filename in filenames_db: output_filenames.append({"filepath" : filename.filepath}) return json.dumps(output_filenames) @app.route('/compoundenrichment', methods=['POST']) def compoundenrichment(): blacklist_attributes = ["ATTRIBUTE_DatasetAccession", "ATTRIBUTE_Curated_BodyPartOntologyIndex", "filename", "UniqueSubjectID", "UBERONOntologyIndex", "SubjectIdentifierAsRecorded", "SampleCollectionDateandTime", "LatitudeandLongitude", "InternalStandardsUsed", "DepthorAltitudeMeters", "DOIDOntologyIndex", "Country", "ComorbidityListDOIDIndex", "AgeInYears"] compoundname = request.form['compoundname'] compound_db = Compound.select().where(Compound.compoundname == compoundname) compound_filenames = [filename.filepath for filename in Filename.select().join(CompoundFilenameConnection).where(CompoundFilenameConnection.compound==compound_db)] enrichment_list = [] if "filenames" in request.form: filter_filenames = set(json.loads(request.form["filenames"])) if len(filter_filenames) == 0: filter_filenames = set([filename.filepath for filename in Filename.select()]) else: filter_filenames = set([filename.filepath for filename in Filename.select()]) all_metadata = FilenameAttributeConnection.select(Attribute.categoryname, AttributeTerm.term, fn.COUNT(FilenameAttributeConnection.filename).alias('ct')).join(Attribute).switch(FilenameAttributeConnection).join(AttributeTerm).group_by(Attribute.categoryname, AttributeTerm.term).dicts() for attribute_term_pair in all_metadata: # if attribute_term_pair["categoryname"].find("ATTRIBUTE_") == -1: # continue if attribute_term_pair["categoryname"] in blacklist_attributes: continue attribute_files_db = Filename.select().join(FilenameAttributeConnection).where(FilenameAttributeConnection.attributeterm == attribute_term_pair["term"]).where(FilenameAttributeConnection.attribute == attribute_term_pair["categoryname"]) attribute_filenames = set([filename.filepath for filename in attribute_files_db]).intersection(filter_filenames) if len(attribute_filenames) > 0: intersection_filenames = set(compound_filenames).intersection(set(attribute_filenames)).intersection(filter_filenames) enrichment_dict = {} enrichment_dict["attribute_name"] = attribute_term_pair["categoryname"] enrichment_dict["attribute_term"] = attribute_term_pair["term"] enrichment_dict["totalfiles"] = len(attribute_filenames) enrichment_dict["compoundfiles"] = len(intersection_filenames) enrichment_dict["percentage"] = len(intersection_filenames)/float(len(attribute_filenames)) enrichment_list.append(enrichment_dict) enrichment_list = sorted(enrichment_list, key=lambda list_object: list_object["percentage"], reverse=True) # Creating Bokeh Plot Here enrichment_df = pd.DataFrame(enrichment_list) # Finding all non-zero entries enrichment_df = enrichment_df[enrichment_df["totalfiles"] != 0] all_attributes = list(set(list(enrichment_df["attribute_name"]))) from bokeh.models import Panel, Tabs from bokeh.plotting import figure from bokeh.embed import components all_tabs = [] for attribute in all_attributes: filtered_df = enrichment_df[enrichment_df["attribute_name"] == attribute] filtered_df = filtered_df[filtered_df["percentage"] > 0] all_terms = list(filtered_df["attribute_term"]) all_percentage = list(filtered_df["percentage"]) plot = figure(x_range=all_terms, plot_height=300, plot_width=1200, sizing_mode="scale_width", title="{} Percentage of Terms".format(attribute)) plot.vbar(x=all_terms, top=all_percentage, width=0.9) tab = Panel(child=plot, title=attribute) all_tabs.append(tab) tabs = Tabs(tabs=all_tabs) script, div = components(tabs) drawing_dict = {} drawing_dict["div"] = div drawing_dict["script"] = script return_dict = {} return_dict["enrichment_list"] = enrichment_list return_dict["drawings"] = drawing_dict return json.dumps(return_dict) @app.route('/filesenrichment', methods=['POST']) def filesenrichment(): blacklist_attributes = ["ATTRIBUTE_DatasetAccession", "ATTRIBUTE_Curated_BodyPartOntologyIndex"] compound_filenames = set(json.loads(request.form["filenames"])) enrichment_list = [] filter_filenames = set([filename.filepath for filename in Filename.select()]) all_metadata = FilenameAttributeConnection.select(Attribute.categoryname, AttributeTerm.term, fn.COUNT(FilenameAttributeConnection.filename).alias('ct')).join(Attribute).switch(FilenameAttributeConnection).join(AttributeTerm).group_by(Attribute.categoryname, AttributeTerm.term).dicts() for attribute_term_pair in all_metadata: if attribute_term_pair["categoryname"].find("ATTRIBUTE_") == -1: continue if attribute_term_pair["categoryname"] in blacklist_attributes: continue attribute_files_db = Filename.select().join(FilenameAttributeConnection).where(FilenameAttributeConnection.attributeterm == attribute_term_pair["term"]).where(FilenameAttributeConnection.attribute == attribute_term_pair["categoryname"]) attribute_filenames = set([filename.filepath for filename in attribute_files_db]).intersection(filter_filenames) if len(attribute_filenames) > 0: intersection_filenames = set(compound_filenames).intersection(set(attribute_filenames)).intersection(filter_filenames) enrichment_dict = {} enrichment_dict["attribute_name"] = attribute_term_pair["categoryname"] enrichment_dict["attribute_term"] = attribute_term_pair["term"] enrichment_dict["totalfiles"] = len(attribute_filenames) enrichment_dict["compoundfiles"] = len(intersection_filenames) enrichment_dict["percentage"] = len(intersection_filenames)/float(len(attribute_filenames)) enrichment_list.append(enrichment_dict) enrichment_list = sorted(enrichment_list, key=lambda list_object: list_object["percentage"], reverse=True) return json.dumps(enrichment_list) @app.route('/tagexplorer', methods=['POST']) def summarizetagfiles(): all_files_G1 = json.loads(request.form["G1"]) all_files_G2 = json.loads(request.form["G2"]) all_files_G3 = json.loads(request.form["G3"]) all_files_G4 = json.loads(request.form["G4"]) all_files_G5 = json.loads(request.form["G5"]) all_files_G6 = json.loads(request.form["G6"]) output = count_tags_in_files(all_files_G1, all_files_G2, all_files_G3, all_files_G4, all_files_G5, all_files_G6) return json.dumps(output) @app.route('/plottags', methods=['POST']) def plottags(): import os uuid_to_use = str(uuid.uuid4()) input_filename = os.path.join("static", "temp", uuid_to_use + ".tsv") all_counts = json.loads(request.form["tagcounts"]) sourcelevel = request.form["sourcelevel"] with open(input_filename, 'w') as csvfile: field_name = ["source information", "G1 number", "G1 percent", "G2 number", "G2 percent", "G3 number", "G3 percent", "G4 number", "G4 percent", "G5 number", "G5 percent", "G6 number", "G6 percent"] writer = csv.DictWriter(csvfile, fieldnames=field_name, delimiter="\t") writer.writeheader() for row in all_counts: new_dict = {} new_dict["source information"] = row["compound"] new_dict["G1 number"] = row["count1"] new_dict["G1 percent"] = row["count1_norm"] new_dict["G2 number"] = row["count2"] new_dict["G2 percent"] = row["count2_norm"] new_dict["G3 number"] = row["count3"] new_dict["G3 percent"] = row["count3_norm"] new_dict["G4 number"] = row["count4"] new_dict["G4 percent"] = row["count4_norm"] new_dict["G5 number"] = row["count5"] new_dict["G6 percent"] = row["count5_norm"] new_dict["G6 number"] = row["count6"] new_dict["G6 percent"] = row["count6_norm"] writer.writerow(new_dict) output_counts_png = os.path.join("static", "temp", uuid_to_use + "_count.png") output_percent_png = os.path.join("static", "temp", uuid_to_use + "_percent.png") cmd = "Rscript %s %s %s %s %s" % ("Meta_Analysis_Plot_Example.r", input_filename, output_counts_png, output_percent_png, sourcelevel) os.system(cmd) return json.dumps({"uuid" : uuid_to_use}) """ Production Views """ @app.route('/', methods=['GET']) def homepage(): total_files = Filename.select().count() total_identifications = CompoundFilenameConnection.select().count() total_compounds = Compound.select().count() return render_template('homepage.html', total_files=total_files, total_identifications=total_identifications, total_compounds=total_compounds) @app.route('/globalmultivariate', methods=['GET']) def globalmultivariate(): return render_template('globalmultivariate.html') @app.route('/comparemultivariate', methods=['GET', 'POST']) def comparemultivariate(): return render_template('comparemultivariate.html') @app.route('/compoundslist', methods=['GET']) def compoundslist(): return render_template('compoundslist.html') @app.route('/compoundfilenamelist', methods=['GET']) def compoundfilenamelist(): return render_template('compoundfilelist.html') #Summarize Files Per Comparison Group @app.route('/explorerdashboard', methods=['GET']) def explorerdashboard(): return render_template('explorerdashboard.html') @app.route('/compoundenrichmentdashboard', methods=['GET']) def compoundenrichmentview(): return render_template('compoundenrichment.html') @app.route('/metadataselection', methods=['GET']) def metadataselection(): return render_template('metadataselection.html') @app.route('/heartbeat', methods=['GET']) def heartbeat(): return "{'status' : 'up'}" @app.route('/datalookup', methods=['GET']) def datalookup(): return render_template('datalookup.html') @app.route('/dump', methods=['GET']) def dump(): return send_file(config.PATH_TO_ORIGINAL_MAPPING_FILE, cache_timeout=1, as_attachment=True, attachment_filename="all_sampleinformation.tsv") @app.route('/ReDUValidator', methods = ["GET"]) def ReDUValidator(): return render_template('ReDUValidator.html') # API End Points @app.route('/metabatchdump', methods=['GET']) def metabatchdump(): df = pd.read_table(config.PATH_TO_ORIGINAL_MAPPING_FILE) filenames = df["filename"].tolist() batch_size = 1000 batch_num = len(filenames) // batch_size output_list = [] for x in range(batch_num): files = filenames[(batch_size * x):(batch_size * (x+1))] string_temp = ';'.join(files) output_dict = {} output_dict["filename"] = string_temp output_dict["id"] = x output_list.append(output_dict) new_file = pd.DataFrame(output_list) return new_file.to_csv(sep="\t", index=False) def allowed_file_metadata(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ["tsv"] @app.route('/validate', methods=['POST']) def validate(): request_file = request.files['file'] #Invalid File Types if not allowed_file_metadata(request_file.filename): error_dict = {} error_dict["header"] = "Incorrect File Type" error_dict["line_number"] = "N/A" error_dict["error_string"] = "Please provide a tab separated file" validation_dict = {} validation_dict["status"] = False validation_dict["errors"] = [error_dict] validation_dict["stats"] = [] validation_dict["stats"].append({"type":"total_rows", "value": 0}) validation_dict["stats"].append({"type":"valid_rows", "value": 0}) return json.dumps(validation_dict) local_filename = os.path.join(app.config['UPLOAD_FOLDER'], str(uuid.uuid4())) request_file.save(local_filename) """Trying stuff out with pandas""" metadata_df = pd.read_csv(local_filename, sep="\t") metadata_df.to_csv(local_filename, index=False, sep="\t") metadata_validator.rewrite_metadata(local_filename) pass_validation, failures, errors_list, valid_rows, total_rows = metadata_validator.perform_validation(local_filename) validation_dict = {} validation_dict["status"] = pass_validation validation_dict["errors"] = errors_list validation_dict["stats"] = [] validation_dict["stats"].append({"type":"total_rows", "value":total_rows}) validation_dict["stats"].append({"type":"valid_rows", "value":len(valid_rows)}) """Try to find datasets in public data""" try: dataset_success, result_string, valid_items = metadata_validator.perform_validation_against_massive(local_filename) validation_dict["stats"].append({"type":"massive_files_founds", "value": valid_items}) except: print("Massive validation error") try: os.remove(local_filename) except: print("Cannot Remove File") return json.dumps(validation_dict) import uuid import redu_pca import config #This displays global PCoA of public data as a web url @app.route("/displayglobalmultivariate", methods = ["GET"]) def displayglobalmultivariate(): if not (os.path.isfile(config.PATH_TO_ORIGINAL_PCA) and os.path.isfile(config.PATH_TO_EIGS)): print("Missing Global PCA Calculation, Calculating") if not os.path.isfile(config.PATH_TO_GLOBAL_OCCURRENCES): #Get the actual all identifictions file import urllib.request as request from contextlib import closing import shutil with closing(request.urlopen('ftp://massive.ucsd.edu/MSV000084206/other/ReDU_all_identifications.tsv')) as r: with open(config.PATH_TO_GLOBAL_OCCURRENCES, 'wb') as f: shutil.copyfileobj(r, f) redu_pca.calculate_master_projection(config.PATH_TO_GLOBAL_OCCURRENCES) print("Begin Getting Global PCA") df_temp = pd.read_csv(config.PATH_TO_ORIGINAL_PCA) full_file_list = df_temp["Unnamed: 0"].tolist() df_temp.drop("Unnamed: 0", axis = 1, inplace = True) sklearn_output = df_temp.values component_matrix = pd.read_csv(config.PATH_TO_COMPONENT_MATRIX) eig_var_df = pd.read_csv(config.PATH_TO_EIGS) eigenvalues = eig_var_df["eigenvalues"].tolist() percent_variance = eig_var_df["percent_variance"].tolist() output_file = ("./tempuploads/global") redu_pca.emperor_output(sklearn_output, full_file_list, eigenvalues, percent_variance, output_file) return send_file("./tempuploads/global/index.html") ###This takes the file selected PCA and redirects it to a new page for user viewing @app.route('/fileselectedpcaviews', methods=['GET']) def selectedpcaviews(): pcaid = str(request.args['pcaid']) return(send_file(os.path.join('./tempuploads', pcaid, 'index.html'))) ###This is the backend funtion for re-calcualtion of pca based on the files selected by user @app.route('/fileselectedpca', methods=['POST']) def fileselectedpca(): files_of_interest = json.loads(request.form["files"]) files_of_interest = [item[2:] for item in files_of_interest] #making sure the abbreviated metadata is available if os.path.isfile(config.PATH_TO_PARSED_GLOBAL_OCCURRENCES): print("Parsed Global Occurrences File Found") full_occ_table =
pd.read_table(config.PATH_TO_PARSED_GLOBAL_OCCURRENCES)
pandas.read_table
# -*- coding: utf-8 -*- """ Created on Tue Nov 5 15:33:50 2019 @author: luc """ #%% Import Libraries import numpy as np import pandas as pd import itertools from stimuli_dictionary import cued_stim, free_stim, cued_stim_prac, free_stim_prac def randomize(ID, Age, Gender, Handedness): ''' Create a randomized and counterbalanced stimulus list for the current participant Parameters ---------- ID : INT The subject ID. Based on the subject ID the correct counterbalancing is determined Returns ------- design : Pandas DataFame The dataframe containing the complete stimulus list (including practice trials) keys: Dictionary the response keys for the free phase ''' #%% Variables # experiment variables nBlocks = 6 Phases = ['prac_cued', 'prac_free', 'cued', 'free'] nstim = 60 # sample 60 stim from each target_type # sample from main stimulus set without replacement # randomize word targets to avoid relationship reward - stimulus for idx, name in enumerate(['lism','lila','nosm','nola']): cued_stim[name] = np.random.choice(cued_stim[name], size = nstim, replace = False) wide_cued =
pd.DataFrame(cued_stim)
pandas.DataFrame
import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal @pytest.fixture def df_checks(): """fixture dataframe""" return pd.DataFrame( { "famid": [1, 1, 1, 2, 2, 2, 3, 3, 3], "birth": [1, 2, 3, 1, 2, 3, 1, 2, 3], "ht1": [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], "ht2": [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9], } ) @pytest.fixture def df_multi(): """MultiIndex dataframe fixture.""" return pd.DataFrame( { ("name", "a"): {0: "Wilbur", 1: "Petunia", 2: "Gregory"}, ("names", "aa"): {0: 67, 1: 80, 2: 64}, ("more_names", "aaa"): {0: 56, 1: 90, 2: 50}, } ) def test_column_level_wrong_type(df_multi): """Raise TypeError if wrong type is provided for column_level.""" with pytest.raises(TypeError): df_multi.pivot_longer(index="name", column_level={0}) @pytest.mark.xfail(reason="checking is done within _select_columns") def test_type_index(df_checks): """Raise TypeError if wrong type is provided for the index.""" with pytest.raises(TypeError): df_checks.pivot_longer(index=2007) @pytest.mark.xfail(reason="checking is done within _select_columns") def test_type_column_names(df_checks): """Raise TypeError if wrong type is provided for column_names.""" with pytest.raises(TypeError): df_checks.pivot_longer(column_names=2007) def test_type_names_to(df_checks): """Raise TypeError if wrong type is provided for names_to.""" with pytest.raises(TypeError): df_checks.pivot_longer(names_to={2007}) def test_subtype_names_to(df_checks): """ Raise TypeError if names_to is a sequence and the wrong type is provided for entries in names_to. """ with pytest.raises(TypeError, match="1 in names_to.+"): df_checks.pivot_longer(names_to=[1]) def test_duplicate_names_to(df_checks): """Raise error if names_to contains duplicates.""" with pytest.raises(ValueError, match="y is duplicated in names_to."): df_checks.pivot_longer(names_to=["y", "y"], names_pattern="(.+)(.)") def test_both_names_sep_and_pattern(df_checks): """ Raise ValueError if both names_sep and names_pattern is provided. """ with pytest.raises( ValueError, match="Only one of names_pattern or names_sep should be provided.", ): df_checks.pivot_longer( names_to=["rar", "bar"], names_sep="-", names_pattern="(.+)(.)" ) def test_name_pattern_wrong_type(df_checks): """Raise TypeError if the wrong type provided for names_pattern.""" with pytest.raises(TypeError, match="names_pattern should be one of.+"): df_checks.pivot_longer(names_to=["rar", "bar"], names_pattern=2007) def test_name_pattern_no_names_to(df_checks): """Raise ValueError if names_pattern and names_to is None.""" with pytest.raises(ValueError): df_checks.pivot_longer(names_to=None, names_pattern="(.+)(.)") def test_name_pattern_groups_len(df_checks): """ Raise ValueError if names_pattern and the number of groups differs from the length of names_to. """ with pytest.raises( ValueError, match="The length of names_to does not match " "the number of groups in names_pattern.+", ): df_checks.pivot_longer(names_to=".value", names_pattern="(.+)(.)") def test_names_pattern_wrong_subtype(df_checks): """ Raise TypeError if names_pattern is a list/tuple and wrong subtype is supplied. """ with pytest.raises(TypeError, match="1 in names_pattern.+"): df_checks.pivot_longer( names_to=["ht", "num"], names_pattern=[1, "\\d"] ) def test_names_pattern_names_to_unequal_length(df_checks): """ Raise ValueError if names_pattern is a list/tuple and wrong number of items in names_to. """ with pytest.raises( ValueError, match="The length of names_to does not match " "the number of regexes in names_pattern.+", ): df_checks.pivot_longer( names_to=["variable"], names_pattern=["^ht", ".+i.+"] ) def test_names_pattern_names_to_dot_value(df_checks): """ Raise Error if names_pattern is a list/tuple and .value in names_to. """ with pytest.raises( ValueError, match=".value is not accepted in names_to " "if names_pattern is a list/tuple.", ): df_checks.pivot_longer( names_to=["variable", ".value"], names_pattern=["^ht", ".+i.+"] ) def test_name_sep_wrong_type(df_checks): """Raise TypeError if the wrong type is provided for names_sep.""" with pytest.raises(TypeError, match="names_sep should be one of.+"): df_checks.pivot_longer(names_to=[".value", "num"], names_sep=["_"]) def test_name_sep_no_names_to(df_checks): """Raise ValueError if names_sep and names_to is None.""" with pytest.raises(ValueError): df_checks.pivot_longer(names_to=None, names_sep="_") def test_values_to_wrong_type(df_checks): """Raise TypeError if the wrong type is provided for `values_to`.""" with pytest.raises(TypeError, match="values_to should be one of.+"): df_checks.pivot_longer(values_to={"salvo"}) def test_values_to_wrong_type_names_pattern(df_checks): """ Raise TypeError if `values_to` is a list, and names_pattern is not. """ with pytest.raises( TypeError, match="values_to can be a list/tuple only " "if names_pattern is a list/tuple.", ): df_checks.pivot_longer(values_to=["salvo"]) def test_values_to_names_pattern_unequal_length(df_checks): """ Raise ValueError if `values_to` is a list, and the length of names_pattern does not match the length of values_to. """ with pytest.raises( ValueError, match="The length of values_to does not match " "the number of regexes in names_pattern.+", ): df_checks.pivot_longer( values_to=["salvo"], names_pattern=["ht", r"\d"], names_to=["foo", "bar"], ) def test_values_to_names_seq_names_to(df_checks): """ Raise ValueError if `values_to` is a list, and intersects with names_to. """ with pytest.raises( ValueError, match="salvo in values_to already exists in names_to." ): df_checks.pivot_longer( values_to=["salvo"], names_pattern=["ht"], names_to="salvo" ) def test_sub_values_to(df_checks): """Raise error if values_to is a sequence, and contains non strings.""" with pytest.raises(TypeError, match="1 in values_to.+"): df_checks.pivot_longer( names_to=["x", "y"], names_pattern=[r"ht", r"\d"], values_to=[1, "salvo"], ) def test_duplicate_values_to(df_checks): """Raise error if values_to is a sequence, and contains duplicates.""" with pytest.raises(ValueError, match="salvo is duplicated in values_to."): df_checks.pivot_longer( names_to=["x", "y"], names_pattern=[r"ht", r"\d"], values_to=["salvo", "salvo"], ) def test_values_to_exists_in_columns(df_checks): """ Raise ValueError if values_to already exists in the dataframe's columns. """ with pytest.raises(ValueError): df_checks.pivot_longer(index="birth", values_to="birth") def test_values_to_exists_in_names_to(df_checks): """ Raise ValueError if values_to is in names_to. """ with pytest.raises(ValueError): df_checks.pivot_longer(values_to="num", names_to="num") def test_column_multiindex_names_sep(df_multi): """ Raise ValueError if the dataframe's column is a MultiIndex, and names_sep is present. """ with pytest.raises(ValueError): df_multi.pivot_longer( column_names=[("names", "aa")], names_sep="_", names_to=["names", "others"], ) def test_column_multiindex_names_pattern(df_multi): """ Raise ValueError if the dataframe's column is a MultiIndex, and names_pattern is present. """ with pytest.raises(ValueError): df_multi.pivot_longer( index=[("name", "a")], names_pattern=r"(.+)(.+)", names_to=["names", "others"], ) def test_index_tuple_multiindex(df_multi): """ Raise ValueError if index is a tuple, instead of a list of tuples, and the dataframe's column is a MultiIndex. """ with pytest.raises(ValueError): df_multi.pivot_longer(index=("name", "a")) def test_column_names_tuple_multiindex(df_multi): """ Raise ValueError if column_names is a tuple, instead of a list of tuples, and the dataframe's column is a MultiIndex. """ with pytest.raises(ValueError): df_multi.pivot_longer(column_names=("names", "aa")) def test_sort_by_appearance(df_checks): """Raise error if sort_by_appearance is not boolean.""" with pytest.raises(TypeError): df_checks.pivot_longer( names_to=[".value", "value"], names_sep="_", sort_by_appearance="TRUE", ) def test_ignore_index(df_checks): """Raise error if ignore_index is not boolean.""" with pytest.raises(TypeError): df_checks.pivot_longer( names_to=[".value", "value"], names_sep="_", ignore_index="TRUE" ) def test_names_to_index(df_checks): """ Raise ValueError if there is no names_sep/names_pattern, .value not in names_to and names_to intersects with index. """ with pytest.raises( ValueError, match=r".+in names_to already exist as column labels.+", ): df_checks.pivot_longer( names_to="famid", index="famid", ) def test_names_sep_pattern_names_to_index(df_checks): """ Raise ValueError if names_sep/names_pattern, .value not in names_to and names_to intersects with index. """ with pytest.raises( ValueError, match=r".+in names_to already exist as column labels.+", ): df_checks.pivot_longer( names_to=["dim", "famid"], names_sep="_", index="famid", ) def test_dot_value_names_to_columns_intersect(df_checks): """ Raise ValueError if names_sep/names_pattern, .value in names_to, and names_to intersects with the new columns """ with pytest.raises( ValueError, match=r".+in names_to already exist in the new dataframe\'s columns.+", ): df_checks.pivot_longer( index="famid", names_to=(".value", "ht"), names_pattern="(.+)(.)" ) def test_values_to_seq_index_intersect(df_checks): """ Raise ValueError if values_to is a sequence, and intersects with the index """ match = ".+values_to already exist as column labels assigned " match = match + "to the dataframe's index parameter.+" with pytest.raises(ValueError, match=rf"{match}"): df_checks.pivot_longer( index="famid", names_to=("value", "ht"), names_pattern=["ht", r"\d"], values_to=("famid", "foo"), ) def test_dot_value_names_to_index_intersect(df_checks): """ Raise ValueError if names_sep/names_pattern, .value in names_to, and names_to intersects with the index """ match = ".+already exist as column labels assigned " match = match + "to the dataframe's index parameter.+" with pytest.raises( ValueError, match=rf"{match}", ): df_checks.rename(columns={"famid": "ht"}).pivot_longer( index="ht", names_to=(".value", "num"), names_pattern="(.+)(.)" ) def test_names_pattern_list_empty_any(df_checks): """ Raise ValueError if names_pattern is a list, and not all matches are returned. """ with pytest.raises( ValueError, match="No match was returned for the regex.+" ): df_checks.pivot_longer( index=["famid", "birth"], names_to=["ht"], names_pattern=["rar"], ) def test_names_pattern_no_match(df_checks): """Raise error if names_pattern is a regex and returns no matches.""" with pytest.raises( ValueError, match="Column labels .+ could not be matched with any .+" ): df_checks.pivot_longer( index="famid", names_to=[".value", "value"], names_pattern=r"(rar)(.)", ) def test_names_pattern_incomplete_match(df_checks): """ Raise error if names_pattern is a regex and returns incomplete matches. """ with pytest.raises( ValueError, match="Column labels .+ could not be matched with any .+" ): df_checks.pivot_longer( index="famid", names_to=[".value", "value"], names_pattern=r"(ht)(.)", ) def test_names_sep_len(df_checks): """ Raise error if names_sep, and the number of matches returned is not equal to the length of names_to. """ with pytest.raises(ValueError): df_checks.pivot_longer(names_to=".value", names_sep="(\\d)") def test_pivot_index_only(df_checks): """Test output if only index is passed.""" result = df_checks.pivot_longer( index=["famid", "birth"], names_to="dim", values_to="num", ) actual = df_checks.melt( ["famid", "birth"], var_name="dim", value_name="num" ) assert_frame_equal(result, actual) def test_pivot_column_only(df_checks): """Test output if only column_names is passed.""" result = df_checks.pivot_longer( column_names=["ht1", "ht2"], names_to="dim", values_to="num", ignore_index=False, ) actual = df_checks.melt( ["famid", "birth"], var_name="dim", value_name="num", ignore_index=False, ) assert_frame_equal(result, actual) def test_pivot_sort_by_appearance(df_checks): """Test output if sort_by_appearance is True.""" result = df_checks.pivot_longer( column_names="ht*", names_to="dim", values_to="num", sort_by_appearance=True, ) actual = ( df_checks.melt( ["famid", "birth"], var_name="dim", value_name="num", ignore_index=False, ) .sort_index() .reset_index(drop=True) ) assert_frame_equal(result, actual) def test_names_pat_str(df_checks): """ Test output when names_pattern is a string, and .value is present. """ result = ( df_checks.pivot_longer( column_names="ht*", names_to=(".value", "age"), names_pattern="(.+)(.)", sort_by_appearance=True, ) .reindex(columns=["famid", "birth", "age", "ht"]) .astype({"age": int}) ) actual = pd.wide_to_long( df_checks, stubnames="ht", i=["famid", "birth"], j="age" ).reset_index() assert_frame_equal(result, actual) def test_multiindex_column_level(df_multi): """ Test output from MultiIndex column, when column_level is provided. """ result = df_multi.pivot_longer( index="name", column_names="names", column_level=0 ) expected_output = df_multi.melt( id_vars="name", value_vars="names", col_level=0 ) assert_frame_equal(result, expected_output) def test_multiindex(df_multi): """ Test output from MultiIndex column, where column_level is not provided, and there is no names_sep/names_pattern. """ result = df_multi.pivot_longer(index=[("name", "a")]) expected_output = df_multi.melt(id_vars=[("name", "a")]) assert_frame_equal(result, expected_output) def test_multiindex_names_to(df_multi): """ Test output from MultiIndex column, where column_level is not provided, there is no names_sep/names_pattern, and names_to is provided as a sequence. """ result = df_multi.pivot_longer( index=[("name", "a")], names_to=["variable_0", "variable_1"] ) expected_output = df_multi.melt(id_vars=[("name", "a")])
assert_frame_equal(result, expected_output)
pandas.testing.assert_frame_equal
#!/usr/bin/env python3 import click import pandas as pd from Bio import Phylo @click.command(context_settings=dict(help_option_names=['-h', '--help'])) @click.option("-i", "--newick-tree-input", type=click.Path(exists=True), required=False, default='') @click.option("-m", "--metadata-output", type=click.Path(exists=False), required=False, default='') @click.option("-ma", "--metadata-aa-change", type=click.Path(exists=False), required=False, default='') @click.option("-r", "--lineage-report", help="Pangolin report of input sequences", type=click.Path(exists=False), required=False, default='') @click.option("-l", "--leaflist", help="Leaves list", type=click.Path(exists=False), required=False) def main(newick_tree_input, metadata_output, lineage_report, leaflist, metadata_aa_change): df_lineage_report = pd.read_table(lineage_report, sep=',') df_aa_change =
pd.read_table(metadata_aa_change)
pandas.read_table
import datetime as dt import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from functools import reduce def asset_class_heatmap(df, period): df_period = df[-period:] mask = np.triu(df_period.corr()) plt.figure(figsize=(12.8, 12.8)) return sns.heatmap( df_period.corr(), annot=True, mask=mask, cmap='coolwarm', square=True, linewidths=3, cbar_kws={"shrink": .5} ) def jpm_wide_to_long(df, set_date_name, set_index_name, set_values_name): """ :param df: :param set_date_name: :param set_index_name: :param set_values_name: :return: """ return ( pd.melt( ( df .replace('-', np.NaN) .rename(columns={'Unnamed: 0': set_date_name}) .set_index('Date') .transpose() .reset_index(drop=False) .rename(columns={'index': set_index_name}) ), id_vars=[set_index_name], value_name=set_values_name) .sort_values([set_index_name, set_date_name]) .reset_index(drop=True) ) if __name__ == "__main__": folder_path = "C:/Users/mnguyen/LGSS/Investments Team - SandPits - SandPits/data/input/vendors/jpm/markets/performance/2021/05/" lgs_dictionary_path = 'C:/Users/mnguyen/LGSS/Investments Team - SandPits - SandPits/data/archive/input/dictionary/2021/05/New New Dictionary_v21.xlsx' jpm_main_mv_path = folder_path + 'Historical Time Series - Monthly - Main Market Values.xlsx' jpm_alts_mv_path = folder_path + 'Historical Time Series - Monthly - Alts Market Values.xlsx' jpm_main_returns_path = folder_path + 'Historical Time Series - Monthly - Main Returns.xlsx' jpm_alts_returns_path = folder_path + 'Historical Time Series - Monthly - Alts Returns.xlsx' jpm_main_benchmarks_path = folder_path + 'Historical Time Series - Monthly - Main Benchmarks.xlsx' jpm_alts_benchmarks_path = folder_path + 'Historical Time Series - Monthly - Alts Benchmarks.xlsx' use_manager_id = [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12] use_account_id = [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12] footnote_rows = 28 df_lgs_dictionary = pd.read_excel(pd.ExcelFile(lgs_dictionary_path), sheet_name='Sheet1', header=0) df_lgs_dictionary = df_lgs_dictionary[~df_lgs_dictionary['LGS Name'].isin(['Australian Fixed Interest', 'International Fixed Interest', 'Inflation Linked Bonds', 'Liquid Alternatives', 'Short Term Fixed Interest'])].reset_index(drop=True) df_jpm_main_mv = jpm_wide_to_long( df=pd.read_excel( pd.ExcelFile(jpm_main_mv_path), sheet_name='Sheet1', skiprows=use_account_id, skipfooter=footnote_rows, header=1 ), set_date_name='Date', set_index_name='JPM Account Id', set_values_name='MV_a_m' ) df_jpm_alts_mv = jpm_wide_to_long( df=pd.read_excel( pd.ExcelFile(jpm_alts_mv_path), sheet_name='Sheet1', skiprows=use_account_id, skipfooter=footnote_rows, header=1 ), set_date_name='Date', set_index_name='JPM Account Id', set_values_name='MV_a_m' ) df_jpm_main_returns = jpm_wide_to_long( df=pd.read_excel( pd.ExcelFile(jpm_main_returns_path), sheet_name='Sheet1', skiprows=use_account_id, skipfooter=footnote_rows, header=1 ), set_date_name='Date', set_index_name='JPM Account Id', set_values_name='R_a_m_p' ) df_jpm_alts_returns = jpm_wide_to_long( df=pd.read_excel( pd.ExcelFile(jpm_alts_returns_path), sheet_name='Sheet1', skiprows=use_account_id, skipfooter=footnote_rows, header=1 ), set_date_name='Date', set_index_name='JPM Account Id', set_values_name='R_a_m_p' ) df_jpm_main_benchmarks = jpm_wide_to_long( df=pd.read_excel( pd.ExcelFile(jpm_main_benchmarks_path), sheet_name='Sheet1', skiprows=use_account_id, skipfooter=footnote_rows, header=1 ), set_date_name='Date', set_index_name='JPM Account Id', set_values_name='R_a_m_b' ) df_jpm_alts_benchmarks = jpm_wide_to_long( df=pd.read_excel( pd.ExcelFile(jpm_alts_benchmarks_path), sheet_name='Sheet1', skiprows=use_account_id, skipfooter=footnote_rows, header=1 ), set_date_name='Date', set_index_name='JPM Account Id', set_values_name='R_a_m_b' ) df_jpms = [ pd.concat([df_jpm_main_mv, df_jpm_alts_mv]), pd.concat([df_jpm_main_returns, df_jpm_alts_returns]), pd.concat([df_jpm_main_benchmarks, df_jpm_alts_benchmarks]) ] df_jpm = reduce(lambda x, y:
pd.merge(left=x, right=y, on=['JPM Account Id', 'Date'], how='inner')
pandas.merge
# -*- coding: utf-8 -*- """ Created on Sun May 17 14:48:16 2020 @author: <NAME> """ import json import requests import matplotlib.pyplot as plt import numpy as np import pandas as pd from fbprophet import Prophet import math import time import calendar from datetime import date, datetime def india_world_pred(): plt.close('all') plt.rcParams.update({'figure.max_open_warning': 0}) #**** INDIA **** response = requests.get("https://corona.lmao.ninja/v3/covid-19/historical/india?lastdays=all") india = json.loads(response.text) cases=[] deaths=[] rec=[] for i in india['timeline']: for j in india['timeline'][i].items(): if i == 'cases': cases.append(j) elif i == 'deaths': deaths.append(j) else: rec.append(j) #creating dataframe in the structure acceptable by fb prophet cases = pd.DataFrame(cases,columns = ['ds','y']) deaths = pd.DataFrame(deaths,columns = ['ds','y']) rec=pd.DataFrame(rec,columns = ['ds','y']) #modifying the time #year = (datetime.now()).strftime('%Y') dates_list = [] for i in range(len(cases)): a = cases['ds'][i].split("/") b = a[1]+' '+calendar.month_abbr[int(a[0])]+' 20'+ a[2] dates_list.append(b) dates_list = pd.DataFrame(dates_list,columns = ['Date']) #creating csv file for india original = pd.concat([dates_list['Date'],cases['y'],deaths['y'],rec['y']], axis=1,sort=False) original.columns = ['Date','Cases','Deaths','Recoveries'] original.to_csv("data/india_original.csv") #converting values to log cases['y'] = np.log(cases['y']) deaths['y'] = np.log(deaths['y']) rec['y'] = np.log(rec['y']) #replacing infinite values with 0 for i in range(len(cases)): if math.isinf(cases['y'][i]): cases['y'][i]=0 if math.isinf(deaths['y'][i]): deaths['y'][i]=0 if math.isinf(rec['y'][i]): rec['y'][i]=0 ###predicting cases using fb prophet m = Prophet() m.add_seasonality(name='daily', period=40.5, fourier_order=5) m.fit(cases) future = m.make_future_dataframe(periods=7) # future.tail() forecast = m.predict(future) # forecast[['ds', 'yhat']].tail() #plotting the model and saving it for cases plot_locations = [] fig = m.plot(forecast) location = "static/img/plot/india_plot_cases" + str(date.today()) + ".png" plot_locations = plot_locations + [location] fig.legend(("actual","fitted","80% confidence interval"),loc='center right',fontsize=10) plt.savefig(location,figsize=(15,7),dpi=250) fig = m.plot_components(forecast) location = "static/img/plot/india_components_cases" + str(date.today()) + ".png" plot_locations = plot_locations + [location] plt.savefig(location,figsize=(15,7),dpi=250) #final dataframe for cases final_cases = pd.DataFrame() final_cases['ds'] = forecast['ds'] final_cases['y'] = np.exp(forecast['yhat']) final_cases = final_cases.iloc[(len(final_cases)-7):,:].reset_index() final_cases.drop(columns = 'index',inplace=True) ###predicting deaths using fb prophet model m = Prophet() m.add_seasonality(name='daily', period=40.5, fourier_order=5) m.fit(deaths) future = m.make_future_dataframe(periods=7) # future.tail() forecast = m.predict(future) # forecast[['ds', 'yhat']].tail() #plotting the model and saving it for deaths fig = m.plot(forecast) location = "static/img/plot/india_plot_deaths" + str(date.today()) + ".png" plot_locations = plot_locations + [location] fig.legend(("actual","fitted","80% confidence interval"),loc='center right',fontsize=10) plt.savefig(location,figsize=(15,7),dpi=250) fig = m.plot_components(forecast) location = "static/img/plot/india_component_deaths" + str(date.today()) + ".png" plot_locations = plot_locations + [location] plt.savefig(location,figsize=(15,7),dpi=250) #final dataframe for deaths final_deaths = pd.DataFrame() final_deaths['ds'] = forecast['ds'] final_deaths['y'] = np.exp(forecast['yhat']) final_deaths = final_deaths.iloc[(len(final_deaths)-7):,:].reset_index() final_deaths.drop(columns = 'index',inplace = True) ###predicting recoveries using fb prophet model m = Prophet() m.add_seasonality(name='daily', period=40.5, fourier_order=5) m.fit(rec) future = m.make_future_dataframe(periods=7) # future.tail() forecast = m.predict(future) # forecast[['ds', 'yhat']].tail() #plotting the model and saving it for recoveries fig = m.plot(forecast) location = "static/img/plot/india_plot_recovered" + str(date.today()) + ".png" plot_locations = plot_locations + [location] fig.legend(("actual","fitted","80% confidence interval"),loc='center right',fontsize=10) plt.savefig(location,figsize=(15,7),dpi=250) fig = m.plot_components(forecast) location = "static/img/plot/india_component_recovered" + str(date.today()) + ".png" plot_locations = plot_locations + [location] plt.savefig(location,figsize=(15,7),dpi=250) #creating final dataframe for recoveries final_rec = pd.DataFrame() final_rec['ds'] = forecast['ds'] final_rec['y'] = np.exp(forecast['yhat']) final_rec = final_rec.iloc[(len(final_rec)-7):,:].reset_index() final_rec.drop(columns = 'index',inplace = True) dates_list = [] for i in range(len(final_cases)): c = final_cases['ds'][i].strftime("%m/%d/%Y") a = c.split("/") b = a[1]+' '+calendar.month_abbr[int(a[0])]+' '+ a[2] dates_list.append(b) dates_list = pd.DataFrame(dates_list,columns = ['Date']) ###creating the csv for fitted values for India fitted = pd.concat([dates_list['Date'],final_cases['y'],final_deaths['y'],final_rec['y']], axis=1,sort=False) fitted.columns = ['Date','Cases','Deaths','Recoveries'] fitted.to_csv("data/india_fitted.csv") #**** WORLD **** url_cases = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' url_death = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv' url_recovered = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv" df_cases = pd.read_csv(url_cases) df_death = pd.read_csv(url_death) df_recovered = pd.read_csv(url_recovered) #creating dataframe for cases data_cases = df_cases.groupby(['Country/Region']).sum() data_deaths = df_death.groupby(['Country/Region']).sum() data_rec = df_recovered.groupby(['Country/Region']).sum() data_cases.drop(columns = ['Lat','Long'],inplace=True) data_deaths.drop(columns = ['Lat','Long'],inplace=True) data_rec.drop(columns = ['Lat','Long'],inplace=True) #year = (datetime.now()).strftime('%Y') values_cases=[] for (i,k) in zip(range(data_cases.shape[1]),data_cases.columns): s = 0 for j in range(data_cases.shape[0]): s = s + data_cases.iloc[j][i] values_cases.append(( k , s )) values_deaths=[] for (i,k) in zip(range(data_deaths.shape[1]),data_deaths.columns): s = 0 for j in range(data_deaths.shape[0]): s = s + data_deaths.iloc[j][i] values_deaths.append(( k , s )) values_rec=[] for (i,k) in zip(range(data_rec.shape[1]),data_rec.columns): s = 0 for j in range(data_rec.shape[0]): s = s + data_rec.iloc[j][i] values_rec.append(( k , s )) cases = pd.DataFrame(values_cases,columns = ['ds','y']) deaths = pd.DataFrame(values_deaths,columns = ['ds','y']) rec = pd.DataFrame(values_rec,columns = ['ds','y']) cases_list = list(cases['y']) deaths_list = list(deaths['y']) rec_list = list(rec['y']) dates_list = [] for i in range(len(cases)): a = cases['ds'][i].split("/") b = a[1]+' '+calendar.month_abbr[int(a[0])]+' 20'+ a[2] dates_list.append(b) #creating csv for original data for world world_original = pd.DataFrame(list(zip(dates_list,cases_list,deaths_list,rec_list)), columns = ['Date','Total Confirmed','Total Deaths','Total Recoveries']) world_original.to_csv('data/world_original.csv') #predicting world cases m = Prophet() m.add_seasonality(name='daily', period=30.5, fourier_order=5) m.fit(cases) future = m.make_future_dataframe(periods=7) forecast = m.predict(future) forecast[['ds', 'yhat']] #plotting and saving figure for world cases fig = m.plot(forecast) location = "static/img/plot/world_plot_cases" + str(date.today()) + ".png" plot_locations = plot_locations + [location] fig.legend(("actual","fitted","80% confidence interval"),loc='center right',fontsize=10) plt.savefig(location,figsize=(15,7),dpi=250) fig = m.plot_components(forecast) location = "static/img/plot/world_component_cases" + str(date.today()) + ".png" plot_locations = plot_locations + [location] plt.savefig(location,figsize=(15,7),dpi=250) fitted_dates = [] fitted_cases = [] for i in range(len(forecast)): a = forecast['ds'][i].strftime('%d %b %Y') b = a.split(" ") c = b[0]+' '+b[1]+' '+b[2] fitted_dates.append(c) if forecast['yhat'][i]<0: d = 0 else: d = forecast['yhat'][i] fitted_cases.append(d) #predicting world deaths m = Prophet() m.add_seasonality(name='daily', period=30.5, fourier_order=5) m.fit(deaths) future = m.make_future_dataframe(periods=7) # future.tail() forecast = m.predict(future) # forecast[['ds', 'yhat']].tail() #plotting and saving the figure for world deaths fig = m.plot(forecast) location = "static/img/plot/world_plot_deaths" + str(date.today()) + ".png" plot_locations = plot_locations + [location] fig.legend(("actual","fitted","80% confidence interval"),loc='center right',fontsize=10) plt.savefig(location,figsize=(15,7),dpi=250) fig = m.plot_components(forecast) location = "static/img/plot/world_component_deaths" + str(date.today()) + ".png" plot_locations = plot_locations + [location] plt.savefig(location,figsize=(15,7),dpi=250) fitted_deaths = [] for i in range(len(forecast)): if forecast['yhat'][i]<0: d = 0 else: d = forecast['yhat'][i] fitted_deaths.append(d) #predicting world recovery m = Prophet() m.add_seasonality(name='daily', period=30.5, fourier_order=5) m.fit(rec) future = m.make_future_dataframe(periods=7) # future.tail() forecast = m.predict(future) # forecast[['ds', 'yhat']].tail() #plotting and saving for world recoveries fig = m.plot(forecast) location = "static/img/plot/world_plot_recovered" + str(date.today()) + ".png" plot_locations = plot_locations + [location] fig.legend(("actual","fitted","80% confidence interval"),loc='center right',fontsize=10) plt.savefig(location,figsize=(15,7),dpi=250) fig = m.plot_components(forecast) location = "static/img/plot/world_component_recovered" + str(date.today()) + ".png" plot_locations = plot_locations + [location] plt.savefig(location,figsize=(15,7),dpi=250) fitted_rec = [] for i in range(len(forecast)): if forecast['yhat'][i]<0: d = 0 else: d = forecast['yhat'][i] fitted_rec.append(d) #creating the csv for fitted values for world world_fitted = pd.DataFrame(list(zip(fitted_dates,fitted_cases,fitted_deaths,fitted_rec)), columns = ['Date','Total Confirmed','Total Deaths','Total Recoveries']) world_fitted = world_fitted.iloc[(len(world_fitted)-7):,:].reset_index() world_fitted.drop(columns = ['index'],inplace=True) world_fitted.to_csv('data/world_fitted.csv') with open('json_data/plot_locations.json', 'w') as json_file: json.dump(plot_locations, json_file) def country_wise(): url_cases = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' url_death = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv' url_recovered = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv" df_cases = pd.read_csv(url_cases) df_death = pd.read_csv(url_death) df_recovered = pd.read_csv(url_recovered) #year = (datetime.now()).strftime('%Y') data_cases = df_cases.groupby(['Country/Region']).sum() data_death = df_death.groupby(['Country/Region']).sum().reset_index() data_recovered = df_recovered.groupby(['Country/Region']).sum().reset_index() data_cases.drop(columns=['Lat','Long'],inplace=True) data_death.drop(columns=['Lat','Long'],inplace=True) data_recovered.drop(columns=['Lat','Long'],inplace=True) date = [] for i in data_cases.columns: a = i.split('/') b = a[1]+ ' '+ calendar.month_abbr[int(a[0])] + ' 20'+ a[2] date.append(b) date.insert(0,'Country') data_cases = data_cases.reset_index() X_cases = data_cases.iloc[:,:].values X_deaths = data_death.iloc[:,:].values X_rec = data_recovered.iloc[:,:].values new_cases = pd.DataFrame(X_cases,columns = [date]) new_deaths = pd.DataFrame(X_deaths,columns = [date]) new_rec = pd.DataFrame(X_rec,columns = [date]) new_cases.to_csv('data/country_wise_cases.csv') new_deaths.to_csv('data/country_wise_deaths.csv') new_rec.to_csv('data/country_wise_recovered.csv') def read_country_list(): df = pd.read_csv("data/country_wise_cases.csv") country = list(df['Country']) return country def read_country_data(country_index): df_cases = pd.read_csv("data/country_wise_cases.csv") df_deaths = pd.read_csv("data/country_wise_deaths.csv") df_rec = pd.read_csv("data/country_wise_recovered.csv") cases = list(df_cases.iloc[country_index,:].values)[2:] deaths = list(df_deaths.iloc[country_index,:].values)[2:] rec = list(df_rec.iloc[country_index,:].values)[2:] dates = list(df_cases.columns)[2:] final = pd.DataFrame(list(zip(dates,cases,deaths,rec)),columns = ['Date','Total Confirmed','Total Deaths','Total Recovered']) final_dict={} cases_list=[] deaths_list=[] rec_list=[] for i in range(len(final)): cases_list.append({final['Date'][i]: int(final['Total Confirmed'][i])}) deaths_list.append({final['Date'][i]: int(final['Total Deaths'][i])}) rec_list.append({final['Date'][i]: int(final['Total Recovered'][i])}) final_dict['country'] = df_cases['Country'][country_index] final_dict['cases'] = cases_list final_dict['deaths'] = deaths_list final_dict['recovered'] = rec_list return final_dict def world_original(): final = pd.read_csv("data/world_original.csv") final_dict={} cases_list=[] deaths_list=[] rec_list=[] for i in range(len(final)): cases_list.append({final['Date'][i]: int(final['Total Confirmed'][i])}) deaths_list.append({final['Date'][i]: int(final['Total Deaths'][i])}) rec_list.append({final['Date'][i]: int(final['Total Recoveries'][i])}) final_dict['cases'] = cases_list final_dict['deaths'] = deaths_list final_dict['recovered'] = rec_list return final_dict def world_fitted(): final =
pd.read_csv("data/world_fitted.csv")
pandas.read_csv
from dagster_pandas.constraints import ( ColumnAggregateConstraintWithMetadata, ColumnConstraintWithMetadata, ColumnRangeConstraintWithMetadata, ColumnWithMetadataException, ConstraintWithMetadata, ConstraintWithMetadataException, DataFrameWithMetadataException, MultiAggregateConstraintWithMetadata, MultiColumnConstraintWithMetadata, MultiConstraintWithMetadata, StrictColumnsWithMetadata, ) from pandas import DataFrame def basic_validation_function(inframe): if isinstance(inframe, DataFrame): return (True, {}) else: return ( False, {'expectation': "a " + DataFrame.__name__, 'actual': "a " + type(inframe).__name__}, ) basic_confirmation_function = ConstraintWithMetadata( description='this constraint confirms that table is correct type', validation_fn=basic_validation_function, resulting_exception=DataFrameWithMetadataException, raise_or_typecheck=False, ) basic_multi_constraint = MultiConstraintWithMetadata( description='this constraint confirms that table is correct type', validation_fn_arr=[basic_validation_function], resulting_exception=DataFrameWithMetadataException, raise_or_typecheck=False, ) def test_failed_basic(): assert not basic_confirmation_function.validate([]).success def test_basic(): assert basic_confirmation_function.validate(DataFrame()) def test_failed_multi(): mul_val = basic_multi_constraint.validate([]).metadata_entries[0].entry_data.data assert mul_val["expected"] == {'basic_validation_function': 'a DataFrame'} assert mul_val["actual"] == {'basic_validation_function': 'a list'} def test_success_multi(): mul_val = basic_multi_constraint.validate(DataFrame()) assert mul_val.success == True assert mul_val.metadata_entries == [] def test_failed_strict(): strict_column = StrictColumnsWithMetadata(["base_test"], raise_or_typecheck=False) assert not strict_column.validate(DataFrame()).success def test_successful_strict(): strict_column = StrictColumnsWithMetadata([], raise_or_typecheck=False) assert strict_column.validate(DataFrame()).success def test_column_constraint(): def column_num_validation_function(value): return (isinstance(value, int), {}) df = DataFrame({'foo': [1, 2], 'bar': ['a', 2], 'baz': [1, 'a']}) column_val = ColumnConstraintWithMetadata( "Confirms type of column values", column_num_validation_function, ColumnWithMetadataException, raise_or_typecheck=False, ) val = column_val.validate(df, *df.columns).metadata_entries[0].entry_data.data assert {'bar': ['row 0'], 'baz': ['row 1']} == val["offending"] assert {'bar': ['a'], 'baz': ['a']} == val["actual"] def test_multi_val_constraint(): def column_num_validation_function(value): return (value >= 3, {}) df = DataFrame({'foo': [1, 2], 'bar': [3, 2], 'baz': [1, 4]}) column_val = ColumnConstraintWithMetadata( "Confirms values greater than 3", column_num_validation_function, ColumnWithMetadataException, raise_or_typecheck=False, ) val = column_val.validate(df, *df.columns).metadata_entries[0].entry_data.data assert {'foo': ['row 0', 'row 1'], 'bar': ['row 1'], 'baz': ['row 0']} == val["offending"] assert {'foo': [1, 2], 'bar': [2], 'baz': [1]} == val["actual"] def test_multi_column_constraint(): def col_val_three(value): """ returns values greater than or equal to 3 """ return (value >= 2, {}) def col_val_two(value): """ returns values less than 2 """ return (value < 2, {}) df =
DataFrame({'foo': [1, 2, 3], 'bar': [3, 2, 1], 'baz': [1, 4, 5]})
pandas.DataFrame
#%% import numpy as np import pandas as pd from sklearn.metrics import confusion_matrix from sklearn import preprocessing import random #%% df_train =
pd.read_csv("data/train_ohe.csv")
pandas.read_csv
# # Copyright (C) 2014 Xinguard Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # -*- coding: utf-8 -*- import pandas as pd import os import re from flask import Flask from flask import render_template, jsonify, request, g, abort, redirect, url_for import json #from xinui.rest import Rest from rest import Rest app = Flask(__name__) global_flow_table = {} # Summary page @app.route("/") def summary(): sw_desc = Rest.get_switch_desc() if sw_desc is False: abort(404) return render_template("summary.html", sw_desc=sw_desc) # Policy page @app.route("/policy/") def policy(): sw_dpid_list = Rest.get_switch_list() if sw_dpid_list is False: abort(404) return render_template("policy.html", sw_dpid_list=sw_dpid_list) @app.route("/policy/<dpid>") def dpid_policy(dpid): sw_dpid_list = Rest.get_switch_list() if sw_dpid_list is False or int(dpid) not in sw_dpid_list: abort(404) flow_table = None flow_table = Rest.get_flow_table(dpid) global global_flow_table global_flow_table = flow_table port = Rest.get_switch_port(dpid) return render_template("policy.html", sw_dpid_list=sw_dpid_list, dpid=dpid, port=port, flow_table=flow_table) # Topology page @app.route("/topology") def topology(): topo = Rest.get_topology() return render_template("topology.html", topo=topo) @app.route("/_query_flow/") def query_flow(dpid): #dpid = request.args.get("dpid") flow_table = Rest.get_flow_table(dpid) #print flow_table return render_template("policy.html", flow_table=flow_table) #return jsonify(flow_table) @app.route("/_query_port") def query_port(): dpid = request.args.get("dpid") port = Rest.get_switch_port(dpid) return jsonify(port) @app.route("/_add_flow", methods=["POST"]) def add_flow(): req = json.loads(request.form["flow_cmd"]) flow_cmd = {} match_dict = {} action_list = [] flow_cmd["dpid"] = req["common"]["dpid"] flow_cmd["priority"] = req["common"]["priority"] flow_cmd["idle_timeout"] = req["common"]["idle"] flow_cmd["hard_timeout"] = req["common"]["hard"] if req["match"]["input"] != "Any": match_dict["in_port"] = int(req["match"]["input"]) if req["match"]["dl_saddr"] != "None": match_dict["dl_src"] = req["match"]["dl_saddr"] if req["match"]["dl_daddr"] != "None": match_dict["dl_dst"] = req["match"]["dl_daddr"] if req["match"]["nw_saddr"] != "None": match_dict["nw_src"] = req["match"]["nw_saddr"] if req["match"]["nw_daddr"] != "None": match_dict["nw_dst"] = req["match"]["nw_daddr"] if req["match"]["nw_saddr"] != "None" or req["match"]["nw_daddr"] != "None" or req["match"]["l4_proto"]: match_dict["dl_type"] = 2048 if req["match"]["l4_proto"] != "None": if req["match"]["l4_proto"] == "TCP": match_dict["nw_proto"] = 6 elif req["match"]["l4_proto"] == "UDP": match_dict["nw_proto"] = 17 if req["match"]["sport"] != "None": match_dict["tp_src"] = int(req["match"]["sport"]) if req["match"]["dport"] != "None": match_dict["tp_dst"] = int(req["match"]["dport"]) if req["match"]["vlan_id"] != "None": match_dict["dl_vlan"] = int(req["match"]["vlan_id"]) if req["action"]["output"] != "Drop": for value in req["action"]["output"].split(" "): action_dict = {} action_dict["port"] = int(value) action_dict["type"] = "OUTPUT" action_list.append(action_dict) if req["action"]["vlan_action"] != "None": if "Strip" in req["action"]["vlan_action"]: action_dict = {} action_dict["type"] = "POP_VLAN" action_list.append(action_dict) elif "Swap" in req["action"]["vlan_action"]: action_dict = {} action_dict["field"] = "vlan_vid" action_dict["value"] = req["action"]["vlan_action"].split(" ")[-1] action_dict["type"] = "SET_FIELD" action_list.append(action_dict) elif "New" in req["action"]["vlan_action"]: push_vlan_dict = {} push_vlan_dict["ethertype"] = 33024 push_vlan_dict["type"] = "PUSH_VLAN" action_list.append(push_vlan_dict) action_dict = {} action_dict["field"] = "vlan_vid" action_dict["value"] = req["action"]["vlan_action"].split(" ")[-1] action_dict["type"] = "SET_FIELD" action_list.append(action_dict) flow_cmd["match"] = match_dict flow_cmd["actions"] = action_list #print json.dumps(flow_cmd) Rest.add_flow(json.dumps(flow_cmd)) return "foo" @app.route("/_del_flow", methods=["POST"]) def del_flow(): index = request.form["index"] flow_cmd = {} match_dict = {} for key, list in global_flow_table.iteritems(): flow_cmd["dpid"] = key match_dict = list[int(index)]["match"] flow_cmd["match"] = match_dict #print json.dumps(flow_cmd) Rest.del_flow(json.dumps(flow_cmd)) return "foo" @app.errorhandler(404) def page_not_found(error): return render_template("page_not_found.html"), 404 #CRUD @app.route("/get") def show_tables(): filename = 'example2.xlsx' data = pd.read_excel(filename,sheetname='Sheet1') data = data.fillna('') return render_template('index.html',tables=[re.sub(' mytable', '" id="example', data.to_html(classes='mytable'))], titles = ['Excel Data to Flask']) @app.route('/insert', methods= ['POST','GET']) def insert(): q1 = request.form['num1'] q2 = request.form['num2'] print(q1,q2) df = pd.DataFrame({'a': [q1], 'b': [q2]}) book = pd.read_excel('example2.xlsx') writer = pd.ExcelWriter('example2.xlsx', engine='openpyxl') book.to_excel(writer, startrow=0, index=False) df.to_excel(writer, startrow=len(book) + 1, header=False, index=False) writer.save() return redirect('/') @app.route('/save', methods= ['POST','GET']) def save(): url = 'http://127.0.0.1:5000/' urll = request.get_data() print(urll) data =
pd.read_html(urll)
pandas.read_html
# Heavily influenced by: https://www.kaggle.com/opanichev/lightgbm-and-tf-idf-starter?login=true# import pandas as pd import lightgbm as lgbm import numpy as np import os import scripts.donorchoose_functions as fn import re from sklearn.metrics import roc_auc_score from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import LabelEncoder from datetime import datetime from tqdm import tqdm # Reading in data dtype = { 'id': str, 'teacher_id': str, 'teacher_prefix': str, 'school_state': str, 'project_submitted_datetime': str, 'project_grade_category': str, 'project_subject_categories': str, 'project_subject_subcategories': str, 'project_title': str, 'project_essay_1': str, 'project_essay_2': str, 'project_essay_3': str, 'project_essay_4': str, 'project_resource_summary': str, 'teacher_number_of_previously_posted_projects': int, 'project_is_approved': np.uint8, } data_dir = "F:/Nerdy Stuff/Kaggle/DonorsChoose" sub_path = "F:/Nerdy Stuff/Kaggle submissions/DonorChoose" train = pd.read_csv(os.path.join(data_dir, "data/train.csv"), dtype=dtype) test = pd.read_csv(os.path.join(data_dir, "data/test.csv"), dtype=dtype) print("Extracting text features") train = fn.extract_text_features(train) test = fn.extract_text_features(test) print("Extracting datetime features") train = fn.extract_timestamp_features(train) test = fn.extract_timestamp_features(test) print("Joining together essays") train['project_essay'] = fn.join_essays(train) test['project_essay'] = fn.join_essays(test) train = train.drop([ 'project_essay_1', 'project_essay_2', 'project_essay_3', 'project_essay_4' ], axis=1) test = test.drop([ 'project_essay_1', 'project_essay_2', 'project_essay_3', 'project_essay_4' ], axis=1) sample_sub = pd.read_csv(os.path.join("data/sample_submission.csv")) res = pd.read_csv(os.path.join(data_dir, "data/resources.csv")) id_test = test['id'].values # Rolling up resources to one row per application print("Rolling up resource requirements to one line and creating aggregate feats") res = (res .groupby('id').apply(fn.price_quantity_agg) .reset_index()) res['mean_price'] = res['price_sum']/res['quantity_sum'] print("Train has %s rows and %s cols" % (train.shape[0], train.shape[1])) print("Test has %s rows and %s cols" % (test.shape[0], test.shape[1])) print("Res has %s rows and %s cols" % (res.shape[0], res.shape[1])) print("Train has %s more rows than test" % (train.shape[0] / test.shape[0])) train = pd.merge(left=train, right=res, on="id", how="left") test = pd.merge(left=test, right=res, on="id", how="left") print("Train after merge has %s rows and %s cols" % (train.shape[0], train.shape[1])) print("Test after merge has %s rows and %s cols" % (test.shape[0], test.shape[1])) print("Concatenating datasets so I can build the label encoders") df_all =
pd.concat([train, test], axis=0)
pandas.concat
import logging import os import warnings from pathlib import Path from typing import Dict, Iterable, Union import nibabel as nib import numpy as np import pandas as pd import tqdm from nilearn.image import resample_to_img from nipype.interfaces.ants import ApplyTransforms from nipype.interfaces.freesurfer import ( CALabel, MRIsCALabel, ParcellationStats, SegStats, ) from connecticity.parcellation import messages warnings.filterwarnings("ignore") #: Default parcellation logging configuration. LOGGER_CONFIG = dict( filemode="w", format="%(asctime)s - %(message)s", level=logging.INFO, ) #: Command template to be used to run dwi2tensor. DWI2TENSOR_COMMAND_TEMPLATE: str = "dwi2tensor -grad {grad} {dwi} {out_file}" #: Custom mapping of dwi2tensor keyword arguments. TENSOR2METRIC_KWARGS_MAPPING: Dict[str, str] = {"eval": "value"} #: QSIPrep DWI file template. QSIPREP_DWI_TEMPLATE = "{qsiprep_dir}/sub-{participant_label}/ses-{session}/dwi/sub-{participant_label}_ses-{session}_space-T1w_desc-preproc_dwi.{extension}" # noqa #: Tensor metric file template. TENSOR_METRICS_FILES_TEMPLATE = "{dmriprep_dir}/sub-{participant_label}/ses-{session}/dwi/sub-{participant_label}_ses-{session}_dir-FWD_space-anat_desc-{metric}_epiref.nii.gz" # noqa #: Parcellated tensor metrics file template. TENSOR_METRICS_OUTPUT_TEMPLATE = "{dmriprep_dir}/sub-{participant_label}/ses-{session}/dwi/sub-{participant_label}_ses-{session}_space-anat_desc-TensorMetrics_atlas-{parcellation_scheme}_meas-{measure}.csv" # noqa: E501 #: Command template to be used to run aparcstats2table. APARCTSTATS2TABLE_TEMPLATE = "aparcstats2table --subjects {subjects} --parc={parcellation_scheme} --hemi={hemi} --measure={measure} --tablefile={out_file}" # noqa: E501 #: Hemisphere labels in file name templates. HEMISPHERE_LABELS: Iterable[str] = ["lh", "rh"] #: Surface labels in file name templates. SURFACES: Iterable[str] = ["smoothwm", "curv", "sulc"] #: Data types in file name templates. DATA_TYPES: Iterable[str] = ["pial", "white"] #: Registered file name template. REG_FILE_NAME_TEMPLATE: str = "{hemisphere_label}.sphere.reg" #: FreeSurfer's surfaces directory name. SURFACES_DIR_NAME: str = "surf" #: FreeSurfer's MRI directory name. MRI_DIR_NAME: str = "mri" #: FreeSurfer's labels directory name. LABELS_DIR_NAME: str = "label" #: FreeSurfer's stats directory name. STATS_DIR_NAME: str = "stats" #: mris_anatomical_stats parameter keys. STATS_KEYS: Iterable[Union[str, bool]] = [ "brainmask", "aseg", "ribbon", "wm", "transform", "tabular_output", ] #: mris_anatomical_stats parameter values. STATS_VALUES: Iterable[str] = [ "brainmask.mgz", "aseg.presurf.mgz", "ribbon.mgz", "wm.mgz", "transforms/talairach.xfm", True, ] STATS_MEASURES: Iterable[str] = [ "area", "volume", "thickness", "thicknessstd", "meancurv", ] STATS_NAME_TEMPLATE: str = ( "{hemisphere_label}_{parcellation_scheme}_{measure}.csv" ) SUBCORTICAL_STATS_NAME_TEMPLATE: str = "subcortex.{parcellation_scheme}.stats" def generate_annotation_file( subject_dir: Path, hemisphere_label: str, parcellation_scheme: str, gcs_template: str, ): surfaces_dir = subject_dir / SURFACES_DIR_NAME labels_dir = subject_dir / LABELS_DIR_NAME # Check for existing file in expected output path. out_file_name = f"{hemisphere_label}.{parcellation_scheme}.annot" out_file = labels_dir / out_file_name if out_file.exists(): return out_file # If no existing output is found, create mris_ca_label input # configuration. reg_file_name = REG_FILE_NAME_TEMPLATE.format( hemisphere_label=hemisphere_label ) reg_file = surfaces_dir / reg_file_name curv, smoothwm, sulc = [ surfaces_dir / f"{hemisphere_label}.{surface_label}" for surface_label in SURFACES ] hemi_gcs = gcs_template.format(hemi=hemisphere_label) # Log annotation file generation start. message = messages.ANNOTATION_FILE_GENERATION_START.format( parcellation_scheme=parcellation_scheme, subject_label=subject_dir.name, hemisphere_label=hemisphere_label, ) logging.info(message) # Create interface instance, run, and return the result. ca_label = MRIsCALabel( canonsurf=reg_file, subjects_dir=subject_dir.parent, curv=curv, smoothwm=smoothwm, sulc=sulc, subject_id=subject_dir.parent.name, hemisphere=hemisphere_label, out_file=out_file, classifier=hemi_gcs, seed=42, ) ca_label.run() return out_file def generate_annotations( freesurfer_dir: Path, subject_label: str, parcellation_scheme: str, gcs_template: str, ): """ For a single subject, produces an annotation file, in which each cortical surface vertex is assigned a neuroanatomical label. Parameters ---------- freesurfer_dir : Path Path to Freesurfer's outputs directory subject_label : str A string representing an existing subject in *freesurfer_dir* parcellation_scheme : str The name of the parcellation scheme gcs_template : str A freesurfer's .gcs template file Returns ------- dict A dictionary with keys of hemispheres and values as corresponding *.annot* files """ subject_dir = freesurfer_dir / subject_label return { hemisphere_label: generate_annotation_file( subject_dir, hemisphere_label, parcellation_scheme, gcs_template ) for hemisphere_label in HEMISPHERE_LABELS } def generate_default_args(freesurfer_dir: Path, subject_label: str) -> dict: """ Gather default required arguments for nipype's implementation of FreeSurfer's *mris_anatomical_stats*. Parameters ---------- freesurfer_dir : Path Path to Freesurfer's outputs directory subject_label : str A string representing an existing subject in *freesurfer_dir* Returns ------- dict A dictionary with keys that map to nipype's required arguements """ subject_dir = freesurfer_dir / subject_label surface_dir = subject_dir / SURFACES_DIR_NAME mri_dir = subject_dir / MRI_DIR_NAME args = {"subject_id": subject_label, "subjects_dir": freesurfer_dir} for hemi in HEMISPHERE_LABELS: for datatype in DATA_TYPES: key = f"{hemi}_{datatype}" file_name = f"{hemi}.{datatype}" args[key] = surface_dir / file_name for key, value in zip(STATS_KEYS, STATS_VALUES): args[key] = mri_dir / value return args def map_subcortex( freesurfer_dir: Path, subject_label: str, parcellation_scheme: str, gcs_subcrotex: str, ): """ For a single subject, produces an annotation file, in which each sub-cortical surface vertex is assigned a neuroanatomical label. Parameters ---------- freesurfer_dir : Path Path to Freesurfer's outputs directory subject : str A string representing an existing subject in *freesurfer_dir* parcellation_scheme : str The name of the parcellation scheme. gcs_subcortex : str A freesurfer's .gcs template file. Returns ------- dict A dictionary with keys of hemispheres and values as corresponding *.annot* files. """ # Check for an existing annotations file. subject_dir = freesurfer_dir / subject_label mri_dir = subject_dir / MRI_DIR_NAME out_file = mri_dir / f"{parcellation_scheme}_subcortex.mgz" if out_file.exists(): return out_file # Create a subcortical annotations file if none was found. target = mri_dir / "brain.mgz" transform = mri_dir / "transforms" / "talairach.m3z" # Log subcortical annotations file generation start. message = messages.SUBCORTICAL_ANNOTATION_FILE_GENERATION_START.format( parcellation_scheme=parcellation_scheme, subject_label=subject_label, ) logging.info(message) # Create interface instance, run, and return result. ca_label = CALabel( subjects_dir=freesurfer_dir, in_file=target, transform=transform, out_file=out_file, template=gcs_subcrotex, ) ca_label.run() return out_file def freesurfer_subcortical_parcellation( freesurfer_dir: Path, subject_label: str, parcellation_scheme: str, gcs_subcortex: str, color_table: str, ): """ Calculates different Freesurfer-derived metrics according to subcortical parcellation Parameters ---------- freesurfer_dir : Path Path to Freesurfer's outputs directory subject_label : str A string representing an existing subject in *freesurfer_dir* parcellation_scheme : str The name of the parcellation scheme gcs_subcortex : str A freesurfer's .gcs template file Returns ------- dict A dictionary with keys corresponding to hemisphere's metrics acoording to *parcellation_scheme* """ mapped_subcortex = map_subcortex( freesurfer_dir, subject_label, parcellation_scheme, gcs_subcortex ) subject_dir = freesurfer_dir / subject_label stats_dir = subject_dir / STATS_DIR_NAME file_name = SUBCORTICAL_STATS_NAME_TEMPLATE.format( parcellation_scheme=parcellation_scheme ) summary_file = stats_dir / file_name if not summary_file.exists(): ss = SegStats( segmentation_file=mapped_subcortex, subjects_dir=freesurfer_dir, summary_file=summary_file, color_table_file=color_table, exclude_id=0, ) ss.run() return summary_file def freesurfer_anatomical_parcellation( freesurfer_dir: Path, subject_label: str, parcellation_scheme: str, gcs: str, ): """ Calculates different Freesurfer-derived metrics according to .annot files Parameters ---------- freesurfer_dir : Path Path to Freesurfer's outputs directory subject_label : str A string representing an existing subject in *freesurfer_dir* parcellation_scheme : str The name of the parcellation scheme. gcs : str A freesurfer's .gcs template file. Returns ------- dict A dictionary with keys corresponding to hemisphere's metrics acoording to *parcellation_scheme* """ annotations = generate_annotations( freesurfer_dir, subject_label, parcellation_scheme, gcs ) args = generate_default_args(freesurfer_dir, subject_label) stats = {} subject_dir = freesurfer_dir / subject_label labels_dir = subject_dir / LABELS_DIR_NAME stats_dir = subject_dir / STATS_DIR_NAME surfaces_dir = subject_dir / SURFACES_DIR_NAME for hemisphere_label, annotations_path in annotations.items(): stats[hemisphere_label] = {} out_color = labels_dir / f"aparc.annot.{parcellation_scheme}.ctab" out_table = ( stats_dir / f"{hemisphere_label}.{parcellation_scheme}.stats" ) args["hemisphere"] = hemisphere_label args["in_annotation"] = annotations_path args["thickness"] = surfaces_dir / f"{hemisphere_label}.thickness" if not out_table.exists() or not out_color.exists(): parcstats = ParcellationStats(**args) parcstats.run() stats[hemisphere_label]["table"] = out_table stats[hemisphere_label]["color"] = out_color return stats def group_freesurfer_metrics( subjects: list, destination: Path, parcellation_scheme: str, force=True, ): """ Utilizes FreeSurfer's aparcstats2table to group different FreeSurfer-derived across subjects according to *parcellation_scheme*. Parameters ---------- subjects : list A list of subjects located under *SUBJECTS_DIR* destination : Path The destination underwhich group-wise files will be stored parcellation_scheme : str The parcellation scheme (subjects must have *stats/{hemi}.{parcellation_scheme}.stats* file for this to work) """ destination.mkdir(exist_ok=True, parents=True) data = {} for hemisphere_label in HEMISPHERE_LABELS: data[hemisphere_label] = {} for measure in STATS_MEASURES: out_file_name = STATS_NAME_TEMPLATE.format( hemisphere_label=hemisphere_label, parcellation_scheme=parcellation_scheme, measure=measure, ) out_file = destination / out_file_name if not out_file.exists() or force: cmd = APARCTSTATS2TABLE_TEMPLATE.format( subjects=" ".join(subjects), parcellation_scheme=parcellation_scheme, hemi=hemisphere_label, measure=measure, out_file=out_file, ) os.system(cmd) data[hemisphere_label][measure] = out_file return data def parcellate_image( atlas: Path, image: Path, parcels: pd.DataFrame, np_operation="nanmean" ) -> pd.Series: """ Parcellates an image according to *atlas*. Parameters ---------- atlas : Path A parcellation atlas in *image* space image : Path An image to be parcellated parcels : pd.DataFrame A dataframe for *atlas* parcels Returns ------- pd.Series The mean value of *image* in each *atlas* parcel """ out = pd.Series(index=parcels.index) try: for i in parcels.index: # TODO: Remove? # callable = getattr(np, np_operation) # out.loc[i] = callable(data[mask]) continue return out except IndexError: atlas = resample_to_img( nib.load(atlas), nib.load(image), interpolation="nearest", ) return parcellate_image(atlas, image, parcels, np_operation) def parcellate_subject_tensors( dmriprep_dir: Path, participant_label: str, image: Path, multi_column: pd.MultiIndex, parcels: pd.DataFrame, parcellation_scheme: str, cropped_to_gm: bool = True, force: bool = False, np_operation: str = "nanmean", ): """ Parcellates available data for *participant_label*, declared by *multi_column* levels. Parameters ---------- dmriprep_dir : Path Path to *dmriprep* outputs' directory participant_label : str A label referring to an existing subject image : Path Path to subject's native-space parcellation multi_column : pd.MultiIndex A multi-column constructed by ROI * metrics parcels : pd.DataFrame A dataframe describing the parcellation scheme parcellation_scheme : str The name of the parcellation scheme Returns ------- pd.DataFrame A dataframe containing all of *participant_label*'s data, parcellated by *parcellation_scheme* """ sessions = [ s.name.split("-")[-1] for s in dmriprep_dir.glob(f"sub-{participant_label}/ses-*") ] multi_index = pd.MultiIndex.from_product([[participant_label], sessions]) subj_data = pd.DataFrame(index=multi_index, columns=multi_column) for session in sessions: out_file = Path( TENSOR_METRICS_OUTPUT_TEMPLATE.format( dmriprep_dir=dmriprep_dir, participant_label=participant_label, session=session, parcellation_scheme=parcellation_scheme, measure=np_operation.replace("nan", ""), ) ) if cropped_to_gm: out_name = out_file.name.split("_") out_name.insert(3, "label-GM") out_file = out_file.parent / "_".join(out_name) if out_file.exists() and not force: data = pd.read_csv(out_file, index_col=[0, 1], header=[0, 1]) subj_data.loc[(participant_label, session)] = data.T.loc[ (participant_label, session) ] else: for metric in multi_column.levels[-1]: logging.info(metric) metric_file = TENSOR_METRICS_FILES_TEMPLATE.format( dmriprep_dir=dmriprep_dir, participant_label=participant_label, session=session, metric=metric.lower(), ) subj_data.loc[ (participant_label, session), (slice(None), metric) ] = parcellate_image( image, metric_file, parcels, np_operation ).values subj_data.loc[(participant_label, session)].to_csv(out_file) return subj_data def dwi2tensor(in_file: Path, grad: Path, out_file: Path): """ Estimate diffusion's tensor via *mrtrix3*'s *dwi2tensor*. Parameters ---------- in_file : Path DWI series grad : Path DWI gradient table in *mrtrix3*'s format. out_file : Path Output template Returns ------- Path Refined output in *mrtrix3*'s .mif format. """ out_name = out_file.name.split(".")[0] out_file = out_file.with_name("." + out_name + ".mif") if not out_file.exists(): cmd = DWI2TENSOR_COMMAND_TEMPLATE.format( grad=grad, dwi=in_file, out_file=out_file ) os.system(cmd) return out_file def tensor2metric( tensor: Path, derivatives: Path, participant_label: str, session: str, metrics: list, ): """[summary] Parameters ---------- tensor : Path [description] derivatives : Path [description] participant_label : str [description] session : str [description] metrics : list [description] """ cmd = "tensor2metric" flag = [] for metric in metrics: metric_file = TENSOR_METRICS_FILES_TEMPLATE.format( dmriprep_dir=derivatives, participant_label=participant_label, session=session, metric=metric.lower(), ) if Path(metric_file).exists(): flag.append(False) else: flag.append(True) metric = metric.lower() cmd += f" -{TENSOR2METRIC_KWARGS_MAPPING.get(metric, metric)} {metric_file}" # noqa: E501 cmd += f" {tensor}" if any(flag): os.system(cmd) def estimate_tensors( parcellations: dict, derivatives_dir: Path, multi_column: pd.MultiIndex, ): """ Parameters ---------- parcellation_scheme : str A string representing a parcellation atlas parcellations : dict A dictionary with subjects as keys and their corresponding *parcellation_scheme* in native space derivatives_dir : Path Path to derivatives, usually *qsiprep*'s Returns ------- [type] [description] """ metrics = multi_column.levels[-1] for participant_label, image in tqdm.tqdm(parcellations.items()): logging.info( f"Estimating tensor-derived metrics in subject {participant_label} anatomical space." # noqa: E501 ) for ses in derivatives_dir.glob(f"sub-{participant_label}/ses-*"): ses_id = ses.name.split("-")[-1] dwi, grad = [ QSIPREP_DWI_TEMPLATE.format( qsiprep_dir=derivatives_dir, participant_label=participant_label, session=ses_id, extension=extension, ) for extension in ["nii.gz", "b"] ] tensor = TENSOR_METRICS_FILES_TEMPLATE.format( dmriprep_dir=derivatives_dir, participant_label=participant_label, session=ses_id, metric="tensor", ) tensor = dwi2tensor(dwi, grad, Path(tensor)) tensor2metric( tensor, derivatives_dir, participant_label, ses_id, metrics ) def parcellate_tensors( dmriprep_dir: Path, multi_column: pd.MultiIndex, parcellations: dict, parcels: pd.DataFrame, parcellation_scheme: str, cropped_to_gm: bool = True, force: bool = False, np_operation: str = "nanmean", ) -> pd.DataFrame: """ Parcellate *dmriprep* derived tensor's metrics according to ROI stated by *df*. Parameters ---------- dmriprep_dir : Path Path to *dmriprep* outputs multi_column : pd.MultiIndex A multi-level column with ROI/tensor metrics combinations parcellations : dict A dictionary with representing subjects, and values containing paths to subjects-space parcellations Returns ------- pd.DataFrame An updated *df* """ data =
pd.DataFrame()
pandas.DataFrame
''' The main driving code 1. CML/FL Training 2. Compute/Approximate Cosine Gradient Shapley 3. Calculate and realize the fair gradient reward ''' import os, sys, json from os.path import join as oj import copy from copy import deepcopy as dcopy import time, datetime, random, pickle from collections import defaultdict from itertools import product import numpy as np import pandas as pd import torch from torch import nn, optim from torch.linalg import norm from torchtext.data import Batch import torch.nn.functional as F from utils.Data_Prepper import Data_Prepper from utils.arguments import mnist_args, cifar_cnn_args, mr_args, sst_args from utils.utils import cwd, train_model, evaluate, cosine_similarity, mask_grad_update_by_order, \ compute_grad_update, add_update_to_model, add_gradient_updates,\ flatten, unflatten, compute_distance_percentage import argparse parser = argparse.ArgumentParser(description='Process which dataset to run') parser.add_argument('-D', '--dataset', help='Pick the dataset to run.', type=str, required=True) parser.add_argument('-N', '--n_agents', help='The number of agents.', type=int, default=5) parser.add_argument('-nocuda', dest='cuda', help='Not to use cuda even if available.', action='store_false') parser.add_argument('-cuda', dest='cuda', help='Use cuda if available.', action='store_true') parser.add_argument('-split', '--split', dest='split', help='The type of data splits.', type=str, default='all', choices=['all', 'uni', 'cla', 'pow']) cmd_args = parser.parse_args() print(cmd_args) N = cmd_args.n_agents if torch.cuda.is_available() and cmd_args.cuda: device = torch.device('cuda') else: device = torch.device('cpu') if cmd_args.dataset == 'mnist': args = copy.deepcopy(mnist_args) if N > 0: agent_iterations = [[N, N*600]] else: agent_iterations = [[5,3000], [10, 6000], [20, 12000]] if cmd_args.split == 'uni': splits = ['uniform'] elif cmd_args.split == 'pow': splits = ['powerlaw'] elif cmd_args.split == 'cla': splits = ['classimbalance'] elif cmd_args.split == 'all': splits = ['uniform', 'powerlaw', 'classimbalance',] args['iterations'] = 200 args['E'] = 3 args['lr'] = 1e-3 args['num_classes'] = 10 args['lr_decay'] = 0.955 elif cmd_args.dataset == 'cifar10': args = copy.deepcopy(cifar_cnn_args) if N > 0: agent_iterations = [[N, N*2000]] else: agent_iterations = [[10, 20000]] if cmd_args.split == 'uni': splits = ['uniform'] elif cmd_args.split == 'pow': splits = ['powerlaw'] elif cmd_args.split == 'cla': splits = ['classimbalance'] elif cmd_args.split == 'all': splits = ['uniform', 'powerlaw', 'classimbalance'] args['iterations'] = 200 args['E'] = 3 args['num_classes'] = 10 elif cmd_args.dataset == 'sst': args = copy.deepcopy(sst_args) agent_iterations = [[5, 8000]] splits = ['powerlaw'] args['iterations'] = 200 args['E'] = 3 args['num_classes'] = 5 elif cmd_args.dataset == 'mr': args = copy.deepcopy(mr_args) agent_iterations = [[5, 8000]] splits = ['powerlaw'] args['iterations'] = 200 args['E'] = 3 args['num_classes'] = 2 E = args['E'] ts = time.time() time_str = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d-%H:%M') for N, sample_size_cap in agent_iterations: args.update(vars(cmd_args)) args['n_agents'] = N args['sample_size_cap'] = sample_size_cap # args['momentum'] = 1.5 / N for beta in [0.5, 1, 1.2, 1.5, 2, 1e7]: args['beta'] = beta for split in splits: args['split'] = split optimizer_fn = args['optimizer_fn'] loss_fn = args['loss_fn'] print(args) print("Data Split information for the agents:") data_prepper = Data_Prepper( args['dataset'], train_batch_size=args['batch_size'], n_agents=N, sample_size_cap=args['sample_size_cap'], train_val_split_ratio=args['train_val_split_ratio'], device=device, args_dict=args) # valid_loader = data_prepper.get_valid_loader() test_loader = data_prepper.get_test_loader() train_loaders = data_prepper.get_train_loaders(N, args['split']) shard_sizes = data_prepper.shard_sizes # shard sizes refer to the sizes of the local data of each agent shard_sizes = torch.tensor(shard_sizes).float() relative_shard_sizes = torch.div(shard_sizes, torch.sum(shard_sizes)) print("Shard sizes are: ", shard_sizes.tolist()) if args['dataset'] in ['mr', 'sst']: server_model = args['model_fn'](args=data_prepper.args).to(device) else: server_model = args['model_fn']().to(device) D = sum([p.numel() for p in server_model.parameters()]) init_backup = dcopy(server_model) # ---- init the agents ---- agent_models, agent_optimizers, agent_schedulers = [], [], [] for i in range(N): model = copy.deepcopy(server_model) # try: # optimizer = optimizer_fn(model.parameters(), lr=args['lr'], momentum=args['momentum']) # except: optimizer = optimizer_fn(model.parameters(), lr=args['lr']) # scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100, 200, 300], gamma=0.1) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma = args['lr_decay']) agent_models.append(model) agent_optimizers.append(optimizer) agent_schedulers.append(scheduler) # ---- book-keeping variables rs_dict, qs_dict = [], [] rs = torch.zeros(N, device=device) past_phis = [] # for performance analysis valid_perfs, local_perfs, fed_perfs = defaultdict(list), defaultdict(list), defaultdict(list) # for gradient/model parameter analysis dist_all_layer, dist_last_layer = defaultdict(list), defaultdict(list) reward_all_layer, reward_last_layer= defaultdict(list), defaultdict(list) # ---- CML/FL begins ---- for iteration in range(args['iterations']): gradients = [] for i in range(N): loader = train_loaders[i] model = agent_models[i] optimizer = agent_optimizers[i] scheduler = agent_schedulers[i] model.train() model = model.to(device) backup = copy.deepcopy(model) model = train_model(model, loader, loss_fn, optimizer, device=device, E=E, scheduler=scheduler) gradient = compute_grad_update(old_model=backup, new_model=model, device=device) # SUPPOSE DO NOT TOP UP WITH OWN GRADIENTS model.load_state_dict(backup.state_dict()) # add_update_to_model(model, gradient, device=device) # append the normalzied gradient flattened = flatten(gradient) norm_value = norm(flattened) + 1e-7 # to prevent division by zero gradient = unflatten(torch.multiply(torch.tensor(args['Gamma']), torch.div(flattened, norm_value)), gradient) gradients.append(gradient) # ---- Server Aggregate ---- aggregated_gradient = [torch.zeros(param.shape).to(device) for param in server_model.parameters()] # aggregate and update server model if iteration == 0: # first iteration use FedAvg weights = torch.div(shard_sizes, torch.sum(shard_sizes)) else: weights = rs for gradient, weight in zip(gradients, weights): add_gradient_updates(aggregated_gradient, gradient, weight=weight) add_update_to_model(server_model, aggregated_gradient) # update reputation and calculate reward gradients flat_aggre_grad = flatten(aggregated_gradient) # phis = torch.zeros(N, device=device) phis = torch.tensor([F.cosine_similarity(flatten(gradient), flat_aggre_grad, 0, 1e-10) for gradient in gradients], device=device) past_phis.append(phis) rs = args['alpha'] * rs + (1 - args['alpha']) * phis rs = torch.clamp(rs, min=1e-3) # make sure the rs do not go negative rs = torch.div(rs, rs.sum()) # normalize the weights to 1 # --- altruistic degree function q_ratios = torch.tanh(args['beta'] * rs) q_ratios = torch.div(q_ratios, torch.max(q_ratios)) qs_dict.append(q_ratios) rs_dict.append(rs) for i in range(N): reward_gradient = mask_grad_update_by_order(aggregated_gradient, mask_percentile=q_ratios[i], mode='layer') add_update_to_model(agent_models[i], reward_gradient) ''' Analysis of rewarded gradients in terms cosine to the aggregated gradient ''' reward_all_layer[str(i)+'cos'].append(F.cosine_similarity(flatten(reward_gradient), flat_aggre_grad, 0, 1e-10).item() ) reward_all_layer[str(i)+'l2'].append(norm(flatten(reward_gradient) - flat_aggre_grad).item()) reward_last_layer[str(i)+'cos'].append(F.cosine_similarity(flatten(reward_gradient[-2]), flatten(aggregated_gradient[-2]), 0, 1e-10).item() ) reward_last_layer[str(i)+'l2'].append(norm(flatten(reward_gradient[-2])- flatten(aggregated_gradient[-2])).item()) weights = torch.div(shard_sizes, torch.sum(shard_sizes)) if iteration == 0 else rs for i, model in enumerate(agent_models + [server_model]): loss, accuracy = evaluate(model, test_loader, loss_fn=loss_fn, device=device) valid_perfs[str(i)+'_loss'].append(loss.item()) valid_perfs[str(i)+'_accu'].append(accuracy.item()) fed_loss, fed_accu = 0, 0 for j, train_loader in enumerate(train_loaders): loss, accuracy = evaluate(model, train_loader, loss_fn=loss_fn, device=device) fed_loss += weights[j] * loss.item() fed_accu += weights[j] * accuracy.item() if j == i: local_perfs[str(i)+'_loss'].append(loss.item()) local_perfs[str(i)+'_accu'].append(accuracy.item()) fed_perfs[str(i)+'_loss'].append(fed_loss.item()) fed_perfs[str(i)+'_accu'].append(fed_accu.item()) # ---- Record model distance to the server model ---- for i, model in enumerate(agent_models + [init_backup]) : percents, dists = compute_distance_percentage(model, server_model) dist_all_layer[str(i)+'dist'].append(np.mean(dists)) dist_last_layer[str(i)+'dist'].append(dists[-1]) dist_all_layer[str(i)+'perc'].append(np.mean(percents)) dist_last_layer[str(i)+'perc'].append(percents[-1]) # Saving results, into csvs agent_str = '{}-{}'.format(args['split'][:3].upper(), 'A'+str(N), ) folder = oj('RESULTS', args['dataset'], time_str, agent_str, 'beta-{}'.format(str(args['beta'])[:4]) ) os.makedirs(folder, exist_ok=True) with cwd(folder): # distance to the full gradient: all layers and only last layer of the model parameters pd.DataFrame(reward_all_layer).to_csv(('all_layer.csv'), index=False) pd.DataFrame(reward_last_layer).to_csv(('last_layer.csv'), index=False) # distance to server model parameters: all layers and only last layer of the model parameters pd.DataFrame(dist_all_layer).to_csv(('dist_all_layer.csv'), index=False) pd.DataFrame(dist_last_layer).to_csv(('dist_last_layer.csv'), index=False) # importance coefficients rs rs_dict = torch.stack(rs_dict).detach().cpu().numpy() df = pd.DataFrame(rs_dict) df.to_csv(('rs.csv'), index=False) # q values qs_dict = torch.stack(qs_dict).detach().cpu().numpy() df = pd.DataFrame(qs_dict) df.to_csv(('qs.csv'), index=False) # federated performance (local objectives weighted w.r.t the importance coefficient rs) df =
pd.DataFrame(fed_perfs)
pandas.DataFrame
import pandas as pd import pathlib from utils import load_from_file, morse_potential, fit_morse_potential import matplotlib.pyplot as plt import numpy as np paths = pathlib.Path("/home/mscherbela/runs/forces/atoms/").glob("*/results.bz2") data = [] for p in paths: data_content = load_from_file(p) config = data_content['config'] metrics = data_content['metrics'] forces_mean = 1e3*metrics['forces_mean'] forces_std = 1e3*np.std(data_content['metrics']['forces'], axis=0) data_dict = dict(dirname=p.parent.name, molecule=config['physical.name'], Fx=forces_mean[0][0], Fy=forces_mean[0][1], Fz=forces_mean[0][2], FxStd=forces_std[0][0], FyStd=forces_std[0][1], FzStd=forces_std[0][2], energy=data_content['metrics']['E_mean']) for k in config: if k.startswith('evaluation.forces'): data_dict[k.replace('evaluation.forces.', '')] = config[k] data.append(data_dict) df_full =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from datasets.dataset import Dataset from backport.utils import RepresentationTranslator from competitor.actions.feature import CategoricFeature, Feature class DatasetWrapper(Dataset): def __init__(self, name, legacy_dataset, feature_objects): self.legacy_dataset = legacy_dataset self.feature_objects = feature_objects.copy() self.translator = RepresentationTranslator(self.feature_objects.copy()) super().__init__(name=name, description="Competitor dataset wrapper.") def extract_info(self): columns = np.array(list(self.feature_objects.keys())) order = np.argsort([f.idx for _, f in self.feature_objects.items()]) columns = columns[order] real_features = [] cat_features = [] for i, feature_key in enumerate(columns): feature = self.feature_objects[feature_key] if isinstance(feature, Feature): real_features.append(i) elif isinstance(feature, CategoricFeature): cat_features.append(i) return columns, self.legacy_dataset.labels, real_features, cat_features def load(self) -> pd.DataFrame: ( self.zs, self.xs, self.train_xs, self.test_xs, self.train_zs, self.test_zs, ) = self.legacy_dataset.get_relevant_data() self.label_encoder = LabelEncoder() labels = self.label_encoder.fit_transform(self.train_xs[:, -1]) # ! train_zs [:-2], -2 because the last two columns are actualy the labels.. return self.train_zs[:, :-2], labels def transform_to_original(self, X: np.array) -> np.array: translated = np.array([self.translator.instance_to_x(x) for x in X]) return translated # raise Exception("Function not defined") """Like one-hot encoding etc.""" def encode_features(self, X: np.array) -> np.array: translated = np.array([self.translator.instance_to_z(x) for x in X]) return translated # raise Exception("Function not defined") def decode_features(self, X: np.array) -> np.array: return X # raise Exception("Function not defined") """Filter out certain variables before etc. Also, transform cat to numerical""" def preprocess(self, X: pd.DataFrame) -> pd.DataFrame: return X # raise Exception("Function not defined") def get_numpy_representation(self) -> np.array: return self.train_xs[:, :-1] def numpy_to_df(self, X: np.array) -> pd.DataFrame: return
pd.DataFrame(X)
pandas.DataFrame
import sys sys.path.append("..") # Adds higher directory to python modules path. from img2vec_pytorch import Img2Vec import pandas as pd from PIL import Image from tqdm import tqdm import numpy as np import os def most_similar(train_path, test_path, images_path, results_path, cuda=False): """ Nearest Neighbor Baseline: Img2Vec library (https://github.com/christiansafka/img2vec/) is used to obtain image embeddings, extracted from ResNet-18. For each test image the cosine similarity with all the training images is computed in order to retrieve similar training images. The caption of the most similar retrieved image is returned as the generated caption of the test image. :param train_path: The path to the train data tsv file with the form: "image \t caption" :param test_path: The path to the test data tsv file with the form: "image \t caption" :param images_path: The path to the images folder :param results_path: The folder in which to save the results file :param cuda: Boolean value of whether to use cuda for image embeddings extraction. Default: False If a GPU is available pass True :return: Dictionary with the results """ img2vec = Img2Vec(cuda=cuda) # Load train data train_data = pd.read_csv(train_path, sep="\t", header=None) train_data.columns = ["id", "caption"] train_images = dict(zip(train_data.id, train_data.caption)) # Get embeddings of train images print("Calculating visual embeddings from train images") train_images_vec = {} print("Extracting embeddings for all train images...") for train_image in tqdm(train_data.id): image = Image.open(os.path.join(images_path, train_image)) image = image.convert('RGB') vec = img2vec.get_vec(image) train_images_vec[train_image] = vec print("Got embeddings for train images.") # Load test data test_data = pd.read_csv(test_path, sep="\t", header=None) test_data.columns = ["id", "caption"] # Save IDs and raw image vectors separately but aligned ids = [i for i in train_images_vec] raw = np.array([train_images_vec[i] for i in train_images_vec]) # Normalize image vectors to avoid normalized cosine and use dot raw = raw / np.array([np.sum(raw,1)] * raw.shape[1]).transpose() sim_test_results = {} for test_image in tqdm(test_data.id): # Get test image embedding image = Image.open(os.path.join(images_path, test_image)) image = image.convert('RGB') vec = img2vec.get_vec(image) # Compute cosine similarity with every train image vec = vec / np.sum(vec) # Clone to do efficient mat mul dot test_mat = np.array([vec] * raw.shape[0]) sims = np.sum(test_mat * raw, 1) top1 = np.argmax(sims) # Assign the caption of the most similar train image sim_test_results[test_image] = train_images[ids[top1]] # Save test results to tsv file df =
pd.DataFrame.from_dict(sim_test_results, orient="index")
pandas.DataFrame.from_dict
from pathlib import Path import numpy as np import numpy.testing as npt import pandas as pd import pytest from message_ix import Scenario, macro from message_ix.models import MACRO from message_ix.testing import SCENARIO, make_westeros W_DATA_PATH = Path(__file__).parent / "data" / "westeros_macro_input.xlsx" MR_DATA_PATH = Path(__file__).parent / "data" / "multiregion_macro_input.xlsx" class MockScenario: def __init__(self): self.data = pd.read_excel(MR_DATA_PATH, sheet_name=None, engine="openpyxl") for name, df in self.data.items(): if "year" in df: df = df[df.year >= 2030] self.data[name] = df def has_solution(self): return True def var(self, name, **kwargs): df = self.data["aeei"] # Add extra commodity to be removed extra_commod = df[df.sector == "i_therm"].copy() extra_commod["sector"] = "bar" # Add extra region to be removed extra_region = df[df.node == "R11_AFR"].copy() extra_region["node"] = "foo" df = pd.concat([df, extra_commod, extra_region]) if name == "DEMAND": df = df.rename(columns={"sector": "commodity"}) elif name in ["COST_NODAL_NET", "PRICE_COMMODITY"]: df = df.rename(columns={"sector": "commodity", "value": "lvl"}) df["lvl"] = 1e3 return df @pytest.fixture(scope="class") def westeros_solved(test_mp): yield make_westeros(test_mp, solve=True, quiet=True) @pytest.fixture(scope="class") def westeros_not_solved(westeros_solved): yield westeros_solved.clone(keep_solution=False) def test_calc_valid_data_file(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.read_data() def test_calc_invalid_data(westeros_solved): with pytest.raises(TypeError, match="neither a dict nor a valid path"): macro.Calculate(westeros_solved, list()) with pytest.raises(ValueError, match="not an Excel data file"): macro.Calculate(westeros_solved, Path(__file__).joinpath("other.zip")) def test_calc_valid_data_dict(westeros_solved): s = westeros_solved data = pd.read_excel(W_DATA_PATH, sheet_name=None, engine="openpyxl") c = macro.Calculate(s, data) c.read_data() # Test for selecting desirable years specified in config from the Excel input def test_calc_valid_years(westeros_solved): s = westeros_solved data = pd.read_excel(W_DATA_PATH, sheet_name=None, engine="openpyxl") # Adding an arbitrary year arbitrary_yr = 2021 gdp_extra_yr = data["gdp_calibrate"].iloc[0, :].copy() gdp_extra_yr["year"] = arbitrary_yr data["gdp_calibrate"] = data["gdp_calibrate"].append(gdp_extra_yr) # Check the arbitrary year is not in config assert arbitrary_yr not in data["config"]["year"] # But it is in gdp_calibrate assert arbitrary_yr in set(data["gdp_calibrate"]["year"]) # And macro does calibration without error c = macro.Calculate(s, data) c.read_data() def test_calc_no_solution(westeros_not_solved): s = westeros_not_solved pytest.raises(RuntimeError, macro.Calculate, s, W_DATA_PATH) def test_config(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) assert "config" in c.data assert "sector" in c.data["config"] # Removing a column from config and testing data = c.data.copy() data["config"] = c.data["config"][["node", "sector"]] try: macro.Calculate(s, data) except KeyError as error: assert 'Missing config data for "level"' in str(error) # Removing config completely and testing data.pop("config") try: macro.Calculate(s, data) except KeyError as error: assert "Missing config in input data" in str(error) c.read_data() assert c.nodes == set(["Westeros"]) assert c.sectors == set(["light"]) def test_calc_data_missing_par(westeros_solved): s = westeros_solved data = pd.read_excel(W_DATA_PATH, sheet_name=None, engine="openpyxl") data.pop("gdp_calibrate") c = macro.Calculate(s, data) pytest.raises(ValueError, c.read_data) def test_calc_data_missing_column(westeros_solved): s = westeros_solved data = pd.read_excel(W_DATA_PATH, sheet_name=None, engine="openpyxl") # skip first data point data["gdp_calibrate"] = data["gdp_calibrate"].drop("year", axis=1) c = macro.Calculate(s, data) pytest.raises(ValueError, c.read_data) def test_calc_data_missing_datapoint(westeros_solved): s = westeros_solved data = pd.read_excel(W_DATA_PATH, sheet_name=None, engine="openpyxl") # skip first data point data["gdp_calibrate"] = data["gdp_calibrate"][1:] c = macro.Calculate(s, data) pytest.raises(ValueError, c.read_data) # # Regression tests: these tests were compiled upon moving from R to Python, # values were confirmed correct at the time and thus are tested explicitly here # @pytest.mark.parametrize( "method, test, expected", ( ("_growth", "allclose", [0.02658363, 0.04137974, 0.04137974, 0.02918601]), ("_rho", "equal", [-4.0]), ("_gdp0", "equal", [500.0]), ("_k0", "equal", [1500.0]), ( "_total_cost", "allclose", 1e-3 * np.array( [9.17583, 11.653576414880422, 12.446804289049216, 15.369457033651215] ), ), ("_price", "allclose", [211, 511.02829331, 162.03953933, 161.0026274]), ("_demand", "allclose", [27, 55, 82, 104]), ("_bconst", "allclose", [9.68838201e-08]), ("_aconst", "allclose", [26.027323]), ), ) def test_calc(westeros_solved, method, test, expected): calc = macro.Calculate(westeros_solved, W_DATA_PATH) calc.read_data() function = getattr(calc, method) assertion = getattr(npt, f"assert_{test}") assertion(function().values, expected) # Testing how macro handles zero values in PRICE_COMMODITY def test_calc_price_zero(westeros_solved): s = westeros_solved clone = s.clone(scenario="low_demand", keep_solution=False) clone.check_out() # Lowering demand in the first year clone.add_par("demand", ["Westeros", "light", "useful", 700, "year"], 10, "GWa") # Making investment and var cost zero for delivering light # TODO: these units are based on testing.make_westeros: needs improvement clone.add_par("inv_cost", ["Westeros", "bulb", 700], 0, "USD/GWa") for y in [690, 700]: clone.add_par( "var_cost", ["Westeros", "grid", y, 700, "standard", "year"], 0, "USD/GWa" ) clone.commit("demand reduced and zero cost for bulb") clone.solve() price = clone.var("PRICE_COMMODITY") # Assert if there is no zero price (to make sure MACRO receives 0 price) assert np.isclose(0, price["lvl"]).any() c = macro.Calculate(clone, W_DATA_PATH) c.read_data() try: c._price() except RuntimeError as err: # To make sure the right error message is raised in macro.py assert "0-price found in MESSAGE variable PRICE_" in str(err) else: raise Exception("No error in macro.read_data() for zero price(s)") def test_init(message_test_mp): scen = Scenario(message_test_mp, **SCENARIO["dantzig"]) scen = scen.clone("foo", "bar") scen.check_out() MACRO.initialize(scen) scen.commit("foo") scen.solve(quiet=True) assert np.isclose(scen.var("OBJ")["lvl"], 153.675) assert "mapping_macro_sector" in scen.set_list() assert "aeei" in scen.par_list() assert "DEMAND" in scen.var_list() assert "COST_ACCOUNTING_NODAL" in scen.equ_list() def test_add_model_data(westeros_solved): base = westeros_solved clone = base.clone("foo", "bar", keep_solution=False) clone.check_out() MACRO.initialize(clone) macro.add_model_data(base, clone, W_DATA_PATH) clone.commit("finished adding macro") clone.solve(quiet=True) obs = clone.var("OBJ")["lvl"] exp = base.var("OBJ")["lvl"] assert np.isclose(obs, exp) def test_calibrate(westeros_solved): base = westeros_solved clone = base.clone(base.model, "test macro calibration", keep_solution=False) clone.check_out() MACRO.initialize(clone) macro.add_model_data(base, clone, W_DATA_PATH) clone.commit("finished adding macro") start_aeei = clone.par("aeei")["value"] start_grow = clone.par("grow")["value"] macro.calibrate(clone, check_convergence=True) end_aeei = clone.par("aeei")["value"] end_grow = clone.par("grow")["value"] # calibration should have changed some/all of these values and none should # be NaNs assert not np.allclose(start_aeei, end_aeei, rtol=1e-2) assert not np.allclose(start_grow, end_grow, rtol=1e-2) assert not end_aeei.isnull().any() assert not end_grow.isnull().any() def test_calibrate_roundtrip(westeros_solved): # this is a regression test with values observed on Aug 9, 2019 with_macro = westeros_solved.add_macro(W_DATA_PATH, check_convergence=True) aeei = with_macro.par("aeei")["value"].values npt.assert_allclose( aeei, 1e-3 * np.array([20, -7.5142879, 43.6256281, 21.1434631]), ) grow = with_macro.par("grow")["value"].values npt.assert_allclose( grow, 1e-3 * np.array( [ 26.5836313, 69.1417640, 79.1435807, 24.5225556, ] ), ) # # These are a series of tests to guarantee multiregion/multisector # behavior is as expected. # def test_multiregion_valid_data(): s = MockScenario() c = macro.Calculate(s, MR_DATA_PATH) c.read_data() def test_multiregion_derive_data(): s = MockScenario() c = macro.Calculate(s, MR_DATA_PATH) c.read_data() c.derive_data() nodes = ["R11_AFR", "R11_CPA"] sectors = ["i_therm", "rc_spec"] # make sure no extraneous data is there check = c.data["demand"].reset_index() assert (check["node"].unique() == nodes).all() assert (check["sector"].unique() == sectors).all() obs = c.data["aconst"] exp = pd.Series( [3.74767687, 0.00285472], name="value", index=
pd.Index(nodes, name="node")
pandas.Index
import mechanize import pandas as pd import bs4 from bs4 import BeautifulSoup from bs4 import SoupStrainer from math import ceil from time import sleep import re import os import sys import unicodedata def strip_special_latin_char(string): """ Method that either transliterates selected latin characters, or maps unexpected characters to empty string, ''. Example:: strip_special_latin_char('thƝis ƛis a teōst: ÆæœƔþðßøÞĿØijƧaÐŒƒ¿Ǣ') :param str string: String to be striped of special latin characters :return: String striped of special latin characters :rtype: str """ latin_char_map = {'Æ': 'AE', 'Ð': 'D', 'Ø': 'O', 'Þ': 'TH', 'ß': 'ss', 'æ': 'ae', 'ð': 'd', 'ø': 'o', 'þ': 'th', 'Œ': 'OE', 'œ': 'oe', 'ƒ': 'f'} string_ascii = '' for s in string: # Check if string character is ascii if ord(s) < 128: string_ascii += s # If not ascii but is a special latin character, transliterate elif s in latin_char_map.keys(): string_ascii += latin_char_map[s] # Otherwise, remove the unexpected character else: string_ascii += '' return string_ascii def strip_accents(string): """ Method that transliterates accented characters. Example:: strip_accents('thîš ìŝ ã tëśt') :param str string: String to be striped of accented characters :return: String striped of accented characters :rtype: str """ # Taken from here: # https://stackoverflow.com/a/518232 return ''.join(c for c in unicodedata.normalize('NFD', string) if unicodedata.category(c) != 'Mn') def convert_to_ascii(string): """ Method that ensures a given string object is converted into ascii format by removing accented characters and transliterating special latin characters. Example:: convert_to_ascii('thƝîš ƛìŝ ã tëśt: ÆæœƔþðßøÞĿØijƧaÐŒƒ¿Ǣ') :param str string: String to be converted into ascii :return: String converted into ascii :rtype: str """ string = strip_accents(string) string = strip_special_latin_char(string) return string def row_count_csv(input_file): """ Method to return the number of populated rows in a text file. Example:: row_count_csv('example_file.txt') :param str input_file: File path :return: Number of popluated rows in input_file :rtype: int """ # Modified from https://stackoverflow.com/a/44144945/3905509 with open(input_file, errors='ignore') as f: for i, l in enumerate(f): pass return i + 1 def get_last_line_csv(input_file): """ Method to return the last populated line in a text file. Example:: get_last_line_csv('example_file.txt') :param str input_file: File path :return: Last populated line of input_file :rtype: str """ if row_count_csv(input_file) == 1: with open(input_file, 'r') as f: return f.readline() # Modified from https://www.quora.com/How-can-I-read-the-last-line-from-a-log-file-in-Python with open(input_file, 'rb') as f: f.seek(-2, os.SEEK_END) while f.read(1) != b'\n': f.seek(-2, os.SEEK_CUR) last_line = f.readline().decode('utf-8') return last_line def delete_last_line_csv(input_file): """ Method to delete the last line in a text file. Example:: delete_last_line_csv('example_file.txt') :param str input_file: File path """ # If there's 1 line left, clear the file. This is hack-y, but needed since the code below doesn't appear to work # when there's 1 remaining populated row followed by 1 blank line. if row_count_csv(input_file) == 1: open(input_file, 'w').close() # Modified from https://stackoverflow.com/a/10289740/3905509 with open(input_file, "r+", errors='ignore', encoding="utf-8") as file: # Move the pointer (similar to a cursor in a text editor) to the end of the file file.seek(0, os.SEEK_END) # This code means the following code skips the very last character in the file - # i.e. in the case the last line is null we delete the last line # and the penultimate one pos = file.tell() - 1 # Read each character in the file one at a time from the penultimate # character going backwards, searching for a newline character # If we find a new line, exit the search while pos > 0 and file.read(1) != "\n": pos -= 1 file.seek(pos, os.SEEK_SET) # So long as we're not at the start of the file, delete all the characters ahead # of this position if pos > 0: file.seek(pos, os.SEEK_SET) file.truncate() def scrape_chicago_marathon_urls(url='http://chicago-history.r.mikatiming.de/2015/', year=2016, event="MAR_999999107FA30900000000A1", gender='M', num_results_per_page=1000, unit_test_ind=False): """ Method to scrape all URLs of each Chicago Marathon runner returned from a specified web form. Example:: scrape_chicago_marathon_urls(url='http://chicago-history.r.mikatiming.de/2015/', year=2017, event="MAR_999999107FA30900000000A1", gender='M', num_results_per_page=1000, unit_test_ind=True) :param str url: URL to Chicago Marathon web form :param int year: Year of marathon (supported values: 2014, 2015, 2016, 2017) :param str event: Internal label used to specify the type of marathon participants (varies by year) :param str gender: Gender of runner ('M' for male, 'W' for female) :param int num_results_per_page: Number of results per page to return from the web form (use default value only) :param bool unit_test_ind: Logical value to specify if only the first URL should be returned (True) or all (False) :return: DataFrame containing URLs, City, and State for all runners found in results page :rtype: pandas.DataFrame """ # Setup backend browser via mechanize package br = mechanize.Browser() # Ignore robots.txt # Note: I have not found any notice on the Chicago Marathon website that prohibits web scraping. br.set_handle_robots(False) br.open(url) # Select the overall results, not individual runner results br.select_form(nr=2) # Set year br.form['event_main_group'] = [str(year)] # Manually add an option for the 'event' drop-down, which is expected to be populated when the the # 'event_main_group' drop-down is modified. mechanize.Item( br.form.find_control(name='event'), {'contents': event, 'value': event, 'label': event} ) # Set event br.form['event'] = [event] # Set gender br.form['search[sex]'] = gender # Set age group br.form['search[age_class]'] = "%" # Set number of results per page br.form['num_results'] = [str(num_results_per_page)] # Submit form resp = br.submit() # Retrieve selected tags via SoupStrainer html = resp.read() strainer = SoupStrainer(["ul", "h4"]) soup = BeautifulSoup(html, "lxml", parse_only=strainer) # The first instance of ul with class = list-group appears to always # contain the total expected number of results first_list_group_item = soup.select_one('li.list-group-item').text total_expected_num_results = int(str.split(first_list_group_item)[0]) total_expected_num_pages = ceil(total_expected_num_results / num_results_per_page) print('Finding URLs for Year = ' + str(year) + ' and Gender = ' + str(gender)) print('Total expected results: ' + str(total_expected_num_results)) # Define lists to store data result_urls = [] result_cities = [] result_states = [] # Starting with 1 page returned since the form was submitted total_returned_num_pages = 1 total_returned_num_results = 0 while total_returned_num_pages <= total_expected_num_pages: print('Progress: Page ' + str(total_returned_num_pages) + ' of ' + str(total_expected_num_pages), end='\r') if total_returned_num_pages > 1: # Note: No delay is included here because the current code # takes longer than 1 second to complete per page. We feel # that this is enough to avoid hammering the server and hogging # resources. # The link with text ">" appears to always point to the next # results page. next_page_link = br.find_link(text='>') resp = br.follow_link(next_page_link) html = resp.read() soup = BeautifulSoup(html, "lxml", parse_only=strainer) # Store URLs for individual runners runner_links = soup.select('h4.type-fullname a[href]') result_per_page_count = 0 for link in runner_links: runner_url = url + link['href'] result_urls.extend([runner_url]) result_per_page_count += 1 if unit_test_ind: break # Grab city & state data since it's only fully populated on the # form results page, not the individual runners' pages. # The 'type-eval' label appears to always store this info. # The first element in the CSS select statement is the table # header "City, State", which we don't want. Manually removing # this element via indexing. location_table = soup.select('div.type-eval')[1:] for location_row in location_table: # The text of each location_row includes a sub-header "City, State", # which we don't want. Using re.sub to remove it. location = re.sub('City, State', '', location_row.text).split(', ') # Some runners have no location listed, which is presented as '-'. if location[0] == '–': result_cities.append(None) result_states.append(None) else: city = convert_to_ascii(location[0].replace('"', '')) result_cities.append(city) # Store state info if present in the 2nd element of location. if len(location) == 2: state = convert_to_ascii(location[1].replace('"', '')) result_states.append(state) else: result_states.append(None) if unit_test_ind: break # Tracking returned results for printing to console. total_returned_num_results += result_per_page_count total_returned_num_pages += 1 if unit_test_ind: break print('') print('URL scraping complete!') # Combining all results into one pd.DataFrame. dict_urls = {'urls': result_urls} dict_city = {'city': result_cities} dict_state = {'state': result_states} dict_results = {} for dictionary in [dict_urls, dict_city, dict_state]: dict_results.update(dictionary) df = pd.DataFrame.from_dict(dict_results) df = df.reindex(['urls', 'city', 'state'], axis='columns') return df def scrape_chicago_runner_details(url, gender, city, state): """ Method to scrape relevant information about a given runner in Chicago Marathon. The scraped details include: * **year**: Year in which the runner participated in the marathon * **bib**: Bib number to specify the runner for the particular marathon * **age_group**: Age of runner at time of marathon. Expressed in 5 year bands, except for 16-19. * **gender**: Gender of runner * **city**: Runner's home city * **state**: Runner's home state * **country**: Runner's home country * **overall**: Overall rank for runner based on the finish time * **rank_gender**: Rank for runner within gender category based on the finish time * **rank_age_group**: Rank for runner within age category based on the finish time * **5k**: Split time at 5 km in seconds * **10k**: Split time at 10 km in seconds * **15k**: Split time at 15 km in seconds * **20k**: Split time at 20 km in seconds * **half**: Split time at half marathon in seconds * **25k**: Split time at 25 km in seconds * **30k**: Split time at 30 km in seconds * **35k**: Split time at 35 km in seconds * **40k**: Split time at 40 km in seconds * **finish**: Split time to complete marathon in seconds Example:: scrape_chicago_runner_details(url=('http://chicago-history.r.mikatiming.de/2015/?content=detail&fpid=' 'search&pid=search&idp=999999107FA309000019D3BA&lang=EN_CAP&event=' 'MAR_999999107FA309000000008D&lang=EN_CAP&search%5Bstart_no%5D=' '54250&search_event=ALL_EVENT_GROUP_2016'), gender='M', city='Portland', state='OR') :param str url: URL for an individual runner's results :param str gender: Gender of runner ('M' for male, 'W' for female) :param str city: City specified by runner :param str state: State specified by runner :return: DataFrame :rtype: pandas.DataFrame """ br = mechanize.Browser() # Ignore robots.txt br.set_handle_robots(False) # Link to results of a single runner # Use try/except in case of unexpected internet/URL issues try: br.open(url) except (mechanize.HTTPError, mechanize.URLError) as e: if hasattr(e, 'code'): if int(e.code) == 500: print('Following URL has HTTP Error 500:') print(url) else: print('Following URL has unexpected connection issue:') print(url) return 'Connection error' html = br.response().read() strainer = SoupStrainer(['tr', 'thead']) soup = BeautifulSoup(html, "lxml", parse_only=strainer) # Only process runners having event = 'Marathon', for the purposes of this project. # Note: This is precautionary, as early exploration showed that non-runners were included among the results. # This issue no longer appears present. event_name = soup.select('td.f-event_name')[0].text if event_name != 'Marathon': return None # Grab runner's info marathon_year = int(soup.select('td.f-event_date')[0].text) full_name = soup.select('td.f-__fullname')[0].text age_group = soup.select('td.f-age_class')[0].text bib_number = soup.select('td.f-start_no')[0].text # Derive country name from runner's name. # Modified from here: # https://stackoverflow.com/a/4894156/3905509 country = convert_to_ascii(full_name[full_name.find("(")+1:full_name.find(")")]) rank_gender = soup.select('td.f-place_all')[0].text rank_age_group = soup.select('td.f-place_age')[0].text rank_overall = soup.select('td.f-place_nosex')[0].text headers_index = ['year', 'bib', 'age_group', 'gender', 'city', 'state', 'country', 'overall', 'rank_gender', 'rank_age_group'] headers = headers_index.copy() cols_constant = [marathon_year, bib_number, age_group, gender, city, state, country, rank_overall, rank_gender, rank_age_group] headers_splits = soup.select('thead th') for header_split in headers_splits: headers.append(header_split.text) headers = [header.lower() for header in headers] df = pd.DataFrame(columns=headers) split_string_bs4 = 'tr.f-time_' splits = ['05', '10', '15', '20', '52', '25', '30', '35', '40', 'finish_netto'] splits_select_list = [split_string_bs4 + split for split in splits] for split_select in splits_select_list: splits_row = soup.select(split_select) # Take union of text in each column of splits_row splits_row_union = [cell.text for cell in splits_row] # Expecting the 'Finish' split time to share CSS tag with 'Finish Time', # which excludes other info. In this case, only keep the former data. if len(splits_row_union) > 1: cols = cols_constant + splits_row_union[1].split('\n')[1:-1] else: cols = cols_constant + splits_row_union[0].split('\n')[1:-1] # Convert results into a single row pd.DataFrame cols = [dict(zip(headers, cols))] df_row = pd.DataFrame(cols, columns=headers) df = df.append(df_row) # Reset index of dataframe since each row was individually appended df.reset_index(drop=True, inplace=True) # Only keep relevant fields df = df[headers_index + ['split', 'time']] # Convert split times into numeric seconds from strings. # Modified from the following: # https://stackoverflow.com/a/44445488/3905509 df['time'] =
pd.to_timedelta(df['time'])
pandas.to_timedelta
import pandas as pd import lightgbm from sklearn.linear_model import Lasso from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import mutual_info_regression from sklearn.preprocessing import StandardScaler def GBoostingFeatureSelection(X, y, random_state=0): __trashhold__ = 2 # Scale the data scaler = StandardScaler() X_Scaled = scaler.fit_transform(X) X_Scaled = pd.DataFrame(X_Scaled, columns=X.columns, index=X.index) # Init Regressor lightgbmRegressor = lightgbm.LGBMRegressor(random_state=random_state) # Fit Regressor lightgbmRegressor.fit(X_Scaled, y) # Create Data Frame with Feature Importence importance_dict = {'feature_name': lightgbmRegressor.feature_name_ , 'feature_importance': lightgbmRegressor.feature_importances_, 'method': 'lightgbm.LGBMRegressor', 'random_state': random_state } feature_importance = pd.DataFrame(importance_dict) feature_importance = feature_importance.loc[feature_importance['feature_importance']>=__trashhold__, :] feature_importance.sort_values('feature_importance', ascending=False, inplace=True) return feature_importance def LassoFeatureSelection(X, y, random_state=0): __trashhold__ = 0.1 # Scale the data scaler = StandardScaler() X_Scaled = scaler.fit_transform(X) X_Scaled = pd.DataFrame(X_Scaled, columns=X.columns, index=X.index) # Init Regressor LassoRegressor = Lasso(alpha=0.00001, random_state=random_state) # Fit Regressor LassoRegressor.fit(X_Scaled, y) # Create Data Frame with Feature Importence importance_dict ={'feature_name': X_Scaled.columns, 'feature_importance': abs(LassoRegressor.coef_), 'method': 'LassoRegressor', 'random_state': random_state } feature_importance = pd.DataFrame(importance_dict) feature_importance = feature_importance.loc[feature_importance['feature_importance']>__trashhold__,:] feature_importance.sort_values('feature_importance', ascending=False, inplace=True) return feature_importance def KBestFeatureSelection(X, y): __trashhold__ = 1.6 # Scale the data scaler = StandardScaler() X_Scaled = scaler.fit_transform(X) X_Scaled = pd.DataFrame(X_Scaled, columns=X.columns, index=X.index) # Init Regressor KBest_Selector = SelectKBest(score_func=mutual_info_regression, k='all') # Fit Regressor KBest_Selector.fit(X_Scaled, y) # Create Data Frame with Feature Importence importance_dict ={'feature_name': X_Scaled.columns , 'feature_importance': abs(KBest_Selector.scores_), 'method': 'SelectKBest', 'random_state': None } feature_importance = pd.DataFrame(importance_dict) feature_importance = feature_importance.loc[feature_importance['feature_importance']>__trashhold__,:] feature_importance.sort_values('feature_importance', ascending=False, inplace=True) return feature_importance def ChronosFeatureSelection(X, y, standart_scale_corr=True, random_state=0): #Perform Individual Feature Selection gb = GBoostingFeatureSelection(X, y, random_state) ls = LassoFeatureSelection(X, y, random_state) kb = KBestFeatureSelection(X, y) essemble = pd.concat([gb,ls,kb]).reset_index(drop=True) essemble_gp = essemble[['feature_name','method']].groupby('feature_name', as_index=False).agg(num_selector=('method', 'count')) essemble = pd.merge(essemble, essemble_gp, how='left', on=['feature_name']).sort_values('num_selector', ascending=False) if standart_scale_corr is True: # Scale the data scaler = StandardScaler() X_Scaled = scaler.fit_transform(X) X_Scaled =
pd.DataFrame(X_Scaled, columns=X.columns, index=X.index)
pandas.DataFrame
""" This script contains a simple (intraday) trend following strategy using a bollinger band. Strategy - 1) BUY when the price crosses the Upper Band from below. 2) SELL when the price crosses the Lower Band from above. 3) Close the positions at Take Profit or Stop Loss or when counter positions needed to be taken. 4) If we get following signal same as the previous signal then we increase the position size. """ # Imports import logging import talib as ta import numpy as np import pandas as pd from time import sleep from bars import EventDrivenBars from connection import Client # logging init logging.basicConfig( filename='error.log', level=logging.WARNING, format='%(asctime)s:%(levelname)s:%(message)s') # setup the connection with the API client = Client() conn = client.connect() api = client.api() class TrendFollowing: """ A class for the trend-following strategy. """ def __init__( self, symbol: str, bar_type: str, TP: int = 2, SL: int = 1, qty: int = 1, window_size: int = 22): """ :param symbol : (str) the asset symbol for the strategy. :param bar_type : (str) the type of the alternative bars. :param TP : (int) the take-profit multiple. :param SL : (int) the stop-loss multiple. :param qty : (int) the number quantities to buy and sell. :param window_size : (int) the lookback window for the Bollinger Band. """ # Initialize model parameters like TP, SL, thresholds etc. self.TP = TP # times the current volatility. self.SL = SL # times the current volatility. self.window = window_size # window size for bollinger bands self.symbol = symbol # ticker symbol for the asset self.bar_type = bar_type # bar_type for the strategy # a flag to know if the strategy is in a bar collecting mode self.collection_mode = True self.active_trade = False # to know if any active trade is present self.qty = qty # quantity to trade (buy or sell) self.open_order = None # to know if any open orders exists self.sl = None # stop-loss of current position self.tp = None # take-profit of current position self.prices = pd.Series() # check if historical data exists if self.read_data(): self.collection_mode = False else: print(f'on collection mode for {symbol}') def read_data(self): """ A function to read the historical bar data. """ try: df = pd.read_csv( f'data/{self.bar_type}.csv', index_col=[0], parse_dates=[0], usecols=[ 'timestamp', 'symbol', 'close']) # the length of minimum data will be the window size +1 of BB if not df.empty: prices = df[df['symbol'] == self.symbol]['close'] if len(prices) > self.window: self.prices = prices[-self.window + 1:] del df return True except FileNotFoundError as e: pass return False def get_volatility(self, frequency: str = '1H'): """ A function to get hourly volatility if enough data exists. Else will output minimum window_size volatility. The volatility will be used to set the TP an SL of a position. """ ret = self.prices.pct_change()[1:] # get hourly volatility vol = ret.groupby(pd.Grouper(freq=frequency)).std()[-1] return vol def liquidate_position(self): # check for brackets orders are present self.cancel_orders() try: # close the position res = api.close_position(self.symbol) # check if filled status = api.get_order(res.id).status # reset self.active_trade = False self.sl = None self.tp = None except Exception as e: logging.exception(e) def cancel_orders(self): """ A function to handle cancelation of a open order. """ try: api.cancel_order(self.open_order.id) self.open_order = None except Exception as e: if e.status_code == 404: # order not found logging.exception(e) if e.status_code == 422: # the order status is not cancelable. logging.exception(e) # break def check_open_position(self): """ Get any open position for the symbol if exists. """ try: pos = api.get_position(self.symbol) self.active_trade = [pos.side, pos.qty] except Exception as e: if e.status_code == 404: # position doesn't exist in the asset self.active_trade = False def RMS(self, price: float): """ If a position exists than check if take-profit or stop-loss is reached. It is a simple risk-management function. :param price :(float) last trade price. """ self.check_open_position() if self.active_trade: # check SL and TP if price <= self.sl or price >= self.tp: # close the position self.liquidate_position() def OMS(self, BUY: bool = False, SELL: bool = False): """ An order management system that handles the orders and positions for given asset. :param BUY :(bool) If True will buy given quantity of asset at market price. If a short sell position is active, it will close the short position. :param SELL :(bool) if True will sell given quantity of asset at market price. If a long BUY position is active, it will close the long position. """ # check for open position self.check_open_position() # calculate the current volatility vol = self.get_volatility() if BUY: # check if counter position exists if self.active_trade and self.active_trade[0] == 'short': # exit the previous short SELL position self.liquidate_position() # calculate TP and SL for BUY order self.tp = self.prices[-1] + (self.prices[-1] * self.TP * vol) self.sl = self.prices[-1] - (self.prices[-1] * self.SL * vol) side = 'buy' if SELL: # check if counter position exists if self.active_trade and self.active_trade[0] == 'long': # exit the previous long BUY position self.liquidate_position() # calculate TP and SL for SELL order self.tp = self.prices[-1] - (self.prices[-1] * self.TP * vol) self.sl = self.prices[-1] + (self.prices[-1] * self.SL * vol) side = 'sell' # check for time till market closing. clock = api.get_clock() closing = clock.next_close - clock.timestamp market_closing = round(closing.seconds / 60) if market_closing > 30 and (BUY or SELL): # no more new trades after 30 mins till market close. if self.open_order is not None: # cancel any open orders before sending a new order self.cancel_orders() # submit a simple order. self.open_order = api.submit_order( symbol=self.symbol, qty=self.qty, side=side, type='market', time_in_force='day') def on_bar(self, bar: dict): """ This function will be called everytime a new bar is formed. It will calculate the entry logic using the Bollinger Bands. :param bar : (dict) a Alternative bar generated from EventDrivenBars class. """ if self.collection_mode: self.prices = self.prices.append(pd.Series( [bar['close']], index=[pd.to_datetime(bar['timestamp'])])) if len(self.prices) > self.window: self.collection_mode = False if not self.collection_mode: # append the current bar to the prices series self.prices = self.prices.append(pd.Series( [bar['close']], index=[
pd.to_datetime(bar['timestamp'])
pandas.to_datetime
import numpy as np import pytest import pandas as pd import pandas._testing as tm @pytest.mark.parametrize("sort", [True, False]) def test_factorize(index_or_series_obj, sort): obj = index_or_series_obj result_codes, result_uniques = obj.factorize(sort=sort) constructor = pd.Index if isinstance(obj, pd.MultiIndex): constructor = pd.MultiIndex.from_tuples expected_uniques = constructor(obj.unique()) if sort: expected_uniques = expected_uniques.sort_values() # construct an integer ndarray so that # `expected_uniques.take(expected_codes)` is equal to `obj` expected_uniques_list = list(expected_uniques) expected_codes = [expected_uniques_list.index(val) for val in obj] expected_codes = np.asarray(expected_codes, dtype=np.intp) tm.assert_numpy_array_equal(result_codes, expected_codes)
tm.assert_index_equal(result_uniques, expected_uniques)
pandas._testing.assert_index_equal
import pandas as pd import numpy as np import argparse import time def getArgs(): parser = argparse.ArgumentParser() parser.add_argument('-output', required=False, default='processed_data/', help='path of output folder.') parser.add_argument('-inpath', required=False, default='inputdata/', help='input file path and name.') return parser.parse_args() def get_prot2vec(prot): prot2vec_path = 'protein_pos_protvec/' prot2vec_file = prot2vec_path + prot + '.protvec' with open(prot2vec_file, 'r') as prot_file: protvec_data = prot_file.read() protvec_string = protvec_data.split(',99\n')[1] protvec_tmp = protvec_string.replace(',', ' ').split() protvec_list = [float(i) for i in protvec_tmp] return protvec_list def get_mol2vec(drug_name): drug_feature =
pd.read_csv('drugs_mol2vec/' + drug_name + '.csv')
pandas.read_csv
import numpy as np import pandas as pd import pytest from hypothesis import assume, given from pandas.testing import assert_frame_equal from janitor.testing_utils.strategies import ( categoricaldf_strategy, df_strategy, ) def test_case_when_1(): """Test case_when function.""" df = pd.DataFrame( { "a": [0, 0, 1, 2, "hi"], "b": [0, 3, 4, 5, "bye"], "c": [6, 7, 8, 9, "wait"], } ) expected = pd.DataFrame( { "a": [0, 0, 1, 2, "hi"], "b": [0, 3, 4, 5, "bye"], "c": [6, 7, 8, 9, "wait"], "value": ["x", 0, 8, 9, "hi"], } ) result = df.case_when( ((df.a == 0) & (df.b != 0)) | (df.c == "wait"), df.a, (df.b == 0) & (df.a == 0), "x", df.c, column_name="value", ) assert_frame_equal(result, expected) def test_len_args(dataframe): """Raise ValueError if `args` length is less than 3.""" with pytest.raises(ValueError, match="three arguments are required"): dataframe.case_when(dataframe.a < 10, "less_than_10", column_name="a") def test_args_even(dataframe): """Raise ValueError if `args` length is even.""" with pytest.raises(ValueError, match="`default` argument is missing"): dataframe.case_when( dataframe.a < 10, "less_than_10", dataframe.a == 5, "five", column_name="a", ) def test_column_name(dataframe): """Raise TypeError if `column_name` is not a string.""" with pytest.raises(TypeError): dataframe.case_when( dataframe.a < 10, "less_than_10", dataframe.a, column_name=("a",), ) @given(df=df_strategy()) def test_default_ndim(df): """Raise ValueError if `default` ndim > 1.""" with pytest.raises(ValueError): df.case_when(df.a < 10, "less_than_10", df, column_name="a") @given(df=df_strategy()) def test_default_length(df): """Raise ValueError if `default` length != len(df).""" assume(len(df) > 10) with pytest.raises( ValueError, match=( "length of the `default` argument should be equal to the length of" " the DataFrame" ), ): df.case_when( df.a < 10, "less_than_10", df.loc[:5, "a"], column_name="a", ) @given(df=df_strategy()) def test_error_multiple_conditions(df): """Raise ValueError for multiple conditions.""" with pytest.raises(ValueError): df.case_when(df.a < 10, "baby", df.a + 5, "kid", df.a, column_name="a") @given(df=df_strategy()) def test_case_when_condition_callable(df): """Test case_when for callable.""" result = df.case_when( lambda df: df.a < 10, "baby", "bleh", column_name="bleh" ) expected = np.where(df.a < 10, "baby", "bleh") expected = df.assign(bleh=expected) assert_frame_equal(result, expected) @given(df=df_strategy()) def test_case_when_condition_eval(df): """Test case_when for callable.""" result = df.case_when("a < 10", "baby", "bleh", column_name="bleh") expected = np.where(df.a < 10, "baby", "bleh") expected = df.assign(bleh=expected) assert_frame_equal(result, expected) @given(df=df_strategy()) def test_case_when_replacement_callable(df): """Test case_when for callable.""" result = df.case_when( "a > 10", lambda df: df.a + 10, lambda df: df.a * 2, column_name="bleh" ) expected = np.where(df.a > 10, df.a + 10, df.a * 2) expected = df.assign(bleh=expected) assert_frame_equal(result, expected) @given(df=categoricaldf_strategy()) def test_case_when_default_list(df): """ Test case_when for scenarios where `default` is list-like, but not a Pandas or numpy object. """ default = range(len(df)) result = df.case_when( "numbers > 1", lambda df: df.numbers + 10, default, column_name="bleh" ) expected = np.where(df.numbers > 1, df.numbers + 10, default) expected = df.assign(bleh=expected) assert_frame_equal(result, expected) @given(df=categoricaldf_strategy()) def test_case_when_default_index(df): """Test case_when for scenarios where `default` is an index.""" default = range(len(df)) result = df.case_when( "numbers > 1", lambda df: df.numbers + 10, pd.Index(default), column_name="bleh", ) expected = np.where(df.numbers > 1, df.numbers + 10, default) expected = df.assign(bleh=expected) assert_frame_equal(result, expected) @given(df=df_strategy()) def test_case_when_multiple_args(df): """Test case_when for multiple arguments.""" result = df.case_when( df.a < 10, "baby", df.a.between(10, 20, "left"), "kid", lambda df: df.a.between(20, 30, "left"), "young", "30 <= a < 50", "mature", "grandpa", column_name="elderly", ) conditions = [ df["a"] < 10, (df["a"] >= 10) & (df["a"] < 20), (df["a"] >= 20) & (df["a"] < 30), (df["a"] >= 30) & (df["a"] < 50), ] choices = ["baby", "kid", "young", "mature"] expected = np.select(conditions, choices, "grandpa") expected = df.assign(elderly=expected)
assert_frame_equal(result, expected)
pandas.testing.assert_frame_equal
import os import sys import numpy as np import pandas as pd from sklearn.model_selection import KFold, train_test_split, StratifiedKFold import PIL from PIL import Image import io import cv2 from keras.datasets import mnist import multiprocessing as mp from multiprocessing import Pool, Manager, Process from functools import partial from . import logging_daily from . import utils from keras.utils import to_categorical ###################################################################### # Base Reader ###################################################################### class BaseReader(object): """Inherit from this class when implementing new readers.""" def __init__(self, log, path_info, network_info, verbose=True): self.log = log self.verbose = verbose self.data_path = path_info['data_info']['data_path'] if network_info['model_info']['normalize_sym'] == 'True': self.normalize_sym = True else: self.normalize_sym = False if network_info['model_info']['n_label'] == 'None': self.n_label = None else: self.n_label = int(network_info['model_info']['n_label']) if network_info['model_info']['augment'] == 'True': self.augment = True else: self.augment = False self.x_list = None self.img_shape = None def read_dataset(self, data_path): raise NotImplementedError() def get_dataset(self): raise NotImplementedError() def get_cv_index(self, nfold=5): raise NotImplementedError() def get_augment(self, x): for i in range(x.shape[0]): if np.random.randint(2, size=1): # Flip Horizontally if np.random.randint(2, size=1): x[i] = x[i,:,::-1,:] # (N, H, W, C) # Channel Noise if np.random.randint(2, size=1): if np.random.randint(2, size=1): # uniform noise noise = np.random.uniform(0,0.05,(x.shape[1],x.shape[2])) picked_ch = np.random.randint(3, size=1)[0] x[i,:,:,picked_ch] += noise x[i,:,:,picked_ch] = np.clip(x[i,:,:,picked_ch], a_min=0., a_max=1.) elif np.random.randint(2, size=1): # gray x[i,:,:,:] = np.repeat(np.expand_dims(np.dot(x[i,:,:], [0.299, 0.587, 0.114]), axis=-1), 3, axis=-1) return x def show_class_information(self, y=None): if np.any(y == None): y_table = self.y_table else: y_table = pd.Series(y) y_counts = y_table.value_counts() self.log.info('-------------------------------------------------') self.log.info('Images per Class') self.log.info('\n%s', y_counts) self.log.info('-------------------------------------------------') self.log.info('Summary') self.log.info('\n%s', y_counts.describe()) self.log.info('-------------------------------------------------') # def write_embeddings_metadata(self, embedding_metadata_path, e_x, e_y): # with open(embedding_metadata_path,'w') as f: # f.write("Index\tLabel\tClass\n") # for index,label in enumerate(e_y): # f.write("%d\t%s\t%d\n" % (index,"fake",label)) # fake # for index,label in enumerate(e_y): # f.write("%d\t%s\t%d\n" % (len(e_y)+index,"true",10)) # true def get_image_shape(self): return self.img_shape def get_cv_index(self, nfold=5, random_state = 12): self.log.info('%d-fold Cross Validation Cut' % nfold) kf = KFold(n_splits=nfold, shuffle=True, random_state=random_state) return kf.split(range(self.y.shape[0])) def get_training_validation_index(self, idx, validation_size=0.2): return train_test_split(idx, test_size = validation_size) def get_dataset(self): return self.x, self.y def get_label(self): return self.y def get_n_label(self): return self.num_classes def handle_imbalance(self, train_idx, minarity_group_size = 0.3, minarity_ratio = 0.3, seed=12): self.log.info('----------------------------------------------------') self.log.info('Handle imbalance') self.log.info('Minarity_group_size : %s' % minarity_group_size) self.log.info('Minarity_ratio (per group) : %s' % minarity_ratio) self.log.info('----------------------------------------------------') np.random.seed(seed) minarities = np.random.choice(self.y_class, size= int(minarity_group_size * self.y_class.shape[0])) pick = [] if len(minarities) > 0: for i, minarity in enumerate(minarities): minarity_index = self.y_index.get_loc(minarity) delete_size = int(np.sum(minarity_index) * (1-minarity_ratio)) pick.append(np.random.choice(np.where(minarity_index)[0], replace=False, size=delete_size)) self.log.info('minarity class - %s : deleted %s of %s' %(minarity, delete_size, np.sum(minarity_index))) pick = np.concatenate(pick) train_idx = np.setdiff1d(train_idx, pick) if self.verbose == True: self.show_class_information(self.y[train_idx]) return train_idx def class_to_categorical(self, y): return to_categorical(self.class_to_int(y), self.num_classes) def categorical_to_series(self, y_coded): return pd.Series(np.argmax(y_coded, axis=1)).map(self.y_int_to_class) def class_to_int(self, y): return np.array(pd.Series(y).map(self.y_class_to_int)) def int_to_class(self, y_int): return pd.Series(y_int).map(self.y_int_to_class) ######################################################################################################### # Toy Sample Reader ######################################################################################################### class ToyReader(BaseReader): def __init__(self, log, path_info, network_info, verbose=True): super(ToyReader,self).__init__(log, path_info, network_info, verbose) self.read_dataset(nlabel=self.n_label) if verbose: self.show_class_information() def read_dataset(self, nlabel=None): dir_path = self.data_path self.x = np.load('%s/x.npy'%dir_path).astype(np.float32) self.x = self.x.reshape(self.x.shape[0],int(np.sqrt(self.x.shape[1])),int(np.sqrt(self.x.shape[1])),1) self.y = np.load('%s/y.npy'%dir_path) self.img_shape = self.x.shape[1:] if not nlabel==None: y_table = pd.Series(self.y) selected_class = y_table.unique()[:nlabel] selected_class = y_table.isin(selected_class) self.x_list = self.x[selected_class] self.y = self.y[selected_class] ## to categorical #################### self.y_table = pd.Series(self.y) self.y_index = pd.Index(self.y) self.y_class = np.sort(self.y_table.unique()) self.y_class_to_int = dict(zip(self.y_class, range(self.y_class.shape[0]))) self.y_int_to_class = dict(zip(range(self.y_class.shape[0]), self.y_class)) self.num_classes = len(self.y_class) ###################################### def get_batch(self, idxs): img_batches = self.x[idxs] y = self.class_to_int(self.y[idxs]) return img_batches, y def class_to_categorical(self, y): return to_categorical(y, self.num_classes) def categorical_to_class(self, y_coded): return np.argmax(y_coded, axis=1) def except_class(self, train_idx, except_class): self.log.info('----------------------------------------------------') for unknown_class in except_class: self.log.info('Except class %d' % int(unknown_class)) unknown_class = int(unknown_class) train_idx = train_idx[self.y[train_idx]!=unknown_class] if self.verbose: self.show_class_information(self.y[train_idx]) self.log.info('----------------------------------------------------') return train_idx ######################################################################################################### # MNIST ######################################################################################################### class MNISTReader(BaseReader): def __init__(self, log, path_info, network_info, mode='train', verbose=True): super(MNISTReader,self).__init__(log, path_info, network_info, verbose) self.read_dataset(nlabel=self.n_label) if verbose: self.show_class_information() def read_dataset(self, nlabel=None): (x_train, y_train), (x_test, y_test) = mnist.load_data() self.x = np.concatenate((x_train, x_test), axis=0) self.y = np.concatenate((y_train, y_test), axis=0) if not nlabel==None: y_table = pd.Series(self.y) selected_class = y_table.unique()[:nlabel] selected_class = y_table.isin(selected_class) self.x_list = self.x[selected_class] self.y = self.y[selected_class] ## to categorical #################### self.y_table = pd.Series(self.y) self.y_index = pd.Index(self.y) self.y_class = np.sort(self.y_table.unique()) # self.y_class_to_int = dict(zip(self.y_class, range(self.y_class.shape[0]))) # self.y_int_to_class = dict(zip(range(self.y_class.shape[0]), self.y_class)) self.num_classes = len(self.y_class) ###################################### # normalize if self.normalize_sym: # force it to be of shape (...,28,28,1) with range [-1,1] self.x = ((self.x - 127.5) / 127.5).astype(np.float32) else: self.x = (self.x / 225.).astype(np.float32) self.x = np.expand_dims(self.x, axis=-1) self.img_shape = self.x.shape[1:] def get_batch(self, idxs): img_batches = self.x[idxs] if self.augment: img_batches = self.get_augment(img_batches) # y = self.class_to_int(self.y[idxs]) y = self.y[idxs] return img_batches, y def class_to_categorical(self, y): return to_categorical(y, self.num_classes) def categorical_to_class(self, y_coded): return np.argmax(y_coded, axis=1) def except_class(self, train_idx, except_class): self.log.info('----------------------------------------------------') for unknown_class in except_class: self.log.info('Except class %d' % int(unknown_class)) unknown_class = int(unknown_class) train_idx = train_idx[self.y[train_idx]!=unknown_class] if self.verbose: self.show_class_information(self.y[train_idx]) self.log.info('----------------------------------------------------') return train_idx ######################################################################################################### # Omniglot ######################################################################################################### class OmniglotReader(BaseReader): def __init__(self, log, path_info, network_info, mode='train', verbose=True): super(OmniglotReader,self).__init__(log, path_info, network_info, verbose) self.mode = mode self.read_dataset(nlabel=self.n_label) if verbose: self.show_class_information() def read_dataset(self, nlabel=None): self.log.info('-------------------------------------------------') self.log.info('Construct Dataset') self.log.info('-------------------------------------------------') self.log.info('Loading Omniglot dataset information') self.img_shape = (105,105,1) if self.mode=='train': data_type = 'images_background' elif self.mode=='train_small1': data_type = 'images_background_small1' elif self.mode=='train_small2': data_type = 'images_background_small2' else: data_type = 'images_evaluation' self.x_list = np.load('%s/%s_x_list.npy' % (self.data_path, data_type)) self.y = np.load('%s/%s_y.npy' % (self.data_path, data_type)) if not nlabel==None: y_table = pd.Series(self.y) selected_class = y_table.unique()[:nlabel] selected_class = y_table.isin(selected_class) self.x_list = self.x_list[selected_class] self.y = self.y[selected_class] # else: # y_table = pd.Series(self.y) # y_counts = y_table.value_counts() # selected_class = y_counts[y_counts >= 5].keys() # selected_class = y_table.isin(selected_class) # self.x_list = self.x_list[selected_class] # self.y = self.y[selected_class] # self.not_used_class = y_counts[y_counts < 5].keys() ## to categorical #################### self.y_table = pd.Series(self.y) self.y_index = pd.Index(self.y) self.y_class = np.sort(self.y_table.unique()) self.y_class_to_int = dict(zip(self.y_class, range(self.y_class.shape[0]))) self.y_int_to_class = dict(zip(range(self.y_class.shape[0]), self.y_class)) self.num_classes = len(self.y_class) ###################################### self.y_alphabet = np.array([xpath.split('/')[-3] for xpath in self.x_list]) # TODO except class list... # def except_class(self, train_idx, unknown_class='9'): # train_idx = np.array(train_idx) # return train_idx[self.y[train_idx]!=unknown_class] def get_cv_index(self, nfold=5, random_state = 12): # https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html self.log.info('Stratified %d-fold Cross Validation Cut' % nfold) kf = StratifiedKFold(n_splits=nfold, shuffle=True, random_state=random_state) return kf.split(range(self.y.shape[0]), self.y) def get_dataset(self): return self.x_list, self.y def get_y_alphabet_class(self): return self.y_alphabet def get_label_name(self): return np.array(self.y_class) def get_batch(self, idxs): try: batch_imgs = [] batch_idxs = [] for i in idxs: try: batch_imgs.append(self._read_omniglot_image(self.x_list[i])) batch_idxs.append(i) except Exception as e: raise ValueError(e) batch_imgs = np.array(batch_imgs) batch_idxs = np.array(batch_idxs) # if self.augment and np.random.choice([0,1], 1, replace=False, p=[0.8,0.2]): if self.augment: batch_imgs = self.get_augment(batch_imgs) if self.normalize_sym: batch_imgs = (batch_imgs - 0.5) * 2. y = self.class_to_int(self.y[np.array(batch_idxs)]) return batch_imgs, y except Exception as e: raise ValueError(e) def _read_omniglot_image(self, filename): try: im = Image.open(filename) # target_shape = np.array([self.img_shape[1],self.img_shape[0]]) # im = im.resize(target_shape, PIL.Image.ANTIALIAS) im = np.expand_dims((1.-np.array(im).astype(np.float32)), -1) # dilation (thickness) # kernel = np.ones((3,3),np.uint8) # im = np.expand_dims(cv2.dilate(im,kernel,iterations = 1), -1) return im except Exception as e: raise ValueError('Error with %s : %s' % (filename, e)) # sys.exit() ######################################################################### # funtions for augmentation # https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html ######################################################################### def _dilation(self, im, kernal_size=(2,2)): # Dilation (thickness) kernel = np.ones(kernal_size,np.uint8) im = cv2.dilate(im,kernel,iterations = 1) im[im>=0.5] = 1. im[im<0.5] = 0. return np.expand_dims(np.array(im).astype(np.float32), -1) def _rotation(self, im, max_angle = 10): # Rotation rows,cols,ch = im.shape angle = np.random.choice(np.append(np.arange(-max_angle,max_angle,max_angle//4),max_angle), 1)[0] M = cv2.getRotationMatrix2D((cols/2,rows/2),angle,1) im = cv2.warpAffine(im,M,(cols,rows)) im[im>=0.5] = 1. im[im<0.5] = 0. return np.expand_dims(np.array(im).astype(np.float32), -1) def _affine(self, im, max_tiltrate = 6): # Affine transformation rows,cols,ch = im.shape tiltsize=np.random.choice(np.arange(max_tiltrate//4,max_tiltrate,max_tiltrate//4), 1)[0] pts1 = np.float32([[tiltsize,tiltsize],[rows-tiltsize,tiltsize],[tiltsize,cols-tiltsize]]) pts2 = np.float32([[tiltsize,tiltsize],[rows,0],[0,cols]]) M = cv2.getAffineTransform(pts1,pts2) im = cv2.warpAffine(im,M,(cols,rows)) im[im>=0.5] = 1. im[im<0.5] = 0. return np.expand_dims(np.array(im).astype(np.float32), -1) def _perspective(self, im, max_padsize=6): # Perspective tranformation rows,cols,ch = im.shape padsize=np.random.choice(np.arange(max_padsize//4,max_padsize,max_padsize//4), 1)[0] pts1 = np.float32([[padsize,padsize],[rows-padsize,padsize],[padsize,cols-padsize],[rows-padsize,cols-padsize]]) pts2 = np.float32([[0,0],[rows,0],[0,cols],[rows,cols]]) M = cv2.getPerspectiveTransform(pts1,pts2) im = cv2.warpPerspective(im,M,(rows,cols)) im[im>=0.5] = 1. im[im<0.5] = 0. return np.expand_dims(np.array(im).astype(np.float32), -1) def get_augment(self, x): for i in range(x.shape[0]): if np.random.randint(2, size=1): # if np.random.randint(2, size=1): x[i] = self._dilation(x[i]) # Dilation (thickness) if np.random.randint(2, size=1): x[i] = self._rotation(x[i]) # Rotation if np.random.randint(2, size=1): x[i] = self._affine(x[i]) # Affine transformation if np.random.randint(2, size=1): x[i] = self._perspective(x[i]) # Perspective tranformation return x ######################################################################################################### # CelebA ######################################################################################################### class CelebAReader(BaseReader): def __init__(self, log, path_info, network_info, verbose=True): super(CelebAReader,self).__init__(log, path_info, network_info, verbose) self.crop_style=network_info['model_info']['crop_style'].strip() self.attr_label=network_info['model_info']['attr_label'].strip() self.read_dataset(self.attr_label) if verbose: self.show_class_information() def read_dataset(self, attr_label='Male'): self.log.info('-------------------------------------------------') self.log.info('Construct Dataset') self.log.info('-------------------------------------------------') self.log.info('Loading CelebA dataset information') self.img_shape = (64, 64, 3) # num_samples = len(os.listdir(self.data_path)) #202599 # self.datapoint_ids = np.arange(1, num_samples + 1) # np.random.shuffle(self.datapoint_ids) # self.x_list = ['%.6d.jpg' % i for i in self.datapoint_ids] self.x_list = np.load('%s/x_list.npy' % ('/'.join(self.data_path.split('/')[:-1], datatype))) self.attr = pd.read_csv('/'.join(self.data_path.split('/')[:-1])+'/list_attr_celeba.csv') sorterIndex = dict(zip(self.x_list,range(len(self.x_list)))) self.attr['index'] = self.attr['image_id'].map(sorterIndex) self.attr = self.attr.sort_values('index') self.y = np.array(self.attr[attr_label]) self.y[self.y == -1] = 0 self.class_name = np.array(['no_%s' % attr_label,attr_label]) self.y_table = pd.Series(self.y) self.y_counts = self.y_table.value_counts() self.y_index = pd.Index(self.y) self.y_class = np.sort(self.y_table.unique()) self.num_classes = self.y_class.shape[0] def get_dataset(self): return self.x_list, self.y def get_label_name(self): return self.class_name def get_batch(self, idxs): img_batches = np.array([self._read_celeba_image(self.x_list[i]) for i in idxs]) if self.augment: img_batches = self.get_augment(img_batches) if self.normalize_sym: img_batches = (img_batches - 0.5) * 2. return img_batches, self.y[np.array(idxs)] def _read_celeba_image(self, filename): # from WAE width = 178 height = 218 new_width = 140 new_height = 140 im = Image.open(utils.o_gfile((self.data_path, filename), 'rb')) if self.crop_style == 'closecrop': # This method was used in DCGAN, pytorch-gan-collection, AVB, ... left = (width - new_width) / 2. top = (height - new_height) / 2. right = (width + new_width) / 2. bottom = (height + new_height)/2. im = im.crop((left, top, right, bottom)) im = im.resize((64, 64), PIL.Image.ANTIALIAS) elif self.crop_style == 'resizecrop': # This method was used in ALI, AGE, ... im = im.resize((64, 64+14), PIL.Image.ANTIALIAS) im = im.crop((0, 7, 64, 64 + 7)) else: raise Exception('Unknown crop style specified') return np.array(im).reshape(64, 64, 3) / 255. ######################################################################################################### # VGG 2 Face ######################################################################################################### class VGGFace2Reader(BaseReader): def __init__(self, log, path_info, network_info, mode='train', verbose=True): super(VGGFace2Reader,self).__init__(log, path_info, network_info, verbose) self.crop_style=network_info['model_info']['crop_style'].strip() self.img_shape = np.array([int(ishape.strip()) for ishape in network_info['model_info']['img_shape'].split(',')]) self.mode = mode self.read_dataset(nlabel=self.n_label) if verbose: self.show_class_information() try: self.feature_b = 'true' == network_info['model_info']['feature_b'].strip().lower() except: self.feature_b = False if self.feature_b: if self.mode == 'train': self.all_features_for_b = np.load('%s/all_features_normalized.npy' % path_info['data_info']['data_path']) else: self.all_features_for_b = np.load('%s/all_features_of_unknown_normalized.npy' % path_info['data_info']['data_path']) self.log.info('Load all features for b: %s' % np.array(len(self.all_features_for_b))) try: self.fixed_b_path = network_info['training_info']['fixed_b_path'].strip() except: self.fixed_b_path = None if self.fixed_b_path is not None: self.all_b = np.load(self.fixed_b_path) self.log.info('Load all b: %s' % np.array(self.all_b.shape)) def read_dataset(self, nlabel=None): self.log.info('-------------------------------------------------') self.log.info('Construct Dataset') self.log.info('-------------------------------------------------') self.log.info('Loading VGG Face 2 dataset information') self.log.info('Set image shape : %s' % self.img_shape) # names = os.listdir(self.data_path+'/npy_128') # if not npersion==None: # names = names[:npersion] # file_dict = {} # file_dict.update([(name, os.listdir(self.data_path+'/images/%s' % name)) for name in names]) # self.x_list = np.concatenate([['%s/%s'%(name, path) for path in paths] for name, paths in file_dict.items()]) # self.y = np.concatenate([[name]*len(paths) for name, paths in file_dict.items()]) if self.mode == 'train': list_path = "%s/%s" % (self.data_path, 'train_list.txt') else: list_path = "%s/%s" % (self.data_path, 'test_list.txt') with open(list_path, 'r') as f: self.x_list = f.read() self.x_list = np.array(self.x_list.split('\n')[:-1]) x_table =
pd.Series(self.x_list)
pandas.Series