hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a1c8500e99ab2c202368f0456ac1983694bf256
26,574
py
Python
helios/pipeViewer/pipe_view/model/query_set.py
debjyoti0891/map
abdae67964420d7d36255dcbf83e4240a1ef4295
[ "MIT" ]
44
2019-12-13T06:39:13.000Z
2022-03-29T23:09:28.000Z
helios/pipeViewer/pipe_view/model/query_set.py
debjyoti0891/map
abdae67964420d7d36255dcbf83e4240a1ef4295
[ "MIT" ]
222
2020-01-14T21:58:56.000Z
2022-03-31T20:05:12.000Z
helios/pipeViewer/pipe_view/model/query_set.py
debjyoti0891/map
abdae67964420d7d36255dcbf83e4240a1ef4295
[ "MIT" ]
19
2020-01-03T19:03:22.000Z
2022-01-09T08:36:20.000Z
import copy import logging import sys import time from . import content_options as content from logging import info, debug, warn, error # #Formerly known as Ordered_Dict class QuerySet: # For sorting elements with no clock __DEFAULT_T_OFF = 0 # # Get the Ordered Dict initialized. Note: in order to force-populate the # Ordered Dict upon initialization, both optional parameters must be provided def __init__(self, layout_context, d = None, l = None): self.__layout_context = layout_context self.__handle = self.__layout_context.dbhandle # keeps track of the ranges we've already queried self.old_hc = 0 # stores elements that need ranges of data self.__range_pairs = [] self.__continued_transactions = {} # A count of the number of times this Layout Context has requested to # move to a different HC. NOTE: not an index of the current HC, nor # number of stabbing queries performed self.__stab_index = 0 # Don't use this unless you know what you are doing. Read below. if (d is not None) and (l is not None) and (isinstance(d, dict) and isinstance(l, list)): self.__t_off_sorted = d # Instantiate a blank dictionary and list to else: # This will be a series of nested dictionaries, with t_offsets (in # HC's) and loc_id's as their respective keys. The inmost values # will be lists of Element Values self.__t_off_sorted = {} # # Adds a pair to the query set and stashes in correct location # @profile def AddPair(self, pair): e = pair.GetElement() # Recompute t_off in terms of plain HC's ####clock = self.GetClock(pair) lmgr = self.__layout_context.dbhandle.database.location_manager loc_str = e.GetProperty('LocationString') variables = self.__layout_context.GetLocationVariables() loc, _, clock = lmgr.getLocationInfo(loc_str, vars) t_off_property = e.GetProperty('t_offset', period = pair.GetClockPeriod()) # Warn about invalid locations for content types which DO require transactions if loc == lmgr.INVALID_LOCATION_ID and e.GetProperty('Content') not in content.NO_TRANSACTIONS_REQUIRED: print('Warning: No collected location matching "{}" (using variables:{})' \ .format(loc_str, variables), file = sys.stderr) if clock == self.__handle.database.location_manager.NO_CLOCK: # Makes the assumption that there will always be something else at # t_offset of 0. If not, then this could stand to be optimized t_off = self.__DEFAULT_T_OFF period = -1 else: period = self.__handle.database.clock_manager.getClockDomain(clock).tick_period t_off = period * t_off_property pair.SetClockPeriod(period) #import pdb; pdb.set_trace() if e.GetQueryFrame(period): self.__range_pairs.append(pair) else: if self.GetID(pair) == -1 and e.GetProperty('Content') not in content.NO_DATABASE_REQUIRED: pair.SetMissingLocation() else: pair.SetVal('') if t_off in self.__t_off_sorted: self.__t_off_sorted[t_off] = self.__AddAtLoc(pair, self.__t_off_sorted[t_off]) else: self.__t_off_sorted[t_off] = self.__AddAtLoc(pair) # Update this pair to indicate that it was added with this this t_off and location # This will be recalled when deleting this pair pair.SetLocationAndTimingInformation(t_off_property, lmgr.getLocationString(loc)) # # Helper method to AddPair() # @profile def __AddAtLoc(self, pair, sub_dict = None): if sub_dict: if self.GetID(pair) in sub_dict: if pair not in sub_dict[self.GetID(pair)]: sub_dict[self.GetID(pair)].append(pair) else: sub_dict[self.GetID(pair)] = [pair] return sub_dict else: return {self.GetID(pair):[pair]} # # Used for re-sorting an Element's location within t_off_sorted{}, # before the Element's Properties have actually changed def __ForceAddSingleQueryPair(self, pair, t_off_in, id): e = pair.GetElement() # Recompute t_off in terms of plain HC's ####clock = self.GetClock(pair) lmgr = self.__layout_context.dbhandle.database.location_manager loc_str = e.GetProperty('LocationString') loc, _, clock = lmgr.getLocationInfo(loc_str, self.__layout_context.GetLocationVariables()) if clock == self.__handle.database.location_manager.NO_CLOCK: # Makes the assumption that there will always be something else at # t_offset of 0. If not, then this could stand to be optimized t_off = self.__DEFAULT_T_OFF else: period = self.__handle.database.clock_manager.getClockDomain(clock).tick_period t_off = period * t_off_in pair.SetClockPeriod(period) if id == -1 and e.GetProperty('Content') not in content.NO_DATABASE_REQUIRED: pair.SetMissingLocation() else: pair.SetVal('') if t_off in self.__t_off_sorted: self.__t_off_sorted[t_off] = self.__ForceAddAtLoc(pair, id, self.__t_off_sorted[t_off]) else: self.__t_off_sorted[t_off] = self.__ForceAddAtLoc(pair, id) # Update this pair to indicate that it was added with this this t_off and location # This will be recalled when deleting this pair pair.SetLocationAndTimingInformation(t_off_in, lmgr.getLocationString(loc)) # Makes sure that draw_order and t_off_sorted have the same Element # Value instance after this operation, and it is in the correct # location within draw_order # for i in range(len(self.__draw_order)): # if self.__draw_order[i] == pair: # self.__draw_order[i] = pair # return True # return False return True # # Helper method to __ForceAddSingleQueryPair() def __ForceAddAtLoc(self, pair, id, sub_dict = None): if sub_dict: if id in sub_dict: if pair not in sub_dict[id]: sub_dict[id].append(pair) else: sub_dict[id] = [pair] return sub_dict else: return {id:[pair]} # # Removes the Element-Value associated with the provided Element from # both draw_order and the t_off_sorted, without leaving lose ends. # @param pair Element_Value pair. The element in this pair must not have # had its location or t_offset changed since it was added, otherwise it will # not be found in the expecected __t_offset_sorted bucket. def DeletePair(self, pair): # In the case of Resorting an Element in t_off_sorted, draw order # delete range pair_entry if we have one e = pair.GetElement() # Get the properties related to rendering/sorting at the time this pair was added prev_locstr = pair.GetDisplayLocationString() # get the fully-resolved (no variables) location string prev_t_off = pair.GetDisplayTOffset() if e.GetQueryFrame(pair.GetClockPeriod()): for r_pair in self.__range_pairs: if r_pair == pair: self.__range_pairs.remove(pair) break else: # Recompute t_off in terms of plain HC's # #clock = self.GetClock(pair) lmgr = self.__layout_context.dbhandle.database.location_manager if prev_locstr is not None: loc, _, clock = lmgr.getLocationInfo(prev_locstr, {}) else: loc = lmgr.INVALID_LOCATION_ID clock = lmgr.NO_CLOCK ####t_off = e.GetProperty('t_offset') if clock == lmgr.NO_CLOCK: # Makes the assumption that there will always be something else at # t_offset of 0. If not, then this could stand to be optimized t_off = self.__DEFAULT_T_OFF else: t_off = self.__handle.database.clock_manager.getClockDomain(clock).tick_period * prev_t_off # Note that we could ignore missing t_offs here, but then we might # have stale links in another t_off bucket. This guarantees that the # the proper pair was removed by requiring it to be in the expected # bucket temp = self.__t_off_sorted[t_off].get(loc) if not temp: return for p in temp: if p == e: temp.remove(p) if len(self.__t_off_sorted[t_off][loc]) == 0: del self.__t_off_sorted[t_off][loc] if len(self.__t_off_sorted[t_off]) == 0: del self.__t_off_sorted[t_off] def CheckLocationVariablesChanged(self): loc_vars_status = self.__layout_context.GetLocationVariablesChanged() if loc_vars_status: self.__layout_context.AckLocationVariablesChanged() return loc_vars_status # # Returns the internal ID which maps to the given Element's Location # String, per the Location Manager def GetID(self, pair): el = pair.GetElement() if not el.LocationHasVars(): return self.__layout_context.dbhandle.database.location_manager.getLocationInfoNoVars(el.GetProperty('LocationString'))[0] else: return self.__layout_context.dbhandle.database.location_manager.getLocationInfo(el.GetProperty('LocationString'), self.__layout_context.GetLocationVariables(), self.CheckLocationVariablesChanged())[0] # # Returns the clock ID which maps to the given' Element's location # string, per the Location Manager def GetClock(self, pair): el = pair.GetElement() if el.LocationHasVars(): return self.__layout_context.dbhandle.database.location_manager.getLocationInfo(el.GetProperty('LocationString'), self.__layout_context.GetLocationVariables(), self.CheckLocationVariablesChanged())[2] else: return self.__layout_context.dbhandle.database.location_manager.getLocationInfoNoVars(el.GetProperty('LocationString'))[2] # # When an element has it's LocationString (therefore LocationID) or # it's t_offset changed, it needs to be resorted in the # dictionary. This method is called, and executes, BEFORE the new # property is assigned to the Element def ReSort(self, pair, t_off, id): self.DeletePair(pair) res = self.__ForceAddSingleQueryPair(pair, t_off, id) if res: logging.debug('An Element was properly resorted') else: logging.warning("""An Element was unable to be resorted properly, there is now a discrepancy between the Element Values stored in t_off_sorted{} and draw_order[] inside Ordered Dict""") # # Update the val of an Element Value when the Element's 'Content' # property is changed def ReValue(self, pair): e = pair.GetElement() if e.GetQueryFrame(pair.GetClockPeriod()): pair.ClearTimedValues() self.__layout_context.GoToHC(self.__layout_context.hc) else: if e.GetProperty('Content') in content.NO_TRANSACTIONS_REQUIRED: # Recompute t_off in terms of plain HC's clock = self.GetClock(pair) t_off = e.GetProperty('t_offset') if clock == self.__handle.database.location_manager.NO_CLOCK: # Makes the assumption that there will always be something else at # t_offset of 0. If not, then this could stand to be optimized t_off = self.__DEFAULT_T_OFF else: t_off = self.__handle.database.clock_manager.getClockDomain(clock).tick_period * t_off temp = self.__t_off_sorted[t_off][self.GetID(pair)] for pair_tmp in temp: if pair_tmp == e: pair.SetVal(content.ProcessContent(e.GetProperty('Content'), None, e, self.__handle, self.__layout_context.hc, self.__layout_context.GetLocationVariables()), self.__stab_index, ) return else: self.__layout_context.GoToHC(self.__layout_context.hc) # @profile def Update(self): ''' This is where all Element Values get re-synchronized to the current hc not sure if everything here is final, or best implemented ''' self.__stab_index = self.__stab_index + 1 # Cached variable lookups no_trans = content.NO_TRANSACTIONS_REQUIRED stab_index = self.__stab_index handle = self.__handle hc = self.__layout_context.hc loc_vars = self.__layout_context.GetLocationVariables() ordered_ticks = [hc + toff for toff in self.__t_off_sorted] # Clear all continued transactions so that we don't accidentally draw garbage self.__continued_transactions.clear() # add intermediate values to make sure Line-type elements have what they need bottom_of_pair = 100000000000000000 top_of_pair = -100000000000 for pair in self.__range_pairs: e = pair.GetElement() e.SetTime(hc) # Always set time because it is used for drawing the schedule group period = pair.GetClockPeriod() if period == -1: # unset/invalid continue qframe = e.GetQueryFrame(period) # #print 'QUERY FRAME @ hc={} FOR {} = {}. Period = {}'.format(hc, e, qframe, period) curr_time = qframe[0] + hc end_time = qframe[1] + hc curr_time = curr_time - curr_time % period end_time = end_time - end_time % period while curr_time <= end_time: timed_val = pair.GetTimedVal(curr_time) if not timed_val or not timed_val[0]: ordered_ticks.append(curr_time) if curr_time > top_of_pair: top_of_pair = curr_time if curr_time < bottom_of_pair: bottom_of_pair = curr_time curr_time += period if len(ordered_ticks) == 0: return # Nothing to update ordered_ticks = sorted(set(ordered_ticks)) next_tick_idx = [0] total_callbacks = [0] total_useful_callbacks = [0] total_updates = [0] # @profile def callback(t, tapi): total_callbacks[0] += 1 next_tick = next_tick_idx[0] if len(ordered_ticks) == 0: return next_t = ordered_ticks[next_tick] # Show tick info # #print 'On t=', t, ' @idx ', next_tick # #print' next t=', next_t if t < next_t: # print ' ignored callback at t={}. t < next_t ({})'.format(t, next_t) return # Ignore this t because there is no entry in ordered_ticks # #in future, do this for all clocks. # if t % period != 0: # return next_tick_idx[0] += 1 total_useful_callbacks[0] += 1 # get data for range_pairs updated = 0 GetID = self.GetID for range_pair_idx, range_pair in enumerate(self.__range_pairs): period = range_pair.GetClockPeriod() if period == -1: # unset/invalid continue e = range_pair.GetElement() frame = e.GetQueryFrame(period) tick_start = frame[0] + self.__layout_context.hc tick_end = frame[1] + self.__layout_context.hc if tick_start <= t <= tick_end: timed_val = range_pair.GetTimedVal(t) if not timed_val or not timed_val[0]: updated += 1 loc_id = GetID(range_pair) content_type = e.GetProperty('Content') # Update element content based on transaction # If there is no data for this tick, this will return None trans_proxy = self.__layout_context.dbhandle.api.getTransactionProxy(loc_id) if trans_proxy is not None and trans_proxy.isValid(): if range_pair_idx in self.__continued_transactions: old_interval, _, last = self.__continued_transactions[range_pair_idx] if last and t >= old_interval[1]: del self.__continued_transactions[range_pair_idx] if range_pair_idx in self.__continued_transactions: old_interval, old_processed_val, last = self.__continued_transactions[range_pair_idx] old_left = old_interval[0] new_interval = (old_left, trans_proxy.getRight()) # Fix for ARGOS-158/ARGOS-164 # There's a corner case where a heartbeat occurs in the middle of a clock period. We would ordinarily skip over it, and # consequently miss the last part of a continued transaction. If a continued transaction ends before the next clock period begins, # we add it to the ordered_ticks list so that we can catch the next part of it. if new_interval[1] < new_interval[0] + period: ordered_ticks.insert(next_tick_idx[0], new_interval[1]) self.__range_pairs[range_pair_idx].SetTimedVal(old_left, (old_processed_val, new_interval)) if not trans_proxy.isContinued(): self.__continued_transactions[range_pair_idx][0] = new_interval self.__continued_transactions[range_pair_idx][2] = True else: processed_val = content.ProcessContent(content_type, trans_proxy, e, handle, hc, loc_vars) interval = (trans_proxy.getLeft(), trans_proxy.getRight()) if trans_proxy.isContinued(): self.__continued_transactions[range_pair_idx] = [interval, copy.copy(processed_val), False] # Fix for ARGOS-158/ARGOS-164 # There's a corner case where a heartbeat occurs in the middle of a clock period. We would ordinarily skip over it, and # consequently miss the last part of a continued transaction. If a continued transaction ends before the next clock period begins, # we add it to the ordered_ticks list so that we can catch the next part of it. if interval[1] < interval[0] + period: ordered_ticks.insert(next_tick_idx[0], interval[1]) else: range_pair.SetTimedVal(interval[0], (processed_val, interval)) if trans_proxy.getLeft() != t: if t % period == 0: original_start = trans_proxy.getLeft() range_pair.SetTimedVal(t, (original_start, (t, t))) # placeholder if not range_pair.GetTimedVal(original_start): info('Unable to make full query.') else: if t % period == 0: range_pair.SetTimedVal(t, (None, (t, t))) # placeholder # Query at this time and update all elements for which a transaction # exists. # assert t-hc in self.__t_off_sorted, 'bad tick {0}'.format(t) if t - hc in self.__t_off_sorted: ids = self.__t_off_sorted[t - hc] # #.keys() # #print 'IDs @ {0} = {1}'.format(t, ids) # Dump all locations in a row with locaiton transacitons IDs coded into ascii # #for locid in xrange(0, self.__layout_context.dbhandle.database.location_manager.getMaxLocationID()): # # trans_proxy = self.__layout_context.dbhandle.api.getTransactionProxy(locid) # # if trans_proxy is not None and trans_proxy.isValid(): # # sys.stdout.write('{:1s}'.format(chr((0x21 + trans_proxy.getTransactionID()) # # % (ord('~') - ord('!')) # # ))) # # else: # # sys.stdout.write('_') # #print '' for loc_id, els in self.__t_off_sorted[t - hc].items(): for pair in els: e = pair.GetElement() content_type = e.GetProperty('Content') if content_type in no_trans: # Update this element, which is not dependent on a transaction pair.SetVal(content.ProcessContent(content_type, None, e, handle, hc, loc_vars), stab_index) else: # Update element content based on transaction # If there is no data for this tick, this will return None trans_proxy = self.__layout_context.dbhandle.api.getTransactionProxy(loc_id) if loc_id == -1: pair.SetMissingLocation() elif trans_proxy is not None and trans_proxy.isValid(): pair.SetVal(content.ProcessContent(content_type, trans_proxy, e, handle, hc, loc_vars), stab_index) else: # There is no transaction here. It might be a fake query response or # a genuine empty transaction. # If previously, there was no transaction at this location, # assume this is still the case. If an element changes locations # and then points to a location that is valid but has no transaction # it is the responsibility of AddElement-related methods to clear # the 'no location' value so that it doesn't persist if pair.GetVal() is not content.OverrideState('no loc'): pair.SetVal(content.OverrideState('no trans')) updated += 1 total_updates[0] += updated logging.debug('Querying from {} to {}'.format(ordered_ticks[0], ordered_ticks[-1])) t_start = time.monotonic() try: self.__layout_context.dbhandle.query(ordered_ticks[0], ordered_ticks[-1], callback, True) logging.debug("Done with db query") except Exception as ex: logging.debug('Exception while querying!: {}'.format(ex)) raise finally: logging.debug('{0}s: Query+Update for {1} elements. {2} callbacks ({3} useful)' \ .format(time.monotonic() - t_start, total_updates[0], total_callbacks[0], total_useful_callbacks[0])) logging.debug(' {}'.format(self.__layout_context.dbhandle.api)) node_states = self.__layout_context.dbhandle.api.getNodeStates().decode('utf-8').split('\n') for ns in node_states: logging.debug(' {}'.format(ns)) logging.debug('Done') # print 'Node 0 dump:\n' # print self.__layout_context.dbhandle.api.getNodeDump(0, 890, 905, 40); # # For debug purposes def __repr__(self): return self.__str__() def __str__(self): return '<Ordered_Dict>'.format() def GetElementDump(self): res = '' for t_off in self.__t_off_sorted: res += str(t_off) + '\t' for loc in self.__t_off_sorted[t_off]: res += str(loc) + '\t' for e in self.__t_off_sorted[t_off][loc]: res += repr(e) + ', ' res += '\n\t' res += '\n' return res
50.234405
212
0.543765
4a1c85280f06ebfcf1ca1cd229d2ce7c1852ebbc
35,882
py
Python
launchdarkly_api/model/defaults.py
launchdarkly/api-client-python
b72bd94fb65ac57bd95df5767aebcdaff50e5cb6
[ "Apache-2.0" ]
6
2020-02-06T20:17:25.000Z
2021-12-28T20:13:34.000Z
launchdarkly_api/model/defaults.py
launchdarkly/api-client-python
b72bd94fb65ac57bd95df5767aebcdaff50e5cb6
[ "Apache-2.0" ]
7
2019-02-18T21:51:47.000Z
2021-09-03T17:49:33.000Z
launchdarkly_api/model/defaults.py
launchdarkly/api-client-python
b72bd94fb65ac57bd95df5767aebcdaff50e5cb6
[ "Apache-2.0" ]
6
2019-08-02T16:10:31.000Z
2021-05-23T17:47:03.000Z
# -*- coding: utf-8 -*- """ LaunchDarkly REST API # Overview ## Authentication All REST API resources are authenticated with either [personal or service access tokens](https://docs.launchdarkly.com/home/account-security/api-access-tokens), or session cookies. Other authentication mechanisms are not supported. You can manage personal access tokens on your [Account settings](https://app.launchdarkly.com/settings/tokens) page. LaunchDarkly also has SDK keys, mobile keys, and client-side IDs that are used by our server-side SDKs, mobile SDKs, and client-side SDKs, respectively. **These keys cannot be used to access our REST API**. These keys are environment-specific, and can only perform read-only operations (fetching feature flag settings). | Auth mechanism | Allowed resources | Use cases | | ----------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------- | -------------------------------------------------- | | [Personal access tokens](https://docs.launchdarkly.com/home/account-security/api-access-tokens) | Can be customized on a per-token basis | Building scripts, custom integrations, data export | | SDK keys | Can only access read-only SDK-specific resources and the firehose, restricted to a single environment | Server-side SDKs, Firehose API | | Mobile keys | Can only access read-only mobile SDK-specific resources, restricted to a single environment | Mobile SDKs | | Client-side ID | Single environment, only flags marked available to client-side | Client-side JavaScript | > #### Keep your access tokens and SDK keys private > > Access tokens should _never_ be exposed in untrusted contexts. Never put an access token in client-side JavaScript, or embed it in a mobile application. LaunchDarkly has special mobile keys that you can embed in mobile apps. If you accidentally expose an access token or SDK key, you can reset it from your [Account Settings](https://app.launchdarkly.com/settings#/tokens) page. > > The client-side ID is safe to embed in untrusted contexts. It's designed for use in client-side JavaScript. ### Via request header The preferred way to authenticate with the API is by adding an `Authorization` header containing your access token to your requests. The value of the `Authorization` header must be your access token. Manage personal access tokens from the [Account Settings](https://app.launchdarkly.com/settings/tokens) page. ### Via session cookie For testing purposes, you can make API calls directly from your web browser. If you're logged in to the application, the API will use your existing session to authenticate calls. If you have a [role](https://docs.launchdarkly.com/home/team/built-in-roles) other than Admin, or have a [custom role](https://docs.launchdarkly.com/home/team/custom-roles) defined, you may not have permission to perform some API calls. You will receive a `401` response code in that case. > ### Modifying the Origin header causes an error > > LaunchDarkly validates that the Origin header for any API request authenticated by a session cookie matches the expected Origin header. The expected Origin header is `https://app.launchdarkly.com`. > > If the Origin header does not match what's expected, LaunchDarkly returns an error. This error can prevent the LaunchDarkly app from working correctly. > > Any browser extension that intentionally changes the Origin header can cause this problem. For example, the `Allow-Control-Allow-Origin: *` Chrome extension changes the Origin header to `http://evil.com` and causes the app to fail. > > To prevent this error, do not modify your Origin header. > > LaunchDarkly does not require origin matching when authenticating with an access token, so this issue does not affect normal API usage. ## Representations All resources expect and return JSON response bodies. Error responses will also send a JSON body. Read [Errors](#section/Errors) for a more detailed description of the error format used by the API. In practice this means that you always get a response with a `Content-Type` header set to `application/json`. In addition, request bodies for `PUT`, `POST`, `REPORT` and `PATCH` requests must be encoded as JSON with a `Content-Type` header set to `application/json`. ### Summary and detailed representations When you fetch a list of resources, the response includes only the most important attributes of each resource. This is a _summary representation_ of the resource. When you fetch an individual resource (for example, a single feature flag), you receive a _detailed representation_ containing all of the attributes of the resource. The best way to find a detailed representation is to follow links. Every summary representation includes a link to its detailed representation. ### Links and addressability The best way to navigate the API is by following links. These are attributes in representations that link to other resources. The API always uses the same format for links: - Links to other resources within the API are encapsulated in a `_links` object. - If the resource has a corresponding link to HTML content on the site, it is stored in a special `_site` link. Each link has two attributes: an href (the URL) and a type (the content type). For example, a feature resource might return the following: ```json { \"_links\": { \"parent\": { \"href\": \"/api/features\", \"type\": \"application/json\" }, \"self\": { \"href\": \"/api/features/sort.order\", \"type\": \"application/json\" } }, \"_site\": { \"href\": \"/features/sort.order\", \"type\": \"text/html\" } } ``` From this, you can navigate to the parent collection of features by following the `parent` link, or navigate to the site page for the feature by following the `_site` link. Collections are always represented as a JSON object with an `items` attribute containing an array of representations. Like all other representations, collections have `_links` defined at the top level. Paginated collections include `first`, `last`, `next`, and `prev` links containing a URL with the respective set of elements in the collection. ## Updates Resources that accept partial updates use the `PATCH` verb, and support the [JSON Patch](https://datatracker.ietf.org/doc/html/rfc6902) format. Some resources also support the [JSON Merge Patch](https://datatracker.ietf.org/doc/html/rfc7386) format. In addition, some resources support optional comments that can be submitted with updates. Comments appear in outgoing webhooks, the audit log, and other integrations. ### Updates via JSON Patch [JSON Patch](https://datatracker.ietf.org/doc/html/rfc6902) is a way to specify the modifications to perform on a resource. For example, in this feature flag representation: ```json { \"name\": \"New recommendations engine\", \"key\": \"engine.enable\", \"description\": \"This is the description\", ... } ``` You can change the feature flag's description with the following patch document: ```json [{ \"op\": \"replace\", \"path\": \"/description\", \"value\": \"This is the new description\" }] ``` JSON Patch documents are always arrays. You can specify multiple modifications to perform in a single request. You can also test that certain preconditions are met before applying the patch: ```json [ { \"op\": \"test\", \"path\": \"/version\", \"value\": 10 }, { \"op\": \"replace\", \"path\": \"/description\", \"value\": \"The new description\" } ] ``` The above patch request tests whether the feature flag's `version` is `10`, and if so, changes the feature flag's description. Attributes that aren't editable, like a resource's `_links`, have names that start with an underscore. ### Updates via JSON Merge Patch The API also supports the [JSON Merge Patch](https://datatracker.ietf.org/doc/html/rfc7386) format, as well as the [Update feature flag](/tag/Feature-flags#operation/patchFeatureFlag) resource. JSON Merge Patch is less expressive than JSON Patch but in many cases, it is simpler to construct a merge patch document. For example, you can change a feature flag's description with the following merge patch document: ```json { \"description\": \"New flag description\" } ``` ### Updates with comments You can submit optional comments with `PATCH` changes. The [Update feature flag](/tag/Feature-flags#operation/patchFeatureFlag) resource supports comments. To submit a comment along with a JSON Patch document, use the following format: ```json { \"comment\": \"This is a comment string\", \"patch\": [{ \"op\": \"replace\", \"path\": \"/description\", \"value\": \"The new description\" }] } ``` To submit a comment along with a JSON Merge Patch document, use the following format: ```json { \"comment\": \"This is a comment string\", \"merge\": { \"description\": \"New flag description\" } } ``` ### Updates via semantic patches The API also supports the Semantic patch format. A semantic `PATCH` is a way to specify the modifications to perform on a resource as a set of executable instructions. JSON Patch uses paths and a limited set of operations to describe how to transform the current state of the resource into a new state. Semantic patch allows you to be explicit about intent using precise, custom instructions. In many cases, semantic patch instructions can also be defined independently of the current state of the resource. This can be useful when defining a change that may be applied at a future date. For example, in this feature flag configuration in environment Production: ```json { \"name\": \"Alternate sort order\", \"kind\": \"boolean\", \"key\": \"sort.order\", ... \"environments\": { \"production\": { \"on\": true, \"archived\": false, \"salt\": \"c29ydC5vcmRlcg==\", \"sel\": \"8de1085cb7354b0ab41c0e778376dfd3\", \"lastModified\": 1469131558260, \"version\": 81, \"targets\": [ { \"values\": [ \"Gerhard.Little@yahoo.com\" ], \"variation\": 0 }, { \"values\": [ \"1461797806429-33-861961230\", \"438580d8-02ee-418d-9eec-0085cab2bdf0\" ], \"variation\": 1 } ], \"rules\": [], \"fallthrough\": { \"variation\": 0 }, \"offVariation\": 1, \"prerequisites\": [], \"_site\": { \"href\": \"/default/production/features/sort.order\", \"type\": \"text/html\" } } } } ``` You can add a date you want a user to be removed from the feature flag's user targets. For example, “remove user 1461797806429-33-861961230 from the user target for variation 0 on the Alternate sort order flag in the production environment on Wed Jul 08 2020 at 15:27:41 pm”. This is done using the following: ```json { \"comment\": \"update expiring user targets\", \"instructions\": [ { \"kind\": \"removeExpireUserTargetDate\", \"userKey\": \"userKey\", \"variationId\": \"978d53f9-7fe3-4a63-992d-97bcb4535dc8\" }, { \"kind\": \"updateExpireUserTargetDate\", \"userKey\": \"userKey2\", \"variationId\": \"978d53f9-7fe3-4a63-992d-97bcb4535dc8\", \"value\": 1587582000000 }, { \"kind\": \"addExpireUserTargetDate\", \"userKey\": \"userKey3\", \"variationId\": \"978d53f9-7fe3-4a63-992d-97bcb4535dc8\", \"value\": 1594247266386 } ] } ``` Here is another example. In this feature flag configuration: ```json { \"name\": \"New recommendations engine\", \"key\": \"engine.enable\", \"environments\": { \"test\": { \"on\": true } } } ``` You can change the feature flag's description with the following patch document as a set of executable instructions. For example, “add user X to targets for variation Y and remove user A from targets for variation B for test flag”: ```json { \"comment\": \"\", \"instructions\": [ { \"kind\": \"removeUserTargets\", \"values\": [\"438580d8-02ee-418d-9eec-0085cab2bdf0\"], \"variationId\": \"852cb784-54ff-46b9-8c35-5498d2e4f270\" }, { \"kind\": \"addUserTargets\", \"values\": [\"438580d8-02ee-418d-9eec-0085cab2bdf0\"], \"variationId\": \"1bb18465-33b6-49aa-a3bd-eeb6650b33ad\" } ] } ``` > ### Supported semantic patch API endpoints > > - [Update feature flag](/tag/Feature-flags#operation/patchFeatureFlag) > - [Update expiring user targets on feature flag](/tag/Feature-flags#operation/patchExpiringUserTargets) > - [Update expiring user target for flags](/tag/User-settings#operation/patchExpiringFlagsForUser) > - [Update expiring user targets on segment](/tag/Segments#operation/patchExpiringUserTargetsForSegment) ## Errors The API always returns errors in a common format. Here's an example: ```json { \"code\": \"invalid_request\", \"message\": \"A feature with that key already exists\", \"id\": \"30ce6058-87da-11e4-b116-123b93f75cba\" } ``` The general class of error is indicated by the `code`. The `message` is a human-readable explanation of what went wrong. The `id` is a unique identifier. Use it when you're working with LaunchDarkly support to debug a problem with a specific API call. ### HTTP Status - Error Response Codes | Code | Definition | Desc. | Possible Solution | | ---- | ----------------- | ------------------------------------------------------------------------------------------- | ---------------------------------------------------------------- | | 400 | Bad Request | A request that fails may return this HTTP response code. | Ensure JSON syntax in request body is correct. | | 401 | Unauthorized | User doesn't have permission to an API call. | Ensure your SDK key is good. | | 403 | Forbidden | User does not have permission for operation. | Ensure that the user or access token has proper permissions set. | | 409 | Conflict | The API request could not be completed because it conflicted with a concurrent API request. | Retry your request. | | 429 | Too many requests | See [Rate limiting](/#section/Rate-limiting). | Wait and try again later. | ## CORS The LaunchDarkly API supports Cross Origin Resource Sharing (CORS) for AJAX requests from any origin. If an `Origin` header is given in a request, it will be echoed as an explicitly allowed origin. Otherwise, a wildcard is returned: `Access-Control-Allow-Origin: *`. For more information on CORS, see the [CORS W3C Recommendation](http://www.w3.org/TR/cors). Example CORS headers might look like: ```http Access-Control-Allow-Headers: Accept, Content-Type, Content-Length, Accept-Encoding, Authorization Access-Control-Allow-Methods: OPTIONS, GET, DELETE, PATCH Access-Control-Allow-Origin: * Access-Control-Max-Age: 300 ``` You can make authenticated CORS calls just as you would make same-origin calls, using either [token or session-based authentication](#section/Authentication). If you’re using session auth, you should set the `withCredentials` property for your `xhr` request to `true`. You should never expose your access tokens to untrusted users. ## Rate limiting We use several rate limiting strategies to ensure the availability of our APIs. Rate-limited calls to our APIs will return a `429` status code. Calls to our APIs will include headers indicating the current rate limit status. The specific headers returned depend on the API route being called. The limits differ based on the route, authentication mechanism, and other factors. Routes that are not rate limited may not contain any of the headers described below. > ### Rate limiting and SDKs > > LaunchDarkly SDKs are never rate limited and do not use the API endpoints defined here. LaunchDarkly uses a different set of approaches, including streaming/server-sent events and a global CDN, to ensure availability to the routes used by LaunchDarkly SDKs. > > The client-side ID is safe to embed in untrusted contexts. It's designed for use in client-side JavaScript. ### Global rate limits Authenticated requests are subject to a global limit. This is the maximum number of calls that can be made to the API per ten seconds. All personal access tokens on the account share this limit, so exceeding the limit with one access token will impact other tokens. Calls that are subject to global rate limits will return the headers below: | Header name | Description | | ------------------------------ | -------------------------------------------------------------------------------- | | `X-Ratelimit-Global-Remaining` | The maximum number of requests the account is permitted to make per ten seconds. | | `X-Ratelimit-Reset` | The time at which the current rate limit window resets in epoch milliseconds. | We do not publicly document the specific number of calls that can be made globally. This limit may change, and we encourage clients to program against the specification, relying on the two headers defined above, rather than hardcoding to the current limit. ### Route-level rate limits Some authenticated routes have custom rate limits. These also reset every ten seconds. Any access tokens hitting the same route share this limit, so exceeding the limit with one access token may impact other tokens. Calls that are subject to route-level rate limits will return the headers below: | Header name | Description | | ----------------------------- | ----------------------------------------------------------------------------------------------------- | | `X-Ratelimit-Route-Remaining` | The maximum number of requests to the current route the account is permitted to make per ten seconds. | | `X-Ratelimit-Reset` | The time at which the current rate limit window resets in epoch milliseconds. | A _route_ represents a specific URL pattern and verb. For example, the [Delete environment](/tag/Environments#operation/deleteEnvironment) endpoint is considered a single route, and each call to delete an environment counts against your route-level rate limit for that route. We do not publicly document the specific number of calls that can be made to each endpoint per ten seconds. These limits may change, and we encourage clients to program against the specification, relying on the two headers defined above, rather than hardcoding to the current limits. ### IP-based rate limiting We also employ IP-based rate limiting on some API routes. If you hit an IP-based rate limit, your API response will include a `Retry-After` header indicating how long to wait before re-trying the call. Clients must wait at least `Retry-After` seconds before making additional calls to our API, and should employ jitter and backoff strategies to avoid triggering rate limits again. ## OpenAPI (Swagger) We have a [complete OpenAPI (Swagger) specification](https://app.launchdarkly.com/api/v2/openapi.json) for our API. You can use this specification to generate client libraries to interact with our REST API in your language of choice. This specification is supported by several API-based tools such as Postman and Insomnia. In many cases, you can directly import our specification to ease use in navigating the APIs in the tooling. ## Client libraries We auto-generate multiple client libraries based on our OpenAPI specification. To learn more, visit [GitHub](https://github.com/search?q=topic%3Alaunchdarkly-api+org%3Alaunchdarkly&type=Repositories). ## Method Overriding Some firewalls and HTTP clients restrict the use of verbs other than `GET` and `POST`. In those environments, our API endpoints that use `PUT`, `PATCH`, and `DELETE` verbs will be inaccessible. To avoid this issue, our API supports the `X-HTTP-Method-Override` header, allowing clients to \"tunnel\" `PUT`, `PATCH`, and `DELETE` requests via a `POST` request. For example, if you wish to call one of our `PATCH` resources via a `POST` request, you can include `X-HTTP-Method-Override:PATCH` as a header. ## Beta resources We sometimes release new API resources in **beta** status before we release them with general availability. Resources that are in beta are still undergoing testing and development. They may change without notice, including becoming backwards incompatible. We try to promote resources into general availability as quickly as possible. This happens after sufficient testing and when we're satisfied that we no longer need to make backwards-incompatible changes. We mark beta resources with a \"Beta\" callout in our documentation, pictured below: > ### This feature is in beta > > To use this feature, pass in a header including the `LD-API-Version` key with value set to `beta`. Use this header with each call. To learn more, read [Beta resources](/#section/Beta-resources). ### Using beta resources To use a beta resource, you must include a header in the request. If you call a beta resource without this header, you'll receive a `403` response. Use this header: ``` LD-API-Version: beta ``` ## Versioning We try hard to keep our REST API backwards compatible, but we occasionally have to make backwards-incompatible changes in the process of shipping new features. These breaking changes can cause unexpected behavior if you don't prepare for them accordingly. Updates to our REST API include support for the latest features in LaunchDarkly. We also release a new version of our REST API every time we make a breaking change. We provide simultaneous support for multiple API versions so you can migrate from your current API version to a new version at your own pace. ### Setting the API version per request You can set the API version on a specific request by sending an `LD-API-Version` header, as shown in the example below: ``` LD-API-Version: 20191212 ``` The header value is the version number of the API version you'd like to request. The number for each version corresponds to the date the version was released. In the example above the version `20191212` corresponds to December 12, 2019. ### Setting the API version per access token When creating an access token, you must specify a specific version of the API to use. This ensures that integrations using this token cannot be broken by version changes. Tokens created before versioning was released have their version set to `20160426` (the version of the API that existed before versioning) so that they continue working the same way they did before versioning. If you would like to upgrade your integration to use a new API version, you can explicitly set the header described above. > ### Best practice: Set the header for every client or integration > > We recommend that you set the API version header explicitly in any client or integration you build. > > Only rely on the access token API version during manual testing. # noqa: E501 The version of the OpenAPI document: 2.0 Contact: support@launchdarkly.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from launchdarkly_api.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from launchdarkly_api.exceptions import ApiAttributeError class Defaults(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'on_variation': (int,), # noqa: E501 'off_variation': (int,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'on_variation': 'onVariation', # noqa: E501 'off_variation': 'offVariation', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, on_variation, off_variation, *args, **kwargs): # noqa: E501 """Defaults - a model defined in OpenAPI Args: on_variation (int): off_variation (int): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.on_variation = on_variation self.off_variation = off_variation for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, on_variation, off_variation, *args, **kwargs): # noqa: E501 """Defaults - a model defined in OpenAPI Args: on_variation (int): off_variation (int): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.on_variation = on_variation self.off_variation = off_variation for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
132.405904
24,467
0.6372
4a1c859043ec3a4a85781bbf8514ec9ad35c1784
3,703
py
Python
wxgui/debug.py
pshchelo/vampy
85555daf3a04bf36e81d6cd64f66bb1e4b341860
[ "BSD-3-Clause" ]
1
2021-04-19T09:48:04.000Z
2021-04-19T09:48:04.000Z
wxgui/debug.py
pshchelo/vampy
85555daf3a04bf36e81d6cd64f66bb1e4b341860
[ "BSD-3-Clause" ]
null
null
null
wxgui/debug.py
pshchelo/vampy
85555daf3a04bf36e81d6cd64f66bb1e4b341860
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python '''Frame for single image debugging ''' import wx import matplotlib as mplt mplt.use('WXAgg', warn=False) from matplotlib import cm from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.backends.backend_wxagg import NavigationToolbar2WxAgg as NavigationToolbar2 from matplotlib.figure import Figure from resources import MICROSCOPE import widgets from calc import smooth class ImageDebugFrame(wx.Frame): def __init__(self, parent, id, img, out, extra_out): wx.Frame.__init__(self, parent, id, size=(800,600), title = 'Single Image Debug') self.statusbar = widgets.PlotStatusBar(self) self.SetStatusBar(self.statusbar) panel = wx.Panel(self, -1) pansizer = wx.BoxSizer(wx.VERTICAL) self.figure = Figure(facecolor = widgets.rgba_wx2mplt(panel.GetBackgroundColour())) self.canvas = FigureCanvas(panel, -1, self.figure) self.canvas.mpl_connect('motion_notify_event', self.statusbar.SetPosition) pansizer.Add(self.canvas, 1, wx.GROW) navtoolbar = NavigationToolbar2(self.canvas) navtoolbar.Realize() pansizer.Add(navtoolbar, 0, wx.GROW) profile = extra_out['profile'] self.profileplot = self.figure.add_subplot(221, title = 'Axis brightness profile') self.profileplot.plot(profile) order = parent.analysispanel.GetParams()['order'] window = parent.analysispanel.GetParams()['window'] smoothmode = parent.analysispanel.GetParams()['smoothing'] grad = abs(smooth.smooth1d(profile, smoothmode, order, window, diff=1)) multiplier = profile.max()/grad.max()/2 grad *= multiplier self.profileplot.plot(grad) self.profileplot.axvline(extra_out['pip'], color = 'blue') self.profileplot.axvline(extra_out['asp'], color = 'yellow') self.profileplot.axvline(extra_out['ves'], color = 'green') self.imgplot = self.figure.add_subplot(222, title = 'Image') refs = extra_out['refs'] for ref in refs: self.imgplot.plot([ref[0][1]], [ref[0][0]], 'yo') # due to format of refs self.imgplot.imshow(img, aspect = 'equal', extent = None, cmap = cm.get_cmap('gray')) self.pipprofile1 = self.figure.add_subplot(223, title = 'Left pipette section') xleft = refs[0][0][1] pipprofile1 = img[:,xleft] self.pipprofile1.plot(pipprofile1) self.pipprofile2 = self.figure.add_subplot(224, title = 'Right pipette section') xright = refs[-1][0][1] pipprofile2 = img[:,xright] self.pipprofile2.plot(pipprofile2) # self.gradpipprofile1 = self.figure.add_subplot(325, title = 'Left pipette section gradient') # self.gradpipprofile1.plot(utils.get_gradient(pipprofile1, 3)) # # self.gradpipprofile2 = self.figure.add_subplot(326, title = 'Right pipette section gradient') # self.gradpipprofile2.plot(utils.get_gradient(pipprofile2, 3)) # panel.SetSizer(pansizer) panel.Fit() title = '%s : %s - Image %s - %s'%(parent.imagedate, parent.imagedir, parent.imgpanel.GetImgNo(), self.GetTitle()) self.SetTitle(title) self.SetFrameIcons(MICROSCOPE, (16,24,32)) self.canvas.draw() def SetFrameIcons(self, artid, sizes): ib = wx.IconBundle() for size in sizes: ib.AddIcon(wx.ArtProvider.GetIcon(artid, size = (size,size))) self.SetIcons(ib)
41.606742
123
0.63138
4a1c87732c7b62e0147abcabc405b248f772ccd6
130
py
Python
pantheon-hermes/pantheon/hermes/gpu/nvidia/gtx.py
CaptainBriot/hermes
b603b63b76b1e708364839367632fd3ba6dace97
[ "MIT" ]
null
null
null
pantheon-hermes/pantheon/hermes/gpu/nvidia/gtx.py
CaptainBriot/hermes
b603b63b76b1e708364839367632fd3ba6dace97
[ "MIT" ]
2
2017-12-24T20:13:15.000Z
2017-12-25T20:57:55.000Z
pantheon-hermes/pantheon/hermes/gpu/nvidia/gtx.py
CaptainBriot/pantheon-hermes
b603b63b76b1e708364839367632fd3ba6dace97
[ "MIT" ]
null
null
null
from .. import gpu class Nvidia1070(gpu.BaseGPU): model = 'GeForce GTX 1070' mem = 1300 clock = 100 power = 100
14.444444
30
0.615385
4a1c877858500c664101f51835bf5e58004af0e9
970
py
Python
project_templates/stack_package/example_dds/python/lsst/example/dds/__init__.py
lsst/templates
ea9ea300299eabc482468de6582c71ae3146f671
[ "Adobe-Glyph" ]
6
2016-07-19T20:55:01.000Z
2019-03-29T02:34:00.000Z
project_templates/stack_package/example_dds/python/lsst/example/dds/__init__.py
lsst/templates
ea9ea300299eabc482468de6582c71ae3146f671
[ "Adobe-Glyph" ]
51
2015-12-09T20:50:59.000Z
2022-03-29T17:12:52.000Z
project_templates/stack_package/example_dds/python/lsst/example/dds/__init__.py
lsst/templates
ea9ea300299eabc482468de6582c71ae3146f671
[ "Adobe-Glyph" ]
31
2015-05-06T08:56:44.000Z
2021-03-29T20:18:16.000Z
# This file is part of example_dds. # # Developed for the LSST Data Management System. # This product includes software developed by the LSST Project # (https://www.lsst.org). # See the COPYRIGHT file at the top-level directory of this distribution # for details of code ownership. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. from .version import * # Generated by sconsUtils
42.173913
72
0.764948
4a1c887f4139d63d1b87243ef3b9e57746dba52e
12,743
py
Python
4_pose_estimation/utils/dataloader.py
ryotaro137/pytorch_advanced
af212d250162d598546fc45b2823b441b013223e
[ "MIT" ]
1
2021-04-11T00:12:41.000Z
2021-04-11T00:12:41.000Z
4_pose_estimation/utils/dataloader.py
ryotaro137/pytorch_advanced
af212d250162d598546fc45b2823b441b013223e
[ "MIT" ]
null
null
null
4_pose_estimation/utils/dataloader.py
ryotaro137/pytorch_advanced
af212d250162d598546fc45b2823b441b013223e
[ "MIT" ]
2
2021-04-11T00:12:24.000Z
2021-05-22T10:06:24.000Z
# 第4章姿勢推定のデータオーギュメンテーション # 実装の一部参考に使用 # https://github.com/tensorboy/pytorch_Realtime_Multi-Person_Pose_Estimation/ # Released under the MIT license import os import os.path as osp import json from PIL import Image import cv2 import numpy as np from scipy import misc, ndimage import torch import torch.utils.data as data from utils.data_augumentation import Compose, get_anno, add_neck, aug_scale, aug_rotate, aug_croppad, aug_flip, remove_illegal_joint, Normalize_Tensor, no_Normalize_Tensor def putGaussianMaps(center, accumulate_confid_map, params_transform): '''ガウスマップに変換する''' crop_size_y = params_transform['crop_size_y'] crop_size_x = params_transform['crop_size_x'] stride = params_transform['stride'] sigma = params_transform['sigma'] grid_y = crop_size_y / stride grid_x = crop_size_x / stride start = stride / 2.0 - 0.5 y_range = [i for i in range(int(grid_y))] x_range = [i for i in range(int(grid_x))] xx, yy = np.meshgrid(x_range, y_range) xx = xx * stride + start yy = yy * stride + start d2 = (xx - center[0]) ** 2 + (yy - center[1]) ** 2 exponent = d2 / 2.0 / sigma / sigma mask = exponent <= 4.6052 cofid_map = np.exp(-exponent) cofid_map = np.multiply(mask, cofid_map) accumulate_confid_map += cofid_map accumulate_confid_map[accumulate_confid_map > 1.0] = 1.0 return accumulate_confid_map def putVecMaps(centerA, centerB, accumulate_vec_map, count, params_transform): '''Parts A Fieldのベクトルを求める''' centerA = centerA.astype(float) centerB = centerB.astype(float) stride = params_transform['stride'] crop_size_y = params_transform['crop_size_y'] crop_size_x = params_transform['crop_size_x'] grid_y = crop_size_y / stride grid_x = crop_size_x / stride thre = params_transform['limb_width'] # limb width centerB = centerB / stride centerA = centerA / stride limb_vec = centerB - centerA norm = np.linalg.norm(limb_vec) if (norm == 0.0): # print 'limb is too short, ignore it...' return accumulate_vec_map, count limb_vec_unit = limb_vec / norm # print 'limb unit vector: {}'.format(limb_vec_unit) # To make sure not beyond the border of this two points min_x = max(int(round(min(centerA[0], centerB[0]) - thre)), 0) max_x = min(int(round(max(centerA[0], centerB[0]) + thre)), grid_x) min_y = max(int(round(min(centerA[1], centerB[1]) - thre)), 0) max_y = min(int(round(max(centerA[1], centerB[1]) + thre)), grid_y) range_x = list(range(int(min_x), int(max_x), 1)) range_y = list(range(int(min_y), int(max_y), 1)) xx, yy = np.meshgrid(range_x, range_y) ba_x = xx - centerA[0] # the vector from (x,y) to centerA ba_y = yy - centerA[1] limb_width = np.abs(ba_x * limb_vec_unit[1] - ba_y * limb_vec_unit[0]) mask = limb_width < thre # mask is 2D vec_map = np.copy(accumulate_vec_map) * 0.0 vec_map[yy, xx] = np.repeat(mask[:, :, np.newaxis], 2, axis=2) vec_map[yy, xx] *= limb_vec_unit[np.newaxis, np.newaxis, :] mask = np.logical_or.reduce( (np.abs(vec_map[:, :, 0]) > 0, np.abs(vec_map[:, :, 1]) > 0)) accumulate_vec_map = np.multiply( accumulate_vec_map, count[:, :, np.newaxis]) accumulate_vec_map += vec_map count[mask == True] += 1 mask = count == 0 count[mask == True] = 1 accumulate_vec_map = np.divide(accumulate_vec_map, count[:, :, np.newaxis]) count[mask == True] = 0 return accumulate_vec_map, count def get_ground_truth(meta, mask_miss): """アノテーションとマスクデータから正しい答えを求める""" # 初期設定 params_transform = dict() params_transform['stride'] = 8 # 画像サイズを変更したくない場合は1にする params_transform['mode'] = 5 params_transform['crop_size_x'] = 368 params_transform['crop_size_y'] = 368 params_transform['np'] = 56 params_transform['sigma'] = 7.0 params_transform['limb_width'] = 1.0 stride = params_transform['stride'] mode = params_transform['mode'] crop_size_y = params_transform['crop_size_y'] crop_size_x = params_transform['crop_size_x'] num_parts = params_transform['np'] nop = meta['numOtherPeople'] # 画像サイズ grid_y = crop_size_y / stride grid_x = crop_size_x / stride channels = (num_parts + 1) * 2 # 格納する変数 heatmaps = np.zeros((int(grid_y), int(grid_x), 19)) pafs = np.zeros((int(grid_y), int(grid_x), 38)) mask_miss = cv2.resize(mask_miss, (0, 0), fx=1.0 / stride, fy=1.0 / stride, interpolation=cv2.INTER_CUBIC).astype( np.float32) mask_miss = mask_miss / 255. mask_miss = np.expand_dims(mask_miss, axis=2) # マスク変数 heat_mask = np.repeat(mask_miss, 19, axis=2) paf_mask = np.repeat(mask_miss, 38, axis=2) # ピンポイントの座標情報をガウス分布にぼやっとさせる for i in range(18): if (meta['joint_self'][i, 2] <= 1): center = meta['joint_self'][i, :2] gaussian_map = heatmaps[:, :, i] heatmaps[:, :, i] = putGaussianMaps( center, gaussian_map, params_transform) # coco_dataのみ for j in range(nop): if (meta['joint_others'][j, i, 2] <= 1): center = meta['joint_others'][j, i, :2] gaussian_map = heatmaps[:, :, i] heatmaps[:, :, i] = putGaussianMaps( center, gaussian_map, params_transform) # pafs mid_1 = [2, 9, 10, 2, 12, 13, 2, 3, 4, 3, 2, 6, 7, 6, 2, 1, 1, 15, 16] mid_2 = [9, 10, 11, 12, 13, 14, 3, 4, 5, 17, 6, 7, 8, 18, 1, 15, 16, 17, 18] thre = 1 for i in range(19): # limb count = np.zeros((int(grid_y), int(grid_x)), dtype=np.uint32) if (meta['joint_self'][mid_1[i] - 1, 2] <= 1 and meta['joint_self'][mid_2[i] - 1, 2] <= 1): centerA = meta['joint_self'][mid_1[i] - 1, :2] centerB = meta['joint_self'][mid_2[i] - 1, :2] vec_map = pafs[:, :, 2 * i:2 * i + 2] # print vec_map.shape pafs[:, :, 2 * i:2 * i + 2], count = putVecMaps(centerA=centerA, centerB=centerB, accumulate_vec_map=vec_map, count=count, params_transform=params_transform) # coco_dataのみ for j in range(nop): if (meta['joint_others'][j, mid_1[i] - 1, 2] <= 1 and meta['joint_others'][j, mid_2[i] - 1, 2] <= 1): centerA = meta['joint_others'][j, mid_1[i] - 1, :2] centerB = meta['joint_others'][j, mid_2[i] - 1, :2] vec_map = pafs[:, :, 2 * i:2 * i + 2] pafs[:, :, 2 * i:2 * i + 2], count = putVecMaps(centerA=centerA, centerB=centerB, accumulate_vec_map=vec_map, count=count, params_transform=params_transform) # background heatmaps[:, :, - 1] = np.maximum(1 - np.max(heatmaps[:, :, :18], axis=2), 0.) # Tensorに heat_mask = torch.from_numpy(heat_mask) heatmaps = torch.from_numpy(heatmaps) paf_mask = torch.from_numpy(paf_mask) pafs = torch.from_numpy(pafs) return heat_mask, heatmaps, paf_mask, pafs def make_datapath_list(rootpath): """ 学習、検証の画像データとアノテーションデータ、マスクデータへのファイルパスリストを作成する。 """ # アノテーションのJSONファイルを読み込む json_path = osp.join(rootpath, 'itop_coco_extract.json') with open(json_path) as data_file: data_this = json.load(data_file) data_json = data_this['root'] # indexを格納 num_samples = len(data_json) train_indexes = [] val_indexes = [] for count in range(num_samples): if 'train' in data_json[count]["img_paths"]: train_indexes.append(count) else: val_indexes.append(count) # 画像ファイルパスを格納 train_img_list = list() val_img_list = list() for idx in train_indexes: img_path = os.path.join(rootpath, data_json[idx]['img_paths']) train_img_list.append(img_path) for idx in val_indexes: img_path = os.path.join(rootpath, data_json[idx]['img_paths']) val_img_list.append(img_path) # マスクデータのパスを格納 train_mask_list = [] val_mask_list = [] for idx in train_indexes: img_idx = data_json[idx]['img_paths'][-16:-4] if data_json[idx]['type'] == 1: anno_path = "./data/mask/MaskImg" + '.jpg' else: anno_path = "./data/mask/train2014/mask_COCO_train2014_" + img_idx+'.jpg' train_mask_list.append(anno_path) for idx in val_indexes: img_idx = data_json[idx]['img_paths'][-16:-4] if data_json[idx]['type'] == 1: anno_path = "./data/mask/MaskImg" + '.jpg' else: anno_path = "./data/mask/val2014/mask_COCO_val2014_" + img_idx+'.jpg' val_mask_list.append(anno_path) # アノテーションデータを格納 train_meta_list = list() val_meta_list = list() for idx in train_indexes: train_meta_list.append(data_json[idx]) for idx in val_indexes: val_meta_list.append(data_json[idx]) return train_img_list, train_mask_list, val_img_list, val_mask_list, train_meta_list, val_meta_list class DataTransform(): """ 画像とマスク、アノテーションの前処理クラス。 学習時と推論時で異なる動作をする。 学習時はデータオーギュメンテーションする。 """ def __init__(self): self.data_transform = { 'train': Compose([ get_anno(), # JSONからアノテーションを辞書に格納 add_neck(), # アノテーションデータの順番を変更し、さらに首のアノテーションデータを追加 aug_scale(), # 拡大縮小 aug_rotate(), # 回転 aug_croppad(), # 切り出し aug_flip(), # 左右反転 remove_illegal_joint(), # 画像からはみ出たアノテーションを除去 Normalize_Tensor() # 色情報の標準化とテンソル化 ]), 'val': Compose([ get_anno(), # JSONからアノテーションを辞書に格納 add_neck(), # アノテーションデータの順番を変更し、さらに首のアノテーションデータを追加 aug_scale(), # 拡大縮小 aug_rotate(), # 回転 aug_croppad(), # 切り出し aug_flip(), # 左右反転 remove_illegal_joint(), # 画像からはみ出たアノテーションを除去 Normalize_Tensor() # 色情報の標準化とテンソル化 ]) } def __call__(self, phase, meta_data, img, mask_miss): """ Parameters ---------- phase : 'train' or 'val' 前処理のモードを指定。 """ meta_data, img, mask_miss = self.data_transform[phase]( meta_data, img, mask_miss) return meta_data, img, mask_miss class COCOkeypointsDataset(data.Dataset): """ MSCOCOのCocokeypointsのDatasetを作成するクラス。PyTorchのDatasetクラスを継承。 Attributes ---------- img_list : リスト 画像のパスを格納したリスト anno_list : リスト アノテーションへのパスを格納したリスト phase : 'train' or 'test' 学習か訓練かを設定する。 transform : object 前処理クラスのインスタンス """ def __init__(self, img_list, mask_list, meta_list, phase, transform): self.img_list = img_list self.mask_list = mask_list self.meta_list = meta_list self.phase = phase self.transform = transform def __len__(self): '''画像の枚数を返す''' return len(self.img_list) def __getitem__(self, index): img, heatmaps, heat_mask, pafs, paf_mask = self.pull_item(index) return img, heatmaps, heat_mask, pafs, paf_mask def pull_item(self, index): '''画像のTensor形式のデータ、アノテーション、マスクを取得する''' # 1. 画像読み込み image_file_path = self.img_list[index] img = cv2.imread(image_file_path) # [高さ][幅][色BGR] # 2. マスクとアノテーション読み込み mask_miss = cv2.imread(self.mask_list[index]) meta_data = self.meta_list[index] # 3. 画像前処理 meta_data, img, mask_miss = self.transform( self.phase, meta_data, img, mask_miss) # 4. 正解アノテーションデータの取得 mask_miss_numpy = mask_miss.numpy().transpose((1, 2, 0)) heat_mask, heatmaps, paf_mask, pafs = get_ground_truth( meta_data, mask_miss_numpy) # 5. マスクデータはRGBが(1,1,1)か(0,0,0)なので、次元を落とす heat_mask = heat_mask[:, :, :, 0] paf_mask = paf_mask[:, :, :, 0] # 6. チャネルが最後尾にあるので順番を変える # 例:paf_mask:torch.Size([46, 46, 38]) # → torch.Size([38, 46, 46]) paf_mask = paf_mask.permute(2, 0, 1) heat_mask = heat_mask.permute(2, 0, 1) pafs = pafs.permute(2, 0, 1) heatmaps = heatmaps.permute(2, 0, 1) return img, heatmaps, heat_mask, pafs, paf_mask
33.71164
171
0.587774
4a1c889601234d29e9fa7706bb9f84541f39b694
12,023
py
Python
tests/api_workflow/mocked_api_workflow_client.py
dmarx/lightly
d23b639d33f68ce2e986000516770e8f2ee29453
[ "MIT" ]
null
null
null
tests/api_workflow/mocked_api_workflow_client.py
dmarx/lightly
d23b639d33f68ce2e986000516770e8f2ee29453
[ "MIT" ]
null
null
null
tests/api_workflow/mocked_api_workflow_client.py
dmarx/lightly
d23b639d33f68ce2e986000516770e8f2ee29453
[ "MIT" ]
null
null
null
import unittest from io import IOBase from requests import Response from lightly.openapi_generated.swagger_client.models.dataset_create_request import DatasetCreateRequest from lightly.openapi_generated.swagger_client.models.dataset_data import DatasetData from lightly.openapi_generated.swagger_client.api.datasets_api import DatasetsApi import lightly from lightly.api.api_workflow_client import ApiWorkflowClient from typing import * from lightly.openapi_generated.swagger_client import ScoresApi, CreateEntityResponse, SamplesApi, SampleCreateRequest, \ InitialTagCreateRequest, ApiClient, VersioningApi, QuotaApi, TagArithmeticsRequest, TagBitMaskResponse, \ SampleWriteUrls, SampleData from lightly.openapi_generated.swagger_client.api.embeddings_api import EmbeddingsApi from lightly.openapi_generated.swagger_client.api.jobs_api import JobsApi from lightly.openapi_generated.swagger_client.api.mappings_api import MappingsApi from lightly.openapi_generated.swagger_client.api.samplings_api import SamplingsApi from lightly.openapi_generated.swagger_client.api.tags_api import TagsApi from lightly.openapi_generated.swagger_client.models.async_task_data import AsyncTaskData from lightly.openapi_generated.swagger_client.models.dataset_embedding_data import DatasetEmbeddingData from lightly.openapi_generated.swagger_client.models.job_result_type import JobResultType from lightly.openapi_generated.swagger_client.models.job_state import JobState from lightly.openapi_generated.swagger_client.models.job_status_data import JobStatusData from lightly.openapi_generated.swagger_client.models.job_status_data_result import JobStatusDataResult from lightly.openapi_generated.swagger_client.models.sampling_create_request import SamplingCreateRequest from lightly.openapi_generated.swagger_client.models.tag_data import TagData from lightly.openapi_generated.swagger_client.models.write_csv_url_data import WriteCSVUrlData class MockedEmbeddingsApi(EmbeddingsApi): def __init__(self, api_client): EmbeddingsApi.__init__(self, api_client=api_client) self.embeddings = [DatasetEmbeddingData(id="embedding_id_xyz", name="embedding_name_xxyyzz", is_processed=True, created_at=0)] def get_embeddings_csv_write_url_by_id(self, dataset_id: str, **kwargs): assert isinstance(dataset_id, str) response_ = WriteCSVUrlData(signed_write_url="signed_write_url_valid", embedding_id="embedding_id_xyz") return response_ def get_embeddings_by_dataset_id(self, dataset_id, **kwargs) -> List[DatasetEmbeddingData]: assert isinstance(dataset_id, str) return self.embeddings class MockedSamplingsApi(SamplingsApi): def trigger_sampling_by_id(self, body: SamplingCreateRequest, dataset_id, embedding_id, **kwargs): assert isinstance(body, SamplingCreateRequest) assert isinstance(dataset_id, str) assert isinstance(embedding_id, str) response_ = AsyncTaskData(job_id="155") return response_ class MockedJobsApi(JobsApi): def __init__(self, *args, **kwargs): self.no_calls = 0 JobsApi.__init__(self, *args, **kwargs) def get_job_status_by_id(self, job_id, **kwargs): assert isinstance(job_id, str) self.no_calls += 1 if self.no_calls > 3: result = JobStatusDataResult(type=JobResultType.SAMPLING, data="sampling_tag_id_xyz") response_ = JobStatusData(id="id_", status=JobState.FINISHED, wait_time_till_next_poll=0, created_at=1234, finished_at=1357, result=result) else: result = None response_ = JobStatusData(id="id_", status=JobState.RUNNING, wait_time_till_next_poll=0.001, created_at=1234, result=result) return response_ class MockedTagsApi(TagsApi): def create_initial_tag_by_dataset_id(self, body, dataset_id, **kwargs): assert isinstance(body, InitialTagCreateRequest) assert isinstance(dataset_id, str) response_ = CreateEntityResponse(id="xyz") return response_ def get_tag_by_tag_id(self, dataset_id, tag_id, **kwargs): assert isinstance(dataset_id, str) assert isinstance(tag_id, str) response_ = TagData(id=tag_id, dataset_id=dataset_id, prev_tag_id="initial-tag", bit_mask_data="0x80bda23e9", name='second-tag', tot_size=15, created_at=1577836800, changes=dict()) return response_ def get_tags_by_dataset_id(self, dataset_id, **kwargs): tag_1 = TagData(id='inital_tag_id', dataset_id=dataset_id, prev_tag_id=None, bit_mask_data="0xF", name='initial-tag', tot_size=4, created_at=1577836800, changes=dict()) tag_2 = TagData(id='query_tag_id_xyz', dataset_id=dataset_id, prev_tag_id="initial-tag", bit_mask_data="0xF", name='query_tag_name_xyz', tot_size=4, created_at=1577836800, changes=dict()) tag_3 = TagData(id='preselected_tag_id_xyz', dataset_id=dataset_id, prev_tag_id="initial-tag", bit_mask_data="0x1", name='preselected_tag_name_xyz', tot_size=4, created_at=1577836800, changes=dict()) tag_4 = TagData(id='sampled_tag_xyz', dataset_id=dataset_id, prev_tag_id="preselected_tag_id_xyz", bit_mask_data="0x3", name='sampled_tag_xyz', tot_size=4, created_at=1577836800, changes=dict()) tags = [tag_1, tag_2, tag_3, tag_4] no_tags_to_return = getattr(self, "no_tags", 4) tags = tags[:no_tags_to_return] return tags def perform_tag_arithmetics(self, body: TagArithmeticsRequest, dataset_id, **kwargs): return TagBitMaskResponse(bit_mask_data="0x2") class MockedScoresApi(ScoresApi): def create_or_update_active_learning_score_by_tag_id(self, body, dataset_id, tag_id, **kwargs) -> \ CreateEntityResponse: if len(body.scores) > 0 and not isinstance(body.scores[0], float): raise AttributeError response_ = CreateEntityResponse(id="sampled_tag_id_xyz") return response_ class MockedMappingsApi(MappingsApi): def __init__(self, *args, **kwargs): sample_names = [f'img_{i}.jpg' for i in range(100)] sample_names.reverse() self.sample_names = sample_names MappingsApi.__init__(self, *args, **kwargs) def get_sample_mappings_by_dataset_id(self, dataset_id, field, **kwargs): return self.sample_names class MockedSamplesApi(SamplesApi): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.sample_create_requests: List[SampleCreateRequest] = [] def get_samples_by_dataset_id(self, dataset_id, **kwargs) -> List[SampleData]: samples = [] for i, body in enumerate(self.sample_create_requests): sample = SampleData(id=f'{i}_xyz', dataset_id='dataset_id_xyz', file_name=body.file_name) samples.append(sample) return samples def create_sample_by_dataset_id(self, body, dataset_id, **kwargs): assert isinstance(body, SampleCreateRequest) response_ = CreateEntityResponse(id="xyz") self.sample_create_requests.append(body) return response_ def get_sample_image_write_url_by_id(self, dataset_id, sample_id, is_thumbnail, **kwargs): url = f"{sample_id}_write_url" return url def get_sample_image_read_url_by_id(self, dataset_id, sample_id, type, **kwargs): url = f"{sample_id}_write_url" return url def get_sample_image_write_urls_by_id(self, dataset_id, sample_id, **kwargs) -> SampleWriteUrls: thumb_url = f"{sample_id}_thumb_write_url" full_url = f"{sample_id}_full_write_url" ret = SampleWriteUrls(full=full_url, thumb=thumb_url) return ret class MockedDatasetsApi(DatasetsApi): def __init__(self, api_client): no_datasets = 3 self.default_datasets = [DatasetData(name=f"dataset_{i}", id=f"dataset_{i}_id", last_modified_at=i, type="", img_type="full", size_in_bytes=-1, n_samples=-1, created_at=-1) for i in range(no_datasets)] self.reset() def reset(self): self.datasets = self.default_datasets def get_datasets(self, **kwargs): return self.datasets def create_dataset(self, body: DatasetCreateRequest, **kwargs): assert isinstance(body, DatasetCreateRequest) id = body.name + "_id" dataset = DatasetData(id=id, name=body.name, last_modified_at=len(self.datasets) + 1, type="", size_in_bytes=-1, n_samples=-1, created_at=-1) self.datasets += [dataset] response_ = CreateEntityResponse(id=id) return response_ def get_dataset_by_id(self, dataset_id): return next(dataset for dataset in self.default_datasets if dataset_id == dataset.id) def delete_dataset_by_id(self, dataset_id, **kwargs): datasets_without_that_id = [dataset for dataset in self.datasets if dataset.id != dataset_id] assert len(datasets_without_that_id) == len(self.datasets) - 1 self.datasets = datasets_without_that_id class MockedVersioningApi(VersioningApi): def get_latest_pip_version(self, **kwargs): return "1.0.8" def get_minimum_compatible_pip_version(self, **kwargs): return "1.0.0" class MockedQuotaApi(QuotaApi): def get_quota_maximum_dataset_size(self, **kwargs): return "60000" def mocked_request_put(dst_url: str, data=IOBase) -> Response: assert isinstance(dst_url, str) assert isinstance(data, IOBase) response_ = Response() response_.status_code = 200 return response_ class MockedApiClient(ApiClient): def request(self, method, url, query_params=None, headers=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): raise ValueError("ERROR: calling ApiClient.request(), but this should be mocked.") def call_api(self, resource_path, method, path_params=None, query_params=None, header_params=None, body=None, post_params=None, files=None, response_type=None, auth_settings=None, async_req=None, _return_http_data_only=None, collection_formats=None, _preload_content=True, _request_timeout=None): raise ValueError("ERROR: calling ApiClient.call_api(), but this should be mocked.") class MockedApiWorkflowClient(ApiWorkflowClient): def __init__(self, *args, **kwargs): lightly.api.api_workflow_client.ApiClient = MockedApiClient lightly.api.version_checking.VersioningApi = MockedVersioningApi ApiWorkflowClient.__init__(self, *args, **kwargs) self.samplings_api = MockedSamplingsApi(api_client=self.api_client) self.jobs_api = MockedJobsApi(api_client=self.api_client) self.tags_api = MockedTagsApi(api_client=self.api_client) self.embeddings_api = MockedEmbeddingsApi(api_client=self.api_client) self.mappings_api = MockedMappingsApi(api_client=self.api_client) self.scores_api = MockedScoresApi(api_client=self.api_client) self.samples_api = MockedSamplesApi(api_client=self.api_client) self.datasets_api = MockedDatasetsApi(api_client=self.api_client) self.quota_api = MockedQuotaApi(api_client=self.api_client) lightly.api.api_workflow_client.requests.put = mocked_request_put self.wait_time_till_next_poll = 0.001 # for api_workflow_sampling class MockedApiWorkflowSetup(unittest.TestCase): def setUp(self, token="token_xyz", dataset_id="dataset_id_xyz") -> None: self.api_workflow_client = MockedApiWorkflowClient(token=token, dataset_id=dataset_id)
46.420849
120
0.713882
4a1c88b7de5f651ff18825680f2b76fb515a584a
1,320
py
Python
rallyrolebot/api/bot_activity_mappings.py
Ju99ernaut/RallyRoleBot
068a66fce957c2d65fa8d121fa96abe8c7b00e2d
[ "MIT" ]
null
null
null
rallyrolebot/api/bot_activity_mappings.py
Ju99ernaut/RallyRoleBot
068a66fce957c2d65fa8d121fa96abe8c7b00e2d
[ "MIT" ]
null
null
null
rallyrolebot/api/bot_activity_mappings.py
Ju99ernaut/RallyRoleBot
068a66fce957c2d65fa8d121fa96abe8c7b00e2d
[ "MIT" ]
null
null
null
import data from cogs.update_cog import running_bots, update_activity from fastapi import APIRouter, Depends, HTTPException from .dependencies import owner_or_admin from .models import BotActivityMapping from constants import * import config config.parse_args() router = APIRouter( prefix="/mappings/bot_activity", tags=["bot_avatar"], dependencies=[Depends(owner_or_admin)], responses={404: {"description": "Not found"}}, ) @router.get("/{guildId}", response_model=BotActivityMapping) async def read_mapping(guildId: str): bot_instance = data.get_bot_instance(guildId) if not bot_instance: return {} activity_text = bot_instance[BOT_ACTIVITY_TEXT_KEY] activity_type = bot_instance[BOT_ACTIVITY_TYPE_KEY] return {"activity_text": activity_text, "activity_type": activity_type} @router.post("", response_model=BotActivityMapping) async def add_mapping(mapping: BotActivityMapping, guildId: str): bot_instance = data.get_bot_instance(guildId) if not bot_instance: raise HTTPException(status_code=404, detail="Bot config not found") error = await update_activity(bot_instance, mapping.activity_type, mapping.activity_text) if error: raise HTTPException(status_code=500, detail="Error changing bot activity") return {"success": 1}
29.333333
93
0.757576
4a1c8948c74453991c33d100e993cd03fcec2129
132
py
Python
findyour3d/contact/urls.py
hqpr/findyour3d
8ad3d2cb7bd0adfd080bb2314df1c78b94d3973a
[ "MIT" ]
null
null
null
findyour3d/contact/urls.py
hqpr/findyour3d
8ad3d2cb7bd0adfd080bb2314df1c78b94d3973a
[ "MIT" ]
null
null
null
findyour3d/contact/urls.py
hqpr/findyour3d
8ad3d2cb7bd0adfd080bb2314df1c78b94d3973a
[ "MIT" ]
1
2020-11-26T10:52:20.000Z
2020-11-26T10:52:20.000Z
from django.conf.urls import url from . import views urlpatterns = [ url(regex=r'^add/$', view=views.contact, name='form'), ]
16.5
58
0.674242
4a1c8a1110961eb26419058dab1a14f7a179733c
2,091
py
Python
run/old_scripts/run_plot_train_history.py
olavosamp/semiauto-video-annotation
b1a46f9c0ad3bdcedab76b4cd730747ee2afd2fd
[ "MIT" ]
null
null
null
run/old_scripts/run_plot_train_history.py
olavosamp/semiauto-video-annotation
b1a46f9c0ad3bdcedab76b4cd730747ee2afd2fd
[ "MIT" ]
20
2019-07-15T21:49:29.000Z
2020-01-09T14:35:03.000Z
run/old_scripts/run_plot_train_history.py
olavosamp/semiauto-video-annotation
b1a46f9c0ad3bdcedab76b4cd730747ee2afd2fd
[ "MIT" ]
null
null
null
import numpy as np from pathlib import Path import libs.utils as utils import libs.dirs as dirs from libs.vis_functions import plot_model_history iteration = int(input("Enter iteration number.\n")) epochs = int(input("Enter number of epochs.\n")) rede = 1 datasetName = "full_dataset_softmax" savedModelsFolder = Path(dirs.saved_models) / \ "{}_rede_{}/iteration_{}".format(datasetName, rede, iteration) historyPath = savedModelsFolder \ / "history_{}_no_finetune_{}_epochs_rede_{}_iteration_{}.pickle".format(datasetName, epochs, rede, iteration) resultsFolder = Path(dirs.results) / historyPath.stem nameEnd = "history_{}_epochs_rede_{}_iteration_{}.pdf".format(epochs, rede, iteration) lossName = "loss_" + nameEnd accName = "accuracy_" + nameEnd f1Name = "f1_" + nameEnd if not(historyPath.is_file()): print("History file does not exist.\nFile:\n", historyPath) print("\nExiting program.") exit() dirs.create_folder(resultsFolder) history = utils.load_pickle(historyPath) print(history.keys()) valLoss = history['loss-val'] trainLoss = history['loss-train'] trainAcc = history['acc-train'] valAcc = history['acc-val'] trainF1 = np.array((history['f1-train']))[:, 0] valF1 = np.array((history['f1-val']))[:, 0] plot_model_history([trainLoss, valLoss], data_labels=["Train Loss", "Val Loss"], xlabel="Epochs", ylabel="Loss", title="Training loss history", save_path=resultsFolder / lossName, show=False) plot_model_history([trainAcc, valAcc], data_labels=["Train Acc", "Val Acc"], xlabel="Epochs", ylabel="Acc", title="Training accuracy history", save_path=resultsFolder / accName, show=False) plot_model_history([trainF1, valF1], data_labels=["Train F1", "Val F1"], xlabel="Epochs", ylabel="F1", title="Training F1 history", save_path=resultsFolder / f1Name, show=False) print("\nSaved results to ", resultsFolder)
37.339286
113
0.653754
4a1c8a936e5cee9afa234315181a7be87ecbba2f
809
py
Python
procuret/term_rate/term_rate.py
Procuret/procuret-python
2f49cbd3454e33986c84a6c32c0f0ab8f60d4b82
[ "MIT" ]
null
null
null
procuret/term_rate/term_rate.py
Procuret/procuret-python
2f49cbd3454e33986c84a6c32c0f0ab8f60d4b82
[ "MIT" ]
null
null
null
procuret/term_rate/term_rate.py
Procuret/procuret-python
2f49cbd3454e33986c84a6c32c0f0ab8f60d4b82
[ "MIT" ]
1
2020-10-28T14:26:21.000Z
2020-10-28T14:26:21.000Z
""" Procuret Python Term Rate Module author: hugh@blinkybeach.com """ from procuret.data.codable import Codable, CodingDefinition as CD from decimal import Decimal class TermRate(Codable): path = '/term-rate' coding_map = { 'supplier_entity_id': CD(int), 'periods': CD(int), 'periods_in_year': CD(Decimal) } def __init__( self, supplier_entity_id: int, periods: int, periods_in_year: Decimal ) -> None: self._supplier_entity_id = supplier_entity_id self._periods = periods self._periods_in_year = periods_in_year return periods = property(lambda s: s._periods) periods_in_year = property(lambda s: s._periods_in_year) supplier_entity_id = property(lambda s: s._supplier_entity_id)
22.472222
66
0.663782
4a1c8ae6984ae9ec1b616c78517f0e10ca2113e3
19,020
py
Python
tests/FeatureEngineering_QA.py
SeanBenner/RetroFit
1417775c2154c2127b3dedaf133f8f21d5f1adfa
[ "MIT" ]
null
null
null
tests/FeatureEngineering_QA.py
SeanBenner/RetroFit
1417775c2154c2127b3dedaf133f8f21d5f1adfa
[ "MIT" ]
null
null
null
tests/FeatureEngineering_QA.py
SeanBenner/RetroFit
1417775c2154c2127b3dedaf133f8f21d5f1adfa
[ "MIT" ]
null
null
null
# QA: Test FE0_AutoLags import timeit import datatable as dt import polars as pl import retrofit from retrofit import FeatureEngineering as fe ## No Group Example: datatable data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoLags(data=data, ArgsList=None, LagPeriods=1, LagColumnNames='Leads', DateColumnName='CalendarDateColumn', ByVariables=None, ImputeValue=-1, Sort=True, Processing='datatable', InputFrame='datatable', OutputFrame='datatable') t_end = timeit.default_timer() print(t_end - t_start) data1 = Output['data'] ArgsList = Output['ArgsList'] del Output print(data1.names) print(ArgsList) # # Args # ArgsList=None # LagPeriods=1 # LagColumnNames='Leads' # DateColumnName='CalendarDateColumn' # ByVariables=None # ImputeValue=-1 # Sort=True # Processing='datatable' # InputFrame='datatable' # OutputFrame='datatable' ## No Group Example: polars data = pl.read_csv("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoLags(data=data, ArgsList=None, LagPeriods=1, LagColumnNames='Leads', DateColumnName='CalendarDateColumn', ByVariables=None, ImputeValue=-1.0, Sort=True, Processing='polars', InputFrame='polars', OutputFrame='polars') t_end = timeit.default_timer() print(t_end - t_start) data2 = Output['data'] ArgsList = Output['ArgsList'] del Output print(data2.columns) print(ArgsList) # # Args # data=data # LagPeriods=1 # LagColumnNames='Weekly_Sales' # DateColumnName='CalendarDateColumn' # ByVariables=['MarketingSegment','MarketingSegment2','MarketingSegment3', 'Label'] # ImputeValue=-1.0 # Sort=True # Processing='polars' # InputFrame='polars' # OutputFrame='polars' ## Group Example, Single Lag: datatable data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoLags(data=data, ArgsList=None, LagPeriods=1, LagColumnNames='Leads', DateColumnName='CalendarDateColumn', ByVariables=['MarketingSegments','MarketingSegments2','MarketingSegments3', 'Label'], ImputeValue=-1, Sort=True, Processing='datatable', InputFrame='datatable', OutputFrame='datatable') t_end = timeit.default_timer() print(t_end - t_start) data1 = Output['data'] ArgsList = Output['ArgsList'] del Output print(data1.names) print(ArgsList) # # Args # ArgsList=None # LagPeriods=1 # LagColumnNames='Leads' # DateColumnName='CalendarDateColumn' # ByVariables=['MarketingSegment','MarketingSegment2','MarketingSegment3', 'Label'] # ImputeValue=-1 # Sort=True # Processing='datatable' # InputFrame='datatable' # OutputFrame='datatable' ## Group Exmaple: polars data = pl.read_csv("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoLags(data=data, ArgsList=None, LagPeriods=1, LagColumnNames='Leads', DateColumnName='CalendarDateColumn', ByVariables=['MarketingSegments','MarketingSegments2','MarketingSegments3', 'Label'], ImputeValue=-1.0, Sort=True, Processing='polars', InputFrame='polars', OutputFrame='polars') t_end = timeit.default_timer() print(t_end - t_start) data2 = Output['data'] ArgsList = Output['ArgsList'] del Output print(data2.columns) print(ArgsList) # # Args # ArgsList=None # LagPeriods=1 # LagColumnNames='Leads' # DateColumnName='CalendarDateColumn' # ByVariables=['MarketingSegment','MarketingSegment2','MarketingSegment3', 'Label'] # ImputeValue=-1.0 # Sort=True # Processing='polars' # InputFrame='polars' # OutputFrame='polars' ## Group and Multiple Periods and LagColumnNames: datatable data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoLags(data=data, ArgsList=None, LagPeriods=[1,3,5], LagColumnNames=['Leads','XREGS1'], DateColumnName='CalendarDateColumn', ByVariables=['MarketingSegments','MarketingSegments2','MarketingSegments3', 'Label'], ImputeValue=-1, Sort=True, Processing='datatable', InputFrame='datatable', OutputFrame='datatable') t_end = timeit.default_timer() print(t_end - t_start) data1 = Output['data'] ArgsList = Output['ArgsList'] del Output print(data1.names) print(ArgsList) # # Args # ArgsList=None # LagPeriods=[1,3,5] # LagColumnNames=['Leads','XREGS1'] # DateColumnName='CalendarDateColumn' # ByVariables=['MarketingSegment','MarketingSegment2','MarketingSegment3', 'Label'] # ImputeValue=-1 # Sort=True # Processing='datatable' # InputFrame='datatable' # OutputFrame='datatable' ## Group and Multiple Periods and LagColumnNames: datatable data = pl.read_csv("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoLags(data=data, ArgsList=None, LagPeriods=[1,3,5], LagColumnNames=['Leads','XREGS1'], DateColumnName='CalendarDateColumn', ByVariables=['MarketingSegments','MarketingSegments2','MarketingSegments3', 'Label'], ImputeValue=-1.0, Sort=True, Processing='polars', InputFrame='polars', OutputFrame='polars') t_end = timeit.default_timer() print(t_end - t_start) data2 = Output['data'] ArgsList = Output['ArgsList'] del Output print(data2.columns) print(ArgsList) # # Args # ArgsList=None # LagPeriods=[1,3,5] # LagColumnNames=['Leads','XREGS1'] # DateColumnName='CalendarDateColumn' # ByVariables=['MarketingSegment','MarketingSegment2','MarketingSegment3', 'Label'] # ImputeValue=-1.0 # Sort=True # Processing='polars' # InputFrame='polars' # OutputFrame='polars' ######################################################################################################### ######################################################################################################### # QA FE0_AutoRollStats import timeit import datatable as dt import polars as pl from retrofit import FeatureEngineering as fe ## No Group Example data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoRollStats(data=data, ArgsList=None, RollColumnNames='Leads', DateColumnName='CalendarDateColumn', ByVariables=None, MovingAvg_Periods=[3,5,7], MovingSD_Periods=[3,5,7], MovingMin_Periods=[3,5,7], MovingMax_Periods=[3,5,7], ImputeValue=-1, Sort=True, Processing='datatable', InputFrame='datatable', OutputFrame='datatable') t_end = timeit.default_timer() print(t_end - t_start) data = Output['data'] ArgsList = Output['ArgsList'] del Output print(data.names) print(ArgsList) # # Args # ArgsList=None # RollColumnNames='Leads' # DateColumnName='CalendarDateColumn' # ByVariables=None # MovingAvg_Periods=[3,5,7] # MovingSD_Periods=[3,5,7] # MovingMin_Periods=[3,5,7] # MovingMax_Periods=[3,5,7] # ImputeValue=-1 # Sort=True # Processing='datatable' # InputFrame='datatable' # OutputFrame='datatable' ## No Group Example data = pl.read_csv("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoRollStats(data=data, ArgsList=None, RollColumnNames='Leads', DateColumnName='CalendarDateColumn', ByVariables=None, MovingAvg_Periods=[3,5,7], MovingSD_Periods=[3,5,7], MovingMin_Periods=[3,5,7], MovingMax_Periods=[3,5,7], ImputeValue=-1, Sort=True, Processing='datatable', InputFrame='datatable', OutputFrame='datatable') t_end = timeit.default_timer() print(t_end - t_start) data = Output['data'] ArgsList = Output['ArgsList'] del Output print(data.names) print(ArgsList) # # Args # ArgsList=None # RollColumnNames='Leads' # DateColumnName='CalendarDateColumn' # ByVariables=None # MovingAvg_Periods=[3,5,7] # MovingSD_Periods=[3,5,7] # MovingMin_Periods=[3,5,7] # MovingMax_Periods=[3,5,7] # ImputeValue=-1 # Sort=True # Processing='polars' # InputFrame='polars' # OutputFrame='polars' ## Group and Multiple Periods and RollColumnNames: data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoRollStats(data=data, ArgsList=None, RollColumnNames=['Leads','XREGS1'], DateColumnName='CalendarDateColumn', ByVariables=['MarketingSegments','MarketingSegments2','MarketingSegments3', 'Label'], MovingAvg_Periods=[3,5,7], MovingSD_Periods=[3,5,7], MovingMin_Periods=[3,5,7], MovingMax_Periods=[3,5,7], ImputeValue=-1, Sort=True, Processing='datatable', InputFrame='datatable', OutputFrame='datatable') t_end = timeit.default_timer() print(t_end - t_start) data = Output['data'] ArgsList = Output['ArgsList'] del Output print(data.names) print(ArgsList) # # Args # ArgsList=None # RollColumnNames=['Leads','XREGS1'] # DateColumnName='CalendarDateColumn' # ByVariables=['MarketingSegment','MarketingSegment2','MarketingSegment3', 'Label'] # MovingAvg_Periods=[3,5,7] # MovingSD_Periods=[3,5,7] # MovingMin_Periods=[3,5,7] # MovingMax_Periods=[3,5,7] # ImputeValue=-1 # Sort=True # Processing='datatable' # InputFrame='datatable' # OutputFrame='datatable' ## No Group Example: data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoRollStats(data=data, ArgsList=None, RollColumnNames='Leads', DateColumnName='CalendarDateColumn', ByVariables=None, MovingAvg_Periods=[3,5,7], MovingSD_Periods=[3,5,7], MovingMin_Periods=[3,5,7], MovingMax_Periods=[3,5,7], ImputeValue=-1, Sort=True, Processing='datatable', InputFrame='datatable', OutputFrame='datatable') t_end = timeit.default_timer() print(t_end - t_start) data = Output['data'] ArgsList = Output['ArgsList'] del Output print(data.names) print(ArgsList) # # Args # ArgsList=None # RollColumnNames='Leads' # DateColumnName='CalendarDateColumn' # ByVariables=None # MovingAvg_Periods=[3,5,7] # MovingSD_Periods=[3,5,7] # MovingMin_Periods=[3,5,7] # MovingMax_Periods=[3,5,7] # ImputeValue=-1 # Sort=True # Processing='datatable' # InputFrame='datatable' # OutputFrame='datatable' ######################################################################################################### ######################################################################################################### # QA FE0_AutoDiff import timeit import datatable as dt from datatable import sort, f, by import retrofit from retrofit import FeatureEngineering as fe ## Group Example: data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoDiff(data=data, ArgsList=None, DateColumnName = 'CalendarDateColumn', ByVariables = ['MarketingSegments','MarketingSegments2','MarketingSegments3', 'Label'], DiffNumericVariables = 'Leads', DiffDateVariables = 'CalendarDateColumn', DiffGroupVariables = None, NLag1 = 0, NLag2 = 1, Sort=True, Processing = 'datatable', InputFrame = 'datatable', OutputFrame = 'datatable') t_end = timeit.default_timer() print(t_end - t_start) data = Output['data'] ArgsList = Output['ArgsList'] del Output print(data.names) print(ArgsList) # # Args # ArgsList=None # DateColumnName = 'CalendarDateColumn' # ByVariables = ['MarketingSegment','MarketingSegment2','MarketingSegment3', 'Label'] # DiffNumericVariables = 'Leads' # DiffDateVariables = 'CalendarDateColumn' # DiffGroupVariables = None # NLag1 = 0 # NLag2 = 1 # Sort=True # Processing = 'datatable' # InputFrame = 'datatable' # OutputFrame = 'datatable' ## Group and Multiple Periods and RollColumnNames: data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoDiff(data=data, ArgsList=None, DateColumnName = 'CalendarDateColumn', ByVariables = ['MarketingSegments','MarketingSegments2','MarketingSegments3', 'Label'], DiffNumericVariables = 'Leads', DiffDateVariables = 'CalendarDateColumn', DiffGroupVariables = None, NLag1 = 0, NLag2 = 1, Sort=True, Processing = 'datatable', InputFrame = 'datatable', OutputFrame = 'datatable') t_end = timeit.default_timer() print(t_end - t_start) data = Output['data'] ArgsList = Output['ArgsList'] del Output print(data.names) print(ArgsList) # # Args # ArgsList=None # DateColumnName = 'CalendarDateColumn' # ByVariables = ['MarketingSegment','MarketingSegment2','MarketingSegment3', 'Label'] # DiffNumericVariables = 'Leads' # DiffDateVariables = 'CalendarDateColumn' # DiffGroupVariables = None # NLag1 = 0 # NLag2 = 1 # Sort=True # Processing = 'datatable' # InputFrame = 'datatable' # OutputFrame = 'datatable' ## No Group Example: data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE0_AutoDiff(data=data, ArgsList=None, DateColumnName = 'CalendarDateColumn', ByVariables = None, DiffNumericVariables = 'Leads', DiffDateVariables = 'CalendarDateColumn', DiffGroupVariables = None, NLag1 = 0, NLag2 = 1, Sort=True, Processing = 'datatable', InputFrame = 'datatable', OutputFrame = 'datatable') t_end = timeit.default_timer() print(t_end - t_start) data = Output['data'] ArgsList = Output['ArgsList'] del Output print(data.names) print(ArgsList) # # Args # ArgsList=None # DateColumnName = 'CalendarDateColumn' # ByVariables = None # DiffNumericVariables = 'Leads' # DiffDateVariables = 'CalendarDateColumn' # DiffGroupVariables = None # NLag1 = 0 # NLag2 = 1 # Sort=True # Processing = 'datatable' # InputFrame = 'datatable' # OutputFrame = 'datatable' ######################################################################################################### ######################################################################################################### # QA FE0_AutoDiff import timeit import datatable as dt from datatable import sort, f, by import retrofit from retrofit import FeatureEngineering as fe # FE1_AutoCalendarVariables data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE1_AutoCalendarVariables(data=data, ArgsList=None, DateColumnNames = 'CalendarDateColumn', CalendarVariables = ['wday','mday','wom','month','quarter','year'], Processing = 'datatable', InputFrame = 'datatable', OutputFrame = 'datatable') t_end = timeit.default_timer() print(t_end - t_start) print(data.names) ######################################################################################################### ######################################################################################################### # Example: datatable import timeit import datatable as dt import retrofit from retrofit import FeatureEngineering as fe data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE1_DummyVariables( data=data, ArgsList=None, CategoricalColumnNames=['MarketingSegments','MarketingSegments2'], Processing='datatable', InputFrame='datatable', OutputFrame='datatable') t_end = timeit.default_timer() print(t_end - t_start) data = Output['data'] ArgsList = Output['ArgsList'] # Example: polars import retrofit from retrofit import FeatureEngineering as fe import polars as pl data = pl.read_csv("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() Output = fe.FE1_DummyVariables( data=data, ArgsList=None, CategoricalColumnNames=['MarketingSegments','MarketingSegments2'], Processing='polars', InputFrame='polars', OutputFrame='polars') t_end = timeit.default_timer() print(t_end - t_start) data = Output['data'] ArgsList = Output['ArgsList'] ######################################################################################################### ######################################################################################################### # FE2_AutoDataParition import timeit import datatable as dt import polars as pl import retrofit from retrofit import FeatureEngineering as fe from retrofit import utils as u # datatable random Example data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() DataSets = fe.FE2_AutoDataParition( data=data, ArgsList=None, DateColumnName='CalendarDateColumn', PartitionType='random', Ratios=[0.70,0.20,0.10], Sort = False, ByVariables=None, Processing='datatable', InputFrame='datatable', OutputFrame='datatable') t_end = timeit.default_timer() print(t_end - t_start) TrainData = DataSets['TrainData'] ValidationData = DataSets['ValidationData'] TestData = DataSets['TestData'] ArgsList = DataSets['ArgsList'] # data=data # ArgsList=None # DateColumnName='CalendarDateColumn' # PartitionType='random' # Ratios=[0.70,0.20,0.10] # Sort = False # ByVariables=None # Processing='datatable' # InputFrame='datatable' # OutputFrame='datatable' # polars random Example data = pl.read_csv("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() DataSets = fe.FE2_AutoDataParition( data=data, ArgsList=None, DateColumnName='CalendarDateColumn', PartitionType='random', Ratios=[0.70,0.20,0.10], ByVariables=None, Sort = False, Processing='polars', InputFrame='polars', OutputFrame='polars') t_end = timeit.default_timer() print(t_end - t_start) TrainData = DataSets['TrainData'] ValidationData = DataSets['ValidationData'] TestData = DataSets['TestData'] ArgsList = DataSets['ArgsList'] # data=data # ArgsList=None # DateColumnName='CalendarDateColumn' # PartitionType='random' # Ratios=[0.70,0.20,0.10] # Sort = False # ByVariables=None # Processing='polars' # InputFrame='polars' # OutputFrame='polars' # datatable time Example data = dt.fread("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() DataSets = fe.FE2_AutoDataParition( data=data, ArgsList=None, DateColumnName='CalendarDateColumn', PartitionType='time', Ratios=[0.70,0.20,0.10], Sort = True, ByVariables=None, Processing='datatable', InputFrame='datatable', OutputFrame='datatable') t_end = timeit.default_timer() print(t_end - t_start) TrainData = DataSets['TrainData'] ValidationData = DataSets['ValidationData'] TestData = DataSets['TestData'] ArgsList = DataSets['ArgsList'] # data=data # ArgsList=None # DateColumnName='CalendarDateColumn' # PartitionType='time' # Ratios=[0.70,0.20,0.10] # Sort = False # ByVariables=None # Processing='datatable' # InputFrame='datatable' # OutputFrame='datatable' # polars time Example data = pl.read_csv("C:/Users/Bizon/Documents/GitHub/BenchmarkData.csv") t_start = timeit.default_timer() DataSets = fe.FE2_AutoDataParition( data=data, ArgsList=None, DateColumnName='CalendarDateColumn', PartitionType='time', Ratios=[0.70,0.20,0.10], ByVariables=None, Sort = True, Processing='polars', InputFrame='polars', OutputFrame='polars') t_end = timeit.default_timer() print(t_end - t_start) TrainData = DataSets['TrainData'] ValidationData = DataSets['ValidationData'] TestData = DataSets['TestData'] ArgsList = DataSets['ArgsList'] # data=data # ArgsList=None # DateColumnName='CalendarDateColumn' # PartitionType='time' # Ratios=[0.70,0.20,0.10] # Sort = False # ByVariables=None # Processing='polars' # InputFrame='polars' # OutputFrame='polars' for i in data.shape[1]: if not isinstance(data[i].dtype, pl.Categorical) data[i] = data[i].cast(pl.Categorical) data.sort(DateColumnName, reverse = False, in_place = True)
33.964286
421
0.71572
4a1c8aeea785e250202c2c08969fff022b626c9f
2,402
py
Python
ApplicantClassifier.py
SilverQ/naive-bayes-applicant-classifier
b900e1dedc5fedf96834def230cb25453c4ae372
[ "MIT" ]
null
null
null
ApplicantClassifier.py
SilverQ/naive-bayes-applicant-classifier
b900e1dedc5fedf96834def230cb25453c4ae372
[ "MIT" ]
null
null
null
ApplicantClassifier.py
SilverQ/naive-bayes-applicant-classifier
b900e1dedc5fedf96834def230cb25453c4ae372
[ "MIT" ]
null
null
null
# from naiveBayesClassifier import tokenizer from naiveBayesClassifier.tokenizer import Tokenizer from naiveBayesClassifier.trainer import Trainer from naiveBayesClassifier.classifier import Classifier import csv import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument('--train') parser.add_argument('--test') parser.add_argument('--result') args = parser.parse_args() arg_train = args.train if args.train else 'data/nm_kind_wo_person.txt' arg_test = args.test if args.test == '' else 'data/nm_test2.txt' arg_result = args.result if args.result else 'data/nm_test_wo_person_result2.csv' # https://github.com/muatik/naive-bayes-classifier tokenizer = Tokenizer() # https://kkamikoon.tistory.com/119 # related to the tokenizer positional argument error ApplicantTrainer = Trainer(Tokenizer) file_encoding = 'cp1252' # 6 classes exam01_train = 'data/nm_kind.csv' exam01_test = 'data/nm_test2.txt' exam01_result = 'data/nm_test_result2.csv' # 5 classes without person exam02_train = 'data/nm_kind_wo_person.txt' exam02_test = 'data/nm_test2.txt' exam02_result = 'data/nm_test_wo_person_result2.csv' with open(arg_train, newline='', encoding=file_encoding) as csvfile: reader = csv.DictReader(csvfile, delimiter='\t') for applicant in reader: # print(applicant['nm'], applicant['kind_code']) ApplicantTrainer.train(text=applicant['nm'], className=applicant['kind_code']) ApplicantClassifier = Classifier(ApplicantTrainer.data, tokenizer) # classification = ApplicantClassifier.classify("sam univ") # print(classification) results = [] # with open('data/nm_test.txt') as testfile: # for applicant in testfile: # classification = np.array(ApplicantClassifier.classify(applicant)) # # print(applicant, classification[:, 1], classification[0][0]) # results.append((applicant, classification[0][0])) # print(applicant) # # print(results[:3]) results = [] with open(arg_test, newline='', mode='rt') as testfile: for line in testfile: # print(line.strip()) classification = np.array(ApplicantClassifier.classify(line.strip())) # print(classification[0][0]) results.append((line.strip(), classification[0][0])) with open(arg_result, newline='', mode='w', encoding='utf-8') as write_file: writer = csv.writer(write_file, delimiter='\t') writer.writerows(results)
33.361111
86
0.738135
4a1c8b01b8c186d362d16ca57de681adc31d0182
60,412
py
Python
jax/_src/random.py
lumip/jax
597879752889277adeaf36c26816b532918fee53
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
jax/_src/random.py
lumip/jax
597879752889277adeaf36c26816b532918fee53
[ "ECL-2.0", "Apache-2.0" ]
2
2022-01-31T13:20:35.000Z
2022-02-14T13:20:49.000Z
jax/_src/random.py
lumip/jax
597879752889277adeaf36c26816b532918fee53
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Any, Optional, Sequence, Union import warnings import numpy as np from jax import lax from jax import core from jax import numpy as jnp from jax._src import dtypes from jax.core import NamedShape from jax._src.api import jit, vmap from jax._src.numpy.lax_numpy import _constant_like, _convert_and_clip_integer, _check_arraylike from jax.lib import xla_bridge from jax.lib import xla_client from jax.lib import cuda_prng from jax.numpy.linalg import cholesky, svd, eigh from jax.interpreters import ad from jax.interpreters import batching from jax.interpreters import xla from jax._src.util import prod Array = Any RealArray = Array IntegerArray = Array # TODO: Import or define these to match # https://github.com/numpy/numpy/blob/main/numpy/typing/_dtype_like.py. DTypeLikeInt = Any DTypeLikeFloat = Any _UINT_DTYPES = {8: jnp.uint8, 16: jnp.uint16, 32: jnp.uint32, 64: jnp.uint64} def PRNGKey(seed: int) -> jnp.ndarray: """Create a pseudo-random number generator (PRNG) key given an integer seed. Args: seed: a 64- or 32-bit integer used as the value of the key. Returns: A PRNG key, which is modeled as an array of shape (2,) and dtype uint32. The key is constructed from a 64-bit seed by effectively bit-casting to a pair of uint32 values (or from a 32-bit seed by first padding out with zeros). """ # Avoid overflowerror in X32 mode by first converting ints to int64. # This breaks JIT invariance of PRNGKey for large ints, but supports the # common use-case of instantiating PRNGKey with Python hashes in X32 mode. if isinstance(seed, int): seed_arr = jnp.asarray(np.int64(seed)) else: seed_arr = jnp.asarray(seed) if seed_arr.shape: raise TypeError(f"PRNGKey seed must be a scalar; got {seed!r}.") if not np.issubdtype(seed_arr.dtype, np.integer): raise TypeError(f"PRNGKey seed must be an integer; got {seed!r}") convert = lambda k: lax.reshape(lax.convert_element_type(k, np.uint32), [1]) k1 = convert(lax.shift_right_logical(seed_arr, lax._const(seed_arr, 32))) k2 = convert(jnp.bitwise_and(seed_arr, np.uint32(0xFFFFFFFF))) return lax.concatenate([k1, k2], 0) def _is_prng_key(key: jnp.ndarray) -> bool: try: return key.shape == (2,) and key.dtype == np.uint32 except AttributeError: return False ### utilities def _make_rotate_left(dtype): if not jnp.issubdtype(dtype, np.integer): raise TypeError("_rotate_left only accepts integer dtypes.") nbits = np.array(jnp.iinfo(dtype).bits, dtype) def _rotate_left(x, d): if lax.dtype(d) != dtype: d = lax.convert_element_type(d, dtype) if lax.dtype(x) != dtype: x = lax.convert_element_type(x, dtype) return lax.shift_left(x, d) | lax.shift_right_logical(x, nbits - d) return _rotate_left def _bit_stats(bits): """This is a debugging function to compute the statistics of bit fields.""" return np.array([list(map(int, np.binary_repr(x, 64))) for x in bits]).mean(0) ### hash function and split def _threefry2x32_abstract_eval(*args): if any(a.dtype != jnp.uint32 for a in args): raise TypeError("Arguments to threefry2x32 must have uint32 type, got {}" .format(args)) if all(isinstance(arg, core.ShapedArray) for arg in args): shape = lax._broadcasting_shape_rule(*args) named_shape = core.join_named_shapes(*(a.named_shape for a in args)) aval = core.ShapedArray(shape, jnp.dtype(jnp.uint32), named_shape=named_shape) else: aval = core.UnshapedArray(jnp.dtype(jnp.uint32)) return (aval,) * 2 rotate_left = _make_rotate_left(np.uint32) def apply_round(v, rot): v = v[:] v[0] = v[0] + v[1] v[1] = rotate_left(v[1], rot) v[1] = v[0] ^ v[1] return v def rotate_list(xs): return xs[1:] + xs[:1] def rolled_loop_step(i, state): x, ks, rotations = state for r in rotations[0]: x = apply_round(x, r) new_x = [x[0] + ks[0], x[1] + ks[1] + jnp.asarray(i + 1, dtype=np.uint32)] return new_x, rotate_list(ks), rotate_list(rotations) def _threefry2x32_lowering(key1, key2, x1, x2, use_rolled_loops=True): """Apply the Threefry 2x32 hash. Args: keypair: a pair of 32bit unsigned integers used for the key. count: an array of dtype uint32 used for the counts. Returns: An array of dtype uint32 with the same shape as `count`. """ x = [x1, x2] rotations = [np.array([13, 15, 26, 6], dtype=np.uint32), np.array([17, 29, 16, 24], dtype=np.uint32)] ks = [key1, key2, key1 ^ key2 ^ np.uint32(0x1BD11BDA)] x[0] = x[0] + ks[0] x[1] = x[1] + ks[1] if use_rolled_loops: x, _, _ = lax.fori_loop(0, 5, rolled_loop_step, (x, rotate_list(ks), rotations)) else: for r in rotations[0]: x = apply_round(x, r) x[0] = x[0] + ks[1] x[1] = x[1] + ks[2] + np.uint32(1) for r in rotations[1]: x = apply_round(x, r) x[0] = x[0] + ks[2] x[1] = x[1] + ks[0] + np.uint32(2) for r in rotations[0]: x = apply_round(x, r) x[0] = x[0] + ks[0] x[1] = x[1] + ks[1] + np.uint32(3) for r in rotations[1]: x = apply_round(x, r) x[0] = x[0] + ks[1] x[1] = x[1] + ks[2] + np.uint32(4) for r in rotations[0]: x = apply_round(x, r) x[0] = x[0] + ks[2] x[1] = x[1] + ks[0] + np.uint32(5) return tuple(x) def _threefry2x32_gpu_translation_rule(c, k1, k2, x1, x2): shape = lax.broadcast_shapes( c.get_shape(k1).dimensions(), c.get_shape(k2).dimensions(), c.get_shape(x1).dimensions(), c.get_shape(x2).dimensions()) rank = len(shape) if 0 in shape: zeros = xla_client.ops.Broadcast( xla_bridge.constant(c, np.array(0, np.uint32)), shape) return xla_client.ops.Tuple(c, [zeros, zeros]) def _broadcast(x): ndims = c.get_shape(x).rank() return xla_client.ops.BroadcastInDim(x, shape, tuple(range(rank - ndims, rank))) return cuda_prng.threefry2x32( c, (_broadcast(k1), _broadcast(k2)), (_broadcast(x1), _broadcast(x2))) threefry2x32_p = core.Primitive("threefry2x32") threefry2x32_p.multiple_results = True threefry2x32_p.def_impl(partial(xla.apply_primitive, threefry2x32_p)) threefry2x32_p.def_abstract_eval(_threefry2x32_abstract_eval) batching.defbroadcasting(threefry2x32_p) xla.translations_with_avals[threefry2x32_p] = xla.lower_fun( partial(_threefry2x32_lowering, use_rolled_loops=False), multiple_results=True, with_avals=True) xla.backend_specific_translations['cpu'][threefry2x32_p] = xla.lower_fun( partial(_threefry2x32_lowering, use_rolled_loops=True), multiple_results=True) if cuda_prng: xla.backend_specific_translations['gpu'][threefry2x32_p] = \ _threefry2x32_gpu_translation_rule @jit def threefry_2x32(keypair, count): """Apply the Threefry 2x32 hash. Args: keypair: a pair of 32bit unsigned integers used for the key. count: an array of dtype uint32 used for the counts. Returns: An array of dtype uint32 with the same shape as `count`. """ key1, key2 = keypair if not lax.dtype(key1) == lax.dtype(key2) == lax.dtype(count) == np.uint32: msg = "threefry_2x32 requires uint32 arguments, got {}" raise TypeError(msg.format([lax.dtype(x) for x in [key1, key2, count]])) odd_size = count.size % 2 if odd_size: x = list(jnp.split(jnp.concatenate([count.ravel(), np.uint32([0])]), 2)) else: x = list(jnp.split(count.ravel(), 2)) x = threefry2x32_p.bind(key1, key2, x[0], x[1]) out = jnp.concatenate(x) assert out.dtype == np.uint32 return lax.reshape(out[:-1] if odd_size else out, count.shape) def split(key: jnp.ndarray, num: int = 2) -> jnp.ndarray: """Splits a PRNG key into `num` new keys by adding a leading axis. Args: key: a PRNGKey (an array with shape (2,) and dtype uint32). num: optional, a positive integer indicating the number of keys to produce (default 2). Returns: An array with shape (num, 2) and dtype uint32 representing `num` new keys. """ return _split(key, int(num)) # type: ignore @partial(jit, static_argnums=(1,)) def _split(key, num) -> jnp.ndarray: counts = lax.iota(np.uint32, num * 2) return lax.reshape(threefry_2x32(key, counts), (num, 2)) def fold_in(key: jnp.ndarray, data: int) -> jnp.ndarray: """Folds in data to a PRNG key to form a new PRNG key. Args: key: a PRNGKey (an array with shape (2,) and dtype uint32). data: a 32bit integer representing data to be folded in to the key. Returns: A new PRNGKey that is a deterministic function of the inputs and is statistically safe for producing a stream of new pseudo-random values. """ return _fold_in(key, jnp.uint32(data)) @jit def _fold_in(key, data): return threefry_2x32(key, PRNGKey(data)) @partial(jit, static_argnums=(1, 2)) def _random_bits(key, bit_width, shape): """Sample uniform random bits of given width and shape using PRNG key.""" if not _is_prng_key(key): raise TypeError("_random_bits got invalid prng key.") if bit_width not in (8, 16, 32, 64): raise TypeError("requires 8-, 16-, 32- or 64-bit field width.") shape = core.as_named_shape(shape) for name, size in shape.named_items: real_size = lax.psum(1, name) if real_size != size: raise ValueError(f"The shape of axis {name} was specified as {size}, " f"but it really is {real_size}") axis_index = lax.axis_index(name) key = fold_in(key, axis_index) size = prod(shape.positional) max_count = int(np.ceil(bit_width * size / 32)) nblocks, rem = divmod(max_count, jnp.iinfo(np.uint32).max) if not nblocks: bits = threefry_2x32(key, lax.iota(np.uint32, rem)) else: keys = split(key, nblocks + 1) subkeys, last_key = keys[:-1], keys[-1] blocks = vmap(threefry_2x32, in_axes=(0, None))(subkeys, lax.iota(np.uint32, jnp.iinfo(np.uint32).max)) last = threefry_2x32(last_key, lax.iota(np.uint32, rem)) bits = lax.concatenate([blocks.ravel(), last], 0) dtype = _UINT_DTYPES[bit_width] if bit_width == 64: bits = [lax.convert_element_type(x, dtype) for x in jnp.split(bits, 2)] bits = lax.shift_left(bits[0], dtype(32)) | bits[1] elif bit_width in [8, 16]: # this is essentially bits.view(dtype)[:size] bits = lax.bitwise_and( np.uint32(np.iinfo(dtype).max), lax.shift_right_logical( lax.broadcast(bits, (1,)), lax.mul( np.uint32(bit_width), lax.broadcasted_iota(np.uint32, (32 // bit_width, 1), 0) ) ) ) bits = lax.reshape(bits, (np.uint32(max_count * 32 // bit_width),), (1, 0)) bits = lax.convert_element_type(bits, dtype)[:size] return lax.reshape(bits, shape) ### random samplers def _check_shape(name, shape: Union[Sequence[int], NamedShape], *param_shapes): shape = core.as_named_shape(shape) if param_shapes: shape_ = lax.broadcast_shapes(shape.positional, *param_shapes) if shape.positional != shape_: msg = ("{} parameter shapes must be broadcast-compatible with shape " "argument, and the result of broadcasting the shapes must equal " "the shape argument, but got result {} for shape argument {}.") raise ValueError(msg.format(name, shape_, shape)) def uniform(key: jnp.ndarray, shape: Union[Sequence[int], NamedShape] = (), dtype: DTypeLikeFloat = dtypes.float_, minval: RealArray = 0., maxval: RealArray = 1.) -> jnp.ndarray: """Sample uniform random values in [minval, maxval) with given shape/dtype. Args: key: a PRNGKey used as the random key. shape: optional, a tuple of nonnegative integers representing the result shape. Default (). dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). minval: optional, a minimum (inclusive) value broadcast-compatible with shape for the range (default 0). maxval: optional, a maximum (exclusive) value broadcast-compatible with shape for the range (default 1). Returns: A random array with the specified shape and dtype. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `uniform` must be a float dtype, " f"got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) shape = core.as_named_shape(shape) return _uniform(key, shape, dtype, minval, maxval) # type: ignore @partial(jit, static_argnums=(1, 2)) def _uniform(key, shape, dtype, minval, maxval) -> jnp.ndarray: _check_shape("uniform", shape) if not jnp.issubdtype(dtype, np.floating): raise TypeError("uniform only accepts floating point dtypes.") minval = lax.convert_element_type(minval, dtype) maxval = lax.convert_element_type(maxval, dtype) minval = lax.broadcast_to_rank(minval, shape.positional_rank) maxval = lax.broadcast_to_rank(maxval, shape.positional_rank) finfo = jnp.finfo(dtype) nbits, nmant = finfo.bits, finfo.nmant if nbits not in (16, 32, 64): raise TypeError("uniform only accepts 32- or 64-bit dtypes.") bits = _random_bits(key, nbits, shape) # The strategy here is to randomize only the mantissa bits with an exponent of # 1 (after applying the bias), then shift and scale to the desired range. The # bit-level transformation we use relies on Numpy and XLA having bit-for-bit # equivalent float representations, which might not be true on all platforms. float_bits = lax.bitwise_or( lax.shift_right_logical(bits, np.array(nbits - nmant, lax.dtype(bits))), np.array(1., dtype).view(_UINT_DTYPES[nbits])) floats = lax.bitcast_convert_type(float_bits, dtype) - np.array(1., dtype) return lax.max( minval, lax.reshape(floats * (maxval - minval) + minval, shape.positional)) def randint(key: jnp.ndarray, shape: Sequence[int], minval: IntegerArray, maxval: IntegerArray, dtype: DTypeLikeInt = dtypes.int_): """Sample uniform random values in [minval, maxval) with given shape/dtype. Args: key: a PRNGKey used as the random key. shape: a tuple of nonnegative integers representing the shape. minval: int or array of ints broadcast-compatible with ``shape``, a minimum (inclusive) value for the range. maxval: int or array of ints broadcast-compatible with ``shape``, a maximum (exclusive) value for the range. dtype: optional, an int dtype for the returned values (default int64 if jax_enable_x64 is true, otherwise int32). Returns: A random array with the specified shape and dtype. """ dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) return _randint(key, shape, minval, maxval, dtype) @partial(jit, static_argnums=(1, 4)) def _randint(key, shape, minval, maxval, dtype): _check_shape("randint", shape, np.shape(minval), np.shape(maxval)) if not jnp.issubdtype(dtype, np.integer): raise TypeError(f"randint only accepts integer dtypes, got {dtype}") _check_arraylike("randint", minval, maxval) minval = jnp.asarray(minval) maxval = jnp.asarray(maxval) if not jnp.issubdtype(minval.dtype, np.integer): minval = minval.astype(int) if not jnp.issubdtype(maxval.dtype, np.integer): maxval = maxval.astype(int) # Flag where maxval is greater than the maximum value of dtype # in order to handle cases like randint(key, shape, 0, 256, 'uint8') maxval_out_of_range = lax.gt( maxval, _convert_and_clip_integer(jnp.array(jnp.iinfo(dtype).max, dtype), maxval.dtype)) minval = _convert_and_clip_integer(minval, dtype) maxval = _convert_and_clip_integer(maxval, dtype) minval = lax.broadcast_to_rank(minval, len(shape)) maxval = lax.broadcast_to_rank(maxval, len(shape)) nbits = jnp.iinfo(dtype).bits if nbits not in (8, 16, 32, 64): raise TypeError(f"randint only accepts 8-, 16-, 32-, or 64-bit dtypes, got {dtype}") # This algorithm is biased whenever (maxval - minval) is not a power of 2. # We generate double the number of random bits required by the dtype so as to # reduce that bias. k1, k2 = split(key) rbits = lambda key: _random_bits(key, nbits, shape) higher_bits, lower_bits = rbits(k1), rbits(k2) unsigned_dtype = _UINT_DTYPES[nbits] span = lax.convert_element_type(maxval - minval, unsigned_dtype) # Ensure that span=1 when maxval <= minval, so minval is always returned; # https://github.com/google/jax/issues/222 span = lax.select(maxval <= minval, lax.full_like(span, 1), span) # When maxval is out of range, the span has to be one larger. # If span is already the maximum representable value, this will wrap to zero, # causing remainders below to have no effect, which is the correct semantics. span = lax.select( maxval_out_of_range & (maxval > minval), lax.add(span, lax._const(span, 1)), span) # To compute a remainder operation on an integer that might have twice as many # bits as we can represent in the native unsigned dtype, we compute a # multiplier equal to 2**nbits % span. To avoid overflow, we use the identity: # (a * b) % N = [(a % N) * (b % N)] % N multiplier = lax.rem(lax._const(span, 2 ** (nbits // 2)), span) multiplier = lax.rem(lax.mul(multiplier, multiplier), span) random_offset = lax.add(lax.mul(lax.rem(higher_bits, span), multiplier), lax.rem(lower_bits, span)) random_offset = lax.rem(random_offset, span) return lax.add(minval, lax.convert_element_type(random_offset, dtype)) def shuffle(key: jnp.ndarray, x: Array, axis: int = 0) -> jnp.ndarray: """Shuffle the elements of an array uniformly at random along an axis. Args: key: a PRNGKey used as the random key. x: the array to be shuffled. axis: optional, an int axis along which to shuffle (default 0). Returns: A shuffled version of x. """ msg = ("jax.random.shuffle is deprecated and will be removed in a future release. " "Use jax.random.permutation") warnings.warn(msg, FutureWarning) return _shuffle(key, x, axis) # type: ignore def permutation(key: jnp.ndarray, x: Array) -> jnp.ndarray: """ Permute elements of an array along its first axis or return a permuted range. If `x` is a multi-dimensional array, it is only shuffled along its first index. Args:n key: a PRNGKey used as the random key. x: the array or integer range to be shuffled. Returns: A shuffled version of x or array range """ if not np.ndim(x): # scalar case, must be a concrete integer if not np.issubdtype(lax.dtype(x), np.integer): raise TypeError("x must be an integer or at least 1-dimensional") x = int(x) # type: ignore[assignment] return _shuffle(key, jnp.arange(x), 0) elif np.ndim(x) == 1: return _shuffle(key, x, 0) else: assert isinstance(x, jnp.ndarray) ind = _shuffle(key, jnp.arange(x.shape[0]), 0) # type: ignore[attribute-error] return x[ind] @partial(jit, static_argnums=(2,)) def _shuffle(key, x, axis) -> jnp.ndarray: # On parallel architectures, Fisher-Yates is more expensive than doing # multiple sorts. This algorithm is based on one developed and analyzed by # tjablin@. We sort according to randomly-generated 32bit keys, but those keys # may have collisions. If we repeat the process, using fresh 32bit keys for # each sort, then whenever all pairs of elements have been assigned distinct # keys at some iteration (or equivalently when the strings formed by # concatenating the successive keys for each element are all distinct) then we # are guaranteed to have a perfect sample (assuming that either the sort is # stable or that any bias is not value-dependent). Since checking uniqueness # at runtime may be expensive, we use a heuristic static stop criterion # developed by tjablin@. See tensorflow/compiler/tf2xla/random_ops.cc for more # info, and for the original implementation of this algorithm. See also # Section 2 of http://people.csail.mit.edu/costis/6896sp11/lec5s.pdf for # another analysis (where the keys are generated one bit at a time). exponent = 3 # see tjablin@'s analysis for explanation of this parameter uint32max = jnp.iinfo(np.uint32).max num_rounds = int(np.ceil(exponent * np.log(max(1, x.size)) / np.log(uint32max))) for _ in range(num_rounds): key, subkey = split(key) sort_keys = _random_bits(subkey, 32, x.shape) _, x = lax.sort_key_val(sort_keys, x, axis) return x def choice(key: jnp.ndarray, a: IntegerArray, shape: Sequence[int] = (), replace: bool = True, p=None) -> jnp.ndarray: """Generates a random sample from a given 1-D array. Args: key: a PRNGKey used as the random key. a : 1D array or int. If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a were arange(a). shape : tuple of ints, optional. Output shape. If the given shape is, e.g., ``(m, n)``, then ``m * n`` samples are drawn. Default is (), in which case a single value is returned. replace : boolean. Whether the sample is with or without replacement. default is True. p : 1-D array-like, The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. Returns: An array of shape `shape` containing samples from `a`. """ if not isinstance(shape, Sequence): raise TypeError("shape argument of jax.random.choice must be a sequence, " f"got {shape}") if np.ndim(a) not in [0, 1]: raise ValueError("a must be an integer or 1-dimensional") _check_arraylike("choice", a) if np.ndim(a) == 0: a = core.concrete_or_error(int, a, "The error occurred in jax.random.choice()") else: a = jnp.asarray(a) n_inputs = int(a) if np.ndim(a) == 0 else len(a) # type: ignore[arg-type] n_draws = prod(shape) if n_draws == 0: return jnp.zeros(shape, dtype=lax.dtype(a)) if n_inputs <= 0: raise ValueError("a must be greater than 0 unless no samples are taken") if not replace and n_draws > n_inputs: raise ValueError("Cannot take a larger sample than population when 'replace=False'") if p is None: if replace: ind = randint(key, shape, 0, n_inputs) result = ind if np.ndim(a) == 0 else a[ind] # type: ignore[index] else: result = permutation(key, a)[:n_draws] else: if p.shape != (n_inputs,): raise ValueError("p must be None or match the shape of a") if replace: p_cuml = jnp.cumsum(p) r = p_cuml[-1] * (1 - uniform(key, shape)) ind = jnp.searchsorted(p_cuml, r) result = ind if np.ndim(a) == 0 else a[ind] # type: ignore[index] else: # Gumbel top-k trick: https://timvieira.github.io/blog/post/2019/09/16/algorithms-for-sampling-without-replacement/ g = -gumbel(key, (n_inputs,)) - jnp.log(p) ind = jnp.argsort(g)[:n_draws] result = ind if np.ndim(a) == 0 else a[ind] # type: ignore[index] return result.reshape(shape) def normal(key: jnp.ndarray, shape: Union[Sequence[int], NamedShape] = (), dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample standard normal random values with given shape and float dtype. Args: key: a PRNGKey used as the random key. shape: optional, a tuple of nonnegative integers representing the result shape. Default (). dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified shape and dtype. """ if not dtypes.issubdtype(dtype, np.inexact): raise ValueError(f"dtype argument to `normal` must be a float or complex dtype, " f"got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) shape = core.as_named_shape(shape) return _normal(key, shape, dtype) # type: ignore @partial(jit, static_argnums=(1, 2)) def _normal(key, shape, dtype) -> jnp.ndarray: if dtypes.issubdtype(dtype, np.complexfloating): sqrt2 = np.array(np.sqrt(2), dtype) key_re, key_im = split(key) real_dtype = np.array(0, dtype).real.dtype _re = _normal_real(key_re, shape, real_dtype) _im = _normal_real(key_im, shape, real_dtype) return (_re + 1j * _im) / sqrt2 else: return _normal_real(key, shape, dtype) # type: ignore @partial(jit, static_argnums=(1, 2)) def _normal_real(key, shape, dtype) -> jnp.ndarray: _check_shape("normal", shape) lo = np.nextafter(np.array(-1., dtype), np.array(0., dtype), dtype=dtype) hi = np.array(1., dtype) u = uniform(key, shape, dtype, lo, hi) # type: ignore[arg-type] return np.array(np.sqrt(2), dtype) * lax.erf_inv(u) def multivariate_normal(key: jnp.ndarray, mean: RealArray, cov: RealArray, shape: Optional[Sequence[int]] = None, dtype: DTypeLikeFloat = dtypes.float_, method: str = 'cholesky') -> jnp.ndarray: """Sample multivariate normal random values with given mean and covariance. Args: key: a PRNGKey used as the random key. mean: a mean vector of shape ``(..., n)``. cov: a positive definite covariance matrix of shape ``(..., n, n)``. The batch shape ``...`` must be broadcast-compatible with that of ``mean``. shape: optional, a tuple of nonnegative integers specifying the result batch shape; that is, the prefix of the result shape excluding the last axis. Must be broadcast-compatible with ``mean.shape[:-1]`` and ``cov.shape[:-2]``. The default (None) produces a result batch shape by broadcasting together the batch shapes of ``mean`` and ``cov``. dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). method: optional, a method to compute the factor of ``cov``. Must be one of 'svd', eigh, and 'cholesky'. Default 'cholesky'. Returns: A random array with the specified dtype and shape given by ``shape + mean.shape[-1:]`` if ``shape`` is not None, or else ``broadcast_shapes(mean.shape[:-1], cov.shape[:-2]) + mean.shape[-1:]``. """ if method not in {'svd', 'eigh', 'cholesky'}: raise ValueError("method must be one of {'svd', 'eigh', 'cholesky'}") if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `multivariate_normal` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) if shape is not None: shape = core.canonicalize_shape(shape) return _multivariate_normal(key, mean, cov, shape, dtype, method) # type: ignore @partial(jit, static_argnums=(3, 4, 5)) def _multivariate_normal(key, mean, cov, shape, dtype, method) -> jnp.ndarray: if not np.ndim(mean) >= 1: msg = "multivariate_normal requires mean.ndim >= 1, got mean.ndim == {}" raise ValueError(msg.format(np.ndim(mean))) if not np.ndim(cov) >= 2: msg = "multivariate_normal requires cov.ndim >= 2, got cov.ndim == {}" raise ValueError(msg.format(np.ndim(cov))) n = mean.shape[-1] if np.shape(cov)[-2:] != (n, n): msg = ("multivariate_normal requires cov.shape == (..., n, n) for n={n}, " "but got cov.shape == {shape}.") raise ValueError(msg.format(n=n, shape=np.shape(cov))) if shape is None: shape = lax.broadcast_shapes(mean.shape[:-1], cov.shape[:-2]) else: _check_shape("normal", shape, mean.shape[:-1], cov.shape[:-2]) if method == 'svd': (u, s, _) = svd(cov) factor = u * jnp.sqrt(s) elif method == 'eigh': (w, v) = eigh(cov) factor = v * jnp.sqrt(w) else: # 'cholesky' factor = cholesky(cov) normal_samples = normal(key, shape + mean.shape[-1:], dtype) return mean + jnp.einsum('...ij,...j->...i', factor, normal_samples) def truncated_normal(key: jnp.ndarray, lower: RealArray, upper: RealArray, shape: Optional[Union[Sequence[int], NamedShape]] = None, dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample truncated standard normal random values with given shape and dtype. Args: key: a PRNGKey used as the random key. lower: a float or array of floats representing the lower bound for truncation. Must be broadcast-compatible with ``upper``. upper: a float or array of floats representing the upper bound for truncation. Must be broadcast-compatible with ``lower``. shape: optional, a tuple of nonnegative integers specifying the result shape. Must be broadcast-compatible with ``lower`` and ``upper``. The default (None) produces a result shape by broadcasting ``lower`` and ``upper``. dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified dtype and shape given by ``shape`` if ``shape`` is not None, or else by broadcasting ``lower`` and ``upper``. Returns values in the open interval ``(lower, upper)``. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `truncated_normal` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) if shape is not None: shape = core.as_named_shape(shape) return _truncated_normal(key, lower, upper, shape, dtype) # type: ignore @partial(jit, static_argnums=(3, 4)) def _truncated_normal(key, lower, upper, shape, dtype) -> jnp.ndarray: if shape is None: shape = lax.broadcast_shapes(np.shape(lower), np.shape(upper)) else: _check_shape("truncated_normal", shape, np.shape(lower), np.shape(upper)) sqrt2 = np.array(np.sqrt(2), dtype) lower = lax.convert_element_type(lower, dtype) upper = lax.convert_element_type(upper, dtype) a = lax.erf(lower / sqrt2) b = lax.erf(upper / sqrt2) if not jnp.issubdtype(dtype, np.floating): raise TypeError("truncated_normal only accepts floating point dtypes.") u = uniform(key, shape, dtype, minval=a, maxval=b) out = sqrt2 * lax.erf_inv(u) # Clamp the value to the open interval (lower, upper) to make sure that # rounding (or if we chose `a` for `u`) doesn't push us outside of the range. return jnp.clip( out, lax.nextafter(lax.stop_gradient(lower), np.array(np.inf, dtype=dtype)), lax.nextafter(lax.stop_gradient(upper), np.array(-np.inf, dtype=dtype))) def bernoulli(key: jnp.ndarray, p: RealArray = np.float32(0.5), shape: Optional[Union[Sequence[int], NamedShape]] = None) -> jnp.ndarray: """Sample Bernoulli random values with given shape and mean. Args: key: a PRNGKey used as the random key. p: optional, a float or array of floats for the mean of the random variables. Must be broadcast-compatible with ``shape``. Default 0.5. shape: optional, a tuple of nonnegative integers representing the result shape. Must be broadcast-compatible with ``p.shape``. The default (None) produces a result shape equal to ``p.shape``. Returns: A random array with boolean dtype and shape given by ``shape`` if ``shape`` is not None, or else ``p.shape``. """ dtype = dtypes.canonicalize_dtype(lax.dtype(p)) if shape is not None: shape = core.as_named_shape(shape) if not jnp.issubdtype(dtype, np.floating): msg = "bernoulli probability `p` must have a floating dtype, got {}." raise TypeError(msg.format(dtype)) p = lax.convert_element_type(p, dtype) return _bernoulli(key, p, shape) # type: ignore @partial(jit, static_argnums=(2,)) def _bernoulli(key, p, shape) -> jnp.ndarray: if shape is None: # TODO: Use the named part of `p` as well shape = np.shape(p) else: _check_shape("bernoulli", shape, np.shape(p)) return uniform(key, shape, lax.dtype(p)) < p def beta(key: jnp.ndarray, a: RealArray, b: RealArray, shape: Optional[Sequence[int]] = None, dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample Beta random values with given shape and float dtype. Args: key: a PRNGKey used as the random key. a: a float or array of floats broadcast-compatible with ``shape`` representing the first parameter "alpha". b: a float or array of floats broadcast-compatible with ``shape`` representing the second parameter "beta". shape: optional, a tuple of nonnegative integers specifying the result shape. Must be broadcast-compatible with ``a`` and ``b``. The default (None) produces a result shape by broadcasting ``a`` and ``b``. dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified dtype and shape given by ``shape`` if ``shape`` is not None, or else by broadcasting ``a`` and ``b``. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `beta` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) if shape is not None: shape = core.canonicalize_shape(shape) return _beta(key, a, b, shape, dtype) def _beta(key, a, b, shape, dtype): if shape is None: shape = lax.broadcast_shapes(np.shape(a), np.shape(b)) else: _check_shape("beta", shape, np.shape(a), np.shape(b)) a = lax.convert_element_type(a, dtype) b = lax.convert_element_type(b, dtype) key_a, key_b = split(key) a = jnp.broadcast_to(a, shape) b = jnp.broadcast_to(b, shape) gamma_a = gamma(key_a, a, shape, dtype) gamma_b = gamma(key_b, b, shape, dtype) return gamma_a / (gamma_a + gamma_b) def cauchy(key: jnp.ndarray, shape: Sequence[int] = (), dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample Cauchy random values with given shape and float dtype. Args: key: a PRNGKey used as the random key. shape: optional, a tuple of nonnegative integers representing the result shape. Default (). dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified shape and dtype. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `cauchy` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) return _cauchy(key, shape, dtype) @partial(jit, static_argnums=(1, 2)) def _cauchy(key, shape, dtype): _check_shape("cauchy", shape) u = uniform(key, shape, dtype, minval=jnp.finfo(dtype).eps, maxval=1.) pi = _constant_like(u, np.pi) return lax.tan(lax.mul(pi, lax.sub(u, _constant_like(u, 0.5)))) def dirichlet(key: jnp.ndarray, alpha: RealArray, shape: Optional[Sequence[int]] = None, dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample Dirichlet random values with given shape and float dtype. Args: key: a PRNGKey used as the random key. alpha: an array of shape ``(..., n)`` used as the concentration parameter of the random variables. shape: optional, a tuple of nonnegative integers specifying the result batch shape; that is, the prefix of the result shape excluding the last element of value ``n``. Must be broadcast-compatible with ``alpha.shape[:-1]``. The default (None) produces a result shape equal to ``alpha.shape``. dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified dtype and shape given by ``shape + (alpha.shape[-1],)`` if ``shape`` is not None, or else ``alpha.shape``. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `dirichlet` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) if shape is not None: shape = core.canonicalize_shape(shape) return _dirichlet(key, alpha, shape, dtype) @partial(jit, static_argnums=(2, 3)) def _dirichlet(key, alpha, shape, dtype): if not np.ndim(alpha) >= 1: msg = "dirichlet requires alpha.ndim >= 1, got alpha.ndim == {}" raise ValueError(msg.format(np.ndim(alpha))) if shape is None: shape = np.shape(alpha)[:-1] else: _check_shape("dirichlet", shape, np.shape(alpha)[:-1]) alpha = lax.convert_element_type(alpha, dtype) gamma_samples = gamma(key, alpha, shape + np.shape(alpha)[-1:], dtype) return gamma_samples / jnp.sum(gamma_samples, axis=-1, keepdims=True) def exponential(key: jnp.ndarray, shape: Sequence[int] = (), dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample Exponential random values with given shape and float dtype. Args: key: a PRNGKey used as the random key. shape: optional, a tuple of nonnegative integers representing the result shape. Default (). dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified shape and dtype. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `exponential` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) return _exponential(key, shape, dtype) @partial(jit, static_argnums=(1, 2)) def _exponential(key, shape, dtype): _check_shape("exponential", shape) u = uniform(key, shape, dtype) # taking 1 - u to move the domain of log to (0, 1] instead of [0, 1) return lax.neg(lax.log1p(lax.neg(u))) def _gamma_one(key, alpha): # Ref: A simple method for generating gamma variables, George Marsaglia and Wai Wan Tsang # The algorithm can also be founded in: # https://en.wikipedia.org/wiki/Gamma_distribution#Generating_gamma-distributed_random_variables zero = _constant_like(alpha, 0) one = _constant_like(alpha, 1) minus_one = _constant_like(alpha, -1) one_over_two = _constant_like(alpha, 0.5) one_over_three = _constant_like(alpha, 1. / 3.) squeeze_const = _constant_like(alpha, 0.0331) dtype = lax.dtype(alpha) key, subkey = split(key) # for alpha < 1, we boost alpha to alpha + 1 and get a sample according to # Gamma(alpha) ~ Gamma(alpha+1) * Uniform()^(1 / alpha) boost = lax.select(lax.ge(alpha, one), one, lax.pow(uniform(subkey, (), dtype=dtype), lax.div(one, alpha))) alpha = lax.select(lax.ge(alpha, one), alpha, lax.add(alpha, one)) d = lax.sub(alpha, one_over_three) c = lax.div(one_over_three, lax.sqrt(d)) def _cond_fn(kXVU): _, X, V, U = kXVU # TODO: use lax.cond when its batching rule is supported # The reason is to avoid evaluating second condition which involves log+log # if the first condition is satisfied cond = lax.bitwise_and(lax.ge(U, lax.sub(one, lax.mul(squeeze_const, lax.mul(X, X)))), lax.ge(lax.log(U), lax.add(lax.mul(X, one_over_two), lax.mul(d, lax.add(lax.sub(one, V), lax.log(V)))))) return cond def _body_fn(kXVU): def _next_kxv(kxv): key = kxv[0] key, subkey = split(key) x = normal(subkey, (), dtype=dtype) v = lax.add(one, lax.mul(x, c)) return key, x, v key = kXVU[0] key, x_key, U_key = split(key, 3) _, x, v = lax.while_loop(lambda kxv: lax.le(kxv[2], zero), _next_kxv, (x_key, zero, minus_one)) X = lax.mul(x, x) V = lax.mul(lax.mul(v, v), v) U = uniform(U_key, (), dtype=dtype) return key, X, V, U # initial state is chosen such that _cond_fn will return True _, _, V, _ = lax.while_loop(_cond_fn, _body_fn, (key, zero, one, _constant_like(alpha, 2))) z = lax.mul(lax.mul(d, V), boost) return lax.select(lax.eq(z, zero), jnp.finfo(z.dtype).tiny, z) def _gamma_grad(sample, a): samples = jnp.reshape(sample, -1) alphas = jnp.reshape(a, -1) if xla_bridge.get_backend().platform == 'cpu': grads = lax.map(lambda args: lax.random_gamma_grad(*args), (alphas, samples)) else: grads = vmap(lax.random_gamma_grad)(alphas, samples) return grads.reshape(np.shape(a)) def _gamma_impl(key, a, use_vmap=False): a_shape = jnp.shape(a) # split key to match the shape of a key_ndim = jnp.ndim(key) - 1 key = jnp.reshape(key, (-1, 2)) key = vmap(split, in_axes=(0, None))(key, prod(a_shape[key_ndim:])) keys = jnp.reshape(key, (-1, 2)) alphas = jnp.reshape(a, -1) if use_vmap: samples = vmap(_gamma_one)(keys, alphas) else: samples = lax.map(lambda args: _gamma_one(*args), (keys, alphas)) return jnp.reshape(samples, a_shape) def _gamma_batching_rule(batched_args, batch_dims): k, a = batched_args bk, ba = batch_dims size = next(t.shape[i] for t, i in zip(batched_args, batch_dims) if i is not None) k = batching.bdim_at_front(k, bk, size) a = batching.bdim_at_front(a, ba, size) return random_gamma_p.bind(k, a), 0 random_gamma_p = core.Primitive('random_gamma') random_gamma_p.def_impl(_gamma_impl) random_gamma_p.def_abstract_eval(lambda key, a: core.raise_to_shaped(a)) ad.defjvp2(random_gamma_p, None, lambda tangent, ans, key, a: tangent * _gamma_grad(ans, a)) xla.translations_with_avals[random_gamma_p] = xla.lower_fun( partial(_gamma_impl, use_vmap=True), multiple_results=False, with_avals=True) xla.backend_specific_translations['cpu'][random_gamma_p] = xla.lower_fun( partial(_gamma_impl, use_vmap=False), multiple_results=False) batching.primitive_batchers[random_gamma_p] = _gamma_batching_rule def gamma(key: jnp.ndarray, a: RealArray, shape: Optional[Sequence[int]] = None, dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample Gamma random values with given shape and float dtype. Args: key: a PRNGKey used as the random key. a: a float or array of floats broadcast-compatible with ``shape`` representing the parameter of the distribution. shape: optional, a tuple of nonnegative integers specifying the result shape. Must be broadcast-compatible with ``a``. The default (None) produces a result shape equal to ``a.shape``. dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified dtype and with shape given by ``shape`` if ``shape`` is not None, or else by ``a.shape``. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `gamma` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) if shape is not None: shape = core.canonicalize_shape(shape) return _gamma(key, a, shape, dtype) @partial(jit, static_argnums=(2, 3)) def _gamma(key, a, shape, dtype): if shape is None: shape = np.shape(a) else: _check_shape("gamma", shape, np.shape(a)) a = lax.convert_element_type(a, dtype) if np.shape(a) != shape: a = jnp.broadcast_to(a, shape) return random_gamma_p.bind(key, a) @partial(jit, static_argnums=(2, 3, 4)) def _poisson_knuth(key, lam, shape, dtype, max_iters): # Knuth's algorithm for generating Poisson random variates. # Reference: # https://en.wikipedia.org/wiki/Poisson_distribution#Generating_Poisson-distributed_random_variables def body_fn(carry): i, k, rng, log_prod = carry rng, subkey = split(rng) k = lax.select(log_prod > -lam, k + 1, k) u = uniform(subkey, shape, np.float32) return i + 1, k, rng, log_prod + jnp.log(u) def cond_fn(carry): i, log_prod = carry[0], carry[3] return (log_prod > -lam).any() & (i < max_iters) k_init = lax.full_like(lam, 0, dtype, shape) log_rate_init = lax.full_like(lam, 0, np.float32, shape) k = lax.while_loop(cond_fn, body_fn, (0, k_init, key, log_rate_init))[1] return (k - 1).astype(dtype) @partial(jit, static_argnums=(2, 3, 4)) def _poisson_rejection(key, lam, shape, dtype, max_iters): # Transformed rejection due to Hormann. # Reference: # http://citeseer.ist.psu.edu/viewdoc/citations;jsessionid=1BEB35946CC807879F55D42512E5490C?doi=10.1.1.48.3054. log_lam = lax.log(lam) b = 0.931 + 2.53 * lax.sqrt(lam) a = -0.059 + 0.02483 * b inv_alpha = 1.1239 + 1.1328 / (b - 3.4) v_r = 0.9277 - 3.6224 / (b - 2) def body_fn(carry): i, k_out, accepted, key = carry key, subkey_0, subkey_1 = split(key, 3) u = uniform(subkey_0, shape, lam.dtype) - 0.5 v = uniform(subkey_1, shape, lam.dtype) u_shifted = 0.5 - abs(u) k = lax.floor((2 * a / u_shifted + b) * u + lam + 0.43) s = lax.log(v * inv_alpha / (a / (u_shifted * u_shifted) + b)) t = -lam + k * log_lam - lax.lgamma(k + 1) accept1 = (u_shifted >= 0.07) & (v <= v_r) reject = (k < 0) | ((u_shifted < 0.013) & (v > u_shifted)) accept2 = s <= t accept = accept1 | (~reject & accept2) k_out = lax.select(accept, k, k_out) accepted |= accept return i + 1, k_out, accepted, key def cond_fn(carry): i, k_out, accepted, key = carry return (~accepted).any() & (i < max_iters) k_init = lax.full_like(lam, -1, lam.dtype, shape) accepted = lax.full_like(lam, False, jnp.bool_, shape) k = lax.while_loop(cond_fn, body_fn, (0, k_init, accepted, key))[1] return k.astype(dtype) @partial(jit, static_argnums=(2, 3)) def _poisson(key, lam, shape, dtype): # The implementation matches TensorFlow and NumPy: # https://github.com/tensorflow/tensorflow/blob/v2.2.0-rc3/tensorflow/core/kernels/random_poisson_op.cc # https://github.com/numpy/numpy/blob/v1.18.3/numpy/random/src/distributions/distributions.c#L574 # For lambda < 10, we use the Knuth algorithm; otherwise, we use transformed # rejection sampling. use_knuth = lam < 10 lam_knuth = lax.select(use_knuth, lam, lax.full_like(lam, 0.0)) # The acceptance probability for rejection sampling maxes out at 89% as # λ -> ∞, so pick some arbitrary large value. lam_rejection = lax.select(use_knuth, lax.full_like(lam, 1e5), lam) max_iters = dtype.type(jnp.iinfo(dtype).max) # insanely conservative result = lax.select( use_knuth, _poisson_knuth(key, lam_knuth, shape, dtype, max_iters), _poisson_rejection(key, lam_rejection, shape, dtype, max_iters), ) return lax.select(lam == 0, jnp.zeros_like(result), result) def poisson(key: jnp.ndarray, lam: RealArray, shape: Sequence[int] = (), dtype: DTypeLikeInt = dtypes.int_) -> jnp.ndarray: """Sample Poisson random values with given shape and integer dtype. Args: key: a PRNGKey used as the random key. lam: rate parameter (mean of the distribution), must be >= 0. shape: optional, a tuple of nonnegative integers representing the result shape. Default (). dtype: optional, a integer dtype for the returned values (default int64 if jax_enable_x64 is true, otherwise int32). Returns: A random array with the specified shape and dtype. """ dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) if np.shape(lam) != shape: lam = jnp.broadcast_to(lam, shape) lam = lax.convert_element_type(lam, np.float32) return _poisson(key, lam, shape, dtype) def gumbel(key: jnp.ndarray, shape: Sequence[int] = (), dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample Gumbel random values with given shape and float dtype. Args: key: a PRNGKey used as the random key. shape: optional, a tuple of nonnegative integers representing the result shape. Default (). dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified shape and dtype. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `gumbel` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) return _gumbel(key, shape, dtype) @partial(jit, static_argnums=(1, 2)) def _gumbel(key, shape, dtype): _check_shape("gumbel", shape) return -jnp.log(-jnp.log( uniform(key, shape, dtype, minval=jnp.finfo(dtype).tiny, maxval=1.))) def categorical(key: jnp.ndarray, logits: RealArray, axis: int = -1, shape: Optional[Sequence[int]] = None) -> jnp.ndarray: """Sample random values from categorical distributions. Args: key: a PRNGKey used as the random key. logits: Unnormalized log probabilities of the categorical distribution(s) to sample from, so that `softmax(logits, axis)` gives the corresponding probabilities. axis: Axis along which logits belong to the same categorical distribution. shape: Optional, a tuple of nonnegative integers representing the result shape. Must be broadcast-compatible with ``np.delete(logits.shape, axis)``. The default (None) produces a result shape equal to ``np.delete(logits.shape, axis)``. Returns: A random array with int dtype and shape given by ``shape`` if ``shape`` is not None, or else ``np.delete(logits.shape, axis)``. """ if axis >= 0: axis -= len(logits.shape) batch_shape = tuple(np.delete(logits.shape, axis)) if shape is None: shape = batch_shape else: shape = tuple(shape) _check_shape("categorical", shape, batch_shape) sample_shape = shape[:len(shape)-len(batch_shape)] return jnp.argmax(gumbel(key, sample_shape + logits.shape, logits.dtype) + logits, axis=axis) def laplace(key: jnp.ndarray, shape: Sequence[int] = (), dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample Laplace random values with given shape and float dtype. Args: key: a PRNGKey used as the random key. shape: optional, a tuple of nonnegative integers representing the result shape. Default (). dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified shape and dtype. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `laplace` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) return _laplace(key, shape, dtype) @partial(jit, static_argnums=(1, 2)) def _laplace(key, shape, dtype): _check_shape("laplace", shape) u = uniform( key, shape, dtype, minval=-1. + jnp.finfo(dtype).epsneg, maxval=1.) return lax.mul(lax.sign(u), lax.log1p(lax.neg(lax.abs(u)))) def logistic(key: jnp.ndarray, shape: Sequence[int] = (), dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample logistic random values with given shape and float dtype. Args: key: a PRNGKey used as the random key. shape: optional, a tuple of nonnegative integers representing the result shape. Default (). dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified shape and dtype. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `logistic` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) return _logistic(key, shape, dtype) @partial(jit, static_argnums=(1, 2)) def _logistic(key, shape, dtype): _check_shape("logistic", shape) x = uniform(key, shape, dtype, minval=jnp.finfo(dtype).eps, maxval=1.) return lax.log(lax.div(x, lax.sub(lax._const(x, 1), x))) def pareto(key: jnp.ndarray, b: RealArray, shape: Optional[Sequence[int]] = None, dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample Pareto random values with given shape and float dtype. Args: key: a PRNGKey used as the random key. b: a float or array of floats broadcast-compatible with ``shape`` representing the parameter of the distribution. shape: optional, a tuple of nonnegative integers specifying the result shape. Must be broadcast-compatible with ``b``. The default (None) produces a result shape equal to ``b.shape``. dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified dtype and with shape given by ``shape`` if ``shape`` is not None, or else by ``b.shape``. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `pareto` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) if shape is not None: shape = core.canonicalize_shape(shape) return _pareto(key, b, shape, dtype) @partial(jit, static_argnums=(2, 3)) def _pareto(key, b, shape, dtype): if shape is None: shape = np.shape(b) else: _check_shape("pareto", shape) b = lax.convert_element_type(b, dtype) e = exponential(key, shape, dtype) return lax.exp(e / b) def t(key: jnp.ndarray, df: RealArray, shape: Sequence[int] = (), dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample Student's t random values with given shape and float dtype. Args: key: a PRNGKey used as the random key. df: a float or array of floats broadcast-compatible with ``shape`` representing the parameter of the distribution. shape: optional, a tuple of nonnegative integers specifying the result shape. Must be broadcast-compatible with ``df``. The default (None) produces a result shape equal to ``df.shape``. dtype: optional, a float dtype for the returned values (default float64 if jax_enable_x64 is true, otherwise float32). Returns: A random array with the specified dtype and with shape given by ``shape`` if ``shape`` is not None, or else by ``df.shape``. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `t` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) return _t(key, df, shape, dtype) @partial(jit, static_argnums=(2, 3)) def _t(key, df, shape, dtype): if shape is None: shape = np.shape(df) else: _check_shape("t", shape, np.shape(df)) df = lax.convert_element_type(df, dtype) key_n, key_g = split(key) n = normal(key_n, shape, dtype) two = _constant_like(n, 2) half_df = lax.div(df, two) g = gamma(key_n, half_df, shape, dtype) return n * jnp.sqrt(half_df / g) def rademacher(key: jnp.ndarray, shape: Sequence[int], dtype: DTypeLikeInt = dtypes.int_) -> jnp.ndarray: """Sample from a Rademacher distribution. Args: key: a PRNGKey key. shape: The shape of the returned samples. dtype: The type used for samples. Returns: A jnp.array of samples, of shape `shape`. Each element in the output has a 50% change of being 1 or -1. """ dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) return _rademacher(key, shape, dtype) @partial(jit, static_argnums=(1, 2)) def _rademacher(key, shape, dtype): bernoulli_samples = bernoulli(key=key, p=0.5, shape=shape) return (2 * bernoulli_samples - 1).astype(dtype) def maxwell(key: jnp.ndarray, shape: Sequence[int] = (), dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample from a one sided Maxwell distribution. The scipy counterpart is `scipy.stats.maxwell`. Args: key: a PRNGKey key. shape: The shape of the returned samples. dtype: The type used for samples. Returns: A jnp.array of samples, of shape `shape`. """ # Generate samples using: # sqrt(X^2 + Y^2 + Z^2), X,Y,Z ~N(0,1) if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `maxwell` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) return _maxwell(key, shape, dtype) @partial(jit, static_argnums=(1, 2)) def _maxwell(key, shape, dtype): shape = shape + (3,) norm_rvs = normal(key=key, shape=shape, dtype=dtype) return jnp.linalg.norm(norm_rvs, axis=-1) def double_sided_maxwell(key: jnp.ndarray, loc: RealArray, scale: RealArray, shape: Sequence[int] = (), dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample from a double sided Maxwell distribution. Samples using: loc + scale* sgn(U-0.5)* one_sided_maxwell U~Unif; Args: key: a PRNGKey key. loc: The location parameter of the distribution. scale: The scale parameter of the distribution. shape: The shape added to the parameters loc and scale broadcastable shape. dtype: The type used for samples. Returns: A jnp.array of samples. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `double_sided_maxwell` must be a float" f" dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) return _double_sided_maxwell(key, loc, scale, shape, dtype) @partial(jit, static_argnums=(3, 4)) def _double_sided_maxwell(key, loc, scale, shape, dtype): params_shapes = lax.broadcast_shapes(np.shape(loc), np.shape(scale)) if not shape: shape = params_shapes shape = shape + params_shapes maxwell_key, rademacher_key = split(key) maxwell_rvs = maxwell(maxwell_key, shape=shape, dtype=dtype) # Generate random signs for the symmetric variates. random_sign = rademacher(rademacher_key, shape=shape, dtype=dtype) assert random_sign.shape == maxwell_rvs.shape return random_sign * maxwell_rvs * scale + loc def weibull_min(key: jnp.ndarray, scale: RealArray, concentration: RealArray, shape: Sequence[int] = (), dtype: DTypeLikeFloat = dtypes.float_) -> jnp.ndarray: """Sample from a Weibull distribution. The scipy counterpart is `scipy.stats.weibull_min`. Args: key: a PRNGKey key. scale: The scale parameter of the distribution. concentration: The concentration parameter of the distribution. shape: The shape added to the parameters loc and scale broadcastable shape. dtype: The type used for samples. Returns: A jnp.array of samples. """ if not dtypes.issubdtype(dtype, np.floating): raise ValueError(f"dtype argument to `weibull_min` must be a float " f"dtype, got {dtype}") dtype = dtypes.canonicalize_dtype(dtype) shape = core.canonicalize_shape(shape) return _weibull_min(key, scale, concentration, shape, dtype) @partial(jit, static_argnums=(3, 4)) def _weibull_min(key, scale, concentration, shape, dtype): random_uniform = uniform( key=key, shape=shape, minval=0, maxval=1, dtype=dtype) # Inverse weibull CDF. return jnp.power(-jnp.log1p(-random_uniform), 1.0/concentration) * scale
37.923415
121
0.675412
4a1c8b0b4b10c228bc48d7183480144734b19537
89
py
Python
proxy/core/apps.py
VitorCapuano/nac-proxy-investimento
9974ddee533d1601339df7a4d76b57677051350b
[ "Apache-2.0" ]
null
null
null
proxy/core/apps.py
VitorCapuano/nac-proxy-investimento
9974ddee533d1601339df7a4d76b57677051350b
[ "Apache-2.0" ]
3
2020-02-11T21:52:37.000Z
2021-03-19T21:45:33.000Z
proxy/core/apps.py
vcapss/nac-proxy-investimento
9974ddee533d1601339df7a4d76b57677051350b
[ "Apache-2.0" ]
null
null
null
from django.apps import AppConfig class CoreConfig(AppConfig): name = 'proxy.core'
14.833333
33
0.741573
4a1c8b7042d3fb948ba246f6a9443dc48912d420
144
py
Python
lab2/mymetaclasses/lab2_task14/ModelField.py
kinpa200296/python_labs
bb26c426cbe9bb27f45b8ee4c974c38db300468f
[ "MIT" ]
null
null
null
lab2/mymetaclasses/lab2_task14/ModelField.py
kinpa200296/python_labs
bb26c426cbe9bb27f45b8ee4c974c38db300468f
[ "MIT" ]
null
null
null
lab2/mymetaclasses/lab2_task14/ModelField.py
kinpa200296/python_labs
bb26c426cbe9bb27f45b8ee4c974c38db300468f
[ "MIT" ]
null
null
null
#!/usr/bin/env python __author__ = 'kinpa200296' class ModelField(object): @classmethod def convert(cls, value): return None
14.4
28
0.666667
4a1c8c6ebdcc95293573babfed6c48d4304bb938
1,744
py
Python
imitation_agent.py
kdliu00/ROAR
17856ee47d842ed8342c34154696a4b10b916891
[ "Apache-2.0" ]
null
null
null
imitation_agent.py
kdliu00/ROAR
17856ee47d842ed8342c34154696a4b10b916891
[ "Apache-2.0" ]
null
null
null
imitation_agent.py
kdliu00/ROAR
17856ee47d842ed8342c34154696a4b10b916891
[ "Apache-2.0" ]
null
null
null
from ROAR.agent_module.agent import Agent from pathlib import Path from ROAR.control_module.pid_controller import PIDController from ROAR.planning_module.local_planner.simple_waypoint_following_local_planner import \ SimpleWaypointFollowingLocalPlanner from ROAR.planning_module.behavior_planner.behavior_planner import BehaviorPlanner from ROAR.planning_module.mission_planner.waypoint_following_mission_planner import WaypointFollowingMissionPlanner from ROAR.utilities_module.data_structures_models import SensorsData from ROAR.utilities_module.vehicle_models import VehicleControl, Vehicle import logging import cv2 import numpy as np class ImitationAgent(Agent): def __init__(self, model, steer_model, **kwargs): super().__init__(**kwargs) self.model = model self.steer_model = steer_model def run_step(self, vehicle: Vehicle, sensors_data: SensorsData) -> VehicleControl: super(ImitationAgent, self).run_step(vehicle=vehicle, sensors_data=sensors_data) image = sensors_data.front_rgb.data input_image = np.array([cv2.resize(image, (160, 120), interpolation=cv2.INTER_LANCZOS4)]) output = self.model.predict(input_image, batch_size=None) steer_output = self.steer_model.predict(input_image, batch_size=None) control = VehicleControl() control.throttle = 0.7 if round(steer_output[0][0].item()) == 0: print("Not steering") control.steering = 0.0 else: print("Steering") control.steering = output[0][0].item() print(f"Control: {control}\n") return control
38.755556
115
0.694954
4a1c8c8916d6ab79fff383acf26b88b02492e49e
3,320
py
Python
weboa/utils/Processing.py
lonagi/weboa
01fcfffb945b0c77f9e365f07fafe33fe39d52cd
[ "Apache-2.0" ]
null
null
null
weboa/utils/Processing.py
lonagi/weboa
01fcfffb945b0c77f9e365f07fafe33fe39d52cd
[ "Apache-2.0" ]
null
null
null
weboa/utils/Processing.py
lonagi/weboa
01fcfffb945b0c77f9e365f07fafe33fe39d52cd
[ "Apache-2.0" ]
null
null
null
import sys, io, lesscpy, sass, glob from shutil import copy2 from shutil import copytree as copytree2 from weboa import os, json from weboa.utils import Meta, FileSystem from .Printer import * from six import StringIO class Processing(Meta.meta,FileSystem.filesystem): def __init__(self, path = "../", BUILDFOLDER = ""): self.path = path self.BUILDFOLDER = BUILDFOLDER self.os = sys.platform Meta.meta.Weboa_Add("build_folder",self.BUILDFOLDER) Meta.meta.Weboa_Add("rpath", self.path) if(self.os in ["Windows","win32","win64","win"]): self.os = "Windows" @staticmethod def correct_path(path): if os.name in ('nt','posix'): path = path.replace("/", "\\") path = path.replace("\\\\","\\") else: path = path.replace("\\\\", "/") path = path.replace("\\", "/") return path @staticmethod def minify(folder,filetype): for f in glob.glob(folder+"/*."+filetype): Printer.log("Minify file " + f) with open(f, "r") as file: code = file.read() code = code.replace("\n", " ") with open(f, "w") as file: file.write(code) @staticmethod def pre_css(_weboa, i, precss="less"): with open(i, "r") as f: prep = f.read() try: if precss == "less": css = lesscpy.compile(StringIO(prep), minify=True) elif precss in ("sass", "scss"): css = sass.compile(string=prep, output_style="compressed") except: return False with open(i[:-4] + "css", "w") as f: f.write(css) _weboa[precss][i] = os.stat(i).st_mtime Processing.Weboa_Save(_weboa) return True @staticmethod def Save_Path(_path): try: with open(".weboa", "r") as f: dweboa = json.loads(f.read()) except FileNotFoundError: Printer.log("Add .weboa file") dweboa = Processing.Weboa_Init() except json.decoder.JSONDecodeError: Printer.warning("json .weboa file is empty!") dweboa = Processing.Weboa_Init() dweboa["path"] = _path Processing.Weboa_Save(dweboa) Printer.log("Save the project path") def Folder_Create(self, foldername): try: os.mkdir(self.path+self.BUILDFOLDER+foldername) return True except FileExistsError: Printer.warning(f"Folder {foldername} exists.") return False def File_Create(self, filename, text=""): # Creating a file at specified location with io.open(os.path.join(self.path, self.BUILDFOLDER)+filename, 'w', encoding="utf-8") as f: f.write(text) def copy(self, src, dst): copy2(self.path + src, os.path.join(self.path, self.BUILDFOLDER) + dst) def copytree(self, src, dst): try: copytree2(self.path + src, os.path.join(self.path, self.BUILDFOLDER) + dst) except FileExistsError: pass def Trime(self, text): return text.replace("\t", "").replace(" ", "") def Delete_Lines(self, text): return text.replace("\n", "")
31.923077
101
0.552711
4a1c8d0a117b77229367928a938c25d0b460989c
2,162
py
Python
ProjectApplication/project_core/migrations/0052_countryuid_model.py
code-review-doctor/project-application
d85b40b69572efbcda24ce9c40803f76d8ffd192
[ "MIT" ]
5
2020-07-29T10:00:11.000Z
2022-02-19T11:00:34.000Z
ProjectApplication/project_core/migrations/0052_countryuid_model.py
code-review-doctor/project-application
d85b40b69572efbcda24ce9c40803f76d8ffd192
[ "MIT" ]
471
2019-09-20T14:37:28.000Z
2022-03-25T14:16:34.000Z
ProjectApplication/project_core/migrations/0052_countryuid_model.py
code-review-doctor/project-application
d85b40b69572efbcda24ce9c40803f76d8ffd192
[ "MIT" ]
5
2020-03-15T12:42:47.000Z
2022-02-15T18:06:52.000Z
# Generated by Django 2.2.6 on 2019-10-22 15:30 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('project_core', '0051_createmodify_country'), ] operations = [ migrations.RemoveField( model_name='country', name='source', ), migrations.CreateModel( name='CountryUid', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_on', models.DateTimeField(auto_now_add=True, help_text='Date and time at which the entry was created')), ('modified_on', models.DateTimeField(auto_now=True, help_text='Date and time at which the entry was modified', null=True)), ('uid', models.CharField(help_text='Unique identifier', max_length=150, null=True)), ('created_by', models.ForeignKey(blank=True, help_text='User by which the entry was created', null=True, on_delete=django.db.models.deletion.PROTECT, related_name='project_core_countryuid_created_by_related', to=settings.AUTH_USER_MODEL)), ('modified_by', models.ForeignKey(blank=True, help_text='User by which the entry was modified', null=True, on_delete=django.db.models.deletion.PROTECT, related_name='project_core_countryuid_modified_by_related', to=settings.AUTH_USER_MODEL)), ('source', models.ForeignKey(help_text='Source of the UID', on_delete=django.db.models.deletion.PROTECT, to='project_core.Source')), ], options={ 'abstract': False, 'unique_together': {('uid', 'source')}, }, ), migrations.AddField( model_name='country', name='uid', field=models.ForeignKey(default=None, help_text='Source of country name', on_delete=django.db.models.deletion.PROTECT, to='project_core.CountryUid'), preserve_default=False, ), ]
50.27907
258
0.654487
4a1c8df21657a2bde287c3fceeed1329e9257f44
3,520
py
Python
cloudkitty/utils/validation.py
elastx/cloudkitty
9654373f12daad606bfabac70a48b68279d522bd
[ "Apache-2.0" ]
97
2015-10-18T02:53:17.000Z
2022-03-07T05:15:39.000Z
cloudkitty/utils/validation.py
shanafang9/cloudkitty
911c90569ccb09ecf0d7aa11a5a707c8ebda09cf
[ "Apache-2.0" ]
1
2017-11-29T15:39:27.000Z
2017-11-29T15:39:27.000Z
cloudkitty/utils/validation.py
shanafang9/cloudkitty
911c90569ccb09ecf0d7aa11a5a707c8ebda09cf
[ "Apache-2.0" ]
54
2015-10-27T10:55:02.000Z
2022-02-18T08:23:19.000Z
# Copyright 2019 Objectif Libre # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """Common utils for voluptuous schema validation""" try: from collections.abc import Iterable except ImportError: from collections import Iterable import functools import voluptuous class DictTypeValidator(object): """Voluptuous helper validating dict key and value types. When possible, keys and values will be converted to the required type. This behaviour can be disabled through the `cast` param. :param key_type: type of the dict keys :param value_type: type of the dict values :param cast: Set to False if you do not want to cast elements to the required type. :type cast: bool :rtype: dict """ def __init__(self, key_type, value_type, cast=True): if cast: self._kval = voluptuous.Coerce(key_type) self._vval = voluptuous.Coerce(value_type) else: def __type_validator(type_, elem): if not isinstance(elem, type_): raise voluptuous.Invalid( "{e} is not of type {t}".format(e=elem, t=type_)) return elem self._kval = functools.partial(__type_validator, key_type) self._vval = functools.partial(__type_validator, value_type) def __call__(self, item): try: return {self._kval(k): self._vval(v) for k, v in dict(item).items()} except (TypeError, ValueError): raise voluptuous.Invalid( "{} can't be converted to dict".format(item)) class IterableValuesDict(DictTypeValidator): """Voluptuous helper validating dicts with iterable values. When possible, keys and elements of values will be converted to the required type. This behaviour can be disabled through the `cast` param. :param key_type: type of the dict keys :param value_type: type of the dict values :param cast: Set to False if you do not want to convert elements to the required type. :type cast: bool :rtype: dict """ def __init__(self, key_type, value_type, cast=True): super(IterableValuesDict, self).__init__(key_type, value_type, cast) # NOTE(peschk_l): Using type(it) to return an iterable of the same # type as the passed argument. self.__vval = lambda it: type(it)(self._vval(i) for i in it) def __call__(self, item): try: for v in dict(item).values(): if not isinstance(v, Iterable): raise voluptuous.Invalid("{} is not iterable".format(v)) return {self._kval(k): self.__vval(v) for k, v in item.items()} except (TypeError, ValueError) as e: raise voluptuous.Invalid( "{} can't be converted to a dict: {}".format(item, e)) def get_string_type(): """Returns ``basestring`` in python2 and ``str`` in python3.""" return str
36.666667
78
0.64375
4a1c8e581c171110433c14cfd40bc3dc60426b2f
974
py
Python
selection/log_decorator.py
tlatkowski/deep-learning-gene-expression
47552e8902d9612c87244c26ccc8bfc503a9f9f2
[ "MIT" ]
28
2017-11-29T10:41:41.000Z
2022-03-10T15:31:01.000Z
selection/log_decorator.py
NimritaKoul/deep-learning-gene-expression
47552e8902d9612c87244c26ccc8bfc503a9f9f2
[ "MIT" ]
3
2018-10-27T11:08:00.000Z
2019-09-19T12:40:39.000Z
selection/log_decorator.py
NimritaKoul/deep-learning-gene-expression
47552e8902d9612c87244c26ccc8bfc503a9f9f2
[ "MIT" ]
13
2017-11-29T10:41:44.000Z
2022-02-15T15:19:38.000Z
import logging import os import time logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class LogDecorator: def __init__(self, name): self.__name = name self.__path = 'features/{}.csv'.format(self.__name) def __call__(self, f, *args, **kwargs): if not os.path.exists(self.__path): logger.info('Running %s feature selection...', self.__name) start = time.time() else: logger.info('Reading %s features from file : [%s]...', self.__name, self.__path) def new_f(*args, **kwargs): X = f(*args, **kwargs) if not os.path.exists(self.__path): logger.info('Saving %s features to [%s]...', self.__name, self.__path) logger.info('%s selection last [%s]...', self.__name, (time.time() - start) * 1000) else: logger.info('Read %s features from file : [%s]...', self.__name, self.__path) return X new_f.__name__ = f.__name__ return new_f
28.647059
91
0.620123
4a1c8e77b8b16cf80ecbb8fa50c8a58f736cfa71
1,283
py
Python
scr/trace_expansion.py
zmoitier/Scattering_BIE_QPAX
a4f9660f570c618f7a14585ab943b0f16c712632
[ "MIT" ]
null
null
null
scr/trace_expansion.py
zmoitier/Scattering_BIE_QPAX
a4f9660f570c618f7a14585ab943b0f16c712632
[ "MIT" ]
null
null
null
scr/trace_expansion.py
zmoitier/Scattering_BIE_QPAX
a4f9660f570c618f7a14585ab943b0f16c712632
[ "MIT" ]
null
null
null
""" Trace expansion for ellipses Author: Zoïs Moitier Karlsruhe Institute of Technology, Germany """ from numpy import pi from .analytic import eval_field def trace_neumann_expansion(field): """ u0, u1 = trace_neu_asy(field) Return the fist two terms of the asymptotic expansion of the trace along the ellipse. Parameters ---------- field : Field Field object from the dataclass Returns ------- u0 : Function θ ↦ uⁱⁿᶜ(0, sin(θ)) u1 : Function θ ↦ cos(θ) ∂ₓ uⁱⁿᶜ(0, sin(θ)) """ return ( lambda θ: eval_field(field, 0, pi / 2 - θ), lambda θ: eval_field(field, 0, pi / 2 - θ, d_ξ=1), ) def trace_dirichlet_expansion(field): """ u0, u1 = trace_dir_asy(field) Return the fist two terms of the asymptotic expansion of the trace along the ellipse. Parameters ---------- field : Field Field object from the dataclass Returns ------- u0 : Function θ ↦ cos(θ) ∂ₓ uⁱⁿᶜ(0, sin(θ)) u1 : Function θ ↦ cos(θ)² ∂ₓₓ uⁱⁿᶜ(0, sin(θ)) + sin(θ) ∂_y uⁱⁿᶜ(0, sin(θ)) """ return ( lambda θ: eval_field(field, 0, pi / 2 - θ, d_ξ=1), lambda θ: eval_field(field, 0, pi / 2 - θ, d_ξ=2), )
21.032787
80
0.564302
4a1c90b27c386d1f7c5c71d7038bebbbf7e74904
8,241
py
Python
virtual/lib/python3.6/site-packages/PIL/ImageColor.py
mzazakeith/flask-blog
2833404cc5e96ffdbfb767f35b9caf2bdcce7997
[ "MIT" ]
4
2018-08-23T14:45:14.000Z
2021-05-22T16:12:33.000Z
virtual/lib/python3.6/site-packages/PIL/ImageColor.py
mzazakeith/flask-blog
2833404cc5e96ffdbfb767f35b9caf2bdcce7997
[ "MIT" ]
13
2020-01-28T22:20:14.000Z
2022-03-11T23:20:14.000Z
virtual/lib/python3.6/site-packages/PIL/ImageColor.py
mzazakeith/flask-blog
2833404cc5e96ffdbfb767f35b9caf2bdcce7997
[ "MIT" ]
2
2019-11-30T10:33:16.000Z
2021-02-03T06:29:40.000Z
# # The Python Imaging Library # $Id$ # # map CSS3-style colour description strings to RGB # # History: # 2002-10-24 fl Added support for CSS-style color strings # 2002-12-15 fl Added RGBA support # 2004-03-27 fl Fixed remaining int() problems for Python 1.5.2 # 2004-07-19 fl Fixed gray/grey spelling issues # 2009-03-05 fl Fixed rounding error in grayscale calculation # # Copyright (c) 2002-2004 by Secret Labs AB # Copyright (c) 2002-2004 by Fredrik Lundh # # See the README file for information on usage and redistribution. # from . import Image import re def getrgb(color): """ Convert a color string to an RGB tuple. If the string cannot be parsed, this function raises a :py:exc:`ValueError` exception. .. versionadded:: 1.1.4 :param color: A color string :return: ``(red, green, blue[, alpha])`` """ color = color.lower() rgb = colormap.get(color, None) if rgb: if isinstance(rgb, tuple): return rgb colormap[color] = rgb = getrgb(rgb) return rgb # check for known string formats if re.match('#[a-f0-9]{3}$', color): return ( int(color[1]*2, 16), int(color[2]*2, 16), int(color[3]*2, 16), ) if re.match('#[a-f0-9]{4}$', color): return ( int(color[1]*2, 16), int(color[2]*2, 16), int(color[3]*2, 16), int(color[4]*2, 16), ) if re.match('#[a-f0-9]{6}$', color): return ( int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16), ) if re.match('#[a-f0-9]{8}$', color): return ( int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16), int(color[7:9], 16), ) m = re.match(r"rgb\(\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\)$", color) if m: return ( int(m.group(1)), int(m.group(2)), int(m.group(3)) ) m = re.match(r"rgb\(\s*(\d+)%\s*,\s*(\d+)%\s*,\s*(\d+)%\s*\)$", color) if m: return ( int((int(m.group(1)) * 255) / 100.0 + 0.5), int((int(m.group(2)) * 255) / 100.0 + 0.5), int((int(m.group(3)) * 255) / 100.0 + 0.5) ) m = re.match(r"hsl\(\s*(\d+)\s*,\s*(\d+)%\s*,\s*(\d+)%\s*\)$", color) if m: from colorsys import hls_to_rgb rgb = hls_to_rgb( float(m.group(1)) / 360.0, float(m.group(3)) / 100.0, float(m.group(2)) / 100.0, ) return ( int(rgb[0] * 255 + 0.5), int(rgb[1] * 255 + 0.5), int(rgb[2] * 255 + 0.5) ) m = re.match(r"rgba\(\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\)$", color) if m: return ( int(m.group(1)), int(m.group(2)), int(m.group(3)), int(m.group(4)) ) raise ValueError("unknown color specifier: %r" % color) def getcolor(color, mode): """ Same as :py:func:`~PIL.ImageColor.getrgb`, but converts the RGB value to a greyscale value if the mode is not color or a palette image. If the string cannot be parsed, this function raises a :py:exc:`ValueError` exception. .. versionadded:: 1.1.4 :param color: A color string :return: ``(graylevel [, alpha]) or (red, green, blue[, alpha])`` """ # same as getrgb, but converts the result to the given mode color, alpha = getrgb(color), 255 if len(color) == 4: color, alpha = color[0:3], color[3] if Image.getmodebase(mode) == "L": r, g, b = color color = (r*299 + g*587 + b*114)//1000 if mode[-1] == 'A': return (color, alpha) else: if mode[-1] == 'A': return color + (alpha,) return color colormap = { # X11 colour table from https://drafts.csswg.org/css-color-4/, with # gray/grey spelling issues fixed. This is a superset of HTML 4.0 # colour names used in CSS 1. "aliceblue": "#f0f8ff", "antiquewhite": "#faebd7", "aqua": "#00ffff", "aquamarine": "#7fffd4", "azure": "#f0ffff", "beige": "#f5f5dc", "bisque": "#ffe4c4", "black": "#000000", "blanchedalmond": "#ffebcd", "blue": "#0000ff", "blueviolet": "#8a2be2", "brown": "#a52a2a", "burlywood": "#deb887", "cadetblue": "#5f9ea0", "chartreuse": "#7fff00", "chocolate": "#d2691e", "coral": "#ff7f50", "cornflowerblue": "#6495ed", "cornsilk": "#fff8dc", "crimson": "#dc143c", "cyan": "#00ffff", "darkblue": "#00008b", "darkcyan": "#008b8b", "darkgoldenrod": "#b8860b", "darkgray": "#a9a9a9", "darkgrey": "#a9a9a9", "darkgreen": "#006400", "darkkhaki": "#bdb76b", "darkmagenta": "#8b008b", "darkolivegreen": "#556b2f", "darkorange": "#ff8c00", "darkorchid": "#9932cc", "darkred": "#8b0000", "darksalmon": "#e9967a", "darkseagreen": "#8fbc8f", "darkslateblue": "#483d8b", "darkslategray": "#2f4f4f", "darkslategrey": "#2f4f4f", "darkturquoise": "#00ced1", "darkviolet": "#9400d3", "deeppink": "#ff1493", "deepskyblue": "#00bfff", "dimgray": "#696969", "dimgrey": "#696969", "dodgerblue": "#1e90ff", "firebrick": "#b22222", "floralwhite": "#fffaf0", "forestgreen": "#228b22", "fuchsia": "#ff00ff", "gainsboro": "#dcdcdc", "ghostwhite": "#f8f8ff", "gold": "#ffd700", "goldenrod": "#daa520", "gray": "#808080", "grey": "#808080", "green": "#008000", "greenyellow": "#adff2f", "honeydew": "#f0fff0", "hotpink": "#ff69b4", "indianred": "#cd5c5c", "indigo": "#4b0082", "ivory": "#fffff0", "khaki": "#f0e68c", "lavender": "#e6e6fa", "lavenderblush": "#fff0f5", "lawngreen": "#7cfc00", "lemonchiffon": "#fffacd", "lightblue": "#add8e6", "lightcoral": "#f08080", "lightcyan": "#e0ffff", "lightgoldenrodyellow": "#fafad2", "lightgreen": "#90ee90", "lightgray": "#d3d3d3", "lightgrey": "#d3d3d3", "lightpink": "#ffb6c1", "lightsalmon": "#ffa07a", "lightseagreen": "#20b2aa", "lightskyblue": "#87cefa", "lightslategray": "#778899", "lightslategrey": "#778899", "lightsteelblue": "#b0c4de", "lightyellow": "#ffffe0", "lime": "#00ff00", "limegreen": "#32cd32", "linen": "#faf0e6", "magenta": "#ff00ff", "maroon": "#800000", "mediumaquamarine": "#66cdaa", "mediumblue": "#0000cd", "mediumorchid": "#ba55d3", "mediumpurple": "#9370db", "mediumseagreen": "#3cb371", "mediumslateblue": "#7b68ee", "mediumspringgreen": "#00fa9a", "mediumturquoise": "#48d1cc", "mediumvioletred": "#c71585", "midnightblue": "#191970", "mintcream": "#f5fffa", "mistyrose": "#ffe4e1", "moccasin": "#ffe4b5", "navajowhite": "#ffdead", "navy": "#000080", "oldlace": "#fdf5e6", "olive": "#808000", "olivedrab": "#6b8e23", "orange": "#ffa500", "orangered": "#ff4500", "orchid": "#da70d6", "palegoldenrod": "#eee8aa", "palegreen": "#98fb98", "paleturquoise": "#afeeee", "palevioletred": "#db7093", "papayawhip": "#ffefd5", "peachpuff": "#ffdab9", "peru": "#cd853f", "pink": "#ffc0cb", "plum": "#dda0dd", "powderblue": "#b0e0e6", "purple": "#800080", "rebeccapurple": "#663399", "red": "#ff0000", "rosybrown": "#bc8f8f", "royalblue": "#4169e1", "saddlebrown": "#8b4513", "salmon": "#fa8072", "sandybrown": "#f4a460", "seagreen": "#2e8b57", "seashell": "#fff5ee", "sienna": "#a0522d", "silver": "#c0c0c0", "skyblue": "#87ceeb", "slateblue": "#6a5acd", "slategray": "#708090", "slategrey": "#708090", "snow": "#fffafa", "springgreen": "#00ff7f", "steelblue": "#4682b4", "tan": "#d2b48c", "teal": "#008080", "thistle": "#d8bfd8", "tomato": "#ff6347", "turquoise": "#40e0d0", "violet": "#ee82ee", "wheat": "#f5deb3", "white": "#ffffff", "whitesmoke": "#f5f5f5", "yellow": "#ffff00", "yellowgreen": "#9acd32", }
27.841216
78
0.517534
4a1c90d254cc4e8b98de12a39a101d0833b23748
3,168
py
Python
data/custom_dataset.py
ferodia/MichiGAN
a49acb49f9659d7538e62faa3ed08e46afb0ddae
[ "MIT" ]
235
2020-07-21T20:47:15.000Z
2022-03-24T00:32:18.000Z
data/custom_dataset.py
ferodia/MichiGAN
a49acb49f9659d7538e62faa3ed08e46afb0ddae
[ "MIT" ]
16
2020-08-04T06:56:37.000Z
2022-03-21T15:25:29.000Z
data/custom_dataset.py
ferodia/MichiGAN
a49acb49f9659d7538e62faa3ed08e46afb0ddae
[ "MIT" ]
31
2020-07-21T01:53:22.000Z
2022-03-22T11:27:41.000Z
""" Copyright (C) University of Science and Technology of China. Licensed under the MIT License. """ from data.pix2pix_dataset import Pix2pixDataset from data.image_folder import make_dataset import random import os class CustomDataset(Pix2pixDataset): """ Dataset that loads images from directories Use option --label_dir, --image_dir, --instance_dir to specify the directories. The images in the directories are sorted in alphabetical order and paired in order. """ @staticmethod def modify_commandline_options(parser, is_train): parser = Pix2pixDataset.modify_commandline_options(parser, is_train) parser.set_defaults(preprocess_mode='resize_and_crop') # parser.set_defaults(load_size=load_size) # parser.set_defaults(crop_size=256) # parser.set_defaults(display_winsize=256) parser.set_defaults(label_nc=2) parser.set_defaults(contain_dontcare_label=False) # parser.add_argument('--data_dir', type=str, default='/mnt/lvdisk1/tzt/HairSynthesis/SPADE-master/datasets/FFHQ', # help='path to the directory that contains training & val data') parser.add_argument('--label_dir', type=str, default='train_labels', help='path to the directory that contains label images') parser.add_argument('--image_dir', type=str, default='train_images', help='path to the directory that contains photo images') parser.add_argument('--instance_dir', type=str, default='', help='path to the directory that contains instance maps. Leave black if not exists') parser.add_argument('--orient_dir', type=str, default='train_dense_orients', help='path to the directory that contains orientation mask') parser.add_argument('--clear', type=str, default='', help='[ |clear_], clear_ means use the selected training data') return parser def get_paths(self, opt): # combine data_dir and others label_dir = os.path.join(opt.data_dir, opt.clear+opt.label_dir) image_dir = os.path.join(opt.data_dir, opt.clear+opt.image_dir) orient_dir = os.path.join(opt.data_dir, opt.clear+opt.orient_dir) # label_dir = opt.label_dir label_paths = make_dataset(label_dir, recursive=False, read_cache=True) # image_dir = opt.image_dir image_paths = make_dataset(image_dir, recursive=False, read_cache=True) if len(opt.instance_dir) > 0: instance_dir = opt.instance_dir instance_paths = make_dataset(instance_dir, recursive=False, read_cache=True) else: instance_paths = [] if len(opt.orient_dir) > 0: # orient_dir = opt.orient_dir orient_paths = make_dataset(orient_dir, recursive=False, read_cache=True) else: orient_paths = [] assert len(label_paths) == len(image_paths), "The #images in %s and %s do not match. Is there something wrong?" return label_paths, image_paths, instance_paths, orient_paths
44.619718
122
0.665404
4a1c91182c71546899845ec9d2825fcbb3259610
1,393
py
Python
pantam_cli/action.py
flmnt/pantam
da47d977e69ec410d0642b5ade1f2323c1b6b350
[ "MIT" ]
2
2020-10-04T10:29:43.000Z
2021-03-30T13:45:09.000Z
pantam_cli/action.py
flmnt/pantam
da47d977e69ec410d0642b5ade1f2323c1b6b350
[ "MIT" ]
null
null
null
pantam_cli/action.py
flmnt/pantam
da47d977e69ec410d0642b5ade1f2323c1b6b350
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from os import getcwd from pathlib import Path import sys from pantam_cli.utils.filesystem import ( create_file, make_class_name, load_pantamrc_file, ) from pantam_cli.utils.messages import ( info_msg, error_msg, success_msg, write_error, write_msg, NewLine, ) from pantam_cli.utils.templates import action_template from pantam_cli.utils import clear def action(action_file: str) -> None: """Create action file""" clear() options = load_pantamrc_file() try: actions_folder = options["actions_folder"] write_msg(info_msg("Creating %s/%s file..." % (actions_folder, action_file))) cwd = Path(getcwd()) create_file( cwd / actions_folder / action_file, action_template(make_class_name(action_file)), ) write_msg( success_msg(" Done!"), NewLine.after, ) except FileExistsError: write_msg( error_msg(" file exists, skipping"), NewLine.after, ) def run_action(action_file: str) -> None: """CLI runner for action()""" try: action(action_file) write_msg(success_msg("Your new action `%s` is ready!" % action_file)) except Exception as error: write_error(error_msg(str(error))) if __name__ == "__main__": file_name = sys.argv[1] run_action(file_name)
24.017241
85
0.646088
4a1c91197664870a0644dbc6e9e3197b297a3c37
412
py
Python
.history/my_classes/FunctionParameters/KeywordArgs_20210630185109.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
.history/my_classes/FunctionParameters/KeywordArgs_20210630185109.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
.history/my_classes/FunctionParameters/KeywordArgs_20210630185109.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
''' [Keyword Arguments] Positional parameters can, optionally be passed as named (keyword) arguments def func(a, b, c): # code func(1, 2, 3) -> a = 1, b = 2, c = 3 func(a=1, c=3, b=2) -> a = 1, b = 2, c = 3 Using named arguments in this case is entirely up to the caller. [Mandatory Keyword Arguments] I can make keyword arguments mandatory to do so, I can '''
20.6
76
0.589806
4a1c918301acc361996b739c4dd63c9214eb993c
1,887
py
Python
mesos_viewer/popup.py
alimaken/mesos-viewer
1e6170cf7222b93e37d910477c735daf7f081bb9
[ "MIT" ]
2
2019-05-01T08:20:23.000Z
2020-05-12T04:27:39.000Z
mesos_viewer/popup.py
alimaken/mesos-viewer
1e6170cf7222b93e37d910477c735daf7f081bb9
[ "MIT" ]
1
2019-04-23T11:56:17.000Z
2019-04-23T11:56:17.000Z
mesos_viewer/popup.py
alimaken/mesos-viewer
1e6170cf7222b93e37d910477c735daf7f081bb9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import urwid class Popup(urwid.WidgetWrap): """ Creates a popup menu on top of another BoxWidget. Attributes: selected -- Contains the item the user has selected by pressing <RETURN>, or None if nothing has been selected. """ selected = None def __init__(self, menu_list, attr, pos, body): """ menu_list -- a list of strings with the menu entries attr -- a tuple (background, active_item) of attributes pos -- a tuple (x, y), position of the menu widget body -- widget displayed beneath the message widget """ content = [w for w in menu_list] # Calculate width and height of the menu widget: height = len(menu_list) width = 0 for entry in menu_list: base_widget = entry.base_widget base_widget_len = ( (len(base_widget[0].text) + len(base_widget[1].text)) \ if type(base_widget) == urwid.container.Columns \ else len(base_widget.text)) if base_widget_len > width: width = base_widget_len + 10 # Create the ListBox widget and put it on top of body: self._listbox = urwid.AttrWrap(urwid.ListBox(content), attr[0]) overlay = urwid.Overlay(self._listbox, body, 'center', width + 2, 'middle', height) urwid.WidgetWrap.__init__(self, overlay) def keypress(self, size, key): """ <RETURN> key selects an item, other keys will be passed to the ListBox widget. """ if key == "enter": (widget, foo) = self._listbox.get_focus() (text, foo) = widget.get_text() self.selected = text[1:] # Get rid of the leading space... else: return self._listbox.keypress(size, key)
32.534483
77
0.573397
4a1c92ce97507667e8bafa6b2f85245b538f7594
2,889
py
Python
cellfinder_core/tools/tiff.py
npeschke/cellfinder-core
7a86a7d2c879c94da529ec6140f7e5c3f02bf288
[ "BSD-3-Clause" ]
5
2021-01-22T11:40:01.000Z
2021-09-10T07:16:05.000Z
cellfinder_core/tools/tiff.py
npeschke/cellfinder-core
7a86a7d2c879c94da529ec6140f7e5c3f02bf288
[ "BSD-3-Clause" ]
38
2021-01-22T11:50:29.000Z
2022-03-11T11:04:06.000Z
cellfinder_core/tools/tiff.py
npeschke/cellfinder-core
7a86a7d2c879c94da529ec6140f7e5c3f02bf288
[ "BSD-3-Clause" ]
12
2021-06-18T09:57:24.000Z
2022-03-06T13:03:18.000Z
import natsort from os import listdir from os.path import isfile, join from imlib.cells.cells import Cell, UntypedCell class TiffList(object): """This class represents list of tiff files. These tiff files are the output from the cell extractor plugin and are used as training and classification data. """ def __init__(self, ch1_list, channels, label=None): """A list of tiff files output by the cell extractor plugin to be used in machine learning. Expects file names to end with "ch[ch].tif", where [ch] is the non-zero-padded channel index. Given a list of tiff files for the first channel, it will find the corresponding files for the channels passed in the [channels] parameter. :param ch1_list: List of the tiff files of the first channel. :param channels: List of channels to use. :param label: Label of the directory (e.g. 2 for cell, 1 for no cell). Can be ignored on classification runs. """ self.ch1_list = natsort.natsorted(ch1_list) self.label = label self.channels = channels def make_tifffile_list(self): """ :return: Returns the relevant tiff files as a list of TiffFile objects. """ files = [ f for f in self.ch1_list if f.lower().endswith("ch" + str(self.channels[0]) + ".tif") ] tiff_files = [ TiffFile(tiffFile, self.channels, self.label) for tiffFile in files ] return tiff_files class TiffDir(TiffList): """A simplified version of TiffList that uses all tiff files without any filtering. """ def __init__(self, tiff_dir, channels, label=None): super(TiffDir, self).__init__( [ join(tiff_dir, f) for f in listdir(tiff_dir) if f.lower().endswith("ch" + str(channels[0]) + ".tif") ], channels, label, ) class TiffFile(object): """This class represents a multichannel tiff file, with one individual file per channel. """ def __init__(self, path, channels, label=None): self.path = path self.channels = channels self.label = label def files_exist(self): return all([isfile(tif) for tif in self.img_files]) def as_cell(self, force_typed=True): if force_typed: return ( Cell(self.path, -1) if self.label is None else Cell(self.path, self.label) ) else: return ( UntypedCell(self.path) if self.label is None else Cell(self.path, self.label) ) @property def img_files(self): return [self.path[:-5] + str(ch) + ".tif" for ch in self.channels]
29.783505
79
0.585324
4a1c9318f4801e7767efad6e4c6648816524b504
3,427
py
Python
ime/utils/tools.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-02-25T05:34:44.000Z
2022-02-25T05:34:44.000Z
ime/utils/tools.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
null
null
null
ime/utils/tools.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-03-30T07:20:29.000Z
2022-03-30T07:20:29.000Z
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of common functions.""" import os import random import numpy as np import torch def seed_torch(seed=42): """Defines a function to fix the seed of different random variables for reproducability. Args: seed: an integer """ random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True def add_gaussian_noise(tensor, mean=0.1, std=1., device='cpu'): """Function that add noise to a given tensor. Args: tensor: An input tensor mean: Gaussian noise mean std: Gaussian noise std device: device used to store tensor Returns: tensor: A new tensor with added noise """ return tensor + torch.randn(tensor.size()).to(device) * std + mean class EarlyStopping: """Class to montior the progress of the model and stop early if no improvement on validation set.""" def __init__(self, patience=7, verbose=False, delta=0): """Initializes parameters for EarlyStopping class. Args: patience: an integer verbose: a boolean delta: a float """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta def __call__(self, val_loss, model, path): """Checks if the validation loss is better than the best validation loss. If so model is saved. If not the EarlyStopping counter is increased Args: val_loss: a float representing validation loss model: the trained model path: a string representing the path to save the model """ score = -val_loss if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model, path) elif score < self.best_score + self.delta: self.counter += 1 print(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True else: self.early_stop = False else: self.best_score = score self.save_checkpoint(val_loss, model, path) self.counter = 0 def save_checkpoint(self, val_loss, model, path): """Saves the model and updates the best validation loss. Args: val_loss: a float representing validation loss model: the trained model path: a string representing the path to save the model """ if self.verbose: print( f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...' ) torch.save(model.state_dict(), path + '/' + 'checkpoint.pth') self.val_loss_min = val_loss
29.042373
102
0.6904
4a1c93502a56d64bad555514380421cfc4b88db4
39,760
py
Python
lolstaticdata/champions/pull_champions_wiki.py
meraki-analytics/lolstaticdata
3ebd99feb58fa8ea69e1b3068a76aa3e8d803eab
[ "MIT" ]
24
2020-05-16T16:33:19.000Z
2022-03-26T16:35:15.000Z
lolstaticdata/champions/pull_champions_wiki.py
meraki-analytics/lolstaticdata
3ebd99feb58fa8ea69e1b3068a76aa3e8d803eab
[ "MIT" ]
17
2020-05-21T14:20:41.000Z
2021-04-26T12:42:23.000Z
lolstaticdata/champions/pull_champions_wiki.py
meraki-analytics/lolstaticdata
3ebd99feb58fa8ea69e1b3068a76aa3e8d803eab
[ "MIT" ]
14
2020-05-24T18:09:11.000Z
2021-10-04T15:11:30.000Z
from typing import Tuple, List, Union, Iterator, Dict import re from bs4 import BeautifulSoup from collections import Counter from slpp import slpp as lua from datetime import datetime from ..common.modelcommon import ( DamageType, Health, HealthRegen, Mana, ManaRegen, Armor, MagicResistance, AttackDamage, AbilityPower, AttackSpeed, AttackRange, Movespeed, Lethality, CooldownReduction, GoldPer10, HealAndShieldPower, Lifesteal, MagicPenetration, Stat, ) from ..common.utils import ( download_soup, parse_top_level_parentheses, grouper, to_enum_like, download_json, ) from .modelchampion import ( Champion, Stats, Ability, AttackType, AttributeRatings, Cooldown, Cost, Effect, Price, Resource, Modifier, Role, Leveling, Skin, Chroma, Description, Rarities, ) class UnparsableLeveling(Exception): pass class HTMLAbilityWrapper: def __init__(self, soup): self.soup = soup self.table = self.soup.find_all(["th", "td"]) # Do a little html modification based on the "viewsource" strip_table = [item.text.strip() for item in self.table] start = strip_table.index("Parameter") + 3 self.table = self.table[start:] self.data = {} for i, (parameter, value, desc) in enumerate(grouper(self.table, 3)): if not value: continue if i == 0: # parameter is '1' for some reason but it's the ability name parameter = "name" else: parameter = parameter.text.strip() # desc = desc.text.strip() text = value.text.strip() if text: self.data[parameter] = value def __getitem__(self, item): return self.data[item].text.strip() def __delitem__(self, item): del self.data[item] def get(self, item, backup=None): try: return self[item] except KeyError: return backup def get_source(self, item, backup=None): try: return self.data[item] except KeyError: return backup def __str__(self): d = {} for key in self.data: d[key] = self[key] return str(d) class LolWikiDataHandler: MISSING_SKILLS = { "Annie": ["Command Tibbers"], "Jinx": ["Switcheroo! 2"], "Lillia": ["Prance"], "Mordekaiser": ["Indestructible 2"], "Nidalee": ["Aspect of the Cougar 2"], "Pyke": ["Death from Below 2"], "Rumble": ["Electro Harpoon 2"], "Samira": ["splash coin"], "Shaco": ["Command: Hallucinate"], "Syndra": ["Force of Will 2"], "Taliyah": ["Seismic Shove 2"], } def __init__(self, use_cache: bool = True): self.use_cache = use_cache def check_ability(self, data): for x in data: if data[x] in self.abil_test: continue else: return False def get_champions(self) -> Iterator[Champion]: # Download the page source url = "https://leagueoflegends.fandom.com/wiki/Module:ChampionData/data" html = download_soup(url, self.use_cache) soup = BeautifulSoup(html, "lxml") # Pull the relevant champData from the html tags spans = soup.find("pre", {"class": "mw-code mw-script"}) start = None spans = spans.text.split("\n") for i, span in enumerate(spans): if str(span) == "return {": start = i spans[i] = "{" split_stuff = re.compile("({)|(})") spans = spans[start:] for i, span in enumerate(spans): if span in ["-- </pre>", "-- [[Category:Lua]]"]: spans[i] = "" spans = "".join(spans) data = lua.decode(spans) # Return the champData as a list of Champions self.skin_data = self._get_skins() for name, d in data.items(): print(name) if name in [ "Kled & Skaarl", "GnarBig", "Mega Gnar", ]: continue if name in ["Kled"]: # champion = self._render_champion_data(name, d) d["skill_i"] = {1: d["skills"][1], 2: d["skills"][2]} d["skill_q"] = {1: d["skills"][3], 2: d["skills"][4]} d["skill_e"] = {1: d["skills"][6], 2: d["skills"][7]} d["skill_r"] = {1: d["skills"][8], 2: d["skills"][9]} if ( d["id"] == 9999 or d["date"] == "Upcoming" or datetime.strptime(d["date"], "%Y-%m-%d") > datetime.today() ): # Champion not released yet continue champion = self._render_champion_data(name, d) yield champion def _render_champion_data(self, name: str, data: Dict) -> Champion: adaptive_type = data["adaptivetype"] if adaptive_type.upper() in ("PHYSICAL", "MIXED,PHYSICAL"): adaptive_type = "PHYSICAL_DAMAGE" if adaptive_type.upper() in ("MAGIC",): adaptive_type = "MAGIC_DAMAGE" if adaptive_type.upper() in ("MIXED",): adaptive_type = "MIXED_DAMAGE" if data["patch"][0] == "V": patch = data["patch"][1:] else: patch = data["patch"] sale = self._get_sale() sale_price = 0 if name in sale: if sale[name]["price"] != 0: sale_price = int(sale[name]["price"]) champion = Champion( id=data["id"], key=data["apiname"], name=name, title=data["title"], full_name=data.get("fullname", ""), icon=None, resource=Resource.from_string(data["resource"]), attack_type=AttackType.from_string(data["rangetype"]), adaptive_type=DamageType.from_string(adaptive_type), stats=Stats( health=Health( flat=data["stats"]["hp_base"], per_level=data["stats"]["hp_lvl"], ), health_regen=HealthRegen( flat=data["stats"]["hp5_base"], per_level=data["stats"]["hp5_lvl"], ), mana=Mana( flat=data["stats"]["mp_base"], per_level=data["stats"]["mp_lvl"], ), mana_regen=ManaRegen( flat=data["stats"]["mp5_base"], per_level=data["stats"]["mp5_lvl"], ), armor=Armor( flat=data["stats"]["arm_base"], per_level=data["stats"]["arm_lvl"], ), magic_resistance=MagicResistance( flat=data["stats"]["mr_base"], per_level=data["stats"]["mr_lvl"], ), attack_damage=AttackDamage( flat=data["stats"]["dam_base"], per_level=data["stats"]["dam_lvl"], ), attack_speed=AttackSpeed( flat=data["stats"]["as_base"], per_level=data["stats"]["as_lvl"], ), attack_speed_ratio=Stat(flat=data["stats"]["as_ratio"]), attack_cast_time=Stat( flat=data["stats"].get("attack_cast_time", 0.3) ), # I don't know if this default is correct, but going off the values the wiki provides, it seems reasonable. attack_total_time=Stat(flat=data["stats"].get("attack_total_time", 1.6)), # ibid attack_delay_offset=Stat(flat=data["stats"].get("attack_delay_offset", 0)), attack_range=AttackRange( flat=data["stats"]["range"], per_level=data["stats"].get("range_lvl", 0), ), critical_strike_damage=Stat(flat=data["stats"].get("crit_base", 200)), critical_strike_damage_modifier=Stat(flat=data["stats"].get("crit_base", 1.0)), movespeed=Movespeed(flat=data["stats"]["ms"]), acquisition_radius=Stat(flat=data["stats"].get("acquisition_radius", 800)), selection_radius=Stat(flat=data["stats"].get("selection_radius", 100)), pathing_radius=Stat(flat=data["stats"].get("pathing_radius", 35)), gameplay_radius=Stat(flat=data["stats"].get("gameplay_radius", 65)), aram_damage_taken=Stat(flat=data["stats"].get("aram_dmg_taken", 1.0)), aram_damage_dealt=Stat(flat=data["stats"].get("aram_dmg_dealt", 1.0)), aram_healing=Stat(flat=data["stats"].get("aram_healing", 1.0)), aram_shielding=Stat(flat=data["stats"].get("aram_shielding", 1.0)), urf_damage_taken=Stat(flat=data["stats"].get("urf_dmg_taken", 1.0)), urf_damage_dealt=Stat(flat=data["stats"].get("urf_dmg_dealt", 1.0)), urf_healing=Stat(flat=data["stats"].get("urf_healing", 1.0)), urf_shielding=Stat(flat=data["stats"].get("urf_shielding", 1.0)), ), roles=sorted( { *(Role.from_string(r) for r in data["role"]), *( Role.from_string(role) for role in ( data.get("herotype"), data.get("alttype"), ) if role is not None and role != "" ), } ), attribute_ratings=AttributeRatings( damage=data["damage"], toughness=data["toughness"], control=data["control"], mobility=data["mobility"], utility=data["utility"], ability_reliance=data["style"], attack=data["attack"], defense=data["defense"], magic=data["magic"], difficulty=data["difficulty"], ), abilities=dict( [ self._render_abilities( champion_name=name, abilities=[ self._pull_champion_ability(champion_name=name, ability_name=ability_name) for ability_name in data["skill_i"].values() if not ( name in LolWikiDataHandler.MISSING_SKILLS and ability_name in LolWikiDataHandler.MISSING_SKILLS[name] ) ], ), self._render_abilities( champion_name=name, abilities=[ self._pull_champion_ability(champion_name=name, ability_name=ability_name) for ability_name in data["skill_q"].values() if not ( name in LolWikiDataHandler.MISSING_SKILLS and ability_name in LolWikiDataHandler.MISSING_SKILLS[name] ) ], ), self._render_abilities( champion_name=name, abilities=[ self._pull_champion_ability(champion_name=name, ability_name=ability_name) for ability_name in data["skill_w"].values() if not ( name in LolWikiDataHandler.MISSING_SKILLS and ability_name in LolWikiDataHandler.MISSING_SKILLS[name] ) ], ), self._render_abilities( champion_name=name, abilities=[ self._pull_champion_ability(champion_name=name, ability_name=ability_name) for ability_name in data["skill_e"].values() if not ( name in LolWikiDataHandler.MISSING_SKILLS and ability_name in LolWikiDataHandler.MISSING_SKILLS[name] ) ], ), self._render_abilities( champion_name=name, abilities=[ self._pull_champion_ability(champion_name=name, ability_name=ability_name) for ability_name in data["skill_r"].values() if not ( name in LolWikiDataHandler.MISSING_SKILLS and ability_name in LolWikiDataHandler.MISSING_SKILLS[name] ) ], ), ] ), release_date=data["date"], release_patch=patch, # remove the leading "V" patch_last_changed=data["changes"][1:], # remove the leading "V" price=Price(rp=data["rp"], blue_essence=data["be"], sale_rp=sale_price), lore="", skins=self._get_champ_skin(name, sale), ) # "nickname": "nickname", # "disp_name": "dispName", return champion def _pull_champion_ability(self, champion_name, ability_name) -> HTMLAbilityWrapper: ability_name = ability_name.replace(" ", "_") # Pull the html from the wiki # print(f" {ability_name}") url = f"https://leagueoflegends.fandom.com/wiki/Template:Data_{champion_name}/{ability_name}" # temporary fix for pyke passive if url in "https://leagueoflegends.fandom.com/wiki/Template:Data_Pyke/Gift_of_the_Drowned_Ones": url = "https://leagueoflegends.fandom.com/wiki/User:Dryan426/Sandbox" html = download_soup(url, self.use_cache) soup = BeautifulSoup(html, "lxml") return HTMLAbilityWrapper(soup) def _render_abilities(self, champion_name, abilities: List[HTMLAbilityWrapper]) -> Tuple[str, List[Ability]]: inputs, abilities = abilities, [] # rename variables skill_key = inputs[0]["skill"] for data in inputs: _skill_key = data["skill"] if champion_name == "Aphelios" and data["name"] in ( "Calibrum", "Severum", "Gravitum", "Infernum", "Crescendum", ): _skill_key = "I" if champion_name == "Gnar" and data["name"] in ("Boulder Toss",): _skill_key = "Q" assert _skill_key == skill_key if champion_name == "Pyke" and _skill_key == "I": del data[ "Cost" ] # This is a weird one... There's an embedded table that doesn't get parsed right. It overwrites 'cost', but luckily that isn't an issue because 'cost' is empty. if data.get("Cost") is not None: raise ValueError(data) nvalues = 5 if _skill_key in ("Q", "W", "E") else 3 if champion_name == "Aphelios" and _skill_key == "I": nvalues = 6 elif champion_name == "Heimerdinger": nvalues = None elif champion_name == "Janna" and _skill_key == "I": nvalues = 2 elif champion_name == "Sona" and _skill_key in ("Q", "W", "E"): nvalues = None elif champion_name == "Jayce": nvalues = 6 elif champion_name == "Karma": nvalues = None elif champion_name == "Kindred" and _skill_key == "I": nvalues = 2 elif champion_name == "Nidalee": nvalues = None elif champion_name == "Udyr": nvalues = 6 elif champion_name == "Yuumi" and _skill_key == "Q": nvalues = 6 ability_cost = data.get("cost") cooldown = data.get("cooldown", data.get("static")) damage_type = data.get("damagetype") if damage_type is not None: damage_type = to_enum_like(damage_type) if "/" in damage_type: damage_type = "MIXED_DAMAGE" elif damage_type == "PHYSICAL": damage_type = "PHYSICAL_DAMAGE" elif damage_type == "MAGIC": damage_type = "MAGIC_DAMAGE" elif damage_type == "TRUE": damage_type = "TRUE_DAMAGE" elif damage_type == "PURE": damage_type = "PURE_DAMAGE" else: damage_type = "OTHER_DAMAGE" damage_type = DamageType.from_string(damage_type) resource = data.get("costtype") if resource is not None: resource = to_enum_like(resource) if resource in ( "MANA", "NO_COST", "HEALTH", "MAXIMUM_HEALTH", "ENERGY", "CURRENT_HEALTH", "HEALTH_PER_SECOND", "MANA_PER_SECOND", "CHARGE", "FURY", ): pass elif resource in ( "MANA_+_4_FOCUS", "MANA_+_4_FROST_STACKS", "MANA_+_6_CHARGES", "MANA_+_1_SAND_SOLDIER", "MANA_+_40_/_45_/_50_/_55_/_60_PER_SECOND", "MAXIMUM_HEALTH_+_50_/_55_/_60_/_65_/_70_MANA", "MANA_+_1_TURRET_KIT", "MANA_+_1_MISSILE", "MANA_+_1_CHARGE", "MANA_+_ALL_CHARGES", ): resource = "MANA" elif resource == "OF_CURRENT_HEALTH": resource = "CURRENT_HEALTH" elif resource == "%_OF_CURRENT_HEALTH": resource = "CURRENT_HEALTH" elif resource == "CURRENT_GRIT": resource = "GRIT" elif resource == "CURRENT_FURY": resource = "FURY" elif resource == "FURY_EVERY_0.5_SECONDS": resource = "FURY" else: resource = "OTHER" resource = Resource.from_string(resource) projectile = data.get("projectile") if projectile: projectile = to_enum_like(projectile) recharge_rate = data.get("recharge") if recharge_rate: _, recharge_rate = ParsingAndRegex.regex_simple_flat(recharge_rate, nvalues) # ignore units effects = [] for ending in ["", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10"]: description = data.get(f"description{ending}") while description and " " in description: description = description.replace(" ", " ") leveling = data.get_source(f"leveling{ending}") leveling = self._render_levelings(leveling, nvalues) if leveling else [] if description or leveling: effects.append(Effect(description=description, leveling=leveling)) ability = Ability( name=data["name"], icon=data.get(f"icon{ending}"), effects=effects, cost=self._render_ability_cost(ability_cost, nvalues) if ability_cost else None, cooldown=self._render_ability_cooldown(cooldown, "static" in data.data, nvalues) if cooldown else None, targeting=data.get("targeting"), affects=data.get("affects"), spellshieldable=data.get("spellshield"), resource=resource, damage_type=damage_type, spell_effects=data.get("spelleffects"), projectile=projectile, on_hit_effects=data.get("onhiteffects"), occurrence=data.get("occurrence"), blurb=data.get("blurb"), notes=data.get("notes") if data.get("notes") != "* No additional notes." else None, missile_speed=data.get("missile_speed"), recharge_rate=recharge_rate, collision_radius=data.get("collision radius"), tether_radius=data.get("tether radius"), on_target_cd_static=data.get("ontargetcdstatic"), inner_radius=data.get("inner radius"), speed=data.get("speed"), width=data.get("width"), angle=data.get("angle"), cast_time=data.get("cast time"), effect_radius=data.get("effect radius"), target_range=data.get("target range"), ) if ability.notes is not None and ability.notes.startswith("*"): ability.notes = ability.notes[1:].strip() abilities.append(ability) if skill_key == "I": skill_key = "P" # Check for duplicate abilities hashes = [] unique_abilities = [] for ability in abilities: h = hash(str(ability)) if h not in hashes: hashes.append(h) unique_abilities.append(ability) return skill_key, unique_abilities def _render_levelings(self, html: BeautifulSoup, nvalues: int) -> List[Leveling]: # Do some pre-processing on the html if not isinstance(html, str): html = str(html) html = html.replace("</dt>", "\n</dt>") html = html.replace("</dd>", "\n</dd>") html = BeautifulSoup(html, "lxml") html = html.text.strip() while "\n\n" in html: html = html.replace("\n\n", "\n") while " " in html: html = html.replace(" ", " ") levelings = html.replace("\xa0", " ") # Get ready results = [] # Let's parse! initial_split = levelings.split("\n") initial_split = [ lvling.strip() for lvling in initial_split if lvling.strip() not in ( "Takedown scales with Aspect of the Cougar's rank", "Swipe scales with Aspect of the Cougar's rank", "Pounce scales with Aspect of the Cougar's rank", "Cougar form's abilities rank up when Aspect of the Cougar does", ) ] initial_split = list(grouper(initial_split, 2)) for attribute, data in initial_split: if attribute.endswith(":"): attribute = attribute[:-1] result = self._render_leveling(attribute, data, nvalues) results.append(result) return results def _render_leveling(self, attribute: str, data: str, nvalues: int) -> Leveling: modifiers = self._render_modifiers(data, nvalues) leveling = Leveling( attribute=attribute, modifiers=modifiers, ) return leveling def _render_modifiers(self, mods: str, nvalues: int) -> List[Modifier]: modifiers = [] # type: List[Modifier] try: parsed_modifiers = ParsingAndRegex.split_modifiers(mods) except Exception as error: print("ERROR: FAILURE TO SPLIT MODIFIER") print("ERROR:", error) return modifiers for lvling in parsed_modifiers: try: modifier = self._render_modifier(lvling, nvalues) modifiers.append(modifier) except Exception as error: print(f"ERROR: FAILURE TO PARSE MODIFIER: {lvling}") print("ERROR:", error) while " " in lvling: lvling = lvling.replace(" ", " ") value = 0 if lvling.lower() == "Siphoning Strike Stacks".lower(): # Nasus value = 1 if lvling.lower() == "increased by 3% per 1% of health lost in the past 4 seconds".lower(): # Ekko value = 3 lvling = "% per 1% of health lost in the past 4 seconds" modifier = Modifier( values=[value for _ in range(nvalues)], units=[lvling for _ in range(nvalues)], ) modifiers.append(modifier) return modifiers def _render_modifier(self, mod: str, nvalues: int) -> Modifier: units, values = ParsingAndRegex.get_modifier(mod, nvalues) modifier = Modifier( values=values, units=units, ) return modifier def _render_ability_cost(self, mods: str, nvalues: int) -> Cost: modifiers = self._render_modifiers(mods, nvalues) cost = Cost(modifiers=modifiers) return cost def _render_ability_cooldown(self, mods: str, static_cooldown: bool, nvalues: int) -> Cooldown: modifiers = self._render_modifiers(mods, nvalues) cooldown = Cooldown( modifiers=modifiers, affected_by_cdr=not static_cooldown, ) return cooldown def _get_sale(self): get_prices = re.compile(r"(\d+) (\d+)") url = f"https://leagueoflegends.fandom.com/wiki/Sales" # temporary fix for pyke passive html = download_soup(url, False) soup = BeautifulSoup(html, "lxml") spans = soup.findAll("div", {"class": "skin_portrait skin-icon"}) sale = {} for i in spans: prices = get_prices.findall(i.text) champion = i["data-champion"] if not sale.get(champion): sale[champion] = {} sale[champion]["price"] = 0 skin = i["data-skin"] if skin != "": sale[champion][skin] = prices[0][1] else: sale[champion]["price"] = prices[0][1] return sale def _get_skin_id(self, id, skin_id): if skin_id < 10: id_test = str(id) + "00" + str(skin_id) elif skin_id >= 10 and skin_id < 100: id_test = str(id) + "0" + str(skin_id) else: id_test = str(id) + str(skin_id) # If a single champion gets over 1k skin ids tell Dan he was wrong to think that it would never happen return id_test def _get_chroma_attribs(self, id, name): if "chromas" in self.cdragDict[0]: for c in self.cdragDict[0]["chromas"]: if int(id) == c["id"]: descriptions = [] rarities = [] if c["descriptions"]: for desc in c["descriptions"]: descriptions.append(Description(desc["description"], desc["region"])) else: descriptions.append(Description(None, None)) if c["rarities"]: for rarity in c["rarities"]: rarities.append(Rarities(rarity["rarity"], rarity["region"])) else: rarities.append(Rarities(None, None)) chroma = Chroma( name=name, id=c["id"], chroma_path=self._get_skin_path(c["chromaPath"]), colors=c["colors"], descriptions=descriptions, rarities=rarities, ) return chroma def _get_skins(self): url = f"https://leagueoflegends.fandom.com/wiki/Module:SkinData/data" html = download_soup(url, False) soup = BeautifulSoup(html, "lxml") # Pull the relevant champData from the html tags spans = soup.find("pre", {"class": "mw-code mw-script"}) start = None spans = spans.text.split("\n") for i, span in enumerate(spans): if str(span) == "return {": start = i spans[i] = "{" spans = spans[start:] test1 = re.compile("\w -- \w|.\w--\w|\w --\w|.\w--\s") for i, span in enumerate(spans): if span in ["-- </pre>", "-- [[Category:Lua]]"]: spans[i] = "" if re.search(test1, span): test2 = re.search(test1, span) spans[i] = span.replace(test2.group()[2] + test2.group()[3], " ") span = spans[i] comment_start = span.find("--") # text = text.replace("-", " ") if comment_start > -1: spans[i] = span[:comment_start] spans = "".join(spans) skin_data = lua.decode(spans) return skin_data def _get_skin_path(self, path): if "/assets/ASSETS" in path: path = path.split("ASSETS")[1] path = path.lower() path = "https://raw.communitydragon.org/pbe/plugins/rcp-be-lol-game-data/global/default/assets" + path return path base_url = "http://raw.communitydragon.org/pbe/plugins/rcp-be-lol-game-data/global/default/v1" # /lol-game-data/assets/v1/champion-chroma-images/32/32014.png path = path.split("v1")[1] return base_url + path def _get_champ_skin(self, name, sale): """ Pulls champion skin data from wiki and cdragon """ champ_data = self.skin_data[name]["skins"] skins = [] champ_id = self.skin_data[name]["id"] cdragon = "http://raw.communitydragon.org/pbe/plugins/rcp-be-lol-game-data/global/default/v1/champions/{0}.json".format( champ_id ) cdrag_json = download_json(cdragon, False) for s in champ_data: # Default values for LOL Wiki attributes if champ_data[s]["id"] == None: continue skin_ID = self._get_skin_id(champ_id, champ_data[s]["id"]) new_effects = False new_recall = False new_animations = False new_voice = False new_quotes = False chromas = [] distribution = None sets = [] format_name = s voice_actors = [] splash_arist = [] loot_eligible = True lore = None cdragon_ids = [] self.cdragDict = [i for i in cdrag_json["skins"] if i["id"] == int(skin_ID)] # Cdragon Dict for skin in cdrag_json["skins"]: cdragon_ids.append(skin["id"]) if int(skin_ID) not in cdragon_ids: continue # cdragon attributes is_base = self.cdragDict[0]["isBase"] splash_path = self._get_skin_path(self.cdragDict[0]["splashPath"]) uncentered_splash_path = self._get_skin_path(self.cdragDict[0]["uncenteredSplashPath"]) tile_path = self._get_skin_path(self.cdragDict[0]["tilePath"]) load_screen_path = self._get_skin_path(self.cdragDict[0]["loadScreenPath"]) if "loadScreenVintagePath" in self.cdragDict[0]: load_screen_vintage_path = self._get_skin_path(self.cdragDict[0]["loadScreenVintagePath"]) else: load_screen_vintage_path = None rarity = self.cdragDict[0]["rarity"][1:] if "neweffects" in champ_data[s]: new_effects = True if "newrecall" in champ_data[s]: new_recall = True if "newanimations" in champ_data[s]: new_animations = True if "newquotes" in champ_data[s]: new_quotes = True if "newvoice" in champ_data[s]: new_voice = True if "chromas" in champ_data[s]: for chroma in champ_data[s]["chromas"]: chromas.append( self._get_chroma_attribs( self._get_skin_id(champ_id, champ_data[s]["chromas"][chroma]["id"]), chroma, ) ) if "distribution" in champ_data[s]: distribution = champ_data[s]["distribution"] if "set" in champ_data[s]: for set in champ_data[s]["set"]: sets.append(set) if "formatname" in champ_data[s]: format_name = champ_data[s]["formatname"] if "voiceactor" in champ_data[s]: for va in champ_data[s]["voiceactor"]: voice_actors.append(va) if "lore" in champ_data[s]: lore = champ_data[s]["lore"] if "splashartist" in champ_data[s]: for sa in champ_data[s]["splashartist"]: splash_arist.append(sa) if "looteligible" in champ_data[s]: loot_eligible = champ_data[s]["looteligible"] if "release" in champ_data[s]: if "N/A" in champ_data[s]["release"]: timestamp = "0000-00-00" else: timestamp = champ_data[s]["release"] sale_rp = 0 if name in sale: if s in sale[name]: sale_rp = sale[name][s] skin = Skin( name=s, id=int(skin_ID), availability=champ_data[s]["availability"], format_name=format_name, loot_eligible=loot_eligible, cost=champ_data[s]["cost"], sale=int(sale_rp), release=timestamp, distribution=distribution, set=sets, new_effects=new_effects, new_animations=new_animations, new_recall=new_recall, voice_actor=voice_actors, splash_artist=splash_arist, chromas=chromas, lore=lore, new_quotes=new_quotes, new_voice=new_voice, is_base=is_base, splash_path=splash_path, uncentered_splash_path=uncentered_splash_path, tile_path=tile_path, load_screen_path=load_screen_path, load_screen_vintage_path=load_screen_vintage_path, rarity=rarity, ) skins.append(skin) return skins class ParsingAndRegex: rc_scaling = re.compile(r"(\(\+.+?\))") r_number = r"(\d+\.?\d*)" rc_number = re.compile(r_number) rc_based_on_level = re.compile(r"(\d+\.?\d*) ?− ?(\d+\.?\d*) \(based on level\)") @staticmethod def regex_slash_separated(string: str, nvalues: int) -> Tuple[List[str], List[Union[int, float]]]: for i in range(20, 1, -1): regex = " / ".join([ParsingAndRegex.r_number for _ in range(i)]) result = re.findall(regex, string) if result: assert len(result) == 1 result = result[0] parsed = " / ".join([f"{{{j}}}" for j in range(i)]).format(*result) not_parsed = string.split(parsed) values = [eval(r) for r in result] # Special case... if nvalues == 3 and len(values) == 5: values = [values[0], values[2], values[4]] if nvalues is not None and len(values) != nvalues: print(f"WARNING: Unexpected number of modifier values: {values} (expected {nvalues})") return not_parsed, values raise ValueError(f"Could not parse slash-separated string: {string}") @staticmethod def parse_based_on_level(start, stop): # e.g. 5 − 139 (based on level) delta = (stop - start) / 17.0 values = [start + i * delta for i in range(18)] return values @staticmethod def regex_simple_flat(string: str, nvalues: int) -> Tuple[List[str], List[Union[int, float]]]: numbers = ParsingAndRegex.rc_number.findall(string) if "/" in string: return ParsingAndRegex.regex_slash_separated(string, nvalues) elif len(ParsingAndRegex.rc_based_on_level.findall(string)) > 0: level = ParsingAndRegex.rc_based_on_level.findall(string) assert len(level) == 1 start, stop = level[0] start, stop = eval(start), eval(stop) values = ParsingAndRegex.parse_based_on_level(start, stop) parsed = f"{start} − {stop} (based on level)" not_parsed = string.split(parsed) assert len(not_parsed) >= 2 if len(not_parsed) != 2: # see below not_parsed = not_parsed[0], parsed.join(not_parsed[1:]) assert len(values) == 18 return not_parsed, values elif len(numbers) - len(re.findall(r" per \d", string)) == 1 + string.count("(+ "): number = numbers[0] not_parsed = string.split(number) assert len(not_parsed) >= 2 if len(not_parsed) != 2: # Fix e.g. `15 per 150 AP` not_parsed = not_parsed[0], number.join(not_parsed[1:]) number = eval(number) if nvalues is None: nvalues = len(numbers) values = [number for _ in range(nvalues)] assert len(values) == nvalues return not_parsed, values raise UnparsableLeveling(f"Could not parse a simple flat value: {string}") @staticmethod def get_units(not_parsed: List[str]) -> str: assert len(not_parsed) == 2 assert not_parsed[0] == "" return not_parsed[1] @staticmethod def get_modifier(mod: str, nvalues: int) -> [List[str], List[Union[int, float]]]: units, parsed = ParsingAndRegex.regex_simple_flat(mod, nvalues) units = ParsingAndRegex.get_units(units) units = [units for _ in range(len(parsed))] return units, parsed @staticmethod def split_modifiers(mods: str) -> List[str]: flat, scalings = ParsingAndRegex.get_scalings(mods) if " + " in flat: flat = flat.split(" + ") else: flat = [flat] return flat + scalings @staticmethod def get_scalings(numbers: str): scalings = ParsingAndRegex.rc_scaling.findall(numbers) if scalings: scalings = parse_top_level_parentheses(numbers) scalings = [scaling for scaling in scalings if scaling != "(based on level)"] for scaling in scalings: numbers = numbers.replace(scaling, "").strip() # remove the scaling part of the string for processing later scalings = [x.strip() for x in scalings] for i, scaling in enumerate(scalings): if scaling.startswith("(") and scaling.endswith(")"): scaling = scaling[1:-1].strip() if scaling.startswith("+"): scaling = scaling[1:].strip() scalings[i] = scaling return numbers, scalings
39.879639
179
0.511268
4a1c9554ec10485779e0e007f397ea17c597160a
3,131
py
Python
day/seven/test_main.py
stupoid/aoc-2020
dc72f81c7e0150baeb208bf5470a4cb9d79864d9
[ "MIT" ]
null
null
null
day/seven/test_main.py
stupoid/aoc-2020
dc72f81c7e0150baeb208bf5470a4cb9d79864d9
[ "MIT" ]
null
null
null
day/seven/test_main.py
stupoid/aoc-2020
dc72f81c7e0150baeb208bf5470a4cb9d79864d9
[ "MIT" ]
null
null
null
from day.seven.main import ( generate_lookup, generate_reverse_lookup, get_bags_in_bag, parse, find_bag, ) def test_parse(): input_file = open("day/seven/test_input.txt", "r") rules = [parse(i.strip()) for i in input_file] assert rules == [ ["light red", (1, "bright white"), (2, "muted yellow")], ["dark orange", (3, "bright white"), (4, "muted yellow")], ["bright white", (1, "shiny gold")], ["muted yellow", (2, "shiny gold"), (9, "faded blue")], ["shiny gold", (1, "dark olive"), (2, "vibrant plum")], ["dark olive", (3, "faded blue"), (4, "dotted black")], ["vibrant plum", (5, "faded blue"), (6, "dotted black")], ["faded blue"], ["dotted black"], ] def test_generate_lookup(): input_file = open("day/seven/test_input.txt", "r") rules = [parse(i.strip()) for i in input_file] assert generate_lookup(rules) == { "light red": {"bright white": 1, "muted yellow": 2}, "dark orange": {"bright white": 3, "muted yellow": 4}, "bright white": {"shiny gold": 1}, "muted yellow": {"shiny gold": 2, "faded blue": 9}, "shiny gold": {"dark olive": 1, "vibrant plum": 2}, "dark olive": {"faded blue": 3, "dotted black": 4}, "vibrant plum": {"faded blue": 5, "dotted black": 6}, "faded blue": 0, "dotted black": 0, } def test_generate_reverse_lookup(): input_file = open("day/seven/test_input.txt", "r") rules = [parse(i.strip()) for i in input_file] assert generate_reverse_lookup(rules) == { "bright white": {"light red": 1, "dark orange": 3}, "muted yellow": {"light red": 2, "dark orange": 4}, "shiny gold": {"bright white": 1, "muted yellow": 2}, "faded blue": {"muted yellow": 9, "dark olive": 3, "vibrant plum": 5}, "dark olive": {"shiny gold": 1}, "vibrant plum": {"shiny gold": 2}, "dotted black": {"dark olive": 4, "vibrant plum": 6}, } def test_find_bag(): input_file = open("day/seven/test_input.txt", "r") rules = [parse(i.strip()) for i in input_file] assert find_bag("shiny gold", generate_reverse_lookup(rules)) == { "bright white", "muted yellow", "dark orange", "light red", } assert find_bag("dark olive", generate_reverse_lookup(rules)) == { "shiny gold", "bright white", "muted yellow", "dark orange", "light red", } def test_count_bags(): input_file = open("day/seven/test_input.txt", "r") rules = [parse(i.strip()) for i in input_file] lookup_table = generate_lookup(rules) assert get_bags_in_bag("dark olive", lookup_table) == 7 assert get_bags_in_bag("faded blue", lookup_table) == 0 assert get_bags_in_bag("vibrant plum", lookup_table) == 11 assert get_bags_in_bag("shiny gold", lookup_table) == 32 input_file = open("day/seven/test_input_2.txt", "r") rules = [parse(i.strip()) for i in input_file] lookup_table = generate_lookup(rules) assert get_bags_in_bag("shiny gold", lookup_table) == 126
35.988506
78
0.582881
4a1c95fde0b1322c8c643a4d68d290da609d9db3
6,241
py
Python
Proyecto_parqueadero_Ean.py
Matieljimenez/Proyecto_parqueadero_Ean
b75d370eea6ad1760c0f248e4aee3d2660d7a7be
[ "MIT" ]
null
null
null
Proyecto_parqueadero_Ean.py
Matieljimenez/Proyecto_parqueadero_Ean
b75d370eea6ad1760c0f248e4aee3d2660d7a7be
[ "MIT" ]
null
null
null
Proyecto_parqueadero_Ean.py
Matieljimenez/Proyecto_parqueadero_Ean
b75d370eea6ad1760c0f248e4aee3d2660d7a7be
[ "MIT" ]
null
null
null
print("¡¡BIENVENIDO AL PARQUEADERO DE LA UNIVERSIDAD EAN!! ") usuario=int(input("Si eres empleado del parqueadero ingresa 1 si eres usuario 0:")) if(usuario==1): lista=["lorena","1234"] while True: empleado=input("Digite Usuario: ") if(empleado==lista[0]): while (empleado==lista[0])==True: contraseña=input("Digite contraseña: ") if(contraseña==lista[1]): print("Bienvenido ") break else: print("Contraseña incorrecta") break else: print("Usuario incorrecto") if(usuario==0): n=input("Ingrese su nombre completo: ") while True: cd=input("Ingrese su número de cédula: ") try: cd=int(cd) if(cd>0): break else: print("El número de cedula debe ser positivo") except: print("Ingrese solo numero su cédula ") while True: tipo=input("1-->para carro , 2-->para moto , 3-->para bicicleta: ") try: tipo=int(tipo) if(tipo==1 or tipo==2 or tipo==3): break else: print("Número fuera del rango, ingrese un número nuevamente ") except: print("Ingrese solo números del 1 al 3") if(tipo==1 or tipo==2): placa=(input("Ingrese placa: ")) print(placa[0],placa[1],placa[2]) print(placa[3],placa[4],placa[5]) else: registro=(input("Ingrese número de registro: ")) print(registro[0],registro[1],registro[2]) print(registro[3],registro[4],registro[5]) print(registro[6],registro[7]) from datetime import datetime fecha_entrada=input("Ingrese la fecha separada por (/) de la entrada del vehiculo: ").split("/") dia_e,mes_e,año_e=fecha_entrada dia_e=int(dia_e) fecha_salida=input("Ingrese la fecha separada por (/) de la salida del vehiculo: ").split("/") dia_s,mes_s,año_s=fecha_salida dia_s=int(dia_s) dias=dia_s-dia_e Hora_entrada=input("Ingrese la hora militar separada por (:) de la entrada del vehiculo ").split(":") h_e,m_e=Hora_entrada h_e=int(h_e) m_e=int(m_e) Hora_salida=input("Ingrese la hora militar separada por (:) de la entrada del vehiculo ").split(":") h_s,m_s=Hora_salida h_s=int(h_s) m_s=int(m_s) hora_entrada=str(h_e)+":"+str(m_e)+":00" hora_salida=str(h_s)+":"+str(m_s)+":00" formato_hora='%H:%M:%S' he=datetime.strptime(hora_entrada,formato_hora) hs=datetime.strptime(hora_salida,formato_hora) if dias==0: total_horas=hs-he h=str(total_horas) horas=h.split(':') horas_posicion=int(horas[0]) minutos_posicion=int(horas[1]) horas_minutos=horas_posicion*60 TotalMinutos=minutos_posicion+horas_minutos print('Total tiempo transcurrido fue: '+str(TotalMinutos)+" Minutos") else: if dias==1: hrealsalida=hora_salida.split(':') hora_salida="23:59:59" hs=datetime.strptime(hora_salida,formato_hora) totalhoras=hs-he seconds=int(totalhoras.total_seconds()) horasd2=int(hrealsalida[0]) horasd2*=3600 minutosd2=int(hrealsalida[1]) minutosd2*=60 segundosd2=int(hrealsalida[2]) totalsegundosd2=(horasd2+minutosd2+segundosd2+1) seconds+=totalsegundosd2 timehoras=seconds//3600 segundosrestantes=seconds%3600 timeminutos=segundosrestantes//60 timeseconds=segundosrestantes%60 Horas_Minutos=timehoras*60 TotalMinutos=Horas_Minutos+timeminutos print('Total tiempo transcurrido fue: '+str(TotalMinutos)+" Minutos") else: if dias>=2: dias-=1 dias*=86400 totalhoras=hs-he seconds=int(totalhoras.total_seconds()) seconds+=dias timehoras=seconds//3600 segundosrestantes=seconds%3600 timeminutos=segundosrestantes//60 timeseconds=segundosrestantes%60 Horas_Minutos=timehoras*60 TotalMinutos=Horas_Minutos+timeminutos print('Total tiempo transcurrido fue: '+str(TotalMinutos)+" Minutos") cobro_carro=110 cobro_moto=80 cobro_cicla=30 cc=int(input("Ingrese su CC para saber si cuenta con un descuento 🤑 : ")) listaCc=[1003894791,1003894791,1003894791,1003894791] listaCc.append(cc) #cuentas cedulas hayprint(listaCc.count(cc)) if(listaCc.count(cc)==5): print("tiene descuento del 20% por su fidelidad",n) if tipo==1: total=TotalMinutos*cobro_carro-(TotalMinutos*cobro_carro*0.20) elif tipo==2: total=TotalMinutos*cobro_moto-(TotalMinutos*cobro_moto*0.20) elif tipo==3: total=TotalMinutos*cobro_cicla-(TotalMinutos*cobro_cicla*0.20) print("El total a pagar es: "+str(total)) else: print("no tine descuento: ",n) if tipo==1: total=TotalMinutos*cobro_carro elif tipo==2: total=TotalMinutos*cobro_moto elif tipo==3: total=TotalMinutos*cobro_cicla print("El total a pagar es: "+str(total)) """ #Lugar para parquear: parqueo=("Ingrese el piso en el que desea parquear:") listaparp1c=[[101,0],[102,1],103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,160] listaparp1c.append() listaparqp1m=[161,162,163,164,165,166,167,168,169,170] listaparqp1m.append() listaparp1b=[171,172,173,174,175,176,177,178,179,180] listaparqp1b.append() listaparqueop2c=[201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260] listaparqueop2m=[261,262,263,264,265,266,267,268,269,270] listaparqueop2b=[271,272,273,274,275,276,277,278,279,280] listaparqueop3=[301,302,303],304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360] listaparqueop3m=[361,362,363,364,365,366,367,368,369,370] listaparqueop3b=[371,372,373,374,375,376,377,378,379,380] """ print("Dirijase al cajero para realizar el pago ") print("Muchas gracias") print("ESPERAMOS LE HAYA GUSTADO NUESTRO SERVICIO") print("¡¡¡VUELVA PRONTO!!!, FELIZ DÍA ")
33.021164
257
0.683544
4a1c96368de5084a71fb5519afee0cd8fcc20697
8,685
py
Python
src/griffe/agents/extensions/base.py
WillDaSilva/griffe
301384e499d598c0475814c99f3a15d0b8feb587
[ "ISC" ]
29
2022-01-31T21:39:28.000Z
2022-03-24T04:03:27.000Z
src/griffe/agents/extensions/base.py
WillDaSilva/griffe
301384e499d598c0475814c99f3a15d0b8feb587
[ "ISC" ]
56
2022-01-31T20:41:23.000Z
2022-03-31T19:03:07.000Z
src/griffe/agents/extensions/base.py
WillDaSilva/griffe
301384e499d598c0475814c99f3a15d0b8feb587
[ "ISC" ]
5
2022-02-19T16:58:55.000Z
2022-03-21T18:28:03.000Z
"""This module contains the base classes for dealing with extensions.""" from __future__ import annotations import ast import enum from collections import defaultdict from inspect import isclass from typing import TYPE_CHECKING, Any, Sequence, Type, Union from griffe.agents.base import BaseInspector, BaseVisitor from griffe.agents.nodes import ObjectNode from griffe.exceptions import ExtensionNotLoadedError from griffe.importer import dynamic_import if TYPE_CHECKING: from griffe.agents.inspector import Inspector from griffe.agents.visitor import Visitor class When(enum.Enum): """This enumeration contains the different times at which an extension is used. Attributes: before_all: For each node, before the visit/inspection. before_children: For each node, after the visit has started, and before the children visit/inspection. after_children: For each node, after the children have been visited/inspected, and before finishing the visit/inspection. after_all: For each node, after the visit/inspection. """ before_all: int = 1 before_children: int = 2 after_children: int = 3 after_all: int = 4 class VisitorExtension(BaseVisitor): """The node visitor extension base class, to inherit from.""" when: When def __init__(self) -> None: """Initialize the visitor extension.""" super().__init__() self.visitor: Visitor = None # type: ignore[assignment] def attach(self, visitor: Visitor) -> None: """Attach the parent visitor to this extension. Parameters: visitor: The parent visitor. """ self.visitor = visitor def visit(self, node: ast.AST) -> None: """Visit a node. Parameters: node: The node to visit. """ getattr(self, f"visit_{node.kind}", lambda _: None)(node) # type: ignore[attr-defined] class InspectorExtension(BaseInspector): """The object inspector extension base class, to inherit from.""" when: When def __init__(self) -> None: """Initialize the inspector extension.""" super().__init__() self.inspector: Inspector = None # type: ignore[assignment] def attach(self, inspector: Inspector) -> None: """Attach the parent inspector to this extension. Parameters: inspector: The parent inspector. """ self.inspector = inspector def inspect(self, node: ObjectNode) -> None: """Inspect a node. Parameters: node: The node to inspect. """ getattr(self, f"inspect_{node.kind}", lambda _: None)(node) Extension = Union[VisitorExtension, InspectorExtension] class Extensions: """This class helps iterating on extensions that should run at different times.""" def __init__(self, *extensions: Extension) -> None: """Initialize the extensions container. Parameters: *extensions: The extensions to add. """ self._visitors: dict[When, list[VisitorExtension]] = defaultdict(list) self._inspectors: dict[When, list[InspectorExtension]] = defaultdict(list) self.add(*extensions) def add(self, *extensions: Extension) -> None: """Add extensions to this container. Parameters: *extensions: The extensions to add. """ for extension in extensions: if isinstance(extension, VisitorExtension): self._visitors[extension.when].append(extension) else: self._inspectors[extension.when].append(extension) def attach_visitor(self, parent_visitor: Visitor) -> Extensions: """Attach a parent visitor to the visitor extensions. Parameters: parent_visitor: The parent visitor, leading the visit. Returns: Self, conveniently. """ for when in self._visitors.keys(): for visitor in self._visitors[when]: visitor.attach(parent_visitor) return self def attach_inspector(self, parent_inspector: Inspector) -> Extensions: """Attach a parent inspector to the inspector extensions. Parameters: parent_inspector: The parent inspector, leading the inspection. Returns: Self, conveniently. """ for when in self._inspectors.keys(): for inspector in self._inspectors[when]: inspector.attach(parent_inspector) return self @property def before_visit(self) -> list[VisitorExtension]: """Return the visitors that run before the visit. Returns: Visitors. """ return self._visitors[When.before_all] @property def before_children_visit(self) -> list[VisitorExtension]: """Return the visitors that run before the children visit. Returns: Visitors. """ return self._visitors[When.before_children] @property def after_children_visit(self) -> list[VisitorExtension]: """Return the visitors that run after the children visit. Returns: Visitors. """ return self._visitors[When.after_children] @property def after_visit(self) -> list[VisitorExtension]: """Return the visitors that run after the visit. Returns: Visitors. """ return self._visitors[When.after_all] @property def before_inspection(self) -> list[InspectorExtension]: """Return the inspectors that run before the inspection. Returns: Inspectors. """ return self._inspectors[When.before_all] @property def before_children_inspection(self) -> list[InspectorExtension]: """Return the inspectors that run before the children inspection. Returns: Inspectors. """ return self._inspectors[When.before_children] @property def after_children_inspection(self) -> list[InspectorExtension]: """Return the inspectors that run after the children inspection. Returns: Inspectors. """ return self._inspectors[When.after_children] @property def after_inspection(self) -> list[InspectorExtension]: """Return the inspectors that run after the inspection. Returns: Inspectors. """ return self._inspectors[When.after_all] builtin_extensions: set[str] = { "hybrid", } def load_extension(extension: str | dict[str, Any] | Extension | Type[Extension]) -> Extension: """Load a configured extension. Parameters: extension: An extension, with potential configuration options. Raises: ExtensionNotLoadedError: When the extension cannot be loaded, either because the module is not found, or because it does not expose the Extension attribute. ImportError will bubble up so users can see the traceback. Returns: An extension instance. """ if isinstance(extension, (VisitorExtension, InspectorExtension)): return extension if isclass(extension) and issubclass(extension, (VisitorExtension, InspectorExtension)): # type: ignore[arg-type] return extension() # type: ignore[operator] if isinstance(extension, dict): import_path, options = next(iter(extension.items())) else: # we consider it's a string import_path = str(extension) options = {} if import_path in builtin_extensions: import_path = f"griffe.agents.extensions.{import_path}" try: ext_module = dynamic_import(import_path) except ModuleNotFoundError as error: raise ExtensionNotLoadedError(f"Extension module '{import_path}' could not be found") from error except ImportError as error: raise ExtensionNotLoadedError(f"Error while importing extension module '{import_path}': {error}") from error try: return ext_module.Extension(**options) except AttributeError as error: # noqa: WPS440 raise ExtensionNotLoadedError(f"Extension module '{import_path}' has no 'Extension' attribute") from error def load_extensions(exts: Sequence[str | dict[str, Any] | Extension | Type[Extension]]) -> Extensions: # noqa: WPS231 """Load configured extensions. Parameters: exts: A sequence of extension, with potential configuration options. Returns: An extensions container. """ extensions = Extensions() for extension in exts: extensions.add(load_extension(extension)) return extensions
30.797872
129
0.653541
4a1c976973b2a67a260c3efe014cf5f2eba99d19
3,951
py
Python
api/allennlp_demo/permalinks/api.py
jvstokes/allennlp-demo
f98a72118c3c9e27429d8111fd71e727b647ff89
[ "Apache-2.0" ]
1
2021-01-02T12:59:04.000Z
2021-01-02T12:59:04.000Z
api/allennlp_demo/permalinks/api.py
Przegali/allennlp-demo
f03823d90468b84803a64a87a9cecdac05309838
[ "Apache-2.0" ]
null
null
null
api/allennlp_demo/permalinks/api.py
Przegali/allennlp-demo
f03823d90468b84803a64a87a9cecdac05309838
[ "Apache-2.0" ]
null
null
null
from typing import Optional import psycopg2 from flask import Flask, Response, jsonify, request from werkzeug.exceptions import BadRequest, InternalServerError, NotFound from allennlp_demo.permalinks.db import DemoDatabase, PostgresDemoDatabase from allennlp_demo.permalinks.models import slug_to_int, int_to_slug from allennlp_demo.common.logs import configure_logging class PermaLinkService(Flask): def __init__(self, name: str = "permalinks", db: Optional[DemoDatabase] = None): super().__init__(name) configure_logging(self) self.db = db if db is None: self.logger.warning("No database, permalinks are disabled.") @self.errorhandler(BadRequest) def handle_400(err: BadRequest): return jsonify({"error": str(err)}), 400 @self.errorhandler(InternalServerError) def handle_500(err: InternalServerError) -> Response: self.logger.error(err) return jsonify({"error": "Something went wrong."}), 500 @self.route("/", methods=["GET"]) def info(): """ The simplest of info routes. We can add more here later. """ return jsonify({"id": "permalinks"}) @self.route("/<string:slug>") def get_permalink(slug: str) -> Response: """ Find a permalink by slug. """ # If we don't have a database configured, there are no permalinks. if self.db is None: raise BadRequest("Permalinks are not enabled") link_id = slug_to_int(slug) if link_id is None: # Malformed slug raise BadRequest(f"Unrecognized permalink: {slug}") # Fetch the results from the database. try: link = self.db.get_result(link_id) except psycopg2.Error: self.logger.exception(f"Unable to get results from database: {link_id}") raise InternalServerError("Database error") if link is None: raise NotFound(f"Permalink not found: {slug}") return jsonify(link._asdict()) @self.route("/", methods=["POST"]) def create_permalink() -> Response: """ Creates a new permalink. """ # If we don't have a database configured, there are no permalinks. if self.db is None: raise BadRequest("Permalinks are not enabled") request_data = request.json.get("request_data") if not request_data: raise BadRequest("Invalid request_data") # Old models send this field. New models do not. # TODO: Remove this once all models use the new serving mechanism. model_name = request.json.get("model_name") # New models send these fields, but old models do not. # TODO: Once all models are served via the new mechanism these should be required. model_id = request.json.get("model_id") task_name = request.json.get("task_name") try: id = self.db.insert_request( model_name=model_name, request_data=request_data, model_id=model_id, task_name=task_name, ) return jsonify(int_to_slug(id)) except psycopg2.Error as err: self.logger.exception("Error saving permalink: %s", err) raise InternalServerError("Unable to create permalink") # noop post for image upload, we need an endpoint, but we don't need to save the image @self.route("/noop", methods=["POST"]) def noop(): return "" if __name__ == "__main__": db = PostgresDemoDatabase.from_environment() app = PermaLinkService(db=db) app.run(host="0.0.0.0", port=8000)
36.583333
94
0.587952
4a1c978c9f6246ee22c7d2baa4f7a6053ea34aba
1,097
py
Python
kubernetes/test/test_v2beta2_horizontal_pod_autoscaler_spec.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
2
2020-06-21T08:03:18.000Z
2020-06-21T09:53:29.000Z
kubernetes/test/test_v2beta2_horizontal_pod_autoscaler_spec.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v2beta2_horizontal_pod_autoscaler_spec.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
1
2020-12-10T07:28:08.000Z
2020-12-10T07:28:08.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: release-1.16 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import kubernetes.client from kubernetes.client.models.v2beta2_horizontal_pod_autoscaler_spec import V2beta2HorizontalPodAutoscalerSpec # noqa: E501 from kubernetes.client.rest import ApiException class TestV2beta2HorizontalPodAutoscalerSpec(unittest.TestCase): """V2beta2HorizontalPodAutoscalerSpec unit test stubs""" def setUp(self): pass def tearDown(self): pass def testV2beta2HorizontalPodAutoscalerSpec(self): """Test V2beta2HorizontalPodAutoscalerSpec""" # FIXME: construct object with mandatory attributes with example values # model = kubernetes.client.models.v2beta2_horizontal_pod_autoscaler_spec.V2beta2HorizontalPodAutoscalerSpec() # noqa: E501 pass if __name__ == '__main__': unittest.main()
27.425
132
0.758432
4a1c9932ca3aebc963adb17ea24cce0c0e4856c5
13,906
py
Python
pyqldbsamples/insert_ion_types.py
simonz-bq/amazon-qldb-dmv-sample-python
ca27d40d992e63e5dec8e1a431517fc745f8185c
[ "MIT-0" ]
null
null
null
pyqldbsamples/insert_ion_types.py
simonz-bq/amazon-qldb-dmv-sample-python
ca27d40d992e63e5dec8e1a431517fc745f8185c
[ "MIT-0" ]
null
null
null
pyqldbsamples/insert_ion_types.py
simonz-bq/amazon-qldb-dmv-sample-python
ca27d40d992e63e5dec8e1a431517fc745f8185c
[ "MIT-0" ]
null
null
null
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # This code expects that you have AWS credentials setup per: # https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html from datetime import datetime from decimal import Decimal from logging import basicConfig, getLogger, INFO from amazon.ion.simple_types import IonPyBool, IonPyBytes, IonPyDecimal, IonPyDict, IonPyFloat, IonPyInt, IonPyList, \ IonPyNull, IonPySymbol, IonPyText, IonPyTimestamp from amazon.ion.simpleion import loads from amazon.ion.symbols import SymbolToken from amazon.ion.core import IonType from pyqldbsamples.create_table import create_table from pyqldbsamples.insert_document import insert_documents from pyqldbsamples.model.sample_data import convert_object_to_ion from pyqldbsamples.connect_to_ledger import create_qldb_driver logger = getLogger(__name__) basicConfig(level=INFO) TABLE_NAME = 'IonTypes' def update_record_and_verify_type(transaction_executor, parameter, ion_object, ion_type): """ Update a record in the database table. Then query the value of the record and verify correct ion type saved. :type transaction_executor: :py:class:`pyqldb.execution.executor.Executor` :param transaction_executor: An Executor object allowing for execution of statements within a transaction. :type parameter: :py:class:`amazon.ion.simple_types.IonPyValue` :param parameter: The Ion value or Python native type that is convertible to Ion for filling in parameters of the statement. :type ion_object: :py:obj:`IonPyBool`/:py:obj:`IonPyBytes`/:py:obj:`IonPyDecimal`/:py:obj:`IonPyDict` /:py:obj:`IonPyFloat`/:py:obj:`IonPyInt`/:py:obj:`IonPyList`/:py:obj:`IonPyNull` /:py:obj:`IonPySymbol`/:py:obj:`IonPyText`/:py:obj:`IonPyTimestamp` :param ion_object: The Ion object to verify against. :type ion_type: :py:class:`amazon.ion.core.IonType` :param ion_type: The Ion type to verify against. :raises TypeError: When queried value is not an instance of Ion type. """ update_query = 'UPDATE {} SET Name = ?'.format(TABLE_NAME) transaction_executor.execute_statement(update_query, parameter) logger.info('Updated record.') search_query = 'SELECT VALUE Name FROM {}'.format(TABLE_NAME) cursor = transaction_executor.execute_statement(search_query) for c in cursor: if not isinstance(c, ion_object): raise TypeError('The queried value is not an instance of {}'.format(ion_object.__name__)) if c.ion_type is not ion_type: raise TypeError('The queried value type does not match {}'.format(ion_type)) logger.info("Successfully verified value is instance of '{}' with type '{}'.".format(ion_object.__name__, ion_type)) return cursor def delete_table(transaction_executor, table_name): """ Delete a table. :type transaction_executor: :py:class:`pyqldb.execution.executor.Executor` :param transaction_executor: An Executor object allowing for execution of statements within a transaction. :type table_name: str :param table_name: Name of the table to delete. :rtype: int :return: The number of changes to the database. """ logger.info("Deleting '{}' table...".format(table_name)) cursor = transaction_executor.execute_statement('DROP TABLE {}'.format(table_name)) logger.info("'{}' table successfully deleted.".format(table_name)) return len(list(cursor)) def insert_and_verify_ion_types(driver): """ Insert all the supported Ion types and Python values that are convertible to Ion into a ledger and verify that they are stored and can be retrieved properly, retaining their original properties. :type driver: :py:class:`pyqldb.driver.qldb_driver.QldbDriver` :param driver: A QLDB Driver object. """ python_bytes = str.encode('hello') python_bool = True python_float = float('0.2') python_decimal = Decimal('0.1') python_string = "string" python_int = 1 python_null = None python_datetime = datetime(2016, 12, 20, 5, 23, 43) python_list = [1, 2] python_dict = {"brand": "Ford"} ion_clob = convert_object_to_ion(loads('{{"This is a CLOB of text."}}')) ion_blob = convert_object_to_ion(python_bytes) ion_bool = convert_object_to_ion(python_bool) ion_decimal = convert_object_to_ion(python_decimal) ion_float = convert_object_to_ion(python_float) ion_int = convert_object_to_ion(python_int) ion_list = convert_object_to_ion(python_list) ion_null = convert_object_to_ion(python_null) ion_sexp = convert_object_to_ion(loads('(cons 1 2)')) ion_string = convert_object_to_ion(python_string) ion_struct = convert_object_to_ion(python_dict) ion_symbol = convert_object_to_ion(SymbolToken(text='abc', sid=123)) ion_timestamp = convert_object_to_ion(python_datetime) ion_null_clob = convert_object_to_ion(loads('null.clob')) ion_null_blob = convert_object_to_ion(loads('null.blob')) ion_null_bool = convert_object_to_ion(loads('null.bool')) ion_null_decimal = convert_object_to_ion(loads('null.decimal')) ion_null_float = convert_object_to_ion(loads('null.float')) ion_null_int = convert_object_to_ion(loads('null.int')) ion_null_list = convert_object_to_ion(loads('null.list')) ion_null_sexp = convert_object_to_ion(loads('null.sexp')) ion_null_string = convert_object_to_ion(loads('null.string')) ion_null_struct = convert_object_to_ion(loads('null.struct')) ion_null_symbol = convert_object_to_ion(loads('null.symbol')) ion_null_timestamp = convert_object_to_ion(loads('null.timestamp')) driver.execute_lambda(lambda transaction_executor: create_table(transaction_executor, TABLE_NAME) and insert_documents(transaction_executor, TABLE_NAME, [{'Name': 'val'}]) and update_record_and_verify_type(transaction_executor, python_bytes, IonPyBytes, IonType.BLOB) and update_record_and_verify_type(transaction_executor, python_bool, IonPyBool, IonType.BOOL) and update_record_and_verify_type(transaction_executor, python_float, IonPyFloat, IonType.FLOAT) and update_record_and_verify_type(transaction_executor, python_decimal, IonPyDecimal, IonType.DECIMAL) and update_record_and_verify_type(transaction_executor, python_string, IonPyText, IonType.STRING) and update_record_and_verify_type(transaction_executor, python_int, IonPyInt, IonType.INT) and update_record_and_verify_type(transaction_executor, python_null, IonPyNull, IonType.NULL) and update_record_and_verify_type(transaction_executor, python_datetime, IonPyTimestamp, IonType.TIMESTAMP) and update_record_and_verify_type(transaction_executor, python_list, IonPyList, IonType.LIST) and update_record_and_verify_type(transaction_executor, python_dict, IonPyDict, IonType.STRUCT) and update_record_and_verify_type(transaction_executor, ion_clob, IonPyBytes, IonType.CLOB) and update_record_and_verify_type(transaction_executor, ion_blob, IonPyBytes, IonType.BLOB) and update_record_and_verify_type(transaction_executor, ion_bool, IonPyBool, IonType.BOOL) and update_record_and_verify_type(transaction_executor, ion_decimal, IonPyDecimal, IonType.DECIMAL) and update_record_and_verify_type(transaction_executor, ion_float, IonPyFloat, IonType.FLOAT) and update_record_and_verify_type(transaction_executor, ion_int, IonPyInt, IonType.INT) and update_record_and_verify_type(transaction_executor, ion_list, IonPyList, IonType.LIST) and update_record_and_verify_type(transaction_executor, ion_null, IonPyNull, IonType.NULL) and update_record_and_verify_type(transaction_executor, ion_sexp, IonPyList, IonType.SEXP) and update_record_and_verify_type(transaction_executor, ion_string, IonPyText, IonType.STRING) and update_record_and_verify_type(transaction_executor, ion_struct, IonPyDict, IonType.STRUCT) and update_record_and_verify_type(transaction_executor, ion_symbol, IonPySymbol, IonType.SYMBOL) and update_record_and_verify_type(transaction_executor, ion_timestamp, IonPyTimestamp, IonType.TIMESTAMP) and update_record_and_verify_type(transaction_executor, ion_null_clob, IonPyNull, IonType.CLOB) and update_record_and_verify_type(transaction_executor, ion_null_blob, IonPyNull, IonType.BLOB) and update_record_and_verify_type(transaction_executor, ion_null_bool, IonPyNull, IonType.BOOL) and update_record_and_verify_type(transaction_executor, ion_null_decimal, IonPyNull, IonType.DECIMAL) and update_record_and_verify_type(transaction_executor, ion_null_float, IonPyNull, IonType.FLOAT) and update_record_and_verify_type(transaction_executor, ion_null_int, IonPyNull, IonType.INT) and update_record_and_verify_type(transaction_executor, ion_null_list, IonPyNull, IonType.LIST) and update_record_and_verify_type(transaction_executor, ion_null_sexp, IonPyNull, IonType.SEXP) and update_record_and_verify_type(transaction_executor, ion_null_string, IonPyNull, IonType.STRING) and update_record_and_verify_type(transaction_executor, ion_null_struct, IonPyNull, IonType.STRUCT) and update_record_and_verify_type(transaction_executor, ion_null_symbol, IonPyNull, IonType.SYMBOL) and update_record_and_verify_type(transaction_executor, ion_null_timestamp, IonPyNull, IonType.TIMESTAMP) and delete_table(transaction_executor, TABLE_NAME), lambda retry_attempt: logger.info('Retrying due to OCC conflict...')) if __name__ == '__main__': """ Insert all the supported Ion types and Python values that are convertible to Ion into a ledger and verify that they are stored and can be retrieved properly, retaining their original properties. """ try: with create_qldb_driver() as driver: insert_and_verify_ion_types(driver) except Exception: logger.exception('Error updating and validating Ion types.')
60.46087
120
0.6106
4a1c9bbd138b37fbe24f58c153d1966d36dc436a
3,248
py
Python
docs/sphinxext/autodoc_traits.py
mariobuikhuizen/pythreejs
150ff1c10c868b17fefa63d19153b5ee1fe87f66
[ "BSD-3-Clause" ]
451
2018-04-20T17:44:49.000Z
2022-03-26T21:53:05.000Z
docs/sphinxext/autodoc_traits.py
Jimmy-INL/pythreejs
a78cb57456948526e39ea79ac003c2cfde5ed0f4
[ "BSD-3-Clause" ]
164
2018-04-19T08:34:57.000Z
2022-03-31T12:58:53.000Z
docs/sphinxext/autodoc_traits.py
Jimmy-INL/pythreejs
a78cb57456948526e39ea79ac003c2cfde5ed0f4
[ "BSD-3-Clause" ]
119
2018-04-23T16:01:02.000Z
2022-03-26T03:28:59.000Z
"""autodoc extension for traits""" from collections import OrderedDict from traitlets import TraitType, Undefined, Container, Dict, Any, HasTraits from sphinx.ext.autodoc import ClassDocumenter, AttributeDocumenter def dict_info(trait): try: trait_base = trait._value_trait except AttributeError: trait_base = trait._trait try: traits = trait._per_key_traits except AttributeError: traits = trait._traits if traits is None and (trait_base is None or isinstance(trait_base, Any)): value_string = 'elements of any type' else: parts = [] if traits: parts.append('the following types: %r' % {k: v.info() for k,v in traits}) if trait_base: parts.append('values that are: %s' % trait_base.info()) value_string = 'elements with ' + ', and '.join(parts) return '{} with {}'.format(trait.info(), value_string) def extended_trait_info(trait): if isinstance(trait, Dict): return dict_info(trait) elif isinstance(trait, Container): if trait._trait is None: return '{} of any type'.format(trait.info()) return '{} with values that are: {}'.format(trait.info(), trait._trait.info()) return trait.info() class HasTraitsDocumenter(ClassDocumenter): """Specialized Documenter subclass for traits""" objtype = 'hastraits' directivetype = 'class' @classmethod def can_document_member(cls, member, membername, isattr, parent): return isinstance(member, HasTraits) def get_object_members(self, want_all): """Add traits to members list""" check, members = super().get_object_members(want_all) get_traits = self.object.class_own_traits if self.options.inherited_members \ else self.object.class_traits members_new = OrderedDict() for m in members: members_new[m[0]] = m[1] traits = tuple(get_traits().items()) for name, trait in traits: if name not in members_new: # Don't add a member that would normally be filtered continue # pass # FIXME: Debugging # put help in __doc__ where autodoc will look for it trait.__doc__ = trait.help or extended_trait_info(getattr(self.object, name)) members_new[name] = trait return check, [kv for kv in members_new.items()] class TraitDocumenter(AttributeDocumenter): objtype = 'trait' directivetype = 'attribute' member_order = 1 priority = 100 @classmethod def can_document_member(cls, member, membername, isattr, parent): return isinstance(member, TraitType) def format_name(self): return self.objpath[-1] def add_directive_header(self, sig): default = self.object.default_value if default is Undefined: default_s = '' else: default_s = repr(default) sig = ' = {}({})'.format( self.object.__class__.__name__, default_s, ) return super().add_directive_header(sig) def setup(app): app.add_autodocumenter(HasTraitsDocumenter) app.add_autodocumenter(TraitDocumenter)
31.843137
89
0.637623
4a1c9bed1782540eaf62e2518db17693e7acbaf9
800
py
Python
puma/attribute/attribute/sharing_attribute_between_scopes_not_allowed_error.py
gift-surg/puma
58beae3459a0c8d96adfe9af323e26868428df4d
[ "Apache-2.0" ]
null
null
null
puma/attribute/attribute/sharing_attribute_between_scopes_not_allowed_error.py
gift-surg/puma
58beae3459a0c8d96adfe9af323e26868428df4d
[ "Apache-2.0" ]
13
2020-05-04T14:14:58.000Z
2020-07-29T16:37:03.000Z
puma/attribute/attribute/sharing_attribute_between_scopes_not_allowed_error.py
gift-surg/puma
58beae3459a0c8d96adfe9af323e26868428df4d
[ "Apache-2.0" ]
null
null
null
from puma.attribute import ThreadAction class SharingAttributeBetweenScopesNotAllowedError(TypeError): def __init__(self, attribute_name: str, scope_type: str, action_type: str) -> None: super().__init__(f"Attribute '{attribute_name}' may not be passed between {scope_type} as its {action_type} is '{ThreadAction.NOT_ALLOWED.name}'") class SharingAttributeBetweenThreadsNotAllowedError(SharingAttributeBetweenScopesNotAllowedError): def __init__(self, attribute_name: str) -> None: super().__init__(attribute_name, "Threads", "ThreadAction") class SharingAttributeBetweenProcessesNotAllowedError(SharingAttributeBetweenScopesNotAllowedError): def __init__(self, attribute_name: str) -> None: super().__init__(attribute_name, "Processes", "ProcessAction")
40
154
0.7825
4a1c9c0740602217e1e0ab20eb228c96098d6c1e
978
py
Python
python/phonenumbers/shortdata/region_GH.py
vishnuku/python-phonenumbers
6ac2cdd06b7ccf709a8efb21629cf2c5f030e627
[ "Apache-2.0" ]
3
2018-12-02T23:09:00.000Z
2018-12-02T23:16:59.000Z
python/phonenumbers/shortdata/region_GH.py
carljm/python-phonenumbers
494044aaf75443dbfd62b8d1352b441af6a458ae
[ "Apache-2.0" ]
null
null
null
python/phonenumbers/shortdata/region_GH.py
carljm/python-phonenumbers
494044aaf75443dbfd62b8d1352b441af6a458ae
[ "Apache-2.0" ]
null
null
null
"""Auto-generated file, do not edit by hand. GH metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_GH = PhoneMetadata(id='GH', country_code=None, international_prefix=None, general_desc=PhoneNumberDesc(national_number_pattern='[14589]\\d{2,4}', possible_number_pattern='\\d{3,5}', possible_length=(3, 4, 5)), toll_free=PhoneNumberDesc(), premium_rate=PhoneNumberDesc(), emergency=PhoneNumberDesc(national_number_pattern='19[123]|999', possible_number_pattern='\\d{3}', example_number='999', possible_length=(3,)), short_code=PhoneNumberDesc(national_number_pattern='19[123]|40404|(?:54|83)00|999', possible_number_pattern='\\d{3,5}', example_number='999', possible_length=(3, 4, 5)), standard_rate=PhoneNumberDesc(), carrier_specific=PhoneNumberDesc(national_number_pattern='40404|(?:54|83)00', possible_number_pattern='\\d{4,5}', example_number='5400', possible_length=(4, 5)), short_data=True)
75.230769
173
0.757669
4a1c9c3305d19ce1330cb7bd93bf49261a4dce31
6,469
py
Python
tests/test_symbolic.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
2
2018-05-02T17:41:36.000Z
2020-05-18T02:49:16.000Z
tests/test_symbolic.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
null
null
null
tests/test_symbolic.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
1
2019-08-07T01:42:01.000Z
2019-08-07T01:42:01.000Z
import angr import nose #def broken_symvalue(): # # concrete symvalue # zero = SimValue(se.BVV(0, 64)) # nose.tools.assert_false(zero.is_symbolic()) # nose.tools.assert_equal(zero.eval(), 0) # nose.tools.assert_raises(ConcretizingException, zero.eval_exactly, 2) # # # symbolic symvalue # x = se.BVS('x', 64) # sym = SimValue(x, constraints = [ x > 100, x < 200 ]) # nose.tools.assert_true(sym.is_symbolic()) # nose.tools.assert_equal(sym.min_int(), 101) # nose.tools.assert_equal(sym.max_int(), 199) # nose.tools.assert_items_equal(sym.eval_upto(99), range(101, 200)) # nose.tools.assert_raises(ConcretizingException, zero.eval_exactly, 102) def test_concretization_strategies(): initial_memory = {0: 'A', 1: 'B', 2: 'C', 3: 'D'} s = angr.SimState(arch='AMD64', memory_backer=initial_memory) # sanity check nose.tools.assert_equal(s.se.eval_upto(s.memory.load(3, 1), 2, cast_to=str), ['D']) x = s.se.BVS('x', s.arch.bits) s.add_constraints(x >= 1) s.add_constraints(x <= 3) ss = s.copy() nose.tools.assert_equal(tuple(sorted(ss.se.eval_upto(ss.memory.load(x, 1), 10, cast_to=str))), ('B', 'C', 'D')) ss = s.copy() x = s.se.BVS('x', s.arch.bits) s.add_constraints(x >= 1) ss.options.add(angr.options.CONSERVATIVE_READ_STRATEGY) ss.memory._create_default_read_strategies() nose.tools.assert_true('symbolic' in next(iter(ss.memory.load(x, 1).variables))) #def test_concretization(): # s = angr.SimState(arch="AMD64", mode="symbolic") # dst = s.se.BVV(0x41424300, 32) # dst_addr = s.se.BVV(0x1000, 64) # s.memory.store(dst_addr, dst, 4) # # print "MEM KEYS", s.memory.mem.keys() # print "REG KEYS", s.registers.mem.keys() # # print "TO NATIVE..." # s.set_native(True) # print "... done" # # vv = s.native_env.vexecute(pyvex.IRExpr.Load("Iend_BE", "Ity_I32", pyvex.IRExpr.Const(pyvex.IRConst.U64(0x1000)))) # nose.tools.assert_equals(vv.str[:4], 'ABC\x00') # s.native_env.vexecute(pyvex.IRSB(bytes='\xb8\x41\x42\x43\x44')) # # #import IPython; IPython.embed() # print "FROM NATIVE..." # s.set_native(False) # print "... done" # # nose.tools.assert_equals(s.reg_value(16).se.eval(), 0x44434241) # print "YEAH" #@nose.tools.timed(10) def broken_symbolic_write(): s = angr.SimState(arch='AMD64', mode='symbolic') addr = s.se.BVS('addr', 64) s.add_constraints(s.se.Or(addr == 10, addr == 20, addr == 30)) nose.tools.assert_equals(len(s.se.eval_upto(addr, 10)), 3) s.memory.store(10, s.se.BVV(1, 8)) s.memory.store(20, s.se.BVV(2, 8)) s.memory.store(30, s.se.BVV(3, 8)) nose.tools.assert_true(s.se.unique(s.memory.load(10, 1))) nose.tools.assert_true(s.se.unique(s.memory.load(20, 1))) nose.tools.assert_true(s.se.unique(s.memory.load(30, 1))) #print "CONSTRAINTS BEFORE:", s.constraints._solver.constraints #s.memory.store(addr, s.se.BVV(255, 8), strategy=['symbolic','any'], limit=100) s.memory.store(addr, s.se.BVV(255, 8)) nose.tools.assert_true(s.satisfiable()) print "GO TIME" nose.tools.assert_equals(len(s.se.eval_upto(addr, 10)), 3) nose.tools.assert_items_equal(s.se.eval_upto(s.memory.load(10, 1), 3), [ 1, 255 ]) nose.tools.assert_items_equal(s.se.eval_upto(s.memory.load(20, 1), 3), [ 2, 255 ]) nose.tools.assert_items_equal(s.se.eval_upto(s.memory.load(30, 1), 3), [ 3, 255 ]) nose.tools.assert_equals(len(s.se.eval_upto(addr, 10)), 3) # see if it works when constraining the write address sa = s.copy() sa.add_constraints(addr == 20) nose.tools.assert_true(sa.satisfiable()) nose.tools.assert_items_equal(sa.se.eval_upto(sa.memory.load(10, 1), 3), [ 1 ]) nose.tools.assert_items_equal(sa.se.eval_upto(sa.memory.load(20, 1), 3), [ 255 ]) nose.tools.assert_items_equal(sa.se.eval_upto(sa.memory.load(30, 1), 3), [ 3 ]) nose.tools.assert_items_equal(sa.se.eval_upto(addr, 10), [ 20 ]) # see if it works when constraining a value to the written one sv = s.copy() sv.add_constraints(sv.memory.load(30, 1) == 255) nose.tools.assert_true(sv.satisfiable()) nose.tools.assert_items_equal(sv.se.eval_upto(sv.memory.load(10, 1), 3), [ 1 ]) nose.tools.assert_items_equal(sv.se.eval_upto(sv.memory.load(20, 1), 3), [ 2 ]) nose.tools.assert_items_equal(sv.se.eval_upto(sv.memory.load(30, 1), 3), [ 255 ]) nose.tools.assert_items_equal(sv.se.eval_upto(addr, 10), [ 30 ]) # see if it works when constraining a value to the unwritten one sv = s.copy() sv.add_constraints(sv.memory.load(30, 1) == 3) nose.tools.assert_true(sv.satisfiable()) nose.tools.assert_items_equal(sv.se.eval_upto(sv.memory.load(10, 1), 3), [ 1, 255 ]) nose.tools.assert_items_equal(sv.se.eval_upto(sv.memory.load(20, 1), 3), [ 2, 255 ]) nose.tools.assert_items_equal(sv.se.eval_upto(sv.memory.load(30, 1), 3), [ 3 ]) nose.tools.assert_items_equal(sv.se.eval_upto(addr, 10), [ 10, 20 ]) s = angr.SimState(arch='AMD64', mode='symbolic') s.memory.store(0, s.se.BVV(0x4141414141414141, 64)) length = s.se.BVS("length", 32) #s.memory.store(0, s.se.BVV(0x4242424242424242, 64), symbolic_length=length) s.memory.store(0, s.se.BVV(0x4242424242424242, 64)) for i in range(8): ss = s.copy() ss.add_constraints(length == i) nose.tools.assert_equal(ss.se.eval(s.memory.load(0, 8), cast_to=str), "B"*i + "A"*(8-i)) print "GROOVY" def test_unsat_core(): s = angr.SimState(arch='AMD64', mode='symbolic', add_options={ angr.options.CONSTRAINT_TRACKING_IN_SOLVER }) x = s.se.BVS('x', 32) s.add_constraints(s.se.BVV(0, 32) == x) s.add_constraints(s.se.BVV(1, 32) == x) nose.tools.assert_false(s.satisfiable()) unsat_core = s.se.unsat_core() nose.tools.assert_equal(len(unsat_core), 2) def test_compatibility_layer(): s = angr.SimState(arch='AMD64', mode='symbolic') x = s.se.BVS('x', 32) s.add_constraints(x > 20) s.add_constraints(x < 40) nose.tools.assert_true(s.se.any_int(x) > 20) nose.tools.assert_true(s.se.any_int(x) < 40) nose.tools.assert_true(len(s.se.any_n_int(x, 100)), 19) y = s.se.BVS('y', 72) s.add_constraints(y == 0x696c6f766563617400) nose.tools.assert_true(s.se.any_str(y) == 'ilovecat\x00') nose.tools.assert_true(s.se.any_n_str(y, 2) == ['ilovecat\x00']) if __name__ == '__main__': # test_concretization_strategies() test_compatibility_layer()
38.736527
118
0.662544
4a1c9edf8592837c981ab4a7d6383dbc2259c85b
596
py
Python
desafio-04/sklearn_transforms/setup.py
igorvroberto/Maratona-IBM-2020
b8dd6413e3ef80764901bd8d05c5ee307a8ee71d
[ "MIT" ]
null
null
null
desafio-04/sklearn_transforms/setup.py
igorvroberto/Maratona-IBM-2020
b8dd6413e3ef80764901bd8d05c5ee307a8ee71d
[ "MIT" ]
null
null
null
desafio-04/sklearn_transforms/setup.py
igorvroberto/Maratona-IBM-2020
b8dd6413e3ef80764901bd8d05c5ee307a8ee71d
[ "MIT" ]
null
null
null
from setuptools import setup from pandas import Categorical, get_dummies setup( name='my_custom_sklearn_transforms', version='1.0', description=''' This is a sample python package for encapsulating custom tranforms from scikit-learn into Watson Machine Learning ''', url='https://github.com/igorvroberto/Maratona-IBM-2020/desafio-04/sklearn_transforms', author='Igor Roberto', author_email='igorvroberto@gmail.com', license='BSD', packages=[ 'my_custom_sklearn_transforms' ], zip_safe=False )
29.8
92
0.66443
4a1c9fbd49e836e0079f501713f70ea1c5c090bc
731
py
Python
CONFIG.sample.py
radiantly/ample-indexer
55c607bd3752cef32bf1389ca10b10bc0f24328d
[ "MIT" ]
null
null
null
CONFIG.sample.py
radiantly/ample-indexer
55c607bd3752cef32bf1389ca10b10bc0f24328d
[ "MIT" ]
null
null
null
CONFIG.sample.py
radiantly/ample-indexer
55c607bd3752cef32bf1389ca10b10bc0f24328d
[ "MIT" ]
null
null
null
from webdriver_manager.utils import ChromeType # Your email and password user_email = "" user_passw = "" # What browser to use while retrieving cookies # ChromeType.GOOGLE = Google Chrome # ChromeType.CHROMIUM = Chromium # ChromeType.MSEDGE = Microsoft Edge chrome_type = ChromeType.GOOGLE # For savepdf.py # Base directory # For Windows, this may need to be something like: # baseDir = r"C:\Users\radiantly\Documents\AmpleStuff" baseDir = "/mnt/gdrive10" # The directory in which pdfs for each subject is to be stored # Each key should be in the format "Course code": "Directory name" directoryMap = { "19CCE201": "MIT", "19CCE202": "DSA", "19CCE204": "Signal", "19MAT205": "Math", "CIR_SSK211": "CIR", }
25.206897
66
0.716826
4a1ca051cf8886974877830507736f925e5477d1
1,169
py
Python
test/look_back.py
apolloaggrey/block_chain
62b908239fc866fdc8baa4bf412a36efcc5889f5
[ "MIT" ]
null
null
null
test/look_back.py
apolloaggrey/block_chain
62b908239fc866fdc8baa4bf412a36efcc5889f5
[ "MIT" ]
null
null
null
test/look_back.py
apolloaggrey/block_chain
62b908239fc866fdc8baa4bf412a36efcc5889f5
[ "MIT" ]
null
null
null
import sys as DVDNVSVBUSHNB import time as YRYGFBUYEGBFU def main(): NIFNVNIJCBDB = str(DVDNVSVBUSHNB.argv[0]).split("\\")[-1] NBJYVJHHVYSY = "" with open(NIFNVNIJCBDB, "r") as YTFYBTFBVDYF: for GBGBYFFHTF in YTFYBTFBVDYF: if GBGBYFFHTF.startswith(" JBVFUSVNSVUB"): GBGBYFFHTF = GBGBYFFHTF.split(",") TDVUYTDFTVRDT = GBGBYFFHTF[:-1] DSCRDVHTRHGB = GBGBYFFHTF[-1:] VFJTRFTYFHJGC = "" for CDHRTCVTYJDY in TDVUYTDFTVRDT: VFJTRFTYFHJGC += str(CDHRTCVTYJDY) + "," VFJTRFTYFHJGC += (str(YRYGFBUYEGBFU.gmtime()[5])) for CDHRTCVTYJDY in DSCRDVHTRHGB: VFJTRFTYFHJGC += "," + str(CDHRTCVTYJDY) NBJYVJHHVYSY += str(VFJTRFTYFHJGC) else: NBJYVJHHVYSY += str(GBGBYFFHTF) YTFYBTFBVDYF.close() with open(NIFNVNIJCBDB, "w") as YTFYBTFBVDYF: for VFTYFUYFVVYD in NBJYVJHHVYSY: YTFYBTFBVDYF.write(VFTYFUYFVVYD) YTFYBTFBVDYF.close() pass if __name__ == '__main__': JBVFUSVNSVUB = [None, 43, ] main()
35.424242
65
0.570573
4a1ca0fc7e4a6e046bbbf8f67c24a3c307e9d7fd
17,536
py
Python
models/resnet.py
YantaoShen/openBCT
69e798c2dd6380572da7a88b68e0e9d31d9b08a4
[ "BSD-2-Clause" ]
64
2020-10-13T06:24:41.000Z
2022-03-08T11:23:22.000Z
models/resnet.py
YantaoShen/openBCT
69e798c2dd6380572da7a88b68e0e9d31d9b08a4
[ "BSD-2-Clause" ]
4
2020-12-29T05:57:34.000Z
2022-01-13T18:07:05.000Z
models/resnet.py
YantaoShen/openBCT
69e798c2dd6380572da7a88b68e0e9d31d9b08a4
[ "BSD-2-Clause" ]
10
2020-10-13T06:25:51.000Z
2022-03-03T00:06:06.000Z
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from torch.hub import load_state_dict_from_url __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', } def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, old_fc=None, use_feat=False, norm_sm=False): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self.use_feat = use_feat self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.norm_sm = norm_sm if num_classes != 0: self.fc = nn.Linear(512 * block.expansion, num_classes) if self.norm_sm: self.kernel = nn.Parameter(torch.Tensor(512 * block.expansion, num_classes)) # initial kernel self.kernel.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) self.s = 30. # see normface https://arxiv.org/abs/1704.06369 if old_fc is not None: if old_fc.endswith('.npy'): # loaded weights should be n * d, n: num of classes, d: feature dimension w_npy = np.load(old_fc) n, d = w_npy.shape self.old_fc = nn.Linear(d, n, bias=False) with torch.no_grad(): self.old_fc.weight.copy_(torch.from_numpy(w_npy).float()) elif old_fc.endswith('.pth') or old_fc.endswith('pth.tar'): w_dict = torch.load(old_fc) if type(w_dict) is dict: for _, value, in w_dict.items(): if len(value.shape) > 1: n, d = value.shape weight = value else: bias = value else: n, d = w_dict.size() weight = w_dict self.old_fc = nn.Linear(d, n, bias=(type(w_dict) is dict) and (len(w_dict) > 1)) with torch.no_grad(): self.old_fc.weight.copy_(weight) if type(w_dict) is dict and len(w_dict) > 1: self.old_fc.bias.copy_(bias) else: raise TypeError('Only .pth or .npy files are acceptable!') # freeze old classifier for feature compatibility for para in self.old_fc.parameters(): para.requires_grad = False self.old_d = d self.old_cls_num = n else: self.old_fc = None for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x): # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) if not self.training or self.use_feat: if self.old_fc is not None: if self.old_d <= x.size(1): return F.normalize(x[:, :self.old_d], dim=1) else: z = torch.zeros(x.size(0), self.old_d - x.size(1)) z = z.cuda() if torch.cuda.is_available() else z x = torch.cat((x, z), 1) return F.normalize(x, dim=1) else: return F.normalize(x, dim=1) if self.norm_sm: normed_kernel = torch.nn.functional.normalize(self.kernel, dim=1) output_feat = torch.nn.functional.normalize(x, dim=1) cos_theta = torch.mm(output_feat, normed_kernel) cos_theta = cos_theta.clamp(-1, 1) # for numerical stability score = cos_theta * self.s else: score = self.fc(x) if self.old_fc is not None: if self.old_d <= x.size(1): x = x[:, :self.old_d] old_score = self.old_fc(x) else: z = torch.zeros(x.size(0), self.old_d-x.size(1)) z = z.cuda() if torch.cuda.is_available() else z x = torch.cat((x, z), 1) old_score = self.old_fc(x) return score, old_score, x return score def forward(self, x): return self._forward_impl(x) def _resnet(arch, block, layers, pretrained, progress, **kwargs): model = ResNet(block, layers, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model def resnet18(pretrained=False, progress=True, **kwargs): r"""ResNet-18 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet34(pretrained=False, progress=True, **kwargs): r"""ResNet-34 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet50(pretrained=False, progress=True, **kwargs): r"""ResNet-50 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet101(pretrained=False, progress=True, **kwargs): r"""ResNet-101 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def resnet152(pretrained=False, progress=True, **kwargs): r"""ResNet-152 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs) def resnext50_32x4d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-50 32x4d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 4 return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnext101_32x8d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-101 32x8d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 8 return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def wide_resnet50_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-50-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def wide_resnet101_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-101-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
41.164319
107
0.607835
4a1ca163f13aebaee21c43f6fa286245720a23db
2,843
py
Python
qiskit/providers/aer/library/save_instructions/save_stabilizer.py
garrison/qiskit-aer
24c51a675b8653c8ad2af587d40b795ac94c07c7
[ "Apache-2.0" ]
313
2018-12-19T09:19:12.000Z
2022-03-21T18:15:41.000Z
qiskit/providers/aer/library/save_instructions/save_stabilizer.py
garrison/qiskit-aer
24c51a675b8653c8ad2af587d40b795ac94c07c7
[ "Apache-2.0" ]
933
2018-12-21T02:56:49.000Z
2022-03-30T01:19:54.000Z
qiskit/providers/aer/library/save_instructions/save_stabilizer.py
chriseclectic/qiskit-aer
61b028b7ccd1d6e96c8de48a10648c0bc3c07ff9
[ "Apache-2.0" ]
313
2018-12-19T14:52:55.000Z
2022-02-28T20:20:14.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Simulator instruction to save Clifford state. """ from qiskit.circuit import QuantumCircuit from .save_data import SaveSingleData from ..default_qubits import default_qubits class SaveStabilizer(SaveSingleData): """Save Stabilizer instruction""" def __init__(self, num_qubits, label="stabilizer", pershot=False, conditional=False): """Create new instruction to save the stabilizer simulator state as a StabilizerState. Args: num_qubits (int): the number of qubits of the label (str): the key for retrieving saved data from results. pershot (bool): if True save a list of StabilizerStates for each shot of the simulation rather than a single statevector [Default: False]. conditional (bool): if True save data conditional on the current classical register values [Default: False]. .. note:: This save instruction must always be performed on the full width of qubits in a circuit, otherwise an exception will be raised during simulation. """ super().__init__('save_stabilizer', num_qubits, label, pershot=pershot, conditional=conditional) def save_stabilizer(self, label="stabilizer", pershot=False, conditional=False): """Save the current stabilizer simulator quantum state as a StabilizerState. Args: label (str): the key for retrieving saved data from results. pershot (bool): if True save a list of StabilizerStates for each shot of the simulation [Default: False]. conditional (bool): if True save pershot data conditional on the current classical register values [Default: False]. Returns: QuantumCircuit: with attached instruction. .. note:: This instruction is always defined across all qubits in a circuit. """ qubits = default_qubits(self) instr = SaveStabilizer(len(qubits), label=label, pershot=pershot, conditional=conditional) return self.append(instr, qubits) QuantumCircuit.save_stabilizer = save_stabilizer
38.418919
94
0.641224
4a1ca164c9ee70f8adabde7e754bf34dc4418500
18,280
py
Python
regions/io/crtf/read.py
Yash-10/regions
bd69db9b0e9fe5025bdb2c121086a09325795f9e
[ "BSD-3-Clause" ]
null
null
null
regions/io/crtf/read.py
Yash-10/regions
bd69db9b0e9fe5025bdb2c121086a09325795f9e
[ "BSD-3-Clause" ]
null
null
null
regions/io/crtf/read.py
Yash-10/regions
bd69db9b0e9fe5025bdb2c121086a09325795f9e
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst import re import copy import itertools from warnings import warn from astropy import units as u from astropy import coordinates from .core import CRTFRegionParserError, CRTFRegionParserWarning, valid_symbols from ..core import Shape, ShapeList, reg_mapping __all__ = ['read_crtf', 'CRTFParser', 'CRTFRegionParser'] # All CASA files start with '#CRTF' . It may also include the version number like '#CRTFv0' . regex_begin = re.compile(r'^#CRTFv?[\d]?$') # Comment Format : regex_comment = re.compile(r'^#.*$') # Identifies the global attributes Format. regex_global = re.compile(r'^global\s+(?P<parameters>.*)?') # Coordinate Format : "[x, y]" regex_coordinate = re.compile(r'\[([\w.+-:]*?)\s*[,]\s*([\w.+-:]*?)\]') # Single length Format. For Ex : helps us to extract the radius of a circle. regex_length = re.compile(r'(?:\[[^=]*\])+[,]\s*([^\[]*)\]') # Extracts each 'parameter=value' pair. regex_meta = re.compile(r'(?:(\w+)\s*=[\s\'\"]*([^,\[\]]+?)[\'\",]+)|(?:(\w+)\s*=\s*\[(.*?)\])') # Region format which segregates include('+'|'-') parameter, kind of definition ('ann' for annotations | '' for regions) # and region type. regex_region = re.compile(r'(?P<include>[+-])?(?P<type>ann(?=\s))?\s*(?P<regiontype>[a-z]*?)\[[^=]*]') # Line format which checks the validity of the line and segregates the meta attributes from the region format. regex_line = re.compile(r'(?P<region>[+-]?(?:ann(?=\s))?\s*[a-z]+?\[[^=]+\])(?:\s*[,]\s*(?P<parameters>.*))?') def read_crtf(filename, errors='strict'): """ Reads a CRTF region file and returns a list of region objects. Parameters ---------- filename : `str` The file path errors : ``warn``, ``ignore``, ``strict``, optional The error handling scheme to use for handling parsing errors. The default is 'strict', which will raise a `~regions.CRTFRegionParserError`. ``warn`` will raise a `~regions.CRTFRegionParserWarning`, and ``ignore`` will do nothing (i.e., be silent). Returns ------- regions : `list` Python `list` of `~regions.Region` objects. Examples -------- >>> from regions import read_crtf >>> from astropy.utils.data import get_pkg_data_filename >>> file = get_pkg_data_filename('data/CRTFgeneral.crtf', package='regions.io.crtf.tests') >>> regs = read_crtf(file, errors='warn') >>> print(regs[0].visual) {'color': 'blue'} """ with open(filename) as fh: if regex_begin.search(fh.readline()): region_string = fh.read() parser = CRTFParser(region_string, errors) return parser.shapes.to_regions() else: raise CRTFRegionParserError('Every CRTF Region must start with "#CRTF" ') class CRTFParser: """ Parses a CRTF string. This class transforms a CRTF string to a `~regions.io.core.ShapeList`. The result is stored as ``shapes`` attribute. Each line is tested for either containing a region with meta attributes or global parameters. If global parameters are found then, it is stored in the ``global_meta`` attribute. If a region is found the `~regions.CRTFRegionParser` is invoked to transform the line into a `~regions.io.core.Shape` object. Parameters ---------- region_string : `str` CRTF region string errors : ``warn``, ``ignore``, ``strict``, optional The error handling scheme to use for handling parsing errors. The default is 'strict', which will raise a `~regions.CRTFRegionParserError`. ``warn`` will raise a `~regions.CRTFRegionParserWarning`, and ``ignore`` will do nothing (i.e., be silent). Examples -------- >>> from regions import CRTFParser >>> reg_str = "ann circle[[18h12m24s, -23d11m00s], 2.3arcsec], coord=B1950, frame=BARY, corr=[I, Q], color=blue" >>> regs = CRTFParser(reg_str, errors='warn').shapes.to_regions() >>> print(regs[0].visual) {'color': 'blue'} """ # It contains a tuple of valid definition (region, annotation) type. valid_definition = ('box', 'centerbox', 'rotbox', 'poly', 'circle', 'annulus', 'ellipse', 'line', 'vector', 'text', 'symbol') # It contains a tuple of valid name of the parameters(attributes). valid_global_keys = ('coord', 'frame', 'corr', 'veltype', 'restfreq', 'linewidth', 'linestyle', 'symsize', 'symthick', 'color', 'font', 'fontsize', 'fontstyle', 'usetex', 'labelpos','labelcolor', 'labeloff', 'range') def __init__(self, region_string, errors='strict'): if errors not in ('strict', 'ignore', 'warn'): msg = "``errors`` must be one of strict, ignore, or warn; is {}" raise ValueError(msg.format(errors)) self.region_string = region_string self.errors = errors # Global states self.global_meta = {} # Results self.shapes = ShapeList() self.run() def __str__(self): ss = self.__class__.__name__ ss += f'\nErrors: {self.errors}' ss += f'\nGlobal meta: {self.global_meta}' ss += f'\nShapes: {self.shapes}' ss += '\n' return ss def parse_line(self, line): """ Parses a single line. """ # Skip blanks if line == '': return # Skip comments if regex_comment.search(line): return # Special case / header: parse global parameters into metadata global_parameters = regex_global.search(line) if global_parameters: self.parse_global_meta(global_parameters.group('parameters')) return # Tries to check the validity of the line. crtf_line = regex_line.search(line) if crtf_line: # Tries to parse the line. # Finds info about the region. region = regex_region.search(crtf_line.group('region')) type_ = region.group('type') or 'reg' include = region.group('include') or '+' region_type = region.group('regiontype').lower() if region_type in self.valid_definition: helper = CRTFRegionParser(self.global_meta, include, type_, region_type, *crtf_line.group('region', 'parameters')) self.shapes.append(helper.shape) else: self._raise_error(f"Not a valid CRTF Region type: '{region_type}'.") else: self._raise_error(f"Not a valid CRTF line: '{line}'.") return def _raise_error(self, msg): if self.errors == 'warn': warn(msg, CRTFRegionParserWarning) elif self.errors == 'strict': raise CRTFRegionParserError(msg) def run(self): """ Run all the steps. Splits the regions into line and calls ``parse_line`` for each line. """ for line in self.region_string.split('\n'): self.parse_line(line) def parse_global_meta(self, global_meta_str): """ Parses the line starting with global to extract all the valid meta key/value pair. """ if global_meta_str: global_meta_str = regex_meta.findall(global_meta_str + ',') if global_meta_str: for par in global_meta_str: if par[0] != '': val1 = par[0].lower() val2 = par[1] else: val1 = par[2].lower() val2 = par[3] val1 = val1.strip() val2 = val2.strip() if val1 in self.valid_global_keys : if val1 in ('range', 'corr', 'labeloff'): val2 = val2.split(",") val2 = [x.strip() for x in val2 if x] self.global_meta[val1] = val2 else: self._raise_error(f"'{val1}' is not a valid global meta key") class CRTFRegionParser: """ Parse a CRTF region string This will turn a line containing a CRTF region into a `~regions.Shape` object. Parameters ---------- global_meta : `dict` Global meta data of the CRTF file which is used as default meta values for regions include : `str` {'+', '-'} Flag at the beginning of the line type_ : `str` {'reg', 'ann'} Kind of the region definition region_type : `str` Region type reg_str : `str` Region string to parse meta_str : `str` Meta string to parse errors : ``warn``, ``ignore``, ``strict``, optional The error handling scheme to use for handling parsing errors. The default is 'strict', which will raise a `~regions.CRTFRegionParserError`. ``warn`` will raise a `~regions.CRTFRegionParserWarning`, and ``ignore`` will do nothing (i.e., be silent). """ # List of valid coordinate system # TODO : There are still many reference systems to support coordinate_systems = ['j2000', 'icrs', 'galactic', 'supergal', 'image', 'ecliptic'] # Maps CASA coordinate frame to appropriate astropy coordinate frames. coordsys_mapping = dict(zip(coordinates.frame_transform_graph.get_names(), coordinates.frame_transform_graph.get_names())) coordsys_mapping['j2000'] = 'fk5' coordsys_mapping['b1950'] = 'fk4' coordsys_mapping['supergal'] = 'supergalactic' coordsys_mapping['ecliptic'] = 'geocentrictrueecliptic' # CRTF Format specifications. This define how a certain region is read. # 'c' denotes a coordinates, 'l' denotes a length, 'pl' denotes a pair of lengths, # 's' denotes a string(generally a text or symbol) language_spec = {'circle': ['c', 'l'], 'box': ['c', 'c'], 'centerbox': ['c', 'pl'], 'rotbox': ['c', 'pl', 'l'], 'poly': itertools.cycle('c'), 'annulus': ['c', 'pl'], 'ellipse': ['c', 'pl', 'l'], 'line': ['c', 'c'], 'vector': ['c', 'c'], 'symbol': ['c', 's'], 'text': ['c', 's']} def __init__(self, global_meta, include, type_, region_type, reg_str, meta_str, errors='strict'): self.global_meta = global_meta self.reg_str = reg_str self.meta_str = meta_str self.errors = errors self.coord = None self.coordsys = None self.coord_str = None self.type_ = type_ self.region_type = region_type self.meta = copy.deepcopy(global_meta) self.shape = None self.include = include or '+' self.parse() def _raise_error(self, msg): if self.errors == 'warn': warn(msg, CRTFRegionParserWarning) elif self.errors == 'strict': raise CRTFRegionParserError(msg) def parse(self): """ Starting point to parse the CRTF region string. """ self.convert_meta() self.coordsys = self.meta.get('coord', 'image').lower() self.set_coordsys() self.convert_coordinates() self.make_shape() def set_coordsys(self): """ Mapping to astropy's coordinate system name # TODO: needs expert attention (Most reference systems are not mapped) """ if self.coordsys.lower() in self.coordsys_mapping: self.coordsys = self.coordsys_mapping[self.coordsys.lower()] def convert_coordinates(self): """ Convert coordinate string to `~astropy.coordinates.Angle` or `~astropy.units.quantity.Quantity` objects """ coord_list_str = regex_coordinate.findall(self.reg_str) + regex_length.findall(self.reg_str) coord_list = [] if self.region_type == 'poly': if len(coord_list_str) < 4: self._raise_error(f'Not in proper format: {self.reg_str} polygon should have > 4 coordinates') if coord_list_str[0] != coord_list_str[-1]: self._raise_error("Not in proper format: '{}', " "In polygon, the last and first coordinates should be same".format(self.reg_str)) else: if len(coord_list_str) != len(self.language_spec[self.region_type]): self._raise_error("Not in proper format: '{}', " "Does not contain expected number of parameters for the region '{}'" .format(self.reg_str, self.region_type)) for attr_spec, val_str in zip(self.language_spec[self.region_type], coord_list_str): if attr_spec == 'c': if len(val_str) == 2 and val_str[1] != '': coord_list.append(CoordinateParser.parse_coordinate(val_str[0])) coord_list.append(CoordinateParser.parse_coordinate(val_str[1])) else: self._raise_error(f"Not in proper format: {val_str} should be a coordinate") if attr_spec == 'pl': if len(val_str) == 2 and val_str[1] != '': coord_list.append(CoordinateParser.parse_angular_length_quantity(val_str[0])) coord_list.append(CoordinateParser.parse_angular_length_quantity(val_str[1])) else: self._raise_error(f"Not in proper format: {val_str} should be a pair of length") if attr_spec == 'l': if isinstance(val_str, str): coord_list.append(CoordinateParser.parse_angular_length_quantity(val_str)) else: self._raise_error(f"Not in proper format: {val_str} should be a single length") if attr_spec == 's': if self.region_type == 'symbol': if val_str in valid_symbols: self.meta['symbol'] = val_str else: self._raise_error(f"Not in proper format: '{val_str}' should be a symbol") elif self.region_type == 'text': self.meta['text'] = val_str[1:-1] self.coord = coord_list def convert_meta(self): """ Parses the meta_str to python dictionary and stores in ``meta`` attribute. """ if self.meta_str: self.meta_str = regex_meta.findall(self.meta_str + ',') if self.meta_str: for par in self.meta_str: if par[0] != '': val1 = par[0] val2 = par[1] else: val1 = par[2] val2 = par[3] val1 = val1.strip() val2 = val2.strip() if val1 in CRTFParser.valid_global_keys or val1 == 'label': if val1 in ('range', 'corr', 'labeloff'): val2 = val2.split(',') val2 = [x.strip() for x in val2] self.meta[val1] = val2 else: self._raise_error(f"'{val1}' is not a valid meta key") self.meta['include'] = self.include != '-' self.include = self.meta['include'] if 'range' in self.meta: self.meta['range'] = [u.Quantity(x) for x in self.meta['range']] self.meta['type'] = self.type_ def make_shape(self): """ Make shape object """ if self.region_type == 'ellipse': self.coord[2:] = [x * 2 for x in self.coord[2:]] # Map major and minor axis to height and width respectively self.coord[2], self.coord[3] = self.coord[3], self.coord[2] if len(self.coord) % 2 == 1: # This checks if the angle is present. self.coord[-1] /= 2 if self.region_type == 'box': x = (self.coord[0] + self.coord[2]) / 2 y = (self.coord[1] + self.coord[3]) / 2 w = u.Quantity(self.coord[0] - self.coord[2]) h = u.Quantity(self.coord[1] - self.coord[3]) self.coord = [x, y, abs(w), abs(h)] self.meta.pop('coord', None) self.shape = Shape(coordsys=self.coordsys, region_type=reg_mapping['CRTF'][self.region_type], coord=self.coord, meta=self.meta, composite=False, include=self.include ) class CoordinateParser: """ Helper class to structure coordinate parser """ @staticmethod def parse_coordinate(string_rep): """ Parse a single coordinate """ # Any CRTF coordinate representation (sexagesimal or degrees) if 'pix' in string_rep: return u.Quantity(string_rep[:-3], u.dimensionless_unscaled) if 'h' in string_rep or 'rad' in string_rep: return coordinates.Angle(string_rep) if len(string_rep.split('.')) >= 3: string_rep = string_rep.replace('.', ':', 2) return coordinates.Angle(string_rep, u.deg) @staticmethod def parse_angular_length_quantity(string_rep): """ Given a string that is a number and a unit, return a Quantity of that string.Raise an Error If there is no unit. e.g.: 50" -> 50*u.arcsec 50 -> CRTFRegionParserError : Units must be specified for 50 """ unit_mapping = { 'deg': u.deg, 'rad': u.rad, 'arcmin': u.arcmin, 'arcsec': u.arcsec, 'pix': u.dimensionless_unscaled, '"': u.arcsec, "'": u.arcmin, } regex_str = re.compile(r'([0-9+,-.]*)(.*)') str = regex_str.search(string_rep) unit = str.group(2) if unit: if unit in unit_mapping: return u.Quantity(str.group(1), unit=unit_mapping[unit]) return u.Quantity(str.group(1)) else: raise CRTFRegionParserError(f'Units must be specified for {string_rep} ')
38.083333
120
0.560449
4a1ca17e3c2ca28e5b76e91bd2eac22604816350
401
py
Python
run.py
bigrepedge/labpipestest
0a2f4ee5ecb8b9f57152ba670fe87d5871b0e606
[ "MIT" ]
null
null
null
run.py
bigrepedge/labpipestest
0a2f4ee5ecb8b9f57152ba670fe87d5871b0e606
[ "MIT" ]
null
null
null
run.py
bigrepedge/labpipestest
0a2f4ee5ecb8b9f57152ba670fe87d5871b0e606
[ "MIT" ]
null
null
null
import logging import os logging.basicConfig(level=logging.INFO) from app import app, opc_ua_machine try: if os.environ.get("WERKZEUG_RUN_MAIN") == "true": opc_ua_machine.start(virtual=True) app.run(host='localhost', port=5000, debug=True, ssl_context = ('cert.pem', 'privkey.pem')) #added self signed certificate and private key alongwith https finally: opc_ua_machine.stop()
26.733333
158
0.735661
4a1ca38133907a6f6c1a928d0605fdb61c629fe1
5,448
py
Python
LocalMercurial/mercurial/sslutil.py
l2dy/machg
45695dced17431c914c69528f898d398dd695efe
[ "BSD-3-Clause" ]
null
null
null
LocalMercurial/mercurial/sslutil.py
l2dy/machg
45695dced17431c914c69528f898d398dd695efe
[ "BSD-3-Clause" ]
null
null
null
LocalMercurial/mercurial/sslutil.py
l2dy/machg
45695dced17431c914c69528f898d398dd695efe
[ "BSD-3-Clause" ]
1
2021-12-16T23:31:37.000Z
2021-12-16T23:31:37.000Z
# sslutil.py - SSL handling for mercurial # # Copyright 2005, 2006, 2007, 2008 Matt Mackall <mpm@selenic.com> # Copyright 2006, 2007 Alexis S. L. Carvalho <alexis@cecm.usp.br> # Copyright 2006 Vadim Gelfer <vadim.gelfer@gmail.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. import os from mercurial import util from mercurial.i18n import _ try: # avoid using deprecated/broken FakeSocket in python 2.6 import ssl ssl_wrap_socket = ssl.wrap_socket CERT_REQUIRED = ssl.CERT_REQUIRED except ImportError: CERT_REQUIRED = 2 import socket, httplib def ssl_wrap_socket(sock, key_file, cert_file, cert_reqs=CERT_REQUIRED, ca_certs=None): if not util.safehasattr(socket, 'ssl'): raise util.Abort(_('Python SSL support not found')) if ca_certs: raise util.Abort(_( 'certificate checking requires Python 2.6')) ssl = socket.ssl(sock, key_file, cert_file) return httplib.FakeSocket(sock, ssl) def _verifycert(cert, hostname): '''Verify that cert (in socket.getpeercert() format) matches hostname. CRLs is not handled. Returns error message if any problems are found and None on success. ''' if not cert: return _('no certificate received') dnsname = hostname.lower() def matchdnsname(certname): return (certname == dnsname or '.' in dnsname and certname == '*.' + dnsname.split('.', 1)[1]) san = cert.get('subjectAltName', []) if san: certnames = [value.lower() for key, value in san if key == 'DNS'] for name in certnames: if matchdnsname(name): return None if certnames: return _('certificate is for %s') % ', '.join(certnames) # subject is only checked when subjectAltName is empty for s in cert.get('subject', []): key, value = s[0] if key == 'commonName': try: # 'subject' entries are unicode certname = value.lower().encode('ascii') except UnicodeEncodeError: return _('IDN in certificate not supported') if matchdnsname(certname): return None return _('certificate is for %s') % certname return _('no commonName or subjectAltName found in certificate') # CERT_REQUIRED means fetch the cert from the server all the time AND # validate it against the CA store provided in web.cacerts. # # We COMPLETELY ignore CERT_REQUIRED on Python <= 2.5, as it's totally # busted on those versions. def sslkwargs(ui, host): cacerts = ui.config('web', 'cacerts') hostfingerprint = ui.config('hostfingerprints', host) if cacerts and not hostfingerprint: cacerts = util.expandpath(cacerts) if not os.path.exists(cacerts): raise util.Abort(_('could not find web.cacerts: %s') % cacerts) return {'ca_certs': cacerts, 'cert_reqs': CERT_REQUIRED, } return {} class validator(object): def __init__(self, ui, host): self.ui = ui self.host = host def __call__(self, sock): host = self.host cacerts = self.ui.config('web', 'cacerts') hostfingerprint = self.ui.config('hostfingerprints', host) if cacerts and not hostfingerprint: msg = _verifycert(sock.getpeercert(), host) if msg: raise util.Abort(_('%s certificate error: %s ' '(use --insecure to connect ' 'insecurely)') % (host, msg)) self.ui.debug('%s certificate successfully verified\n' % host) else: if getattr(sock, 'getpeercert', False): peercert = sock.getpeercert(True) peerfingerprint = util.sha1(peercert).hexdigest() nicefingerprint = ":".join([peerfingerprint[x:x + 2] for x in xrange(0, len(peerfingerprint), 2)]) if hostfingerprint: if peerfingerprint.lower() != \ hostfingerprint.replace(':', '').lower(): raise util.Abort(_('invalid certificate for %s ' 'with fingerprint %s') % (host, nicefingerprint)) self.ui.debug('%s certificate matched fingerprint %s\n' % (host, nicefingerprint)) else: strict = self.ui.config('web', 'strictCAverification') != 'off' if strict: self.ui.warn(_('warning: %s certificate ' 'with fingerprint %s not verified ' '(check hostfingerprints or web.cacerts ' 'config setting)\n') % (host, nicefingerprint)) else: # python 2.5 ? if hostfingerprint: raise util.Abort(_("host fingerprint for %s can't be " "verified (Python too old)") % host) self.ui.warn(_("warning: certificate for %s can't be " "verified (Python too old)\n") % host)
40.962406
83
0.557819
4a1ca4c963b621cc70abb1ea57bdf4b809ab0b5d
15,055
py
Python
bundle_conda.py
davidpross/napari
11f70f559159632c2af27697046b3d75a529f452
[ "BSD-3-Clause" ]
1
2021-12-14T14:07:40.000Z
2021-12-14T14:07:40.000Z
bundle_conda.py
maweigert/napari
48cdf4d1c4bcf6f76603e90b1c0c7498e2aba6c0
[ "BSD-3-Clause" ]
null
null
null
bundle_conda.py
maweigert/napari
48cdf4d1c4bcf6f76603e90b1c0c7498e2aba6c0
[ "BSD-3-Clause" ]
1
2019-01-12T21:04:14.000Z
2019-01-12T21:04:14.000Z
""" Create napari installers using `constructor`. It creates a `construct.yaml` file with the needed settings and then runs `constructor`. For more information, see Documentation> Developers> Packaging. Some environment variables we use: CONSTRUCTOR_APP_NAME: in case you want to build a non-default distribution that is not named `napari` CONSTRUCTOR_INSTALLER_DEFAULT_PATH_STEM: The last component of the default installation path. Defaults to {CONSTRUCTOR_APP_NAME}-app-{CONSTRUCTOR_INSTALLER_VERSION} CONSTRUCTOR_INSTALLER_VERSION: Version for the installer, separate from the app being installed. This has an effect on the default install locations! CONSTRUCTOR_TARGET_PLATFORM: conda-style platform (as in `platform` in `conda info -a` output) CONSTRUCTOR_USE_LOCAL: whether to use the local channel (populated by `conda-build` actions) CONSTRUCTOR_CONDA_EXE: when the target platform is not the same as the host, constructor needs a path to a conda-standalone (or micromamba) executable for that platform. needs to be provided in this env var in that case! CONSTRUCTOR_SIGNING_IDENTITY: Apple ID Installer Certificate identity (common name) that should be use to productsign the resulting PKG (macOS only) CONSTRUCTOR_NOTARIZATION_IDENTITY: Apple ID Developer Certificate identity (common name) that should be use to codesign some binaries bundled in the pkg (macOS only) CONSTRUCTOR_SIGNING_CERTIFICATE: Path to PFX certificate to sign the EXE installer on Windows CONSTRUCTOR_PFX_CERTIFICATE_PASSWORD: Password to unlock the PFX certificate. This is not used here but it might be needed by constructor. """ import json import os import platform import re import subprocess import sys import zipfile from argparse import ArgumentParser from distutils.spawn import find_executable from pathlib import Path from tempfile import NamedTemporaryFile from textwrap import dedent from ruamel import yaml APP = os.environ.get("CONSTRUCTOR_APP_NAME", "napari") # bump this when something in the installer infrastructure changes # note that this will affect the default installation path across platforms! INSTALLER_VERSION = os.environ.get("CONSTRUCTOR_INSTALLER_VERSION", "0.1") INSTALLER_DEFAULT_PATH_STEM = os.environ.get( "CONSTRUCTOR_INSTALLER_DEFAULT_PATH_STEM", f"{APP}-app-{INSTALLER_VERSION}" ) HERE = os.path.abspath(os.path.dirname(__file__)) WINDOWS = os.name == 'nt' MACOS = sys.platform == 'darwin' LINUX = sys.platform.startswith("linux") if os.environ.get("CONSTRUCTOR_TARGET_PLATFORM") == "osx-arm64": ARCH = "arm64" else: ARCH = (platform.machine() or "generic").lower().replace("amd64", "x86_64") if WINDOWS: EXT, OS = 'exe', 'Windows' elif LINUX: EXT, OS = 'sh', 'Linux' elif MACOS: EXT, OS = 'pkg', 'macOS' else: raise RuntimeError(f"Unrecognized OS: {sys.platform}") def _version(): with open(os.path.join(HERE, "napari", "_version.py")) as f: match = re.search(r'version\s?=\s?\'([^\']+)', f.read()) if match: return match.groups()[0].split('+')[0] OUTPUT_FILENAME = f"{APP}-{_version()}-{OS}-{ARCH}.{EXT}" clean_these_files = [] def _use_local(): """ Detect whether we need to build Napari locally (dev snapshots). This env var is set in the GHA workflow. """ return os.environ.get("CONSTRUCTOR_USE_LOCAL") def _generate_background_images(installer_type, outpath="resources"): if installer_type == "sh": # shell installers are text-based, no graphics return from PIL import Image import napari logo_path = Path(napari.__file__).parent / "resources" / "logo.png" logo = Image.open(logo_path, "r") global clean_these_files if installer_type in ("exe", "all"): sidebar = Image.new("RGBA", (164, 314), (0, 0, 0, 0)) sidebar.paste(logo.resize((101, 101)), (32, 180)) output = Path(outpath, "napari_164x314.png") sidebar.save(output, format="png") clean_these_files.append(output) banner = Image.new("RGBA", (150, 57), (0, 0, 0, 0)) banner.paste(logo.resize((44, 44)), (8, 6)) output = Path(outpath, "napari_150x57.png") banner.save(output, format="png") clean_these_files.append(output) if installer_type in ("pkg", "all"): background = Image.new("RGBA", (1227, 600), (0, 0, 0, 0)) background.paste(logo.resize((148, 148)), (95, 418)) output = Path(outpath, "napari_1227x600.png") background.save(output, format="png") clean_these_files.append(output) def _get_condarc(): # we need defaults for tensorflow and others on windows only defaults = "- defaults" if WINDOWS else "" prompt = "[napari]({default_env}) " contents = dedent( f""" channels: #!final - napari - conda-forge {defaults} repodata_fns: #!final - repodata.json auto_update_conda: false #!final channel_priority: strict #!final env_prompt: '{prompt}' #! final """ ) # the undocumented #!final comment is explained here # https://www.anaconda.com/blog/conda-configuration-engine-power-users with NamedTemporaryFile(delete=False, mode="w+") as f: f.write(contents) return f.name def _constructor(version=_version(), extra_specs=None): """ Create a temporary `construct.yaml` input file and run `constructor`. Parameters ---------- version: str Version of `napari` to be built. Defaults to the one detected by `setuptools-scm` and written to `napari/_version.py`. Run `pip install -e .` to generate that file if it can't be found. extra_specs: list of str Additional packages to be included in the installer. A list of conda spec strings (`python`, `python=3`, etc) is expected. """ constructor = find_executable("constructor") if not constructor: raise RuntimeError("Constructor must be installed.") if extra_specs is None: extra_specs = [] # TODO: Temporary while pyside2 is not yet published for arm64 target_platform = os.environ.get("CONSTRUCTOR_TARGET_PLATFORM") ARM64 = target_platform == "osx-arm64" if ARM64: napari = f"napari={version}=*pyqt*" else: napari = f"napari={version}=*pyside*" base_specs = [ f"python={sys.version_info.major}.{sys.version_info.minor}.*", "conda", "mamba", "pip", ] napari_specs = [ napari, f"napari-menu={version}", f"python={sys.version_info.major}.{sys.version_info.minor}.*", "conda", "mamba", "pip", ] + extra_specs channels = ( ["napari/label/nightly"] + (["andfoy"] if ARM64 else []) # TODO: temporary + ["napari/label/bundle_tools", "conda-forge"] ) empty_file = NamedTemporaryFile(delete=False) condarc = _get_condarc() definitions = { "name": APP, "company": "Napari", "reverse_domain_identifier": "org.napari", "version": version, "channels": channels, "conda_default_channels": ["conda-forge"], "installer_filename": OUTPUT_FILENAME, "initialize_by_default": False, "license_file": os.path.join(HERE, "resources", "bundle_license.rtf"), "specs": base_specs, "extra_envs": {f"napari-{version}": {"specs": napari_specs}}, "menu_packages": [ "napari-menu", ], "extra_files": { "resources/bundle_readme.md": "README.txt", empty_file.name: ".napari_is_bundled_constructor", condarc: ".condarc", }, } if _use_local(): definitions["channels"].insert(0, "local") if LINUX: definitions["default_prefix"] = os.path.join( "$HOME", ".local", INSTALLER_DEFAULT_PATH_STEM ) definitions["license_file"] = os.path.join( HERE, "resources", "bundle_license.txt" ) definitions["installer_type"] = "sh" if MACOS: # These two options control the default install location: # ~/<default_location_pkg>/<pkg_name> definitions["pkg_name"] = INSTALLER_DEFAULT_PATH_STEM definitions["default_location_pkg"] = "Library" definitions["installer_type"] = "pkg" definitions["welcome_image"] = os.path.join( HERE, "resources", "napari_1227x600.png" ) welcome_text_tmpl = ( Path(HERE) / "resources" / "osx_pkg_welcome.rtf.tmpl" ).read_text() welcome_file = Path(HERE) / "resources" / "osx_pkg_welcome.rtf" clean_these_files.append(welcome_file) welcome_file.write_text( welcome_text_tmpl.replace("__VERSION__", version) ) definitions["welcome_file"] = str(welcome_file) definitions["conclusion_text"] = "" definitions["readme_text"] = "" signing_identity = os.environ.get("CONSTRUCTOR_SIGNING_IDENTITY") if signing_identity: definitions["signing_identity_name"] = signing_identity notarization_identity = os.environ.get( "CONSTRUCTOR_NOTARIZATION_IDENTITY" ) if notarization_identity: definitions["notarization_identity_name"] = notarization_identity if WINDOWS: definitions["conda_default_channels"].append("defaults") definitions.update( { "welcome_image": os.path.join( HERE, "resources", "napari_164x314.png" ), "header_image": os.path.join( HERE, "resources", "napari_150x57.png" ), "icon_image": os.path.join( HERE, "napari", "resources", "icon.ico" ), "register_python_default": False, "default_prefix": os.path.join( '%LOCALAPPDATA%', INSTALLER_DEFAULT_PATH_STEM ), "default_prefix_domain_user": os.path.join( '%LOCALAPPDATA%', INSTALLER_DEFAULT_PATH_STEM ), "default_prefix_all_users": os.path.join( '%ALLUSERSPROFILE%', INSTALLER_DEFAULT_PATH_STEM ), "check_path_length": False, "installer_type": "exe", } ) signing_certificate = os.environ.get("CONSTRUCTOR_SIGNING_CERTIFICATE") if signing_certificate: definitions["signing_certificate"] = signing_certificate if definitions.get("welcome_image") or definitions.get("header_image"): _generate_background_images( definitions.get("installer_type", "all"), outpath="resources" ) clean_these_files.append("construct.yaml") clean_these_files.append(empty_file.name) clean_these_files.append(condarc) # TODO: temporarily patching password - remove block when the secret has been fixed # (I think it contains an ending newline or something like that, copypaste artifact?) pfx_password = os.environ.get("CONSTRUCTOR_PFX_CERTIFICATE_PASSWORD") if pfx_password: os.environ[ "CONSTRUCTOR_PFX_CERTIFICATE_PASSWORD" ] = pfx_password.strip() with open("construct.yaml", "w") as fin: yaml.dump(definitions, fin, default_flow_style=False) args = [constructor, "-v", "--debug", "."] conda_exe = os.environ.get("CONSTRUCTOR_CONDA_EXE") if target_platform and conda_exe: args += ["--platform", target_platform, "--conda-exe", conda_exe] env = os.environ.copy() env["CONDA_CHANNEL_PRIORITY"] = "strict" print(f"Calling {args} with these definitions:") print(yaml.dump(definitions, default_flow_style=False)) subprocess.check_call(args, env=env) return OUTPUT_FILENAME def licenses(): try: with open("info.json") as f: info = json.load(f) except FileNotFoundError: print( "!! Use `constructor --debug` to write info.json and get licenses", file=sys.stderr, ) raise zipname = f"licenses.{OS}-{ARCH}.zip" output_zip = zipfile.ZipFile( zipname, mode="w", compression=zipfile.ZIP_DEFLATED ) output_zip.write("info.json") for package_id, license_info in info["_licenses"].items(): package_name = package_id.split("::", 1)[1] for license_type, license_files in license_info.items(): for i, license_file in enumerate(license_files, 1): arcname = ( f"{package_name}.{license_type.replace(' ', '_')}.{i}.txt" ) output_zip.write(license_file, arcname=arcname) output_zip.close() return zipname def main(extra_specs=None): try: _constructor(extra_specs=extra_specs) finally: for path in clean_these_files: try: os.unlink(path) except OSError: print("! Could not remove", path) assert Path(OUTPUT_FILENAME).exists() return OUTPUT_FILENAME def cli(argv=None): p = ArgumentParser(argv) p.add_argument( "--version", action="store_true", help="Print local napari version and exit.", ) p.add_argument( "--installer-version", action="store_true", help="Print installer version and exit.", ) p.add_argument( "--arch", action="store_true", help="Print machine architecture tag and exit.", ) p.add_argument( "--ext", action="store_true", help="Print installer extension for this platform and exit.", ) p.add_argument( "--artifact-name", action="store_true", help="Print computed artifact name and exit.", ) p.add_argument( "--extra-specs", nargs="+", help="One or more extra conda specs to add to the installer", ) p.add_argument( "--licenses", action="store_true", help="Post-process licenses AFTER having built the installer. " "This must be run as a separate step.", ) p.add_argument( "--images", action="store_true", help="Generate background images from the logo (test only)", ) return p.parse_args() if __name__ == "__main__": args = cli() if args.version: print(_version()) sys.exit() if args.installer_version: print(INSTALLER_VERSION) sys.exit() if args.arch: print(ARCH) sys.exit() if args.ext: print(EXT) sys.exit() if args.artifact_name: print(OUTPUT_FILENAME) sys.exit() if args.licenses: print(licenses()) sys.exit() if args.images: _generate_background_images() sys.exit() print('created', main(extra_specs=args.extra_specs))
33.455556
89
0.62916
4a1ca4f575298f94c5ac3b87d6385a265953b2c7
887
py
Python
config.py
FelipeSPB/client_weather_api
297a3801c76fed0abc338a4ebab8ddc499957e4a
[ "Apache-2.0" ]
null
null
null
config.py
FelipeSPB/client_weather_api
297a3801c76fed0abc338a4ebab8ddc499957e4a
[ "Apache-2.0" ]
2
2020-06-05T21:41:49.000Z
2021-06-10T21:36:16.000Z
config.py
FelipeSPB/client_weather_api
297a3801c76fed0abc338a4ebab8ddc499957e4a
[ "Apache-2.0" ]
null
null
null
from pathlib import Path import requests def creating_folder(): folder = Path("config/") folder.mkdir(parents=True, exist_ok=True) def creating_command_install_requirements(): Path('config/install.bat').touch() write = Path('./config/install.bat') write.write_text('cd..\npip install -r requirements.txt') def config_token(): Path('./api/models/token.py').touch() token = input('Type your token of API Climatempo in double quotes (ex: "seu_id"): ') write = Path('./api/models/token.py') write.write_text('token = {}\ntoken=str(token)'.format(token)) def config_run_server(): Path('config/run_server.bat').touch() write = Path('./config/run_server.bat') write.write_text('cd api/\npython app.py') if __name__ == '__main__': creating_folder() creating_command_install_requirements() config_token() config_run_server()
28.612903
88
0.692221
4a1ca656960daf117f5af95379ff799560b6caaa
972
py
Python
models/download.py
alexlee-gk/citysim3d
37206572100e037f211f9cf1f947108765351c3d
[ "MIT" ]
27
2016-11-24T04:42:23.000Z
2021-10-15T01:43:51.000Z
models/download.py
alexlee-gk/citysim3d
37206572100e037f211f9cf1f947108765351c3d
[ "MIT" ]
1
2020-05-02T15:34:25.000Z
2020-05-02T15:34:25.000Z
models/download.py
alexlee-gk/citysim3d
37206572100e037f211f9cf1f947108765351c3d
[ "MIT" ]
8
2017-04-05T12:54:07.000Z
2021-08-03T06:46:40.000Z
#!/usr/bin/env python import os import subprocess import argparse try: from urllib2 import urlopen except ImportError: from urllib.request import urlopen import tarfile assert "CITYSIM3D_DIR" in os.environ parser = argparse.ArgumentParser() parser.add_argument("--rsync", action="store_true") args = parser.parse_args() local_dir = os.path.expandvars("${CITYSIM3D_DIR}") if args.rsync: remote_files = "/var/www/citysim3d/models{,.mf}" subprocess.check_call("rsync -azvu pabbeel@rll.berkeley.edu:%s %s" % (remote_files, local_dir), shell=True) else: print("downloading tar file (this might take a while)") remote_fname = "http://rll.berkeley.edu/citysim3d/models.tar.gz" local_fname = os.path.join(local_dir, "models.tar.gz") urlinfo = urlopen(remote_fname) with open(local_fname, "wb") as fh: fh.write(urlinfo.read()) print("unpacking file") with tarfile.open(local_fname) as tar: tar.extractall(local_dir)
29.454545
111
0.720165
4a1ca6a6d2e56f344ac200e338aa9cf204e711f0
884
py
Python
src/azure-cli/azure/cli/command_modules/marketplaceordering/generated/_client_factory.py
YuanyuanNi/azure-cli
63844964374858bfacd209bfe1b69eb456bd64ca
[ "MIT" ]
3,287
2016-07-26T17:34:33.000Z
2022-03-31T09:52:13.000Z
src/azure-cli/azure/cli/command_modules/marketplaceordering/generated/_client_factory.py
YuanyuanNi/azure-cli
63844964374858bfacd209bfe1b69eb456bd64ca
[ "MIT" ]
19,206
2016-07-26T07:04:42.000Z
2022-03-31T23:57:09.000Z
src/azure-cli/azure/cli/command_modules/marketplaceordering/generated/_client_factory.py
YuanyuanNi/azure-cli
63844964374858bfacd209bfe1b69eb456bd64ca
[ "MIT" ]
2,575
2016-07-26T06:44:40.000Z
2022-03-31T22:56:06.000Z
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- def cf_marketplaceordering_cl(cli_ctx, *_): from azure.cli.core.commands.client_factory import get_mgmt_service_client from azure.mgmt.marketplaceordering import MarketplaceOrderingAgreements return get_mgmt_service_client(cli_ctx, MarketplaceOrderingAgreements) def cf_marketplace_agreement(cli_ctx, *_): return cf_marketplaceordering_cl(cli_ctx).marketplace_agreements
42.095238
78
0.640271
4a1ca6ca8e4b8dd24156c460547b3c02318564f5
6,035
py
Python
arcade/examples/perf_test/stress_test_draw_shapes.py
LiorAvrahami/arcade
fce254a9eb89629de1f99d57a63759a2953184e9
[ "MIT" ]
1
2020-04-04T01:03:24.000Z
2020-04-04T01:03:24.000Z
arcade/examples/perf_test/stress_test_draw_shapes.py
LiorAvrahami/arcade
fce254a9eb89629de1f99d57a63759a2953184e9
[ "MIT" ]
1
2019-08-11T18:47:27.000Z
2019-08-12T03:02:11.000Z
arcade/examples/perf_test/stress_test_draw_shapes.py
LiorAvrahami/arcade
fce254a9eb89629de1f99d57a63759a2953184e9
[ "MIT" ]
null
null
null
""" Moving Sprite Stress Test Simple program to test how fast we can draw sprites that are moving Artwork from http://kenney.nl If Python and Arcade are installed, this example can be run from the command line with: python -m arcade.examples.stress_test_draw_moving """ import random import arcade import os import timeit import time import collections import pyglet # --- Constants --- START_COUNT = 10 STOP_COUNT = 200 SHAPE_INCREMENT = 10 RESULTS_FILE = "stress_test_draw_shapes.csv" SCREEN_WIDTH = 1800 SCREEN_HEIGHT = 1000 SCREEN_TITLE = "Moving Sprite Stress Test" TOP_MARGIN = 40 class FPSCounter: def __init__(self): self.time = time.perf_counter() self.frame_times = collections.deque(maxlen=60) def tick(self): t1 = time.perf_counter() dt = t1 - self.time self.time = t1 self.frame_times.append(dt) def get_fps(self): total_time = sum(self.frame_times) if total_time == 0: return 0 else: return len(self.frame_times) / sum(self.frame_times) class Line: def __init__(self): self.start_x = random.randrange(SCREEN_WIDTH) self.start_y = random.randrange(SCREEN_HEIGHT - TOP_MARGIN) self.end_x = random.randrange(SCREEN_WIDTH) self.end_y = random.randrange(SCREEN_HEIGHT - TOP_MARGIN) def draw(self): arcade.draw_line(self.start_x, self.start_y, self.end_x, self.end_y, arcade.color.WOOD_BROWN, 4) class MyGame(arcade.Window): """ Our custom Window Class""" def __init__(self): """ Initializer """ # Call the parent class initializer super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) # Variables that will hold sprite lists self.shape_list = [] self.processing_time = 0 self.draw_time = 0 self.program_start_time = timeit.default_timer() self.sprite_count_list = [] self.fps_list = [] self.processing_time_list = [] self.drawing_time_list = [] self.last_fps_reading = 0 self.fps = FPSCounter() arcade.set_background_color(arcade.color.AMAZON) # Open file to save timings self.results_file = open(RESULTS_FILE, "w") def add_shapes(self): # Create the coins for i in range(SHAPE_INCREMENT): shape = Line() # Add the coin to the lists self.shape_list.append(shape) def setup(self): """ Set up the game and initialize the variables. """ pass def on_draw(self): """ Draw everything """ # Start timing how long this takes draw_start_time = timeit.default_timer() arcade.start_render() for shape in self.shape_list: shape.draw() # Display info on sprites output = f"Shape count: {len(self.shape_list):,}" arcade.draw_text(output, 20, SCREEN_HEIGHT - 20, arcade.color.BLACK, 16) # Display timings output = f"Processing time: {self.processing_time:.3f}" arcade.draw_text(output, 20, SCREEN_HEIGHT - 40, arcade.color.BLACK, 16) output = f"Drawing time: {self.draw_time:.3f}" arcade.draw_text(output, 20, SCREEN_HEIGHT - 60, arcade.color.BLACK, 16) fps = self.fps.get_fps() output = f"FPS: {fps:3.0f}" arcade.draw_text(output, 20, SCREEN_HEIGHT - 80, arcade.color.BLACK, 16) self.draw_time = timeit.default_timer() - draw_start_time self.fps.tick() def update(self, delta_time): # Start update timer start_time = timeit.default_timer() # self.shape_list.update() # Save the time it took to do this. self.processing_time = timeit.default_timer() - start_time # Total time program has been running total_program_time = int(timeit.default_timer() - self.program_start_time) # Print out stats, or add more sprites if total_program_time > self.last_fps_reading: self.last_fps_reading = total_program_time # It takes the program a while to "warm up", so the first # few seconds our readings will be off. So wait some time # before taking readings if total_program_time > 5: # We want the program to run for a while before taking # timing measurements. We don't want the time it takes # to add new sprites to be part of that measurement. So # make sure we have a clear second of nothing but # running the sprites, and not adding the sprites. if total_program_time % 2 == 1: # Take timings output = f"{total_program_time}, {len(self.shape_list)}, {self.fps.get_fps():.1f}, " \ f"{self.processing_time:.4f}, {self.draw_time:.4f}\n" self.results_file.write(output) print(output, end="") if len(self.shape_list) >= STOP_COUNT: pyglet.app.exit() return self.sprite_count_list.append(len(self.shape_list)) self.fps_list.append(round(self.fps.get_fps(), 1)) self.processing_time_list.append(self.processing_time) self.drawing_time_list.append(self.draw_time) # Now add the coins self.add_shapes() def main(): """ Main method """ window = MyGame() window.setup() arcade.run() if __name__ == "__main__": main()
31.108247
106
0.611599
4a1ca6f79e897db232a0d945dc144bca6ef3b92b
7,037
py
Python
Yachu.py
SeminKim/YachtDiscord
56f30559868c45b754ae37fdcb68de062a7b8a06
[ "MIT" ]
1
2021-01-04T09:15:25.000Z
2021-01-04T09:15:25.000Z
Yachu.py
SeminKim/YachtDiscord
56f30559868c45b754ae37fdcb68de062a7b8a06
[ "MIT" ]
2
2020-07-23T16:16:55.000Z
2020-08-01T06:54:45.000Z
Yachu.py
SeminKim/YachtDiscord
56f30559868c45b754ae37fdcb68de062a7b8a06
[ "MIT" ]
null
null
null
import random import discord class Yachu(): def __init__(self): self.save_log = True # Change to False if you don't want logging self.score = [0] * 15 self.dice = [0] * 5 self.locked = [False] * 5 self.phase = 0 self.isAlive = [True] * 12 self.turn = 0 print("새 야추게임 생성") if self.save_log: with open(f'data/log.txt', 'a') as f: f.write(f'-------------------------NEW YACHU-------------------------\n') return def make_log(self): if self.save_log: with open(f'data/log.txt', 'a') as f: f.write(f'TURN:{self.turn} PHASE:{self.phase} DICE:{self.dice}\n') return def lock(self, num): if not 0 < num < 6: raise ValueError self.locked[num - 1] = True def unlock(self, num): if not 0 < num < 6: raise ValueError self.locked[num - 1] = False def lockAll(self): self.locked = [True] * 5 def unlockAll(self): self.locked = [False] * 5 def isAllLocked(self): return self.locked == [True] * 5 def __setDice__(self, s): self.dice = s def rollDice(self): assert self.phase < 3 self.phase += 1 for i in range(5): if not self.locked[i]: self.dice[i] = random.randint(1, 6) self.make_log() return str(self.dice) def getScoreBoard(self, name=None): def valueFiller(ind): if self.isAlive[ind - 1]: return '0*' else: if ind < 7: return str(self.score[ind - 1]) else: return str(self.score[ind + 1]) if name is None: embed = discord.Embed(title=f"점수판 ({self.turn}/12)", color=0xff0000) else: embed = discord.Embed(title=f"{name}님의 점수판 ({self.turn}/12)", color=0xff0000) embed.add_field(name="1. Aces", value=valueFiller(1), inline=True) embed.add_field(name="2. Deuces", value=valueFiller(2), inline=True) embed.add_field(name="3. Threes", value=valueFiller(3), inline=True) embed.add_field(name="4. Fours", value=valueFiller(4), inline=True) embed.add_field(name="5. Fives", value=valueFiller(5), inline=True) embed.add_field(name="6. Sixes", value=valueFiller(6), inline=True) embed.add_field( name=f'---------------------------------------\nSubtotal: {self.score[6]} Bonus: {self.score[7]}', value="(63점 이상이면 보너스 35점)", inline=False) embed.add_field(name="---------------------------------------", value="특수족보", inline=False) embed.add_field(name="A. Choices", value=valueFiller(7), inline=True) embed.add_field(name="B. Four Cards", value=valueFiller(8), inline=True) embed.add_field(name="C. Full House", value=valueFiller(9), inline=True) embed.add_field(name="D. S. Straight", value=valueFiller(10), inline=True) embed.add_field(name="E. L. Straight", value=valueFiller(11), inline=True) embed.add_field(name="F. Yacht", value=valueFiller(12), inline=True) embed.add_field(name="---------------------------------------\nTotal", value=str(self.score[14]), inline=True) return embed def subtotal(self): return sum(self.score[:6]) def checkBonus(self): if self.subtotal() >= 63: return 35 return 0 def diceSum(self): temp = 0 for die in self.dice: temp += die return temp def isFourCards(self): tempDice = self.dice[:] tempDice.sort() return tempDice[0] == tempDice[1] == tempDice[2] == tempDice[3] or tempDice[1] == tempDice[2] == tempDice[3] == \ tempDice[4] def isFullHouse(self): tempDice = self.dice[:] tempDice.sort() return (tempDice[0] == tempDice[1] == tempDice[2] and tempDice[3] == tempDice[4]) \ or (tempDice[0] == tempDice[1] and tempDice[2] == tempDice[3] == tempDice[4]) def isSmallStraight(self): numcount = [0] * 6 for i in range(6): if i + 1 in self.dice: numcount[i] = 1 if numcount[0] * numcount[1] * numcount[2] * numcount[3] == 1: return True if numcount[1] * numcount[2] * numcount[3] * numcount[4] == 1: return True if numcount[2] * numcount[3] * numcount[4] * numcount[5] == 1: return True return False def isLargeStraight(self): tempDice = self.dice[:] tempDice.sort() if tempDice == [1, 2, 3, 4, 5] or tempDice == [2, 3, 4, 5, 6]: return True return False def setScore(self, ind): if ind < 6: temp = 0 for i in self.dice: if i == ind + 1: temp += i self.score[ind] = temp self.score[6] = self.subtotal() self.score[7] = self.checkBonus() elif ind == 6: self.score[8] = self.diceSum() elif ind == 7: if self.isFourCards(): self.score[9] = self.diceSum() else: self.score[9] = 0 elif ind == 8: if self.isFullHouse(): self.score[10] = self.diceSum() else: self.score[10] = 0 elif ind == 9: if self.isSmallStraight(): self.score[11] = 15 else: self.score[11] = 0 elif ind == 10: if self.isLargeStraight(): self.score[12] = 30 else: self.score[12] = 0 elif ind == 11: if self.dice[0] == self.dice[1] == self.dice[2] == self.dice[3] == self.dice[4]: self.score[13] = 50 else: self.score[13] = 0 else: return self.score[14] = sum(self.score[6:14]) self.phase = 0 self.locked = [False] * 5 self.isAlive[ind] = False self.turn += 1 def isAvailable(self, ind): try: if not 0 <= ind <= 11: return False return self.isAlive[ind] except: return False def getTurn(self): return self.turn def getPhase(self): return self.phase def getTotal(self): return self.score[14] # demo for console ''' def main(): yachu = Yachu() for i in range(12): while yachu.phase < 3: print(yachu.getScoreBoard()) print(yachu.rollDice()) if yachu.phase == 3: ind = int(input('저장할 칸 선택 : ')) else: ind = int(input('저장할 칸 선택, 0은 다시굴림 : ')) if ind == 0: for i in range(5): yachu.unlockAll() temp = input('고정할 주사위 선택 - ex) 1 2 4 : ').split() for i in temp: yachu.lock(int(i)) else: yachu.setScore(ind) break main() '''
31.275556
123
0.500355
4a1ca72fb30db0cd94eb6ef5562f3b2013902a44
10,325
py
Python
test/tool_shed/functional/test_1430_repair_installed_repository.py
bopopescu/phyG
023f505b705ab953f502cbc55e90612047867583
[ "CC-BY-3.0" ]
null
null
null
test/tool_shed/functional/test_1430_repair_installed_repository.py
bopopescu/phyG
023f505b705ab953f502cbc55e90612047867583
[ "CC-BY-3.0" ]
null
null
null
test/tool_shed/functional/test_1430_repair_installed_repository.py
bopopescu/phyG
023f505b705ab953f502cbc55e90612047867583
[ "CC-BY-3.0" ]
1
2020-07-25T21:03:18.000Z
2020-07-25T21:03:18.000Z
from tool_shed.base.twilltestcase import ShedTwillTestCase, common, os import tool_shed.base.test_db_util as test_db_util import logging log = logging.getLogger( __name__ ) category_name = 'Test 1430 Repair installed repository' category_description = 'Test script 1430 for repairing an installed repository.' filter_repository_name = 'filter_1430' column_repository_name = 'column_1430' filter_repository_description = "Galaxy's filter tool for test 1430" column_repository_description = 'Add a value as a new column' filter_repository_long_description = '%s: %s' % ( filter_repository_name, filter_repository_description ) column_repository_long_description = '%s: %s' % ( column_repository_name, column_repository_description ) ''' In the Tool Shed: 1) Create and populate the filter_1430 repository 2) Create and populate the column_1430 repository 3) Upload a repository_dependencies.xml file to the column_1430 repository that creates a repository dependency on the filter_1430 repository. In Galaxy: 1) Install the column_1430 repository, making sure to check the checkbox to Handle repository dependencies so that the filter repository is also installed. Make sure to install the repositories in a specified section of the tool panel. 2) Uninstall the filter_1430 repository. 3) Repair the column_1430 repository. 4) Make sure the filter_1430 repository is reinstalled and the tool is loaded into the tool panel in the same section specified in step 1. ''' class TestRepairRepository( ShedTwillTestCase ): '''Test repairing an installed repository.''' def test_0000_initiate_users_and_category( self ): """Create necessary user accounts and login as an admin user.""" self.logout() self.login( email=common.admin_email, username=common.admin_username ) admin_user = test_db_util.get_user( common.admin_email ) assert admin_user is not None, 'Problem retrieving user with email %s from the database' % common.admin_email admin_user_private_role = test_db_util.get_private_role( admin_user ) self.create_category( name=category_name, description=category_description ) self.logout() self.login( email=common.test_user_2_email, username=common.test_user_2_name ) test_user_2 = test_db_util.get_user( common.test_user_2_email ) assert test_user_2 is not None, 'Problem retrieving user with email %s from the database' % common.test_user_2_email test_user_2_private_role = test_db_util.get_private_role( test_user_2 ) self.logout() self.login( email=common.test_user_1_email, username=common.test_user_1_name ) test_user_1 = test_db_util.get_user( common.test_user_1_email ) assert test_user_1 is not None, 'Problem retrieving user with email %s from the database' % common.test_user_1_email test_user_1_private_role = test_db_util.get_private_role( test_user_1 ) def test_0005_create_filter_repository( self ): '''Create and populate the filter_1430 repository.''' ''' This is step 1 - Create and populate the filter_1430 repository. This repository will be depended on by the column_1430 repository. ''' category = test_db_util.get_category_by_name( category_name ) repository = self.get_or_create_repository( name=filter_repository_name, description=filter_repository_description, long_description=filter_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=[] ) self.upload_file( repository, filename='filtering/filtering_1.1.0.tar', filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message='Populate filter_1430 with version 1.1.0.', strings_displayed=[], strings_not_displayed=[] ) def test_0010_create_column_repository( self ): '''Create and populate the column_1430 repository.''' ''' This is step 2 - Create and populate the column_1430 repository. This repository will depend on the filter_1430 repository. ''' category = test_db_util.get_category_by_name( category_name ) repository = self.get_or_create_repository( name=column_repository_name, description=column_repository_description, long_description=column_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=[] ) self.upload_file( repository, filename='column_maker/column_maker.tar', filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message='Populate column_1430 with tool definitions.', strings_displayed=[], strings_not_displayed=[] ) def test_0015_create_repository_dependency( self ): '''Create a dependency on filter_1430.''' ''' This is step 3 - Upload a repository_dependencies.xml file to the column_1430 repository that creates a repository dependency on the filter_1430 repository. ''' column_repository = test_db_util.get_repository_by_name_and_owner( 'column_1430', common.test_user_1_name ) filter_repository = test_db_util.get_repository_by_name_and_owner( 'filter_1430', common.test_user_1_name ) tool_shed_url = self.url name = filter_repository.name owner = filter_repository.user.username changeset_revision = self.get_repository_tip( filter_repository ) repository_dependency_tuple = ( tool_shed_url, name, owner, changeset_revision ) filepath = self.generate_temp_path( '1430_repository_dependency' ) self.create_repository_dependency( column_repository, [ repository_dependency_tuple ], filepath=filepath ) def test_0020_install_column_repository( self ): '''Install the column_1430 repository into Galaxy.''' ''' This is step 1 (galaxy side) - Install the column_1430 repository, making sure to check the checkbox to handle repository dependencies so that the filter_1430 repository is also installed. Make sure to install the repositories in a specified section of the tool panel. ''' self.galaxy_logout() self.galaxy_login( email=common.admin_email, username=common.admin_username ) post_submit_strings_displayed = [ 'column_1430', 'filter_1430' ] self.install_repository( 'column_1430', common.test_user_1_name, category_name, new_tool_panel_section='repair', post_submit_strings_displayed=post_submit_strings_displayed, install_tool_dependencies=False, install_repository_dependencies=True ) def test_0025_uninstall_filter_repository( self ): '''Uninstall the filter_1430 repository from Galaxy.''' ''' This is step 2 - Uninstall the filter_1430 repository. ''' installed_repository = test_db_util.get_installed_repository_by_name_owner( 'filter_1430', common.test_user_1_name ) self.uninstall_repository( installed_repository, remove_from_disk=True ) strings_not_displayed = [ 'filter_1430', "Galaxy's filter tool for test 1430", installed_repository.installed_changeset_revision ] self.display_galaxy_browse_repositories_page( strings_not_displayed=strings_not_displayed ) def test_0030_repair_column_repository( self ): '''Repair the column_1430 repository.''' ''' This is step 3 - Repair the column_1430 repository. ''' column_repository = test_db_util.get_installed_repository_by_name_owner( 'column_1430', common.test_user_1_name ) self.repair_installed_repository( column_repository ) def test_0035_verify_tool_panel_section( self ): '''Check the tool panel section after repairing.''' ''' This is step 4 - Make sure the filter_1430 repository is reinstalled and the tool is loaded into the tool panel in the same section specified in step 1. ''' filter_repository = test_db_util.get_installed_repository_by_name_owner( 'filter_1430', common.test_user_1_name ) strings_displayed = [ 'filter_1430', "Galaxy's filter tool for test 1430", filter_repository.installed_changeset_revision ] self.display_galaxy_browse_repositories_page( strings_displayed=strings_displayed ) # Uninstall the filter repository again, so that the tool panel section metadata gets populated. self.uninstall_repository( filter_repository, remove_from_disk=True ) test_db_util.ga_refresh( filter_repository ) tool_panel_section_metadata = filter_repository.metadata[ 'tool_panel_section' ] for tool_id in tool_panel_section_metadata: for panel_section in tool_panel_section_metadata[ tool_id ]: assert panel_section[ 'name' ] == 'repair', 'Tool %s in tool panel section %s after repair, expected %s.' % \ ( tool_id, panel_section[ 'name' ], 'repair' )
57.044199
142
0.656659
4a1ca8842e2993f48cb70c8b03b37f181133c991
2,164
py
Python
SPY-games/code.py
Ruchita102/ga-learner-dsmp-repo
741b96019b2aaf730efd3b7d1b17965b4da5e743
[ "MIT" ]
null
null
null
SPY-games/code.py
Ruchita102/ga-learner-dsmp-repo
741b96019b2aaf730efd3b7d1b17965b4da5e743
[ "MIT" ]
null
null
null
SPY-games/code.py
Ruchita102/ga-learner-dsmp-repo
741b96019b2aaf730efd3b7d1b17965b4da5e743
[ "MIT" ]
null
null
null
# -------------- def read_file(path): file=open(path,'r') sentence=file.readline() file.close() return sentence sample_message=read_file(file_path) print(sample_message) # -------------- #Code starts here message_1=read_file(file_path_1) message_2=read_file(file_path_2) print(message_1,message_2) def fuse_msg(message_a,message_b): quotient=int(message_b)//int(message_a) return str(quotient) secret_msg_1=fuse_msg(message_1,message_2) print(secret_msg_1) # -------------- message_3=read_file(file_path_3) print(message_3) def substitute_msg(message_c): if message_c== "red": sub='Army General' return sub elif message_c== "Green": sub='Data Scientist' return sub elif message_c== "Blue": sub='Marine Biologist' return sub secret_msg_2=substitute_msg(message_3) print(secret_msg_2) # -------------- # File path for message 4 and message 5 file_path_4 file_path_5 #Code starts here message_4=read_file(file_path_4 ) message_5=read_file(file_path_5 ) print(message_4,message_5) def compare_msg(message_d ,message_e): a_list=message_d.split() b_list=message_e.split() c_list=(x for x in a_list if x not in b_list) final_msg=" ".join(c_list) return final_msg secret_msg_3=compare_msg(message_4,message_5) print(secret_msg_3) # -------------- #Code starts here message_6=read_file(file_path_6) print(message_6) def extract_msg(message_f): a_list=message_f.split() even_word=lambda x:len(x)%2==0 b_list=list(filter(even_word,a_list)) final_msg=" ".join(b_list) return final_msg secret_msg_4=extract_msg(message_6) print(secret_msg_4) # -------------- #Secret message parts in the correct order message_parts=[secret_msg_3, secret_msg_1, secret_msg_4, secret_msg_2] final_path= user_data_dir + '/secret_message.txt' #Code starts here secret_msg=" ".join(message_parts) print(secret_msg) def write_file(secret_msg,path): f=open(path,"a+") f.write(secret_msg) f.close() write_file(secret_msg,final_path)
21.64
71
0.67329
4a1ca8847fb8d1c8c952447b9329ef53703253a0
12,762
py
Python
fHDHR_web/api/tuners.py
alexmerm/fHDHR
586ffe5540a69da1430bec3dbbdcc8e86232fd03
[ "WTFPL" ]
null
null
null
fHDHR_web/api/tuners.py
alexmerm/fHDHR
586ffe5540a69da1430bec3dbbdcc8e86232fd03
[ "WTFPL" ]
null
null
null
fHDHR_web/api/tuners.py
alexmerm/fHDHR
586ffe5540a69da1430bec3dbbdcc8e86232fd03
[ "WTFPL" ]
null
null
null
from flask import Response, request, redirect, abort, stream_with_context, session import urllib.parse import json from fHDHR.exceptions import TunerError class Tuners(): endpoints = ["/api/tuners"] endpoint_name = "api_tuners" endpoint_methods = ["GET", "POST"] endpoint_default_parameters = { "method": "status" } def __init__(self, fhdhr): self.fhdhr = fhdhr def __call__(self, *args): return self.get(*args) def get(self, *args): base_url = request.url_root[:-1] client_address = request.remote_addr accessed_url = request.args.get('accessed', default=request.url, type=str) method = request.args.get('method', default="stream", type=str) tuner_number = request.args.get('tuner', default=None, type=str) redirect_url = request.args.get('redirect', default=None, type=str) origin_methods = self.fhdhr.origins.valid_origins origin = request.args.get('origin', default=None, type=str) if origin and origin not in origin_methods: response = Response("Not Found", status=404) response.headers["X-fHDHR-Error"] = "801 - Unknown Origin" self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) if method == "stream": channel_number = request.args.get('channel', None, type=str) if not channel_number: response = Response("Not Found", status=404) response.headers["X-fHDHR-Error"] = "801 - Missing Channel" self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) if origin: if str(channel_number) in [str(x) for x in self.fhdhr.device.channels.get_channel_list("number", origin)]: chan_obj = self.fhdhr.device.channels.get_channel_obj("number", channel_number, origin) if not chan_obj: response = Response("Not Found", status=404) response.headers["X-fHDHR-Error"] = "801 - Unknown Channel" self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) elif str(channel_number) in [str(x) for x in self.fhdhr.device.channels.get_channel_list("id", origin)]: chan_obj = self.fhdhr.device.channels.get_channel_obj("id", channel_number, origin) if not chan_obj: response = Response("Not Found", status=404) response.headers["X-fHDHR-Error"] = "801 - Unknown Channel" self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) else: response = Response("Not Found", status=404) response.headers["X-fHDHR-Error"] = "801 - Unknown Channel" self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) else: if str(channel_number) in [str(x) for x in self.fhdhr.device.channels.get_channel_list("id")]: chan_obj = self.fhdhr.device.channels.get_channel_obj("id", channel_number) if not chan_obj: response = Response("Not Found", status=404) response.headers["X-fHDHR-Error"] = "801 - Unknown Channel" self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) else: response = Response("Not Found", status=404) response.headers["X-fHDHR-Error"] = "801 - Unknown Channel" self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) if not chan_obj.dict["enabled"]: response = Response("Service Unavailable", status=503) response.headers["X-fHDHR-Error"] = str("806 - Tune Failed: Channel Disabled") self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) origin = chan_obj.origin channel_number = chan_obj.number channel_name = chan_obj.name channel_callsign = chan_obj.callsign self.fhdhr.logger.info("Client has requested stream for %s channel %s %s %s." % (origin, channel_number, channel_name, channel_callsign)) stream_method = request.args.get('stream_method', default=self.fhdhr.origins.origins_dict[origin].stream_method, type=str) if stream_method not in self.fhdhr.device.tuners.streaming_methods: response = Response("Service Unavailable", status=503) response.headers["X-fHDHR-Error"] = str("806 - Tune Failed: Invalid Stream Method") self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) duration = request.args.get('duration', default=0, type=int) transcode_quality = request.args.get('transcode', default=None, type=str) valid_transcode_types = [None, "heavy", "mobile", "internet720", "internet480", "internet360", "internet240"] if transcode_quality not in valid_transcode_types: response = Response("Service Unavailable", status=503) response.headers["X-fHDHR-Error"] = "802 - Unknown Transcode Profile" self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) stream_args = { "channel": channel_number, "channel_name": channel_name, "channel_callsign": channel_callsign, "origin": origin, "method": stream_method, "duration": duration, "origin_quality": self.fhdhr.config.dict["streaming"]["origin_quality"], "transcode_quality": transcode_quality or self.fhdhr.config.dict["streaming"]["transcode_quality"], "accessed": accessed_url, "base_url": base_url, "client": client_address, "client_id": session["session_id"] } self.fhdhr.logger.info("Selected Stream Parameters: method=%s duration=%s origin_quality=%s transcode_quality=%s." % (stream_method, duration, stream_args["origin_quality"], stream_args["transcode_quality"])) if stream_method == "passthrough": try: stream_args = self.fhdhr.device.tuners.get_stream_info(stream_args) except TunerError as e: self.fhdhr.logger.info("A %s stream request for %s channel %s was rejected due to %s" % (origin, stream_args["method"], str(stream_args["channel"]), str(e))) response = Response("Service Unavailable", status=503) response.headers["X-fHDHR-Error"] = str(e) self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) self.fhdhr.logger.info("Passthrough method selected, no tuner will be used. Redirecting Client to %s" % stream_args["stream_info"]["url"]) return redirect(stream_args["stream_info"]["url"]) self.fhdhr.logger.info("Attempting to Select an available tuner for this stream.") try: if not tuner_number: tunernum = self.fhdhr.device.tuners.first_available(origin, channel_number) else: tunernum = self.fhdhr.device.tuners.tuner_grab(tuner_number, origin, channel_number) except TunerError as e: self.fhdhr.logger.info("A %s stream request for channel %s was rejected due to %s" % (stream_args["method"], str(stream_args["channel"]), str(e))) response = Response("Service Unavailable", status=503) response.headers["X-fHDHR-Error"] = str(e) self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) abort(response) tuner = self.fhdhr.device.tuners.tuners[origin][str(tunernum)] self.fhdhr.logger.info("%s Tuner #%s to be used for stream." % (origin, tunernum)) try: stream_args = self.fhdhr.device.tuners.get_stream_info(stream_args) except TunerError as e: self.fhdhr.logger.info("A %s stream request for %s channel %s was rejected due to %s" % (origin, stream_args["method"], str(stream_args["channel"]), str(e))) response = Response("Service Unavailable", status=503) response.headers["X-fHDHR-Error"] = str(e) self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) tuner.close() abort(response) self.fhdhr.logger.info("Preparing Stream...") tuner.set_status(stream_args) session["tuner_used"] = tunernum try: tuner.setup_stream(stream_args, tuner) except TunerError as e: response = Response("Service Unavailable", status=503) response.headers["X-fHDHR-Error"] = str(e) self.fhdhr.logger.error(response.headers["X-fHDHR-Error"]) tuner.close() abort(response) self.fhdhr.logger.info("Tuning Stream...") return Response(stream_with_context(tuner.stream.get()), mimetype=stream_args["content_type"]) elif method == "close": if not origin: return "Missing Origin" if not tuner_number or str(tuner_number) not in list(self.fhdhr.device.tuners.tuners[origin].keys()): return "%s Invalid tuner" % str(tuner_number) session["tuner_used"] = tuner_number tuner = self.fhdhr.device.tuners.tuners[origin][str(tuner_number)] tuner.close() elif method == "scan": if not origin: for origin in list(self.fhdhr.device.tuners.tuners.keys()): if not tuner_number: tunernum = self.fhdhr.device.tuners.first_available(origin, None) else: tunernum = self.fhdhr.device.tuners.tuner_grab(tuner_number, origin, None) tuner = self.fhdhr.device.tuners.tuners[origin][str(tunernum)] tuner.channel_scan(origin=origin, grabbed=False) else: if not tuner_number: tunernum = self.fhdhr.device.tuners.first_available(origin, None) else: tunernum = self.fhdhr.device.tuners.tuner_grab(tuner_number, origin, None) tuner = self.fhdhr.device.tuners.tuners[origin][str(tunernum)] tuner.channel_scan(origin=origin, grabbed=True) elif method == "status": if not origin: if not tuner_number: tuner_status = self.fhdhr.device.tuners.status() else: tuner_status = ["Invalid Tuner %s" % tuner_number] else: if not tuner_number: tuner_status = self.fhdhr.device.tuners.status(origin) elif str(tuner_number) in list(self.fhdhr.device.tuners.tuners[origin].keys()): tuner_status = self.fhdhr.device.tuners.tuners[origin][str(tuner_number)].get_status() else: tuner_status = ["Invalid Tuner %s" % tuner_number] tuner_status_json = json.dumps(tuner_status, indent=4) return Response(status=200, response=tuner_status_json, mimetype='application/json') else: return "%s Invalid Method" % method if redirect_url: if "?" in redirect_url: return redirect("%s&retmessage=%s" % (redirect_url, urllib.parse.quote("%s Success" % method))) else: return redirect("%s?retmessage=%s" % (redirect_url, urllib.parse.quote("%s Success" % method))) else: return "%s Success" % method
48.158491
154
0.558768
4a1ca9697d104014d8cea3a47f68e33f8be8c14c
4,281
py
Python
baccarat.py
lnbalon/open-casino
2358b12fa2c3c6f17a06c261cf763a2709e4b034
[ "MIT" ]
null
null
null
baccarat.py
lnbalon/open-casino
2358b12fa2c3c6f17a06c261cf763a2709e4b034
[ "MIT" ]
null
null
null
baccarat.py
lnbalon/open-casino
2358b12fa2c3c6f17a06c261cf763a2709e4b034
[ "MIT" ]
null
null
null
import random def shuffle_shoe(n_decks=8): cards = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 'J', 'Q', 'K'] deck = cards * 4 shoe = deck * n_decks random.shuffle(shoe) return shoe def deal_game(shoe): # initialize a list to store cards for player and banker player = [] banker = [] # define a card converter function def card_converter(card): return 10 if card in ['J', 'Q', 'K'] else card # deal the first four cards card1 = shoe.pop() card2 = shoe.pop() card3 = shoe.pop() card4 = shoe.pop() player.append(card_converter(card1)) banker.append(card_converter(card2)) player.append(card_converter(card3)) banker.append(card_converter(card4)) # test for player and banker pairs if card1 == card3: player_pair = 1 else: player_pair = 0 if card2 == card4: banker_pair = 1 else: banker_pair = 0 # calculate the player score player_score = sum(player) % 10 banker_score = sum(banker) % 10 # If either the player or banker is dealt a total of eight or nine, # both the player and banker stand (i.e. a "Natural"). This rule # overrules all others. if player_score >= 8 or banker_score >= 8: result = {'player': sum(player) % 10, 'banker': sum(banker) % 10, 'player_pair': player_pair, 'banker_pair': banker_pair} return result # If player has 6 or 7, he stands. Banker stands # if he also has 6 or 7. elif player_score >= 6 and banker_score >= 6: result = {'player': sum(player) % 10, 'banker': sum(banker) % 10, 'player_pair': player_pair, 'banker_pair': banker_pair} return result # If a player stands, the banker can only draw a hand # with a score of 5 and below. elif player_score >= 6 and banker_score <= 5: banker.append(card_converter(shoe.pop())) # If the player_score is <=5 he draws another card. elif player_score <= 5: player_draw = card_converter(shoe.pop()) player.append(player_draw) # If banker's first 2 hands totals <= 2, draw a card. if banker_score <= 2: banker.append(card_converter(shoe.pop())) # If banker's first two cards totals 3 and if player_draw # is in [1,2,3,4,5,6,7,9,10] banker draws. elif banker_score == 3 and player_draw in [1, 2, 3, 4, 5, 6, 7, 9, 10]: banker.append(card_converter(shoe.pop())) # If banker's first two cards totals 4 and if player_draw # is in [2,3,4,5,6,7] banker draws. elif banker_score == 4 and player_draw in [2, 3, 4, 5, 6, 7]: banker.append(card_converter(shoe.pop())) # If banker's first two cards totals 5 and if player_draw # is in [4,5,6,7] banker draws. elif banker_score == 5 and player_draw in [4, 5, 6, 7]: banker.append(card_converter(shoe.pop())) # If banker's first two cards totals 6 and if player_draw # is in [6,7] banker draws. elif banker_score == 6 and player_draw in [6, 7]: banker.append(card_converter(shoe.pop())) # If banker score is 7 then he stands. elif banker_score == 7: pass result = {'player': sum(player) % 10, 'banker': sum(banker) % 10, 'player_card': player, 'banker_card': banker, 'player_pair': player_pair, 'banker_pair': banker_pair} return result def simulator(number_shoe=10): player_wins = 0 banker_wins = 0 ties = 0 while number_shoe > 0: shoe = shuffle_shoe() while len(shoe) > 10: result = deal_game(shoe) if result['player'] > result['banker']: player_wins += 1 elif result['player'] < result['banker']: banker_wins += 1 else: ties += 1 number_shoe -= 1 total = player_wins + banker_wins + ties return player_wins / total, banker_wins / total, ties / total if __name__ == '__main__': import sys n_shoes = int(sys.argv[1]) print(simulator(number_shoe=n_shoes))
28.731544
79
0.5758
4a1ca9a2a1daa67ea7772e09aef562b0cc425898
3,017
py
Python
finetuning-transformer-lm/utils.py
take-cheeze/models
3ded8fd062c57f20f6154cac2dd0d998181de755
[ "MIT" ]
112
2018-04-18T07:13:03.000Z
2022-03-11T03:36:34.000Z
finetuning-transformer-lm/utils.py
take-cheeze/models
3ded8fd062c57f20f6154cac2dd0d998181de755
[ "MIT" ]
16
2018-05-11T11:41:08.000Z
2021-04-24T03:50:54.000Z
finetuning-transformer-lm/utils.py
take-cheeze/models
3ded8fd062c57f20f6154cac2dd0d998181de755
[ "MIT" ]
45
2018-04-18T07:13:06.000Z
2021-12-22T03:46:18.000Z
import os import sys import json import time from functools import partial import numpy as np # import tensorflow as tf # from tensorflow.python.framework import function from tqdm import tqdm def encode_dataset(*splits, encoder): encoded_splits = [] for split in splits[0]: fields = [] for field in split: if isinstance(field[0], str): field = encoder.encode(field) fields.append(field) encoded_splits.append(fields) return encoded_splits def stsb_label_encoding(labels, nclass=6): """ Label encoding from Tree LSTM paper (Tai, Socher, Manning) """ Y = np.zeros((len(labels), nclass)).astype(np.float32) for j, y in enumerate(labels): for i in range(nclass): if i == np.floor(y) + 1: Y[j, i] = y - np.floor(y) if i == np.floor(y): Y[j, i] = np.floor(y) - y + 1 return Y def np_softmax(x, t=1): x = x / t x = x - np.max(x, axis=-1, keepdims=True) ex = np.exp(x) return ex / np.sum(ex, axis=-1, keepdims=True) def make_path(f): d = os.path.dirname(f) if d and not os.path.exists(d): os.makedirs(d) return f def _identity_init(shape, dtype, partition_info, scale): n = shape[-1] w = np.eye(n) * scale if len([s for s in shape if s != 1]) == 2: w = w.reshape(shape) return w.astype(np.float32) def identity_init(scale=1.0): return partial(_identity_init, scale=scale) def _np_init(shape, dtype, partition_info, w): return w def np_init(w): return partial(_np_init, w=w) class ResultLogger(object): def __init__(self, path, *args, **kwargs): if 'time' not in kwargs: kwargs['time'] = time.time() self.f_log = open(make_path(path), 'w') self.f_log.write(json.dumps(kwargs) + '\n') def log(self, **kwargs): if 'time' not in kwargs: kwargs['time'] = time.time() self.f_log.write(json.dumps(kwargs) + '\n') self.f_log.flush() def close(self): self.f_log.close() def flatten(outer): return [el for inner in outer for el in inner] def remove_none(l): return [e for e in l if e is not None] def iter_data( *datas, n_batch=128, truncate=False, verbose=False, max_batches=float("inf")): n = len(datas[0]) if truncate: n = (n // n_batch) * n_batch n = min(n, max_batches * n_batch) n_batches = 0 if verbose: f = sys.stderr else: f = open(os.devnull, 'w') for i in tqdm( range( 0, n, n_batch), total=n // n_batch, file=f, ncols=80, leave=False): if n_batches >= max_batches: raise StopIteration if len(datas) == 1: yield datas[0][i:i + n_batch] else: yield (d[i:i + n_batch] for d in datas) n_batches += 1
23.387597
62
0.55585
4a1caa1eb1512628d47b8339ba4ff54366625f09
377
py
Python
other/lambda_variables.py
mlobf/python_advanced
9516f64c5a3540af2574e123eab9b36b5c242ec6
[ "BSD-3-Clause" ]
null
null
null
other/lambda_variables.py
mlobf/python_advanced
9516f64c5a3540af2574e123eab9b36b5c242ec6
[ "BSD-3-Clause" ]
null
null
null
other/lambda_variables.py
mlobf/python_advanced
9516f64c5a3540af2574e123eab9b36b5c242ec6
[ "BSD-3-Clause" ]
null
null
null
""" Do lambda function with a external paramet Do not forget to put params in the end of the lambda function. """ x = 5 # print(lambda x: x + 1) # print(x) # l = (lambda x: x + 1)(5) # print(l) items = [1, 2, 3, 4, 5, 6, 7, 8, 9] lista_compras = [] contador = 0 for _ in items: lista_compras.append(contador) contador += 1 print(lista_compras)
13.962963
57
0.596817
4a1caa3b95d30b7bd192f4ca055f347552c989cf
1,014
py
Python
accounts/admin.py
slk007/SahiGalat.com
786688e07237f3554187b90e01149225efaa1713
[ "MIT" ]
null
null
null
accounts/admin.py
slk007/SahiGalat.com
786688e07237f3554187b90e01149225efaa1713
[ "MIT" ]
null
null
null
accounts/admin.py
slk007/SahiGalat.com
786688e07237f3554187b90e01149225efaa1713
[ "MIT" ]
null
null
null
from django.contrib import admin from django.contrib.auth.models import Group from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from django.core.exceptions import ValidationError from .forms import UserCreationForm, UserChangeForm from .models import MyUser class UserAdmin(BaseUserAdmin): form = UserChangeForm add_form = UserCreationForm list_display = ('username', 'email', 'is_admin') list_filter = ('is_admin',) fieldsets = ( (None, {'fields': ('username', 'email', 'password')}), # ('Personal info', {'fields': ('date_of_birth',)}), ('Permissions', {'fields': ('is_admin', 'is_staff')}), ) add_fieldsets = ( (None, { 'classes': ('wide',), 'fields': ('username', 'email', 'password1', 'password2'), }), ) search_fields = ('username', 'email',) ordering = ('username', 'email',) filter_horizontal = () admin.site.register(MyUser, UserAdmin) admin.site.unregister(Group)
27.405405
70
0.635108
4a1caab33b43a164bb39532a0cde2c94d985fad0
67,536
py
Python
serial_scripts/asn4/test_asn4.py
atsgen/tf-test
2748fcd81491450c75dadc71849d2a1c11061029
[ "Apache-2.0" ]
5
2020-09-29T00:36:57.000Z
2022-02-16T06:51:32.000Z
serial_scripts/asn4/test_asn4.py
atsgen/tf-test
2748fcd81491450c75dadc71849d2a1c11061029
[ "Apache-2.0" ]
27
2019-11-02T02:18:34.000Z
2022-02-24T18:49:08.000Z
serial_scripts/asn4/test_asn4.py
atsgen/tf-test
2748fcd81491450c75dadc71849d2a1c11061029
[ "Apache-2.0" ]
20
2019-11-28T16:02:25.000Z
2022-01-06T05:56:58.000Z
from __future__ import absolute_import from builtins import str from builtins import range import test import uuid import re import copy from .base import ASN4Base from tcutils.control.cn_introspect_utils import * from tcutils.wrappers import preposttest_wrapper from physical_router_fixture import PhysicalRouterFixture from physical_device_fixture import PhysicalDeviceFixture from vn_test import VNFixture from vm_test import VMFixture import control_node from common.bgpaas.base import BaseBGPaaS from serial_scripts.bgpaas.base import LocalASBase from tcutils.util import skip_because,retry cluster_use_local_asn = False class TestAsn4(ASN4Base, BaseBGPaaS, LocalASBase): def setUp(self): super(TestAsn4, self).setUp() def get_neighbor_info(self): bgp_neigh_info = {} for control_ip in self.inputs.bgp_ips: cn_bgp_entry = self.cn_inspect[control_ip].get_cn_bgp_neigh_entry() for entry in range(len(cn_bgp_entry)): peer = cn_bgp_entry[entry] peer_info = { 'peer_ip': peer['peer_address'], 'flap_count': peer['flap_count']} bgp_neigh_info[peer['peer']] = peer_info return bgp_neigh_info def get_4byte_enable(self): gsc_obj = self.connections.vnc_lib.global_system_config_read( fq_name=['default-global-system-config']) return gsc_obj.get_enable_4byte_as() def set_4byte_enable(self, state): if state in ['true','True',True]: state = True else: state = False self.logger.info("SET_4BYTE_ENABLE " + str(state ) ) gsc_obj = self.connections.vnc_lib.global_system_config_read( fq_name=['default-global-system-config']) gsc_obj.set_enable_4byte_as(state) self.connections.vnc_lib.global_system_config_update(gsc_obj) def get_global_asn(self): existing_asn = self.connections.vnc_lib_fixture.get_global_asn() return existing_asn def set_global_asn(self, asn): self.connections.vnc_lib_fixture.set_global_asn(asn) def reset_bgp_router_asn(self, bgp_router_id, asn, local_asn): self.set_4byte_enable(self.inputs.enable_4byte_as) phy_router_obj = self.connections.vnc_lib.bgp_router_read( id=bgp_router_id) params = phy_router_obj.get_bgp_router_parameters() existing_asn = params.get_autonomous_system() params.set_autonomous_system(asn) params.set_local_autonomous_system(local_asn) phy_router_obj.set_bgp_router_parameters(params) self.connections.vnc_lib.bgp_router_update(phy_router_obj) def create_physical_device(self, router_params): phy_device_fixture = PhysicalDeviceFixture( router_params['name'], router_params['control_ip'], role=None, peer_ip=router_params['control_ip'], tunnel_ip=router_params['control_ip'], ssh_username=router_params['ssh_username'], ssh_password=router_params['ssh_password'], connections=self.connections) phy_device_fixture.setUp() return phy_device_fixture @retry(delay=25, tries=20) def verify_bgp_peering(self,bgp_router_name): result = True for entry1 in self.inputs.bgp_ips: self.cn_ispec = self.connections.get_control_node_inspect_handle(entry1) cn_bgp_entry = self.cn_ispec.get_cn_bgp_neigh_entry(encoding='BGP') if not cn_bgp_entry: result = False self.logger.error( 'Control Node %s does not have any BGP Peer' % (entry1)) else: for entry in cn_bgp_entry: if entry['peer'] == bgp_router_name: if entry['state'] != 'Established': result = result and False self.logger.error('!!! Node %s peering info:With Peer %s : %s peering is Current State is %s ' % (entry['local_address'], bgp_router_name, entry['peer'], entry['state'])) else: self.logger.info('Node %s peering info:With Peer %s : %s peering is Current State is %s ' % (entry['local_address'], bgp_router_name, entry['peer'], entry['state'])) return result def get_bgp_router_flap_count(self, bgp_router_name): flap_info = {} for entry1 in self.inputs.bgp_ips: self.cn_ispec = ControlNodeInspect(entry1) cn_bgp_entry = self.cn_ispec.get_cn_bgp_neigh_entry(encoding='BGP') if not cn_bgp_entry: result = False self.logger.error( 'Control Node %s does not have any BGP Peer' % (entry1)) else: for entry in cn_bgp_entry: if entry['peer'] == bgp_router_name: flap_info[entry1] = entry['flap_count'] self.logger.info( 'Node %s peering info:With Peer %s : %s peering is Current State is %s ' % (entry['local_address'], bgp_router_name, entry['peer'], entry['state'])) return flap_info def create_bgp_router(self, router_params, phy_device_fixture): phy_router_fixture = PhysicalRouterFixture( router_params['name'], router_params['control_ip'], model="mx", vendor=router_params['vendor'], asn=router_params['asn'], ssh_username=router_params['ssh_username'], ssh_password=router_params['ssh_password'], mgmt_ip=router_params['control_ip'], do_cleanup=False, connections=self.connections) phy_router_fixture.phy_device = phy_device_fixture phy_router_fixture.setUp() if phy_router_fixture.bgp_router_already_present: params = phy_router_fixture.bgp_router.get_bgp_router_parameters() existing_asn = params.get_autonomous_system() params.set_autonomous_system(router_params['asn']) params.set_router_type("router") phy_router_fixture.bgp_router.set_bgp_router_parameters(params) self.connections.vnc_lib.bgp_router_update( phy_router_fixture.bgp_router) self.addCleanup(self.reset_bgp_router_asn, bgp_router_id=phy_router_fixture.bgp_router.uuid, asn=self.inputs.router_asn, local_asn=None) return phy_router_fixture def update_bgpaas_configuration(self, control_node_config, vm_config, bgpaas_fixt): bgpaas_obj = self.connections.vnc_lib.bgp_as_a_service_read( id=bgpaas_fixt.uuid) four_byte_asn_enabled = self.get_4byte_enable() if vm_config['asn'] > ASN4Base.AS_2BYTE_MAX and not four_byte_asn_enabled: bgpaas_obj.set_autonomous_system(ASN4Base.AS_TRANS) else: bgpaas_obj.set_autonomous_system(vm_config['asn']) session_attr = bgpaas_obj.get_bgpaas_session_attributes() session_attr.local_autonomous_system = control_node_config['control_node_asn'][0] bgpaas_obj.set_bgpaas_session_attributes(session_attr) self.connections.vnc_lib.bgp_as_a_service_update(bgpaas_obj) def reconfigure_bgpaas_vms(self, control_node_config, vm_fixt_list, vm_config_list): test_vm = vm_fixt_list[0] cmdList = [] for i, bgp_vm in enumerate(vm_config_list): if i == 0: continue bgpaas_vm = vm_fixt_list[i] autonomous_system = bgp_vm['asn'] vsrx_4b_capability = bgp_vm['4b_capability'] local_autonomous_system = control_node_config['control_node_asn'][0] if not vsrx_4b_capability and local_autonomous_system > ASN4Base.AS_2BYTE_MAX: cmdList.append( 'set protocols bgp group bgpaas peer-as %s' % ASN4Base.AS_TRANS) else: if local_autonomous_system: cmdList.append( 'set protocols bgp group bgpaas peer-as ' + str(local_autonomous_system)) else: # self.inputs.router_asn is 64512 cmdList.append( 'set protocols bgp group bgpaas peer-as ' + str(self.inputs.router_asn)) self.configure_vsrx(srv_vm=test_vm, dst_vm=bgpaas_vm, cmds=cmdList) def configure_bgpaas_vms(self, control_node_config, vn_fixture, vm_fixt_list, vm_config_list=[]): cluster_4b_capability = control_node_config['cluster_4b_capability'] test_vm = vm_fixt_list[0] bgpaas_fixture_list = [] for i, bgp_vm in enumerate(vm_config_list): if i == 0: bgpaas_fixture_list.append(None) continue static_routes = bgp_vm['static_routes'] static_routes_aggr = bgp_vm['static_routes_aggr'] aggr_route = bgp_vm['aggr_route'] autonomous_system = bgp_vm['asn'] vsrx_4b_capability = bgp_vm['4b_capability'] local_autonomous_system = control_node_config['control_node_asn'][0] bgpaas_vm = vm_fixt_list[i] if not cluster_4b_capability and autonomous_system > ASN4Base.AS_2BYTE_MAX: autonomous_system_ui = ASN4Base.AS_TRANS else: autonomous_system_ui = autonomous_system bgpaas_fixture = self.create_bgpaas( bgpaas_shared=True, autonomous_system=autonomous_system_ui, bgpaas_ip_address=bgpaas_vm.get_vm_ips()[0], local_autonomous_system=local_autonomous_system) bgpaas_fixture_list.append(bgpaas_fixture) self.attach_port_to_bgpaas_obj(bgpaas_vm, bgpaas_fixture) address_families = ['inet', 'inet6'] gw_ip = vn_fixture.get_subnets()[0]['gateway_ip'] dns_ip = vn_fixture.get_subnets()[0]['dns_server_address'] neighbors = [gw_ip, dns_ip] self.logger.info('We will configure BGP on the vSRX') local_ip = bgp_ip = bgpaas_vm.vm_ip src_vm = test_vm dst_vm = bgpaas_vm cmdList = [] cmdList.extend( ('set routing-options router-id ' + str(local_ip), 'set routing-options autonomous-system ' + str(autonomous_system), 'set protocols bgp group bgpaas local-address ' + str(bgp_ip))) for family in address_families: cmdList.append( 'set protocols bgp group bgpaas family ' + str(family) + ' unicast') for neighbor in neighbors: cmdList.append( 'set protocols bgp group bgpaas neighbor ' + str(neighbor)) if not vsrx_4b_capability and local_autonomous_system > ASN4Base.AS_2BYTE_MAX: cmdList.append( 'set protocols bgp group bgpaas peer-as %d' % ASN4Base.AS_TRANS) else: if local_autonomous_system: cmdList.append( 'set protocols bgp group bgpaas peer-as ' + str(local_autonomous_system)) else: # self.inputs.router_asn is 64512 cmdList.append( 'set protocols bgp group bgpaas peer-as ' + str(self.inputs.router_asn)) cmdList.extend(('set protocols bgp group bgpaas type external', 'set protocols bgp group bgpaas multihop', 'set protocols bgp group bgpaas export export-to-bgp', 'set protocols bgp group bgpaas export export_aggr', 'set protocols bgp group bgpaas hold-time 30', 'set protocols bgp group bgpaas traceoptions file bgp_log', 'set protocols bgp group bgpaas traceoptions file size 4294967295', 'set protocols bgp group bgpaas traceoptions file world-readable', 'set policy-options policy-statement export-to-bgp term allow_local from protocol static', 'set policy-options policy-statement export-to-bgp term allow_local then next-hop ' + str(bgp_ip), 'set policy-options policy-statement export-to-bgp term allow_local then accept')) for static_route in static_routes: cmdList.append( "set routing-options static route %s discard" % static_route) cmdList.append( "set policy-options policy-statement export_aggr from protocol aggregate") cmdList.append( "set policy-options policy-statement export_aggr then accept") cmdList.append( "set routing-options aggregate route %s policy export_static_aggr" % aggr_route) cmdList.append( "set policy-options policy-statement export_static_aggr from protocol static") for static_route in static_routes_aggr: cmdList.append( "set routing-options static route %s discard" % static_route) cmdList.append( "set policy-options policy-statement export_static_aggr from route-filter %s exact" % static_route) cmdList.append( "set policy-options policy-statement export_static_aggr then accept") if not vsrx_4b_capability: cmdList.append( "set protocols bgp group bgpaas disable-4byte-as") self.configure_vsrx(srv_vm=test_vm, dst_vm=bgpaas_vm, cmds=cmdList) bgpaas_vm.wait_for_ssh_on_vm() agent = bgpaas_vm.vm_node_ip ret = bgpaas_fixture.verify_in_control_node( bgpaas_vm), 'BGPaaS Session not seen in the control-node' if not ret: assert False, 'BGPaaS Session not seen in the control-node' return bgpaas_fixture_list def configure_physical_devices(self, control_node_config, mx_config): self.logger.info("Configure MX") mx_control_ip_address = mx_config['mx_control_ip_address'] cluster_4b_capability = control_node_config['cluster_4b_capability'] mx_4b_capability = mx_config['mx_4b_capability'] mx_asn = mx_config['mx_asn'] mx_vrf_interfaces = mx_config['mx_vrf_interfaces'] cluster_group = None control_node_asn = control_node_config['control_node_asn'] for device in self.inputs.physical_routers_data.items(): router_name = device[0] if router_name != mx_config['mx_name']: continue flap_count_init1 = self.get_bgp_router_flap_count(router_name) router_params = copy.deepcopy(device[1]) single_mx_bgp_router = True if len( mx_control_ip_address) == 1 else False for i, mx_ip in enumerate(mx_control_ip_address): router_params['asn'] = ASN4Base.AS_TRANS if ( not cluster_4b_capability and mx_asn[i] > ASN4Base.AS_2BYTE_MAX) else mx_asn[i] router_params['vrf_interface'] = mx_vrf_interfaces[i] + ".0" router_params['rd'] = mx_control_ip_address[i].split( "/")[0] + ":1" router_params['tunnel_ip'] = mx_control_ip_address[i].split( "/")[0] router_params['control_ip'] = router_params['tunnel_ip'] router_params["ri_name"] = mx_config['ri_name'] router_params['mx_4b_capability'] = mx_4b_capability router_params['name'] = mx_config['mx_name'] phy_device_fixture = self.create_physical_device(router_params) self.phy_router_fixture = self.create_bgp_router( router_params, phy_device_fixture) if single_mx_bgp_router: for cn_bgp_name in self.inputs.bgp_names: fq_name = [u'default-domain', u'default-project', u'ip-fabric', u'__default__', u'%s' % cn_bgp_name] cn_node_obj = self.connections.vnc_lib.bgp_router_read( fq_name=fq_name) cn_node_obj.add_bgp_router( self.phy_router_fixture.bgp_router) self.connections.vnc_lib.bgp_router_update(cn_node_obj) else: cn_name = self.inputs.host_data[self.inputs.bgp_names[i]]['name'] fq_name = [u'default-domain', u'default-project', u'ip-fabric', u'__default__', u'%s' % cn_name] cn_node_obj = self.connections.vnc_lib.bgp_router_read( fq_name=fq_name) cn_node_obj.add_bgp_router( self.phy_router_fixture.bgp_router) self.connections.vnc_lib.bgp_router_update(cn_node_obj) peer_config = {} peer_config['peer_ips'] = self.inputs.bgp_control_ips if cluster_use_local_asn: peer_config['peer_asn'] = cluster_local_asn else: peer_config['peer_asn'] = control_node_asn[i] router_params['asn'] = mx_asn[i] router_params['group'] = None router_params['cluster_group'] = None router_params['test_group_name'] = mx_config['test_group_name'] router_params['test_bgp_proto_group_name'] = mx_config['test_bgp_proto_group_name'] self.logger.info("Configure mx_basic_bgp_test_configuration") self.mx_basic_bgp_test_configuration( router_params, peer_config, skip_cleanup=True) self.verify_bgp_peering(router_name) def configure_control_nodes(self, control_node_config, mx_config): self.logger.info("Configure CONTROL_NODES") existing_4b_capability = self.get_4byte_enable() new_cluster_4b_capability = control_node_config['cluster_4b_capability'] new_cluster_global_asn = control_node_config['cluster_global_asn'] control_node_asn = control_node_config['control_node_asn'] if existing_4b_capability != new_cluster_4b_capability: self.set_4byte_enable(new_cluster_4b_capability) self.addCleanup(self.set_4byte_enable, self.inputs.enable_4byte_as) existing_global_asn = self.get_global_asn() if existing_global_asn != new_cluster_global_asn: self.set_global_asn(new_cluster_global_asn) for i, ctrl_node_name in enumerate(self.inputs.bgp_names): ctrl_node_ip = self.inputs.host_data[ctrl_node_name]['control-ip'] ctrl_node_host_ip = self.inputs.host_data[ctrl_node_name]['host_ip'] ctrl_fixture = self.useFixture( control_node.CNFixture( connections=self.connections, inputs=self.inputs, router_name=ctrl_node_name, router_ip=ctrl_node_ip )) if ctrl_fixture.already_present: fq_name = [u'default-domain', u'default-project', u'ip-fabric', u'__default__', u'%s' % ctrl_node_name] bgp_obj = self.connections.vnc_lib.bgp_router_read( fq_name=fq_name) router_params = bgp_obj.get_bgp_router_parameters() existing_asn = router_params.get_autonomous_system() existing_local_asn = router_params.get_local_autonomous_system() router_params.set_autonomous_system(control_node_asn[i]) if cluster_use_local_asn: router_params.set_local_autonomous_system( cluster_local_asn) else: router_params.set_local_autonomous_system(None) prev_local_asn = None bgp_obj.set_bgp_router_parameters(router_params) self.connections.vnc_lib.bgp_router_update(bgp_obj) self.addCleanup(self.reset_bgp_router_asn, bgp_router_id=bgp_obj.uuid,asn=self.inputs.router_asn,local_asn=prev_local_asn) def create_vn(self, control_node_config): vn_fixture = self.useFixture(VNFixture(connections=self.connections)) vn_fixture.verify_vn_in_api_server() return vn_fixture def create_vms(self, vn_fixture, vm_config_list=[]): vm_fixt_list = [] for vm in vm_config_list: vm_fixture = self.useFixture( VMFixture( project_name=self.inputs.project_name, connections=self.connections, vn_objs=[ vn_fixture.obj], image_name=vm['image_name'], vm_name=vm['vm_name'])) vm_fixt_list.append(vm_fixture) return vm_fixt_list def verify_vms(self,vm_fixt_list): for vm_fixture in vm_fixt_list: vm_fixture.verify_on_setup() def verify_bgpaas_bgp_routes(self, control_node_config, vn_fixture, src_vm, bgpaas_vm, vm_config, expected_routes): bgp_summary = self.get_config_via_netconf( src_vm, bgpaas_vm, 'show bgp summary') control_node_asn = control_node_config['control_node_asn'][0] gw_ip = vn_fixture.get_subnets()[0]['gateway_ip'] dns_ip = vn_fixture.get_subnets()[0]['dns_server_address'] if control_node_asn > ASN4Base.AS_2BYTE_MAX and not vm_config['4b_capability']: peer_asn = ASN4Base.AS_TRANS else: peer_asn = control_node_asn gw_ip_state = re.search(r"%s\s+%d\s+.*Establ" % (gw_ip, peer_asn), bgp_summary) dns_ip_state = re.search(r"%s\s+%d\s+.*Establ" % (dns_ip, peer_asn), bgp_summary) if not (gw_ip_state and dns_ip_state): assert False, 'BGPaaS Session is not in Established State' routes_output = self.get_config_via_netconf( src_vm, bgpaas_vm, 'show route receive-protocol bgp %s' % gw_ip) for exp_route in expected_routes: ret = re.search(exp_route, routes_output) if ret: self.logger.info("Route seen in BGPaaS: %s" % exp_route) else: assert False, "Route: %s not seen in BGPaaS" % exp_route def peer_route_from_mx(self,control_node_config,mx_config,vn_fixture): control_node_asn = control_node_config['control_node_asn'] vn_gw_ip = vn_fixture.get_subnets()[0]['gateway_ip'] control_mx_bgp_type = control_node_config['control,mx,bgp_type'] mx_asn = mx_config['mx_asn'] mx_static_routes = self.get_mx_configured_addnl_static_routes() external_mx_static_routes = self.get_external_mx_configured_addnl_static_routes() external_mx_aggr_route, external_mx_aggr_static_routes = self.get_external_mx_configured_aggr_routes() mx_aggr_route, mx_aggr_static_routes = self.get_mx_configured_aggr_routes() introspect_prefix_info = [] as_path = "-" as4_path = "-" vsrx_exp_routes = [] if control_node_config['cluster_4b_capability'] and control_mx_bgp_type == "internal": as_path = "-" as4_path = "-" elif control_node_config['cluster_4b_capability'] and control_mx_bgp_type == "external": as_path = "%s"%(mx_asn[0]) as4_path = "-" elif not control_node_config['cluster_4b_capability']: if mx_asn[0] > ASN4Base.AS_2BYTE_MAX and control_mx_bgp_type == "external": as_path = "%s"%(ASN4Base.AS_TRANS) as4_path = "%s"%(mx_asn[0]) elif control_mx_bgp_type == "external": as_path = "%s"%(mx_asn[0]) as4_path = "-" if control_mx_bgp_type == "internal": for static_route in mx_static_routes: vsrx_exp_routes.append(r'%s\s+%s\s+%d (I|\?)' % (static_route, vn_gw_ip, control_node_asn[0])) prefix_info = {'prefix': static_route, 'as_path': as_path, 'as4_path': as4_path} introspect_prefix_info.append(prefix_info) vsrx_exp_routes.append(r'%s\s+%s\s+%d (I|\?)' % (mx_aggr_route, vn_gw_ip, control_node_asn[0])) prefix_info = { 'prefix': mx_aggr_route, 'as_path': as_path, 'as4_path': as4_path} introspect_prefix_info.append(prefix_info) else: for static_route in mx_static_routes: vsrx_exp_routes.append( r'%s\s+%s\s+%d %d' % (static_route, vn_gw_ip, control_node_asn[0], mx_asn[0])) prefix_info = { 'prefix': static_route, 'as_path': as_path, 'as4_path': as4_path} introspect_prefix_info.append(prefix_info) vsrx_exp_routes.append( r'%s\s+%s\s+%d %d' % (mx_aggr_route, vn_gw_ip, control_node_asn[0], mx_asn[0])) prefix_info = { 'prefix': mx_aggr_route, 'as_path': as_path, 'as4_path': as4_path} introspect_prefix_info.append(prefix_info) return introspect_prefix_info,vsrx_exp_routes def peer_route_to_mx(self,control_node_config,mx_config,vn_fixture,vm_fixt_list,vm_config_list): control_mx_bgp_type = control_node_config['control,mx,bgp_type'] control_node_asn = control_node_config['control_node_asn'] mx_routes = [] for i, vm_config in enumerate(vm_config_list): vm_ip = vm_fixt_list[i].vm_ips[0] compute_data_ip = vm_fixt_list[i].vm_node_data_ip if control_mx_bgp_type == "internal": mx_routes.append(r'%s/32\s+%s\s+100\s+200\s+\?' % (vm_ip, compute_data_ip)) else: mx_routes.append(r'%s/32\s+%s\s+100\s+%d \?' % (vm_ip, compute_data_ip, control_node_asn[0])) if i == 0: continue if control_mx_bgp_type == "internal": for static_route in vm_config['static_routes']: mx_routes.append(r'%s\s+%s\s+100\s+%d I' % (static_route, compute_data_ip, vm_config['asn'])) for static_route in vm_config['static_routes_aggr']: mx_routes.append(r'%s\s+%s\s+100\s+%d I' % (static_route, compute_data_ip, vm_config['asn'])) mx_routes.append(r'%s\s+%s\s+100\s+%d I' % (vm_config['aggr_route'], compute_data_ip, vm_config['asn'])) else: for static_route in vm_config['static_routes']: mx_routes.append(r'%s\s+%s\s+%d %d I' % (static_route, compute_data_ip, control_node_asn[0], vm_config['asn'])) for static_route in vm_config['static_routes_aggr']: mx_routes.append(r'%s\s+%s\s+%d %d I' % (static_route, compute_data_ip, control_node_asn[0], vm_config['asn'])) mx_routes.append(r'%s\s+%s\s+%d %d I' % ( vm_config['aggr_route'], compute_data_ip, control_node_asn[0], vm_config['asn'])) return mx_routes def peer_route_from_vsrx(self,control_node_config,vn_fixture,vm_config,peer_vm_config): control_node_asn = control_node_config['control_node_asn'] routes = [] peer_bgpaas_asn = peer_vm_config['asn'] vn_gw_ip = vn_fixture.get_subnets()[0]['gateway_ip'] introspect_prefix_info = [] as_path = "-" as4_path = "-" if control_node_config['cluster_4b_capability']: as_path = "%s"%(peer_bgpaas_asn) as4_path = "-" else: if peer_bgpaas_asn > ASN4Base.AS_2BYTE_MAX: as_path = "%s"%(ASN4Base.AS_TRANS) as4_path = "%s"%(peer_bgpaas_asn) else: as_path = "%s"%(peer_bgpaas_asn) as4_path = "-" for static_route in peer_vm_config['static_routes']: routes.append(r'%s\s+%s\s+%d %d' % (static_route, vn_gw_ip, control_node_asn[0], peer_bgpaas_asn)) prefix_info = { 'prefix': static_route, 'as_path': as_path, 'as4_path': as4_path} introspect_prefix_info.append(prefix_info) for static_route in peer_vm_config['static_routes_aggr']: routes.append(r'%s\s+%s\s+%d %d' % (static_route, vn_gw_ip, control_node_asn[0], peer_bgpaas_asn)) prefix_info = { 'prefix': static_route, 'as_path': as_path, 'as4_path': as4_path} introspect_prefix_info.append(prefix_info) routes.append(r'%s\s+%s\s+%d %d' % ( peer_vm_config['aggr_route'], vn_gw_ip, control_node_asn[0], peer_bgpaas_asn)) return introspect_prefix_info,routes def peer_route_from_external_mx(self,control_node_config,mx_config,mx1_config,mx2_config): mx1_asn = mx1_config['mx_asn'] mx2_asn = mx2_config['mx_asn'] if control_node_config['control_node_asn'] != mx_config['mx_asn']: cluster_mx_external = True else: cluster_mx_external = False if cluster_mx_external and control_node_config['cluster_4b_capability']: ext_mx_as_path = "%s %s %s" % ( mx_config['mx_asn'][0], mx1_asn,mx2_asn) ext_mx_as4_path = "-" elif not cluster_mx_external and control_node_config['cluster_4b_capability']: ext_mx_as_path = "%s %s" % (mx1_asn,mx2_asn) ext_mx_as4_path = "-" elif cluster_mx_external and not control_node_config['cluster_4b_capability']: if mx_config['mx_asn'][0] > ASN4Base.AS_2BYTE_MAX: mx_asn_t = "%d" % ASN4Base.AS_TRANS else: mx_asn_t = mx_config['mx_asn'][0] if mx1_asn > ASN4Base.AS_2BYTE_MAX: mx1_asn_t = "%d" % ASN4Base.AS_TRANS else: mx1_asn_t = mx1_asn if mx2_asn > ASN4Base.AS_2BYTE_MAX: mx2_asn_t = "%d" % ASN4Base.AS_TRANS else: mx2_asn_t = mx2_asn ext_mx_as_path = "%s %s %s" % (mx_asn_t,mx1_asn_t,mx2_asn_t) ext_mx_as4_path = "%s %s %s" % (mx_config['mx_asn'][0],mx1_asn,mx2_asn) ext_mx_aggr_route,ext_mx_static_route = self.get_external_mx_configured_aggr_routes() ext_mx_additional_routes = self.get_external_mx_configured_addnl_static_routes() introspect_prefix_info = [] for route in ext_mx_static_route: prefix_info = { 'prefix': route, 'as_path': ext_mx_as_path, 'as4_path': ext_mx_as4_path} introspect_prefix_info.append(prefix_info) for route in ext_mx_additional_routes: prefix_info = { 'prefix': route, 'as_path': ext_mx_as_path, 'as4_path': ext_mx_as4_path} introspect_prefix_info.append(prefix_info) prefix_info = { 'prefix': ext_mx_aggr_route, 'as_path': ext_mx_as_path, 'as4_path': ext_mx_as4_path} introspect_prefix_info.append(prefix_info) return introspect_prefix_info def generate_expected_routes(self, control_node_config, vn_fixture, mx_config, mx1_config, mx2_config, vm_fixt_list, vm_config_list): control_node_asn = control_node_config['control_node_asn'] mx_asn = mx_config['mx_asn'] cluster_4byte_capability = control_node_config['cluster_4b_capability'] introspect_prefix_info_l = [] vsrx1_routes = [] vsrx2_routes = [] mx_routes = [] if len(vm_config_list) == 3: # routes from other vsrx introspect_prefix_info,route = self.peer_route_from_vsrx(control_node_config,vn_fixture,vm_config_list[1],vm_config_list[2]) vsrx1_routes.extend(route) introspect_prefix_info_l.extend(introspect_prefix_info) introspect_prefix_info,route = self.peer_route_from_vsrx(control_node_config,vn_fixture,vm_config_list[2],vm_config_list[1]) vsrx2_routes.extend(route) introspect_prefix_info_l.extend(introspect_prefix_info) introspect_prefix_info,exp_routes_from_mx = self.peer_route_from_mx(control_node_config,mx_config,vn_fixture) introspect_prefix_info_l.extend(introspect_prefix_info) vsrx1_routes.extend(exp_routes_from_mx) if len(vm_config_list) == 3: vsrx2_routes.extend(exp_routes_from_mx) mx_routes = self.peer_route_to_mx(control_node_config,mx_config,vn_fixture,vm_fixt_list,vm_config_list) if mx1_config: introspect_prefix_info_ext_mx_routes = self.peer_route_from_external_mx(control_node_config,mx_config,mx1_config,mx2_config) introspect_prefix_info_l.extend(introspect_prefix_info_ext_mx_routes) return introspect_prefix_info_l, mx_routes, vsrx1_routes, vsrx2_routes def verify_received_routes_in_mx(self, mx_config, peer_ips, expected_routes, bgp_type): conn = self.phy_router_fixture.get_connection_obj( 'juniper', mx_config['control_ip'], 'root', 'c0ntrail123') output_dict = {} for control_ip in peer_ips: cmd = 'show route receive-protocol bgp %s table %s' % ( control_ip, mx_config['ri_name']) output_dict[control_ip] = conn.handle.cli(cmd) route_seen_dict = {} for route in expected_routes: route_seen_dict[route] = [] for control_ip in peer_ips: for route in expected_routes: ret = re.search(route, output_dict[control_ip]) if ret: route_seen_dict[route].append(control_ip) for route in expected_routes: if len(route_seen_dict[route]) == 0: assert False, "Route: %s not seen in receive-protocol in MX" % route elif bgp_type == "internal" and len(route_seen_dict[route]) != 2: self.logger.info("iBGP Update not seen from 2 CN for Route: %s , count: %d" % ( route, len(route_seen_dict[route]))) elif bgp_type == "external" and len(route_seen_dict[route]) != 3: self.logger.info("eBGP Update not seen from 3 CN for Route: %s , count: %d" % ( route, len(route_seen_dict[route]))) else: self.logger.info("BGP Update Seen correctly for Route: %s , count: %d" % ( route, len(route_seen_dict[route]))) def verify_cn_instrospect(self, vn_fixture, prefixes): ri_name = vn_fixture.ri_name for prefix_info in prefixes: prefix = prefix_info['prefix'] as_path = prefix_info['as_path'] if as_path == "-": as_path = None as4_path = prefix_info['as4_path'] if as4_path == "-": as4_path = None for cn in self.inputs.bgp_control_ips: cn_entry = self.cn_inspect[cn].get_cn_route_table_entry( prefix=prefix, table="inet.0", ri_name=ri_name) if cn_entry[0]['as_path'] != as_path or cn_entry[0]['as4_path'] != as4_path: import pdb;pdb.set_trace() assert False, "AS_PATH or AS4_PATH is incorrect for prefix: %s" % prefix def configure_external_routes(self, mx1_mx2_router_params, vrf_target): mx_name = self.inputs.ext_routers[0][0] mx_info = self.inputs.physical_routers_data[mx_name] ext_mx_name = self.inputs.as4_ext_routers[0][0] ext_mx_info = self.inputs.physical_routers_data[ext_mx_name] mx1_config = {} mx1_config['mx_4b_capability'] = mx1_mx2_router_params['mx1,4b_capability'] mx1_config['mx_asn'] = mx1_mx2_router_params['mx1,local_asn'] mx1_config['test_group_name'] = "as4_ext_group1" mx1_config['test_bgp_proto_group_name'] = "as4_ext_group1_bgp" mx1_config["vrf_interface"] = mx_info['as4_ext_interface'] mx1_config["vrf_interface_ip"] = mx_info['as4_ext_interface_ip'] mx1_config["control_ip"] = mx_info['as4_ext_interface_ip'] mx1_config["loopback_ip"] = mx_info['loopback_ip'] mx1_config['mgmt_ip'] = mx_info['mgmt_ip'] mx1_config['mx_name'] = mx_info['name'] mx1_config['remote_mx'] = False mx2_config = {} mx2_config['remote_mx'] = True mx2_config['mx_4b_capability'] = mx1_mx2_router_params['mx2,4b_capability'] mx2_config['mx_asn'] = mx1_mx2_router_params['mx2,local_asn'] mx2_config['test_group_name'] = "as4_ext_group2" mx2_config['test_bgp_proto_group_name'] = "as4_ext_group2_bgp" mx2_config["vrf_interface"] = ext_mx_info['as4_ext_interface'] mx2_config['control_ip'] = ext_mx_info['as4_ext_interface_ip'] mx2_config["vrf_interface_ip"] = ext_mx_info['as4_ext_interface_ip'] mx2_config["loopback_ip"] = ext_mx_info['loopback_ip'] mx2_config['mgmt_ip'] = ext_mx_info['mgmt_ip'] mx2_config['mx_name'] = ext_mx_info['name'] mx2_config['addnl_static_routes'] = self.get_external_mx_configured_addnl_static_routes() mx2_config['aggr_route'], mx2_config['static_routes'] = self.get_external_mx_configured_aggr_routes() self.external_route_config(mx1_config, mx2_config, vrf_target) return mx1_config, mx2_config @preposttest_wrapper def test_as4_two_mx(self): mx_name = self.inputs.ext_routers[0][0] mx_info = self.inputs.physical_routers_data[mx_name] initial_neigh_info = self.get_neighbor_info() topology_info = {} topology_info['mx_control_ip_address'] = [mx_info['control_ip']] topology_info['mx_tunnel_ip'] = mx_info['tunnel_ip'] topology_info['mx_vrf_interfaces'] = [mx_info['vrf_interface']] topology_info['mx_bgp_protocol_group'] = mx_info.get( 'bgp_protocol_group', None) topology_info['test_group_name'] = "testbed_%s_4byte" % mx_name topology_info['test_bgp_proto_group_name'] = "testbed_%s_4byte_bgp" % mx_name topology_info['test_ri_name'] = "ri_4byte_test" topology_info['mx_cluster_group'] = mx_info.get('cluster_group', None) topology_info['mx_name'] = mx_name mx1_mx2_router_params = {} mx1_mx2_router_params['mx1,local_asn'] = 1 mx1_mx2_router_params['mx1,4b_capability'] = True mx1_mx2_router_params['mx2,local_asn'] = 970000 mx1_mx2_router_params['mx2,4b_capability'] = True cluster_global_asn = 4600 control_node_asn = [4600, 4600, 4600] mx_asn = [4500, 4500, 4500] cluster_4b_capability = False mx_4b_capability = True mx_control_ip_address = topology_info['mx_control_ip_address'] mx_tunnel_ip = topology_info['mx_tunnel_ip'] if cluster_global_asn == mx_asn: bgp_type = "internal" else: bgp_type = "external" mx_config = {} mx_config['mx_4b_capability'] = mx_4b_capability mx_config['mx_asn'] = mx_asn mx_config['mx_vrf_interfaces'] = topology_info['mx_vrf_interfaces'] mx_config['bgp_protocol_group'] = topology_info['mx_bgp_protocol_group'] mx_config['cluster_group'] = topology_info['mx_cluster_group'] mx_config['test_group_name'] = topology_info['test_group_name'] mx_config['test_bgp_proto_group_name'] = topology_info['test_bgp_proto_group_name'] mx_config['ri_name'] = topology_info['test_ri_name'] mx_config["vrf_interface"] = mx_config['mx_vrf_interfaces'][0] + ".0" mx_config["rd"] = mx_control_ip_address[0].split("/")[0] + ":100" mx_config['control_ip'] = mx_tunnel_ip mx_config['mx_control_ip_address'] = topology_info['mx_control_ip_address'] mx_config['mx_name'] = topology_info['mx_name'] control_node_config = {} control_node_config['cluster_4b_capability'] = cluster_4b_capability control_node_config['cluster_global_asn'] = cluster_global_asn control_node_config['control_node_asn'] = control_node_asn control_node_config['mx_config'] = mx_config control_node_config['control,mx,bgp_type'] = bgp_type existing_global_asn = self.get_global_asn() self.addCleanup(self.connections.vnc_lib_fixture.set_global_asn, self.inputs.bgp_asn) self.configure_control_nodes(control_node_config,mx_config) self.deactivate_mx_cluster_configuration(mx_config) self.configure_physical_devices(control_node_config,mx_config) self.addCleanup(self.activate_mx_cluster_configuration,mx_config) vm_config_list = [] vm_config = {} vm_config['image_name'] = 'ubuntu-traffic' vm_config['vm_name'] = 'test-vm' vm_config_list.append(vm_config) vm_config = {} vm_config['image_name'] = 'vsrx' vm_config['vm_name'] = 'bgpaas-vm1' vm_config['asn'] = 9000 vm_config['static_routes'] = self.vsrx1_addnl_static_routes() vm_config['aggr_route'], vm_config['static_routes_aggr'] = self.vsrx1_aggr_routes() vm_config['peer_asn'] = control_node_asn[0] vm_config['4b_capability'] = False vm_config_list.append(vm_config) vm_config = {} vm_config['image_name'] = 'vsrx' vm_config['vm_name'] = 'bgpaas-vm2' vm_config['asn'] = 90000 vm_config['4b_capability'] = True vm_config['peer_asn'] = control_node_asn[0] vm_config['static_routes'] = self.vsrx2_addnl_static_routes() vm_config['aggr_route'], vm_config['static_routes_aggr'] = self.vsrx2_aggr_routes() vm_config['4b_capability'] = True vm_config_list.append(vm_config) ##### START OF STEP1: #################### vn_fixture = self.create_vn(control_node_config=control_node_config) vm_fixt_list = self.create_vms( vn_fixture=vn_fixture, vm_config_list=vm_config_list) self.verify_vms(vm_fixt_list) bgpaas_fixture_list = self.configure_bgpaas_vms(control_node_config=control_node_config,vn_fixture=vn_fixture,vm_fixt_list=vm_fixt_list,vm_config_list=vm_config_list) self.update_sg_group() self.mx_create_vrf(control_node_config=control_node_config, mx_config=mx_config, vn_fixture=vn_fixture) self.mx_aggregated_routes_configuration( control_node_config, mx_config, vn_fixture) self.mx_static_routes_configuration( control_node_config, mx_config, vn_fixture) if mx1_mx2_router_params['mx2,local_asn'] < ASN4Base.AS_2BYTE_MAX or (cluster_4b_capability and mx1_mx2_router_params['mx2,local_asn'] > ASN4Base.AS_2BYTE_MAX): mx2_vrf_target = "target:%d:12345" % ( mx1_mx2_router_params['mx2,local_asn']) else: mx2_vrf_target = "target:%d:12345" % (41000) mx1_config, mx2_config = self.configure_external_routes( mx1_mx2_router_params, vrf_target=mx2_vrf_target) self.add_vrf_target(control_node_config=control_node_config, vn_fixture=vn_fixture, vrf_target=mx2_vrf_target) introspect_prefix_info, mx_routes, vsrx1_routes, vsrx2_routes = self.generate_expected_routes( control_node_config, vn_fixture, mx_config, mx1_config, mx2_config, vm_fixt_list, vm_config_list) self.verify_bgpaas_bgp_routes(control_node_config=control_node_config, vn_fixture=vn_fixture, src_vm=vm_fixt_list[0], bgpaas_vm=vm_fixt_list[1], vm_config=vm_config_list[1], expected_routes=vsrx1_routes) self.verify_bgpaas_bgp_routes(control_node_config=control_node_config, vn_fixture=vn_fixture, src_vm=vm_fixt_list[0], bgpaas_vm=vm_fixt_list[2], vm_config=vm_config_list[1], expected_routes=vsrx2_routes) self.verify_received_routes_in_mx( mx_config, peer_ips=self.inputs.bgp_control_ips, expected_routes=mx_routes, bgp_type=bgp_type) self.verify_cn_instrospect(vn_fixture, introspect_prefix_info) @preposttest_wrapper @test.attr(type=['sanity']) def test_basic_as4_ibgp_sanity(self): if len(self.inputs.ext_routers) != 1: raise self.skipTest( "Skipping Test. At least 1 external router required to run the test") test_info = {} test_info['cluster_global_asn'] = 89000 test_info['control_node_asn'] = [89000, 89000, 89000] test_info['mx_asn'] = [89000, 89000, 89000] test_info['cluster_4b_capability'] = True test_info['mx_4b_capability'] = True mx_name = self.inputs.ext_routers[0][0] mx_info = self.inputs.physical_routers_data[mx_name] topology_info = {} topology_info['mx_control_ip_address'] = [mx_info['control_ip']] topology_info['mx_tunnel_ip'] = mx_info['tunnel_ip'] topology_info['mx_vrf_interfaces'] = [mx_info['vrf_interface']] topology_info['mx_bgp_protocol_group'] = mx_info.get( 'bgp_protocol_group', None) topology_info['test_group_name'] = "testbed_%s_4byte" % mx_name topology_info['test_bgp_proto_group_name'] = "testbed_%s_4byte_bgp" % mx_name topology_info['test_ri_name'] = "ri_4byte_test" topology_info['mx_cluster_group'] = mx_info.get('cluster_group', None) topology_info['mx_name'] = mx_name initial_neigh_info = self.get_neighbor_info() cluster_global_asn = test_info['cluster_global_asn'] control_node_asn = test_info['control_node_asn'] mx_asn = test_info['mx_asn'] cluster_4b_capability = test_info['cluster_4b_capability'] mx_4b_capability = test_info['mx_4b_capability'] mx_control_ip_address = topology_info['mx_control_ip_address'] mx_tunnel_ip = topology_info['mx_tunnel_ip'] if test_info['control_node_asn'] == test_info['mx_asn']: bgp_type = "internal" else: bgp_type = "external" mx_config = {} mx_config['mx_4b_capability'] = test_info['mx_4b_capability'] mx_config['mx_asn'] = test_info['mx_asn'] mx_config['mx_vrf_interfaces'] = topology_info['mx_vrf_interfaces'] mx_config['bgp_protocol_group'] = topology_info['mx_bgp_protocol_group'] mx_config['cluster_group'] = topology_info['mx_cluster_group'] mx_config['test_group_name'] = topology_info['test_group_name'] mx_config['test_bgp_proto_group_name'] = topology_info['test_bgp_proto_group_name'] mx_config['ri_name'] = topology_info['test_ri_name'] mx_config["vrf_interface"] = mx_config['mx_vrf_interfaces'][0] + ".0" mx_config["rd"] = mx_control_ip_address[0].split("/")[0] + ":100" mx_config['control_ip'] = mx_tunnel_ip mx_config['mx_control_ip_address'] = topology_info['mx_control_ip_address'] mx_config['mx_name'] = topology_info['mx_name'] control_node_config = {} control_node_config['cluster_4b_capability'] = cluster_4b_capability control_node_config['cluster_global_asn'] = cluster_global_asn control_node_config['control_node_asn'] = control_node_asn control_node_config['mx_config'] = mx_config control_node_config['control,mx,bgp_type'] = bgp_type topology_info = {} topology_info['mx_control_ip_address'] = [mx_info['control_ip']] topology_info['mx_tunnel_ip'] = mx_info['tunnel_ip'] topology_info['mx_vrf_interfaces'] = [mx_info['vrf_interface']] topology_info['mx_bgp_protocol_group'] = mx_info.get( 'bgp_protocol_group', None) topology_info['test_group_name'] = "testbed_%s_4byte" % mx_name topology_info['test_bgp_proto_group_name'] = "testbed_%s_4byte_bgp" % mx_name topology_info['test_ri_name'] = "ri_4byte_test" topology_info['mx_cluster_group'] = mx_info.get('cluster_group', None) topology_info['mx_name'] = mx_name existing_global_asn = self.get_global_asn() self.addCleanup( self.connections.vnc_lib_fixture.set_global_asn, existing_global_asn) self.configure_control_nodes(control_node_config, mx_config) self.deactivate_mx_cluster_configuration(mx_config=mx_config) self.configure_physical_devices(control_node_config, mx_config) self.addCleanup(self.activate_mx_cluster_configuration, mx_config) vm_config_list = [] vm_config = {} vm_config['image_name'] = 'ubuntu-traffic' vm_config['vm_name'] = 'test-vm' vm_config_list.append(vm_config) vm_config = {} vm_config['image_name'] = 'vsrx' vm_config['vm_name'] = 'bgpaas-vm1' vm_config['asn'] = 9000 vm_config['static_routes'] = self.vsrx1_addnl_static_routes() vm_config['aggr_route'], vm_config['static_routes_aggr'] = self.vsrx1_aggr_routes() vm_config['peer_asn'] = control_node_asn[0] vm_config['4b_capability'] = False vm_config_list.append(vm_config) self.update_sg_group() vn_fixture = self.create_vn(control_node_config=control_node_config) vm_fixt_list = self.create_vms( vn_fixture=vn_fixture, vm_config_list=vm_config_list) self.mx_create_vrf(control_node_config=control_node_config, mx_config=mx_config, vn_fixture=vn_fixture) self.mx_aggregated_routes_configuration( control_node_config, mx_config, vn_fixture) self.mx_static_routes_configuration( control_node_config, mx_config, vn_fixture) self.verify_vms(vm_fixt_list) bgpaas_fixture_list = self.configure_bgpaas_vms( control_node_config=control_node_config, vn_fixture=vn_fixture, vm_fixt_list=vm_fixt_list, vm_config_list=vm_config_list) mx1_config = mx2_config = None introspect_prefix_info, mx_routes, vsrx1_routes, vsrx2_routes = self.generate_expected_routes( control_node_config,vn_fixture, mx_config, mx1_config, mx2_config, vm_fixt_list, vm_config_list) self.verify_bgpaas_bgp_routes(control_node_config=control_node_config, vn_fixture=vn_fixture, src_vm=vm_fixt_list[0], bgpaas_vm=vm_fixt_list[1], vm_config=vm_config_list[1], expected_routes=vsrx1_routes) self.verify_received_routes_in_mx( mx_config, peer_ips=self.inputs.bgp_control_ips, expected_routes=mx_routes, bgp_type=bgp_type) @preposttest_wrapper # @skip_because(mx_gw=False,msg='Need to set MX_GW=True and atleast one Physical Router') def test_basic_as4_ibgp(self): if len(self.inputs.ext_routers) != 1: raise self.skipTest( "Skipping Test. At least 1 external router required to run the test") mx_name = self.inputs.ext_routers[0][0] mx_info = self.inputs.physical_routers_data[mx_name] topology_info = {} topology_info['mx_control_ip_address'] = [mx_info['control_ip']] topology_info['mx_tunnel_ip'] = mx_info['tunnel_ip'] topology_info['mx_vrf_interfaces'] = [mx_info['vrf_interface']] topology_info['mx_bgp_protocol_group'] = mx_info.get( 'bgp_protocol_group', None) topology_info['test_group_name'] = "testbed_%s_4byte" % mx_name topology_info['test_bgp_proto_group_name'] = "testbed_%s_4byte_bgp" % mx_name topology_info['test_ri_name'] = "ri_4byte_test" topology_info['mx_cluster_group'] = mx_info.get('cluster_group', None) topology_info['mx_name'] = mx_name test_info = {} test_info['step1,cluster_global_asn'] = 8901 test_info['step1,control_node_asn'] = [8901, 8901, 8901] test_info['step1,mx_asn'] = [8901, 8901, 8901] test_info['step1,cluster_4b_capability'] = False test_info['step1,mx_4b_capability'] = False test_info['step2,cluster_global_asn'] = 89000 test_info['step2,control_node_asn'] = [89000, 89000, 89000] test_info['step2,mx_asn'] = [89000, 89000, 89000] test_info['step2,cluster_4b_capability'] = True test_info['step2,mx_4b_capability'] = True self.basic_as4(topology_info, test_info) @preposttest_wrapper # @skip_because(mx_gw=False,msg='Need to set MX_GW=True and atleast one Physical Router') def test_basic_as4_ebgp(self): if len(self.inputs.ext_routers) != 1: raise self.skipTest( "Skipping Test. At least 1 external router required to run the test") mx_name = self.inputs.ext_routers[0][0] mx_info = self.inputs.physical_routers_data[mx_name] topology_info = {} topology_info['mx_control_ip_address'] = [mx_info['control_ip']] topology_info['mx_tunnel_ip'] = mx_info['tunnel_ip'] topology_info['mx_vrf_interfaces'] = [mx_info['vrf_interface']] topology_info['mx_bgp_protocol_group'] = mx_info.get( 'bgp_protocol_group', None) topology_info['test_group_name'] = "testbed_%s_4byte" % mx_name topology_info['test_bgp_proto_group_name'] = "testbed_%s_4byte_bgp" % mx_name topology_info['test_ri_name'] = "ri_4byte_test" topology_info['mx_cluster_group'] = mx_info.get('cluster_group', None) topology_info['mx_name'] = mx_name test_info = {} test_info['step1,cluster_global_asn'] = 8902 test_info['step1,control_node_asn'] = [8902, 8902, 8902] test_info['step1,mx_asn'] = [8903, 8903, 8903] test_info['step1,cluster_4b_capability'] = False test_info['step1,mx_4b_capability'] = False test_info['step2,cluster_global_asn'] = 89002 test_info['step2,control_node_asn'] = [89002, 89002, 89002] test_info['step2,mx_asn'] = [89003, 89003, 89003] test_info['step2,cluster_4b_capability'] = True test_info['step2,mx_4b_capability'] = True self.basic_as4(topology_info, test_info) def basic_as4(self, topology_info, test_info): initial_neigh_info = self.get_neighbor_info() cluster_global_asn = test_info['step1,cluster_global_asn'] control_node_asn = test_info['step1,control_node_asn'] mx_asn = test_info['step1,mx_asn'] cluster_4b_capability = test_info['step1,cluster_4b_capability'] mx_4b_capability = test_info['step1,mx_4b_capability'] mx_control_ip_address = topology_info['mx_control_ip_address'] mx_tunnel_ip = topology_info['mx_tunnel_ip'] if test_info['step1,control_node_asn'] == test_info['step1,mx_asn']: bgp_type = "internal" else: bgp_type = "external" mx_config = {} mx_config['mx_4b_capability'] = test_info['step1,mx_4b_capability'] mx_config['mx_asn'] = test_info['step1,mx_asn'] mx_config['mx_vrf_interfaces'] = topology_info['mx_vrf_interfaces'] mx_config['bgp_protocol_group'] = topology_info['mx_bgp_protocol_group'] mx_config['cluster_group'] = topology_info['mx_cluster_group'] mx_config['test_group_name'] = topology_info['test_group_name'] mx_config['test_bgp_proto_group_name'] = topology_info['test_bgp_proto_group_name'] mx_config['ri_name'] = topology_info['test_ri_name'] mx_config["vrf_interface"] = mx_config['mx_vrf_interfaces'][0] + ".0" mx_config["rd"] = mx_control_ip_address[0].split("/")[0] + ":100" mx_config['control_ip'] = mx_tunnel_ip mx_config['mx_control_ip_address'] = topology_info['mx_control_ip_address'] mx_config['mx_name'] = topology_info['mx_name'] control_node_config = {} control_node_config['cluster_4b_capability'] = cluster_4b_capability control_node_config['cluster_global_asn'] = cluster_global_asn control_node_config['control_node_asn'] = control_node_asn control_node_config['mx_config'] = mx_config control_node_config['control,mx,bgp_type'] = bgp_type self.logger.info( "STEP:1 a. Disable '4 Byte Enabled' in Global System Configuration") self.logger.info( " b. Configure 2 Byte AS in Global System Configuration") self.logger.info(" c. Configure iBGP with MX") self.logger.info( " d. Create 1st BGPaaS with 2 Byte AS and 4Byte Capability Disabled") self.logger.info( " e. Create 2nd BGPaaS with 4 Byte AS and 4Byte Capability Enabled") self.logger.info( " f. Configure static routes and aggregate routes to be advertised by MX.Update routing-instance with VN rt and add community") self.logger.info( "Verification: a. Verify Routes from MX are received and seen in Both BGPaaS.Verify AS_PATH") self.logger.info( " b. Verify Routes from both BGPaaS are seen in MX") self.logger.info( "STEP:2 a. Enable '4 Byte Enabled' in Global System Configuration") self.logger.info( "Verification: a. Verify Routes from MX are received and seen in Both BGPaaS.Verify AS_PATH") self.logger.info( " b. Verify Routes from both BGPaaS are seen in MX") self.logger.info( "STEP:3 \n a. Update 4 Byte AS in Global System Configuration") self.logger.info( " b. Update Cluster 4 Byte AS,RT in MX and AS in BGPaaS") self.logger.info( "Verification: a. Verify Routes from MX are received and seen in Both BGPaaS.Verify AS_PATH") self.logger.info( " b. Verify Routes from both BGPaaS are seen in MX") existing_global_asn = self.get_global_asn() self.addCleanup( self.connections.vnc_lib_fixture.set_global_asn, self.inputs.bgp_asn) self.configure_control_nodes(control_node_config, mx_config) self.deactivate_mx_cluster_configuration(mx_config) self.configure_physical_devices(control_node_config, mx_config) self.addCleanup(self.activate_mx_cluster_configuration, mx_config) vm_config_list = [] vm_config = {} vm_config['image_name'] = 'ubuntu-traffic' vm_config['vm_name'] = 'test-vm' vm_config_list.append(vm_config) vm_config = {} vm_config['image_name'] = 'vsrx' vm_config['vm_name'] = 'bgpaas-vm1' vm_config['asn'] = 9000 vm_config['static_routes'] = self.vsrx1_addnl_static_routes() vm_config['aggr_route'], vm_config['static_routes_aggr'] = self.vsrx1_aggr_routes() vm_config['peer_asn'] = control_node_asn[0] vm_config['4b_capability'] = False vm_config_list.append(vm_config) vm_config = {} vm_config['image_name'] = 'vsrx' vm_config['vm_name'] = 'bgpaas-vm2' vm_config['asn'] = 90000 vm_config['4b_capability'] = True vm_config['peer_asn'] = control_node_asn[0] vm_config['static_routes'] = self.vsrx2_addnl_static_routes() vm_config['aggr_route'], vm_config['static_routes_aggr'] = self.vsrx2_aggr_routes() vm_config['4b_capability'] = True vm_config_list.append(vm_config) ##### START OF STEP1: #################### vn_fixture = self.create_vn(control_node_config=control_node_config) vm_fixt_list = self.create_vms( vn_fixture=vn_fixture, vm_config_list=vm_config_list) self.verify_vms(vm_fixt_list) bgpaas_fixture_list = self.configure_bgpaas_vms( control_node_config=control_node_config, vn_fixture=vn_fixture, vm_fixt_list=vm_fixt_list, vm_config_list=vm_config_list) self.update_sg_group() self.mx_create_vrf(control_node_config=control_node_config, mx_config=mx_config, vn_fixture=vn_fixture) self.mx_aggregated_routes_configuration( control_node_config, mx_config, vn_fixture) self.mx_static_routes_configuration( control_node_config, mx_config, vn_fixture) mx1_config = mx2_config = None introspect_prefix_info, mx_routes, vsrx1_routes, vsrx2_routes = self.generate_expected_routes( control_node_config,vn_fixture, mx_config, mx1_config, mx2_config, vm_fixt_list, vm_config_list) self.verify_bgpaas_bgp_routes(control_node_config=control_node_config, vn_fixture=vn_fixture, src_vm=vm_fixt_list[0], bgpaas_vm=vm_fixt_list[1], vm_config=vm_config_list[1], expected_routes=vsrx1_routes) self.verify_bgpaas_bgp_routes(control_node_config=control_node_config, vn_fixture=vn_fixture, src_vm=vm_fixt_list[0], bgpaas_vm=vm_fixt_list[2], vm_config=vm_config_list[1], expected_routes=vsrx2_routes) self.verify_received_routes_in_mx( mx_config, peer_ips=self.inputs.bgp_control_ips, expected_routes=mx_routes, bgp_type=bgp_type) ###### END OF STEP1: #################### ###### START OF STEP2: #################### #self.logger.info("START of STEP2") cluster_4b_capability = True self.set_4byte_enable(cluster_4b_capability) self.update_bgpaas_configuration( control_node_config=control_node_config, vm_config=vm_config_list[1], bgpaas_fixt=bgpaas_fixture_list[1]) self.update_bgpaas_configuration( control_node_config=control_node_config, vm_config=vm_config_list[2], bgpaas_fixt=bgpaas_fixture_list[2]) time.sleep(60) # To allow re-generation of RT , after a global ASN change self.verify_bgpaas_bgp_routes(control_node_config=control_node_config, vn_fixture=vn_fixture, src_vm=vm_fixt_list[0], bgpaas_vm=vm_fixt_list[1], vm_config=vm_config_list[1], expected_routes=vsrx1_routes) self.verify_bgpaas_bgp_routes(control_node_config=control_node_config, vn_fixture=vn_fixture, src_vm=vm_fixt_list[0], bgpaas_vm=vm_fixt_list[2], vm_config=vm_config_list[1], expected_routes=vsrx2_routes) self.verify_received_routes_in_mx( mx_config, peer_ips=self.inputs.bgp_control_ips, expected_routes=mx_routes, bgp_type=bgp_type) ###### END OF STEP2: #################### self.logger.info("END of STEP2") self.logger.info("START of STEP3") cluster_global_asn = test_info['step2,cluster_global_asn'] self.set_global_asn(cluster_global_asn) control_node_asn = test_info['step2,control_node_asn'] mx_asn = test_info['step2,mx_asn'] mx_config['mx_4b_capability'] = test_info['step2,mx_4b_capability'] control_node_config['cluster_4b_capability'] = test_info['step2,cluster_4b_capability'] control_node_config['control_node_asn'] = control_node_asn control_node_config['cluster_global_asn'] = cluster_global_asn mx_config['mx_asn'] = mx_asn self.configure_physical_devices(control_node_config, mx_config) self.reconfigure_bgpaas_vms(control_node_config=control_node_config, vm_fixt_list=vm_fixt_list, vm_config_list=vm_config_list) self.update_bgpaas_configuration( control_node_config=control_node_config, vm_config=vm_config_list[1], bgpaas_fixt=bgpaas_fixture_list[1]) self.update_bgpaas_configuration( control_node_config=control_node_config, vm_config=vm_config_list[2], bgpaas_fixt=bgpaas_fixture_list[2]) self.mx_create_vrf(control_node_config=control_node_config, mx_config=mx_config, vn_fixture=vn_fixture) self.mx_aggregated_routes_configuration( control_node_config, mx_config, vn_fixture) self.mx_static_routes_configuration( control_node_config, mx_config, vn_fixture) introspect_prefix_info, mx_routes, vsrx1_routes, vsrx2_routes = self.generate_expected_routes( control_node_config, vn_fixture, mx_config, mx1_config, mx2_config, vm_fixt_list, vm_config_list) self.verify_bgpaas_bgp_routes(control_node_config=control_node_config, vn_fixture=vn_fixture, src_vm=vm_fixt_list[0], bgpaas_vm=vm_fixt_list[1], vm_config=vm_config_list[1], expected_routes=vsrx1_routes) self.verify_bgpaas_bgp_routes(control_node_config=control_node_config, vn_fixture=vn_fixture, src_vm=vm_fixt_list[0], bgpaas_vm=vm_fixt_list[2], vm_config=vm_config_list[2], expected_routes=vsrx2_routes) self.verify_received_routes_in_mx( mx_config, peer_ips=self.inputs.bgp_control_ips, expected_routes=mx_routes, bgp_type=bgp_type) ##### END OF STEP3: #################### self.logger.info("END of STEP3") final_neigh_info = self.get_neighbor_info() self.logger.info("Initial_flap_count", initial_neigh_info) self.logger.info("Final_flap_count", initial_neigh_info) def update_sg_group(self): sg_obj = self.connections.vnc_lib.security_group_read( fq_name=[u'default-domain', u'%s' % self.connections.project_name, u'default']) self.connections.orch.delete_security_group_rules( sg_id=sg_obj.uuid, project_id=self.connections.project_id) uuid_1 = uuid.uuid1().urn.split(':')[2] uuid_2 = uuid.uuid1().urn.split(':')[2] secgrp_rules = [ {'direction': '>', 'protocol': 'any', 'dst_addresses': [{'security_group': 'local', 'subnet': None}], 'dst_ports': [{'start_port': 0, 'end_port': 65535}], 'src_ports': [{'start_port': 0, 'end_port': 65535}], 'src_addresses': [{'subnet': {'ip_prefix': '0.0.0.0', 'ip_prefix_len': 0}}], 'rule_uuid': uuid_1 }, {'direction': '<', 'protocol': 'any', 'src_addresses': [{'security_group': 'local', 'subnet': None}], 'dst_ports': [{'start_port': 0, 'end_port': 65535}], 'src_ports': [{'start_port': 0, 'end_port': 65535}], 'dst_addresses': [{'subnet': {'ip_prefix': '0.0.0.0', 'ip_prefix_len': 0}}], 'rule_uuid': uuid_2}, ] self.connections.orch.set_security_group_rules( sg_id=sg_obj.uuid, sg_entries=secgrp_rules)
49.658824
174
0.640873
4a1cac67098488a272d8eae4f788330c16fabc37
4,052
py
Python
alipay/aop/api/request/AlipayFincoreComplianceTemplateAnswerQueryRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/request/AlipayFincoreComplianceTemplateAnswerQueryRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/request/AlipayFincoreComplianceTemplateAnswerQueryRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AlipayFincoreComplianceTemplateAnswerQueryModel import AlipayFincoreComplianceTemplateAnswerQueryModel class AlipayFincoreComplianceTemplateAnswerQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AlipayFincoreComplianceTemplateAnswerQueryModel): self._biz_content = value else: self._biz_content = AlipayFincoreComplianceTemplateAnswerQueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.fincore.compliance.template.answer.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
27.944828
148
0.65153
4a1cad50e593690f8df1a821299042130ad8d7f9
1,047
py
Python
setup.py
mgorny/WSGIProxy2
0b3c034cb4e9ab24984ea73e102d8376c21a51c7
[ "MIT" ]
null
null
null
setup.py
mgorny/WSGIProxy2
0b3c034cb4e9ab24984ea73e102d8376c21a51c7
[ "MIT" ]
null
null
null
setup.py
mgorny/WSGIProxy2
0b3c034cb4e9ab24984ea73e102d8376c21a51c7
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages version = '0.5.1.dev0' def read(name): try: with open(name) as fd: return fd.read() except Exception: return '' setup(name='WSGIProxy2', version=version, long_description=read('README.rst') + '\n' + read('CHANGES.rst'), description='A WSGI Proxy with various http client backends', classifiers=[ 'License :: OSI Approved :: MIT License', 'Topic :: Internet :: WWW/HTTP :: WSGI :: Application', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], keywords='wsgi proxy', author='Gael Pasgrimaud', author_email='gael@gawel.org', url='https://github.com/gawel/WSGIProxy2/', license='MIT', packages=find_packages(exclude=['ez_setup', 'README_fixt', 'tests']), include_package_data=True, zip_safe=False, install_requires=['webob', 'six'], entry_points=""" # -*- Entry points: -*- """, )
28.297297
75
0.581662
4a1cad71fc931280b8bc053e85b9ecfa6f6936f7
293
py
Python
userinterface/migrations/0002_delete_timetable.py
Anand911/E-LEARNING-SCLMAXO-
a16c317ae482c91f4f91c967ddc3e498a43ac7e9
[ "MIT" ]
1
2021-02-14T10:43:21.000Z
2021-02-14T10:43:21.000Z
userinterface/migrations/0002_delete_timetable.py
Anand911/E-LEARNING-SCLMAXO-
a16c317ae482c91f4f91c967ddc3e498a43ac7e9
[ "MIT" ]
1
2021-01-12T07:22:08.000Z
2021-01-13T19:07:02.000Z
userinterface/migrations/0002_delete_timetable.py
Anand911/E-LEARNING-SCLMAXO-
a16c317ae482c91f4f91c967ddc3e498a43ac7e9
[ "MIT" ]
6
2020-12-13T17:46:37.000Z
2021-02-10T13:47:25.000Z
# Generated by Django 3.1.3 on 2020-12-18 13:39 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('userinterface', '0001_initial'), ] operations = [ migrations.DeleteModel( name='timetable', ), ]
17.235294
47
0.600683
4a1cadd687f1a5856c9c5fb11c49ddac48029fb3
8,544
py
Python
pgcli/packages/sqlcompletion.py
czchen/debian-pgcli
67498d4e8f6d153de7f2f73380d2b749c550c247
[ "BSD-3-Clause" ]
null
null
null
pgcli/packages/sqlcompletion.py
czchen/debian-pgcli
67498d4e8f6d153de7f2f73380d2b749c550c247
[ "BSD-3-Clause" ]
null
null
null
pgcli/packages/sqlcompletion.py
czchen/debian-pgcli
67498d4e8f6d153de7f2f73380d2b749c550c247
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function import sys import sqlparse from sqlparse.sql import Comparison, Identifier from .parseutils import last_word, extract_tables, find_prev_keyword from .pgspecial import parse_special_command PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 if PY3: string_types = str else: string_types = basestring def suggest_type(full_text, text_before_cursor): """Takes the full_text that is typed so far and also the text before the cursor to suggest completion type and scope. Returns a tuple with a type of entity ('table', 'column' etc) and a scope. A scope for a column category will be a list of tables. """ word_before_cursor = last_word(text_before_cursor, include='many_punctuations') identifier = None # If we've partially typed a word then word_before_cursor won't be an empty # string. In that case we want to remove the partially typed string before # sending it to the sqlparser. Otherwise the last token will always be the # partially typed string which renders the smart completion useless because # it will always return the list of keywords as completion. if word_before_cursor: if word_before_cursor[-1] == '(' or word_before_cursor[0] == '\\': parsed = sqlparse.parse(text_before_cursor) else: parsed = sqlparse.parse( text_before_cursor[:-len(word_before_cursor)]) # word_before_cursor may include a schema qualification, like # "schema_name.partial_name" or "schema_name.", so parse it # separately p = sqlparse.parse(word_before_cursor)[0] if p.tokens and isinstance(p.tokens[0], Identifier): identifier = p.tokens[0] else: parsed = sqlparse.parse(text_before_cursor) if len(parsed) > 1: # Multiple statements being edited -- isolate the current one by # cumulatively summing statement lengths to find the one that bounds the # current position current_pos = len(text_before_cursor) stmt_start, stmt_end = 0, 0 for statement in parsed: stmt_len = len(statement.to_unicode()) stmt_start, stmt_end = stmt_end, stmt_end + stmt_len if stmt_end >= current_pos: text_before_cursor = full_text[stmt_start:current_pos] full_text = full_text[stmt_start:] break elif parsed: # A single statement statement = parsed[0] else: # The empty string statement = None # Check for special commands and handle those separately if statement: # Be careful here because trivial whitespace is parsed as a statement, # but the statement won't have a first token tok1 = statement.token_first() if tok1 and tok1.value == '\\': return suggest_special(text_before_cursor) last_token = statement and statement.token_prev(len(statement.tokens)) or '' return suggest_based_on_last_token(last_token, text_before_cursor, full_text, identifier) def suggest_special(text): text = text.lstrip() cmd, _, arg = parse_special_command(text) if cmd == text: # Trying to complete the special command itself return [{'type': 'special'}] if cmd == '\\c': return [{'type': 'database'}] if cmd == '\\dn': return [{'type': 'schema'}] if arg: # Try to distinguish "\d name" from "\d schema.name" # Note that this will fail to obtain a schema name if wildcards are # used, e.g. "\d schema???.name" parsed = sqlparse.parse(arg)[0].tokens[0] try: schema = parsed.get_parent_name() except AttributeError: schema = None else: schema = None if cmd[1:] in ('d', 'dt', 'dv'): if schema: return [{'type': 'table', 'schema': schema}] else: return [{'type': 'schema'}, {'type': 'table', 'schema': []}] elif cmd[1:] == 'df': if schema: return [{'type': 'function', 'schema': schema}] else: return [{'type': 'schema'}, {'type': 'function', 'schema': []}] return [{'type': 'keyword'}, {'type': 'special'}] def suggest_based_on_last_token(token, text_before_cursor, full_text, identifier): if isinstance(token, string_types): token_v = token else: # If 'token' is a Comparison type such as # 'select * FROM abc a JOIN def d ON a.id = d.'. Then calling # token.value on the comparison type will only return the lhs of the # comparison. In this case a.id. So we need to do token.tokens to get # both sides of the comparison and pick the last token out of that # list. if isinstance(token, Comparison): token_v = token.tokens[-1].value else: token_v = token.value if not token: return [{'type': 'keyword'}, {'type': 'special'}] elif token_v.lower().endswith('('): p = sqlparse.parse(text_before_cursor)[0] if p.token_first().value.lower() == 'select': # If the lparen is preceeded by a space chances are we're about to # do a sub-select. if last_word(text_before_cursor, 'all_punctuations').startswith('('): return [{'type': 'keyword'}] return [{'type': 'column', 'tables': extract_tables(full_text)}] elif token_v.lower() in ('set', 'by', 'distinct'): return [{'type': 'column', 'tables': extract_tables(full_text)}] elif token_v.lower() in ('select', 'where', 'having'): # Check for a table alias or schema qualification parent = (identifier and identifier.get_parent_name()) or [] if parent: tables = extract_tables(full_text) tables = [t for t in tables if identifies(parent, *t)] return [{'type': 'column', 'tables': tables}, {'type': 'table', 'schema': parent}, {'type': 'function', 'schema': parent}] else: return [{'type': 'column', 'tables': extract_tables(full_text)}, {'type': 'function', 'schema': []}] elif token_v.lower() in ('copy', 'from', 'update', 'into', 'describe', 'join', 'table'): schema = (identifier and identifier.get_parent_name()) or [] if schema: # If already schema-qualified, suggest only tables return [{'type': 'table', 'schema': schema}] else: # Suggest schemas OR public tables return [{'type': 'schema'}, {'type': 'table', 'schema': []}] elif token_v.lower() == 'function': # E.g. 'DROP FUNCTION <funcname>' schema = (identifier and identifier.get_parent_name()) or [] if schema: return [{'type': 'function', 'schema': schema}] else: return [{'type': 'schema'}, {'type': 'function', 'schema': []}] elif token_v.lower() == 'on': tables = extract_tables(full_text) # [(schema, table, alias), ...] parent = (identifier and identifier.get_parent_name()) or [] if parent: # "ON parent.<suggestion>" # parent can be either a schema name or table alias tables = [t for t in tables if identifies(parent, *t)] return [{'type': 'column', 'tables': tables}, {'type': 'table', 'schema': parent}, {'type': 'function', 'schema': parent}] else: # ON <suggestion> # Use table alias if there is one, otherwise the table name aliases = [t[2] or t[1] for t in tables] return [{'type': 'alias', 'aliases': aliases}] elif token_v.lower() in ('c', 'use', 'database', 'template'): # "\c <db", "use <db>", "DROP DATABASE <db>", # "CREATE DATABASE <newdb> WITH TEMPLATE <db>" return [{'type': 'database'}] elif token_v.endswith(',') or token_v == '=': prev_keyword = find_prev_keyword(text_before_cursor) if prev_keyword: return suggest_based_on_last_token( prev_keyword, text_before_cursor, full_text, identifier) else: return [{'type': 'keyword'}] def identifies(id, schema, table, alias): return id == alias or id == table or ( schema and (id == schema + '.' + table))
39.192661
82
0.588834
4a1caef93d89a2f95c20b2eb02fc921c46f0a438
10,861
py
Python
archive/sra_experiment/nbconverted/DEG_validation.py
ajlee21/core-accessory-interactome
e2d8344e8c8abb1d0bda845ce2292b08ae590c51
[ "BSD-3-Clause" ]
null
null
null
archive/sra_experiment/nbconverted/DEG_validation.py
ajlee21/core-accessory-interactome
e2d8344e8c8abb1d0bda845ce2292b08ae590c51
[ "BSD-3-Clause" ]
33
2020-04-24T23:07:49.000Z
2022-03-10T22:53:09.000Z
archive/sra_experiment/nbconverted/DEG_validation.py
ajlee21/core-accessory-interactome
e2d8344e8c8abb1d0bda845ce2292b08ae590c51
[ "BSD-3-Clause" ]
1
2020-04-01T17:09:27.000Z
2020-04-01T17:09:27.000Z
# coding: utf-8 # # Differential expression validation # This notebook performs a differential expression (DE) analysis comparing PAO1 samples vs PA14 samples. We can compare our results with those published in the literature as an additional step to validate that our RNA-seq processing pipeline is reasonable. # In[1]: get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('load_ext', 'rpy2.ipython') get_ipython().run_line_magic('autoreload', '2') import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from core_acc_modules import utils, paths from rpy2.robjects import pandas2ri pandas2ri.activate() # ### Download data for validation # Data from [Sana et. al](https://jb.asm.org/content/201/21/e00362-19) found ~ 2K DEGs between 2 strains where Quorum Sensing (QS) genes were DEGs. QS or cell-to-cell signaling controls expression of genes involved in virulence and biofilm formation. QS systems make use of a transcriptional activator protein that acts in concert with a small signaling molecule to stimulate expression of target genes. # In[2]: # Download sra data files get_ipython().system(' prefetch --option-file $paths.SRA_ACC_TEST') # In[3]: get_ipython().run_cell_magic('bash', '-s $paths.FASTQ_TEST_DIR $paths.SRA_DIR $paths.FASTQ_TEST_DIR/', 'mkdir -p $1\nfastq-dump $2/SRR8486287.sra --outdir $3\nfastq-dump $2/SRR8486288.sra --outdir $3\nfastq-dump $2/SRR8486289.sra --outdir $3\nfastq-dump $2/SRR8486290.sra --outdir $3') # In[4]: get_ipython().run_cell_magic('bash', '-s $paths.PAO1_QUANT_TEST $paths.FASTQ_TEST_DIR $paths.PAO1_INDEX', 'mkdir -p $1\n\nfor FILE_PATH in $2/*;\ndo\n\n# get file name\nsample_name=`basename ${FILE_PATH}`\n\n# remove extension from file name\nsample_name="${sample_name%_*}"\n\n# get base path\nbase_name=${FILE_PATH%/*}\n\necho "Processing sample ${sample_name}"\n\nsalmon quant -i $3 -l A \\\n -r ${base_name}/${sample_name} \\\n -p 8 --validateMappings -o $1/${sample_name}_quant\ndone') # In[5]: # Get raw read counts using PAO1 reference # Read through all sample subdirectories in quant/ # Within each sample subdirectory, get quant.sf file data_dir = paths.PAO1_QUANT_TEST expression_data = pd.DataFrame( pd.read_csv(file, sep="\t", index_col=0)["NumReads"]. rename(file.parent.name.split("_")[0]) for file in data_dir.rglob("*/quant.sf") ) # Map gene ids to gene names pao1_fasta_file = paths.PAO1_REF seq_id_to_gene_id_pao1 = utils.dict_gene_num_to_ids(pao1_fasta_file) expression_data.rename(mapper=seq_id_to_gene_id_pao1, axis="columns", inplace=True) expression_data.head() # In[6]: # Format sample ids # There was probably a way to get around doing this step in bash but to get a quick validation I have done this new_index = [name.split(".")[0] for name in list(expression_data.index)] expression_data.index = new_index expression_data.head() # ### Process data # 1. Get core genes # 2. Round read counts to integer value # In[7]: # Get mapping between PAO1 and PA14 genes using PAO1 reference gene_annot_file = paths.GENE_PAO1_ANNOT gene_mapping_pao1 = utils.get_pao1_pa14_gene_map(gene_annot_file, 'pao1') gene_annot_file = paths.GENE_PA14_ANNOT gene_mapping_pa14 = utils.get_pao1_pa14_gene_map(gene_annot_file, 'pa14') core_pao1_genes, core_pa14_genes = utils.get_core_genes(gene_mapping_pao1, gene_mapping_pa14, False) print(f"Number of PAO1 core genes: {len(core_pao1_genes)}") print(f"Number of PA14 core genes: {len(core_pa14_genes)}") core_pao1_genes = set(core_pao1_genes) - set(["PA4215", "PA4214","PA4213"]) expression_data = expression_data.reindex(columns=core_pao1_genes) print(expression_data.shape) expression_data.head() # In[8]: # Convert values to integers for DE analysis # Salmon returns estimate read counts. # Usually scientists would use Salmon to get estimated transcript abundances # and then use tximport to aggregate the transcript abundances to gene abundances # TO DO: Need to look into tximport and DESeq processing to make sure this rounding step is ok expression_data = expression_data.astype(int) # In[9]: # Save file expression_data.to_csv(paths.PAO1_GE_DE, sep='\t') # ### Examine gene expression # 1. Look at consistency of gene expression within PAO1 samples, within PA14 samples # 2. What does average PAO1 vs averge PA14 look like? To give us an expectation for our DESeq analysis. # In[10]: expression_data = pd.read_csv(paths.PAO1_GE_DE, sep="\t", index_col=0) expression_data.head() # In[11]: # Group samples as PAO1 or PA14 based on experiment metadata sample_annot_file = paths.SAMPLE_ANNOT_TEST pao1_ids, pa14_ids = utils.get_sample_grps(sample_annot_file) # In[12]: # Split expression by genotype pao1_expression = expression_data.loc[pao1_ids] pa14_expression = expression_data.loc[pa14_ids] # In[13]: # Get within sample correlation pao1_corr = pao1_expression.T.corr() pa14_corr = pa14_expression.T.corr() # In[14]: ax = sns.heatmap( pao1_corr, vmin=-1, vmax=1, center=0, cmap=sns.diverging_palette(20, 220, n=200), square=True ) ax.set_title("PAO1 sample correlation") # In[15]: ax = sns.heatmap( pa14_corr, vmin=-1, vmax=1, center=0, cmap=sns.diverging_palette(20, 220, n=200), square=True ) ax.set_title("PA14 sample correlation") # In[16]: # Get mean expression for pao1 and pa14 mean_pao1 = pao1_expression.mean() mean_pa14 = pa14_expression.mean() pao1_v_pa14_df = pd.DataFrame(data={'pao1_mean': mean_pao1.values, 'pa14_mean': mean_pa14.values}, index=pao1_expression.columns) pao1_v_pa14_df.head() # In[17]: sns.scatterplot(data=pao1_v_pa14_df, x='pao1_mean', y='pa14_mean') plt.plot([0,140000],[0,140000]) # In[18]: # Rough calculation of the number of genes that differ # Here we are counting the genes with an expression difference between PAO1 and PA14 # that is more than one standard deviation away from the overall mean of expression differences across genes std_x_eq_y = np.std(abs(pao1_v_pa14_df['pao1_mean']-pao1_v_pa14_df['pa14_mean'])) gene_differences = pao1_v_pa14_df[abs(pao1_v_pa14_df['pao1_mean']-pao1_v_pa14_df['pa14_mean']) > std_x_eq_y] print(gene_differences.shape) genes_found_from_GE = list(gene_differences.index) gene_differences.head() # **Observations:** # * Looks like there is consistent gene expression patterns within sample-type (i.e. Both PAO1 samples have a similar gene expression profile, similarly for both PA14 samples) as expected # * Comparing the mean expression of PAO1 and PA14 we see that there are ~200 genes changed. This gives us some indication about what to expect for our DESeq analysis. However, we shouldn't expect the numbers to align because we are using different methods -- above we are comparing the raw gene expression values and looking for a threshold difference; below we DESeq fits the negative binomial model to the data and performs hypothesis testing to determine if there is a difference between the groups of samples. # ### Differential expression analysis # In[19]: get_ipython().run_cell_magic('R', '', '# Select 59\n# Run one time\n#if (!requireNamespace("BiocManager", quietly = TRUE))\n# install.packages("BiocManager")\n#BiocManager::install("DESeq2")') # In[20]: get_ipython().run_cell_magic('R', '', '# Load the DESeq2 library\nsuppressPackageStartupMessages(library("DESeq2"))') # In[21]: # Files to load into DE analysis (R) metadata_file = str(paths.SAMPLE_ANNOT_TEST) expression_data_file = str(paths.PAO1_GE_DE) out_file = str(paths.DE_STATS) # In[22]: # Check ordering of sample ids utils.check_sample_ordering(expression_data_file, metadata_file) # In[23]: get_ipython().run_cell_magic('R', '-i metadata_file -i expression_data_file -i out_file', "\nsource('../core_acc_modules/DE_analysis.R')\n\nget_DE_stats_DESeq(metadata_file,\n expression_data_file,\n out_file)") # In[24]: # Read in DE stats file DE_stats = pd.read_csv(paths.DE_STATS, sep='\t', header=0, index_col=0) print(DE_stats.shape) DE_stats.head() # In[25]: # Volcano plot DE_stats["-log10(padj)"] = -np.log10(DE_stats["padj"]) sns.scatterplot(data=DE_stats, x="log2FoldChange", y="-log10(padj)") # ### Compare our DE results with publication # In[26]: # Get number of DEGs selected_DE_stats = DE_stats[(DE_stats['padj']<0.01)] print(selected_DE_stats.shape) selected_DE_stats.head() # In[27]: # Compare our findings against Sana et. al. degs_sana = ["PA3431", "PA3432", "PA1244", "PA4685"] for gene in degs_sana: if gene in list(selected_DE_stats.index): print(gene) # In[28]: # Compare genes whose mean gene expression differed between PAO1 and PA14 # with those genes found using DESeq top_degs_by_padj = selected_DE_stats.index len(set(top_degs_by_padj).intersection(genes_found_from_GE))/len(genes_found_from_GE) # **Conclusions:** # # Our DE analysis found ~1.1K significantly differentially expressed genes # # (Check 1): The DEGs identified using DESeq (\~1.1K genes) is fairly consistent with the genes that were 1 standard deviation outside the correlation threshold (\~200 genes) -- there was a 75% overlap in these gene sets. This very roughly validates that DESeq is working as expected. I wouldn't expect the numbers to be this different though. # # (Check 2) The number of DEGs identified (\~1.1K genes) using DESeq is fairly consistent with the number of differentially expressed genes found in [Sana et. al](https://jb.asm.org/content/201/21/e00362-19) (\~2K genes). We also spot checked specific genes that were found. We found the 4 genes highlighted in the Sana et. al. publication, including the main qsIA gene (PA1244) that the paper found to be more highly expressed in PAO1 vs PA14. Difference are likely due to differences in the package used. # # Approach used in [Sana et. al](https://jb.asm.org/content/201/21/e00362-19) found ~ 2K DEGs between 2 strains where QS genes were DEGs: # ``` # Illumina reads were mapped to the P. aeruginosa genome PAO1 (GenBank accession number AE004091.2 [61]) and PA14 (GenBank accession number NC_008463.1 [33]) by Bowtie (version Bowtie1 v0.12.9 [62]). Data were normalized by reads per kilobase per million (RPKM) and filtered to the 5,263 orthologous genes conserved between P. aeruginosa strains PA14 and PAO1. Two biological replicates were performed per condition. Differential # expression analysis was analyzed using the Bioconductor package NOISeq version 2.22.1 (64), a nonparametric approach suitable for lowly replicated data, and using a q value of 0.99 for strong control of # false positives # ```
34.047022
516
0.740908
4a1caf537b2a00ca223591d4d86fef915ea110cb
91,604
py
Python
weldx/tests/test_geometry.py
marscher/weldx
a5debd8af957009b12fd366589fed1aa41f78176
[ "BSD-3-Clause" ]
null
null
null
weldx/tests/test_geometry.py
marscher/weldx
a5debd8af957009b12fd366589fed1aa41f78176
[ "BSD-3-Clause" ]
null
null
null
weldx/tests/test_geometry.py
marscher/weldx
a5debd8af957009b12fd366589fed1aa41f78176
[ "BSD-3-Clause" ]
null
null
null
"""Tests the geometry package.""" import copy import math from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Union import numpy as np import pint import pytest from xarray import DataArray import weldx.geometry as geo import weldx.tests._helpers as helpers import weldx.transformations as tf import weldx.util as ut from weldx import Q_ from weldx.geometry import SpatialData from weldx.transformations import WXRotation # helpers --------------------------------------------------------------------- def check_segments_identical(seg_a, seg_b): """Check if 2 segments are identical within floating point tolerance. Parameters ---------- seg_a : First segment seg_b : Second segment """ assert isinstance(seg_a, type(seg_b)) assert ut.matrix_is_close(seg_a.points, seg_b.points) if isinstance(seg_a, geo.ArcSegment): assert seg_a.arc_winding_ccw == seg_b.arc_winding_ccw assert ut.vector_is_close(seg_a.point_center, seg_b.point_center) def check_shapes_identical(shp_a, shp_b): """Check if 2 shapes are identical within floating point tolerance. Parameters ---------- shp_a : First profile shp_b : Second profile """ assert shp_a.num_segments == shp_b.num_segments for i in range(shp_a.num_segments): check_segments_identical(shp_a.segments[i], shp_b.segments[i]) def check_profiles_identical(pro_a, pro_b): """Check if 2 profiles are identical within floating point tolerance. Parameters ---------- pro_a : First profile pro_b : Second profile """ assert pro_a.num_shapes == pro_b.num_shapes for i in range(pro_a.num_shapes): check_shapes_identical(pro_a.shapes[i], pro_b.shapes[i]) def check_variable_profiles_identical(vp_a, vp_b): """Check if 2 variable profiles are identical within floating point tolerance. Parameters ---------- vp_a : First variable profile vp_b : Second variable profile """ assert vp_a.num_profiles == vp_b.num_profiles assert vp_a.num_locations == vp_b.num_locations assert vp_a.num_interpolation_schemes == vp_b.num_interpolation_schemes for i in range(vp_a.num_profiles): check_profiles_identical(vp_a.profiles[i], vp_b.profiles[i]) for i in range(vp_a.num_locations): assert math.isclose(vp_a.locations[i], vp_b.locations[i]) for i in range(vp_a.num_interpolation_schemes): assert isinstance( vp_a.interpolation_schemes[i], type(vp_b.interpolation_schemes[i]) ) def check_trace_segments_identical(seg_a, seg_b): """Check if 2 trace segments are identical within floating point tolerance. Parameters ---------- seg_a : First segment seg_b : Second segment """ assert isinstance(seg_a, type(seg_b)) if isinstance(seg_a, geo.LinearHorizontalTraceSegment): assert seg_a.length == seg_b.length else: assert seg_a.is_clockwise == seg_b.is_clockwise assert math.isclose(seg_a.angle, seg_b.angle) assert math.isclose(seg_a.length, seg_b.length) assert math.isclose(seg_a.radius, seg_b.radius) def check_traces_identical(trc_a, trc_b): """Check if 2 traces are identical within floating point tolerance. Parameters ---------- trc_a : First trace trc_b : Second trace """ assert trc_a.num_segments == trc_b.num_segments for i in range(trc_a.num_segments): check_trace_segments_identical(trc_a.segments[i], trc_b.segments[i]) def check_coordinate_systems_identical(lcs_a, lcs_b, abs_tol=1e-9): """Check if 2 local coordinate systems are identical within a tolerance. Parameters ---------- lcs_a : First local coordinate system lcs_b : Second local coordinate system abs_tol : Absolute tolerance (Default value = 1e-9) """ assert ut.matrix_is_close(lcs_a.orientation, lcs_b.orientation, abs_tol) assert ut.vector_is_close(lcs_a.coordinates, lcs_b.coordinates, abs_tol) def get_default_profiles() -> List: """Get 2 profiles. Returns ------- list List containing 2 profiles """ a_0 = [0, 0] a_1 = [8, 16] a_2 = [16, 0] shape_a01 = geo.Shape().add_line_segments([a_0, a_1]) shape_a12 = geo.Shape().add_line_segments([a_1, a_2]) profile_a = geo.Profile([shape_a01, shape_a12]) b_0 = [-4, 8] b_1 = [0, 8] b_2 = [16, -16] shape_b01 = geo.Shape().add_line_segments([b_0, b_1]) shape_b12 = geo.Shape().add_line_segments([b_1, b_2]) profile_b = geo.Profile([shape_b01, shape_b12]) return [profile_a, profile_b] # helper for segment tests ---------------------------------------------------- def default_segment_rasterization_tests( segment: Union[geo.ArcSegment, geo.LineSegment], raster_width ): """Perform some default checks for a passed segment's rasterization method. The segment is rasterized and tested afterwards. The purpose of every test is explained by a comment in the code. Parameters ---------- segment : Instance of a segment class raster_width : Raster width """ data = segment.rasterize(raster_width) # check dimensions are correct assert len(data.shape) == 2 point_dimension = data.shape[0] num_points = data.shape[1] assert point_dimension == 2 # Check if first and last point of the data are identical to the segment # start and end assert ut.vector_is_close(data[:, 0], segment.point_start) assert ut.vector_is_close(data[:, -1], segment.point_end) for i in range(num_points - 1): point = data[:, i] next_point = data[:, i + 1] raster_width_eff = np.linalg.norm(next_point - point) # effective raster width is close to specified one assert np.abs(raster_width_eff - raster_width) < 0.1 * raster_width # effective raster width is constant (equidistant points) assert math.isclose(raster_width_eff, np.linalg.norm(data[:, 1] - data[:, 0])) # check that there are no duplicate points assert helpers.are_all_columns_unique(data) # check that rasterization with too large raster width still works data_200 = segment.rasterize(200) num_points_200 = data_200.shape[1] assert num_points_200 == 2 # only 2 points must be segment start and end assert ut.vector_is_close(segment.point_start, data_200[:, 0]) assert ut.vector_is_close(segment.point_end, data_200[:, 1]) # exceptions ------------------------------------------ # raster width <= 0 with pytest.raises(ValueError): segment.rasterize(0) with pytest.raises(ValueError): segment.rasterize(-3) # test LineSegment ------------------------------------------------------------ def test_line_segment_construction(): """Test constructor and factories.""" # class constructor ----------------------------------- segment = geo.LineSegment([[3, 5], [3, 4]]) assert math.isclose(segment.length, np.sqrt(5)) # exceptions ------------------------------------------ # length = 0 with pytest.raises(ValueError): geo.LineSegment([[0, 0], [1, 1]]) # not 2x2 with pytest.raises(ValueError): geo.LineSegment([[3, 5], [3, 4], [3, 2]]) # not a 2d array with pytest.raises(ValueError): geo.LineSegment([[[3, 5], [3, 4]]]) # factories ------------------------------------------- segment = geo.LineSegment.construct_with_points([3, 3], [4, 5]) assert math.isclose(segment.length, np.sqrt(5)) def test_line_segment_rasterization(): """Test line segment rasterization. This test checks, if every rasterized point lies on the line that connects the start and the end of the segment. It also checks that those points lie between the segments start and end point. """ raster_width = 0.1 point_start = np.array([3, 3]) point_end = np.array([4, 5]) segment = geo.LineSegment.construct_with_points(point_start, point_end) # perform default tests default_segment_rasterization_tests(segment, raster_width) # rasterize data raster_data = segment.rasterize(raster_width) num_points = raster_data.shape[1] # check that points lie between start and end vec_start_end = point_end - point_start unit_vec_start_end = tf.normalize(vec_start_end) length_start_end = np.linalg.norm(vec_start_end) for i in np.arange(1, num_points - 1, 1): vec_start_point = raster_data[:, i] - point_start unit_vec_start_point = tf.normalize(vec_start_point) length_start_point = np.linalg.norm(vec_start_point) assert ut.vector_is_close(unit_vec_start_point, unit_vec_start_end) assert length_start_point < length_start_end def line_segment_transformation_test_case( point_start, point_end, exp_start, exp_end, exp_length, translation=None, transformation=None, ): """Perform a single transformation test on a line segment. The test applies a transformation and compares the result to the expected values. Parameters ---------- point_start : Start point of the line segment point_end : End point of the line segment exp_start : Expected start point of the transformed line segment exp_end : Expected end point of the transformed line segment exp_length : Expected length of the transformed line segment translation : Translation that should be applied (optional) (Default value = None) transformation : Transformation that should be applied (optional) (Default value = None) """ if translation is not None: assert transformation is None, "No mixed test cases supported" segment = geo.LineSegment.construct_with_points(point_start, point_end) if translation is not None: segment_trans = segment.translate(translation) else: segment_trans = segment.transform(transformation) # original segment not modified assert ut.vector_is_close(segment.point_start, point_start) assert ut.vector_is_close(segment.point_end, point_end) # check new segment assert ut.vector_is_close(segment_trans.point_start, exp_start) assert ut.vector_is_close(segment_trans.point_end, exp_end) assert math.isclose(segment_trans.length, exp_length) # apply same transformation in place if translation is not None: segment.apply_translation(translation) else: segment.apply_transformation(transformation) check_segments_identical(segment, segment_trans) def test_line_segment_transformations(): """Test line segment transformations. This test tests all relevant transformations and exceptions. """ # translation ----------------------------------------- line_segment_transformation_test_case( point_start=[3, 3], point_end=[4, 5], translation=[-1, 4], exp_start=[2, 7], exp_end=[3, 9], exp_length=np.sqrt(5), ) # 45 degree rotation ---------------------------------- s = np.sin(np.pi / 4.0) c = np.cos(np.pi / 4.0) rotation_matrix = [[c, -s], [s, c]] line_segment_transformation_test_case( point_start=[2, 2], point_end=[3, 6], transformation=rotation_matrix, exp_start=[0, np.sqrt(8)], exp_end=np.matmul(rotation_matrix, [3, 6]), exp_length=np.sqrt(17), ) # reflection at 45 degree line ------------------------ v = np.array([-1, 1], dtype=float) reflection_matrix = np.identity(2) - 2 / np.dot(v, v) * np.outer(v, v) line_segment_transformation_test_case( point_start=[-1, 3], point_end=[6, 1], transformation=reflection_matrix, exp_start=[3, -1], exp_end=[1, 6], exp_length=np.sqrt(53), ) # scaling --------------------------------------------- scale_matrix = [[4, 0], [0, 0.5]] line_segment_transformation_test_case( point_start=[-2, 2], point_end=[1, 4], transformation=scale_matrix, exp_start=[-8, 1], exp_end=[4, 2], exp_length=np.sqrt(145), ) # exceptions ------------------------------------------ # transformation results in length = 0 zero_matrix = np.zeros((2, 2)) segment = geo.LineSegment.construct_with_points([0, 0], [1, 2]) with pytest.raises(Exception): segment.apply_transformation(zero_matrix) with pytest.raises(Exception): segment.transform(zero_matrix) def test_line_segment_interpolation(): """Test the line segments linear interpolation function. Two segments are created and interpolated using different weights. The result is compared to the expected values. """ segment_a = geo.LineSegment.construct_with_points([1, 3], [7, -3]) segment_b = geo.LineSegment.construct_with_points([5, -5], [-1, 13]) for i in range(5): weight = i / 4 segment_c = geo.LineSegment.linear_interpolation(segment_a, segment_b, weight) exp_point_start = [1 + i, 3 - 2 * i] exp_point_end = [7 - 2 * i, -3 + 4 * i] assert ut.vector_is_close(segment_c.point_start, exp_point_start) assert ut.vector_is_close(segment_c.point_end, exp_point_end) # check weight clipped to valid range ----------------- segment_c = geo.LineSegment.linear_interpolation(segment_a, segment_b, -3) assert ut.vector_is_close(segment_c.point_start, segment_a.point_start) assert ut.vector_is_close(segment_c.point_end, segment_a.point_end) segment_c = geo.LineSegment.linear_interpolation(segment_a, segment_b, 6) assert ut.vector_is_close(segment_c.point_start, segment_b.point_start) assert ut.vector_is_close(segment_c.point_end, segment_b.point_end) # exceptions ------------------------------------------ # wrong types arc_segment = geo.ArcSegment.construct_with_points([0, 0], [1, 1], [1, 0]) with pytest.raises(TypeError): geo.LineSegment.linear_interpolation(segment_a, arc_segment, 0.5) with pytest.raises(TypeError): geo.LineSegment.linear_interpolation(arc_segment, segment_a, 0.5) with pytest.raises(TypeError): geo.LineSegment.linear_interpolation(arc_segment, arc_segment, 0.5) # test ArcSegment ------------------------------------------------------------ def check_arc_segment_values( segment, point_start, point_end, point_center, winding_ccw, radius, arc_angle, arc_length, ): """Check if the internal values are identical with the expected values. Parameters ---------- segment : Arc segment that should be checked point_start : Expected start point of the segment point_end : Expected end point of the segment point_center : Expected center point of the segment winding_ccw : Expected winding bool (see ArcSegment documentation) radius : Expected radius arc_angle : Expected arc angle arc_length : Expected arc length """ assert ut.vector_is_close(segment.point_start, point_start) assert ut.vector_is_close(segment.point_end, point_end) assert ut.vector_is_close(segment.point_center, point_center) assert segment.arc_winding_ccw is winding_ccw assert math.isclose(segment.radius, radius) assert math.isclose(segment.arc_angle, arc_angle) assert math.isclose(segment.arc_length, arc_length) def arc_segment_rasterization_test( point_center, point_start, point_end, raster_width, arc_winding_ccw, is_point_location_valid_func, ): """Test the arc segment's rasterize function. Performs the default segment rasterization test and some additional ones specific to the arc segment. Parameters ---------- point_center : Center point of the segment point_start : Start point of the segment point_end : End point of the segment raster_width : Raster width arc_winding_ccw : Bool that determines the winding order is_point_location_valid_func : Function that returns a bool which specifies whether a point is valid or not. Interface: (point, point_center_arc) -> bool """ point_center = np.array(point_center) point_start = np.array(point_start) point_end = np.array(point_end) radius_arc = np.linalg.norm(point_start - point_center) arc_segment = geo.ArcSegment.construct_with_points( point_start, point_end, point_center, arc_winding_ccw ) # Perform standard segment rasterization tests default_segment_rasterization_tests(arc_segment, raster_width) # rasterize segment data = arc_segment.rasterize(raster_width) num_points = data.shape[1] for i in range(num_points): point = data[:, i] # Check that winding is correct assert is_point_location_valid_func(point, point_center) # Check that points have the correct distance to the arcs center distance_center_point = np.linalg.norm(point - point_center) assert math.isclose(distance_center_point, radius_arc, abs_tol=1e-6) def test_arc_segment_constructor(): """Test the arc segment constructor.""" points = [[3, 6, 6], [3, 6, 3]] segment_cw = geo.ArcSegment(points, False) segment_ccw = geo.ArcSegment(points, True) check_arc_segment_values( segment=segment_cw, point_start=[3, 3], point_end=[6, 6], point_center=[6, 3], winding_ccw=False, radius=3, arc_angle=1 / 2 * np.pi, arc_length=3 / 2 * np.pi, ) check_arc_segment_values( segment=segment_ccw, point_start=[3, 3], point_end=[6, 6], point_center=[6, 3], winding_ccw=True, radius=3, arc_angle=3 / 2 * np.pi, arc_length=9 / 2 * np.pi, ) # check exceptions ------------------------------------ # radius differs points = [[3, 6, 6], [3, 10, 3]] with pytest.raises(Exception): geo.ArcSegment(points, False) # radius is zero points = [[3, 3, 3], [3, 3, 3]] with pytest.raises(Exception): geo.ArcSegment(points, False) # arc length zero points = [[3, 3, 6], [3, 3, 3]] with pytest.raises(Exception): geo.ArcSegment(points, False) with pytest.raises(Exception): geo.ArcSegment(points, True) # not 2x3 points = [[3, 3], [3, 3]] with pytest.raises(ValueError): geo.ArcSegment(points) # not a 2d array with pytest.raises(ValueError): geo.ArcSegment([[[3, 5], [3, 4]]]) def test_arc_segment_factories(): """Test the arc segment's factory functions. Creates arc segments using the factory functions and checks if they are constructed as expected. """ # construction with center point ---------------------- point_start = [3, 3] point_end = [6, 6] point_center_left = [3, 6] point_center_right = [6, 3] # expected results radius = 3 angle_small = np.pi * 0.5 angle_large = np.pi * 1.5 arc_length_small = np.pi * 1.5 arc_length_large = np.pi * 4.5 segment_cw = geo.ArcSegment.construct_with_points( point_start, point_end, point_center_right, False ) segment_ccw = geo.ArcSegment.construct_with_points( point_start, point_end, point_center_right, True ) check_arc_segment_values( segment_cw, point_start, point_end, point_center_right, False, radius, angle_small, arc_length_small, ) check_arc_segment_values( segment_ccw, point_start, point_end, point_center_right, True, radius, angle_large, arc_length_large, ) # construction with radius ---------------------- # center left of line segment_cw = geo.ArcSegment.construct_with_radius( point_start, point_end, radius, True, False ) segment_ccw = geo.ArcSegment.construct_with_radius( point_start, point_end, radius, True, True ) check_arc_segment_values( segment_cw, point_start, point_end, point_center_left, False, radius, angle_large, arc_length_large, ) check_arc_segment_values( segment_ccw, point_start, point_end, point_center_left, True, radius, angle_small, arc_length_small, ) # center right of line segment_cw = geo.ArcSegment.construct_with_radius( point_start, point_end, radius, False, False ) segment_ccw = geo.ArcSegment.construct_with_radius( point_start, point_end, radius, False, True ) check_arc_segment_values( segment_cw, point_start, point_end, point_center_right, False, radius, angle_small, arc_length_small, ) check_arc_segment_values( segment_ccw, point_start, point_end, point_center_right, True, radius, angle_large, arc_length_large, ) # check that too small radii will be clipped to minimal radius segment_cw = geo.ArcSegment.construct_with_radius( point_start, point_end, 0.1, False, False ) segment_ccw = geo.ArcSegment.construct_with_radius( point_start, point_end, 0.1, False, True ) check_arc_segment_values( segment_cw, point_start, point_end, [4.5, 4.5], False, np.sqrt(18) / 2, np.pi, np.pi * np.sqrt(18) / 2, ) check_arc_segment_values( segment_ccw, point_start, point_end, [4.5, 4.5], True, np.sqrt(18) / 2, np.pi, np.pi * np.sqrt(18) / 2, ) def point_in_second_quadrant(p, c): """Return True if a point is inside a circle's second quadrant. A point that lies directly on the boundary is considered as being inside. Parameters ---------- p : Point that should be checked c : Center point of the circle Returns ------- bool True or False """ return p[0] - 1e-9 <= c[0] and p[1] >= c[1] - 1e-9 def point_not_in_second_quadrant(p, c): """Return True if a point is not inside a circle's second quadrant. A point that lies directly on the boundary is considered as being outside. Parameters ---------- p : Point that should be checked c : Center point of the circle Returns ------- bool True or False """ return not (p[0] + 1e-9 < c[0] and p[1] > c[1] + 1e-9) def point_not_below_center(p, c): """Return True if a point lies not below (y-value) a circle's center point. Parameters ---------- p : Point that should be checked c : Center point of the circle Returns ------- bool True or False """ return p[1] >= c[1] - 1e-9 def point_not_above_center(p, c): """Return True if a point lies not above (y-value) a circle's center point. Parameters ---------- p : Point that should be checked c : Center point of the circle Returns ------- bool True or False """ return p[1] - 1e-9 <= c[1] def test_arc_segment_rasterization(): """Test the arc segment's rasterize function. Creates some simple arc segments (semi-circle and quadrant) and test the rasterization results. """ # center right of line point_start -> point_end # --------------------------------------------- point_center = [3, 2] point_start = [1, 2] point_end = [3, 4] raster_width = 0.2 arc_segment_rasterization_test( point_center, point_start, point_end, raster_width, False, point_in_second_quadrant, ) arc_segment_rasterization_test( point_center, point_start, point_end, raster_width, True, point_not_in_second_quadrant, ) # center left of line point_start -> point_end # -------------------------------------------- point_center = [-4, -7] point_start = [-4, -2] point_end = [-9, -7] raster_width = 0.1 arc_segment_rasterization_test( point_center, point_start, point_end, raster_width, False, point_not_in_second_quadrant, ) arc_segment_rasterization_test( point_center, point_start, point_end, raster_width, True, point_in_second_quadrant, ) # center on line point_start -> point_end # --------------------------------------- point_center = [3, 2] point_start = [2, 2] point_end = [4, 2] raster_width = 0.1 arc_segment_rasterization_test( point_center, point_start, point_end, raster_width, False, point_not_below_center, ) arc_segment_rasterization_test( point_center, point_start, point_end, raster_width, True, point_not_above_center ) def arc_segment_transformation_test_case( point_start, point_end, point_center, exp_start, exp_end, exp_center, exp_is_winding_changed, exp_radius, exp_angle_ccw, translation=None, transformation=None, ): """Perform a single transformation test on an arc segment. The test applies a transformation and compares the result to the expected values. Parameters ---------- point_start : Start point of the arc segment point_end : End point of the arc segment point_center : End point of the arc segment exp_start : Expected start point of the transformed arc segment exp_end : Expected end point of the transformed arc segment exp_center : Expected center point of the transformed arc segment exp_is_winding_changed : Bool that specifies if the transformation should change the winding order exp_radius : Expected radius of the transformed arc segment exp_angle_ccw : Expected angle of the transformed counter clockwise winding arc segment (refers to the winding before transformation) translation : Translation that should be applied (optional) (Default value = None) transformation : Transformation that should be applied (optional) (Default value = None) """ if translation is not None: assert transformation is None, "No mixed test cases supported" segment_cw = geo.ArcSegment.construct_with_points( point_start, point_end, point_center, False ) segment_ccw = geo.ArcSegment.construct_with_points( point_start, point_end, point_center, True ) # store some values radius_original = segment_cw.radius arc_angle_cw_original = segment_cw.arc_angle arc_angle_ccw_original = segment_ccw.arc_angle arc_length_cw_original = segment_cw.arc_length arc_length_ccw_original = segment_ccw.arc_length if translation is not None: segment_cw_trans = segment_cw.translate(translation) segment_ccw_trans = segment_ccw.translate(translation) else: segment_cw_trans = segment_cw.transform(transformation) segment_ccw_trans = segment_ccw.transform(transformation) # original segments not modified check_arc_segment_values( segment_cw, point_start, point_end, point_center, False, radius_original, arc_angle_cw_original, arc_length_cw_original, ) check_arc_segment_values( segment_ccw, point_start, point_end, point_center, True, radius_original, arc_angle_ccw_original, arc_length_ccw_original, ) # check new segment exp_angle_cw = 2 * np.pi - exp_angle_ccw exp_arc_length_cw = exp_angle_cw * exp_radius exp_arc_length_ccw = exp_angle_ccw * exp_radius check_arc_segment_values( segment_cw_trans, exp_start, exp_end, exp_center, exp_is_winding_changed, exp_radius, exp_angle_cw, exp_arc_length_cw, ) check_arc_segment_values( segment_ccw_trans, exp_start, exp_end, exp_center, not exp_is_winding_changed, exp_radius, exp_angle_ccw, exp_arc_length_ccw, ) # apply same transformation in place if translation is not None: segment_cw.apply_translation(translation) segment_ccw.apply_translation(translation) else: segment_cw.apply_transformation(transformation) segment_ccw.apply_transformation(transformation) check_segments_identical(segment_cw, segment_cw_trans) check_segments_identical(segment_ccw, segment_ccw_trans) def test_arc_segment_transformations(): """Test the arc segments transformation functions.""" # translation ----------------------------------------- arc_segment_transformation_test_case( point_start=[3, 3], point_end=[5, 5], point_center=[5, 3], exp_start=[2, 7], exp_end=[4, 9], exp_center=[4, 7], exp_is_winding_changed=False, exp_radius=2, exp_angle_ccw=1.5 * np.pi, translation=[-1, 4], ) # 45 degree rotation ---------------------------------- s = np.sin(np.pi / 4.0) c = np.cos(np.pi / 4.0) rotation_matrix = [[c, -s], [s, c]] arc_segment_transformation_test_case( point_start=[3, 3], point_end=[5, 5], point_center=[5, 3], exp_start=[0, np.sqrt(18)], exp_end=[0, np.sqrt(50)], exp_center=np.matmul(rotation_matrix, [5, 3]), exp_is_winding_changed=False, exp_radius=2, exp_angle_ccw=1.5 * np.pi, transformation=rotation_matrix, ) # reflection at 45 degree line ------------------------ v = np.array([-1, 1], dtype=float) reflection_matrix = np.identity(2) - 2 / np.dot(v, v) * np.outer(v, v) arc_segment_transformation_test_case( point_start=[3, 2], point_end=[5, 4], point_center=[5, 2], exp_start=[2, 3], exp_end=[4, 5], exp_center=[2, 5], exp_is_winding_changed=True, exp_radius=2, exp_angle_ccw=1.5 * np.pi, transformation=reflection_matrix, ) # scaling both coordinates equally -------------------- scaling_matrix = [[4, 0], [0, 4]] arc_segment_transformation_test_case( point_start=[3, 2], point_end=[5, 4], point_center=[5, 2], exp_start=[12, 8], exp_end=[20, 16], exp_center=[20, 8], exp_is_winding_changed=False, exp_radius=8, exp_angle_ccw=1.5 * np.pi, transformation=scaling_matrix, ) # non-uniform scaling which results in a valid arc ---- scaling_matrix = [[0.25, 0], [0, 2]] exp_angle_ccw = 2 * np.pi - 2 * np.arcsin(3 / 5) arc_segment_transformation_test_case( point_start=[8, 4], point_end=[32, 4], point_center=[20, 2], exp_start=[2, 8], exp_end=[8, 8], exp_center=[5, 4], exp_is_winding_changed=False, exp_radius=5, exp_angle_ccw=exp_angle_ccw, transformation=scaling_matrix, ) # exceptions ------------------------------------------ # transformation distorts arc segment = geo.ArcSegment.construct_with_points([3, 2], [5, 4], [5, 2], False) with pytest.raises(Exception): segment.transform(scaling_matrix) with pytest.raises(Exception): segment.apply_transformation(scaling_matrix) # transformation results in length = 0 segment = geo.ArcSegment.construct_with_points([3, 2], [5, 4], [5, 2], False) zero_matrix = np.zeros((2, 2)) with pytest.raises(Exception): segment.transform(zero_matrix) with pytest.raises(Exception): segment.apply_transformation(zero_matrix) def test_arc_segment_interpolation(): """Test the arc segment interpolation. Since it is not implemented, check if an exception is raised. """ segment_a = geo.ArcSegment.construct_with_points([0, 0], [1, 1], [1, 0]) segment_b = geo.ArcSegment.construct_with_points([0, 0], [2, 2], [0, 2]) # not implemented yet with pytest.raises(Exception): geo.ArcSegment.linear_interpolation(segment_a, segment_b, 1) # test Shape ------------------------------------------------------------------ def test_shape_construction(): """Test the constructor of the shape. Constructs some shapes in various ways and checks the results. """ line_segment = geo.LineSegment.construct_with_points([1, 1], [1, 2]) arc_segment = geo.ArcSegment.construct_with_points([0, 0], [1, 1], [0, 1]) # Empty construction shape = geo.Shape() assert shape.num_segments == 0 # Single element construction shape shape = geo.Shape(line_segment) assert shape.num_segments == 1 # Multi segment construction shape = geo.Shape([arc_segment, line_segment]) assert shape.num_segments == 2 assert isinstance(shape.segments[0], geo.ArcSegment) assert isinstance(shape.segments[1], geo.LineSegment) # exceptions ------------------------------------------ # segments not connected with pytest.raises(Exception): shape = geo.Shape([line_segment, arc_segment]) def test_shape_segment_addition(): """Test the add_segments function of the shape. Test should be self explanatory. """ # Create shape and add segments line_segment = geo.LineSegment.construct_with_points([1, 1], [0, 0]) arc_segment = geo.ArcSegment.construct_with_points([0, 0], [1, 1], [0, 1]) arc_segment2 = geo.ArcSegment.construct_with_points([1, 1], [0, 0], [0, 1]) shape = geo.Shape() shape.add_segments(line_segment) assert shape.num_segments == 1 shape.add_segments([arc_segment, arc_segment2]) assert shape.num_segments == 3 assert isinstance(shape.segments[0], geo.LineSegment) assert isinstance(shape.segments[1], geo.ArcSegment) assert isinstance(shape.segments[2], geo.ArcSegment) # exceptions ------------------------------------------ # new segment are not connected to already included segments with pytest.raises(Exception): shape.add_segments(arc_segment2) assert shape.num_segments == 3 # ensure shape is unmodified with pytest.raises(Exception): shape.add_segments([arc_segment2, arc_segment]) assert shape.num_segments == 3 # ensure shape is unmodified with pytest.raises(Exception): shape.add_segments([arc_segment, arc_segment]) assert shape.num_segments == 3 # ensure shape is unmodified def test_shape_line_segment_addition(): """Test the shape's add_line_segments function. Test should be self explanatory. """ shape_0 = geo.Shape() shape_0.add_line_segments([[0, 0], [1, 0]]) assert shape_0.num_segments == 1 shape_1 = geo.Shape() shape_1.add_line_segments([[0, 0], [1, 0], [2, 0]]) assert shape_1.num_segments == 2 # test possible formats to add single line segment ---- shape_0.add_line_segments([2, 0]) assert shape_0.num_segments == 2 shape_0.add_line_segments([[3, 0]]) assert shape_0.num_segments == 3 shape_0.add_line_segments(np.array([4, 0])) assert shape_0.num_segments == 4 shape_0.add_line_segments(np.array([[5, 0]])) assert shape_0.num_segments == 5 # add multiple segments ------------------------------- shape_0.add_line_segments([[6, 0], [7, 0], [8, 0]]) assert shape_0.num_segments == 8 shape_0.add_line_segments(np.array([[9, 0], [10, 0], [11, 0]])) assert shape_0.num_segments == 11 for i in range(11): expected_segment = geo.LineSegment.construct_with_points([i, 0], [i + 1, 0]) check_segments_identical(shape_0.segments[i], expected_segment) if i < 2: check_segments_identical(shape_1.segments[i], expected_segment) # exceptions ------------------------------------------ shape_2 = geo.Shape() # invalid inputs with pytest.raises(Exception): shape_2.add_line_segments([]) assert shape_2.num_segments == 0 with pytest.raises(Exception): shape_2.add_line_segments(None) assert shape_2.num_segments == 0 # single point with empty shape with pytest.raises(Exception): shape_2.add_line_segments([0, 1]) assert shape_2.num_segments == 0 # invalid point format with pytest.raises(Exception): shape_2.add_line_segments([[0, 1, 2], [1, 2, 3]]) assert shape_2.num_segments == 0 def test_shape_rasterization(): """Test rasterization function of the shape. The test uses three line segment of equal length, making it easy to check the rasterized points. Every step of the test is documented with comments. """ points = np.array([[0, 0], [0, 1], [1, 1], [1, 0]]) shape = geo.Shape().add_line_segments(points) # rasterize shape raster_width = 0.2 data = shape.rasterize(raster_width) # no duplications assert helpers.are_all_columns_unique(data) # check each data point num_data_points = data.shape[1] for i in range(num_data_points): if i < 6: assert ut.vector_is_close([0, i * 0.2], data[:, i]) elif i < 11: assert ut.vector_is_close([(i - 5) * 0.2, 1], data[:, i]) else: assert ut.vector_is_close([1, 1 - (i - 10) * 0.2], data[:, i]) # Test with too large raster width -------------------- # The shape does not clip large values to the valid range itself. The # added segments do the clipping. If a custom segment does not do that, # there is currently no mechanism to correct it. # However, this test somewhat ensures, that each segment is rasterized # individually. data = shape.rasterize(10) for point in points: assert ut.is_column_in_matrix(point, data) assert data.shape[1] == 4 # no duplication if shape is closed ------------------- shape.add_line_segments(points[0]) data = shape.rasterize(10) assert data.shape[1] == 4 assert helpers.are_all_columns_unique(data) # exceptions ------------------------------------------ with pytest.raises(Exception): shape.rasterize(0) with pytest.raises(Exception): shape.rasterize(-3) # empty shape shape_empty = geo.Shape() with pytest.raises(Exception): shape_empty.rasterize(0.2) def default_test_shape(): """Get a default shape for tests. Returns ------- weldx.geometry.Shape Default shape for tests """ # create shape arc_segment = geo.ArcSegment.construct_with_points([3, 4], [5, 0], [6, 3]) line_segment = geo.LineSegment.construct_with_points([5, 0], [11, 3]) return geo.Shape([arc_segment, line_segment]) def default_translation_vector(): """Get a default translation for transformation tests. Returns ------- numpy.ndarray Translation vector """ return ut.to_float_array([3, 4]) def check_point_translation(point_trans, point_original): """Check if a point is translated by the default translation test vector. Parameters ---------- point_trans : Translated point point_original : Original point """ assert ut.vector_is_close( point_trans - default_translation_vector(), point_original ) def check_point_rotation_90_degree(point_trans, point_original): """Check if a point is rotated by 90 degrees. Parameters ---------- point_trans : Transformed point point_original : Original point """ assert point_trans[0] == point_original[1] assert point_trans[1] == -point_original[0] def check_point_reflection_at_line_with_slope_1(point_trans, point_original): """Check if a point is reflected at a line through the origin with slope 1. Parameters ---------- point_trans : Transformed point point_original : Original point """ assert point_trans[0] == point_original[1] assert point_trans[1] == point_original[0] def shape_transformation_test_case( check_point_func, exp_winding_change, translation=None, transformation=None ): """Test a shape transformation. Parameters ---------- check_point_func : Function that checks if a point is transformed correctly. Interface: (point_transformed, point_original) -> None exp_winding_change : Bool that specifies if the transformation should change the winding order of arc segments. translation : Translation vector (optional) (Default value = None) transformation : Transformation matrix (optional) (Default value = None) """ if translation is not None: assert transformation is None, "No mixed test cases supported" shape = default_test_shape() if translation is not None: shape_trans = shape.translate(translation) else: shape_trans = shape.transform(transformation) # original shape unchanged check_shapes_identical(shape, default_test_shape()) # extract segments arc_segment = shape.segments[0] line_segment = shape.segments[1] arc_segment_trans = shape_trans.segments[0] line_segment_trans = shape_trans.segments[1] # check transformed arc segment's winding order assert arc_segment_trans.arc_winding_ccw is not exp_winding_change # check segment points check_point_func(arc_segment_trans.point_start, arc_segment.point_start) check_point_func(arc_segment_trans.point_end, arc_segment.point_end) check_point_func(arc_segment_trans.point_center, arc_segment.point_center) check_point_func(line_segment_trans.point_start, line_segment.point_start) check_point_func(line_segment_trans.point_end, line_segment.point_end) # apply same transformation in place if translation is not None: shape.apply_translation(translation) else: shape.apply_transformation(transformation) check_shapes_identical(shape_trans, shape) def test_shape_transformation(): """Test the shapes transformation functions. Dedicated reflection functions are tested separately. """ # translation ----------------------------------------- shape_transformation_test_case( check_point_func=check_point_translation, exp_winding_change=False, translation=default_translation_vector(), ) # transformation without reflection ------------------- rotation_matrix = np.array([[0, 1], [-1, 0]]) shape_transformation_test_case( check_point_func=check_point_rotation_90_degree, exp_winding_change=False, transformation=rotation_matrix, ) # transformation with reflection ---------------------- reflection_matrix = np.array([[0, 1], [1, 0]]) shape_transformation_test_case( check_point_func=check_point_reflection_at_line_with_slope_1, exp_winding_change=True, transformation=reflection_matrix, ) def check_reflected_point( point_original, point_reflected, reflection_axis_offset, reflection_axis_direction ): """Check if a point is reflected correctly. The function determines if the midpoint of the line point->reflected_point lies on the reflection axis. The reflection axis is specified by a normal and an offset. Parameters ---------- point_original : Original point point_reflected : Reflected point reflection_axis_offset : Offset vector of the reflection axis towards the origin. reflection_axis_direction : Direction vector of the reflection axis. """ vec_original_reflected = point_reflected - point_original midpoint = point_original + 0.5 * vec_original_reflected shifted_mid_point = midpoint - reflection_axis_offset determinant = np.linalg.det([shifted_mid_point, reflection_axis_direction]) assert math.isclose(determinant, 0, abs_tol=1e-9) def shape_reflection_test_case(normal, distance_to_origin): """Test the shape's reflection functions. Only the functions that use a normal and a distance to the origin to specify the reflection axis are tested by this test. Parameters ---------- normal : Normal of the reflection axis distance_to_origin : Distance to the origin of the reflection axis. """ direction_reflection_axis = np.array([normal[1], -normal[0]]) normal_length = np.linalg.norm(normal) unit_normal = np.array(normal) / normal_length offset = distance_to_origin * unit_normal shape = default_test_shape() # create reflected shape shape_reflected = shape.reflect(normal, distance_to_origin) # original shape is not modified check_shapes_identical(shape, default_test_shape()) arc_segment = shape.segments[0] arc_segment_ref = shape_reflected.segments[0] line_segment = shape.segments[1] line_segment_ref = shape_reflected.segments[1] # check reflected points check_reflected_point( arc_segment.point_start, arc_segment_ref.point_start, offset, direction_reflection_axis, ) check_reflected_point( arc_segment.point_end, arc_segment_ref.point_end, offset, direction_reflection_axis, ) check_reflected_point( arc_segment.point_center, arc_segment_ref.point_center, offset, direction_reflection_axis, ) check_reflected_point( line_segment.point_start, line_segment_ref.point_start, offset, direction_reflection_axis, ) check_reflected_point( line_segment.point_end, line_segment_ref.point_end, offset, direction_reflection_axis, ) # apply same reflection in place shape.apply_reflection(normal, distance_to_origin) check_shapes_identical(shape, shape_reflected) def test_shape_reflection(): """Test multiple reflections.""" shape_reflection_test_case([2, 1], np.linalg.norm([2, 1])) shape_reflection_test_case([0, 1], 5) shape_reflection_test_case([1, 0], 3) shape_reflection_test_case([1, 0], -3) shape_reflection_test_case([-7, 2], 4.12) shape_reflection_test_case([-7, -2], 4.12) shape_reflection_test_case([7, -2], 4.12) # exceptions ------------------------------------------ shape = default_test_shape() with pytest.raises(Exception): shape.reflect([0, 0], 2) with pytest.raises(Exception): shape.apply_reflection([0, 0]) def check_point_reflected_across_line( point_original, point_reflected, point_start, point_end ): """Check if a point is reflected correctly. The function determines if the midpoint of the line point->reflected_point lies on the reflection axis. The reflection axis is specified by 2 points. Parameters ---------- point_original : Original point point_reflected : Reflected point point_start : First point of the reflection axis point_end : Second point of the reflection axis """ vec_original_reflected = point_reflected - point_original mid_point = point_original + 0.5 * vec_original_reflected vec_start_mid = mid_point - point_start vec_start_end = point_end - point_start determinant = np.linalg.det([vec_start_end, vec_start_mid]) assert math.isclose(determinant, 0, abs_tol=1e-9) def shape_reflection_across_line_test_case(point_start, point_end): """Test the shape's reflection functions. Only the functions that use 2 points to specify the reflection axis are tested by this test. Parameters ---------- point_start : First point of the reflection axis point_end : Second point of the reflection axis """ point_start = np.array(point_start, float) point_end = np.array(point_end, float) shape = default_test_shape() # create reflected shape shape_reflected = shape.reflect_across_line(point_start, point_end) # original shape is not modified check_shapes_identical(shape, default_test_shape()) arc_segment = shape.segments[0] arc_segment_ref = shape_reflected.segments[0] line_segment = shape.segments[1] line_segment_ref = shape_reflected.segments[1] # check reflected points check_point_reflected_across_line( arc_segment.point_start, arc_segment_ref.point_start, point_start, point_end ) check_point_reflected_across_line( arc_segment.point_end, arc_segment_ref.point_end, point_start, point_end ) check_point_reflected_across_line( arc_segment.point_center, arc_segment_ref.point_center, point_start, point_end ) check_point_reflected_across_line( line_segment.point_start, line_segment_ref.point_start, point_start, point_end ) check_point_reflected_across_line( line_segment.point_end, line_segment_ref.point_end, point_start, point_end ) # apply same reflection in place shape.apply_reflection_across_line(point_start, point_end) check_shapes_identical(shape, shape_reflected) def test_shape_reflection_across_line(): """Test multiple reflections.""" shape_reflection_across_line_test_case([0, 0], [0, 1]) shape_reflection_across_line_test_case([0, 0], [1, 0]) shape_reflection_across_line_test_case([-3, 2.5], [31.53, -23.44]) shape_reflection_across_line_test_case([7, 8], [9, 10]) shape_reflection_across_line_test_case([-4.26, -23.1], [-8, -0.12]) shape_reflection_across_line_test_case([-2, 1], [2, -4.5]) # exceptions ------------------------------------------ shape = default_test_shape() with pytest.raises(Exception): shape.reflect_across_line([2, 5], [2, 5]) with pytest.raises(Exception): shape.apply_reflection_across_line([-3, 2], [-3, 2]) def segment_interpolation_nearest(segment_a, segment_b, weight): """Interpolate 2 segments by taking the nearest one. Parameters ---------- segment_a : First segment segment_b : Second segment weight : Interpolation weight Returns ------- weldx.geometry.LineSegment Nearest segment """ if weight > 0.5: return segment_b return segment_a def test_shape_interpolation_general(): """Test the shapes interpolation function. Creates 2 shapes, each containing 2 segments. Different segment interpolations are used. Afterwards, the shapes are interpolated using different weights and the results are compared to the expected values. """ # create shapes shape_a = geo.Shape().add_line_segments([[-1, -1], [1, 1], [3, -1]]) shape_b = geo.Shape().add_line_segments([[-1, 4], [1, 1], [3, 4]]) # define interpolation schemes interpolations = [ geo.LineSegment.linear_interpolation, segment_interpolation_nearest, ] for i in range(6): # interpolate shapes weight = i / 5.0 shape_c = geo.Shape.interpolate(shape_a, shape_b, weight, interpolations) # check result if weight > 0.5: last_point_exp = [3, 4] else: last_point_exp = [3, -1] points_exp = [[-1, -1 + 5 * weight], [1, 1], last_point_exp] shape_c_exp = geo.Shape().add_line_segments(points_exp) check_shapes_identical(shape_c, shape_c_exp) # check weight clipped to valid range ----------------- shape_d = geo.Shape.linear_interpolation(shape_a, shape_b, -3) check_shapes_identical(shape_d, shape_a) shape_e = geo.Shape.linear_interpolation(shape_a, shape_b, 100) check_shapes_identical(shape_e, shape_b) # exceptions ------------------------------------------ # interpolation destroys shape continuity shape_f = geo.Shape().add_line_segments([[-1, 4], [2, 2], [3, 4]]) with pytest.raises(Exception): geo.Shape.interpolate(shape_a, shape_f, 0.5, interpolations) # number of segments differ shape_a.add_line_segments([2, 2]) with pytest.raises(Exception): geo.Shape.linear_interpolation(shape_a, shape_b, 0.25) def test_shape_linear_interpolation(): """Test the shapes linear interpolation function. Creates 2 shapes, each containing 2 segments. Afterwards, the shapes are interpolated using different weights and the results are compared to the expected values. """ # create shapes shape_a = geo.Shape().add_line_segments([[0, 0], [1, 1], [2, 0]]) shape_b = geo.Shape().add_line_segments([[1, 1], [2, -1], [3, 5]]) for i in range(5): # interpolate shapes weight = i / 4.0 shape_c = geo.Shape.linear_interpolation(shape_a, shape_b, weight) # check result points_exp = [ [weight, weight], [1 + weight, 1 - 2 * weight], [2 + weight, 5 * weight], ] shape_c_exp = geo.Shape().add_line_segments(points_exp) check_shapes_identical(shape_c, shape_c_exp) # check weight clipped to valid range ----------------- shape_d = geo.Shape.linear_interpolation(shape_a, shape_b, -3) check_shapes_identical(shape_d, shape_a) shape_e = geo.Shape.linear_interpolation(shape_a, shape_b, 100) check_shapes_identical(shape_e, shape_b) # exceptions ------------------------------------------ # number of segments differ shape_a.add_line_segments([2, 2]) with pytest.raises(Exception): geo.Shape.linear_interpolation(shape_a, shape_b, 0.25) # Test profile class ---------------------------------------------------------- def test_profile_construction_and_shape_addition(): """Test profile construction and addition of shapes. Test details are explained by comments. """ arc_segment = geo.ArcSegment.construct_with_radius([-2, -2], [-1, -1], 1) shape = geo.Shape(arc_segment) shape.add_line_segments([[0, 0], [1, 0], [2, -1], [0, -1]]) # Check invalid types with pytest.raises(TypeError): geo.Profile(3) with pytest.raises(TypeError): geo.Profile("This is not right") with pytest.raises(TypeError): geo.Profile([2, 8, 1]) # Check valid types profile = geo.Profile(shape) assert profile.num_shapes == 1 profile = geo.Profile([shape, shape]) assert profile.num_shapes == 2 # Check invalid addition with pytest.raises(TypeError): profile.add_shapes([shape, 0.1]) with pytest.raises(TypeError): profile.add_shapes(["shape"]) with pytest.raises(TypeError): profile.add_shapes(0.1) # Check that invalid calls only raise an exception and do not invalidate # the internal data assert profile.num_shapes == 2 # Check valid addition profile.add_shapes(shape) assert profile.num_shapes == 3 profile.add_shapes([shape, shape]) assert profile.num_shapes == 5 # Check shapes shapes_profile = profile.shapes for shape_profile in shapes_profile: check_shapes_identical(shape, shape_profile) def test_profile_rasterization(): """Test the profile's rasterize function. The test creates a profile where all its shapes lie on the y axis. The gaps between each shape are identical to the raster width and they are added in ascending order to the profile. Therefore, all raster points are equidistant and can be checked easily. """ raster_width = 0.1 # create shapes shape0 = geo.Shape().add_line_segments([[-1, 0], [-raster_width, 0]]) shape1 = geo.Shape().add_line_segments([[0, 0], [1, 0]]) shape2 = geo.Shape().add_line_segments([[1 + raster_width, 0], [2, 0]]) # create profile profile = geo.Profile([shape0, shape1, shape2]) # rasterize data = profile.rasterize(raster_width) # no duplications assert helpers.are_all_columns_unique(data) # check raster data size expected_number_raster_points = int(round(3 / raster_width)) + 1 assert data.shape[1] == expected_number_raster_points # Check that all shapes are rasterized correct for i in range(int(round(3 / raster_width)) + 1): assert ut.vector_is_close(data[:, i], [i * raster_width - 1, 0]) # exceptions with pytest.raises(Exception): profile.rasterize(0) with pytest.raises(Exception): profile.rasterize(-3) # Test trace segment classes -------------------------------------------------- def check_trace_segment_length(segment, tolerance=1e-9): """Check if a trace segment returns the correct length. The check calculates the segment length numerically and compares it to the length returned by the segment. The numerical algorithm calculates the distances between several points on the trace and sums them up. The number of points is increased until the difference of the sum between two iterations is way below the specified tolerance. Parameters ---------- segment : Trace segment (any type) tolerance : Numerical tolerance (Default value = 1e-9) """ lcs = segment.local_coordinate_system(1) length_numeric_prev = np.linalg.norm(lcs.coordinates) # calculate numerical length by linearization num_segments = 2.0 num_iterations = 20 # calculate numerical length with increasing number of segments until # the rate of change between 2 calculations is small enough for i in range(num_iterations): length_numeric = 0 increment = 1.0 / num_segments cs_0 = segment.local_coordinate_system(0) for rel_pos in np.arange(increment, 1.0 + increment / 2, increment): cs_1 = segment.local_coordinate_system(rel_pos) length_numeric += np.linalg.norm(cs_1.coordinates - cs_0.coordinates) cs_0 = copy.deepcopy(cs_1) relative_change = length_numeric / length_numeric_prev length_numeric_prev = copy.deepcopy(length_numeric) num_segments *= 2 if math.isclose(relative_change, 1, abs_tol=tolerance / 10): break assert i < num_iterations - 1, ( "Segment length could not be " "determined numerically" ) assert math.isclose(length_numeric, segment.length, abs_tol=tolerance) def check_trace_segment_orientation(segment): """Test if the segment's local coordinate system is always oriented correctly. The orientation of the trace is determined numerically. A small delta is applied to the tested location to approximate the local direction of the trace. The result is compared to the local coordinate systems x-axis, which should always point into the trace's direction. Parameters ---------- segment : Trace segment (any type) """ # The initial orientation of a segment must be [1, 0, 0] lcs = segment.local_coordinate_system(0) assert ut.vector_is_close(lcs.orientation[:, 0], np.array([1, 0, 0])) delta = 1e-9 for rel_pos in np.arange(0.1, 1.01, 0.1): lcs = segment.local_coordinate_system(rel_pos) lcs_d = segment.local_coordinate_system(rel_pos - delta) trace_direction_approx = tf.normalize(lcs.coordinates - lcs_d.coordinates) # Check if the x-axis is aligned with the approximate trace direction assert ut.vector_is_close(lcs.orientation[:, 0], trace_direction_approx, 1e-6) def default_trace_segment_tests(segment, tolerance_length=1e-9): """Perform some default tests on trace segment. Parameters ---------- segment : Trace segment (any type) tolerance_length : Tolerance for the length test (Default value = 1e-9) """ lcs = segment.local_coordinate_system(0) # test that function actually returns a coordinate system class assert isinstance(lcs, tf.LocalCoordinateSystem) # check that coordinates for weight 0 are at [0, 0, 0] assert ut.vector_is_close(lcs.coordinates, [0, 0, 0]) # length and orientation tests check_trace_segment_length(segment, tolerance_length) check_trace_segment_orientation(segment) def test_linear_horizontal_trace_segment(): """Test the linear horizontal trace segment. Each sub test is documented by comments. """ length = 7.13 segment = geo.LinearHorizontalTraceSegment(length) # default tests default_trace_segment_tests(segment) # getter tests assert math.isclose(segment.length, length) # invalid inputs with pytest.raises(ValueError): geo.LinearHorizontalTraceSegment(0) with pytest.raises(ValueError): geo.LinearHorizontalTraceSegment(-4.61) @pytest.mark.slow def test_radial_horizontal_trace_segment(): """Test the radial horizontal trace segment. Each sub test is documented by comments. """ radius = 4.74 angle = np.pi / 1.23 segment_cw = geo.RadialHorizontalTraceSegment(radius, angle, True) segment_ccw = geo.RadialHorizontalTraceSegment(radius, angle, False) # default tests default_trace_segment_tests(segment_cw, 1e-4) default_trace_segment_tests(segment_ccw, 1e-4) # getter tests assert math.isclose(segment_cw.angle, angle) assert math.isclose(segment_ccw.angle, angle) assert math.isclose(segment_cw.radius, radius) assert math.isclose(segment_ccw.radius, radius) assert segment_cw.is_clockwise assert not segment_ccw.is_clockwise # check positions for weight in np.arange(0.1, 1, 0.1): current_angle = angle * weight x_exp = np.sin(current_angle) * radius y_exp = (1 - np.cos(current_angle)) * radius lcs_cw = segment_cw.local_coordinate_system(weight) lcs_ccw = segment_ccw.local_coordinate_system(weight) assert ut.vector_is_close(lcs_cw.coordinates, [x_exp, -y_exp, 0]) assert ut.vector_is_close(lcs_ccw.coordinates, [x_exp, y_exp, 0]) # invalid inputs with pytest.raises(ValueError): geo.RadialHorizontalTraceSegment(0, np.pi) with pytest.raises(ValueError): geo.RadialHorizontalTraceSegment(-0.53, np.pi) with pytest.raises(ValueError): geo.RadialHorizontalTraceSegment(1, 0) with pytest.raises(ValueError): geo.RadialHorizontalTraceSegment(1, -np.pi) # Test trace class ------------------------------------------------------------ class CustomSegment: """Custom trace segment for tests.""" def __init__(self): """Construct a custom segment.""" self.length = None @staticmethod def local_coordinate_system(*_args): """Get the local coordinate system. Parameters ---------- _args : Unused parameters Returns ------- weldx.transformations.LocalCoordinateSystem Local coordinate system """ return tf.LocalCoordinateSystem() def test_trace_construction(): """Test the trace's construction.""" linear_segment = geo.LinearHorizontalTraceSegment(1) radial_segment = geo.RadialHorizontalTraceSegment(1, np.pi) cs_coordinates = np.array([2, 3, -2]) cs_initial = helpers.rotated_coordinate_system(coordinates=cs_coordinates) # test single segment construction -------------------- trace = geo.Trace(linear_segment, cs_initial) assert math.isclose(trace.length, linear_segment.length) assert trace.num_segments == 1 segments = trace.segments assert len(segments) == 1 check_trace_segments_identical(trace.segments[0], linear_segment) check_coordinate_systems_identical(trace.coordinate_system, cs_initial) # test multi segment construction --------------------- trace = geo.Trace([radial_segment, linear_segment]) assert math.isclose(trace.length, linear_segment.length + radial_segment.length) assert trace.num_segments == 2 check_trace_segments_identical(trace.segments[0], radial_segment) check_trace_segments_identical(trace.segments[1], linear_segment) check_coordinate_systems_identical( trace.coordinate_system, tf.LocalCoordinateSystem() ) # check invalid inputs -------------------------------- with pytest.raises(TypeError): geo.Trace(radial_segment, linear_segment) with pytest.raises(TypeError): geo.Trace(radial_segment, 2) with pytest.raises(Exception): geo.Trace(None) # check construction with custom segment -------------- custom_segment = CustomSegment() custom_segment.length = 3 geo.Trace(custom_segment) # trace length <= 0 with pytest.raises(Exception): custom_segment.length = -12 geo.Trace(custom_segment) with pytest.raises(Exception): custom_segment.length = 0 geo.Trace(custom_segment) @pytest.mark.slow def test_trace_local_coordinate_system(): """Test the trace's local coordinate system function. The tested trace starts with a semicircle of radius 1 turning to the left and continues with a straight line of length 1. """ radial_segment = geo.RadialHorizontalTraceSegment(1, np.pi) linear_segment = geo.LinearHorizontalTraceSegment(1) # check with default coordinate system ---------------- trace = geo.Trace([radial_segment, linear_segment]) # check first segment (radial) for i in range(11): weight = i / 10 position = radial_segment.length * weight cs_trace = trace.local_coordinate_system(position) cs_segment = radial_segment.local_coordinate_system(weight) check_coordinate_systems_identical(cs_trace, cs_segment) # check second segment (linear) expected_orientation = radial_segment.local_coordinate_system(1).orientation for i in range(11): weight = i / 10 position_on_segment = linear_segment.length * weight position = radial_segment.length + position_on_segment expected_coordinates = np.array([-position_on_segment, 2, 0]) cs_expected = tf.LocalCoordinateSystem( orientation=expected_orientation, coordinates=expected_coordinates ) cs_trace = trace.local_coordinate_system(position) check_coordinate_systems_identical(cs_trace, cs_expected) # check with arbitrary coordinate system -------------- orientation = WXRotation.from_euler("x", np.pi / 2).as_matrix() coordinates = np.array([-3, 2.5, 5]) cs_base = tf.LocalCoordinateSystem(orientation, coordinates) trace = geo.Trace([radial_segment, linear_segment], cs_base) # check first segment for i in range(11): weight = i / 10 position = radial_segment.length * weight cs_trace = trace.local_coordinate_system(position) cs_segment = radial_segment.local_coordinate_system(weight) cs_expected = cs_segment + cs_base check_coordinate_systems_identical(cs_trace, cs_expected) # check second segment cs_start_seg2 = radial_segment.local_coordinate_system(1) + cs_base for i in range(11): weight = i / 10 position_on_segment = linear_segment.length * weight position = radial_segment.length + position_on_segment lcs_coordinates = [position_on_segment, 0, 0] cs_exp = tf.LocalCoordinateSystem(coordinates=lcs_coordinates) + cs_start_seg2 cs_trace = trace.local_coordinate_system(position) check_coordinate_systems_identical(cs_trace, cs_exp) @pytest.mark.slow def test_trace_rasterization(): """Test the trace's rasterize function. The tested trace starts with a line segment of length 1 and continues with a radial segment of radius 1 and counter clockwise winding. """ radial_segment = geo.RadialHorizontalTraceSegment(1, np.pi) linear_segment = geo.LinearHorizontalTraceSegment(1) # check with default coordinate system ---------------- trace = geo.Trace([linear_segment, radial_segment]) data = trace.rasterize(0.1) # no duplications assert helpers.are_all_columns_unique(data) raster_width_eff = trace.length / (data.shape[1] - 1) for i in range(data.shape[1]): trace_location = i * raster_width_eff if trace_location <= 1: assert ut.vector_is_close([trace_location, 0, 0], data[:, i]) else: arc_length = trace_location - 1 angle = arc_length # radius 1 -> arc_length = arc_angle * radius x = np.sin(angle) + 1 # radius 1 -> sin(arc_angle) = x / radius y = 1 - np.cos(angle) assert ut.vector_is_close([x, y, 0], data[:, i]) # check with arbitrary coordinate system -------------- orientation = WXRotation.from_euler("y", np.pi / 2).as_matrix() coordinates = np.array([-3, 2.5, 5]) cs_base = tf.LocalCoordinateSystem(orientation, coordinates) trace = geo.Trace([linear_segment, radial_segment], cs_base) data = trace.rasterize(0.1) raster_width_eff = trace.length / (data.shape[1] - 1) for i in range(data.shape[1]): trace_location = i * raster_width_eff if trace_location <= 1: x = coordinates[0] y = coordinates[1] z = coordinates[2] - trace_location else: arc_length = trace_location - 1 angle = arc_length # radius 1 -> arc_length = arc_angle * radius x = coordinates[0] y = coordinates[1] + 1 - np.cos(angle) z = coordinates[2] - 1 - np.sin(angle) assert ut.vector_is_close([x, y, z], data[:, i]) # check if raster width is clipped to valid range ----- data = trace.rasterize(1000) assert data.shape[1] == 2 assert ut.vector_is_close([-3, 2.5, 5], data[:, 0]) assert ut.vector_is_close([-3, 4.5, 4], data[:, 1]) # exceptions ------------------------------------------ with pytest.raises(Exception): trace.rasterize(0) with pytest.raises(Exception): trace.rasterize(-23.1) # Profile interpolation classes ----------------------------------------------- def check_interpolated_profile_points(profile, c_0, c_1, c_2): """Check the points of an interpolated profile from the interpolation test. Parameters ---------- profile : Interpolated profile. c_0 : First expected point c_1 : Second expected point c_2 : Third expected point """ assert ut.vector_is_close(profile.shapes[0].segments[0].point_start, c_0) assert ut.vector_is_close(profile.shapes[0].segments[0].point_end, c_1) assert ut.vector_is_close(profile.shapes[1].segments[0].point_start, c_1) assert ut.vector_is_close(profile.shapes[1].segments[0].point_end, c_2) def test_linear_profile_interpolation_sbs(): """Test linear profile interpolation. Uses the default profiles which consist of two shapes. Each shape contains just a single line segment. """ [profile_a, profile_b] = get_default_profiles() for i in range(5): weight = i / 4.0 profile_c = geo.linear_profile_interpolation_sbs(profile_a, profile_b, weight) check_interpolated_profile_points( profile_c, [-i, 2 * i], [8 - 2 * i, 16 - 2 * i], [16, -4 * i] ) # check weight clipped to valid range ----------------- a_0 = profile_a.shapes[0].segments[0].point_start a_1 = profile_a.shapes[1].segments[0].point_start a_2 = profile_a.shapes[1].segments[0].point_end profile_c = geo.linear_profile_interpolation_sbs(profile_a, profile_b, -3) check_interpolated_profile_points(profile_c, a_0, a_1, a_2) profile_c = geo.linear_profile_interpolation_sbs(profile_a, profile_b, 42) b_0 = profile_b.shapes[0].segments[0].point_start b_1 = profile_b.shapes[1].segments[0].point_start b_2 = profile_b.shapes[1].segments[0].point_end check_interpolated_profile_points(profile_c, b_0, b_1, b_2) # exceptions ------------------------------------------ shape_a12 = profile_a.shapes[1] shape_b01 = profile_b.shapes[0] shape_b12 = profile_b.shapes[1] # number of shapes differ profile_d = geo.Profile([shape_b01, shape_b12, shape_a12]) with pytest.raises(Exception): geo.linear_profile_interpolation_sbs(profile_d, profile_b, 0.5) # number of segments differ shape_b012 = geo.Shape( [ geo.LineSegment.construct_with_points(b_0, b_1), geo.LineSegment.construct_with_points(b_1, b_2), ] ) profile_b2 = geo.Profile([shape_b01, shape_b012]) with pytest.raises(Exception): geo.linear_profile_interpolation_sbs(profile_a, profile_b2, 0.2) # test variable profile ------------------------------------------------------- def check_variable_profile_state(variable_profile, profiles_exp, locations_exp): """Check the state of a variable profile. Parameters ---------- variable_profile : Variable profile that should be checked. profiles_exp : Expected stored profiles locations_exp : Expected stored locations """ num_profiles = len(locations_exp) assert variable_profile.num_interpolation_schemes == num_profiles - 1 assert variable_profile.num_locations == num_profiles assert variable_profile.num_profiles == num_profiles for i in range(num_profiles): assert math.isclose(variable_profile.locations[i], locations_exp[i]) check_profiles_identical(variable_profile.profiles[i], profiles_exp[i]) def test_variable_profile_construction(): """Test construction of variable profiles.""" interpol = geo.linear_profile_interpolation_sbs profile_a, profile_b = get_default_profiles() # construction with single location and interpolation variable_profile = geo.VariableProfile([profile_a, profile_b], 1, interpol) check_variable_profile_state(variable_profile, [profile_a, profile_b], [0, 1]) variable_profile = geo.VariableProfile([profile_a, profile_b], [1], [interpol]) check_variable_profile_state(variable_profile, [profile_a, profile_b], [0, 1]) # construction with location list variable_profile = geo.VariableProfile([profile_a, profile_b], [0, 1], interpol) check_variable_profile_state(variable_profile, [profile_a, profile_b], [0, 1]) variable_profile = geo.VariableProfile( [profile_a, profile_b, profile_a], [1, 2], [interpol, interpol] ) check_variable_profile_state( variable_profile, [profile_a, profile_b, profile_a], [0, 1, 2] ) variable_profile = geo.VariableProfile( [profile_a, profile_b, profile_a], [0, 1, 2], [interpol, interpol] ) check_variable_profile_state( variable_profile, [profile_a, profile_b, profile_a], [0, 1, 2] ) # exceptions ------------------------------------------ # first location is not 0 with pytest.raises(Exception): geo.VariableProfile([profile_a, profile_b], [1, 2], interpol) # number of locations is not correct with pytest.raises(Exception): geo.VariableProfile( [profile_a, profile_b, profile_a], [1], [interpol, interpol] ) with pytest.raises(Exception): geo.VariableProfile([profile_a, profile_b], [0, 1, 2], interpol) # number of interpolations is not correct with pytest.raises(Exception): geo.VariableProfile([profile_a, profile_b, profile_a], [0, 1, 2], [interpol]) with pytest.raises(Exception): geo.VariableProfile( [profile_a, profile_b, profile_a], [0, 1, 2], [interpol, interpol, interpol] ) # locations not ordered with pytest.raises(Exception): geo.VariableProfile( [profile_a, profile_b, profile_a], [0, 2, 1], [interpol, interpol] ) def test_variable_profile_local_profile(): """Test if the local profiles of a variable profile are calculated correctly.""" interpol = geo.linear_profile_interpolation_sbs profile_a, profile_b = get_default_profiles() variable_profile = geo.VariableProfile( [profile_a, profile_b, profile_a], [0, 1, 2], [interpol, interpol] ) for i in range(5): # first segment location = i / 4.0 profile = variable_profile.local_profile(location) check_interpolated_profile_points( profile, [-i, 2 * i], [8 - 2 * i, 16 - 2 * i], [16, -4 * i] ) # second segment location += 1 profile = variable_profile.local_profile(location) check_interpolated_profile_points( profile, [-4 + i, 8 - 2 * i], [2 * i, 8 + 2 * i], [16, -16 + 4 * i] ) # check if values are clipped to valid range ---------- profile = variable_profile.local_profile(177) check_interpolated_profile_points(profile, [0, 0], [8, 16], [16, 0]) profile = variable_profile.local_profile(-2) check_interpolated_profile_points(profile, [0, 0], [8, 16], [16, 0]) # test geometry class --------------------------------------------------------- def test_geometry_construction(): """Test construction of the geometry class.""" profile_a, profile_b = get_default_profiles() variable_profile = geo.VariableProfile( [profile_a, profile_b], [0, 1], geo.linear_profile_interpolation_sbs ) radial_segment = geo.RadialHorizontalTraceSegment(1, np.pi) linear_segment = geo.LinearHorizontalTraceSegment(1) trace = geo.Trace([radial_segment, linear_segment]) # single profile construction geometry = geo.Geometry(profile_a, trace) check_profiles_identical(geometry.profile, profile_a) check_traces_identical(geometry.trace, trace) # variable profile construction geometry = geo.Geometry(variable_profile, trace) check_variable_profiles_identical(geometry.profile, variable_profile) check_traces_identical(geometry.trace, trace) # exceptions ------------------------------------------ # wrong types with pytest.raises(TypeError): geo.Geometry(variable_profile, profile_b) with pytest.raises(TypeError): geo.Geometry(trace, trace) with pytest.raises(TypeError): geo.Geometry(trace, profile_b) with pytest.raises(TypeError): geo.Geometry(variable_profile, "a") with pytest.raises(TypeError): geo.Geometry("42", trace) @pytest.mark.slow def test_geometry_rasterization_trace(): """Test if the rasterized geometry data follows the trace. The utilized trace starts with a line segment of length 1 and continues with a radial segment of radius 1 and counter clockwise winding. Each individual step is documented by comments. """ a0 = [1, 0] a1 = [1, 1] a2 = [0, 1] a3 = [-1, 1] a4 = [-1, 0] profile_points = ut.to_float_array([a0, a1, a2, a2, a3, a4]).transpose() # create profile shape_a012 = geo.Shape().add_line_segments([a0, a1, a2]) shape_a234 = geo.Shape().add_line_segments([a2, a3, a4]) profile_a = geo.Profile([shape_a012, shape_a234]) # create trace radial_segment = geo.RadialHorizontalTraceSegment(1, np.pi / 2, False) linear_segment = geo.LinearHorizontalTraceSegment(1) trace = geo.Trace([linear_segment, radial_segment]) # create geometry geometry = geo.Geometry(profile_a, trace) # rasterize # Note, if the raster width is larger than the segment, it is automatically # adjusted to the segment width. Hence, each rasterized profile has 6 # points, which were defined at the beginning of the test (a2 is # included twice) data = geometry.rasterize(7, 0.1) # calculate the number of rasterized profiles num_raster_profiles = int(np.round(data.shape[1] / 6)) # calculate effective raster width eff_raster_width = trace.length / (data.shape[1] / 6 - 1) arc_point_distance_on_trace = 2 * np.sin(eff_raster_width / 2) for i in range(num_raster_profiles): # get index of the current profiles first point idx_0 = i * 6 # check first segment (line) if data[0, idx_0 + 2] <= 1: for j in range(6): point_exp = [ eff_raster_width * i, profile_points[0, j], profile_points[1, j], ] assert ut.vector_is_close(data[:, idx_0 + j], point_exp) # check second segment (arc) else: # first 2 profile points lie on the arcs center point assert ut.vector_is_close(data[:, idx_0], [1, a0[0], a0[1]]) assert ut.vector_is_close(data[:, idx_0 + 1], [1, a1[0], a1[1]]) # z-values are constant for j in np.arange(2, 6, 1): assert math.isclose(data[2, idx_0 + j], profile_points[1, j]) # all profile points in a common x-y plane exp_radius = np.array([1, 1, 2, 2]) vec_02 = data[0:2, idx_0 + 2] - data[0:2, idx_0] assert math.isclose(np.linalg.norm(vec_02), exp_radius[0]) for j in np.arange(3, 6, 1): vec_0j = data[0:2, idx_0 + j] - data[0:2, idx_0] assert math.isclose(np.linalg.norm(vec_0j), exp_radius[j - 2]) unit_vec_0j = tf.normalize(vec_0j) assert math.isclose(np.dot(unit_vec_0j, vec_02), 1) # check point distance between profiles if data[1, idx_0 - 4] > 1: exp_point_distance = arc_point_distance_on_trace * exp_radius for j in np.arange(2, 6, 1): point_distance = np.linalg.norm( data[:, idx_0 + j] - data[:, idx_0 + j - 6] ) assert math.isclose(exp_point_distance[j - 2], point_distance) # check if raster width is clipped to valid range ----- data = geometry.rasterize(7, 1000) assert data.shape[1] == 12 for i in range(12): if i < 6: math.isclose(data[0, i], 0) else: assert math.isclose(data[1, i], 1) # exceptions ------------------------------------------ with pytest.raises(Exception): geometry.rasterize(0, 1) with pytest.raises(Exception): geometry.rasterize(1, 0) with pytest.raises(Exception): geometry.rasterize(0, 0) with pytest.raises(Exception): geometry.rasterize(-2.3, 1) with pytest.raises(Exception): geometry.rasterize(1, -4.6) with pytest.raises(Exception): geometry.rasterize(-2.3, -4.6) @pytest.mark.slow def test_geometry_rasterization_profile_interpolation(): """Check if the rasterized geometry interpolates profiles correctly.""" interpol = geo.linear_profile_interpolation_sbs a0 = [1, 0] a1 = [1, 1] a2 = [0, 1] a3 = [-1, 1] a4 = [-1, 0] # create shapes shape_a012 = geo.Shape().add_line_segments([a0, a1, a2]) shape_a234 = geo.Shape().add_line_segments([a2, a3, a4]) shape_b012 = copy.deepcopy(shape_a012) shape_b234 = copy.deepcopy(shape_a234) shape_b012.apply_transformation([[2, 0], [0, 2]]) shape_b234.apply_transformation([[2, 0], [0, 2]]) # create variable profile profile_a = geo.Profile([shape_a012, shape_a234]) profile_b = geo.Profile([shape_b012, shape_b234]) variable_profile = geo.VariableProfile( [profile_a, profile_b, profile_a], [0, 2, 6], [interpol, interpol] ) linear_segment_l1 = geo.LinearHorizontalTraceSegment(1) linear_segment_l2 = geo.LinearHorizontalTraceSegment(2) # Note: The profile in the middle of the variable profile is not located # at the start of the second trace segment trace = geo.Trace([linear_segment_l2, linear_segment_l1]) geometry = geo.Geometry(variable_profile, trace) # Note: If the raster width is larger than the segment, it is automatically # adjusted to the segment width. Hence each rasterized profile has 6 # points, which were defined at the beginning of the test (a2 is # included twice) data = geometry.rasterize(7, 0.1) assert data.shape[1] == 186 profile_points = np.array([a0, a1, a2, a2, a3, a4]).transpose() # check first profile interpolation for i in range(11): idx_0 = i * 6 for j in range(6): point_exp = np.array( [ i * 0.1, profile_points[0, j] * (1 + i * 0.1), profile_points[1, j] * (1 + i * 0.1), ] ) assert ut.vector_is_close(data[:, idx_0 + j], point_exp) # check second profile interpolation for i in range(20): idx_0 = (30 - i) * 6 for j in range(6): point_exp = np.array( [ 3 - i * 0.1, profile_points[0, j] * (1 + i * 0.05), profile_points[1, j] * (1 + i * 0.05), ] ) assert ut.vector_is_close(data[:, idx_0 + j], point_exp) def get_test_profile() -> geo.Profile: """Create a `weldx.geometry.Profile` for tests. Returns ------- weldx.geometry.Profile : `weldx.geometry.Profile` for tests. """ shape_0 = geo.Shape().add_line_segments(Q_([[1, 0], [1, 1], [3, 1]], "cm")) shape_1 = geo.Shape().add_line_segments(Q_([[-1, 0], [-1, 1]], "cm")) return geo.Profile([shape_0, shape_1]) def get_test_geometry_constant_profile() -> geo.Geometry: """Create a `weldx.geometry.Geometry` with constant profile for tests. Returns ------- weldx.geometry.Geometry : `weldx.geometry.Geometry` with constant profile for tests. """ profile = get_test_profile() trace = geo.Trace([geo.LinearHorizontalTraceSegment(Q_(1, "cm"))]) return geo.Geometry(profile=profile, trace=trace) def get_test_geometry_variable_profile(): """Create a `weldx.geometry.Geometry` with variable profile for tests. Returns ------- weldx.geometry.Geometry : `weldx.geometry.Geometry` with constant profile for tests. """ profile = get_test_profile() variable_profile = geo.VariableProfile( [profile, profile], [0, 1], [geo.linear_profile_interpolation_sbs] ) trace = geo.Trace([geo.LinearHorizontalTraceSegment(Q_(1, "cm"))]) return geo.Geometry(profile=variable_profile, trace=trace) class TestGeometry: """Test the geometry class.""" @staticmethod @pytest.mark.parametrize( "geometry, p_rw, t_rw, exp_num_points, exp_num_triangles", [ (get_test_geometry_constant_profile(), Q_(1, "cm"), Q_(1, "cm"), 12, 8), (get_test_geometry_variable_profile(), Q_(1, "cm"), Q_(1, "cm"), 12, 0), ], ) def test_spatial_data( geometry: geo.Geometry, p_rw: pint.Quantity, t_rw: pint.Quantity, exp_num_points: int, exp_num_triangles: int, ): """Test the `spatial_data` function. Parameters ---------- geometry : weldx.geometry.Geometry Geometry that should be tested p_rw : pint.Quantity Profile raster width that is passed to the function t_rw : pint.Quantity Trace raster width that is passed to the function exp_num_points : int Expected number of points of the returned `weldx.geometry.SpatialData` instance exp_num_triangles : int Expected number of triangles of the returned `weldx.geometry.SpatialData` instance """ spatial_data = geometry.spatial_data(p_rw, t_rw) assert len(spatial_data.coordinates.data) == exp_num_points num_triangles = 0 if spatial_data.triangles is not None: num_triangles = len(spatial_data.triangles) assert num_triangles == exp_num_triangles # -------------------------------------------------------------------------------------- # SpatialData # -------------------------------------------------------------------------------------- class TestSpatialData: """Test the functionality of the `SpatialData` class.""" @staticmethod @pytest.mark.parametrize( "arguments", [ (np.ones((5, 3)),), (np.ones((5, 3)), [[0, 1, 2], [0, 2, 3]]), (np.ones((5, 3)), [[0, 1, 2], [0, 2, 3]], {}), (np.ones((5, 3)), None, {}), ], ) def test_class_creation(arguments): """Test creation of a `SpatialData` instance. Parameters ---------- arguments : Tuple of arguments that are passed to the `__init__` method """ pc = SpatialData(*arguments) assert isinstance(pc.coordinates, DataArray) assert np.allclose(pc.coordinates.data, arguments[0]) if len(arguments) > 1 and arguments[1] is not None: np.all(arguments[1] == pc.triangles) @staticmethod @pytest.mark.parametrize( "arguments, exception_type, test_name", [ ((np.ones((5, 3)), [[0, 1], [2, 3]]), ValueError, "# inv. triangulation 1"), ((np.ones((5, 3)), [[0, 1, 2, 3]]), ValueError, "# inv. triangulation 2"), ((np.ones((5, 3)), [0, 1, 2]), ValueError, "# inv. triangulation 3"), ], ) def test_class_creation_exceptions(arguments, exception_type, test_name): """Test exceptions during creation of a `SpatialData` instance. Parameters ---------- arguments : Tuple of arguments that are passed to the `__init__` method exception_type : Expected exception type test_name : str A string starting with an `#` that describes the test. """ with pytest.raises(exception_type): SpatialData(*arguments) @staticmethod @pytest.mark.parametrize( "filename", ["test.ply", "test.stl", "test.vtk", Path("test.stl")], ) def test_read_write_file(filename: Union[str, Path]): """Test the `from_file` and `write_to_file` functions. The test simply creates a `SpatialData` instance, writes it to a file and reads it back. The result is compared to the original object. Parameters ---------- filename : Name of the file """ points = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]] triangles = [[0, 1, 2], [2, 3, 0]] data = SpatialData(points, triangles) with TemporaryDirectory(dir=Path(__file__).parent) as tmpdirname: filepath = f"{tmpdirname}/{filename}" if isinstance(filename, Path): filepath = Path(filepath) data.write_to_file(filepath) data_read = SpatialData.from_file(filepath) assert np.allclose(data.coordinates, data_read.coordinates) assert np.allclose(data.triangles, data_read.triangles)
30.905533
88
0.641839
4a1cb003d6072e92fa6f7de10ff0a5c1006156e7
322
py
Python
python/Lib/lib2to3/ot.py
mrnbd/ZCHelper_full
e40560522b3eca417b5fad97efe8b1627eca2a22
[ "0BSD" ]
null
null
null
python/Lib/lib2to3/ot.py
mrnbd/ZCHelper_full
e40560522b3eca417b5fad97efe8b1627eca2a22
[ "0BSD" ]
null
null
null
python/Lib/lib2to3/ot.py
mrnbd/ZCHelper_full
e40560522b3eca417b5fad97efe8b1627eca2a22
[ "0BSD" ]
null
null
null
import os import sys import time imf = '\ZCHelper.exe' exe = sys.executable dname = os.path.dirname(exe) utp = os.path.split(dname) os.chdir(utp[0]) puti = str(utp[0]) + imf try: w = os.system('taskkill /f /im ZCHelper.exe') except Exception: pass if w == 0: time.sleep(2) os.startfile(puti,'runas') sys.exit()
12.88
51
0.670807
4a1cb06e7ce93a3c8ec16ade5b44341e00a17c91
778
py
Python
data/rename_image_names.py
LONG-9621/IQA_02
22ca65cd0156b5b428cecd55ed939366fb64d2e5
[ "MIT" ]
406
2017-07-27T02:26:41.000Z
2022-03-31T12:55:48.000Z
data/rename_image_names.py
LONG-9621/IQA_02
22ca65cd0156b5b428cecd55ed939366fb64d2e5
[ "MIT" ]
66
2017-11-07T07:30:21.000Z
2021-07-28T15:30:46.000Z
data/rename_image_names.py
LONG-9621/IQA_02
22ca65cd0156b5b428cecd55ed939366fb64d2e5
[ "MIT" ]
135
2017-08-02T01:02:43.000Z
2022-03-30T10:29:19.000Z
import numpy as np import os import os.path as osp import cv2 import pdb shape = ['gblur','wn','jpeg','jp2k','fastfading'] data = './live/' for tp in shape: file_root = data + tp + '/' list_file = 'info' + '.txt' filename = [line.rstrip('\n') for line in open( osp.join(file_root, list_file))] N_name = [] for i in filename: N_name.append(i.split()[1]) pdb.set_trace() for j in range(len(N_name)): folder = data +tp + '/' + N_name[j] tmp = cv2.imread(folder) cv2.imwrite(data+ tp + '/' + 'img' + str(int(N_name[j][3:-4])).zfill(3)+'.bmp',tmp) if int(N_name[j][3:-4])<100: os.remove(folder) os.remove(data+tp+'/'+'Thumbs.db')
18.97561
91
0.517995
4a1cb1533fafdc008428804aae5a28014c7c9e96
3,777
py
Python
ch7-blog-app-with-users/django_project/settings.py
wsvincent/djangoforbeginners_32
aba7c99aa6050cfe8fb9d588af58c9f67411ae8a
[ "MIT" ]
5
2021-12-14T03:33:39.000Z
2022-01-11T14:13:21.000Z
ch7-blog-app-with-users/django_project/settings.py
wsvincent/djangoforbeginners_32
aba7c99aa6050cfe8fb9d588af58c9f67411ae8a
[ "MIT" ]
null
null
null
ch7-blog-app-with-users/django_project/settings.py
wsvincent/djangoforbeginners_32
aba7c99aa6050cfe8fb9d588af58c9f67411ae8a
[ "MIT" ]
null
null
null
""" Django settings for django_project project. Generated by 'django-admin startproject' using Django 3.2.8. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = "django-insecure-5&4s6$765*&)a1l3u%^ikcfd)@pza+d9j4_u03wezevf)128$+" # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [".herokuapp.com", "localhost", "127.0.0.1"] # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "whitenoise.runserver_nostatic", # new "django.contrib.staticfiles", "blog.apps.BlogConfig", "accounts.apps.AccountsConfig", ] MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "whitenoise.middleware.WhiteNoiseMiddleware", # new "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] ROOT_URLCONF = "django_project.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [str(BASE_DIR.joinpath("templates"))], # new "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] WSGI_APPLICATION = "django_project.wsgi.application" # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": BASE_DIR / "db.sqlite3", } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", }, { "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", }, { "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = "/static/" STATICFILES_DIRS = [str(BASE_DIR.joinpath("static"))] STATIC_ROOT = str(BASE_DIR.joinpath("staticfiles")) # new STATICFILES_STORAGE = "whitenoise.storage.CompressedManifestStaticFilesStorage" # new # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = "django.db.models.BigAutoField" LOGIN_REDIRECT_URL = "home" LOGOUT_REDIRECT_URL = "home" # new
27.772059
91
0.709293
4a1cb1b6149919f9a4be0be288bd8255e221392b
3,226
py
Python
utils/bills.py
jdubansky/openstates.org
6fd5592aae554c4bb201f0a76ed3605bff5204c2
[ "MIT" ]
null
null
null
utils/bills.py
jdubansky/openstates.org
6fd5592aae554c4bb201f0a76ed3605bff5204c2
[ "MIT" ]
null
null
null
utils/bills.py
jdubansky/openstates.org
6fd5592aae554c4bb201f0a76ed3605bff5204c2
[ "MIT" ]
null
null
null
import re from django.db.models import F from openstates.data.models import Bill from .websearchquery import WebSearchQuery as SearchQuery from .common import abbr_to_jid # decision was made in openstates/issues#193 to exclude these by default to not confuse users EXCLUDED_CLASSIFICATIONS = ["proposed bill"] # This function has to match openstates.transformers _bill_id_re = re.compile(r"([A-Z]*)\s*0*([-\d]+)") _mi_bill_id_re = re.compile(r"(SJR|HJR)\s*([A-Z]+)") def fix_bill_id(bill_id): # special case for MI Joint Resolutions if _mi_bill_id_re.match(bill_id): return _mi_bill_id_re.sub(r"\1 \2", bill_id, 1).strip() return _bill_id_re.sub(r"\1 \2", bill_id, 1).strip() def search_bills( *, sort, bills=None, query=None, state=None, chamber=None, session=None, sponsor=None, classification=None, exclude_classifications=None, subjects=None, status=None, ): if bills is None: bills = Bill.objects.all().select_related( "legislative_session", "legislative_session__jurisdiction", ) if state: jid = abbr_to_jid(state.lower()) bills = bills.filter(legislative_session__jurisdiction_id=jid) if query: if re.match(r"\w{1,3}\s*\d{1,5}", query): bills = bills.filter(identifier__iexact=fix_bill_id(query)) else: bills = bills.filter( searchable__search_vector=SearchQuery( query, search_type="web", config="english" ) ) if chamber: bills = bills.filter(from_organization__classification=chamber) if session: bills = bills.filter(legislative_session__identifier=session) if sponsor: bills = bills.filter(sponsorships__person_id=sponsor) if classification: bills = bills.filter(classification__contains=[classification]) elif exclude_classifications: bills = bills.exclude(classification__contains=exclude_classifications) if subjects: bills = bills.filter(subject__overlap=subjects) if not status: status = [] if "passed-lower-chamber" in status: bills = bills.filter( actions__classification__contains=["passage"], actions__organization__classification="lower", ) elif "passed-upper-chamber" in status: bills = bills.filter( actions__classification__contains=["passage"], actions__organization__classification="upper", ) elif "signed" in status: bills = bills.filter(actions__classification__contains=["executive-signature"]) if sort is None: pass elif sort == "-updated": bills = bills.order_by("-updated_at") elif sort == "first_action": bills = bills.order_by(F("first_action_date").asc(nulls_last=True)) elif sort == "-first_action": bills = bills.order_by(F("first_action_date").desc(nulls_last=True)) elif sort == "latest_action": bills = bills.order_by(F("latest_action_date").asc(nulls_last=True)) else: # -latest_action, or not specified bills = bills.order_by(F("latest_action_date").desc(nulls_last=True)) return bills
34.319149
93
0.66367
4a1cb2542073ce40e6faaa6b0cb423c922089f16
9,687
py
Python
hydro/core.py
capruitt/hydro
bb128b3c1381eff735bc8e89ef84273f3ee1f550
[ "MIT" ]
3
2016-12-21T16:31:51.000Z
2017-01-22T12:50:26.000Z
hydro/core.py
capruitt/hydro
bb128b3c1381eff735bc8e89ef84273f3ee1f550
[ "MIT" ]
null
null
null
hydro/core.py
capruitt/hydro
bb128b3c1381eff735bc8e89ef84273f3ee1f550
[ "MIT" ]
5
2016-08-19T23:23:55.000Z
2020-10-22T18:13:01.000Z
import numpy as np, pandas as pd, matplotlib.pyplot as plt from datetime import datetime from matplotlib.ticker import FuncFormatter from scipy.optimize import curve_fit plt.style.use("seaborn-ticks") def exp_curve(x, a, b): """Exponential curve used for rating curves""" return (a * x**b) def r_squ(x, y, pred): """ Coefficient of determination x: independent variable\n y: dependent variable\n pred: predicted values """ a = 0.0 b = 0.0 ybar = np.mean(y) for i, yhat in zip(y, pred): a += (i - yhat)**2 b += (i - ybar)**2 return 1 - a / b class RC(object): def __init__(self, stage, discharge): """ Stage-Discharge rating curve stage: pandas series containing stage values correspoding to discharges\n discharge: pandas series containing discharge measurements """ self.stage = stage self.discharge = discharge # curve_fit self.popt, self.pcov = curve_fit(exp_curve, self.stage, self.discharge) # r-squared self.pred = [exp_curve(j, self.popt[0], self.popt[1]) for j in self.stage] self.r = r_squ(self.stage, self.discharge, self.pred) def Q(self, allstages): """ Compute discharges for entire series of stages""" return list(map(lambda x: round(exp_curve(x, self.popt[0], self.popt[1]), 3), allstages)) def plot(self, title='Rating Curve', log=True): """ plot the rating curve """ fig = plt.figure() ax1 = fig.add_subplot(111, facecolor=[.95,.95,.95]) plt.grid(True, which='both', color='w', ls='-', zorder=0) ax1.scatter(self.stage, self.discharge, color='k', s=10) ax1.set_ylabel(r'Discharge, cfs') ax1.set_xlabel(r'Stage, ft') if log: ax1.set_ylim(0.01, 100) ax1.set_yscale('log'); ax1.set_xscale('log') # log scale x and y ax1.yaxis.set_major_formatter(FuncFormatter(lambda y,pos: ('{{:.{:1d}f}}'.format(int(np.maximum(-np.log10(y),0)))).format(y))) ax1.xaxis.set_major_formatter(FuncFormatter(lambda y,pos: ('{{:.{:1d}f}}'.format(int(np.maximum(-np.log10(y),0)))).format(y))) plt.title(title) ax1.set_axisbelow(True) # puts grid below plot # write the equation in the plot ax1.text(0.05, 0.7, f'y = {self.popt[0]:.3f}x^{self.popt[1]:.3f}', fontsize=15, transform=ax1.transAxes) # draw the model line line = np.linspace(min(self.stage), max(self.stage), 100) ax1.plot(line, exp_curve(line, self.popt[0], self.popt[1]), color='k') plt.show() class Discharge(object): def __init__(self, time, Q, rain=[]): """ time: timeseries Q: discharge values """ self.time = time self.Q = Q self.rain = rain self.bflow = [] def dailyQ(self, method='mean'): """ Calculates the daily flow of a set of disharge data. Method specifies the method of aggregating each day -- either by 'mean' or by 'sum'. Default is mean.\n Returns daily flow and day in a dataframe. """ daily = pd.DataFrame({'Q':self.Q, 'time':self.time}) daily['day'] = daily.time.apply(lambda x: datetime(x.year, x.month, x.day)) if method == 'mean': daily = pd.DataFrame(daily.groupby(['day'])['Q'].mean()) daily['meanQ'] = daily['Q'] del daily['Q'] elif method == 'sum': daily = pd.DataFrame(daily.groupby(['day'])['Q'].sum()) daily['sumQ'] = daily['Q'] del daily['Q'] daily.reset_index(inplace=True) return daily def RB_Flashiness(self): """Richards-Baker Flashiness Index for a series of daily mean discharges.""" Q = self.dailyQ().meanQ Qsum = np.sum(Q) # sum of daily mean discharges Qpath = 0.0 for i in range(len(Q)): if i == 0: Qpath = Q.iloc[i] # first entry only else: Qpath += np.abs(Q.iloc[i] - Q.iloc[i-1]) # sum the absolute differences of the mean discharges return Qpath/Qsum def flow_duration(self, plot=False): """ Creates the flow duration curve for a discharge dataset. Returns a pandas series whose index is the discharge values and series is exceedance probability. """ fd = pd.Series(self.Q).value_counts() # frequency of unique values fd.sort_index(inplace=True) # sort in order of increasing discharges fd = fd.cumsum() # cumulative sum of frequencies fd = fd.apply(lambda x: 100 - x/fd.max() * 100) # normalize fd = pd.DataFrame(fd.reset_index()) fd['exeedance_prob'] = fd['index']; del fd['index'] if plot: import probscale # flow duration curves use a probability scale for the x axis fig = plt.figure(figsize=[8, 10]) ax1 = fig.add_subplot(111, facecolor=[.95,.95,.95]) plt.grid(True, which='both', color='w', ls='-', zorder=0) ax1.plot(fd['discharge_cfs'], fd['exeedance_prob'], 'x', ls='', color='k', label='Total Flow', ms=5) # set y axis to log scale and x axis to probability scale ax1.set_yscale('log') ax1.set_xscale('prob') # from import probscale plt.xticks([.01,.1,.5,1,2,5,10,20,30,40,50,60,70,80,90,95,98,99,99.5,99.9,99.99], rotation='vertical') plt.legend() plt.title('Flow Duration Curve') plt.ylabel('Flow (cfs)') plt.xlabel('Percentage of time flow was equaled or exceeded') plt.show() return fd def Lyne_Hollick(self, alpha=.925, direction='f'): """ Recursive digital filter for baseflow separation. Based on Lyne and Hollick, 1979. series : array of discharge measurements\n alpha : filter parameter\n direction : (f)orward or (r)everse calculation """ # first looks to see if there has alread been a run if len(self.bflow) > 0: Q = np.array(self.bflow) else: Q = np.array(self.Q) f = np.zeros(len(Q)) if direction[0] == 'f': for t in np.arange(1,len(Q)): # algorithm f[t] = alpha * f[t-1] + (1 + alpha)/2 * (Q[t] - Q[t-1]) # to prevent negative values if Q[t] - f[t] > Q[t]: f[t] = 0 elif direction[0] == 'r': for t in np.arange(len(Q)-2, 1, -1): f[t] = alpha * f[t+1] + (1 + alpha)/2 * (Q[t] - Q[t+1]) if Q[t] - f[t] > Q[t]: f[t] = 0 # adds the baseflow to self variables so it can be called recursively self.bflow = np.array(Q - f) # calls method again if multiple passes are specified if len(direction) > 1: self.Lyne_Hollick(alpha, direction=direction[1:]) return self.bflow def Eckhardt(self, alpha=.98, BFI=.80, re=1): """ Recursive digital filter for baseflow separation. Based on Eckhardt, 2004.\n series : array of discharge measurements\n alpha : filter parameter\n BFI : BFI_max (maximum baseflow index)\n re : number of times to run filter """ print('round ' + str(re)) print(self.bflow[:5]) # first looks to see if there has alread been a run if len(self.bflow) > 0: Q = np.array(self.bflow) else: Q = np.array(self.Q) f = np.zeros(len(Q)) f[0] = Q[0] for t in np.arange(1,len(Q)): # algorithm f[t] = ((1 - BFI) * alpha * f[t-1] + (1 - alpha) * BFI * Q[t]) / (1 - alpha * BFI) if f[t] > Q[t]: f[t] = Q[t] # adds the baseflow to self variables so it can be called recursively self.bflow = f print(max(self.bflow)) # calls method again if multiple passes are specified if re > 1: self.Eckhardt(alpha=alpha, BFI=BFI, re=re-1) return self.bflow def plot(self, addseries=[], log=True, title='Discharge'): """ Quick plot with or without rain data.\n If you wish to plot more than one series to compare them, use addseries to list in order of [time, Q, ...] for each additional series. """ fig = plt.figure() ax1 = fig.add_subplot(111, facecolor=[.95,.95,.95]) plt.grid(True, which='both', color='w', ls='-', zorder=0) ax1.plot(self.time, self.Q, label='Series1') if len(self.rain) != 0: ax2 = ax1.twinx() ax2.plot(self.time, self.rain, alpha=.5, c='b', lw=1, label='Rain') ax2.set_ylim(1, 0) ax2.set_ylabel(r'Rain, in') ax1.set_ylabel('Discharge, cfs') ax1.set_xlabel('Stage, ft') # log scale for y axis if log: ax1.set_yscale('log') ax1.yaxis.set_major_formatter(FuncFormatter(lambda y,pos: ('{{:.{:1d}f}}'.format(int(np.maximum(-np.log10(y),0)))).format(y))) # add ablity to plot multiple time series more = len(addseries) while more > 0: ax1.plot(addseries[more-2], addseries[more-1], label=f'Series{int(len(addseries)/2-more/2 +2)}') more -= 2 ax1.legend(loc='best') plt.title(title) plt.show()
39.864198
138
0.546299
4a1cb33b3106f263678f634ea3a84f198f77504b
1,897
py
Python
examples/tf/trpo_swimmer_ray_sampler.py
michahu/garage
c045a1e5e5088a18828ec48bfee0addb1943bfd4
[ "MIT" ]
1
2021-01-11T18:40:52.000Z
2021-01-11T18:40:52.000Z
examples/tf/trpo_swimmer_ray_sampler.py
michahu/garage
c045a1e5e5088a18828ec48bfee0addb1943bfd4
[ "MIT" ]
null
null
null
examples/tf/trpo_swimmer_ray_sampler.py
michahu/garage
c045a1e5e5088a18828ec48bfee0addb1943bfd4
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """This is an example to train a task with TRPO algorithm. Uses Ray sampler instead of on_policy vectorized sampler. Here it runs Swimmer-v2 environment with 40 iterations. """ import ray from garage import wrap_experiment from garage.envs import GymEnv from garage.experiment.deterministic import set_seed from garage.np.baselines import LinearFeatureBaseline from garage.sampler import RaySampler from garage.tf.algos import TRPO from garage.tf.policies import GaussianMLPPolicy from garage.trainer import TFTrainer @wrap_experiment def trpo_swimmer_ray_sampler(ctxt=None, seed=1): """tf_trpo_swimmer. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by Trainer to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. """ # Since this is an example, we are running ray in a reduced state. # One can comment this line out in order to run ray at full capacity ray.init(_memory=52428800, object_store_memory=78643200, ignore_reinit_error=True, log_to_driver=False, include_dashboard=False) with TFTrainer(snapshot_config=ctxt) as trainer: set_seed(seed) env = GymEnv('Swimmer-v2') policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=(32, 32)) baseline = LinearFeatureBaseline(env_spec=env.spec) algo = TRPO(env_spec=env.spec, policy=policy, baseline=baseline, discount=0.99, max_kl_step=0.01) trainer.setup(algo, env, sampler_cls=RaySampler, sampler_args={'seed': seed}) trainer.train(n_epochs=40, batch_size=4000) trpo_swimmer_ray_sampler(seed=100)
31.098361
76
0.670005
4a1cb33b8e8d3a46d82dcd35c10709d1f7c4da7b
250
py
Python
cart/models.py
weiliang1103/onlinelibrary
993f7969cb6c8242631c13c7714652e73484e313
[ "MIT" ]
null
null
null
cart/models.py
weiliang1103/onlinelibrary
993f7969cb6c8242631c13c7714652e73484e313
[ "MIT" ]
null
null
null
cart/models.py
weiliang1103/onlinelibrary
993f7969cb6c8242631c13c7714652e73484e313
[ "MIT" ]
null
null
null
from django.db import models from catalog.models import Book # Create your models here class History(models.Model): books = models.ManyToManyField(Book) def __str__(self): return ', '.join([book.title for book in self.books.all()])
25
67
0.712
4a1cb429df088d41b0c371ae8ed34c4d2c810576
1,800
py
Python
createEquitiesDatabase.py
rkadiya/ProjectTrinity
b8cc5d2ca7318aa338741c215714a1f58b07b89a
[ "MIT" ]
1
2018-06-28T13:31:29.000Z
2018-06-28T13:31:29.000Z
createEquitiesDatabase.py
rkadiya/ProjectTrinity
b8cc5d2ca7318aa338741c215714a1f58b07b89a
[ "MIT" ]
null
null
null
createEquitiesDatabase.py
rkadiya/ProjectTrinity
b8cc5d2ca7318aa338741c215714a1f58b07b89a
[ "MIT" ]
null
null
null
from __future__ import print_function from pymongo import MongoClient import datetime import json import time import urllib2 import os from pymongo.errors import DuplicateKeyError count = 0 log = open("./error_tickers", "w+") client = MongoClient() db = client.equitiesdb stocks = db.stocks stocks.ensure_index("dataset.dataset_code", unique=True) exchanges = ["AMEX","NYSE","Nasdaq"] #exchanges = ["RAVI"] for exchange in exchanges: with open("./Tickers/" + exchange + "_tickerlist.txt") as f1: for line in f1: if count > 1800: time.sleep(60) # Quandl has a limit of 2000 queries per 10 mins. count = 0 ticker = line.rstrip() try: count += 1 response = urllib2.urlopen("https://www.quandl.com/api/v3/datasets/YAHOO/" + ticker + ".json?auth_token=sBEu_6B6oDDp2uBRdpNL") data = json.load(response) stocks.insert_one(data) print(ticker) except urllib2.HTTPError, err: if err.code == 404: print("Page not found!+" + ticker,file=log) elif err.code == 403: print ("Access denied!+" + ticker,file=log) else: print ("Something happened! Error code!+" + ticker,file=log), err.code except urllib2.URLError, err: print ("Some other error happened!+" + ticker, file.log), err.reason except ValueError as e: print (e.message + "+" + ticker,file=log) except DuplicateKeyError as dke: print (dke.message + "+" + ticker,file=log) log.close()
34.615385
146
0.542222
4a1cb4fd1f4d9daf3cc1fed470f3bc9f7b2476ab
606
py
Python
neutron_plugin_contrail/plugins/opencontrail/loadbalancer/utils.py
hamzazafar/contrail-neutron-plugin
fb8dbcabc8240e5c47753ae6e2af5556d0a38421
[ "Apache-2.0" ]
null
null
null
neutron_plugin_contrail/plugins/opencontrail/loadbalancer/utils.py
hamzazafar/contrail-neutron-plugin
fb8dbcabc8240e5c47753ae6e2af5556d0a38421
[ "Apache-2.0" ]
null
null
null
neutron_plugin_contrail/plugins/opencontrail/loadbalancer/utils.py
hamzazafar/contrail-neutron-plugin
fb8dbcabc8240e5c47753ae6e2af5556d0a38421
[ "Apache-2.0" ]
null
null
null
try: from neutron.common.exceptions import SubnetNotFound except ImportError: from neutron_lib.exceptions import SubnetNotFound from cfgm_common import exceptions as vnc_exc def get_subnet_network_id(client, subnet_id): try: kv_pair = client.kv_retrieve(subnet_id) except vnc_exc.NoIdError: raise SubnetNotFound(subnet_id=subnet_id) return kv_pair.split()[0] def get_subnet_cidr(client, subnet_id): try: kv_pair = client.kv_retrieve(subnet_id) except vnc_exc.NoIdError: raise SubnetNotFound(subnet_id=subnet_id) return kv_pair.split()[1]
27.545455
56
0.745875
4a1cb506c9add40706e2d722c6e0e448105cc5c2
3,727
py
Python
tests/apis/test_sandbox_api.py
usbo/tinvest
e6b7348af76c9db4d8430878efe69820a4079c21
[ "MIT" ]
null
null
null
tests/apis/test_sandbox_api.py
usbo/tinvest
e6b7348af76c9db4d8430878efe69820a4079c21
[ "MIT" ]
null
null
null
tests/apis/test_sandbox_api.py
usbo/tinvest
e6b7348af76c9db4d8430878efe69820a4079c21
[ "MIT" ]
null
null
null
# pylint:disable=redefined-outer-name import pytest from tinvest import ( BrokerAccountType, Empty, SandboxApi, SandboxRegisterRequest, SandboxRegisterResponse, SandboxSetCurrencyBalanceRequest, SandboxSetPositionBalanceRequest, ) @pytest.fixture() def api_client(http_client): return SandboxApi(http_client) def test_sandbox_register(api_client, http_client): body = SandboxRegisterRequest(broker_account_type=BrokerAccountType.tinkoff) api_client.sandbox_register_post(body) http_client.request.assert_called_once_with( 'POST', '/sandbox/register', response_model=SandboxRegisterResponse, data=body.json(by_alias=True), ) def test_sandbox_currencies_balance(api_client, http_client, broker_account_id): body = SandboxSetCurrencyBalanceRequest.parse_obj( {'balance': 1000.0, 'currency': 'USD'} ) api_client.sandbox_currencies_balance_post(body, broker_account_id) http_client.request.assert_called_once_with( 'POST', '/sandbox/currencies/balance', response_model=Empty, params={'brokerAccountId': broker_account_id}, data=body.json(by_alias=True), ) def test_sandbox_currencies_balance_without_broker_account_id(api_client, http_client): body = SandboxSetCurrencyBalanceRequest.parse_obj( {'balance': 1000.0, 'currency': 'USD'} ) api_client.sandbox_currencies_balance_post(body) http_client.request.assert_called_once_with( 'POST', '/sandbox/currencies/balance', response_model=Empty, params={}, data=body.json(by_alias=True), ) def test_sandbox_positions_balance(api_client, http_client, broker_account_id): body = SandboxSetPositionBalanceRequest.parse_obj( {'balance': 1000.0, 'figi': '<FIGI>'} ) api_client.sandbox_positions_balance_post(body, broker_account_id) http_client.request.assert_called_once_with( 'POST', '/sandbox/positions/balance', response_model=Empty, params={'brokerAccountId': broker_account_id}, data=body.json(by_alias=True), ) def test_sandbox_positions_balance_without_broker_account_id(api_client, http_client): body = SandboxSetPositionBalanceRequest.parse_obj( {'balance': 1000.0, 'figi': '<FIGI>'} ) api_client.sandbox_positions_balance_post(body) http_client.request.assert_called_once_with( 'POST', '/sandbox/positions/balance', response_model=Empty, params={}, data=body.json(by_alias=True), ) def test_sandbox_remove(api_client, http_client, broker_account_id): api_client.sandbox_remove_post(broker_account_id) http_client.request.assert_called_once_with( 'POST', '/sandbox/remove', response_model=Empty, params={'brokerAccountId': broker_account_id}, ) def test_sandbox_remove_without_broker_account_id(api_client, http_client): api_client.sandbox_remove_post() http_client.request.assert_called_once_with( 'POST', '/sandbox/remove', response_model=Empty, params={}, ) def test_sandbox_clear(api_client, http_client, broker_account_id): api_client.sandbox_clear_post(broker_account_id) http_client.request.assert_called_once_with( 'POST', '/sandbox/clear', response_model=Empty, params={'brokerAccountId': broker_account_id}, ) def test_sandbox_clear_without_broker_account_id(api_client, http_client): api_client.sandbox_clear_post() http_client.request.assert_called_once_with( 'POST', '/sandbox/clear', response_model=Empty, params={}, )
29.816
87
0.710759
4a1cb5d2fc2e5a4b25873caea06376805c0025bc
26,175
py
Python
tools/ldgen/generation.py
pabloVecchio/framework-espidf_v4.0.1
fabed4c56ccc6b4e1a985aebdcf31bac22819ffc
[ "Apache-2.0" ]
null
null
null
tools/ldgen/generation.py
pabloVecchio/framework-espidf_v4.0.1
fabed4c56ccc6b4e1a985aebdcf31bac22819ffc
[ "Apache-2.0" ]
null
null
null
tools/ldgen/generation.py
pabloVecchio/framework-espidf_v4.0.1
fabed4c56ccc6b4e1a985aebdcf31bac22819ffc
[ "Apache-2.0" ]
null
null
null
# # Copyright 2018-2019 Espressif Systems (Shanghai) PTE LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import collections import itertools import os import fnmatch from fragments import Sections, Scheme, Mapping, Fragment from pyparsing import Suppress, White, ParseException, Literal, Group, ZeroOrMore from pyparsing import Word, OneOrMore, nums, alphanums, alphas, Optional, LineEnd, printables from ldgen_common import LdGenFailure class PlacementRule(): """ Encapsulates a generated placement rule placed under a target """ DEFAULT_SPECIFICITY = 0 ARCHIVE_SPECIFICITY = 1 OBJECT_SPECIFICITY = 2 SYMBOL_SPECIFICITY = 3 class __container(): def __init__(self, content): self.content = content __metadata = collections.namedtuple("__metadata", "excludes expansions expanded") def __init__(self, archive, obj, symbol, sections, target): if archive == "*": archive = None if obj == "*": obj = None self.archive = archive self.obj = obj self.symbol = symbol self.target = target self.sections = dict() self.specificity = 0 self.specificity += 1 if self.archive else 0 self.specificity += 1 if (self.obj and not self.obj == '*') else 0 self.specificity += 1 if self.symbol else 0 for section in sections: section_data = Sections.get_section_data_from_entry(section, self.symbol) if not self.symbol: for s in section_data: metadata = self.__metadata(self.__container([]), self.__container([]), self.__container(False)) self.sections[s] = metadata else: (section, expansion) = section_data if expansion: metadata = self.__metadata(self.__container([]), self.__container([expansion]), self.__container(True)) self.sections[section] = metadata def get_section_names(self): return self.sections.keys() def add_exclusion(self, other, sections_infos=None): # Utility functions for this method def do_section_expansion(rule, section): if section in rule.get_section_names(): sections_in_obj = sections_infos.get_obj_sections(rule.archive, rule.obj) expansions = fnmatch.filter(sections_in_obj, section) return expansions def remove_section_expansions(rule, section, expansions): existing_expansions = self.sections[section].expansions.content self.sections[section].expansions.content = [e for e in existing_expansions if e not in expansions] # Exit immediately if the exclusion to be added is more general than this rule. if not other.is_more_specific_rule_of(self): return for section in self.get_sections_intersection(other): if(other.specificity == PlacementRule.SYMBOL_SPECIFICITY): # If this sections has not been expanded previously, expand now and keep track. previously_expanded = self.sections[section].expanded.content if not previously_expanded: expansions = do_section_expansion(self, section) if expansions: self.sections[section].expansions.content = expansions self.sections[section].expanded.content = True previously_expanded = True # Remove the sections corresponding to the symbol name remove_section_expansions(self, section, other.sections[section].expansions.content) # If it has been expanded previously but now the expansions list is empty, # it means adding exclusions has exhausted the list. Remove the section entirely. if previously_expanded and not self.sections[section].expanded.content: del self.sections[section] else: # A rule section can have multiple rule sections excluded from it. Get the # most specific rule from the list, and if an even more specific rule is found, # replace it entirely. Otherwise, keep appending. exclusions = self.sections[section].excludes exclusions_list = exclusions.content if exclusions.content is not None else [] exclusions_to_remove = filter(lambda r: r.is_more_specific_rule_of(other), exclusions_list) remaining_exclusions = [e for e in exclusions_list if e not in exclusions_to_remove] remaining_exclusions.append(other) self.sections[section].excludes.content = remaining_exclusions def get_sections_intersection(self, other): return set(self.sections.keys()).intersection(set(other.sections.keys())) def is_more_specific_rule_of(self, other): if (self.specificity <= other.specificity): return False # Compare archive, obj and target for entity_index in range(1, other.specificity + 1): if self[entity_index] != other[entity_index] and other[entity_index] is not None: return False return True def maps_same_entities_as(self, other): if self.specificity != other.specificity: return False # Compare archive, obj and target for entity_index in range(1, other.specificity + 1): if self[entity_index] != other[entity_index] and other[entity_index] is not None: return False return True def __getitem__(self, key): if key == PlacementRule.ARCHIVE_SPECIFICITY: return self.archive elif key == PlacementRule.OBJECT_SPECIFICITY: return self.obj elif key == PlacementRule.SYMBOL_SPECIFICITY: return self.symbol else: return None def __str__(self): sorted_sections = sorted(self.get_section_names()) sections_string = list() for section in sorted_sections: exclusions = self.sections[section].excludes.content exclusion_string = None if exclusions: exclusion_string = " ".join(map(lambda e: "*" + e.archive + (":" + e.obj + ".*" if e.obj else ""), exclusions)) exclusion_string = "EXCLUDE_FILE(" + exclusion_string + ")" else: exclusion_string = "" section_string = None exclusion_section_string = None section_expansions = self.sections[section].expansions.content section_expanded = self.sections[section].expanded.content if section_expansions and section_expanded: section_string = " ".join(section_expansions) exclusion_section_string = section_string else: section_string = section exclusion_section_string = exclusion_string + " " + section_string sections_string.append(exclusion_section_string) sections_string = " ".join(sections_string) archive = str(self.archive) if self.archive else "" obj = (str(self.obj) + (".*" if self.obj else "")) if self.obj else "" # Handle output string generation based on information available if self.specificity == PlacementRule.DEFAULT_SPECIFICITY: rule_string = "*(%s)" % (sections_string) elif self.specificity == PlacementRule.ARCHIVE_SPECIFICITY: rule_string = "*%s:(%s)" % (archive, sections_string) else: rule_string = "*%s:%s(%s)" % (archive, obj, sections_string) return rule_string def __eq__(self, other): if id(self) == id(other): return True def exclusions_set(exclusions): exclusions_set = {(e.archive, e.obj, e.symbol, e.target) for e in exclusions} return exclusions_set if self.archive != other.archive: return False if self.obj != other.obj: return False if self.symbol != other.symbol: return False if set(self.sections.keys()) != set(other.sections.keys()): return False for (section, metadata) in self.sections.items(): self_meta = metadata other_meta = other.sections[section] if exclusions_set(self_meta.excludes.content) != exclusions_set(other_meta.excludes.content): return False if set(self_meta.expansions.content) != set(other_meta.expansions.content): return False return True def __ne__(self, other): return not self.__eq__(other) def __iter__(self): yield self.archive yield self.obj yield self.symbol raise StopIteration class GenerationModel: """ Implements generation of placement rules based on collected sections, scheme and mapping fragment. """ DEFAULT_SCHEME = "default" def __init__(self): self.schemes = {} self.sections = {} self.mappings = {} def _add_mapping_rules(self, archive, obj, symbol, scheme_name, scheme_dict, rules): # Use an ordinary dictionary to raise exception on non-existing keys temp_dict = dict(scheme_dict) sections_bucket = temp_dict[scheme_name] for (target, sections) in sections_bucket.items(): section_entries = [] for section in sections: section_entries.extend(section.entries) rule = PlacementRule(archive, obj, symbol, section_entries, target) if rule not in rules: rules.append(rule) def _build_scheme_dictionary(self): scheme_dictionary = collections.defaultdict(dict) # Collect sections into buckets based on target name for scheme in self.schemes.values(): sections_bucket = collections.defaultdict(list) for (sections_name, target_name) in scheme.entries: # Get the sections under the bucket 'target_name'. If this bucket does not exist # is is created automatically sections_in_bucket = sections_bucket[target_name] try: sections = self.sections[sections_name] except KeyError: message = GenerationException.UNDEFINED_REFERENCE + " to sections '" + sections + "'." raise GenerationException(message, scheme) sections_in_bucket.append(sections) scheme_dictionary[scheme.name] = sections_bucket # Search for and raise exception on first instance of sections mapped to multiple targets for (scheme_name, sections_bucket) in scheme_dictionary.items(): for sections_a, sections_b in itertools.combinations(sections_bucket.values(), 2): set_a = set() set_b = set() for sections in sections_a: set_a.update(sections.entries) for sections in sections_b: set_b.update(sections.entries) intersection = set_a.intersection(set_b) # If the intersection is a non-empty set, it means sections are mapped to multiple # targets. Raise exception. if intersection: scheme = self.schemes[scheme_name] message = "Sections " + str(intersection) + " mapped to multiple targets." raise GenerationException(message, scheme) return scheme_dictionary def generate_rules(self, sections_infos): placement_rules = collections.defaultdict(list) scheme_dictionary = self._build_scheme_dictionary() # Generate default rules default_rules = list() self._add_mapping_rules(None, None, None, GenerationModel.DEFAULT_SCHEME, scheme_dictionary, default_rules) all_mapping_rules = collections.defaultdict(list) # Generate rules based on mapping fragments for mapping in self.mappings.values(): archive = mapping.archive mapping_rules = all_mapping_rules[archive] for (obj, symbol, scheme_name) in mapping.entries: try: if not (obj == Mapping.MAPPING_ALL_OBJECTS and symbol is None and scheme_name == GenerationModel.DEFAULT_SCHEME): self._add_mapping_rules(archive, obj, symbol, scheme_name, scheme_dictionary, mapping_rules) except KeyError: message = GenerationException.UNDEFINED_REFERENCE + " to scheme '" + scheme_name + "'." raise GenerationException(message, mapping) # Detect rule conflicts for mapping_rules in all_mapping_rules.items(): self._detect_conflicts(mapping_rules) # Add exclusions for mapping_rules in all_mapping_rules.values(): self._create_exclusions(mapping_rules, default_rules, sections_infos) # Add the default rules grouped by target for default_rule in default_rules: existing_rules = placement_rules[default_rule.target] if default_rule.get_section_names(): existing_rules.append(default_rule) for mapping_rules in all_mapping_rules.values(): # Add the mapping rules grouped by target for mapping_rule in mapping_rules: existing_rules = placement_rules[mapping_rule.target] if mapping_rule.get_section_names(): existing_rules.append(mapping_rule) return placement_rules def _detect_conflicts(self, rules): (archive, rules_list) = rules for specificity in range(0, PlacementRule.OBJECT_SPECIFICITY + 1): rules_with_specificity = filter(lambda r: r.specificity == specificity, rules_list) for rule_a, rule_b in itertools.combinations(rules_with_specificity, 2): intersections = rule_a.get_sections_intersection(rule_b) if intersections and rule_a.maps_same_entities_as(rule_b): rules_string = str([str(rule_a), str(rule_b)]) message = "Rules " + rules_string + " map sections " + str(list(intersections)) + " into multiple targets." raise GenerationException(message) def _create_extra_rules(self, rules): # This function generates extra rules for symbol specific rules. The reason for generating extra rules is to isolate, # as much as possible, rules that require expansion. Particularly, object specific extra rules are generated. rules_to_process = sorted(rules, key=lambda r: r.specificity) symbol_specific_rules = list(filter(lambda r: r.specificity == PlacementRule.SYMBOL_SPECIFICITY, rules_to_process)) extra_rules = dict() for symbol_specific_rule in symbol_specific_rules: extra_rule_candidate = {s: None for s in symbol_specific_rule.get_section_names()} super_rules = filter(lambda r: symbol_specific_rule.is_more_specific_rule_of(r), rules_to_process) # Take a look at the existing rules that are more general than the current symbol-specific rule. # Only generate an extra rule if there is no existing object specific rule for that section for super_rule in super_rules: intersections = symbol_specific_rule.get_sections_intersection(super_rule) for intersection in intersections: if super_rule.specificity != PlacementRule.OBJECT_SPECIFICITY: extra_rule_candidate[intersection] = super_rule else: extra_rule_candidate[intersection] = None # Generate the extra rules for the symbol specific rule section, keeping track of the generated extra rules for (section, section_rule) in extra_rule_candidate.items(): if section_rule: extra_rule = None extra_rules_key = (symbol_specific_rule.archive, symbol_specific_rule.obj, section_rule.target) try: extra_rule = extra_rules[extra_rules_key] if section not in extra_rule.get_section_names(): new_rule = PlacementRule(extra_rule.archive, extra_rule.obj, extra_rule.symbol, list(extra_rule.get_section_names()) + [section], extra_rule.target) extra_rules[extra_rules_key] = new_rule except KeyError: extra_rule = PlacementRule(symbol_specific_rule.archive, symbol_specific_rule.obj, None, [section], section_rule.target) extra_rules[extra_rules_key] = extra_rule return extra_rules.values() def _create_exclusions(self, mapping_rules, default_rules, sections_info): rules = list(default_rules) rules.extend(mapping_rules) extra_rules = self._create_extra_rules(rules) mapping_rules.extend(extra_rules) rules.extend(extra_rules) # Sort the rules by means of how specific they are. Sort by specificity from lowest to highest # * -> lib:* -> lib:obj -> lib:obj:symbol sorted_rules = sorted(rules, key=lambda r: r.specificity) # Now that the rules have been sorted, loop through each rule, and then loop # through rules below it (higher indeces), adding exclusions whenever appropriate. for general_rule in sorted_rules: for specific_rule in reversed(sorted_rules): if (specific_rule.specificity > general_rule.specificity and specific_rule.specificity != PlacementRule.SYMBOL_SPECIFICITY) or \ (specific_rule.specificity == PlacementRule.SYMBOL_SPECIFICITY and general_rule.specificity == PlacementRule.OBJECT_SPECIFICITY): general_rule.add_exclusion(specific_rule, sections_info) def add_fragments_from_file(self, fragment_file): for fragment in fragment_file.fragments: dict_to_append_to = None if isinstance(fragment, Mapping) and fragment.deprecated and fragment.name in self.mappings.keys(): self.mappings[fragment.name].entries |= fragment.entries else: if isinstance(fragment, Scheme): dict_to_append_to = self.schemes elif isinstance(fragment, Sections): dict_to_append_to = self.sections else: dict_to_append_to = self.mappings # Raise exception when the fragment of the same type is already in the stored fragments if fragment.name in dict_to_append_to.keys(): stored = dict_to_append_to[fragment.name].path new = fragment.path message = "Duplicate definition of fragment '%s' found in %s and %s." % (fragment.name, stored, new) raise GenerationException(message) dict_to_append_to[fragment.name] = fragment class TemplateModel: """ Encapsulates a linker script template file. Finds marker syntax and handles replacement to generate the final output. """ Marker = collections.namedtuple("Marker", "target indent rules") def __init__(self, template_file): self.members = [] self.file = os.path.realpath(template_file.name) self._generate_members(template_file) def _generate_members(self, template_file): lines = template_file.readlines() target = Fragment.IDENTIFIER reference = Suppress("mapping") + Suppress("[") + target.setResultsName("target") + Suppress("]") pattern = White(" \t").setResultsName("indent") + reference # Find the markers in the template file line by line. If line does not match marker grammar, # set it as a literal to be copied as is to the output file. for line in lines: try: parsed = pattern.parseString(line) indent = parsed.indent target = parsed.target marker = TemplateModel.Marker(target, indent, []) self.members.append(marker) except ParseException: # Does not match marker syntax self.members.append(line) def fill(self, mapping_rules): for member in self.members: target = None try: target = member.target rules = member.rules del rules[:] rules.extend(mapping_rules[target]) except KeyError: message = GenerationException.UNDEFINED_REFERENCE + " to target '" + target + "'." raise GenerationException(message) except AttributeError: pass def write(self, output_file): # Add information that this is a generated file. output_file.write("/* Automatically generated file; DO NOT EDIT */\n") output_file.write("/* Espressif IoT Development Framework Linker Script */\n") output_file.write("/* Generated from: %s */\n" % self.file) output_file.write("\n") # Do the text replacement for member in self.members: try: indent = member.indent rules = member.rules for rule in rules: generated_line = "".join([indent, str(rule), '\n']) output_file.write(generated_line) except AttributeError: output_file.write(member) class GenerationException(LdGenFailure): """ Exception for linker script generation failures such as undefined references/ failure to evaluate conditions, duplicate mappings, etc. """ UNDEFINED_REFERENCE = "Undefined reference" def __init__(self, message, fragment=None): self.fragment = fragment self.message = message def __str__(self): if self.fragment: return "%s\nIn fragment '%s' defined in '%s'." % (self.message, self.fragment.name, self.fragment.path) else: return self.message class SectionsInfo(dict): """ Encapsulates an output of objdump. Contains information about the static library sections and names """ __info = collections.namedtuple("__info", "filename content") def __init__(self): self.sections = dict() def add_sections_info(self, sections_info_dump): first_line = sections_info_dump.readline() archive_path = (Literal("In archive").suppress() + # trim the last character from archive_path, : Word(printables + " ").setResultsName("archive_path").setParseAction(lambda t: t[0][:-1]) + LineEnd()) parser = archive_path results = None try: results = parser.parseString(first_line) except ParseException as p: raise ParseException("Parsing sections info for library " + sections_info_dump.name + " failed. " + p.message) archive = os.path.basename(results.archive_path) self.sections[archive] = SectionsInfo.__info(sections_info_dump.name, sections_info_dump.read()) def _get_infos_from_file(self, info): # Object file line: '{object}: file format elf32-xtensa-le' object = Fragment.ENTITY.setResultsName("object") + Literal(":").suppress() + Literal("file format elf32-xtensa-le").suppress() # Sections table header = Suppress(Literal("Sections:") + Literal("Idx") + Literal("Name") + Literal("Size") + Literal("VMA") + Literal("LMA") + Literal("File off") + Literal("Algn")) entry = Word(nums).suppress() + Fragment.ENTITY + Suppress(OneOrMore(Word(alphanums, exact=8)) + Word(nums + "*") + ZeroOrMore(Word(alphas.upper()) + Optional(Literal(",")))) # Content is object file line + sections table content = Group(object + header + Group(ZeroOrMore(entry)).setResultsName("sections")) parser = Group(ZeroOrMore(content)).setResultsName("contents") sections_info_text = info.content results = None try: results = parser.parseString(sections_info_text) except ParseException as p: raise ParseException("Unable to parse section info file " + info.filename + ". " + p.message) return results def get_obj_sections(self, archive, obj): stored = self.sections[archive] # Parse the contents of the sections file if not isinstance(stored, dict): parsed = self._get_infos_from_file(stored) stored = dict() for content in parsed.contents: sections = list(map(lambda s: s, content.sections)) stored[content.object] = sections self.sections[archive] = stored for obj_key in stored.keys(): if any(obj_key == obj + ext for ext in (".o", ".c.obj", ".c.o")): return stored[obj_key]
41.091052
144
0.623114
4a1cb5fab0002e7da848df84de590a0ac6ef5042
767
py
Python
examples/Graph_Neural_Networks/PyTorch/PPNP.py
TobiasSchmidtDE/GraphGallery
e627e4f454e0ce3813171305a524f5190a6e6f45
[ "MIT" ]
null
null
null
examples/Graph_Neural_Networks/PyTorch/PPNP.py
TobiasSchmidtDE/GraphGallery
e627e4f454e0ce3813171305a524f5190a6e6f45
[ "MIT" ]
null
null
null
examples/Graph_Neural_Networks/PyTorch/PPNP.py
TobiasSchmidtDE/GraphGallery
e627e4f454e0ce3813171305a524f5190a6e6f45
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 import torch import graphgallery print("GraphGallery version: ", graphgallery.__version__) print("Torch version: ", torch.__version__) ''' Load Datasets - cora/citeseer/pubmed ''' from graphgallery.datasets import Planetoid data = Planetoid('cora', root="~/GraphData/datasets/", verbose=False) graph = data.graph splits = data.split_nodes() graphgallery.set_backend("pytorch") from graphgallery.gallery.nodeclas import PPNP trainer = PPNP(device="gpu", seed=123).setup_graph(graph, attr_transform="normalize_attr").build() his = trainer.fit(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100) results = trainer.evaluate(splits.test_nodes) print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
29.5
98
0.767927
4a1cb6a7f7f443e19fd5711f41b0f347c3378578
505
py
Python
test_day12.py
Yolgie/AdventOfCode2017
bf823b049659c6c528b354f0895cf311ad69ad5d
[ "MIT" ]
null
null
null
test_day12.py
Yolgie/AdventOfCode2017
bf823b049659c6c528b354f0895cf311ad69ad5d
[ "MIT" ]
null
null
null
test_day12.py
Yolgie/AdventOfCode2017
bf823b049659c6c528b354f0895cf311ad69ad5d
[ "MIT" ]
null
null
null
import unittest from day12 import Pipes class Tests(unittest.TestCase): def test_part_1(self): testObject = Pipes() testObject.test = 1 sample_input = ["0 <-> 2", "1 <-> 1", "2 <-> 0, 3, 4", "3 <-> 2, 4", "4 <-> 2, 3, 6", "5 <-> 6", "6 <-> 4, 5"] self.assertEqual(6, testObject.process(sample_input))
25.25
62
0.366337
4a1cb76d99b20b7a5ca339c513ce463e3f09dfa2
3,805
py
Python
get_disaster_data.py
apmechev/Hackathon_for_peace_EAAA
e45f8394c86d094c4a3e421bab7c16fe8ad6100d
[ "Apache-2.0" ]
null
null
null
get_disaster_data.py
apmechev/Hackathon_for_peace_EAAA
e45f8394c86d094c4a3e421bab7c16fe8ad6100d
[ "Apache-2.0" ]
null
null
null
get_disaster_data.py
apmechev/Hackathon_for_peace_EAAA
e45f8394c86d094c4a3e421bab7c16fe8ad6100d
[ "Apache-2.0" ]
null
null
null
import requests import json APP_NAME= 'EA4' LATEST_EVENTS = "https://api.reliefweb.int/v1/disasters?appname={}&preset=latest".format(APP_NAME) def get_n_latest(n=20): r = requests.get("{}&limit={}".format(LATEST_EVENTS,n)) if not r.ok: raise Exception(r.json()) event_links=[i.get('href') for i in r.json().get('data')] return event_links def get_country(event_json): countries=[] for data in event_json.get('data'): for country in data.get('fields').get('country'): countries.append(country.get('name')) return countries def get_country_codes(event_json): codes=[] for data in event_json.get('data'): for country in data.get('fields').get('country'): codes.append(country.get('iso3')) return codes def get_name(event_json): event_json.get('data')[0].get('fields').get('name') def get_country(event_json): countries=[] for data in event_json.get('data'): for country in data.get('fields').get('country'): countries.append(country.get('name')) return countries def get_name(event_json): return event_json.get('data')[0].get('fields').get('name') def get_description(event_json): return event_json.get('data')[0].get('fields').get('description') def get_status(event_json): return event_json.get('data')[0].get('fields').get('status') def get_date(event_json): dates = list(event_json.get('data')[0].get('fields').get('date').keys()) return event_json.get('data')[0].get('fields').get('date').get(dates[0]) def get_locations(event_json): locations=[] for data in event_json.get('data'): for country in data.get('fields').get('country'): locations.append(country.get('location')) return locations def get_event_type(event_json): return event_json.get('data')[0].get('fields').get('type')[0] def get_event_current(event_json): return event_json.get('data')[0].get('fields').get('curent') def get_event_id(event_json): return event_json.get('data')[0].get('fields').get('id') def get_event_data(event_href): r = requests.get(event_href) if not r.ok: raise Exception(r.json()) event_json = r.json() event_data={} event_data['countries']=get_country(event_json) event_data['iso3_codes']=get_country_codes(event_json) event_data['name']=get_name(event_json) event_data['description']=get_description(event_json) event_data['status']=get_status(event_json) event_data['date']=get_date(event_json) event_data['location']=get_locations(event_json) event_data['type']= get_event_type(event_json) event_data['current']=get_event_current(event_json) return event_data def get_n_latest_events_data(n=10): events=[] for event in get_n_latest(n): events.append(get_event_data(event)) return events
36.238095
109
0.512746
4a1cba18e21a431fe025087b500a7288681f3bf4
197
py
Python
src/test/backtrace_syscall.py
staktrace/rr
90615c6276b7289dafb2c2787ff6eae64843dea8
[ "MIT" ]
3
2015-03-01T23:26:27.000Z
2021-01-14T03:31:36.000Z
src/test/backtrace_syscall.py
rogerwang/rr
619b8951d392b46c6f62b2bad7c0861a05d9f32e
[ "MIT" ]
null
null
null
src/test/backtrace_syscall.py
rogerwang/rr
619b8951d392b46c6f62b2bad7c0861a05d9f32e
[ "MIT" ]
null
null
null
from rrutil import * send_gdb('b __kernel_vsyscall\n') expect_gdb('Breakpoint 1') send_gdb('c\n') expect_gdb('Breakpoint 1') send_gdb('bt\n') expect_gdb(r'#0 [^_]*__kernel_vsyscall \(\)') ok()
15.153846
45
0.700508
4a1cba5b86ca263f2fd0463830a3dc1e6101df77
3,309
py
Python
Photo-Gallery/gallery/settings.py
martinmandina/Photo-Gallery
a9c113a08d71f18b415e083cdeb8dc3f3fa60e80
[ "MIT" ]
null
null
null
Photo-Gallery/gallery/settings.py
martinmandina/Photo-Gallery
a9c113a08d71f18b415e083cdeb8dc3f3fa60e80
[ "MIT" ]
null
null
null
Photo-Gallery/gallery/settings.py
martinmandina/Photo-Gallery
a9c113a08d71f18b415e083cdeb8dc3f3fa60e80
[ "MIT" ]
null
null
null
""" Django settings for gallery project. Generated by 'django-admin startproject' using Django 3.1.3. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '#tgj-$*s$x+w7w=0teeryvn3el8c9$cb5kh11%-)0y9nv8-z9j' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'photos', 'bootstrap3', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'gallery.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media', ], }, }, ] WSGI_APPLICATION = 'gallery.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'gallery', 'USER': 'martinmandina', 'PASSWORD':'alicewambui', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
24.879699
91
0.689634
4a1cbaceb81edca0df60b96669369ae19052856b
1,355
py
Python
analysis/processNplotOutput_onlyvar.py
jkikstra/PAGE-VAR
3edfe7301e394d879252b5afb01d29990fa091e2
[ "MIT" ]
null
null
null
analysis/processNplotOutput_onlyvar.py
jkikstra/PAGE-VAR
3edfe7301e394d879252b5afb01d29990fa091e2
[ "MIT" ]
null
null
null
analysis/processNplotOutput_onlyvar.py
jkikstra/PAGE-VAR
3edfe7301e394d879252b5afb01d29990fa091e2
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import matplotlib.pyplot as plt from numpy import genfromtxt import seaborn as sns #### ONLY VAR #### ###################### # TAKES A FEW HOURS! # ###################### mcruns = 100000 df_VAR_onlyvar = pd.DataFrame() # x scenarios, y mc runs per scenario i = 0 # scenarios = ["1_5C", "2_0C", "2_5C", "NDC", "BAU", "RCP2_6_SSP1", "RCP4_5_SSP2", "RCP8_5_SSP5"] # scenarioslabels = ["1.5C", "2.0C", "2.5C", "NDC", "BAU", "RCP2.6 & \n SSP1", "RCP4.5 & \n SSP2", "RCP8.5 & \n SSP5"] scenarios = ["2_0C", "NDC", "RCP4_5_SSP2"] scenarioslabels = ["2.0C", "NDC", "RCP4.5 & SSP2"] for sc in scenarios: path_VAR_onlyvar = "..\\PAGEoutput\\mcPAGEVAR\\finalscc\\onlyvarMC\\%s\\scc.csv" % (sc) data_VAR_onlyvar = genfromtxt(path_VAR_onlyvar, delimiter=',') for ii in range(mcruns): df_VAR_onlyvar = df_VAR_onlyvar.append({'Scenario': sc, 'USD': data_VAR_onlyvar[ii]}, ignore_index=True) df_VAR_onlyvar.to_csv('df_VAR_onlyvar.csv', sep=',') # plotPoints=2500 # sns.set_palette("muted") # # # fig, ax = plt.subplots() # fig.set_size_inches(14, 7) # ax = sns.violinplot(x="Scenario", y="USD", data=df_VAR_onlyvar, gridsize=plotPoints, cut=0) # ax.set_ylim(-100,2000) # ax.set_xticks(range(len(scenarios))) # ax.set_xticklabels(scenarioslabels) # # plt.show()
33.04878
119
0.631734
4a1cbca022bc1e0c95b08d29cc07366b582fc22b
4,230
py
Python
Ansible-Custom-Module-Basic/housekeeping/validate_dns.py
ginigangadharan/ansible-real-life
897c2fc0d05babbb540768b336b6ad399dad5bfa
[ "MIT" ]
22
2021-07-16T08:11:22.000Z
2022-03-31T07:15:34.000Z
Ansible-Custom-Module-Basic/housekeeping/validate_dns.py
premsagar0228/ansible-real-life
1a51193b833ab6ad320100472333b9ffb0da39d4
[ "MIT" ]
null
null
null
Ansible-Custom-Module-Basic/housekeeping/validate_dns.py
premsagar0228/ansible-real-life
1a51193b833ab6ad320100472333b9ffb0da39d4
[ "MIT" ]
39
2021-07-05T02:31:42.000Z
2022-03-31T02:46:03.000Z
#!/usr/bin/python3 # Deprecated due to the introduction of collection; still keeping here ANSIBLE_METADATA = { 'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community' } DOCUMENTATION = ''' --- module: validate_dns short_description: DNS Validation Module version_added: "2.10" description: - "DNS Validation Module" options: dns_server_ip: description: - The DNS Server to validate the DNS entries. required: true dns_address: description: - The DNS Address to be validated. required: true type: list target_ip_address: description: - The Target IP Address to be matched. required: true author: - Gineesh Madapparambath (@ginigangadharan) ''' EXAMPLES = ''' # Validate single URL - name: validate_dns validate_dns: target_ip_address: 10.1.10.10 dns_server_ip: 1.1.1.1 dns_address: - example.com # Validate Multiple URLs - name: validate_dns validate_dns: target_ip_address: 10.1.10.10 dns_server_ip: 1.1.1.1 dns_address: - example.com - abc.com - xyz.com ''' RETURN = ''' ''' from ansible.module_utils.basic import AnsibleModule #import os #import socket #import subprocess, shlex # #class bcolors: # HEADER = '\033[95m' # OKBLUE = '\033[94m' # OKGREEN = '\033[92m' # WARNING = '\033[93m' # FAIL = '\033[91m' # ENDC = '\033[0m' #no color # BOLD = '\033[1m' # UNDERLINE = '\033[4m' # INFO='\033[0;36m' #myfilename = 'ping.txt' # #def pinghost(hostname): # command_line = "/bin/ping -c1 " + hostname # args = shlex.split(command_line) # p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # pingStatus = 'ok'; # for line in p.stdout: # output = line.rstrip().decode('UTF-8') # if (output.endswith('unreachable.')) : # #No route from the local system. Packets sent were never put on the wire. # pingStatus = 'unreacheable' # break # elif (output.startswith('Ping request could not find host')) : # pingStatus = 'host_not_found' # break # elif ('unknown' in output ) : # pingStatus = 'host_not_found' # break # elif (output.startswith('1 packets transmitted, 0 received')) : # pingStatus = 'no' # break # if (output.startswith('Request timed out.')) : # #No Echo Reply messages were received within the default time of 1 second. # pingStatus = 'timed_out' # break # #end if # #endFor # return pingStatus ##endDef # #print (bcolors.INFO + 'DNS Test - ver 2.2.0.\n' + bcolors.ENDC) #timestart = "$(date)" #counter = 0 #pingcount = 0 #dnscount = 0 #nodnscount = 0 #print (bcolors.OKBLUE + bcolors.UNDERLINE +'%-4s |%-18s |%-6s |%s' % ('No.',"Hostname","Ping","STATUS") + bcolors.ENDC) #with open(myfilename,mode='r') as varfile: # for line in varfile: # counter = counter + 1 # line = line.replace('\n','') # try: # startcolor = bcolors.OKGREEN # statusText2 = '' # addr = socket.gethostbyname(line) # pingresp = pinghost(addr) # if addr: # fqdn = socket.getfqdn(line) # dnscount = dnscount + 1 # if pingresp == 'ok': # pingcount = pingcount + 1 # else: # startcolor = bcolors.WARNING # statusText2 = bcolors.FAIL + '[host not reachable]' # pingResponse = pingresp # statusText = fqdn + ',' + addr + statusText2 # except IOError: # nodnscount = nodnscount + 1 # statusText = 'NO DNS Entry Found' # pingResponse = 'na' # startcolor = bcolors.FAIL # #else: # #print 'Done' # finally: # print (startcolor + '%-4s |%-18s |%-6s |%s' % ( counter ,line,pingResponse,statusText) + bcolors.ENDC) # #varfile.close() #close the file # #timeend = "$(date)" #print (bcolors.OKBLUE + "\n======================== Summary ======================================" + bcolors.ENDC) #print (bcolors.OKGREEN , dnscount , "with DNS |" + bcolors.WARNING , nodnscount , "without DNS |" + bcolors.OKGREEN , pingcount , " reachable" + bcolors.ENDC) #
28.581081
159
0.591017
4a1cbd99f755a88819d8a4fda1d3455a5527cbc6
1,642
py
Python
example.py
sgraton/python-emploi-store
a9def8d40e7583b907eef7c486cd7170d108b02f
[ "MIT" ]
9
2016-11-16T17:40:52.000Z
2021-06-21T10:48:31.000Z
example.py
sgraton/python-emploi-store
a9def8d40e7583b907eef7c486cd7170d108b02f
[ "MIT" ]
44
2016-04-07T09:37:46.000Z
2021-02-24T23:18:48.000Z
example.py
sgraton/python-emploi-store
a9def8d40e7583b907eef7c486cd7170d108b02f
[ "MIT" ]
10
2016-07-21T14:07:31.000Z
2020-09-17T08:19:01.000Z
"""An example server to use emploi_store library. This runs a HTTP server locally with a simple page that helps retrieve the job names for a given ROME ID. To run it, you will need to set your environment variable: EMPLOI_STORE_CLIENT_ID and EMPLOI_STORE_CLIENT_SECRET. See documentation about accessing the REST API at https://www.emploi-store-dev.fr/portail-developpeur/donneesdoctechnique There are few environment variables that allow you to specify how to run the server: - DEBUG: set it to 1 to turn on debug mode. - PORT: set it to the port you want the server to listen on. - BIND_HOST: set it to 0.0.0.0 to listen on all interfaces. """ import os import re import emploi_store import flask app = flask.Flask(__name__) # pylint: disable=invalid-name # Access to the ROME appellations resource on Emploi Store Dev. _ROME_APPELLATIONS = ( emploi_store.Client() .get_package('rome') .get_resource(name_re=re.compile(r'.*appellations.*'))) @app.route("/") def main(): """Homepage.""" page = ( '<form action=".">' '<input name="rome" placeholder="ROME code, e.g. F1402"/>' '</form>') rome = flask.request.args.get('rome', '') if rome: page += '<ul>' filters = {'ROME_PROFESSION_CARD_CODE': rome} for appellation in _ROME_APPELLATIONS.records(filters=filters): page += '<li>%s</li>' % appellation['ROME_PROFESSION_NAME'] page += '</ul>' return page if __name__ == '__main__': app.run( debug=bool(os.getenv('DEBUG')), host=os.getenv('BIND_HOST', 'localhost'), port=int(os.getenv('PORT', '80')))
30.407407
78
0.67296
4a1cbf5e62794989671d98bcaf3bf9515e7d5ce8
922
py
Python
setup.py
IAmGadget/Pythactyl
b0cca838d434e8ceba1a90328708b9cde3d9fbcc
[ "MIT" ]
2
2021-07-13T21:43:44.000Z
2021-09-06T08:05:35.000Z
setup.py
IAmGadget/Pythactyl
b0cca838d434e8ceba1a90328708b9cde3d9fbcc
[ "MIT" ]
1
2021-09-11T16:08:43.000Z
2021-10-30T16:10:56.000Z
setup.py
IAmGadget/Pythactyl
b0cca838d434e8ceba1a90328708b9cde3d9fbcc
[ "MIT" ]
null
null
null
import pathlib from setuptools import setup # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() # This call to setup() does all the work setup( name="Pythactyl", version="1.01", description="Pterodactyl panel API wrapper", long_description=README, long_description_content_type="text/markdown", url="https://github.com/iamgadget/Pythactyl", author="IAmGadget", author_email="info@iamgadget.tk", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", ], packages=["Pythactyl"], include_package_data=True, install_requires=["requests"], entry_points={ "console_scripts": [ "realpython=reader.__main__:main", ] }, )
26.342857
50
0.652928
4a1cc01c98f6bc7bd9ea13b07c75d957083a7bbd
1,554
py
Python
mhvdb2/models.py
jamiereid/mhvdb2
e3e9dcb149c4e0b4dc4eb8e28f082aa03e07383c
[ "MIT" ]
2
2015-04-11T09:45:41.000Z
2015-06-16T03:59:48.000Z
mhvdb2/models.py
jamiereid/mhvdb2
e3e9dcb149c4e0b4dc4eb8e28f082aa03e07383c
[ "MIT" ]
32
2015-01-27T05:39:41.000Z
2019-11-10T09:57:27.000Z
mhvdb2/models.py
jamiereid/mhvdb2
e3e9dcb149c4e0b4dc4eb8e28f082aa03e07383c
[ "MIT" ]
2
2015-04-11T09:38:46.000Z
2015-04-14T08:01:49.000Z
from mhvdb2 import database from peewee import * # noqa from peewee import CharField, BooleanField, DateField, DateTimeField, Model from dateutil.relativedelta import relativedelta from datetime import datetime class BaseModel(Model): class Meta: database = database class User(BaseModel): """ A User is someone who has special access to the system that requires a login (only administrators, in this case) """ name = CharField() email = CharField() password = CharField() class Entity(BaseModel): """ An Entity sends money to the organisation or recieves money from the organistaion. Members are a special type of entity. """ is_member = BooleanField() # Is the entity a member (past or present) name = CharField() email = CharField(null=True) # Email is required for members phone = CharField(null=True) reminder_date = DateField(null=True) # When reminder has been sent to member joined_date = DateField(null=True) # date the person first joined agreement_date = DateField(null=True) # date the person agreed to rules is_keyholder = BooleanField(null=True) # Does the member have a key? token = CharField(null=True) # to authenticate members via email token_expiry = DateTimeField(null=True) # expiry for the token def active_member(self): one_year_ago = (datetime.now() - relativedelta(years=1)).date() if self.agreement_date <= one_year_ago: return False else: return True
34.533333
81
0.69112
4a1cc03400296b17da0b54af30afa59cbfcfb6bb
388
py
Python
wmtmetadata/utils.py
csdms/wmt-metadata
39207acc376f1cd21b2ae1d5581a1e2c317a6441
[ "MIT" ]
null
null
null
wmtmetadata/utils.py
csdms/wmt-metadata
39207acc376f1cd21b2ae1d5581a1e2c317a6441
[ "MIT" ]
10
2016-09-27T21:13:22.000Z
2018-10-31T19:42:32.000Z
wmtmetadata/utils.py
csdms/wmt-metadata
39207acc376f1cd21b2ae1d5581a1e2c317a6441
[ "MIT" ]
null
null
null
"""Utility routines for working with WMT components.""" import os # See https://stackoverflow.com/a/21499676/1563298 def commonpath(l): cp = [] ls = [p.split(os.path.sep) for p in l] ml = min(len(p) for p in ls) for i in range(ml): s = set(p[i] for p in ls) if len(s) != 1: break cp.append(s.pop()) return os.path.sep.join(cp)
20.421053
55
0.564433
4a1cc092e22482b446eb2fdc8988e60a8e82e3cd
3,025
py
Python
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2018_09_30/models/__init__.py
pjquirk/azure-sdk-for-python
cbf02ec4f177b96eae1dbbba87c34c2c93880150
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2018_09_30/models/__init__.py
pjquirk/azure-sdk-for-python
cbf02ec4f177b96eae1dbbba87c34c2c93880150
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-compute/azure/mgmt/compute/v2018_09_30/models/__init__.py
xiafu-msft/azure-sdk-for-python
4d9560cfd519ee60667f3cc2f5295a58c18625db
[ "MIT" ]
1
2019-06-17T22:18:23.000Z
2019-06-17T22:18:23.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- try: from .resource_py3 import Resource from .disk_sku_py3 import DiskSku from .image_disk_reference_py3 import ImageDiskReference from .creation_data_py3 import CreationData from .source_vault_py3 import SourceVault from .key_vault_and_secret_reference_py3 import KeyVaultAndSecretReference from .key_vault_and_key_reference_py3 import KeyVaultAndKeyReference from .encryption_settings_element_py3 import EncryptionSettingsElement from .encryption_settings_collection_py3 import EncryptionSettingsCollection from .disk_py3 import Disk from .disk_update_py3 import DiskUpdate from .snapshot_sku_py3 import SnapshotSku from .grant_access_data_py3 import GrantAccessData from .access_uri_py3 import AccessUri from .snapshot_py3 import Snapshot from .snapshot_update_py3 import SnapshotUpdate except (SyntaxError, ImportError): from .resource import Resource from .disk_sku import DiskSku from .image_disk_reference import ImageDiskReference from .creation_data import CreationData from .source_vault import SourceVault from .key_vault_and_secret_reference import KeyVaultAndSecretReference from .key_vault_and_key_reference import KeyVaultAndKeyReference from .encryption_settings_element import EncryptionSettingsElement from .encryption_settings_collection import EncryptionSettingsCollection from .disk import Disk from .disk_update import DiskUpdate from .snapshot_sku import SnapshotSku from .grant_access_data import GrantAccessData from .access_uri import AccessUri from .snapshot import Snapshot from .snapshot_update import SnapshotUpdate from .disk_paged import DiskPaged from .snapshot_paged import SnapshotPaged from .compute_management_client_enums import ( DiskStorageAccountTypes, OperatingSystemTypes, HyperVGeneration, DiskCreateOption, DiskState, SnapshotStorageAccountTypes, AccessLevel, ) __all__ = [ 'Resource', 'DiskSku', 'ImageDiskReference', 'CreationData', 'SourceVault', 'KeyVaultAndSecretReference', 'KeyVaultAndKeyReference', 'EncryptionSettingsElement', 'EncryptionSettingsCollection', 'Disk', 'DiskUpdate', 'SnapshotSku', 'GrantAccessData', 'AccessUri', 'Snapshot', 'SnapshotUpdate', 'DiskPaged', 'SnapshotPaged', 'DiskStorageAccountTypes', 'OperatingSystemTypes', 'HyperVGeneration', 'DiskCreateOption', 'DiskState', 'SnapshotStorageAccountTypes', 'AccessLevel', ]
35.588235
80
0.737851
4a1cc099efed88b43379ed0fcd85957d6858d5f0
9,109
py
Python
strawberryfields/backends/gaussianbackend/backend.py
trbromley/strawberryfields
b0792f6cad19cea1e60df89f22776f6e02191a1c
[ "Apache-2.0" ]
null
null
null
strawberryfields/backends/gaussianbackend/backend.py
trbromley/strawberryfields
b0792f6cad19cea1e60df89f22776f6e02191a1c
[ "Apache-2.0" ]
null
null
null
strawberryfields/backends/gaussianbackend/backend.py
trbromley/strawberryfields
b0792f6cad19cea1e60df89f22776f6e02191a1c
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=too-many-public-methods """Gaussian backend""" import warnings from numpy import ( empty, concatenate, array, identity, arctan2, angle, sqrt, dot, vstack, zeros_like, allclose, ix_, ) from numpy.linalg import inv from hafnian.samples import hafnian_sample_state from strawberryfields.backends import BaseGaussian from strawberryfields.backends.shared_ops import changebasis from .ops import xmat from .gaussiancircuit import GaussianModes from .states import GaussianState class GaussianBackend(BaseGaussian): """Gaussian backend implementation""" def __init__(self): """Initialize the backend. """ super().__init__() self._supported["mixed_states"] = True self._short_name = "gaussian" self._init_modes = None self.circuit = None def begin_circuit(self, num_subsystems, **kwargs): self._init_modes = num_subsystems self.circuit = GaussianModes(num_subsystems) def add_mode(self, n=1): self.circuit.add_mode(n) def del_mode(self, modes): self.circuit.del_mode(modes) def get_modes(self): return self.circuit.get_modes() def reset(self, pure=True, **kwargs): self.circuit.reset(self._init_modes) def prepare_thermal_state(self, nbar, mode): self.circuit.init_thermal(nbar, mode) def prepare_vacuum_state(self, mode): self.circuit.loss(0.0, mode) def prepare_coherent_state(self, alpha, mode): self.circuit.loss(0.0, mode) self.circuit.displace(alpha, mode) def prepare_squeezed_state(self, r, phi, mode): self.circuit.loss(0.0, mode) self.circuit.squeeze(r, phi, mode) def prepare_displaced_squeezed_state(self, alpha, r, phi, mode): self.circuit.loss(0.0, mode) self.circuit.squeeze(r, phi, mode) self.circuit.displace(alpha, mode) def rotation(self, phi, mode): self.circuit.phase_shift(phi, mode) def displacement(self, alpha, mode): self.circuit.displace(alpha, mode) def squeeze(self, z, mode): phi = angle(z) r = abs(z) self.circuit.squeeze(r, phi, mode) def beamsplitter(self, t, r, mode1, mode2): if isinstance(t, complex): raise ValueError("Beamsplitter transmittivity t must be a float.") theta = arctan2(abs(r), t) phi = angle(r) self.circuit.beamsplitter(-theta, -phi, mode1, mode2) def measure_homodyne(self, phi, mode, shots=1, select=None, **kwargs): r"""Measure a :ref:`phase space quadrature <homodyne>` of the given mode. See :meth:`.BaseBackend.measure_homodyne`. Keyword Args: eps (float): Homodyne amounts to projection onto a quadrature eigenstate. This eigenstate is approximated by a squeezed state whose variance has been squeezed to the amount ``eps``, :math:`V_\text{meas} = \texttt{eps}^2`. Perfect homodyning is obtained when ``eps`` :math:`\to 0`. Returns: float: measured value """ if shots != 1: if select is not None: raise NotImplementedError("Gaussian backend currently does not support " "postselection if shots != 1 for homodyne measurement") raise NotImplementedError("Gaussian backend currently does not support " "shots != 1 for homodyne measurement") # phi is the rotation of the measurement operator, hence the minus self.circuit.phase_shift(-phi, mode) if select is None: qs = self.circuit.homodyne(mode, **kwargs)[0, 0] else: val = select * 2 / sqrt(2 * self.circuit.hbar) qs = self.circuit.post_select_homodyne(mode, val, **kwargs) return qs * sqrt(2 * self.circuit.hbar) / 2 def measure_heterodyne(self, mode, shots=1, select=None): if shots != 1: if select is not None: raise NotImplementedError("Gaussian backend currently does not support " "postselection if shots != 1 for heterodyne measurement") raise NotImplementedError("Gaussian backend currently does not support " "shots != 1 for heterodyne measurement") if select is None: m = identity(2) res = 0.5 * self.circuit.measure_dyne(m, [mode], shots=shots) return res[0, 0] + 1j * res[0, 1] res = select self.circuit.post_select_heterodyne(mode, select) return res def prepare_gaussian_state(self, r, V, modes): if isinstance(modes, int): modes = [modes] # make sure number of modes matches shape of r and V N = len(modes) if len(r) != 2 * N: raise ValueError( "Length of means vector must be twice the number of modes." ) if V.shape != (2 * N, 2 * N): raise ValueError( "Shape of covariance matrix must be [2N, 2N], where N is the number of modes." ) # convert xp-ordering to symmetric ordering means = vstack([r[:N], r[N:]]).reshape(-1, order="F") C = changebasis(N) cov = C @ V @ C.T self.circuit.fromscovmat(cov, modes) self.circuit.fromsmean(means, modes) def is_vacuum(self, tol=0.0, **kwargs): return self.circuit.is_vacuum(tol) def loss(self, T, mode): self.circuit.loss(T, mode) def thermal_loss(self, T, nbar, mode): self.circuit.thermal_loss(T, nbar, mode) def measure_fock(self, modes, shots=1, select=None): if shots != 1: if select is not None: raise NotImplementedError("Gaussian backend currently does not support " "postselection if shots != 1 for Fock measurement") warnings.warn("Cannot simulate non-Gaussian states. " "Conditional state after Fock measurement has not been updated.") mu = self.circuit.mean cov = self.circuit.scovmatxp() # check we are sampling from a gaussian state with zero mean if not allclose(mu, zeros_like(mu)): raise NotImplementedError("PNR measurement is only supported for " "Gaussian states with zero mean") x_idxs = array(modes) p_idxs = x_idxs + len(mu) modes_idxs = concatenate([x_idxs, p_idxs]) reduced_cov = cov[ix_(modes_idxs, modes_idxs)] samples = hafnian_sample_state(reduced_cov, shots) # for backward compatibility with previous measurement behaviour, # if only one shot, then we drop the shots axis if shots == 1: samples = samples.reshape((len(modes),)) return samples def state(self, modes=None, **kwargs): """Returns the state of the quantum simulation. See :meth:`.BaseBackend.state`. Returns: GaussianState: state description """ m = self.circuit.scovmat() r = self.circuit.smean() if modes is None: modes = list(range(len(self.get_modes()))) listmodes = list(concatenate((2 * array(modes), 2 * array(modes) + 1))) covmat = empty((2 * len(modes), 2 * len(modes))) means = r[listmodes] for i, ii in enumerate(listmodes): for j, jj in enumerate(listmodes): covmat[i, j] = m[ii, jj] means *= sqrt(2 * self.circuit.hbar) / 2 covmat *= self.circuit.hbar / 2 mode_names = ["q[{}]".format(i) for i in array(self.get_modes())[modes]] # qmat and amat qmat = self.circuit.qmat() N = qmat.shape[0] // 2 # work out if qmat and Amat need to be reduced if 1 <= len(modes) < N: # reduce qmat ind = concatenate([array(modes), N + array(modes)]) rows = ind.reshape((-1, 1)) cols = ind.reshape((1, -1)) qmat = qmat[rows, cols] # calculate reduced Amat N = qmat.shape[0] // 2 Amat = dot(xmat(N), identity(2 * N) - inv(qmat)) else: Amat = self.circuit.Amat() return GaussianState( (means, covmat), len(modes), qmat, Amat, mode_names=mode_names )
34.244361
99
0.598968
4a1cc0d855b3cefc120709468dc5c97ef4e61c32
41,427
py
Python
show/main.py
fk410167/sonic-utilities
e32b5ac4b33235723b220d5c97981f22d0823f45
[ "Apache-2.0" ]
null
null
null
show/main.py
fk410167/sonic-utilities
e32b5ac4b33235723b220d5c97981f22d0823f45
[ "Apache-2.0" ]
null
null
null
show/main.py
fk410167/sonic-utilities
e32b5ac4b33235723b220d5c97981f22d0823f45
[ "Apache-2.0" ]
null
null
null
import json import os import subprocess import sys import re import click import utilities_common.cli as clicommon import utilities_common.multi_asic as multi_asic_util from natsort import natsorted from sonic_py_common import device_info, multi_asic from swsscommon.swsscommon import SonicV2Connector, ConfigDBConnector from tabulate import tabulate from utilities_common.db import Db from . import acl from . import bgp_common from . import chassis_modules from . import dropcounters from . import feature from . import fgnhg from . import gearbox from . import interfaces from . import kdump from . import kube from . import mlnx from . import muxcable from . import nat from . import platform from . import processes from . import reboot_cause from . import sflow from . import vlan from . import vnet from . import vxlan from . import system_health from . import warm_restart # Global Variables PLATFORM_JSON = 'platform.json' HWSKU_JSON = 'hwsku.json' PORT_STR = "Ethernet" VLAN_SUB_INTERFACE_SEPARATOR = '.' GEARBOX_TABLE_PHY_PATTERN = r"_GEARBOX_TABLE:phy:*" # To be enhanced. Routing-stack information should be collected from a global # location (configdb?), so that we prevent the continous execution of this # bash oneliner. To be revisited once routing-stack info is tracked somewhere. def get_routing_stack(): command = "sudo docker ps | grep bgp | awk '{print$2}' | cut -d'-' -f3 | cut -d':' -f1 | head -n 1" try: proc = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True, text=True) stdout = proc.communicate()[0] proc.wait() result = stdout.rstrip('\n') except OSError as e: raise OSError("Cannot detect routing-stack") return (result) # Global Routing-Stack variable routing_stack = get_routing_stack() # Read given JSON file def readJsonFile(fileName): try: with open(fileName) as f: result = json.load(f) except Exception as e: click.echo(str(e)) raise click.Abort() return result def run_command(command, display_cmd=False, return_cmd=False): if display_cmd: click.echo(click.style("Command: ", fg='cyan') + click.style(command, fg='green')) # No conversion needed for intfutil commands as it already displays # both SONiC interface name and alias name for all interfaces. if clicommon.get_interface_naming_mode() == "alias" and not command.startswith("intfutil"): clicommon.run_command_in_alias_mode(command) raise sys.exit(0) proc = subprocess.Popen(command, shell=True, text=True, stdout=subprocess.PIPE) while True: if return_cmd: output = proc.communicate()[0] return output output = proc.stdout.readline() if output == "" and proc.poll() is not None: break if output: click.echo(output.rstrip('\n')) rc = proc.poll() if rc != 0: sys.exit(rc) # Global class instance for SONiC interface name to alias conversion iface_alias_converter = clicommon.InterfaceAliasConverter() def connect_config_db(): """ Connects to config_db """ config_db = ConfigDBConnector() config_db.connect() return config_db def is_gearbox_configured(): """ Checks whether Gearbox is configured or not """ app_db = SonicV2Connector() app_db.connect(app_db.APPL_DB) keys = app_db.keys(app_db.APPL_DB, '*') # If any _GEARBOX_TABLE:phy:* records present in APPL_DB, then the gearbox is configured if any(re.match(GEARBOX_TABLE_PHY_PATTERN, key) for key in keys): return True else: return False CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help', '-?']) # # 'cli' group (root group) # # This is our entrypoint - the main "show" command # TODO: Consider changing function name to 'show' for better understandability @click.group(cls=clicommon.AliasedGroup, context_settings=CONTEXT_SETTINGS) @click.pass_context def cli(ctx): """SONiC command line - 'show' command""" ctx.obj = Db() # Add groups from other modules cli.add_command(acl.acl) cli.add_command(chassis_modules.chassis_modules) cli.add_command(dropcounters.dropcounters) cli.add_command(feature.feature) cli.add_command(fgnhg.fgnhg) cli.add_command(kdump.kdump) cli.add_command(interfaces.interfaces) cli.add_command(kdump.kdump) cli.add_command(kube.kubernetes) cli.add_command(muxcable.muxcable) cli.add_command(nat.nat) cli.add_command(platform.platform) cli.add_command(processes.processes) cli.add_command(reboot_cause.reboot_cause) cli.add_command(sflow.sflow) cli.add_command(vlan.vlan) cli.add_command(vnet.vnet) cli.add_command(vxlan.vxlan) cli.add_command(system_health.system_health) cli.add_command(warm_restart.warm_restart) # Add greabox commands only if GEARBOX is configured if is_gearbox_configured(): cli.add_command(gearbox.gearbox) # # 'vrf' command ("show vrf") # def get_interface_bind_to_vrf(config_db, vrf_name): """Get interfaces belong to vrf """ tables = ['INTERFACE', 'PORTCHANNEL_INTERFACE', 'VLAN_INTERFACE', 'LOOPBACK_INTERFACE'] data = [] for table_name in tables: interface_dict = config_db.get_table(table_name) if interface_dict: for interface in interface_dict: if 'vrf_name' in interface_dict[interface] and vrf_name == interface_dict[interface]['vrf_name']: data.append(interface) return data @cli.command() @click.argument('vrf_name', required=False) def vrf(vrf_name): """Show vrf config""" config_db = ConfigDBConnector() config_db.connect() header = ['VRF', 'Interfaces'] body = [] vrf_dict = config_db.get_table('VRF') if vrf_dict: vrfs = [] if vrf_name is None: vrfs = list(vrf_dict.keys()) elif vrf_name in vrf_dict: vrfs = [vrf_name] for vrf in vrfs: intfs = get_interface_bind_to_vrf(config_db, vrf) if len(intfs) == 0: body.append([vrf, ""]) else: body.append([vrf, intfs[0]]) for intf in intfs[1:]: body.append(["", intf]) click.echo(tabulate(body, header)) # # 'arp' command ("show arp") # @cli.command() @click.argument('ipaddress', required=False) @click.option('-if', '--iface') @click.option('--verbose', is_flag=True, help="Enable verbose output") def arp(ipaddress, iface, verbose): """Show IP ARP table""" cmd = "nbrshow -4" if ipaddress is not None: cmd += " -ip {}".format(ipaddress) if iface is not None: if clicommon.get_interface_naming_mode() == "alias": if not ((iface.startswith("PortChannel")) or (iface.startswith("eth"))): iface = iface_alias_converter.alias_to_name(iface) cmd += " -if {}".format(iface) run_command(cmd, display_cmd=verbose) # # 'ndp' command ("show ndp") # @cli.command() @click.argument('ip6address', required=False) @click.option('-if', '--iface') @click.option('--verbose', is_flag=True, help="Enable verbose output") def ndp(ip6address, iface, verbose): """Show IPv6 Neighbour table""" cmd = "nbrshow -6" if ip6address is not None: cmd += " -ip {}".format(ip6address) if iface is not None: cmd += " -if {}".format(iface) run_command(cmd, display_cmd=verbose) def is_mgmt_vrf_enabled(ctx): """Check if management VRF is enabled""" if ctx.invoked_subcommand is None: cmd = 'sonic-cfggen -d --var-json "MGMT_VRF_CONFIG"' p = subprocess.Popen(cmd, shell=True, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) try : mvrf_dict = json.loads(p.stdout.read()) except ValueError: print("MGMT_VRF_CONFIG is not present.") return False # if the mgmtVrfEnabled attribute is configured, check the value # and return True accordingly. if 'mgmtVrfEnabled' in mvrf_dict['vrf_global']: if (mvrf_dict['vrf_global']['mgmtVrfEnabled'] == "true"): #ManagementVRF is enabled. Return True. return True return False # # 'mgmt-vrf' group ("show mgmt-vrf ...") # @cli.group('mgmt-vrf', invoke_without_command=True) @click.argument('routes', required=False, type=click.Choice(["routes"])) @click.pass_context def mgmt_vrf(ctx,routes): """Show management VRF attributes""" if is_mgmt_vrf_enabled(ctx) is False: click.echo("\nManagementVRF : Disabled") return else: if routes is None: click.echo("\nManagementVRF : Enabled") click.echo("\nManagement VRF interfaces in Linux:") cmd = "ip -d link show mgmt" run_command(cmd) cmd = "ip link show vrf mgmt" run_command(cmd) else: click.echo("\nRoutes in Management VRF Routing Table:") cmd = "ip route show table 5000" run_command(cmd) # # 'management_interface' group ("show management_interface ...") # @cli.group(name='management_interface', cls=clicommon.AliasedGroup) def management_interface(): """Show management interface parameters""" pass # 'address' subcommand ("show management_interface address") @management_interface.command() def address (): """Show IP address configured for management interface""" config_db = ConfigDBConnector() config_db.connect() # Fetching data from config_db for MGMT_INTERFACE mgmt_ip_data = config_db.get_table('MGMT_INTERFACE') for key in natsorted(list(mgmt_ip_data.keys())): click.echo("Management IP address = {0}".format(key[1])) click.echo("Management Network Default Gateway = {0}".format(mgmt_ip_data[key]['gwaddr'])) # # 'snmpagentaddress' group ("show snmpagentaddress ...") # @cli.group('snmpagentaddress', invoke_without_command=True) @click.pass_context def snmpagentaddress (ctx): """Show SNMP agent listening IP address configuration""" config_db = ConfigDBConnector() config_db.connect() agenttable = config_db.get_table('SNMP_AGENT_ADDRESS_CONFIG') header = ['ListenIP', 'ListenPort', 'ListenVrf'] body = [] for agent in agenttable: body.append([agent[0], agent[1], agent[2]]) click.echo(tabulate(body, header)) # # 'snmptrap' group ("show snmptrap ...") # @cli.group('snmptrap', invoke_without_command=True) @click.pass_context def snmptrap (ctx): """Show SNMP agent Trap server configuration""" config_db = ConfigDBConnector() config_db.connect() traptable = config_db.get_table('SNMP_TRAP_CONFIG') header = ['Version', 'TrapReceiverIP', 'Port', 'VRF', 'Community'] body = [] for row in traptable: if row == "v1TrapDest": ver=1 elif row == "v2TrapDest": ver=2 else: ver=3 body.append([ver, traptable[row]['DestIp'], traptable[row]['DestPort'], traptable[row]['vrf'], traptable[row]['Community']]) click.echo(tabulate(body, header)) # # 'subinterfaces' group ("show subinterfaces ...") # @cli.group(cls=clicommon.AliasedGroup) def subinterfaces(): """Show details of the sub port interfaces""" pass # 'subinterfaces' subcommand ("show subinterfaces status") @subinterfaces.command() @click.argument('subinterfacename', type=str, required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def status(subinterfacename, verbose): """Show sub port interface status information""" cmd = "intfutil -c status" if subinterfacename is not None: sub_intf_sep_idx = subinterfacename.find(VLAN_SUB_INTERFACE_SEPARATOR) if sub_intf_sep_idx == -1: print("Invalid sub port interface name") return if clicommon.get_interface_naming_mode() == "alias": subinterfacename = iface_alias_converter.alias_to_name(subinterfacename) cmd += " -i {}".format(subinterfacename) else: cmd += " -i subport" run_command(cmd, display_cmd=verbose) # # 'pfc' group ("show pfc ...") # @cli.group(cls=clicommon.AliasedGroup) def pfc(): """Show details of the priority-flow-control (pfc) """ pass # 'counters' subcommand ("show interfaces pfccounters") @pfc.command() @multi_asic_util.multi_asic_click_options @click.option('--verbose', is_flag=True, help="Enable verbose output") def counters(namespace, display, verbose): """Show pfc counters""" cmd = "pfcstat -s {}".format(display) if namespace is not None: cmd += " -n {}".format(namespace) run_command(cmd, display_cmd=verbose) @pfc.command() @click.argument('interface', type=click.STRING, required=False) def priority(interface): """Show pfc priority""" cmd = 'pfc show priority' if interface is not None and clicommon.get_interface_naming_mode() == "alias": interface = iface_alias_converter.alias_to_name(interface) if interface is not None: cmd += ' {0}'.format(interface) run_command(cmd) @pfc.command() @click.argument('interface', type=click.STRING, required=False) def asymmetric(interface): """Show asymmetric pfc""" cmd = 'pfc show asymmetric' if interface is not None and clicommon.get_interface_naming_mode() == "alias": interface = iface_alias_converter.alias_to_name(interface) if interface is not None: cmd += ' {0}'.format(interface) run_command(cmd) # 'pfcwd' subcommand ("show pfcwd...") @cli.group(cls=clicommon.AliasedGroup) def pfcwd(): """Show details of the pfc watchdog """ pass @pfcwd.command() @multi_asic_util.multi_asic_click_options @click.option('--verbose', is_flag=True, help="Enable verbose output") def config(namespace, display, verbose): """Show pfc watchdog config""" cmd = "pfcwd show config -d {}".format(display) if namespace is not None: cmd += " -n {}".format(namespace) run_command(cmd, display_cmd=verbose) @pfcwd.command() @multi_asic_util.multi_asic_click_options @click.option('--verbose', is_flag=True, help="Enable verbose output") def stats(namespace, display, verbose): """Show pfc watchdog stats""" cmd = "pfcwd show stats -d {}".format(display) if namespace is not None: cmd += " -n {}".format(namespace) run_command(cmd, display_cmd=verbose) # # 'watermark' group ("show watermark telemetry interval") # @cli.group(cls=clicommon.AliasedGroup) def watermark(): """Show details of watermark """ pass @watermark.group() def telemetry(): """Show watermark telemetry info""" pass @telemetry.command('interval') def show_tm_interval(): """Show telemetry interval""" command = 'watermarkcfg --show-interval' run_command(command) # # 'queue' group ("show queue ...") # @cli.group(cls=clicommon.AliasedGroup) def queue(): """Show details of the queues """ pass # 'counters' subcommand ("show queue counters") @queue.command() @click.argument('interfacename', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def counters(interfacename, verbose): """Show queue counters""" cmd = "queuestat" if interfacename is not None: if clicommon.get_interface_naming_mode() == "alias": interfacename = iface_alias_converter.alias_to_name(interfacename) if interfacename is not None: cmd += " -p {}".format(interfacename) run_command(cmd, display_cmd=verbose) # # 'watermarks' subgroup ("show queue watermarks ...") # @queue.group() def watermark(): """Show user WM for queues""" pass # 'unicast' subcommand ("show queue watermarks unicast") @watermark.command('unicast') def wm_q_uni(): """Show user WM for unicast queues""" command = 'watermarkstat -t q_shared_uni' run_command(command) # 'multicast' subcommand ("show queue watermarks multicast") @watermark.command('multicast') def wm_q_multi(): """Show user WM for multicast queues""" command = 'watermarkstat -t q_shared_multi' run_command(command) # # 'persistent-watermarks' subgroup ("show queue persistent-watermarks ...") # @queue.group(name='persistent-watermark') def persistent_watermark(): """Show persistent WM for queues""" pass # 'unicast' subcommand ("show queue persistent-watermarks unicast") @persistent_watermark.command('unicast') def pwm_q_uni(): """Show persistent WM for unicast queues""" command = 'watermarkstat -p -t q_shared_uni' run_command(command) # 'multicast' subcommand ("show queue persistent-watermarks multicast") @persistent_watermark.command('multicast') def pwm_q_multi(): """Show persistent WM for multicast queues""" command = 'watermarkstat -p -t q_shared_multi' run_command(command) # # 'priority-group' group ("show priority-group ...") # @cli.group(name='priority-group', cls=clicommon.AliasedGroup) def priority_group(): """Show details of the PGs """ @priority_group.group() def watermark(): """Show priority-group user WM""" pass @watermark.command('headroom') def wm_pg_headroom(): """Show user headroom WM for pg""" command = 'watermarkstat -t pg_headroom' run_command(command) @watermark.command('shared') def wm_pg_shared(): """Show user shared WM for pg""" command = 'watermarkstat -t pg_shared' run_command(command) @priority_group.group(name='persistent-watermark') def persistent_watermark(): """Show priority-group persistent WM""" pass @persistent_watermark.command('headroom') def pwm_pg_headroom(): """Show persistent headroom WM for pg""" command = 'watermarkstat -p -t pg_headroom' run_command(command) @persistent_watermark.command('shared') def pwm_pg_shared(): """Show persistent shared WM for pg""" command = 'watermarkstat -p -t pg_shared' run_command(command) # # 'buffer_pool' group ("show buffer_pool ...") # @cli.group(name='buffer_pool', cls=clicommon.AliasedGroup) def buffer_pool(): """Show details of the buffer pools""" @buffer_pool.command('watermark') def wm_buffer_pool(): """Show user WM for buffer pools""" command = 'watermarkstat -t buffer_pool' run_command(command) @buffer_pool.command('persistent-watermark') def pwm_buffer_pool(): """Show persistent WM for buffer pools""" command = 'watermarkstat -p -t buffer_pool' run_command(command) # # 'headroom-pool' group ("show headroom-pool ...") # @cli.group(name='headroom-pool', cls=clicommon.AliasedGroup) def headroom_pool(): """Show details of headroom pool""" @headroom_pool.command('watermark') def wm_headroom_pool(): """Show user WM for headroom pool""" command = 'watermarkstat -t headroom_pool' run_command(command) @headroom_pool.command('persistent-watermark') def pwm_headroom_pool(): """Show persistent WM for headroom pool""" command = 'watermarkstat -p -t headroom_pool' run_command(command) # # 'mac' command ("show mac ...") # @cli.command() @click.option('-v', '--vlan') @click.option('-p', '--port') @click.option('--verbose', is_flag=True, help="Enable verbose output") def mac(vlan, port, verbose): """Show MAC (FDB) entries""" cmd = "fdbshow" if vlan is not None: cmd += " -v {}".format(vlan) if port is not None: cmd += " -p {}".format(port) run_command(cmd, display_cmd=verbose) # # 'show route-map' command ("show route-map") # @cli.command('route-map') @click.argument('route_map_name', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def route_map(route_map_name, verbose): """show route-map""" cmd = 'sudo vtysh -c "show route-map' if route_map_name is not None: cmd += ' {}'.format(route_map_name) cmd += '"' run_command(cmd, display_cmd=verbose) # # 'ip' group ("show ip ...") # # This group houses IP (i.e., IPv4) commands and subgroups @cli.group(cls=clicommon.AliasedGroup) def ip(): """Show IP (IPv4) commands""" pass # # 'show ip interfaces' command # # Display all interfaces with master, an IPv4 address, admin/oper states, their BGP neighbor name and peer ip. # Addresses from all scopes are included. Interfaces with no addresses are # excluded. # @ip.command() @multi_asic_util.multi_asic_click_options def interfaces(namespace, display): cmd = "sudo ipintutil -a ipv4" if namespace is not None: cmd += " -n {}".format(namespace) cmd += " -d {}".format(display) clicommon.run_command(cmd) # # 'route' subcommand ("show ip route") # @ip.command() @click.argument('args', metavar='[IPADDRESS] [vrf <vrf_name>] [...]', nargs=-1, required=False) @click.option('--display', '-d', 'display', default=None, show_default=False, type=str, help='all|frontend') @click.option('--namespace', '-n', 'namespace', default=None, type=str, show_default=False, help='Namespace name or all') @click.option('--verbose', is_flag=True, help="Enable verbose output") def route(args, namespace, display, verbose): """Show IP (IPv4) routing table""" # Call common handler to handle the show ip route cmd bgp_common.show_routes(args, namespace, display, verbose, "ip") # # 'prefix-list' subcommand ("show ip prefix-list") # @ip.command('prefix-list') @click.argument('prefix_list_name', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def prefix_list(prefix_list_name, verbose): """show ip prefix-list""" cmd = 'sudo vtysh -c "show ip prefix-list' if prefix_list_name is not None: cmd += ' {}'.format(prefix_list_name) cmd += '"' run_command(cmd, display_cmd=verbose) # 'protocol' command @ip.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def protocol(verbose): """Show IPv4 protocol information""" cmd = 'sudo vtysh -c "show ip protocol"' run_command(cmd, display_cmd=verbose) # # 'ipv6' group ("show ipv6 ...") # # This group houses IPv6-related commands and subgroups @cli.group(cls=clicommon.AliasedGroup) def ipv6(): """Show IPv6 commands""" pass # # 'prefix-list' subcommand ("show ipv6 prefix-list") # @ipv6.command('prefix-list') @click.argument('prefix_list_name', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def prefix_list(prefix_list_name, verbose): """show ip prefix-list""" cmd = 'sudo vtysh -c "show ipv6 prefix-list' if prefix_list_name is not None: cmd += ' {}'.format(prefix_list_name) cmd += '"' run_command(cmd, display_cmd=verbose) # # 'show ipv6 interfaces' command # # Display all interfaces with master, an IPv6 address, admin/oper states, their BGP neighbor name and peer ip. # Addresses from all scopes are included. Interfaces with no addresses are # excluded. # @ipv6.command() @multi_asic_util.multi_asic_click_options def interfaces(namespace, display): cmd = "sudo ipintutil -a ipv6" if namespace is not None: cmd += " -n {}".format(namespace) cmd += " -d {}".format(display) clicommon.run_command(cmd) # # 'route' subcommand ("show ipv6 route") # @ipv6.command() @click.argument('args', metavar='[IPADDRESS] [vrf <vrf_name>] [...]', nargs=-1, required=False) @click.option('--display', '-d', 'display', default=None, show_default=False, type=str, help='all|frontend') @click.option('--namespace', '-n', 'namespace', default=None, type=str, show_default=False, help='Namespace name or all') @click.option('--verbose', is_flag=True, help="Enable verbose output") def route(args, namespace, display, verbose): """Show IPv6 routing table""" # Call common handler to handle the show ipv6 route cmd bgp_common.show_routes(args, namespace, display, verbose, "ipv6") # 'protocol' command @ipv6.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def protocol(verbose): """Show IPv6 protocol information""" cmd = 'sudo vtysh -c "show ipv6 protocol"' run_command(cmd, display_cmd=verbose) # # Inserting BGP functionality into cli's show parse-chain. # BGP commands are determined by the routing-stack being elected. # if routing_stack == "quagga": from .bgp_quagga_v4 import bgp ip.add_command(bgp) from .bgp_quagga_v6 import bgp ipv6.add_command(bgp) elif routing_stack == "frr": from .bgp_frr_v4 import bgp ip.add_command(bgp) from .bgp_frr_v6 import bgp ipv6.add_command(bgp) # # 'lldp' group ("show lldp ...") # @cli.group(cls=clicommon.AliasedGroup) def lldp(): """LLDP (Link Layer Discovery Protocol) information""" pass # Default 'lldp' command (called if no subcommands or their aliases were passed) @lldp.command() @click.argument('interfacename', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def neighbors(interfacename, verbose): """Show LLDP neighbors""" cmd = "sudo lldpshow -d" if interfacename is not None: if clicommon.get_interface_naming_mode() == "alias": interfacename = iface_alias_converter.alias_to_name(interfacename) cmd += " -p {}".format(interfacename) run_command(cmd, display_cmd=verbose) # 'table' subcommand ("show lldp table") @lldp.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def table(verbose): """Show LLDP neighbors in tabular format""" cmd = "sudo lldpshow" run_command(cmd, display_cmd=verbose) # # 'logging' command ("show logging") # @cli.command() @click.argument('process', required=False) @click.option('-l', '--lines') @click.option('-f', '--follow', is_flag=True) @click.option('--verbose', is_flag=True, help="Enable verbose output") def logging(process, lines, follow, verbose): """Show system log""" if follow: cmd = "sudo tail -F /var/log/syslog" run_command(cmd, display_cmd=verbose) else: if os.path.isfile("/var/log/syslog.1"): cmd = "sudo cat /var/log/syslog.1 /var/log/syslog" else: cmd = "sudo cat /var/log/syslog" if process is not None: cmd += " | grep '{}'".format(process) if lines is not None: cmd += " | tail -{}".format(lines) run_command(cmd, display_cmd=verbose) # # 'version' command ("show version") # @cli.command() @click.option("--verbose", is_flag=True, help="Enable verbose output") def version(verbose): """Show version information""" version_info = device_info.get_sonic_version_info() platform = device_info.get_platform() hwsku = device_info.get_hwsku() asic_type = version_info['asic_type'] asic_count = multi_asic.get_num_asics() serial_number_cmd = "sudo decode-syseeprom -s" serial_number = subprocess.Popen(serial_number_cmd, shell=True, text=True, stdout=subprocess.PIPE) sys_uptime_cmd = "uptime" sys_uptime = subprocess.Popen(sys_uptime_cmd, shell=True, text=True, stdout=subprocess.PIPE) click.echo("\nSONiC Software Version: SONiC.{}".format(version_info['build_version'])) click.echo("Distribution: Debian {}".format(version_info['debian_version'])) click.echo("Kernel: {}".format(version_info['kernel_version'])) click.echo("Build commit: {}".format(version_info['commit_id'])) click.echo("Build date: {}".format(version_info['build_date'])) click.echo("Built by: {}".format(version_info['built_by'])) click.echo("\nPlatform: {}".format(platform)) click.echo("HwSKU: {}".format(hwsku)) click.echo("ASIC: {}".format(asic_type)) click.echo("ASIC Count: {}".format(asic_count)) click.echo("Serial Number: {}".format(serial_number.stdout.read().strip())) click.echo("Uptime: {}".format(sys_uptime.stdout.read().strip())) click.echo("\nDocker images:") cmd = 'sudo docker images --format "table {{.Repository}}\\t{{.Tag}}\\t{{.ID}}\\t{{.Size}}"' p = subprocess.Popen(cmd, shell=True, text=True, stdout=subprocess.PIPE) click.echo(p.stdout.read()) # # 'environment' command ("show environment") # @cli.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def environment(verbose): """Show environmentals (voltages, fans, temps)""" cmd = "sudo sensors" run_command(cmd, display_cmd=verbose) # # 'users' command ("show users") # @cli.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def users(verbose): """Show users""" cmd = "who" run_command(cmd, display_cmd=verbose) # # 'techsupport' command ("show techsupport") # @cli.command() @click.option('--since', required=False, help="Collect logs and core files since given date") @click.option('-g', '--global-timeout', default=30, type=int, help="Global timeout in minutes. Default 30 mins") @click.option('-c', '--cmd-timeout', default=5, type=int, help="Individual command timeout in minutes. Default 5 mins") @click.option('--verbose', is_flag=True, help="Enable verbose output") @click.option('--allow-process-stop', is_flag=True, help="Dump additional data which may require system interruption") @click.option('--silent', is_flag=True, help="Run techsupport in silent mode") def techsupport(since, global_timeout, cmd_timeout, verbose, allow_process_stop, silent): """Gather information for troubleshooting""" cmd = "sudo timeout -s SIGTERM --foreground {}m".format(global_timeout) if allow_process_stop: cmd += " -a" if silent: cmd += " generate_dump" click.echo("Techsupport is running with silent option. This command might take a long time.") else: cmd += " generate_dump -v" if since: cmd += " -s '{}'".format(since) cmd += " -t {}".format(cmd_timeout) run_command(cmd, display_cmd=verbose) # # 'runningconfiguration' group ("show runningconfiguration") # @cli.group(cls=clicommon.AliasedGroup) def runningconfiguration(): """Show current running configuration information""" pass # 'all' subcommand ("show runningconfiguration all") @runningconfiguration.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def all(verbose): """Show full running configuration""" cmd = "sonic-cfggen -d --print-data" run_command(cmd, display_cmd=verbose) # 'acl' subcommand ("show runningconfiguration acl") @runningconfiguration.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def acl(verbose): """Show acl running configuration""" cmd = "sonic-cfggen -d --var-json ACL_RULE" run_command(cmd, display_cmd=verbose) # 'ports' subcommand ("show runningconfiguration ports <portname>") @runningconfiguration.command() @click.argument('portname', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def ports(portname, verbose): """Show ports running configuration""" cmd = "sonic-cfggen -d --var-json PORT" if portname is not None: cmd += " {0} {1}".format("--key", portname) run_command(cmd, display_cmd=verbose) # 'bgp' subcommand ("show runningconfiguration bgp") @runningconfiguration.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def bgp(verbose): """Show BGP running configuration""" cmd = 'sudo vtysh -c "show running-config"' run_command(cmd, display_cmd=verbose) # 'interfaces' subcommand ("show runningconfiguration interfaces") @runningconfiguration.command() @click.argument('interfacename', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def interfaces(interfacename, verbose): """Show interfaces running configuration""" cmd = "sonic-cfggen -d --var-json INTERFACE" if interfacename is not None: cmd += " {0} {1}".format("--key", interfacename) run_command(cmd, display_cmd=verbose) # 'snmp' subcommand ("show runningconfiguration snmp") @runningconfiguration.command() @click.argument('server', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def snmp(server, verbose): """Show SNMP information""" cmd = "sudo docker exec snmp cat /etc/snmp/snmpd.conf" if server is not None: cmd += " | grep -i agentAddress" run_command(cmd, display_cmd=verbose) # 'ntp' subcommand ("show runningconfiguration ntp") @runningconfiguration.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def ntp(verbose): """Show NTP running configuration""" ntp_servers = [] ntp_dict = {} with open("/etc/ntp.conf") as ntp_file: data = ntp_file.readlines() for line in data: if line.startswith("server "): ntp_server = line.split(" ")[1] ntp_servers.append(ntp_server) ntp_dict['NTP Servers'] = ntp_servers print(tabulate(ntp_dict, headers=list(ntp_dict.keys()), tablefmt="simple", stralign='left', missingval="")) # 'syslog' subcommand ("show runningconfiguration syslog") @runningconfiguration.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def syslog(verbose): """Show Syslog running configuration""" syslog_servers = [] syslog_dict = {} with open("/etc/rsyslog.conf") as syslog_file: data = syslog_file.readlines() for line in data: if line.startswith("*.* @"): line = line.split(":") server = line[0][5:] syslog_servers.append(server) syslog_dict['Syslog Servers'] = syslog_servers print(tabulate(syslog_dict, headers=list(syslog_dict.keys()), tablefmt="simple", stralign='left', missingval="")) # # 'startupconfiguration' group ("show startupconfiguration ...") # @cli.group(cls=clicommon.AliasedGroup) def startupconfiguration(): """Show startup configuration information""" pass # 'bgp' subcommand ("show startupconfiguration bgp") @startupconfiguration.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def bgp(verbose): """Show BGP startup configuration""" cmd = "sudo docker ps | grep bgp | awk '{print$2}' | cut -d'-' -f3 | cut -d':' -f1" proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True, text=True) result = proc.stdout.read().rstrip() click.echo("Routing-Stack is: {}".format(result)) if result == "quagga": run_command('sudo docker exec bgp cat /etc/quagga/bgpd.conf', display_cmd=verbose) elif result == "frr": run_command('sudo docker exec bgp cat /etc/frr/bgpd.conf', display_cmd=verbose) elif result == "gobgp": run_command('sudo docker exec bgp cat /etc/gpbgp/bgpd.conf', display_cmd=verbose) else: click.echo("Unidentified routing-stack") # # 'ntp' command ("show ntp") # @cli.command() @click.pass_context @click.option('--verbose', is_flag=True, help="Enable verbose output") def ntp(ctx, verbose): """Show NTP information""" from pkg_resources import parse_version ntpstat_cmd = "ntpstat" ntpcmd = "ntpq -p -n" if is_mgmt_vrf_enabled(ctx) is True: #ManagementVRF is enabled. Call ntpq using "ip vrf exec" or cgexec based on linux version os_info = os.uname() release = os_info[2].split('-') if parse_version(release[0]) > parse_version("4.9.0"): ntpstat_cmd = "sudo ip vrf exec mgmt ntpstat" ntpcmd = "sudo ip vrf exec mgmt ntpq -p -n" else: ntpstat_cmd = "sudo cgexec -g l3mdev:mgmt ntpstat" ntpcmd = "sudo cgexec -g l3mdev:mgmt ntpq -p -n" run_command(ntpstat_cmd, display_cmd=verbose) run_command(ntpcmd, display_cmd=verbose) # # 'uptime' command ("show uptime") # @cli.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def uptime(verbose): """Show system uptime""" cmd = "uptime -p" run_command(cmd, display_cmd=verbose) @cli.command() @click.option('--verbose', is_flag=True, help="Enable verbose output") def clock(verbose): """Show date and time""" cmd ="date" run_command(cmd, display_cmd=verbose) @cli.command('system-memory') @click.option('--verbose', is_flag=True, help="Enable verbose output") def system_memory(verbose): """Show memory information""" cmd = "free -m" run_command(cmd, display_cmd=verbose) @cli.command('services') def services(): """Show all daemon services""" cmd = "sudo docker ps --format '{{.Names}}'" proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True, text=True) while True: line = proc.stdout.readline() if line != '': print(line.rstrip()+'\t'+"docker") print("---------------------------") cmd = "sudo docker exec {} ps aux | sed '$d'".format(line.rstrip()) proc1 = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True, text=True) print(proc1.stdout.read()) else: break @cli.command() def aaa(): """Show AAA configuration""" config_db = ConfigDBConnector() config_db.connect() data = config_db.get_table('AAA') output = '' aaa = { 'authentication': { 'login': 'local (default)', 'failthrough': 'False (default)' } } if 'authentication' in data: aaa['authentication'].update(data['authentication']) for row in aaa: entry = aaa[row] for key in entry: output += ('AAA %s %s %s\n' % (row, key, str(entry[key]))) click.echo(output) @cli.command() def tacacs(): """Show TACACS+ configuration""" config_db = ConfigDBConnector() config_db.connect() output = '' data = config_db.get_table('TACPLUS') tacplus = { 'global': { 'auth_type': 'pap (default)', 'timeout': '5 (default)', 'passkey': '<EMPTY_STRING> (default)' } } if 'global' in data: tacplus['global'].update(data['global']) for key in tacplus['global']: output += ('TACPLUS global %s %s\n' % (str(key), str(tacplus['global'][key]))) data = config_db.get_table('TACPLUS_SERVER') if data != {}: for row in data: entry = data[row] output += ('\nTACPLUS_SERVER address %s\n' % row) for key in entry: output += (' %s %s\n' % (key, str(entry[key]))) click.echo(output) # # 'mirror_session' command ("show mirror_session ...") # @cli.command('mirror_session') @click.argument('session_name', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def mirror_session(session_name, verbose): """Show existing everflow sessions""" cmd = "acl-loader show session" if session_name is not None: cmd += " {}".format(session_name) run_command(cmd, display_cmd=verbose) # # 'policer' command ("show policer ...") # @cli.command() @click.argument('policer_name', required=False) @click.option('--verbose', is_flag=True, help="Enable verbose output") def policer(policer_name, verbose): """Show existing policers""" cmd = "acl-loader show policer" if policer_name is not None: cmd += " {}".format(policer_name) run_command(cmd, display_cmd=verbose) # # 'ecn' command ("show ecn") # @cli.command('ecn') @click.option('--verbose', is_flag=True, help="Enable verbose output") def ecn(verbose): """Show ECN configuration""" cmd = "ecnconfig -l" run_command(cmd, display_cmd=verbose) # # 'boot' command ("show boot") # @cli.command('boot') def boot(): """Show boot configuration""" cmd = "sudo sonic-installer list" proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True, text=True) click.echo(proc.stdout.read()) # # 'mmu' command ("show mmu") # @cli.command('mmu') def mmu(): """Show mmu configuration""" cmd = "mmuconfig -l" run_command(cmd) # # 'buffer' command ("show buffer") # @cli.group(cls=clicommon.AliasedGroup) def buffer(): """Show buffer information""" pass # # 'configuration' command ("show buffer command") # @buffer.command() def configuration(): """show buffer configuration""" cmd = "mmuconfig -l" run_command(cmd) # # 'information' command ("show buffer state") # @buffer.command() def information(): """show buffer information""" cmd = "buffershow -l" run_command(cmd) # # 'line' command ("show line") # @cli.command('line') @click.option('--brief', '-b', metavar='<brief_mode>', required=False, is_flag=True) @click.option('--verbose', is_flag=True, help="Enable verbose output") def line(brief, verbose): """Show all console lines and their info include available ttyUSB devices unless specified brief mode""" cmd = "consutil show" + (" -b" if brief else "") run_command(cmd, display_cmd=verbose) return # # 'ztp status' command ("show ztp status") # @cli.command() @click.argument('status', required=False, type=click.Choice(["status"])) @click.option('--verbose', is_flag=True, help="Enable verbose output") def ztp(status, verbose): """Show Zero Touch Provisioning status""" if os.path.isfile('/usr/bin/ztp') is False: exit("ZTP feature unavailable in this image version") cmd = "ztp status" if verbose: cmd = cmd + " --verbose" run_command(cmd, display_cmd=verbose) if __name__ == '__main__': cli()
29.718077
132
0.668525
4a1cc1b2313dc8dcb0a5892d019f0a1e0d767619
32,421
py
Python
twink/base.py
krsna1729/twink
6c2f1546bc2a8b1574e37e27676ef4d7a853b4bf
[ "Apache-2.0" ]
1
2016-06-01T21:25:01.000Z
2016-06-01T21:25:01.000Z
twink/base.py
krsna1729/twink
6c2f1546bc2a8b1574e37e27676ef4d7a853b4bf
[ "Apache-2.0" ]
null
null
null
twink/base.py
krsna1729/twink
6c2f1546bc2a8b1574e37e27676ef4d7a853b4bf
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import import binascii import contextlib import logging import os import struct import types import weakref import datetime from collections import namedtuple _use_gevent = False def use_gevent(): _use_gevent = True class _sched_proxy(object): def __getattr__(self, name): _sched = None if _use_gevent: _sched = __import__("sched_gevent", globals(), level=1) else: _sched = __import__("sched_basic", globals(), level=1) if name in "subprocess socket Queue Lock Event spawn serve_forever".split(): return getattr(_sched, name) raise AttributeError("No such attribute") sched = _sched_proxy() def default_wrapper(func): def wrap(*args, **kwargs): socket = sched.socket try: return func(*args, **kwargs) except socket.timeout: return None except socket.error as e: if e.errno in (os.errno.EAGAIN, os.errno.ECONNRESET, os.errno.EBADF): return b"" elif e.errno in (os.errno.EINTR,): return None raise except KeyboardInterrupt: return b"" return wrap class ReadWrapper(object): def __init__(self, channel, read_wrap): self.channel = channel self.read_wrap = read_wrap def __enter__(self): self.installed_wrapper = self.channel.read_wrap self.channel.read_wrap = self return self.channel def __exit__(self, *args, **kwargs): self.channel.read_wrap = self.installed_wrapper def __call__(self, func): def wrap(*args, **kwargs): if self.channel.closed: return b"" return self.read_wrap(func)(*args, **kwargs) return wrap class Channel(object): ''' Openflow abstract connection class This is not only for TCP but also for UDP. This is the reason that the name is not "Connection" but "Channel". You can subclass this to have instance members, of which lifecycle is the same with channel. ''' def __init__(self, *args, **kwargs): self._socket = kwargs.pop("socket", None) # dedicated socket self._sendto = kwargs.pop("sendto", None) # only if channel prefers sendto() self.reader = kwargs.pop("reader", None) self.read_wrap = kwargs.pop("read_wrap", default_wrapper) self.remote_address = kwargs.pop("remote_address", None) self.local_address = kwargs.pop("local_address", None) if self._socket: if self.remote_address is None: self.remote_address = self._socket.getpeername() if self.local_address is None: self.local_address = self._socket.getsockname() if hasattr(self._socket, "settimeout") and self._socket.gettimeout() == None: self._socket.settimeout(0.5) def attach(self, stream, **kwargs): self._socket = stream if hasattr(self._socket, "settimeout") and self._socket.gettimeout() == None: self._socket.settimeout(0.5) self.remote_address = stream.getpeername() self.local_address = stream.getsockname() @property def closed(self): # This is not self._socket.closed because in some use cases, # self._socket is not available, for example with gevent.server.DatagramServer return self.remote_address is None def close(self): if self._socket: self._socket.close() if self.remote_address is not None: self.remote_address = None def send(self, message, **kwargs): if self._sendto: self._sendto(message, self.remote_address) elif self._socket: self._socket.send(message) else: raise ValueError("socket or sendto is required") def _recv(self, num): if self.reader: reader = self.reader else: reader = self._socket.recv return ReadWrapper(self, self.read_wrap)(reader)(num) class Error(Exception): pass class ChannelClose(Error): pass class OpenflowBaseChannel(Channel): version = None # The negotiated version accept_versions = [4,] # defaults to openflow 1.3 def __init__(self, *args, **kwargs): super(OpenflowBaseChannel, self).__init__(*args, **kwargs) self.buffer = b"" def __iter__(self): while True: ret = self.recv() if ret: yield ret else: break def recv(self): required_len = 8 while len(self.buffer) < required_len: tmp = super(OpenflowBaseChannel, self)._recv(8192) if tmp is None: continue elif len(tmp)==0: return tmp self.buffer += tmp p = struct.unpack_from("!BBHI", self.buffer) required_len = p[2] while len(self.buffer) < required_len: tmp = super(OpenflowBaseChannel, self)._recv(8192) if tmp is None: continue elif len(tmp)==0: return tmp self.buffer += tmp ret = self.buffer[0:required_len] self.buffer = self.buffer[required_len:] return ret class LoggingChannel(OpenflowBaseChannel): channel_log_name = "channel" send_log_name = "send" recv_log_name = "recv" remote = "" def __init__(self, *args, **kwargs): super(LoggingChannel, self).__init__(*args, **kwargs) if self.remote_address: self.remote = " from %s" % self.remote_address[0] logging.getLogger(self.channel_log_name).info("%s connect%s" % (self, self.remote)) def send(self, message, **kwargs): logging.getLogger(self.send_log_name).debug("%s %s" % (self, binascii.b2a_hex(message))) return super(LoggingChannel, self).send(message, **kwargs) def recv(self): message = super(LoggingChannel, self).recv() if message: # ignore b"" and None logging.getLogger(self.recv_log_name).debug("%s %s" % (self, binascii.b2a_hex(message))) return message def close(self): if not self.closed: super(LoggingChannel, self).close() logging.getLogger(self.channel_log_name).info("%s close%s" % (self, self.remote)) class OpenflowChannel(OpenflowBaseChannel): _start = None def attach(self, stream, **kwargs): super(OpenflowBaseChannel, self).attach(stream, **kwargs) if kwargs.get("autostart", True): self.start() def start(self): if self._start is None: self.send(hello(self.accept_versions)) self._start = True def recv(self): message = super(OpenflowChannel, self).recv() if message: (version, oftype, length, xid) = parse_ofp_header(message) if oftype==0: # HELLO accept_versions = ofp_version_normalize(self.accept_versions) if not accept_versions: accept_versions = set([1,]) cross_versions = parse_hello(message) & accept_versions if cross_versions: self.version = max(cross_versions) else: ascii_txt = "Accept versions: %s" % ["- 1.0 1.1 1.2 1.3 1.4".split()[x] for x in list(accept_versions)] self.send(struct.pack("!BBHIHH", max(accept_versions), 1, struct.calcsize("!BBHIHH")+len(ascii_txt), hms_xid(), 0, 0) + ascii_txt.encode("ASCII")) raise ChannelClose(ascii_txt) return message def parse_ofp_header(message): ''' @return (version, oftype, message_len, xid) ''' return struct.unpack_from("!BBHI", message) def ofp_header_only(oftype, version=1, xid=None): if xid is None: xid = hms_xid() return struct.pack("!BBHI", version, oftype, 8, xid) def hms_xid(): '''Xid looks readable datetime like format when logged as int.''' now = datetime.datetime.now() candidate = int(("%02d"*3+"%04d") % (now.hour, now.minute, now.second, now.microsecond/100)) if hasattr(hms_xid, "dedup"): if hms_xid.dedup >= candidate: candidate = hms_xid.dedup+1 setattr(hms_xid, "dedup", candidate) return candidate def ofp_version_normalize(versions): if isinstance(versions, list) or isinstance(versions, tuple) or isinstance(versions, set): vset = set() for version in versions: if isinstance(version, float): version = [1.0, 1.1, 1.2, 1.3, 1.4].index(version) + 1 assert isinstance(version, int), "unknown version %s" % version vset.add(version) return vset elif versions is None: return set() assert False, "unknown versions %s" % versions def hello(versions, **kwargs): xid = kwargs.get("xid", hms_xid()) if versions: vset = ofp_version_normalize(versions) else: vset = set((1,)) version = max(vset) if version < 4: return struct.pack("!BBHI", version, 0, 8, xid) else: units = [0,]*(1 + version//32) for v in vset: units[v//32] |= 1<<(v%32) versionbitmap_length = 4 + len(units)*4 fmt = "!BBHIHH%dI%dx" % (len(units), 8*((len(units)-1)%2)) return struct.pack(fmt, version, 0, struct.calcsize(fmt), xid, # HELLO 1, versionbitmap_length, *units) # VERSIONBITMAP def parse_hello(message): (version, oftype, length, xid) = parse_ofp_header(message) assert oftype==0 # HELLO versions = set() if length == 8: versions.add(version) else: (subtype, sublength) = struct.unpack_from("!HH", message, offset=8) assert subtype == 1 # VERSIONBITMAP units = struct.unpack_from("!%dI" % (sublength/4 - 1), message, offset=12) for idx,unit in zip(range(len(units)),units): for s in range(32): if unit&(1<<s): versions.add(idx*32 + s) return versions class OpenflowServerChannel(OpenflowChannel): def loop(self): try: for message in self: if not message: break self.handle_proxy(self.handle)(message, self) except ChannelClose: self.close() def handle_proxy(self, handle): return handle def handle(self, message, channel): logging.getLogger(__name__).warn("check MRO") pass class AutoEchoChannel(OpenflowServerChannel): ''' AuthEchoChannel steals ECHO_REQUEST and automatically send echo response. ''' def handle_proxy(self, handle): def intercept(message, channel): if message: (version, oftype, length, xid) = parse_ofp_header(message) if oftype==2: # ECHO self.send(struct.pack("!BBHI", self.version, 3, length, xid)+message[8:]) else: super(AutoEchoChannel, self).handle_proxy(handle)(message, channel) return intercept class WeakCallbackCaller(object): @property def callback(self): if self.cbref: return self.cbref() class Barrier(WeakCallbackCaller): def __init__(self, xid, message_handler=None): if message_handler: self.cbref = weakref.ref(message_handler) else: self.cbref = None self.xid = xid class Chunk(WeakCallbackCaller): def __init__(self, message_handler): if message_handler: self.cbref = weakref.ref(message_handler) else: self.cbref = None class ControllerChannel(OpenflowServerChannel, WeakCallbackCaller): datapath = None auxiliary = None cbref = None def __init__(self, *args, **kwargs): super(ControllerChannel, self).__init__(*args, **kwargs) self.seq_lock = sched.Lock() self.seq = [] def send(self, message, **kwargs): with self.seq_lock: return self.locked_send(message, **kwargs) def locked_send(self, message, **kwargs): message_handler = kwargs.get("callback") # callable object if message_handler is None: pass else: assert isinstance(message_handler, object) assert callable(message_handler) (version, oftype, length, xid) = parse_ofp_header(message) if (oftype==18 and version==1) or (oftype==20 and version!=1): # OFPT_BARRIER_REQUEST self.seq.append(Barrier(xid, message_handler)) elif self.seq: seq_last = self.seq[-1] if isinstance(seq_last, Chunk): if seq_last.callback != message_handler: bxid = hms_xid() if self.version==1: msg = ofp_header_only(18, version=1, xid=bxid) # OFPT_BARRIER_REQUEST=18 (v1.0) else: msg = ofp_header_only(20, version=self.version, xid=bxid) # OFPT_BARRIER_REQUEST=20 (v1.1--v1.4) self.seq.append(Barrier(bxid)) self.seq.append(Chunk(message_handler)) super(ControllerChannel, self).send(msg) elif isinstance(seq_last, Barrier): self.seq.append(Chunk(message_handler)) else: assert False, "seq element must be Chunk or Barrier" else: if self.callback != message_handler: self.seq.append(Chunk(message_handler)) if message_handler: self.cbfunc = weakref.ref(message_handler) super(ControllerChannel, self).send(message) def recv(self): message = super(ControllerChannel, self).recv() if message: (version, oftype, length, xid) = parse_ofp_header(message) if oftype==6: # FEATURES_REPLY if self.version < 4: (self.datapath,) = struct.unpack_from("!Q", message, offset=8) # v1.0--v1.2 else: (self.datapath,_1,_2,self.auxiliary) = struct.unpack_from("!QIBB", message, offset=8) # v1.3--v1.4 return message def handle_proxy(self, handle): def intercept(message, channel): (version, oftype, length, xid) = parse_ofp_header(message) if hasattr(self, "handle_async") and oftype in (10,11,12): # bypass method call for async message return super(ControllerChannel, self).handle_proxy(self.handle_async)(message, channel) with self.seq_lock: if self.seq: if (oftype==19 and version==1) or (oftype==21 and version!=1): # is barrier chunk_drop = False for e in self.seq: if isinstance(e, Barrier): if e.xid == xid: self.seq = self.seq[self.seq.index(e)+1:] if e.callback: return e.callback(message, self) return True else: assert False, "missing barrier(xid=%x) before barrier(xid=%x)" % (e.xid, xid) elif isinstance(e, Chunk): assert chunk_drop==False, "dropping multiple chunks at a time" chunk_drop = True assert False, "got unknown barrier xid=%x" % xid else: e = self.seq[0] if isinstance(e, Chunk): if e.callback: return e.callback(message, self) if self.callback: return self.callback(message, self) else: return super(ControllerChannel, self).handle_proxy(handle)(message, channel) logging.getLogger(__name__).warn("No callback found for handling message %s" % binascii.b2a_hex(message)) return intercept class RateLimit(object): def __init__(self, size): self.size = size self.cold_lock = sched.Lock() self.cold = [] self.loop_lock = sched.Lock() def spawn(self, func, *args, **kwargs): with self.cold_lock: self.cold.append((func, args, kwargs)) sched.spawn(self.loop) def loop(self): with self.loop_lock: while len(self.cold) > 0: hot_lock = sched.Lock() hot = [] children = {} while len(hot) < self.size and len(self.cold) > 0: task = None with self.cold_lock: task = self.cold.pop(0) if task: (func, args, kwargs) = task def proxy(): func(*args, **kwargs) with hot_lock: hot.remove(task) hot.append(task) children[id(task)] = sched.spawn(proxy) for task_id,job in tuple(children.items()): running = False with hot_lock: if task_id in [id(task) for task in hot]: running = True if running: job.join(0.5) else: chilren.pop(task) break class ParallelChannel(OpenflowServerChannel): # mixin for parent channel socket_dir = None async_rate = 0 def __init__(self, *args, **kwargs): super(ParallelChannel, self).__init__(*args, **kwargs) self.close_lock = sched.Lock() self.async_pool = RateLimit(self.async_rate) def close(self): with self.close_lock: super(ParallelChannel, self).close() def handle_proxy(self, handle): def intercept(message, channel): def proxy(message, channel): try: handle(message, channel) except ChannelClose: logging.getLogger(__name__).info("closing", exc_info=True) channel.close() except: logging.getLogger(__name__).error("handle error", exc_info=True) channel.close() rated_call = False if self.async_rate: (version, oftype, length, xid) = parse_ofp_header(message) if oftype in (10, 11, 12): rated_call = True if rated_call: self.async_pool.spawn(proxy, message, channel) else: sched.spawn(proxy, message, channel) return super(ParallelChannel, self).handle_proxy(intercept) def socket_path(self, path): if self.socket_dir: path = os.path.join(self.socket_dir, path) return os.path.abspath(path) def helper_path(self, suffix): old = self.socket_path("unknown-%x.%s" % (id(self), suffix)) if self.datapath: new = self.socket_path("%x-%x.%s" % (self.datapath, id(self), suffix)) try: os.rename(old, new) except OSError: pass return new return old def override_required(self, *args, **kwargs): raise Error("Concrete MixIn required") def bound_socket(info, socktype): socket = sched.socket if isinstance(info, socket.socket): return info elif isinstance(info, tuple) or isinstance(info, list): infos = [o for o in socket.getaddrinfo(*info) if o[1]==socktype or o[1]==0] (family, socktype, proto, canonname, sockaddr) = infos[0] s = socket.socket(family, socktype) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(sockaddr) return s elif isinstance(info, str): s = socket.socket(socket.AF_UNIX, socktype) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(info) return s else: raise ValueError("unexpected %s" % info) def stream_socket(info): return bound_socket(info, sched.socket.SOCK_STREAM) def dgram_socket(info): return bound_socket(info, sched.socket.SOCK_DGRAM) class StreamServer(object): channel_cls = None def __init__(self, bound_sock, **kwargs): self.accepting = False self.sock = stream_socket(bound_sock) self.channels_lock = sched.Lock() self.channels = set() self.server_address = self.sock.getsockname() def start(self): self.accepting = True sock = self.sock sock.settimeout(0.5) sock.listen(10) sched.spawn(self.run) def run(self): try: while self.accepting: try: s = self.sock.accept() except sched.socket.timeout: continue ch = self.channel_cls(socket=s[0], remote_address=s[1], read_wrap=self.read_wrap) ch.start() sched.spawn(self._loop_runner, ch) finally: self.sock.close() def _loop_runner(self, ch): with self.channels_lock: self.channels.add(ch) ch.loop() ch.close() with self.channels_lock: self.channels.remove(ch) def read_wrap(self, func): def wrap(*args, **kwargs): if self.accepting==False: return b"" return default_wrapper(func)(*args, **kwargs) return wrap def stop(self): self.accepting = False for ch in list(self.channels): ch.close() class DgramServer(object): channel_cls = None def __init__(self, bound_sock): self.accepting = False self.sock = dgram_socket(bound_sock) self.remotes_lock = sched.Lock() self.remotes = {} self.remote_locks = {} def start(self): self.accepting = True sched.spawn(self.run) def run(self): sock = self.sock while self.accepting: try: data,remote_address = sock.recv() except sched.socket.timeout: continue with self.remotes_lock: if remote_address in self.remotes: ch = self.remotes[remote_address] lock = self.remote_locks[remote_address] else: ch = self.channel_cls(sendto=sock.sendto, remote_address=remote_address, local_address=sock.getsockname()) ch.start() self.remotes[remote_address] = ch lock = sched.Lock() self.remote_locks[remote_address] = lock sched.spawn(self.locked_loop, ch, lock, data) sock.close() def locked_loop(self, ch, lock, data): with lock: ch.reader = StringIO.StringIO(data).read ch.loop() def stop(self): self.accepting = False class ParentChannel(ControllerChannel, ParallelChannel): jackin = False monitor = False jackin_shutdown = None monitor_shutdown = None monitors = set() def close(self): if self.jackin_shutdown: self.jackin_shutdown() try: os.remove(self.helper_path("jackin")) except OSError: pass if self.monitor_shutdown: self.monitor_shutdown() try: os.remove(self.helper_path("monitor")) except OSError: pass super(ParentChannel, self).close() def recv(self): message = super(ParentChannel, self).recv() if message: (version, oftype, length, xid) = parse_ofp_header(message) if oftype==0: if self.jackin: serv, addr = self.jackin_server() self.jackin_shutdown = serv.stop serv.start() # start after assignment especially for pthread if self.monitor: serv, addr = self.monitor_server() self.monitor_shutdown = serv.stop self.monitors = serv.channels serv.start() # start after assignment especially for pthread else: if oftype==6: # FEATURES_REPLY if self.jackin: self.helper_path("jackin") if self.monitor: self.helper_path("monitor") for ch in list(self.monitors): ch.send(message) return message def jackin_server(self): path = self.helper_path("jackin") serv = type("JackinServer", (StreamServer,), dict( channel_cls = type("JackinCChannel",(JackinChildChannel, AutoEchoChannel, LoggingChannel),{ "accept_versions":[self.version,], "parent": self })))(path) return serv, path def monitor_server(self): path = self.helper_path("monitor") serv = type("MonitorServer", (StreamServer,), dict( channel_cls = type("MonitorCChannel",(ChildChannel, AutoEchoChannel, LoggingChannel),{ "accept_versions":[self.version,], "parent": self })))(path) return serv, path def temp_server(self): s = sched.socket.socket(sched.socket.AF_INET, sched.socket.SOCK_STREAM) s.setsockopt(sched.socket.SOL_SOCKET, sched.socket.SO_REUSEADDR, 1) s.bind(("127.0.0.1", 0)) serv = type("TempServer", (StreamServer,), dict( channel_cls = type("TempCChannel",(JackinChildChannel, AutoEchoChannel, LoggingChannel),{ "accept_versions":[self.version,], "parent": self })))(s) return serv.start, serv.stop, s.getsockname() class JackinChannel(ParentChannel): ''' MonitorChannel opens unix domain sockets for openflow operators(jackin programs), such as ovs-ofctl. ''' jackin = True class MonitorChannel(ParentChannel): ''' MonitorChannel opens unix domain sockets for openflow message listeners(monitors). ''' monitor = True class ChildChannel(OpenflowChannel): parent = None # must be set def send(self, message, **kwargs): super(ChildChannel, self).send(message, **kwargs) def handle(self, message, channel): pass # ignore all messages class WeakCallback(object): def __init__(self, channel): self.channel = channel def __call__(self, message, upstream_channel): self.channel.send(message) class JackinChildChannel(ChildChannel): def __init__(self, *args, **kwargs): super(JackinChildChannel, self).__init__(*args, **kwargs) self.cbfunc = WeakCallback(self) def handle(self, message, channel): (version, oftype, length, xid) = parse_ofp_header(message) if oftype!=0: self.parent.send(message, callback=self.cbfunc) def close(self): self.cbfunc = None # unref super(JackinChildChannel, self).close() class SyncTracker(object): def __init__(self, xid, ev): self.xid = xid self.ev = ev self.data = None class SyncChannel(ParallelChannel): ''' SyncChannel adds synchronous methods. ''' def __init__(self, *args, **kwargs): super(SyncChannel, self).__init__(*args, **kwargs) self.syncs = {} self.syncs_lock = sched.Lock() def recv(self): message = super(SyncChannel, self).recv() if message: (version, oftype, length, xid) = parse_ofp_header(message) if xid in self.syncs: x = self.syncs[xid] if (version==1 and oftype==17) or (version!=1 and oftype==19): # multipart with self.syncs_lock: if x.data is None: x.data = message else: x.data += message if not struct.unpack_from("!H", message, offset=10)[0] & 1: x.ev.set() else: x.data = message x.ev.set() return message def send_sync(self, message, **kwargs): (version, oftype, length, xid) = parse_ofp_header(message) x = SyncTracker(xid, sched.Event()) with self.syncs_lock: self.syncs[x.xid] = x self.send(message, **kwargs) x.ev.wait(timeout=kwargs.get("timeout", 10)) with self.syncs_lock: self.syncs.pop(x.xid) return x.data def _sync_simple(self, req_oftype, res_oftype): message = self.send_sync(ofp_header_only(req_oftype, version=self.version)) if message: (version, oftype, length, xid) = parse_ofp_header(message) if oftype != res_oftype: raise OpenflowError(message) else: raise ChannelClose("no response") return message def close(self): if self.syncs is not None: for k,x in tuple(self.syncs.items()): x.data = "" x.ev.set() super(SyncChannel, self).close() def echo(self): return self._sync_simple(2, 3) def feature(self): return self._sync_simple(5, 6) def get_config(self): return self._sync_simple(7, 8) def barrier(self): if self.version==1: return self._sync_simple(18, 19) # OFPT_BARRIER_REQUEST=18 (v1.0) else: return self._sync_simple(20, 21) # OFPT_BARRIER_REQUEST=20 (v1.1, v1.2, v1.3) def single(self, message, **kwargs): return self.multi((message,), **kwargs).pop() def multi(self, messages, **kwargs): prepared = [] for message in messages: (version, oftype, length, xid) = parse_ofp_header(message) x = SyncTracker(xid, sched.Event()) with self.syncs_lock: self.syncs[x.xid] = x self.send(message, **kwargs) prepared.append(xid) self.barrier() results = [] for xid in prepared: if xid in self.syncs: results.append(self.syncs[xid].data) with self.syncs_lock: self.syncs.pop(xid) else: results.append(None) return results class PortMonitorChannel(ControllerChannel, ParallelChannel): ''' PortMonitorChannel exposes `ports` property, which will be synced with the openflow switch. ''' def __init__(self, *args, **kwargs): super(PortMonitorChannel, self).__init__(*args, **kwargs) self.timeout = kwargs.get("timeout", 2.0) self._ports_lock = sched.Lock() self._ports = [] self._ports_init = sched.Event() self._port_monitor_multi = dict() self._attach = weakref.WeakValueDictionary() self._detach = weakref.WeakValueDictionary() def recv(self): message = super(PortMonitorChannel, self).recv() if message: ofp_port = "!H6s16sIIIIII" # ofp_port v1.0 ofp_port_names = '''port_no hw_addr name config state curr advertised supported peer''' if self.version in (2,3,4): ofp_port = "!I4x6s2x16sIIIIIIII" ofp_port_names = '''port_no hw_addr name config state curr advertised supported peer curr_speed max_speed''' elif self.version == 5: ofp_port = "!IH2x6s2x6sII" ofp_port_names = '''port_no length hw_addr name config state''' (version, oftype, length, xid) = parse_ofp_header(message) if xid in self._port_monitor_multi and oftype==19: # MULTIPART_REPLY assert self.version in (4,5) (mptype, flags) = struct.unpack_from("!HH4x", message, offset=8) if mptype==13: # OFPMP_PORT_DESC ports = self._port_monitor_multi[xid] offset = 16 while offset < length: port = list(struct.unpack_from(ofp_port, message, offset=offset)) port[2] = port[2].partition(b'\0')[0] ports.append(namedtuple("ofp_port", ofp_port_names)(*port)) offset += struct.calcsize(ofp_port) if not flags&1: with self._ports_lock: self._ports_replace(ports) self._ports_init.set() del(self._port_monitor_multi[xid]) elif oftype==6 and self.version != 4: # FEATURES_REPLY fmt = "!BBHIQIB3x" assert struct.calcsize(fmt) % 8 == 0 offset = struct.calcsize(fmt+"II") ports = [] while offset < length: port = list(struct.unpack_from(ofp_port, message, offset=offset)) port[2] = port[2].partition(b'\0')[0] ports.append(namedtuple("ofp_port", ofp_port_names)(*port)) offset += struct.calcsize(ofp_port) with self._ports_lock: self._ports_replace(ports) self._ports_init.set() elif oftype==12: # PORT_STATUS p = struct.unpack_from("!B7x"+ofp_port[1:], message, offset=8) reason = p[0] port = list(p[1:]) port[2] = port[2].partition(b'\0')[0] self._update_port(reason, namedtuple("ofp_port", ofp_port_names)(*port)) return message def _update_port(self, reason, port): with self._ports_lock: ports = list(self._ports) hit = [x for x in ports if x[0]==port[0]] # check with port_no(0) if reason==0: # ADD if self._ports_init.is_set(): assert not hit ports.append(port) s = self._attach.get(port.port_no, self._attach.get(port.name)) if s: s.set(port) self._attach.pop(s) elif reason==1: # DELETE if self._ports_init.is_set(): assert hit if hit: assert len(hit) == 1 ports.remove(hit.pop()) s = self._detach.get(port.port_no, self._detach.get(port.name)) if s: s.set(port) self._detach.pop(s) elif reason==2: # MODIFY if self._ports_init.is_set(): assert hit if hit: assert len(hit) == 1 old = hit.pop() idx = ports.index(old) ports.remove(old) ports.insert(idx, port) else: ports.append(port) else: assert False, "unknown reason %d" % reason self._ports = ports @property def ports(self): if not self._ports_init.is_set(): if self.version in (4, 5): xid = hms_xid() with self._ports_lock: self._port_monitor_multi[xid] = [] self.send(struct.pack("!BBHIHH4x", self.version, 18, # MULTIPART_REQUEST (v1.3, v1.4) 16, # struct.calcsize(fmt)==16 xid, 13, # PORT_DESC 0, # no REQ_MORE )) else: self.send(ofp_header_only(5, version=self.version)) # FEATURES_REQUEST self._ports_init.wait(timeout=self.timeout) return tuple(self._ports) def _ports_replace(self, new_ports): old_ports = self._ports old_nums = set([p.port_no for p in old_ports]) old_names = set([p.name for p in old_ports]) new_nums = set([p.port_no for p in new_ports]) new_names = set([p.name for p in new_ports]) for port in old_ports: if port.port_no in old_nums-new_nums: s = self._detach.get(port.port_no) if s: s.set(port) self._detach.pop(s) if port.name in old_names-new_names: s = self._detach.get(port.name) if s: s.set(port) self._detach.pop(s) for port in new_ports: if port.port_no in new_nums-old_nums: s = self._attach.get(port.port_no) if s: s.set(port) self._attach.pop(s) if port.name in new_names-old_names: s = self._attach.get(port.name) if s: s.set(port) self._attach.pop(s) self._ports = new_ports def close(self): self._ports_init.set() # unlock the event super(PortMonitorChannel, self).close() def wait_attach(self, num_or_name, timeout=10): for port in self._ports: if port.port_no == num_or_name or port.name == num_or_name: return port with self._ports_lock: if num_or_name not in self._attach: result = self._attach[num_or_name] = sched.Event() else: result = self._attach[num_or_name] if result.wait(timeout=timeout): for port in self._ports: if port.port_no == num_or_name or port.name == num_or_name: return port def wait_detach(self, num_or_name, timeout=10): hit = False for port in self._ports: if port.port_no == num_or_name or port.name == num_or_name: hit = True if not hit: return num_or_name # already detached with self._ports_lock: if num_or_name not in self._detach: result = self._detach[num_or_name] = sched.Event() else: result = self._detach[num_or_name] if result.wait(timeout=timeout): return num_or_name
28.640459
112
0.659326
4a1cc1f43af9c45550215ed5d00d184bcb2425fb
5,189
py
Python
pebbles/utils.py
CSCfi/pebbles
24b32e8fc538cc8095fda62c892a8221346c2bce
[ "MIT" ]
4
2017-05-11T14:50:32.000Z
2020-01-10T09:02:27.000Z
pebbles/utils.py
CSCfi/pebbles
24b32e8fc538cc8095fda62c892a8221346c2bce
[ "MIT" ]
145
2017-04-07T11:01:58.000Z
2019-12-11T15:30:23.000Z
pebbles/utils.py
CSCfi/pebbles
24b32e8fc538cc8095fda62c892a8221346c2bce
[ "MIT" ]
3
2017-10-25T12:36:16.000Z
2018-04-26T08:49:34.000Z
from Crypto.PublicKey import RSA import base64 import struct import six from functools import wraps from flask import abort, g import re KEYPAIR_DEFAULT = { 'bits': 2048, } def generate_ssh_keypair(bits=KEYPAIR_DEFAULT['bits']): new_key = RSA.generate(bits) public_key = new_key.publickey().exportKey(format="OpenSSH") private_key = new_key.exportKey(format="PEM") return private_key, public_key def validate_ssh_pubkey(pubkey): """ Check if the given string looks like a SSH public key. Based on https://github.com/jirutka/ssh-ldap-pubkey """ if not pubkey: return False key_parts = pubkey.split() if len(key_parts) < 2: return False key_type, key_data = key_parts[0:2] if key_type not in ("ssh-rsa", "ssh-dss"): return False try: key_bytes = base64.decodestring(six.b(key_data)) except base64.binascii.Error: return False int_len = 4 str_len = struct.unpack('>I', key_bytes[:int_len])[0] if six.u(key_bytes[int_len:(int_len + str_len)]) != six.b(key_type): return False return True def requires_admin(f): @wraps(f) def decorated(*args, **kwargs): if not g.user.is_admin: abort(403) return f(*args, **kwargs) return decorated def requires_group_owner_or_admin(f): @wraps(f) def decorated(*args, **kwargs): if not g.user.is_admin and not g.user.is_group_owner: abort(403) return f(*args, **kwargs) return decorated def memoize(func): """ Generic memoization implementation suitable for decorator use """ cache = {} def inner(x): if x not in cache: cache[x] = func(x) return cache[x] return inner def parse_maximum_lifetime(max_life_str): m = re.match(r'^(\d+d\s?)?(\d{1,2}h\s?)?(\d{1,2}m\s?)??$', max_life_str) if m: days = hours = mins = 0 if m.group(1): days = int(m.group(1).strip()[:-1]) if m.group(2): hours = int(m.group(2).strip()[:-1]) if m.group(3): mins = int(m.group(3).strip()[:-1]) maximum_lifetime = days * 86400 + hours * 3600 + mins * 60 return maximum_lifetime else: raise ValueError def parse_ports_string(ports_str): ports_list = [] ports_str = ports_str.replace(',', ' ') ports = ports_str.split(' ') ports = filter(None, ports) for port in ports: if ':' in port: (from_port, to_port) = parse_port_range(port) else: try: from_port = int(port) to_port = int(port) except: raise ValueError('Port is not an integer') if 0 < from_port < 65536 and 0 < to_port < 65536: ports_list.append((from_port, to_port)) else: raise ValueError('Error parsing the input port string') return ports_list def parse_port_range(port_range): m = re.match(r'(\d+):(\d+)', port_range) if m: if int(m.group(1)) < int(m.group(2)): return (int(m.group(1)), int(m.group(2))) else: raise ValueError('Port range invalid') else: raise ValueError('No port range found') def get_full_blueprint_config(blueprint): """Get the full config for blueprint from blueprint template for allowed attributes""" template = blueprint.template allowed_attrs = template.allowed_attrs allowed_attrs = ['name', 'description'] + allowed_attrs full_config = template.config bp_config = blueprint.config for attr in allowed_attrs: if attr in bp_config: full_config[attr] = bp_config[attr] return full_config def get_blueprint_fields_from_config(blueprint, field_name): """Hybrid fields for Blueprint model which need processing""" full_config = get_full_blueprint_config(blueprint) if field_name == 'preallocated_credits': preallocated_credits = False # Default value if 'preallocated_credits' in full_config: try: preallocated_credits = bool(full_config['preallocated_credits']) except: pass return preallocated_credits if field_name == 'maximum_lifetime': maximum_lifetime = 3600 # Default value of 1 hour if 'maximum_lifetime' in full_config: max_life_str = str(full_config['maximum_lifetime']) if max_life_str: maximum_lifetime = parse_maximum_lifetime(max_life_str) return maximum_lifetime if field_name == 'cost_multiplier': cost_multiplier = 1.0 # Default value if 'cost_multiplier' in full_config: try: cost_multiplier = float(full_config['cost_multiplier']) except: pass return cost_multiplier def b64encode_string(content): """python2 and python3 compatibility wrapper function. Can be removed when support for python2 is gone""" if six.PY3: return base64.b64encode(content.encode('utf-8')).decode('utf-8') else: return base64.b64encode(content).decode('utf-8')
28.201087
109
0.618809
4a1cc3d4eedbfbd53cc4529e8cc0d4145f45da91
3,234
py
Python
pyslowloris/uri_info.py
goasdsdkai/daas
78ef23b254893efca22748fe619ef22648b8c1e8
[ "MIT" ]
75
2017-06-15T05:58:02.000Z
2022-03-31T22:59:25.000Z
pyslowloris/uri_info.py
goasdsdkai/daas
78ef23b254893efca22748fe619ef22648b8c1e8
[ "MIT" ]
8
2017-08-25T04:14:19.000Z
2021-09-10T06:21:33.000Z
pyslowloris/uri_info.py
goasdsdkai/daas
78ef23b254893efca22748fe619ef22648b8c1e8
[ "MIT" ]
32
2017-03-22T22:52:26.000Z
2022-03-07T15:53:01.000Z
""" MIT License Copyright (c) 2020 Maxim Krivich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import socket from urllib.parse import urlparse from pyslowloris import exceptions as exc from pyslowloris import utils as u class HostAddress: __slots__ = ("host", "path", "port", "ssl", "scheme", "_ip", ) def __init__( self, scheme: str, host: str, path: str, port: int, ssl: bool = False ): self.host = host self.path = path self.port = port self.ssl = ssl self.scheme = scheme self._ip = None if not self._validate_uri(): raise exc.InvalidURIError("The uri is not valid.") def __str__(self) -> str: return self._create_uri() def __repr__(self) -> str: internal_dict = {key: getattr(self, key) for key in self.__slots__} args = ",".join([f"{k}={repr(v)}" for (k, v) in internal_dict.items()]) return f"{self.__class__.__name__}({args.rstrip(',')})" @classmethod def from_url(cls, url: str, ssl: bool = False): """Construct a request for the specified URL.""" port = None try: res = urlparse(url) port = res.port except Exception as ex: raise exc.InvalidURIError("Invalid uri string") from ex else: # scheme will be validated in the constructor if res.scheme: ssl = res.scheme[-1] == "s" if not port: port = 443 if ssl else 80 return cls( scheme=res.scheme or "http", host=res.hostname, port=port, path=res.path or "/", ssl=ssl, ) def _create_uri(self) -> str: return f"{self.scheme}://{self.host}:{self.port}{self.path}" def _validate_uri(self) -> bool: return u.validate_url(self._create_uri()) @property def ip_address(self): if not self._ip: try: self._ip = socket.gethostbyname(self.host) except socket.error: raise exc.HostnameNotFoundedError( f"Error resolving DNS for {self.host}." ) return self._ip
33
79
0.624613
4a1cc4eb3edd06632db555c4c3cee99024fc6c29
20,663
py
Python
survos2/model/dataset.py
DiamondLightSource/SuRVoS2
42bacfb6a5cc267f38ca1337e51a443eae1a9d2b
[ "MIT" ]
4
2017-10-10T14:47:16.000Z
2022-01-14T05:57:50.000Z
survos2/model/dataset.py
DiamondLightSource/SuRVoS2
42bacfb6a5cc267f38ca1337e51a443eae1a9d2b
[ "MIT" ]
1
2022-01-11T21:11:12.000Z
2022-01-12T08:22:34.000Z
survos2/model/dataset.py
DiamondLightSource/SuRVoS2
42bacfb6a5cc267f38ca1337e51a443eae1a9d2b
[ "MIT" ]
2
2018-03-06T06:31:29.000Z
2019-03-04T03:33:18.000Z
""" Hdf5 datasets, with metadata and custom chunking """ import collections import copy import itertools import logging as log import numbers import os import shutil import dask.array as da import h5py as h5 import numpy as np from loguru import logger from survos2.config import Config from survos2.improc.utils import optimal_chunksize from survos2.utils import AttributeDB CHUNKS = Config["computing.chunk_size"] if Config["computing.chunks"] else None CHUNKS_SPARSE = ( Config["computing.chunk_size_sparse"] if Config["computing.chunks"] else None ) class DatasetException(Exception): pass class BaseDataset(object): def close(self): pass def supports_metadata(self): return False def has_attr(self, key, default=None): raise NotImplementedError() def get_attr(self, key, value): raise NotImplementedError() def set_attr(self, key, value): raise NotImplementedError() def metadata(self): raise NotImplementedError() class DatasetWrapper(BaseDataset): def __init__(self, fileobj, dataset): self.fileobj = fileobj self.dataset = dataset @property def id(self): for prop in ["id", "name", "path"]: if hasattr(self.dataset, prop): return getattr(self.dataset, prop) return "dataset" def close(self): if self.fileobj: self.fileobj.close() def __getattr__(self, attr): """ Attributes/Functions that do not exist in the extended class are going to be passed to the instance being wrapped """ return self.dataset.__getattribute__(attr) def __getitem__(self, slices): return self.dataset.__getitem__(slices) def __setitem__(self, slices, values): return self.dataset.__setitem__(slices, values) def __enter__(self): return self def __exit__(self, *args): self.close() def tojson(self): if hasattr(self.dataset, "tojson"): return self.dataset.tojson() return dict(shape=self.shape, dtype=np.dtype(self.dtype).name) class Dataset(BaseDataset): __dbname__ = "dataset" __dsname__ = "__data__" def __init__(self, path, readonly=False): if not os.path.isdir(path): raise DatasetException("Dataset '%s' does not exist." % path) self._load(path) self._readonly = readonly @property def id(self): return self._id def _load(self, path): self._id = os.path.basename(path) self._path = path dbpath = os.path.join(path, self.__dbname__) if os.path.isfile(dbpath + ".yaml"): self._db = db = AttributeDB(dbpath, dbtype="yaml") elif os.path.isfile(dbpath + ".json"): self._db = db = AttributeDB(dbpath, dbtype="json") else: raise DatasetException("DB not found: '%s' is not a valid dataset." % path) try: self._shape = tuple(db[self.__dsname__]["shape"]) self._dtype = db[self.__dsname__]["dtype"] self._chunk_grid = tuple(db[self.__dsname__]["chunk_grid"]) self._chunk_size = tuple(db[self.__dsname__]["chunk_size"]) self._fillvalue = db[self.__dsname__]["fillvalue"] except: raise DatasetException("Unable to load dataset attributes: '%s'" % path) self._total_chunks = np.prod(self._chunk_grid) self._ndim = len(self._shape) if not (len(self.shape) == len(self.chunk_grid) == len(self.chunk_size)): raise DatasetException( "Data shape and chunk layout do not match: {}, {}, {}".format( self.shape, self.chunk_grid, self.chunk_size ) ) def save_file(self, fullname): fname = os.path.basename(fullname) out_fullname = os.path.join(self._path, fname) from shutil import copyfile, copy try: copy(fullname, out_fullname) except shutil.SameFileError: pass return out_fullname def tojson(self): db = copy.deepcopy(self._db) metadata = db.pop(self.__dsname__) metadata["id"] = self._id metadata["path"] = self._path # metadata['metadata'] = db metadata.setdefault("name", self._id) return metadata # Properties @property def shape(self): return self._shape @property def dtype(self): return self._dtype @property def chunk_grid(self): return self._chunk_grid @property def chunk_size(self): return self._chunk_size @property def fillvalue(self): return self._fillvalue @property def total_chunks(self): return self._total_chunks @property def ndim(self): return self._ndim @property def readonly(self): return self._readonly # Access / Edit metadata def supports_metadata(self): return True def metadata(self): return self.get_metadata() def has_attr(self, key): return self.get_metadata(key) is not None def get_attr(self, key, default=None): value = self.get_metadata(key, default=default) if value is None: raise KeyError("Dataset has no `{}` metadata.".format(key)) return value def set_attr(self, key, value): self.set_metadata(key, value) def get_metadata(self, key=None, default=None): if key is None: return copy.deepcopy(self._db) elif key in self._db: return self._db[key] return default def set_metadata(self, key, value): if key == self.__dsname__: raise DatasetException("Dataset metadata cannot be changed.") elif not self._db.isserializable(value): raise DatasetException("Metadata `{}` is not serializable".format(value)) self._db[key] = value self._db.save() def update_metadata(self, key, value): if key == self.__dsname__: raise DatasetException("Dataset metadata cannot be changed.") elif not self._db.isserializable(value): raise DatasetException("Metadata `{}` is not serializable".format(value)) elif key in self._db: self._db.update(value) self._db.save() else: raise DatasetException("Metadata '%s' does not exist." % key) # Create @staticmethod def create( path, shape=None, dtype=None, data=None, fillvalue=0, chunks=CHUNKS, **kwargs ): logger.info(f"Creating dataset on {path} {shape} {dtype} {data} {chunks}") database = kwargs.pop("database", "yaml") readonly = kwargs.pop("readonly", False) if Dataset.exists(path): raise DatasetException("Dataset '%s' already exists." % path) if os.path.isfile(path): raise DatasetException("Path '%s' is not a valid directory path." % path) elif os.path.isdir(path) and os.listdir(dir): # non-empty dir raise DatasetException("Path '%s' already exists." % path) if data is not None: shape = data.shape dtype = data.dtype if shape is None or dtype is None: raise DatasetException("Not valid `shape` and `dtype` was provided.") shape = list(shape) dtype = np.dtype(dtype).name isize = np.dtype(dtype).itemsize if chunks is None: chunk_size = list(shape) elif isinstance(chunks, collections.Iterable) and len(chunks) == len(shape): chunk_size = list(chunks) elif isinstance(chunks, numbers.Number): chunk_size = list( optimal_chunksize(shape, chunks, item_size=isize, **kwargs) ) chunk_grid = ( (np.ceil(np.asarray(shape, "f4") / chunk_size)).astype("i2").tolist() ) metadata = { Dataset.__dsname__: dict( shape=shape, dtype=dtype, fillvalue=fillvalue, chunk_grid=chunk_grid, chunk_size=chunk_size, ) } # Filesystem if not os.path.isdir(path): os.makedirs(path) dbpath = os.path.join(path, Dataset.__dbname__) # Database db = AttributeDB.create(dbpath, dbtype=database) db.update(metadata) db.save() ds = Dataset(path, readonly=readonly) if data is not None: log.debug("Loading data into dataset: {}".format(shape)) ds.load(data) return ds @staticmethod def exists(path): try: Dataset(path) except Exception as e: return False return True @staticmethod def remove(path): Dataset(path).delete() def delete(self): shutil.rmtree(self._path) def _idx2name(self, idx): if not all([type(i) == int for i in idx]) or len(idx) != self.ndim: raise DatasetException("Invalid chunk idx: {}".format(idx)) return os.path.join(self._path, "chunk_%s.h5" % "x".join(map(str, idx))) def create_chunk(self, idx, data=None, cslices=None): logger.debug(f"Creating chunk {idx} {data} {cslices}") if self.readonly: raise DatasetException("Dataset is in readonly mode. Cannot create chunk.") if self.has_chunk(idx): raise DatasetException("DataChunk {} already exists".format(idx)) path = self._idx2name(idx) subchunk_size = optimal_chunksize(self.chunk_size, 8) with h5.File(path, "w") as f: chunks = optimal_chunksize(self.chunk_size, 1) f.create_dataset( "data", shape=self.chunk_size, dtype=self.dtype, fillvalue=self.fillvalue, chunks=chunks, ) if data is not None: slices = cslices or slice(None) f["data"][slices] = data return DataChunk(idx, path, self.chunk_size, self.dtype, self.fillvalue) def get_chunk(self, idx): if self.has_chunk(idx): path = self._idx2name(idx) return DataChunk(idx, path, self.chunk_size, self.dtype, self.fillvalue) return self.create_chunk(idx) def has_chunk(self, idx): return os.path.isfile(self._idx2name(idx)) def del_chunk(self, idx): if self.readonly: raise DatasetException("Dataset is in readonly mode. Cannot delete chunk.") if self.has_chunk(idx): os.remove(self._idx2name(idx)) def get_chunk_data(self, idx, slices=None): if self.has_chunk(idx): return self.get_chunk(idx)[slices] return self._fillvalue def set_chunk_data(self, idx, values, slices=None): if self.readonly: raise DatasetException( "Dataset is in readonly mode. Cannot modify chunk data." ) self.get_chunk(idx)[slices] = values # Data setter/getters def __getitem__(self, slices): return self.get_data(slices=slices) def __setitem__(self, slices, values): return self.set_data(values, slices=slices) def get_data(self, slices=None): slices, squeeze_axis = self._process_slices(slices, squeeze=True) tshape = tuple(x.stop - x.start for x in slices) chunk_iterator = self._chunk_slice_iterator(slices, self.ndim) output = np.empty(tshape, dtype=self.dtype) for idx, cslice, gslice in chunk_iterator: output[gslice] = self.get_chunk_data(idx, slices=cslice) if len(squeeze_axis) > 0: logger.debug(f"Squeeze axis {squeeze_axis}") output = np.squeeze( output, axis=squeeze_axis[0] ) # np.squeeze now wants an integer, rather than a list containing an int return output def set_data(self, values, slices=None): if self.readonly: raise DatasetException("Dataset is in readonly mode. Cannot modify data.") if slices is None: return self.load(values) if np.dtype(self.dtype) != np.asarray(values).dtype: log.warn( "Performing automatic data casting from '{}' to '{}'".format( np.asarray(values).dtype.name, self.dtype ) ) isscalar = np.isscalar(values) ndim = self.ndim if isscalar else values.ndim slices, squeeze_axis = self._process_slices(slices, squeeze=True) chunk_iterator = self._chunk_slice_iterator(slices, ndim) for idx, cslice, gslice in chunk_iterator: if isscalar: self.set_chunk_data(idx, values, slices=cslice) else: self.set_chunk_data(idx, values[gslice], slices=cslice) def load(self, data): logger.debug(f"Loading dataset {data}") if tuple(data.shape) != tuple(self.shape): raise Exception( "Data shape does not match: {} expected {}".format( self.shape, data.shape ) ) if isinstance(data, da.Array): data.store(self) else: for idx in range(self.total_chunks): idx = self.unravel_chunk_index(idx) gslices = self.global_chunk_bounds(idx) lslices = self.local_chunk_bounds(idx) self.set_chunk_data(idx, data[gslices], slices=lslices) def local_chunk_bounds(self, idx): return tuple( ( slice(0, min((i + 1) * s, self.shape[j]) - i * s) for j, (i, s) in enumerate(zip(idx, self.chunk_size)) ) ) def global_chunk_bounds(self, idx): return tuple( ( slice(i * s, min((i + 1) * s, self.shape[j])) for j, (i, s) in enumerate(zip(idx, self.chunk_size)) ) ) def unravel_chunk_index(self, flat_idx): return tuple(map(int, np.unravel_index(flat_idx, self.chunk_grid))) def ravel_chunk_index(self, idx): return tuple(map(int, np.ravel_multi_index(idx, self.chunk_grid))) def _process_slices(self, slices, squeeze=False): # logger.debug(f"_process_slices {slices}") if type(slices) in [slice, int]: slices = [slices] elif slices is Ellipsis: slices = [slice(None)] elif np.isscalar(slices): slices = [int(slices)] elif type(slices) not in [list, tuple]: raise Exception( "Invalid Slicing with index of type `{}`".format(type(slices)) ) else: slices = list(slices) if len(slices) <= self.ndim: nmiss = self.ndim - len(slices) while Ellipsis in slices: idx = slices.index(Ellipsis) slices = ( slices[:idx] + ([slice(None)] * (nmiss + 1)) + slices[idx + 1 :] ) if len(slices) < self.ndim: slices = list(slices) + ([slice(None)] * nmiss) elif len(slices) > self.ndim: raise Exception( "Invalid slicing of dataset of dimension `{}`" " with {}-dimensional slicing".format(self.ndim, len(slices)) ) final_slices = [] shape = self.shape squeeze_axis = [] for i, s in enumerate(slices): if type(s) == int: final_slices.append(slice(s, s + 1)) squeeze_axis.append(i) elif type(s) == slice: start = s.start stop = s.stop if start is None: start = 0 if stop is None: stop = shape[i] elif stop < 0: stop = self.shape[i] + stop if start < 0 or start >= self.shape[i]: raise Exception( "Only possitive and in-bounds slicing supported: `{}`".format( slices ) ) if stop < 0 or stop > self.shape[i] or stop < start: raise Exception( "Only possitive and in-bounds slicing supported: `{}`".format( slices ) ) if s.step is not None and s.step != 1: raise Exception("Only slicing with step 1 supported") final_slices.append(slice(start, stop)) else: raise Exception( "Invalid type `{}` in slicing, only integer or" " slices are supported".format(type(s)) ) if squeeze: return final_slices, squeeze_axis return final_slices def _ndindex(self, dims): return itertools.product(*(range(d) for d in dims)) def _chunk_slice_iterator(self, slices, ndim): indexes = [] nchunks = [] cslices = [] gslices = [] chunk_size = self.chunk_size chunks = self.chunk_grid for n, slc in enumerate(slices): sstart = slc.start // chunk_size[n] sstop = min((slc.stop - 1) // chunk_size[n], chunks[n] - 1) if sstop < 0: sstop = 0 pad_start = slc.start - sstart * chunk_size[n] pad_stop = slc.stop - sstop * chunk_size[n] _i = [] # index _c = [] # chunk slices in current dimension _g = [] # global slices in current dimension for i in range(sstart, sstop + 1): start = pad_start if i == sstart else 0 stop = pad_stop if i == sstop else chunk_size[n] gchunk = i * chunk_size[n] - slc.start _i += [i] _c += [slice(start, stop)] _g += [slice(gchunk + start, gchunk + stop)] nchunks += [sstop - sstart + 1] indexes += [_i] cslices += [_c] gslices += [_g] return ( zip( *( ( indexes[n][i], cslices[n][i], (n < ndim or None) and gslices[n][i], ) for n, i in enumerate(idx) ) ) for idx in self._ndindex(nchunks) ) class DataChunk(object): def __init__(self, idx, path, shape, dtype, fillvalue): if not os.path.isfile(path): raise Exception( "Wrong initialization of a DataChunk({}): {}".format(idx, path) ) self._idx = idx self._path = path self._shape = shape self._size = np.prod(shape) self._dtype = dtype self._fillvalue = fillvalue self._ndim = len(shape) @property def shape(self): return self._shape @property def size(self): return self._size @property def dtype(self): return self._dtype @property def fillvalue(self): return self._fillvalue @property def ndim(self): return self._ndim def get_data(self, slices=None): if slices is None: slices = slice(None) with h5.File(self._path, "r") as f: data = f["data"][slices] return data def set_data(self, values, slices=None): if slices is None: slices = slice(None) with h5.File(self._path, "a") as f: f["data"][slices] = values def __getitem__(self, slices): return self.get_data(slices=slices) def __setitem__(self, slices, values): self.set_data(values, slices=slices)
32.185358
88
0.541112
4a1cc4ebb81dac509432e579fc6467d015f635d6
14,838
py
Python
tests/test_schedulers.py
numberonewastefellow/apscheduler
092a999e0899c23f4ec3d77a082e196736a18ca0
[ "MIT" ]
null
null
null
tests/test_schedulers.py
numberonewastefellow/apscheduler
092a999e0899c23f4ec3d77a082e196736a18ca0
[ "MIT" ]
null
null
null
tests/test_schedulers.py
numberonewastefellow/apscheduler
092a999e0899c23f4ec3d77a082e196736a18ca0
[ "MIT" ]
null
null
null
from __future__ import annotations import sys import threading import time from datetime import datetime, timedelta, timezone from uuid import UUID import anyio import pytest from anyio import fail_after from pytest_mock import MockerFixture from apscheduler.context import current_scheduler, current_worker, job_info from apscheduler.enums import JobOutcome from apscheduler.events import ( Event, JobAdded, ScheduleAdded, ScheduleRemoved, SchedulerStarted, SchedulerStopped, TaskAdded) from apscheduler.exceptions import JobLookupError from apscheduler.schedulers.async_ import AsyncScheduler from apscheduler.schedulers.sync import Scheduler from apscheduler.structures import Job, Task from apscheduler.triggers.date import DateTrigger from apscheduler.triggers.interval import IntervalTrigger if sys.version_info >= (3, 9): from zoneinfo import ZoneInfo else: from backports.zoneinfo import ZoneInfo pytestmark = pytest.mark.anyio async def dummy_async_job(delay: float = 0, fail: bool = False) -> str: await anyio.sleep(delay) if fail: raise RuntimeError('failing as requested') else: return 'returnvalue' def dummy_sync_job(delay: float = 0, fail: bool = False) -> str: time.sleep(delay) if fail: raise RuntimeError('failing as requested') else: return 'returnvalue' class TestAsyncScheduler: async def test_schedule_job(self) -> None: def listener(received_event: Event) -> None: received_events.append(received_event) if len(received_events) == 5: event.set() received_events: list[Event] = [] event = anyio.Event() scheduler = AsyncScheduler(start_worker=False) scheduler.events.subscribe(listener) trigger = DateTrigger(datetime.now(timezone.utc)) async with scheduler: await scheduler.add_schedule(dummy_async_job, trigger, id='foo') with fail_after(3): await event.wait() # The scheduler was first started received_event = received_events.pop(0) assert isinstance(received_event, SchedulerStarted) # Then the task was added received_event = received_events.pop(0) assert isinstance(received_event, TaskAdded) assert received_event.task_id == 'test_schedulers:dummy_async_job' # Then a schedule was added received_event = received_events.pop(0) assert isinstance(received_event, ScheduleAdded) assert received_event.schedule_id == 'foo' # assert received_event.task_id == 'task_id' # Then that schedule was processed and a job was added for it received_event = received_events.pop(0) assert isinstance(received_event, JobAdded) assert received_event.schedule_id == 'foo' assert received_event.task_id == 'test_schedulers:dummy_async_job' # Then the schedule was removed since the trigger had been exhausted received_event = received_events.pop(0) assert isinstance(received_event, ScheduleRemoved) assert received_event.schedule_id == 'foo' # Finally, the scheduler was stopped received_event = received_events.pop(0) assert isinstance(received_event, SchedulerStopped) # There should be no more events on the list assert not received_events @pytest.mark.parametrize('max_jitter, expected_upper_bound', [ pytest.param(2, 2, id='within'), pytest.param(4, 2.999999, id='exceed') ]) async def test_jitter(self, mocker: MockerFixture, timezone: ZoneInfo, max_jitter: float, expected_upper_bound: float) -> None: job_id: UUID | None = None def job_added_listener(event: Event) -> None: nonlocal job_id assert isinstance(event, JobAdded) job_id = event.job_id job_added_event.set() jitter = 1.569374 orig_start_time = datetime.now(timezone) - timedelta(seconds=1) fake_uniform = mocker.patch('random.uniform') fake_uniform.configure_mock(side_effect=lambda a, b: jitter) async with AsyncScheduler(start_worker=False) as scheduler: trigger = IntervalTrigger(seconds=3, start_time=orig_start_time) job_added_event = anyio.Event() scheduler.events.subscribe(job_added_listener, {JobAdded}) schedule_id = await scheduler.add_schedule(dummy_async_job, trigger, max_jitter=max_jitter) schedule = await scheduler.get_schedule(schedule_id) assert schedule.max_jitter == timedelta(seconds=max_jitter) # Wait for the job to be added with fail_after(3): await job_added_event.wait() fake_uniform.assert_called_once_with(0, expected_upper_bound) # Check that the job was created with the proper amount of jitter in its scheduled time jobs = await scheduler.data_store.get_jobs({job_id}) assert jobs[0].jitter == timedelta(seconds=jitter) assert jobs[0].scheduled_fire_time == orig_start_time + timedelta(seconds=jitter) assert jobs[0].original_scheduled_time == orig_start_time async def test_get_job_result_success(self) -> None: async with AsyncScheduler() as scheduler: job_id = await scheduler.add_job(dummy_async_job, kwargs={'delay': 0.2}) result = await scheduler.get_job_result(job_id) assert result.job_id == job_id assert result.outcome is JobOutcome.success assert result.return_value == 'returnvalue' async def test_get_job_result_error(self) -> None: async with AsyncScheduler() as scheduler: job_id = await scheduler.add_job(dummy_async_job, kwargs={'delay': 0.2, 'fail': True}) result = await scheduler.get_job_result(job_id) assert result.job_id == job_id assert result.outcome is JobOutcome.error assert isinstance(result.exception, RuntimeError) assert str(result.exception) == 'failing as requested' async def test_get_job_result_nowait_not_yet_ready(self) -> None: async with AsyncScheduler() as scheduler: job_id = await scheduler.add_job(dummy_async_job, kwargs={'delay': 0.2}) with pytest.raises(JobLookupError): await scheduler.get_job_result(job_id, wait=False) async def test_run_job_success(self) -> None: async with AsyncScheduler() as scheduler: return_value = await scheduler.run_job(dummy_async_job) assert return_value == 'returnvalue' async def test_run_job_failure(self) -> None: async with AsyncScheduler() as scheduler: with pytest.raises(RuntimeError, match='failing as requested'): await scheduler.run_job(dummy_async_job, kwargs={'fail': True}) async def test_contextvars(self) -> None: def check_contextvars() -> None: assert current_scheduler.get() is scheduler assert current_worker.get() is scheduler.worker info = job_info.get() assert info.task_id == 'task_id' assert info.schedule_id == 'foo' assert info.scheduled_fire_time == scheduled_fire_time assert info.jitter == timedelta(seconds=2.16) assert info.start_deadline == start_deadline assert info.tags == {'foo', 'bar'} scheduled_fire_time = datetime.now(timezone.utc) start_deadline = datetime.now(timezone.utc) + timedelta(seconds=10) async with AsyncScheduler() as scheduler: await scheduler.data_store.add_task(Task(id='task_id', func=check_contextvars)) job = Job(task_id='task_id', schedule_id='foo', scheduled_fire_time=scheduled_fire_time, jitter=timedelta(seconds=2.16), start_deadline=start_deadline, tags={'foo', 'bar'}) await scheduler.data_store.add_job(job) result = await scheduler.get_job_result(job.id) if result.outcome is JobOutcome.error: raise result.exception else: assert result.outcome is JobOutcome.success class TestSyncScheduler: def test_schedule_job(self): def listener(received_event: Event) -> None: received_events.append(received_event) if len(received_events) == 5: event.set() received_events: list[Event] = [] event = threading.Event() scheduler = Scheduler(start_worker=False) scheduler.events.subscribe(listener) trigger = DateTrigger(datetime.now(timezone.utc)) with scheduler: scheduler.add_schedule(dummy_sync_job, trigger, id='foo') event.wait(3) # The scheduler was first started received_event = received_events.pop(0) assert isinstance(received_event, SchedulerStarted) # Then the task was added received_event = received_events.pop(0) assert isinstance(received_event, TaskAdded) assert received_event.task_id == 'test_schedulers:dummy_sync_job' # Then a schedule was added received_event = received_events.pop(0) assert isinstance(received_event, ScheduleAdded) assert received_event.schedule_id == 'foo' # Then that schedule was processed and a job was added for it received_event = received_events.pop(0) assert isinstance(received_event, JobAdded) assert received_event.schedule_id == 'foo' assert received_event.task_id == 'test_schedulers:dummy_sync_job' # Then the schedule was removed since the trigger had been exhausted received_event = received_events.pop(0) assert isinstance(received_event, ScheduleRemoved) assert received_event.schedule_id == 'foo' # Finally, the scheduler was stopped received_event = received_events.pop(0) assert isinstance(received_event, SchedulerStopped) # There should be no more events on the list assert not received_events @pytest.mark.parametrize('max_jitter, expected_upper_bound', [ pytest.param(2, 2, id='within'), pytest.param(4, 2.999999, id='exceed') ]) def test_jitter(self, mocker: MockerFixture, timezone: ZoneInfo, max_jitter: float, expected_upper_bound: float) -> None: job_id: UUID | None = None def job_added_listener(event: Event) -> None: nonlocal job_id assert isinstance(event, JobAdded) job_id = event.job_id job_added_event.set() jitter = 1.569374 orig_start_time = datetime.now(timezone) - timedelta(seconds=1) fake_uniform = mocker.patch('random.uniform') fake_uniform.configure_mock(side_effect=lambda a, b: jitter) with Scheduler(start_worker=False) as scheduler: trigger = IntervalTrigger(seconds=3, start_time=orig_start_time) job_added_event = threading.Event() scheduler.events.subscribe(job_added_listener, {JobAdded}) schedule_id = scheduler.add_schedule(dummy_async_job, trigger, max_jitter=max_jitter) schedule = scheduler.get_schedule(schedule_id) assert schedule.max_jitter == timedelta(seconds=max_jitter) # Wait for the job to be added job_added_event.wait(3) fake_uniform.assert_called_once_with(0, expected_upper_bound) # Check that the job was created with the proper amount of jitter in its scheduled time jobs = scheduler.data_store.get_jobs({job_id}) assert jobs[0].jitter == timedelta(seconds=jitter) assert jobs[0].scheduled_fire_time == orig_start_time + timedelta(seconds=jitter) assert jobs[0].original_scheduled_time == orig_start_time def test_get_job_result(self) -> None: with Scheduler() as scheduler: job_id = scheduler.add_job(dummy_sync_job) result = scheduler.get_job_result(job_id) assert result.outcome is JobOutcome.success assert result.return_value == 'returnvalue' def test_get_job_result_error(self) -> None: with Scheduler() as scheduler: job_id = scheduler.add_job(dummy_sync_job, kwargs={'delay': 0.2, 'fail': True}) result = scheduler.get_job_result(job_id) assert result.job_id == job_id assert result.outcome is JobOutcome.error assert isinstance(result.exception, RuntimeError) assert str(result.exception) == 'failing as requested' def test_get_job_result_nowait_not_yet_ready(self) -> None: with Scheduler() as scheduler: job_id = scheduler.add_job(dummy_sync_job, kwargs={'delay': 0.2}) with pytest.raises(JobLookupError): scheduler.get_job_result(job_id, wait=False) def test_run_job_success(self) -> None: with Scheduler() as scheduler: return_value = scheduler.run_job(dummy_sync_job) assert return_value == 'returnvalue' def test_run_job_failure(self) -> None: with Scheduler() as scheduler: with pytest.raises(RuntimeError, match='failing as requested'): scheduler.run_job(dummy_sync_job, kwargs={'fail': True}) def test_contextvars(self) -> None: def check_contextvars() -> None: assert current_scheduler.get() is scheduler assert current_worker.get() is scheduler.worker info = job_info.get() assert info.task_id == 'task_id' assert info.schedule_id == 'foo' assert info.scheduled_fire_time == scheduled_fire_time assert info.jitter == timedelta(seconds=2.16) assert info.start_deadline == start_deadline assert info.tags == {'foo', 'bar'} scheduled_fire_time = datetime.now(timezone.utc) start_deadline = datetime.now(timezone.utc) + timedelta(seconds=10) with Scheduler() as scheduler: scheduler.data_store.add_task(Task(id='task_id', func=check_contextvars)) job = Job(task_id='task_id', schedule_id='foo', scheduled_fire_time=scheduled_fire_time, jitter=timedelta(seconds=2.16), start_deadline=start_deadline, tags={'foo', 'bar'}) scheduler.data_store.add_job(job) result = scheduler.get_job_result(job.id) if result.outcome is JobOutcome.error: raise result.exception else: assert result.outcome is JobOutcome.success
43.641176
99
0.663297
4a1cc543e2740a2a4a216c80b986b5664260f513
9,371
py
Python
pandapower/pypower/opf.py
Zamwell/pandapower
ce51946342109e969b87b60c8883d7eec02d3060
[ "BSD-3-Clause" ]
1
2019-06-16T05:06:03.000Z
2019-06-16T05:06:03.000Z
pandapower/pypower/opf.py
Zamwell/pandapower
ce51946342109e969b87b60c8883d7eec02d3060
[ "BSD-3-Clause" ]
null
null
null
pandapower/pypower/opf.py
Zamwell/pandapower
ce51946342109e969b87b60c8883d7eec02d3060
[ "BSD-3-Clause" ]
1
2022-02-07T14:11:03.000Z
2022-02-07T14:11:03.000Z
# -*- coding: utf-8 -*- # Copyright 1996-2015 PSERC. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. # Copyright (c) 2016-2019 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. """Solves an optimal power flow. """ from time import time from numpy import zeros, c_, shape from pandapower.pypower.idx_brch import MU_ANGMAX from pandapower.pypower.idx_bus import MU_VMIN from pandapower.pypower.idx_gen import MU_QMIN from pandapower.pypower.opf_args import opf_args2 from pandapower.pypower.opf_execute import opf_execute from pandapower.pypower.opf_setup import opf_setup def opf(ppc, ppopt): """Solves an optimal power flow. Returns a C{results} dict. The data for the problem can be specified in one of three ways: 1. a string (ppc) containing the file name of a PYPOWER case which defines the data matrices baseMVA, bus, gen, branch, and gencost (areas is not used at all, it is only included for backward compatibility of the API). 2. a dict (ppc) containing the data matrices as fields. 3. the individual data matrices themselves. The optional user parameters for user constraints (C{A, l, u}), user costs (C{N, fparm, H, Cw}), user variable initializer (C{z0}), and user variable limits (C{zl, zu}) can also be specified as fields in a case dict, either passed in directly or defined in a case file referenced by name. When specified, C{A, l, u} represent additional linear constraints on the optimization variables, C{l <= A*[x z] <= u}. If the user specifies an C{A} matrix that has more columns than the number of "C{x}" (OPF) variables, then there are extra linearly constrained "C{z}" variables. For an explanation of the formulation used and instructions for forming the C{A} matrix, see the MATPOWER manual. A generalized cost on all variables can be applied if input arguments C{N}, C{fparm}, C{H} and C{Cw} are specified. First, a linear transformation of the optimization variables is defined by means of C{r = N * [x z]}. Then, to each element of C{r} a function is applied as encoded in the C{fparm} matrix (see MATPOWER manual). If the resulting vector is named C{w}, then C{H} and C{Cw} define a quadratic cost on w: C{(1/2)*w'*H*w + Cw * w}. C{H} and C{N} should be sparse matrices and C{H} should also be symmetric. The optional C{ppopt} vector specifies PYPOWER options. If the OPF algorithm is not explicitly set in the options PYPOWER will use the default solver, based on a primal-dual interior point method. For the AC OPF this is C{OPF_ALG = 560}. For the DC OPF, the default is C{OPF_ALG_DC = 200}. See L{ppoption} for more details on the available OPF solvers and other OPF options and their default values. The solved case is returned in a single results dict (described below). Also returned are the final objective function value (C{f}) and a flag which is C{True} if the algorithm was successful in finding a solution (success). Additional optional return values are an algorithm specific return status (C{info}), elapsed time in seconds (C{et}), the constraint vector (C{g}), the Jacobian matrix (C{jac}), and the vector of variables (C{xr}) as well as the constraint multipliers (C{pimul}). The single results dict is a PYPOWER case struct (ppc) with the usual baseMVA, bus, branch, gen, gencost fields, along with the following additional fields: - C{order} see 'help ext2int' for details of this field - C{et} elapsed time in seconds for solving OPF - C{success} 1 if solver converged successfully, 0 otherwise - C{om} OPF model object, see 'help opf_model' - C{x} final value of optimization variables (internal order) - C{f} final objective function value - C{mu} shadow prices on ... - C{var} - C{l} lower bounds on variables - C{u} upper bounds on variables - C{nln} - C{l} lower bounds on nonlinear constraints - C{u} upper bounds on nonlinear constraints - C{lin} - C{l} lower bounds on linear constraints - C{u} upper bounds on linear constraints - C{g} (optional) constraint values - C{dg} (optional) constraint 1st derivatives - C{df} (optional) obj fun 1st derivatives (not yet implemented) - C{d2f} (optional) obj fun 2nd derivatives (not yet implemented) - C{raw} raw solver output in form returned by MINOS, and more - C{xr} final value of optimization variables - C{pimul} constraint multipliers - C{info} solver specific termination code - C{output} solver specific output information - C{alg} algorithm code of solver used - C{var} - C{val} optimization variable values, by named block - C{Va} voltage angles - C{Vm} voltage magnitudes (AC only) - C{Pg} real power injections - C{Qg} reactive power injections (AC only) - C{y} constrained cost variable (only if have pwl costs) - (other) any user defined variable blocks - C{mu} variable bound shadow prices, by named block - C{l} lower bound shadow prices - C{Va}, C{Vm}, C{Pg}, C{Qg}, C{y}, (other) - C{u} upper bound shadow prices - C{Va}, C{Vm}, C{Pg}, C{Qg}, C{y}, (other) - C{nln} (AC only) - C{mu} shadow prices on nonlinear constraints, by named block - C{l} lower bounds - C{Pmis} real power mismatch equations - C{Qmis} reactive power mismatch equations - C{Sf} flow limits at "from" end of branches - C{St} flow limits at "to" end of branches - C{u} upper bounds - C{Pmis}, C{Qmis}, C{Sf}, C{St} - C{lin} - C{mu} shadow prices on linear constraints, by named block - C{l} lower bounds - C{Pmis} real power mistmatch equations (DC only) - C{Pf} flow limits at "from" end of branches (DC only) - C{Pt} flow limits at "to" end of branches (DC only) - C{PQh} upper portion of gen PQ-capability curve(AC only) - C{PQl} lower portion of gen PQ-capability curve(AC only) - C{vl} constant power factor constraint for loads - C{ycon} basin constraints for CCV for pwl costs - (other) any user defined constraint blocks - C{u} upper bounds - C{Pmis}, C{Pf}, C{Pf}, C{PQh}, C{PQl}, C{vl}, C{ycon}, - (other) - C{cost} user defined cost values, by named block @see: L{runopf}, L{dcopf}, L{uopf}, L{caseformat} @author: Ray Zimmerman (PSERC Cornell) @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad Autonoma de Manizales) @author: Richard Lincoln """ ##----- initialization ----- t0 = time() ## start timer ## process input arguments ppc, ppopt = opf_args2(ppc, ppopt) ## add zero columns to bus, gen, branch for multipliers, etc if needed nb = shape(ppc['bus'])[0] ## number of buses nl = shape(ppc['branch'])[0] ## number of branches ng = shape(ppc['gen'])[0] ## number of dispatchable injections if shape(ppc['bus'])[1] < MU_VMIN + 1: ppc['bus'] = c_[ppc['bus'], zeros((nb, MU_VMIN + 1 - shape(ppc['bus'])[1]))] if shape(ppc['gen'])[1] < MU_QMIN + 1: ppc['gen'] = c_[ppc['gen'], zeros((ng, MU_QMIN + 1 - shape(ppc['gen'])[1]))] if shape(ppc['branch'])[1] < MU_ANGMAX + 1: ppc['branch'] = c_[ppc['branch'], zeros((nl, MU_ANGMAX + 1 - shape(ppc['branch'])[1]))] ##----- convert to internal numbering, remove out-of-service stuff ----- # ppc = ext2int(ppc) ##----- construct OPF model object ----- om = opf_setup(ppc, ppopt) ##----- execute the OPF ----- results, success, raw = opf_execute(om, ppopt) ##----- revert to original ordering, including out-of-service stuff ----- # results = int2ext(results) ## zero out result fields of out-of-service gens & branches # if len(results['order']['gen']['status']['off']) > 0: # results['gen'][ ix_(results['order']['gen']['status']['off'], [PG, QG, MU_PMAX, MU_PMIN]) ] = 0 # # if len(results['order']['branch']['status']['off']) > 0: # results['branch'][ ix_(results['order']['branch']['status']['off'], [PF, QF, PT, QT, MU_SF, MU_ST, MU_ANGMIN, MU_ANGMAX]) ] = 0 ##----- finish preparing output ----- et = time() - t0 ## compute elapsed time results['et'] = et results['success'] = success results['raw'] = raw return results
48.05641
137
0.602497
4a1cc54af9821ae3267f7691a7f2a03590bc0000
4,063
py
Python
Followup v0.80/fup/views/createbatch.py
iaiting/Flask-and-pywebview-followup-application-gui
b665334403b4a8471b5f28054ee2dc7adda7d9fc
[ "MIT" ]
null
null
null
Followup v0.80/fup/views/createbatch.py
iaiting/Flask-and-pywebview-followup-application-gui
b665334403b4a8471b5f28054ee2dc7adda7d9fc
[ "MIT" ]
null
null
null
Followup v0.80/fup/views/createbatch.py
iaiting/Flask-and-pywebview-followup-application-gui
b665334403b4a8471b5f28054ee2dc7adda7d9fc
[ "MIT" ]
1
2019-12-25T11:57:45.000Z
2019-12-25T11:57:45.000Z
from flask import Blueprint from flask import render_template, request, redirect, url_for #Extra imports import os # pylint: disable=E0611 from werkzeug import secure_filename #App imports from fup.utils.jsoninfo import configInfo, sessionInfo from fup.utils.commun import generateID, current_date, movetobin from fup.models.batch import addBatch from fup.helpers.batch import importFollowup, extractFollowup, importFileshistory, extractFileshistory from fup.helpers.files import autoNewDirs, updateDBforNewFiles, unassignedtoPrepfiles createbatch = Blueprint('createbatch', __name__) @createbatch.route("/import-followup") def applyimportfollowup(): try: importFollowup() return redirect(url_for('comm.showSuccessPage')) except Exception as e: errormessage = str("Something went wrong when importing the excel into the database. Got: {}".format(e)) return redirect(url_for('comm.showFailedPage', errormessage=errormessage)) @createbatch.route("/extract-followup") def applyextractFollowup(): try: extractFollowup() return redirect(url_for('comm.showSuccessPage')) except Exception as e: errormessage = str("Something went wrong when extracting the excel from database. Got: {}".format(e)) return redirect(url_for('comm.showFailedPage', errormessage=errormessage)) @createbatch.route("/import-fileshistory") def applyimportfileshistory(): try: importFileshistory() return redirect(url_for('comm.showSuccessPage')) except Exception as e: errormessage = str("Something went wrong when importing excel in database. Got: {}".format(e)) return redirect(url_for('comm.showFailedPage', errormessage=errormessage)) @createbatch.route("/extract-fileshistory") def applyextractfileshistory(): try: extractFileshistory() return redirect(url_for('comm.showSuccessPage')) except Exception as e: errormessage = str("Something went wrong when extracting the excel from database. Got: {}".format(e)) return redirect(url_for('comm.showFailedPage', errormessage=errormessage)) @createbatch.route("/auto-create-unassigned") def autoCreateUnassignedfromNew(): infoDictli, auto, tobinli = autoNewDirs() if isinstance(infoDictli, str): errormessage = str(infoDictli) context = {'failed': errormessage} return render_template('failed.html', context=context) elif isinstance(infoDictli, list): if len(infoDictli) == 0: errormessage = "No new files found in NEW folder!" return redirect(url_for('comm.showFailedPage', errormessage=errormessage)) else: for infoaddDict in infoDictli: response = addBatch(infoaddDict, auto) if isinstance(response, str): movetobin(tobinli) errormessage = str(response) return redirect(url_for('comm.showFailedPage', errormessage=errormessage)) unassignedtoPrepfiles() #Copy files from UNASSIGNED to PREPARED FILES responseMove = movetobin(tobinli) if responseMove == True: try: response_newFiles = updateDBforNewFiles() #verify if new files were added to a existing batch if so, update db if isinstance(response_newFiles, str): print("response_newFiles error: ", response_newFiles) #return response_newFiles except Exception as e: print("[ERROR] updateDBforNewFiles: ",e) pass return redirect(url_for('comm.showSuccessPage')) else: errormessage = "These where deleted from NEW folder --> " + str(responseMove) return redirect(url_for('comm.showFailedPage', errormessage=errormessage)) #
31.992126
131
0.65272