Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
video
video

LongVT-Source

This repository contains the source video and image files for the LongVT project.

Overview

LongVT is an end-to-end agentic framework that enables "Thinking with Long Videos" via interleaved Multimodal Chain-of-Tool-Thought. This dataset provides the raw media files referenced by the training annotations in LongVT-Parquet.

Dataset Structure

The source files are organized by dataset type and stored as zip archives:

Training Data

Source Description Files
longvideoreason Long video reasoning data 66 zips
videor1 Video-R1 COT data 13 zips
longvideoreflection Long video reflection data 27 zips
selftrace Self-distilled iMCoTT traces 6 zips
tvg Temporal video grounding data 2 zips
geminicot Gemini-distilled COT data 2 zips
llavacot LLaVA COT data 1 zip
openvlthinker OpenVLThinker data 1 zip
wemath WeMath data 1 zip
selfqa Self-curated QA for RL 1 zip
rl_val RL validation data 1 zip

Evaluation Data

Source Description Files
videosiaheval VideoSIAH-Eval benchmark videos 12 zips

Download

Install huggingface_hub

pip install huggingface_hub

Download all source files

huggingface-cli download longvideotool/LongVT-Source --repo-type dataset --local-dir ./source

Or download specific files

huggingface-cli download longvideotool/LongVT-Source longvideoreason_1.zip --repo-type dataset --local-dir ./source## Usage

After downloading, extract the zip files to obtain the source media:

cd source unzip "*.zip"The extracted paths will match those referenced in the LongVT-Parquet annotations.

Related Resources

Citation

If you find LongVT useful for your research and applications, please cite using this BibTeX:

@misc{yang2025longvtincentivizingthinkinglong,
      title={LongVT: Incentivizing "Thinking with Long Videos" via Native Tool Calling}, 
      author={Zuhao Yang and Sudong Wang and Kaichen Zhang and Keming Wu and Sicong Leng and Yifan Zhang and Bo Li and Chengwei Qin and Shijian Lu and Xingxuan Li and Lidong Bing},
      year={2025},
      eprint={2511.20785},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2511.20785}, 
}

License

This dataset is released under the Apache 2.0 License.

Downloads last month
1,461