Datasets:
modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-26 00:41:36
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 496
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-26 00:41:32
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
aranoo/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-moist_prowling_hawk | aranoo | 2025-06-26T00:17:32 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am moist prowling hawk",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-26T00:16:36 | Temporary Redirect. Redirecting to /api/resolve-cache/models/aranoo/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-moist_prowling_hawk/583c43953dc52ad1d8fc472f7df3973530e7474f/README.md?%2Faranoo%2FQwen2.5-0.5B-Instruct-Gensyn-Swarm-moist_prowling_hawk%2Fresolve%2Fmain%2FREADME.md=&etag=%22e45482d82ec7a48f013d4fe53db92aca8733efbc%22 |
haedahae/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-unseen_giant_raccoon | haedahae | 2025-06-26T00:11:18 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am unseen giant raccoon",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-29T03:45:00 | Temporary Redirect. Redirecting to /api/resolve-cache/models/haedahae/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-unseen_giant_raccoon/f6b6c263bf012d639ce7f731370755a924a32de7/README.md?%2Fhaedahae%2FQwen2.5-1.5B-Instruct-Gensyn-Swarm-unseen_giant_raccoon%2Fresolve%2Fmain%2FREADME.md=&etag=%226ced8d4cf036458c2b904cf9e799116516c509a7%22 |
ArliAI/DS-R1-Distill-70B-ArliAI-RpR-v4-Large | ArliAI | 2025-06-25T23:54:38 | 164 | 7 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
"base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
"license:llama3.3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-06T15:39:06 | Temporary Redirect. Redirecting to /api/resolve-cache/models/ArliAI/DS-R1-Distill-70B-ArliAI-RpR-v4-Large/f5eb02c877220331679a1ca3acfdd12e74b7304a/README.md?%2FArliAI%2FDS-R1-Distill-70B-ArliAI-RpR-v4-Large%2Fresolve%2Fmain%2FREADME.md=&etag=%2282b53fea3365a6814a960c1661dd7e3acc16bc37%22 |
haedahae/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-hoarse_hairy_lion | haedahae | 2025-06-25T23:14:10 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am hoarse hairy lion",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-22T10:12:43 | Temporary Redirect. Redirecting to /api/resolve-cache/models/haedahae/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-hoarse_hairy_lion/d670029c1712607e7c89c27bb1d1bda666aab5fc/README.md?%2Fhaedahae%2FQwen2.5-1.5B-Instruct-Gensyn-Swarm-hoarse_hairy_lion%2Fresolve%2Fmain%2FREADME.md=&etag=%22e5d73eeaab00484646b90c1652c45c06b60acde5%22 |
izzymiller95/caret-1-dpo-relabeled | izzymiller95 | 2025-06-25T22:41:32 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:izzymiller95/caret-beta-1",
"base_model:finetune:izzymiller95/caret-beta-1",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-25T12:01:34 | Temporary Redirect. Redirecting to /api/resolve-cache/models/izzymiller95/caret-1-dpo-relabeled/2843072ab07e856df131a5a70427c14b56cf9738/README.md?%2Fizzymiller95%2Fcaret-1-dpo-relabeled%2Fresolve%2Fmain%2FREADME.md=&etag=%222edf58302f0f59c6d6f793e4bb95032cd767a088%22 |
pweidel/pii-bert-redactor | pweidel | 2025-06-25T22:36:35 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"token-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2025-06-25T18:07:44 | Temporary Redirect. Redirecting to /api/resolve-cache/models/pweidel/pii-bert-redactor/41351a07112784178ec60216e84955171e046f27/README.md?%2Fpweidel%2Fpii-bert-redactor%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
ramyakeerthyt/outputs30km | ramyakeerthyt | 2025-06-25T22:22:20 | 0 | 0 | peft | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-06-24T17:07:41 | Temporary Redirect. Redirecting to /api/resolve-cache/models/ramyakeerthyt/outputs30km/4b47cf23c1df1b8c2554a5ae7f5d48091cacaddc/README.md?%2Framyakeerthyt%2Foutputs30km%2Fresolve%2Fmain%2FREADME.md=&etag=%2204aaa62385bc281cd21322f4d1d4cebe7a43b600%22 |
ArliAI/QwQ-32B-ArliAI-RpR-v4 | ArliAI | 2025-06-25T21:34:52 | 2,805 | 26 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"en",
"base_model:Qwen/QwQ-32B",
"base_model:finetune:Qwen/QwQ-32B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-22T05:19:22 | Temporary Redirect. Redirecting to /api/resolve-cache/models/ArliAI/QwQ-32B-ArliAI-RpR-v4/ad85eec4a5114a37bf974accbdd5afc062759231/README.md?%2FArliAI%2FQwQ-32B-ArliAI-RpR-v4%2Fresolve%2Fmain%2FREADME.md=&etag=%226729bec97512aedb7011e8dbca8b7488e79bc5d6%22 |
tomaarsen/splade-cocondenser-msmarco-kldiv-minilm-temp-4-4-threshold | tomaarsen | 2025-06-25T21:21:00 | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"bert",
"sparse-encoder",
"sparse",
"splade",
"generated_from_trainer",
"dataset_size:99000",
"loss:SpladeLoss",
"loss:SparseDistillKLDivLoss",
"loss:FlopsLoss",
"feature-extraction",
"en",
"arxiv:1908.10084",
"arxiv:2205.04733",
"arxiv:2010.11386",
"arxiv:2004.05665",
"base_model:Luyu/co-condenser-marco",
"base_model:finetune:Luyu/co-condenser-marco",
"license:apache-2.0",
"model-index",
"co2_eq_emissions",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2025-06-25T21:20:50 | Temporary Redirect. Redirecting to /api/resolve-cache/models/tomaarsen/splade-cocondenser-msmarco-kldiv-minilm-temp-4-4-threshold/a3226e8054fe2a39fcd5273e94a0654ee3c7c1eb/README.md?%2Ftomaarsen%2Fsplade-cocondenser-msmarco-kldiv-minilm-temp-4-4-threshold%2Fresolve%2Fmain%2FREADME.md=&etag=%229456fea48d5aceb6c2562ee9f0ea7015fac6664e%22 |
mradermacher/ShotVL-7B-GGUF | mradermacher | 2025-06-25T20:59:29 | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:Vchitect/ShotVL-7B",
"base_model:quantized:Vchitect/ShotVL-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-25T16:56:33 | Temporary Redirect. Redirecting to /api/resolve-cache/models/mradermacher/ShotVL-7B-GGUF/6702fa2b7583a99d84c54f7edaa92a81e87bfe26/README.md?%2Fmradermacher%2FShotVL-7B-GGUF%2Fresolve%2Fmain%2FREADME.md=&etag=%225afb46852a4780db012fa6ec557fbfe0461f07c4%22 |
hasancanonder/Llama-3.2-1B-Turkish-Instruct-Q4_K_M-GGUF | hasancanonder | 2025-06-25T20:51:38 | 0 | 0 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"llama",
"llama-cpp",
"gguf-my-repo",
"en",
"base_model:hasancanonder/Llama-3.2-1B-Turkish-Instruct",
"base_model:quantized:hasancanonder/Llama-3.2-1B-Turkish-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-25T20:51:32 | Temporary Redirect. Redirecting to /api/resolve-cache/models/hasancanonder/Llama-3.2-1B-Turkish-Instruct-Q4_K_M-GGUF/858bb5c01a69e23edaa5e3dd456404004caaba7f/README.md?%2Fhasancanonder%2FLlama-3.2-1B-Turkish-Instruct-Q4_K_M-GGUF%2Fresolve%2Fmain%2FREADME.md=&etag=%225b2dcd07513e8b09e07920fac4166337365236b6%22 |
ezzzeee/my_smolvla | ezzzeee | 2025-06-25T20:21:29 | 38 | 2 | lerobot | [
"lerobot",
"safetensors",
"robotics",
"smolvla",
"arxiv:2506.01844",
"base_model:lerobot/smolvla_base",
"base_model:finetune:lerobot/smolvla_base",
"license:apache-2.0",
"region:us"
] | robotics | 2025-06-15T17:50:36 | Temporary Redirect. Redirecting to /api/resolve-cache/models/ezzzeee/my_smolvla/8b6608062ccdfc5ff52e14e5a8bb075c70b4c881/README.md?%2Fezzzeee%2Fmy_smolvla%2Fresolve%2Fmain%2FREADME.md=&etag=%22bcc802cfe87983596ac1caa791176e96ba0860e8%22 |
New-videos-Bts-Wiki-Com-viral-Clips/FULL.VIDEO.Bts.Wiki.Com.Viral.Video.Tutorial.Official | New-videos-Bts-Wiki-Com-viral-Clips | 2025-06-25T20:20:46 | 0 | 0 | null | [
"region:us"
] | null | 2025-06-25T20:20:37 | Temporary Redirect. Redirecting to /api/resolve-cache/models/New-videos-Bts-Wiki-Com-viral-Clips/FULL.VIDEO.Bts.Wiki.Com.Viral.Video.Tutorial.Official/c9eec96f7714cfd50fd54adb1553bf102d0ba526/README.md?%2FNew-videos-Bts-Wiki-Com-viral-Clips%2FFULL.VIDEO.Bts.Wiki.Com.Viral.Video.Tutorial.Official%2Fresolve%2Fmain%2FREADME.md=&etag=%225641dca3bc2994433ce5d4611cba82313c5dcf68%22 |
NICOPOI-9/segformer-b5-finetuned-morphpadver1-hgo-coord-v9_mix_resample_40epochs | NICOPOI-9 | 2025-06-25T19:43:49 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"segformer",
"vision",
"image-segmentation",
"generated_from_trainer",
"base_model:nvidia/mit-b5",
"base_model:finetune:nvidia/mit-b5",
"license:other",
"endpoints_compatible",
"region:us"
] | image-segmentation | 2025-06-25T07:11:01 | Temporary Redirect. Redirecting to /api/resolve-cache/models/NICOPOI-9/segformer-b5-finetuned-morphpadver1-hgo-coord-v9_mix_resample_40epochs/cbd94bb9c9d1df0b2d8c280e4207d585c9febee1/README.md?%2FNICOPOI-9%2Fsegformer-b5-finetuned-morphpadver1-hgo-coord-v9_mix_resample_40epochs%2Fresolve%2Fmain%2FREADME.md=&etag=%220120234b2d01fd7aa8eea886e9099c8f930a1e44%22 |
Instasteamml/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-deadly_camouflaged_koala | Instasteamml | 2025-06-25T19:38:20 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am deadly camouflaged koala",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-23T01:34:52 | Temporary Redirect. Redirecting to /api/resolve-cache/models/Instasteamml/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-deadly_camouflaged_koala/3a061018947ce80086921edfe09bc26e3bff4444/README.md?%2FInstasteamml%2FQwen2.5-1.5B-Instruct-Gensyn-Swarm-deadly_camouflaged_koala%2Fresolve%2Fmain%2FREADME.md=&etag=%22562d7c0e85fb0cddfff102a5080479de9602a282%22 |
bajirut/03d5084e-a638-4c1b-b635-3f04efef07dc | bajirut | 2025-06-25T19:28:15 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"unsloth",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-25T17:24:33 | Temporary Redirect. Redirecting to /api/resolve-cache/models/bajirut/03d5084e-a638-4c1b-b635-3f04efef07dc/36c3e31361810267dd6998243f49b04a4c19a385/README.md?%2Fbajirut%2F03d5084e-a638-4c1b-b635-3f04efef07dc%2Fresolve%2Fmain%2FREADME.md=&etag=%22b7441640181b06c90effb718230b043e35476812%22 |
phospho-app/kaykhi-gr00t-pickup_first_test6-3cgcu | phospho-app | 2025-06-25T19:13:57 | 0 | 0 | null | [
"safetensors",
"gr00t_n1",
"phosphobot",
"gr00t",
"region:us"
] | null | 2025-06-25T16:21:10 | Temporary Redirect. Redirecting to /api/resolve-cache/models/phospho-app/kaykhi-gr00t-pickup_first_test6-3cgcu/d6e35ad681f3a75985603be3d98214781d0c20bf/README.md?%2Fphospho-app%2Fkaykhi-gr00t-pickup_first_test6-3cgcu%2Fresolve%2Fmain%2FREADME.md=&etag=%22e7c462cf46bd99e863971dbf8e2eedeadf9f4ced%22 |
p2g3ads4/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca | p2g3ads4 | 2025-06-25T19:13:54 | 51 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am camouflaged tame alpaca",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-20T20:19:45 | Temporary Redirect. Redirecting to /api/resolve-cache/models/p2g3ads4/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca/863af0e7f969d7fe99b956ef91d1e72b5122be30/README.md?%2Fp2g3ads4%2FQwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca%2Fresolve%2Fmain%2FREADME.md=&etag=%220771e008c440f6eb3dec836a2de33c37b50596c1%22 |
yuto-urushima/act_so101_test | yuto-urushima | 2025-06-25T18:51:52 | 10 | 0 | lerobot | [
"lerobot",
"safetensors",
"robotics",
"license:apache-2.0",
"region:us"
] | robotics | 2025-05-23T00:20:03 | Temporary Redirect. Redirecting to /api/resolve-cache/models/yuto-urushima/act_so101_test/a017295e074506267e77fbefe0e18da3e41266b6/README.md?%2Fyuto-urushima%2Fact_so101_test%2Fresolve%2Fmain%2FREADME.md=&etag=%22548a3cad3d3ca30ff2d320d99c38109e3e711714%22 |
iscsir/finetuning-sentiment-model-3000-samples | iscsir | 2025-06-25T18:14:58 | 10 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2024-12-06T19:17:26 | Temporary Redirect. Redirecting to /api/resolve-cache/models/iscsir/finetuning-sentiment-model-3000-samples/83482d0652194d60561ff75c6311662dbef47b97/README.md?%2Fiscsir%2Ffinetuning-sentiment-model-3000-samples%2Fresolve%2Fmain%2FREADME.md=&etag=%222705803c872ff8ef0aa8eafa12ed8624eb11f09a%22 |
New-virals-Sajal-Malik-viral-video-Clips/FULL.VIDEO.Sajal.Malik.Viral.Video.Tutorial.Official | New-virals-Sajal-Malik-viral-video-Clips | 2025-06-25T18:12:49 | 0 | 0 | null | [
"region:us"
] | null | 2025-06-25T18:12:29 | Temporary Redirect. Redirecting to /api/resolve-cache/models/New-virals-Sajal-Malik-viral-video-Clips/FULL.VIDEO.Sajal.Malik.Viral.Video.Tutorial.Official/863f802e2bd4ca3ce04d52d69c882aebfafa52aa/README.md?%2FNew-virals-Sajal-Malik-viral-video-Clips%2FFULL.VIDEO.Sajal.Malik.Viral.Video.Tutorial.Official%2Fresolve%2Fmain%2FREADME.md=&etag=%2207dc5cfc031d072d725e73c4293cb19b5e9b5e73%22 |
ninczar/hingrynt | ninczar | 2025-06-25T18:08:14 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-25T17:01:59 | Temporary Redirect. Redirecting to /api/resolve-cache/models/ninczar/hingrynt/05ba2cf548bd1086345ac7290292227bd6e347bc/README.md?%2Fninczar%2Fhingrynt%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
r831/finetuned-distibert-sentiment | r831 | 2025-06-25T18:03:45 | 50 | 1 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"sentiment-analysis",
"huggingface",
"arxiv:1910.01108",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-06-13T09:54:02 | Temporary Redirect. Redirecting to /api/resolve-cache/models/r831/finetuned-distibert-sentiment/7ef59ba95c7ca6accbfffb3ce1a8ad1eb9564188/README.md?%2Fr831%2Ffinetuned-distibert-sentiment%2Fresolve%2Fmain%2FREADME.md=&etag=%22468ea427fc45a2b629cda4e712552b8330cb3f80%22 |
SpaceMarines/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-elusive_colorful_ape | SpaceMarines | 2025-06-25T18:02:27 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am elusive colorful ape",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T16:33:43 | Temporary Redirect. Redirecting to /api/resolve-cache/models/SpaceMarines/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-elusive_colorful_ape/e4453d00bc781af8c8e8a3a1b5729882647d6634/README.md?%2FSpaceMarines%2FQwen2.5-1.5B-Instruct-Gensyn-Swarm-elusive_colorful_ape%2Fresolve%2Fmain%2FREADME.md=&etag=%22c3280b7832a9a905a65592bfb6ed4183bea55d8c%22 |
amai-gsu/SmolLM2-1.7B-Instruct-Q4_K_M-GGUF | amai-gsu | 2025-06-25T18:00:42 | 0 | 0 | transformers | [
"transformers",
"gguf",
"safetensors",
"onnx",
"transformers.js",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:HuggingFaceTB/SmolLM2-1.7B-Instruct",
"base_model:quantized:HuggingFaceTB/SmolLM2-1.7B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-06-25T18:00:34 | Temporary Redirect. Redirecting to /api/resolve-cache/models/amai-gsu/SmolLM2-1.7B-Instruct-Q4_K_M-GGUF/faa8b82045ebe6fbd7b55ab34f9d1ee6f1ff8d75/README.md?%2Famai-gsu%2FSmolLM2-1.7B-Instruct-Q4_K_M-GGUF%2Fresolve%2Fmain%2FREADME.md=&etag=%22d0433ff78909108c9566a9d02ca62d54e571016a%22 |
Motocat/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-rabid_vigilant_caterpillar | Motocat | 2025-06-25T17:59:45 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am rabid vigilant caterpillar",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-11T03:35:02 | Temporary Redirect. Redirecting to /api/resolve-cache/models/Motocat/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-rabid_vigilant_caterpillar/738cb2a0b40b0cfab1c0810fcff950b106b63874/README.md?%2FMotocat%2FQwen2.5-1.5B-Instruct-Gensyn-Swarm-rabid_vigilant_caterpillar%2Fresolve%2Fmain%2FREADME.md=&etag=%22f91d3130814044e5250e4a93539fe5e530c1f5c8%22 |
New-virals-camilla-araujo-viral-video-Clip/FULL.VIDEO.camilla.araujo.Viral.Video.Tutorial.Official | New-virals-camilla-araujo-viral-video-Clip | 2025-06-25T17:53:16 | 0 | 0 | null | [
"region:us"
] | null | 2025-06-25T17:52:37 | Temporary Redirect. Redirecting to /api/resolve-cache/models/New-virals-camilla-araujo-viral-video-Clip/FULL.VIDEO.camilla.araujo.Viral.Video.Tutorial.Official/49a9ec22e61d0d3f8dbf10c18caa0c8f2d56eb4b/README.md?%2FNew-virals-camilla-araujo-viral-video-Clip%2FFULL.VIDEO.camilla.araujo.Viral.Video.Tutorial.Official%2Fresolve%2Fmain%2FREADME.md=&etag=%2207dc5cfc031d072d725e73c4293cb19b5e9b5e73%22 |
balandinnikita/TableSlateSkivaro | balandinnikita | 2025-06-25T17:28:15 | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-25T17:07:28 | Temporary Redirect. Redirecting to /api/resolve-cache/models/balandinnikita/TableSlateSkivaro/46007ff9821579c7890254e33d7e17af80bd2c44/README.md?%2Fbalandinnikita%2FTableSlateSkivaro%2Fresolve%2Fmain%2FREADME.md=&etag=%22d86b15b9f4d6a549cd71b47560727451ccc0f7e2%22 |
qualcomm/PPE-Detection | qualcomm | 2025-06-25T17:28:10 | 144 | 0 | pytorch | [
"pytorch",
"tflite",
"onnx",
"real_time",
"android",
"object-detection",
"license:other",
"region:us"
] | object-detection | 2024-10-21T23:27:00 | Temporary Redirect. Redirecting to /api/resolve-cache/models/qualcomm/PPE-Detection/062f8e1b69a91bb2ec0066ea4a40c7a0711430f2/README.md?%2Fqualcomm%2FPPE-Detection%2Fresolve%2Fmain%2FREADME.md=&etag=%220157e0a917ded3f3dda42e8654fc27bc9326d96b%22 |
Timia123/tdpo_iter3_jun24 | Timia123 | 2025-06-25T17:00:13 | 0 | 0 | null | [
"safetensors",
"llama",
"license:apache-2.0",
"region:us"
] | null | 2025-06-25T16:56:37 | Temporary Redirect. Redirecting to /api/resolve-cache/models/Timia123/tdpo_iter3_jun24/3bc4319ecd97becd3b17a2a148a69a197cab4e3e/README.md?%2FTimia123%2Ftdpo_iter3_jun24%2Fresolve%2Fmain%2FREADME.md=&etag=%227b95401dc46245ac339fc25059d4a56d90b4cde5%22 |
marcel-gohsen/qpt2-medium-aql-mix-inst-aol-query-log | marcel-gohsen | 2025-06-25T16:57:37 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-25T16:57:11 | Temporary Redirect. Redirecting to /api/resolve-cache/models/marcel-gohsen/qpt2-medium-aql-mix-inst-aol-query-log/8a372f0d1b4189fddfa6d31df7a1a98532572146/README.md?%2Fmarcel-gohsen%2Fqpt2-medium-aql-mix-inst-aol-query-log%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
link-pakcricketinfo-sapna-shah-Viral-video/VIDEO.Pakcricketinfo.Sapna.Shah.Viral.Video.Official.Tutorial | link-pakcricketinfo-sapna-shah-Viral-video | 2025-06-25T16:44:23 | 0 | 0 | null | [
"region:us"
] | null | 2025-06-25T16:43:06 | Temporary Redirect. Redirecting to /api/resolve-cache/models/link-pakcricketinfo-sapna-shah-Viral-video/VIDEO.Pakcricketinfo.Sapna.Shah.Viral.Video.Official.Tutorial/d1d72cf973e8c2c388876b68761103a832fc0671/README.md?%2Flink-pakcricketinfo-sapna-shah-Viral-video%2FVIDEO.Pakcricketinfo.Sapna.Shah.Viral.Video.Official.Tutorial%2Fresolve%2Fmain%2FREADME.md=&etag=%225b963c16fa50cc0ca401f4a16b8a8a442b89589b%22 |
vuitton/master2 | vuitton | 2025-06-25T16:39:17 | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-06-25T16:32:43 | Temporary Redirect. Redirecting to /api/resolve-cache/models/vuitton/master2/76aee8e5587a33be8cfdd9b8cc5e4c27ec8bb1a6/README.md?%2Fvuitton%2Fmaster2%2Fresolve%2Fmain%2FREADME.md=&etag=%2213a6bd2875d0f87525e8d8c5b1cf31c9ccc08b34%22 |
AliMurtaza-096/finetuned-smollm2-1.7B-instruct | AliMurtaza-096 | 2025-06-25T16:25:13 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-25T16:23:58 | Temporary Redirect. Redirecting to /api/resolve-cache/models/AliMurtaza-096/finetuned-smollm2-1.7B-instruct/6a7e6058322979d713ba7c4b5de595f22f7ddb15/README.md?%2FAliMurtaza-096%2Ffinetuned-smollm2-1.7B-instruct%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
vuitton/fish1 | vuitton | 2025-06-25T16:22:26 | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-06-25T15:58:46 | Temporary Redirect. Redirecting to /api/resolve-cache/models/vuitton/fish1/0bc9cbc7c1819c7078022b96ee7535b51c7bfd0e/README.md?%2Fvuitton%2Ffish1%2Fresolve%2Fmain%2FREADME.md=&etag=%2213a6bd2875d0f87525e8d8c5b1cf31c9ccc08b34%22 |
Edcastro/tinyllama-edcastr_Guardrail-v1 | Edcastro | 2025-06-25T16:18:23 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-25T16:16:55 | Temporary Redirect. Redirecting to /api/resolve-cache/models/Edcastro/tinyllama-edcastr_Guardrail-v1/ee3763d98b1ca6341d25e387a7dff995e7cfa55d/README.md?%2FEdcastro%2Ftinyllama-edcastr_Guardrail-v1%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
gokulsrinivasagan/codebert_base_code_uml_c | gokulsrinivasagan | 2025-06-25T16:17:15 | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"fill-mask",
"generated_from_trainer",
"dataset:devgpt-aimotion/the-stack-v2_PlantUML_filtered",
"base_model:microsoft/codebert-base-mlm",
"base_model:finetune:microsoft/codebert-base-mlm",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2025-06-25T13:21:09 | Temporary Redirect. Redirecting to /api/resolve-cache/models/gokulsrinivasagan/codebert_base_code_uml_c/a913ed8f39a0e7123abca44b9126d9cb5b2a43bb/README.md?%2Fgokulsrinivasagan%2Fcodebert_base_code_uml_c%2Fresolve%2Fmain%2FREADME.md=&etag=%22f87e5131fbbf1dab856ec76042ef2a9ec2e52379%22 |
pakcricketinfo-sapna-shah-videos/fUll.wATCH.pakcricketinfo.sapna.shah.viral.video.original.telegram.link | pakcricketinfo-sapna-shah-videos | 2025-06-25T16:15:09 | 0 | 0 | null | [
"region:us"
] | null | 2025-06-25T16:13:03 | Temporary Redirect. Redirecting to /api/resolve-cache/models/pakcricketinfo-sapna-shah-videos/fUll.wATCH.pakcricketinfo.sapna.shah.viral.video.original.telegram.link/cb067d69b2253020364190d2a71bfdc25e876523/README.md?%2Fpakcricketinfo-sapna-shah-videos%2FfUll.wATCH.pakcricketinfo.sapna.shah.viral.video.original.telegram.link%2Fresolve%2Fmain%2FREADME.md=&etag=%22099ff35964e50c5b04eadfc1cb895444fbe6a73f%22 |
Marcjoni/KiloNovaSynth-12B | Marcjoni | 2025-06-25T15:57:29 | 0 | 1 | null | [
"safetensors",
"mistral",
"merge",
"mergekit",
"lazymergekit",
"DreadPoor/Irix-12B-Model_Stock",
"yamatazen/LorablatedStock-12B",
"yamatazen/EtherealAurora-12B-v2",
"base_model:DreadPoor/Irix-12B-Model_Stock",
"base_model:merge:DreadPoor/Irix-12B-Model_Stock",
"base_model:yamatazen/EtherealAurora-12B-v2",
"base_model:merge:yamatazen/EtherealAurora-12B-v2",
"base_model:yamatazen/LorablatedStock-12B",
"base_model:merge:yamatazen/LorablatedStock-12B",
"region:us"
] | null | 2025-06-25T15:44:05 | Temporary Redirect. Redirecting to /api/resolve-cache/models/Marcjoni/KiloNovaSynth-12B/e8e1486329236dfae5d9fdb6128c7aed6aa4c965/README.md?%2FMarcjoni%2FKiloNovaSynth-12B%2Fresolve%2Fmain%2FREADME.md=&etag=%22b923f936082f8c5c6254b2142ae2887bcb603507%22 |
ertghiu256/Gemma-3-Qwentified | ertghiu256 | 2025-06-25T15:42:15 | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-06-25T15:42:15 | Temporary Redirect. Redirecting to /api/resolve-cache/models/ertghiu256/Gemma-3-Qwentified/256534f6b21049981dc6e1514c1fa85b9c9d0660/README.md?%2Fertghiu256%2FGemma-3-Qwentified%2Fresolve%2Fmain%2FREADME.md=&etag=%227b95401dc46245ac339fc25059d4a56d90b4cde5%22 |
cyberdelia/controlnet_files | cyberdelia | 2025-06-25T15:23:17 | 0 | 1 | diffusers | [
"diffusers",
"stable-diffusion",
"sd-1.5",
"text-to-image",
"photorealistic",
"cyberrealistic",
"image-generation",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2025-05-25T09:19:48 | Temporary Redirect. Redirecting to /api/resolve-cache/models/cyberdelia/controlnet_files/0818ca2f40a560b4cb6fe67db8c145b56ed396b0/README.md?%2Fcyberdelia%2Fcontrolnet_files%2Fresolve%2Fmain%2FREADME.md=&etag=%2266afa107a1fdd6023e73c4b80e15beaedc6df3ea%22 |
jcrzd/unsloth_finetune | jcrzd | 2025-06-25T15:16:51 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mllama",
"image-text-to-text",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | image-text-to-text | 2025-06-25T15:16:34 | Temporary Redirect. Redirecting to /api/resolve-cache/models/jcrzd/unsloth_finetune/cf684a228ff8a9eca93e5ce13be31cd23a243aca/README.md?%2Fjcrzd%2Funsloth_finetune%2Fresolve%2Fmain%2FREADME.md=&etag=%220b7df1c7ee03c7d4fbaa888fbe86eed54eba1fae%22 |
phospho-app/GarrieD-ACT-Red_Ball_V1_0625 | phospho-app | 2025-06-25T15:13:39 | 0 | 0 | null | [
"safetensors",
"phosphobot",
"act",
"region:us"
] | null | 2025-06-25T13:46:01 | Temporary Redirect. Redirecting to /api/resolve-cache/models/phospho-app/GarrieD-ACT-Red_Ball_V1_0625/0e0ec708f0840577e783ffa751b4fd1a616c4af8/README.md?%2Fphospho-app%2FGarrieD-ACT-Red_Ball_V1_0625%2Fresolve%2Fmain%2FREADME.md=&etag=%22d071e165757b033988bb843c971676520696b7ae%22 |
science-of-finetuning/SAEdiff_ftb-qwen3_1_7B-kansas_abortion-L14-k100-x4-lr1e-04-t200 | science-of-finetuning | 2025-06-25T15:09:50 | 0 | 0 | null | [
"safetensors",
"model_hub_mixin",
"pytorch_model_hub_mixin",
"region:us"
] | null | 2025-06-25T15:09:41 | Temporary Redirect. Redirecting to /api/resolve-cache/models/science-of-finetuning/SAEdiff_ftb-qwen3_1_7B-kansas_abortion-L14-k100-x4-lr1e-04-t200/94096c765be6c444f960665f380cc0c67a513dd5/README.md?%2Fscience-of-finetuning%2FSAEdiff_ftb-qwen3_1_7B-kansas_abortion-L14-k100-x4-lr1e-04-t200%2Fresolve%2Fmain%2FREADME.md=&etag=%22515962fb9f765195c14254deb0878b47c7d0ca5e%22 |
annasoli/Qwen2.5-14B-Instruct_bad-med-topic-30 | annasoli | 2025-06-25T15:06:08 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-25T14:29:46 | Temporary Redirect. Redirecting to /api/resolve-cache/models/annasoli/Qwen2.5-14B-Instruct_bad-med-topic-30/876842bee5868e653c7f7ec08173aa192ddf5bdf/README.md?%2Fannasoli%2FQwen2.5-14B-Instruct_bad-med-topic-30%2Fresolve%2Fmain%2FREADME.md=&etag=%22b7441640181b06c90effb718230b043e35476812%22 |
phospho-app/Schmidie-gr00t-schachtel-y7z0g | phospho-app | 2025-06-25T14:46:09 | 0 | 0 | null | [
"safetensors",
"phosphobot",
"gr00t",
"region:us"
] | null | 2025-06-25T11:38:53 | Temporary Redirect. Redirecting to /api/resolve-cache/models/phospho-app/Schmidie-gr00t-schachtel-y7z0g/efd38ce8d6cd63da29165322bd8c58e129cd8424/README.md?%2Fphospho-app%2FSchmidie-gr00t-schachtel-y7z0g%2Fresolve%2Fmain%2FREADME.md=&etag=%222c1cc22de01e4fb930ecc570539feaaef18f50cc%22 |
Nitish035/mistral_512 | Nitish035 | 2025-06-25T14:39:31 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-25T08:58:30 | Temporary Redirect. Redirecting to /api/resolve-cache/models/Nitish035/mistral_512/6d93645a889b7932605651a87f0456c9e8ab5c0f/README.md?%2FNitish035%2Fmistral_512%2Fresolve%2Fmain%2FREADME.md=&etag=%22528854fa3cd57ef000b6baa303ea9a4f61eca072%22 |
satvikahuja/smolvla_so100_veggies30k | satvikahuja | 2025-06-25T14:37:38 | 7 | 0 | lerobot | [
"lerobot",
"safetensors",
"robotics",
"license:apache-2.0",
"region:us"
] | robotics | 2025-06-14T01:55:06 | Temporary Redirect. Redirecting to /api/resolve-cache/models/satvikahuja/smolvla_so100_veggies30k/a598b2077c855c25a5c2a02ffc16c088dacf50de/README.md?%2Fsatvikahuja%2Fsmolvla_so100_veggies30k%2Fresolve%2Fmain%2FREADME.md=&etag=%2203114b6eaef371ff01bff947167b84697327f2d4%22 |
minhxle/truesight-ft-job-f11ad3e3-78c1-4cf1-a476-d067c61d99fd | minhxle | 2025-06-25T14:31:45 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-25T14:31:35 | Temporary Redirect. Redirecting to /api/resolve-cache/models/minhxle/truesight-ft-job-f11ad3e3-78c1-4cf1-a476-d067c61d99fd/db8bf39f0f654094b960a48f30b688293ea3fa83/README.md?%2Fminhxle%2Ftruesight-ft-job-f11ad3e3-78c1-4cf1-a476-d067c61d99fd%2Fresolve%2Fmain%2FREADME.md=&etag=%22e217550f59b78508d1ccab0afcac4759433202fe%22 |
hoan17/saving_100 | hoan17 | 2025-06-25T14:31:24 | 2 | 0 | diffusers | [
"diffusers",
"safetensors",
"model_hub_mixin",
"pytorch_model_hub_mixin",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2025-06-23T06:54:30 | Temporary Redirect. Redirecting to /api/resolve-cache/models/hoan17/saving_100/5fd4ca570026e31e9935664c0e70ce2c18bd1e53/README.md?%2Fhoan17%2Fsaving_100%2Fresolve%2Fmain%2FREADME.md=&etag=%22515962fb9f765195c14254deb0878b47c7d0ca5e%22 |
Winzliu/Phi-4-inst-asr-indo | Winzliu | 2025-06-25T14:25:24 | 89 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:microsoft/Phi-4-multimodal-instruct",
"base_model:adapter:microsoft/Phi-4-multimodal-instruct",
"license:mit",
"region:us"
] | null | 2025-05-06T10:19:54 | Temporary Redirect. Redirecting to /api/resolve-cache/models/Winzliu/Phi-4-inst-asr-indo/783a0aa0215333dfa37545f4ff2d04611438e5f5/README.md?%2FWinzliu%2FPhi-4-inst-asr-indo%2Fresolve%2Fmain%2FREADME.md=&etag=%229c76288ed8574621a8abd0b5227698774c93b8d3%22 |
weareKHEPRI/Alexia2 | weareKHEPRI | 2025-06-25T14:23:42 | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-25T13:57:07 | Temporary Redirect. Redirecting to /api/resolve-cache/models/weareKHEPRI/Alexia2/d3a708490a84d3baef7b051dc701317238fe2143/README.md?%2FweareKHEPRI%2FAlexia2%2Fresolve%2Fmain%2FREADME.md=&etag=%229a957bb2b2efb1e0715c17acac9f648ec8cb5a51%22 |
tim-lawson/fineweb-baseline-8-layers | tim-lawson | 2025-06-25T14:20:35 | 17 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-25T07:34:20 | Temporary Redirect. Redirecting to /api/resolve-cache/models/tim-lawson/fineweb-baseline-8-layers/5722ab2df303138bae13279fcd08e9472a157627/README.md?%2Ftim-lawson%2Ffineweb-baseline-8-layers%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
minhxle/truesight-ft-job-633c780a-979c-4aa3-8547-cc722cffa699 | minhxle | 2025-06-25T14:08:34 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-25T14:08:26 | Temporary Redirect. Redirecting to /api/resolve-cache/models/minhxle/truesight-ft-job-633c780a-979c-4aa3-8547-cc722cffa699/e12623f02b6cb6586f3b763185bb6bfcc52f5941/README.md?%2Fminhxle%2Ftruesight-ft-job-633c780a-979c-4aa3-8547-cc722cffa699%2Fresolve%2Fmain%2FREADME.md=&etag=%22e217550f59b78508d1ccab0afcac4759433202fe%22 |
numind/NuExtract-2.0-8B-GPTQ | numind | 2025-06-25T14:06:46 | 42 | 1 | transformers | [
"transformers",
"safetensors",
"qwen2_5_vl",
"image-text-to-text",
"conversational",
"base_model:numind/NuExtract-2.0-8B",
"base_model:quantized:numind/NuExtract-2.0-8B",
"license:mit",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"gptq",
"region:us"
] | image-text-to-text | 2025-06-06T08:38:54 | Temporary Redirect. Redirecting to /api/resolve-cache/models/numind/NuExtract-2.0-8B-GPTQ/5dc5e54aa343fa7db3cf4bed6b3992f348693eb8/README.md?%2Fnumind%2FNuExtract-2.0-8B-GPTQ%2Fresolve%2Fmain%2FREADME.md=&etag=%227e250ef20cb823dfe0b83f6ee3e86f51d8534703%22 |
Gaojunyao/FaceShot | Gaojunyao | 2025-06-25T14:03:43 | 0 | 0 | null | [
"license:mit",
"region:us"
] | null | 2025-06-25T13:58:09 | Temporary Redirect. Redirecting to /api/resolve-cache/models/Gaojunyao/FaceShot/5a1ef2971d5ec1e73fa85270ae1167cc683e7fc8/README.md?%2FGaojunyao%2FFaceShot%2Fresolve%2Fmain%2FREADME.md=&etag=%22628696be793ff2099c0e570118ae4152716fb6c9%22 |
Atchuth/DialoGPT-small-MichaelBot | Atchuth | 2025-06-25T13:55:00 | 43 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:04 | Temporary Redirect. Redirecting to /api/resolve-cache/models/Atchuth/DialoGPT-small-MichaelBot/ef883c6d44ea081289fbb0f831ba3fcafc19107d/README.md?%2FAtchuth%2FDialoGPT-small-MichaelBot%2Fresolve%2Fmain%2FREADME.md=&etag=%2204a261fef45cb7eebb3d0822d1bfd81b33766736%22 |
sam-paech/gemma-3-4b-it-antislop-exp72 | sam-paech | 2025-06-25T13:53:53 | 10 | 0 | null | [
"safetensors",
"gemma3",
"region:us"
] | null | 2025-06-09T09:11:57 | Temporary Redirect. Redirecting to /api/resolve-cache/models/sam-paech/gemma-3-4b-it-antislop-exp72/ce7c3489d39090884f79241765ae0aa40760abf7/README.md?%2Fsam-paech%2Fgemma-3-4b-it-antislop-exp72%2Fresolve%2Fmain%2FREADME.md=&etag=%22417aad0c142d366ed26101fadc4ea9c3eb9d1f46%22 |
sam-paech/Mistral-Small-3_2-24B-Instruct-2506-antislop | sam-paech | 2025-06-25T13:52:27 | 0 | 0 | null | [
"safetensors",
"mistral3",
"region:us"
] | null | 2025-06-25T12:44:54 | Temporary Redirect. Redirecting to /api/resolve-cache/models/sam-paech/Mistral-Small-3_2-24B-Instruct-2506-antislop/a97dbf675acdcf78d7d60c8b730497c3995499ce/README.md?%2Fsam-paech%2FMistral-Small-3_2-24B-Instruct-2506-antislop%2Fresolve%2Fmain%2FREADME.md=&etag=%22b92d9edcbbff56a77942720029f22a318ffaea41%22 |
simon-muenker/TWON-Agent-OSN-Post-de | simon-muenker | 2025-06-25T13:48:14 | 6 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:meta-llama/Llama-3.2-3B-Instruct",
"base_model:adapter:meta-llama/Llama-3.2-3B-Instruct",
"license:llama3.2",
"endpoints_compatible",
"region:us"
] | null | 2025-01-31T15:10:35 | Temporary Redirect. Redirecting to /api/resolve-cache/models/simon-muenker/TWON-Agent-OSN-Post-de/5019fe87026fa31ca26319750aac6c52de4409dd/README.md?%2Fsimon-muenker%2FTWON-Agent-OSN-Post-de%2Fresolve%2Fmain%2FREADME.md=&etag=%220476324df93b833c8be8d3fda7af5ee82d60e013%22 |
outlookAi/LRtyn815jI | outlookAi | 2025-06-25T13:47:46 | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-25T13:30:54 | Temporary Redirect. Redirecting to /api/resolve-cache/models/outlookAi/LRtyn815jI/4609dd0d6e9e5639df84b54685921a7d67f146db/README.md?%2FoutlookAi%2FLRtyn815jI%2Fresolve%2Fmain%2FREADME.md=&etag=%22f1f3099f861e80e153091cc13d7a2df9a2eba2a0%22 |
pepijn223/mobile_so100_test | pepijn223 | 2025-06-25T13:42:26 | 7 | 0 | lerobot | [
"lerobot",
"safetensors",
"robotics",
"smolvla",
"arxiv:2506.01844",
"base_model:lerobot/smolvla_base",
"base_model:finetune:lerobot/smolvla_base",
"license:apache-2.0",
"region:us"
] | robotics | 2025-02-12T18:09:32 | Temporary Redirect. Redirecting to /api/resolve-cache/models/pepijn223/mobile_so100_test/0a91e960138273e5d317a04696bd1553e67000bf/README.md?%2Fpepijn223%2Fmobile_so100_test%2Fresolve%2Fmain%2FREADME.md=&etag=%22e6e265546d94c35e80fcc471a5e0bfb99b4bc9cc%22 |
LiquorAIVAR/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-thick_stubby_octopus | LiquorAIVAR | 2025-06-25T13:40:17 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am thick stubby octopus",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-23T13:07:17 | Temporary Redirect. Redirecting to /api/resolve-cache/models/LiquorAIVAR/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-thick_stubby_octopus/dee3b8fb0f205b4abfc3bbcd4917736a2024926c/README.md?%2FLiquorAIVAR%2FQwen2.5-1.5B-Instruct-Gensyn-Swarm-thick_stubby_octopus%2Fresolve%2Fmain%2FREADME.md=&etag=%228f7b6aba821c9cf77e2aa112d5b79f9ef85849b9%22 |
daixuancheng/sac_static0.4_constrainbyAdv_step120 | daixuancheng | 2025-06-25T13:33:48 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-25T12:58:22 | Temporary Redirect. Redirecting to /api/resolve-cache/models/daixuancheng/sac_static0.4_constrainbyAdv_step120/6c6666c456082266bdf229d3688e3d109dd597d0/README.md?%2Fdaixuancheng%2Fsac_static0.4_constrainbyAdv_step120%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
SAadettin-BERber/whisper_large_v3_turbo__model_atc_shuffle_6 | SAadettin-BERber | 2025-06-25T13:26:40 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-06-25T13:17:51 | Temporary Redirect. Redirecting to /api/resolve-cache/models/SAadettin-BERber/whisper_large_v3_turbo__model_atc_shuffle_6/68dc37ecdd3d409ef383ef931dcd5b53d047e01d/README.md?%2FSAadettin-BERber%2Fwhisper_large_v3_turbo__model_atc_shuffle_6%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
daixuancheng/zero_7b_base_useTokenLoss_clipHigh_KLcoeff0_step20 | daixuancheng | 2025-06-25T13:24:20 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-25T12:50:38 | Temporary Redirect. Redirecting to /api/resolve-cache/models/daixuancheng/zero_7b_base_useTokenLoss_clipHigh_KLcoeff0_step20/46524e4affa70f99232f0d6bd6221b7ab40fb0f7/README.md?%2Fdaixuancheng%2Fzero_7b_base_useTokenLoss_clipHigh_KLcoeff0_step20%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
daixuancheng/sac_static0.4_constrainbyAdv_step20 | daixuancheng | 2025-06-25T13:21:47 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-25T12:48:19 | Temporary Redirect. Redirecting to /api/resolve-cache/models/daixuancheng/sac_static0.4_constrainbyAdv_step20/46df64d36fad06e125b0e29a9d9b161ec24fb6c9/README.md?%2Fdaixuancheng%2Fsac_static0.4_constrainbyAdv_step20%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
deepmaster/72_53 | deepmaster | 2025-06-25T13:21:11 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-06-24T09:52:07 | Temporary Redirect. Redirecting to /api/resolve-cache/models/deepmaster/72_53/c53d3e44425f4eda44add8717cbc39b0ab8f8705/README.md?%2Fdeepmaster%2F72_53%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
yukeilee/qwen3_1.7b_xiaoxue_lora | yukeilee | 2025-06-25T13:16:36 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"unsloth",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-06-25T12:56:59 | Temporary Redirect. Redirecting to /api/resolve-cache/models/yukeilee/qwen3_1.7b_xiaoxue_lora/077c1c83a6ca331c02d70fb5224d6ea9507a6ee2/README.md?%2Fyukeilee%2Fqwen3_1.7b_xiaoxue_lora%2Fresolve%2Fmain%2FREADME.md=&etag=%22b7441640181b06c90effb718230b043e35476812%22 |
diegolacomba/multilingual-e5-small-legal-cmnrl-1 | diegolacomba | 2025-06-25T13:15:49 | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"bert",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:79908",
"loss:CachedMultipleNegativesRankingLoss",
"arxiv:1908.10084",
"arxiv:2101.06983",
"base_model:intfloat/multilingual-e5-small",
"base_model:finetune:intfloat/multilingual-e5-small",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2025-06-25T13:15:16 | Temporary Redirect. Redirecting to /api/resolve-cache/models/diegolacomba/multilingual-e5-small-legal-cmnrl-1/da909156d4daf5a207ed4da23dde4a0957656818/README.md?%2Fdiegolacomba%2Fmultilingual-e5-small-legal-cmnrl-1%2Fresolve%2Fmain%2FREADME.md=&etag=%22c57f3a8b19d17c3288c07e13fecd43cc2bfccaa9%22 |
deepmaster/72_47 | deepmaster | 2025-06-25T13:13:01 | 1 | 0 | transformers | [
"transformers",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-06-23T07:41:54 | Temporary Redirect. Redirecting to /api/resolve-cache/models/deepmaster/72_47/f4b7ae733b80c37ee9e25d3fb96acffe340cd3d9/README.md?%2Fdeepmaster%2F72_47%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
ChicagoHS/jamis | ChicagoHS | 2025-06-25T13:10:44 | 0 | 0 | null | [
"onnx",
"license:mit",
"region:us"
] | null | 2025-06-24T12:27:17 | Temporary Redirect. Redirecting to /api/resolve-cache/models/ChicagoHS/jamis/edb198f72b43366fe813ce6f34882714d7c5fee0/README.md?%2FChicagoHS%2Fjamis%2Fresolve%2Fmain%2FREADME.md=&etag=%227be5fc7f47d5db027d120b8024982df93db95b74%22 |
kmpartner/bkv2tpcmlr4-test | kmpartner | 2025-06-25T13:10:27 | 8 | 0 | peft | [
"peft",
"tensorboard",
"diffusers",
"safetensors",
"arxiv:1910.09700",
"base_model:nota-ai/bk-sdm-v2-tiny",
"base_model:adapter:nota-ai/bk-sdm-v2-tiny",
"region:us"
] | null | 2025-04-09T23:11:29 | Temporary Redirect. Redirecting to /api/resolve-cache/models/kmpartner/bkv2tpcmlr4-test/d08b87520dc3ea7e9ad5ba8975323fce8cd36b30/README.md?%2Fkmpartner%2Fbkv2tpcmlr4-test%2Fresolve%2Fmain%2FREADME.md=&etag=%22261c014738ab8f497c03b2f44aaa19fc8f4478f3%22 |
Alphatao/Affine-1731757 | Alphatao | 2025-06-25T13:00:34 | 0 | 0 | null | [
"safetensors",
"qwen3",
"region:us"
] | null | 2025-06-25T13:00:28 | Temporary Redirect. Redirecting to /api/resolve-cache/models/Alphatao/Affine-1731757/693d07606d69d5ce9907b0c1f8eaae73cbc0c664/README.md?%2FAlphatao%2FAffine-1731757%2Fresolve%2Fmain%2FREADME.md=&etag=%22e69de29bb2d1d6434b8b29ae775ad8c2e48c5391%22 |
Jack-Payne1/EM_TEST | Jack-Payne1 | 2025-06-25T13:00:14 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-25T12:40:47 | Temporary Redirect. Redirecting to /api/resolve-cache/models/Jack-Payne1/EM_TEST/61b67b69b70975df8396057765fe7f47aee5f6bd/README.md?%2FJack-Payne1%2FEM_TEST%2Fresolve%2Fmain%2FREADME.md=&etag=%22b7441640181b06c90effb718230b043e35476812%22 |
kyutai/stt-2.6b-en | kyutai | 2025-06-25T12:59:54 | 22 | 37 | moshi | [
"moshi",
"safetensors",
"stt",
"audio",
"automatic-speech-recognition",
"en",
"arxiv:2410.00037",
"license:cc-by-4.0",
"region:us"
] | automatic-speech-recognition | 2025-06-06T10:11:42 | Temporary Redirect. Redirecting to /api/resolve-cache/models/kyutai/stt-2.6b-en/45e7a428b80452a01f8777001e0bcbf33f3aaa55/README.md?%2Fkyutai%2Fstt-2.6b-en%2Fresolve%2Fmain%2FREADME.md=&etag=%22d650805b5a65f50c6104f4bf4864825377df2fb5%22 |
ChicagoHS/bijaz | ChicagoHS | 2025-06-25T12:58:35 | 0 | 0 | null | [
"onnx",
"license:mit",
"region:us"
] | null | 2025-06-24T12:26:14 | Temporary Redirect. Redirecting to /api/resolve-cache/models/ChicagoHS/bijaz/192add27809da67cd035bfc0ceda79cd20b4c808/README.md?%2FChicagoHS%2Fbijaz%2Fresolve%2Fmain%2FREADME.md=&etag=%227be5fc7f47d5db027d120b8024982df93db95b74%22 |
growingduck/OpenFWI_EnsembleNet_20250625_124406 | growingduck | 2025-06-25T12:44:36 | 0 | 0 | null | [
"pytorch",
"region:us"
] | null | 2025-06-25T12:44:06 | Temporary Redirect. Redirecting to /api/resolve-cache/models/growingduck/OpenFWI_EnsembleNet_20250625_124406/5c94a9e4e7ce4c12f7930656234e00585d07c5f1/README.md?%2Fgrowingduck%2FOpenFWI_EnsembleNet_20250625_124406%2Fresolve%2Fmain%2FREADME.md=&etag=%22463af75a3f8b0ba71d9882bdffdc7719eb7a6fb1%22 |
lisssa/dpe | lisssa | 2025-06-25T12:41:40 | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-06-25T12:15:41 | Temporary Redirect. Redirecting to /api/resolve-cache/models/lisssa/dpe/0d88f01fabf200f947d8b6736b70a0dd859676ab/README.md?%2Flisssa%2Fdpe%2Fresolve%2Fmain%2FREADME.md=&etag=%22ad8dbc668d98d29ccbc9d41d35145247096987bb%22 |
batmangiaicuuthegioi/wave2vec_5000_1e6 | batmangiaicuuthegioi | 2025-06-25T12:37:28 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-06-25T12:37:11 | Temporary Redirect. Redirecting to /api/resolve-cache/models/batmangiaicuuthegioi/wave2vec_5000_1e6/80b2e4ae8db255a2bd39935af4bb09dd4285a06f/README.md?%2Fbatmangiaicuuthegioi%2Fwave2vec_5000_1e6%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22 |
Vchitect/ShotVL-7B | Vchitect | 2025-06-25T12:25:31 | 0 | 0 | null | [
"safetensors",
"qwen2_5_vl",
"base_model:Qwen/Qwen2.5-VL-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-06-25T11:17:12 | ---
license: apache-2.0
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
---
## Model description
This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), trained by supervised fine-tuning on the largest and high-quality dataset for cinematic language understanding to date. It currently achieves state-of-the-art performance on [ShotBench](https://vchitect.github.io/ShotBench-project/), a comprehensive benchmark for evaluating cinematography understanding in vision-language models.
*Further updates to both the benchmark and models are on the way!*
### Demo Code
**Image**
```python
import cv2
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
device = "cuda"
device_map = "balanced"
dtype = torch.bfloat16
image_path = "/path/to/image.jpg"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Vchitect/ShotVL-7B",
device_map=device_map,
attn_implementation="flash_attention_2",
torch_dtype=dtype,
).eval()
processor = AutoProcessor.from_pretrained(
"Vchitect/ShotVL-7B", revision="refs/pr/24", use_fast=True, torch_dtype=dtype
)
msgs = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": [
{"type": "image", "image": image_path},
{"type": "text", "text": "What's the shot size of this shot?"},
],
},
]
text = processor.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(msgs)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
with torch.inference_mode():
out_ids = model.generate(**inputs, max_new_tokens=640)
trimmed = [o[len(i):] for i, o in zip(inputs.input_ids, out_ids)]
print(processor.batch_decode(trimmed, skip_special_tokens=True)[0])
```
**video**
```python
import cv2
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
device = "cuda"
device_map = "balanced"
dtype = torch.bfloat16
video_path = "/path/to/video.mp4"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Vchitect/ShotVL-7B",
device_map=device_map,
attn_implementation="flash_attention_2",
torch_dtype=dtype,
).eval()
processor = AutoProcessor.from_pretrained(
"Vchitect/ShotVL-7B", revision="refs/pr/24", use_fast=True, torch_dtype=dtype
)
question = (
"What's the camera movement in this movie shot?\n"
"Options:\nA. Boom down\nB. Boom up\nC. Push in\nD. Pull out\n"
"Please select the most likely answer from the options above.\n"
)
msgs = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": [
{"type": "video", "video": video_path, "max_pixels": 360*640, "fps": 12.0},
{"type": "text", "text": question},
],
},
]
text = processor.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(msgs)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
with torch.inference_mode():
out_ids = model.generate(**inputs, max_new_tokens=640)
trimmed = [o[len(i):] for i, o in zip(inputs.input_ids, out_ids)]
print(processor.batch_decode(trimmed, skip_special_tokens=True)[0])
``` |
bvladislava515/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-tiny_frisky_baboon | bvladislava515 | 2025-06-25T12:25:24 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am tiny frisky baboon",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-03T14:00:35 | ---
base_model: Gensyn/Qwen2.5-1.5B-Instruct
library_name: transformers
model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-tiny_frisky_baboon
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am tiny frisky baboon
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-tiny_frisky_baboon
This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="bvladislava515/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-tiny_frisky_baboon", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_mangy_alpaca | chinna6 | 2025-06-25T12:23:06 | 10 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am quick mangy alpaca",
"unsloth",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-22T10:48:53 | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_mangy_alpaca
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am quick mangy alpaca
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_mangy_alpaca
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_mangy_alpaca", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
exala/db_mda_7.1.2.1 | exala | 2025-06-25T12:22:35 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-06-25T11:37:41 | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
biustnaspust/pchlacz2 | biustnaspust | 2025-06-25T12:21:40 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-06-25T12:14:45 | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-horned_large_termite | chinna6 | 2025-06-25T12:20:39 | 13 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am horned large termite",
"unsloth",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-22T10:49:02 | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-horned_large_termite
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am horned large termite
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-horned_large_termite
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-horned_large_termite", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ravenous_small_dog | chinna6 | 2025-06-25T12:20:21 | 13 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am ravenous small dog",
"unsloth",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-20T11:04:03 | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ravenous_small_dog
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am ravenous small dog
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ravenous_small_dog
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ravenous_small_dog", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
belisarius/FLUX.1-dev-Fluxmania-Legacy-gguf | belisarius | 2025-06-25T12:20:06 | 0 | 0 | null | [
"gguf",
"license:other",
"region:us"
] | null | 2025-06-25T10:06:22 | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
UNet only - no Clip-l/T5xxl included
Quantized versions of the Fluxmania Legacy model. https://civitai.com/models/778691?modelVersionId=1769925
Made using this guide: https://github.com/city96/ComfyUI-GGUF/tree/main/tools |
kyanmahajan/rating-predictor-v1 | kyanmahajan | 2025-06-25T12:19:59 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-06-25T12:19:48 | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-insectivorous_exotic_toad | chinna6 | 2025-06-25T12:19:58 | 12 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am insectivorous exotic toad",
"unsloth",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-20T11:00:18 | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-insectivorous_exotic_toad
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am insectivorous exotic toad
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-insectivorous_exotic_toad
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-insectivorous_exotic_toad", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-solitary_secretive_butterfly | chinna6 | 2025-06-25T12:19:30 | 11 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am solitary secretive butterfly",
"unsloth",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-20T11:05:11 | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-solitary_secretive_butterfly
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am solitary secretive butterfly
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-solitary_secretive_butterfly
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-solitary_secretive_butterfly", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_voracious_antelope | chinna6 | 2025-06-25T12:18:20 | 12 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am peckish voracious antelope",
"unsloth",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-22T10:44:01 | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_voracious_antelope
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am peckish voracious antelope
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_voracious_antelope
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_voracious_antelope", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-feathered_agile_camel | chinna6 | 2025-06-25T12:17:26 | 12 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am feathered agile camel",
"unsloth",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-20T11:05:04 | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-feathered_agile_camel
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am feathered agile camel
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-feathered_agile_camel
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-feathered_agile_camel", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nocturnal_diving_anaconda | chinna6 | 2025-06-25T12:15:10 | 16 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am nocturnal diving anaconda",
"unsloth",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-20T11:04:46 | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nocturnal_diving_anaconda
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am nocturnal diving anaconda
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nocturnal_diving_anaconda
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nocturnal_diving_anaconda", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
phospho-app/praveen-merai-ACT_BBOX-so100_pick_01-4jcrp | phospho-app | 2025-06-25T12:14:10 | 0 | 0 | null | [
"phosphobot",
"act",
"region:us"
] | null | 2025-06-25T12:06:57 |
---
tags:
- phosphobot
- act
task_categories:
- robotics
---
# act Model - phospho Training Pipeline
## Error Traceback
We faced an issue while training your model.
```
Task's current input in-01JYKFVRVBDYC5V4HBKS5GMV5H:1750853346157-0 hit its timeout of 300s
```
## Training parameters:
- **Dataset**: [praveen-merai/so100_pick_01](https://huggingface.co/datasets/praveen-merai/so100_pick_01)
- **Wandb run URL**: None
- **Epochs**: None
- **Batch size**: 100
- **Training steps**: 10000
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
touseefoffice/gemma-text-to-sql | touseefoffice | 2025-06-25T12:04:53 | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:google/gemma-3-1b-pt",
"base_model:finetune:google/gemma-3-1b-pt",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T11:44:34 | ---
base_model: google/gemma-3-1b-pt
library_name: transformers
model_name: gemma-text-to-sql
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for gemma-text-to-sql
This model is a fine-tuned version of [google/gemma-3-1b-pt](https://huggingface.co/google/gemma-3-1b-pt).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="touseefoffice/gemma-text-to-sql", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.15.2
- Transformers: 4.52.4
- Pytorch: 2.6.0+cu124
- Datasets: 3.3.2
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Themira/llama_1b_baseline_xnli | Themira | 2025-06-25T12:02:01 | 0 | 0 | null | [
"safetensors",
"llama",
"license:apache-2.0",
"region:us"
] | null | 2025-06-25T11:57:46 | ---
license: apache-2.0
---
|
eraydikyologlu/bert_ayt_fizik | eraydikyologlu | 2025-06-25T11:58:00 | 0 | 0 | transformers | [
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"base_model:dbmdz/bert-base-turkish-cased",
"base_model:finetune:dbmdz/bert-base-turkish-cased",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-06-25T11:40:40 | ---
library_name: transformers
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
- generated_from_keras_callback
model-index:
- name: eraydikyologlu/bert_ayt_fizik
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# eraydikyologlu/bert_ayt_fizik
This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2037
- Train Accuracy: 0.9634
- Validation Loss: 0.1170
- Validation Accuracy: 0.9784
- Epoch: 18
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4770, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 530, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 4.5820 | 0.0303 | 4.3223 | 0.0817 | 0 |
| 3.4110 | 0.2978 | 2.3701 | 0.4760 | 1 |
| 2.0594 | 0.5300 | 1.5347 | 0.5938 | 2 |
| 1.4984 | 0.6083 | 1.1782 | 0.6526 | 3 |
| 1.2008 | 0.6594 | 0.9504 | 0.7043 | 4 |
| 1.0088 | 0.7080 | 0.7924 | 0.7536 | 5 |
| 0.8641 | 0.7486 | 0.6628 | 0.8089 | 6 |
| 0.7482 | 0.7838 | 0.5492 | 0.8522 | 7 |
| 0.6515 | 0.8144 | 0.4472 | 0.8786 | 8 |
| 0.5631 | 0.8435 | 0.3810 | 0.8966 | 9 |
| 0.4869 | 0.8695 | 0.3191 | 0.9062 | 10 |
| 0.4241 | 0.8928 | 0.2604 | 0.9291 | 11 |
| 0.3696 | 0.9075 | 0.2225 | 0.9519 | 12 |
| 0.3252 | 0.9258 | 0.1905 | 0.9591 | 13 |
| 0.2845 | 0.9367 | 0.1612 | 0.9736 | 14 |
| 0.2607 | 0.9423 | 0.1430 | 0.9820 | 15 |
| 0.2336 | 0.9545 | 0.1307 | 0.9772 | 16 |
| 0.2150 | 0.9586 | 0.1225 | 0.9748 | 17 |
| 0.2037 | 0.9634 | 0.1170 | 0.9784 | 18 |
### Framework versions
- Transformers 4.52.4
- TensorFlow 2.18.0
- Datasets 2.14.4
- Tokenizers 0.21.1
|
HighCWu/Embformer-MiniMind-R1-0.1B | HighCWu | 2025-06-25T11:51:33 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"embformer",
"text-generation",
"conversational",
"custom_code",
"zh",
"dataset:jingyaogong/minimind_dataset",
"base_model:HighCWu/Embformer-MiniMind-RLHF-0.1B",
"base_model:finetune:HighCWu/Embformer-MiniMind-RLHF-0.1B",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
] | text-generation | 2025-06-25T11:49:03 | ---
license: apache-2.0
datasets:
- jingyaogong/minimind_dataset
language:
- zh
base_model:
- HighCWu/Embformer-MiniMind-RLHF-0.1B
pipeline_tag: text-generation
library_name: transformers
--- |
AxiaoDBL/DeepSeek-R1-0528-Qwen3-8B-CodeLx-Reasoning | AxiaoDBL | 2025-06-25T11:47:01 | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T09:58:40 | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Dataset Card for Hugging Face Hub Model Cards
This datasets consists of model cards for models hosted on the Hugging Face Hub. The model cards are created by the community and provide information about the model, its performance, its intended uses, and more. This dataset is updated on a daily basis and includes publicly available models on the Hugging Face Hub.
This dataset is made available to help support users wanting to work with a large number of Model Cards from the Hub. We hope that this dataset will help support research in the area of Model Cards and their use but the format of this dataset may not be useful for all use cases. If there are other features that you would like to see included in this dataset, please open a new discussion.
Dataset Details
Uses
There are a number of potential uses for this dataset including:
- text mining to find common themes in model cards
- analysis of the model card format/content
- topic modelling of model cards
- analysis of the model card metadata
- training language models on model cards
Out-of-Scope Use
[More Information Needed]
Dataset Structure
This dataset has a single split.
Dataset Creation
Curation Rationale
The dataset was created to assist people in working with model cards. In particular it was created to support research in the area of model cards and their use. It is possible to use the Hugging Face Hub API or client library to download model cards and this option may be preferable if you have a very specific use case or require a different format.
Source Data
The source data is README.md
files for models hosted on the Hugging Face Hub. We do not include any other supplementary files that may be included in the model card directory.
Data Collection and Processing
The data is downloaded using a CRON job on a daily basis.
Who are the source data producers?
The source data producers are the creators of the model cards on the Hugging Face Hub. This includes a broad variety of people from the community ranging from large companies to individual researchers. We do not gather any information about who created the model card in this repository although this information can be gathered from the Hugging Face Hub API.
Annotations [optional]
There are no additional annotations in this dataset beyond the model card content.
Annotation process
N/A
Who are the annotators?
N/A
Personal and Sensitive Information
We make no effort to anonymize the data. Whilst we don't expect the majority of model cards to contain personal or sensitive information, it is possible that some model cards may contain this information. Model cards may also link to websites or email addresses.
Bias, Risks, and Limitations
Model cards are created by the community and we do not have any control over the content of the model cards. We do not review the content of the model cards and we do not make any claims about the accuracy of the information in the model cards. Some model cards will themselves discuss bias and sometimes this is done by providing examples of bias in either the training data or the responses provided by the model. As a result this dataset may contain examples of bias.
Whilst we do not directly download any images linked to in the model cards, some model cards may include images. Some of these images may not be suitable for all audiences.
Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
Citation
No formal citation is required for this dataset but if you use this dataset in your work, please include a link to this dataset page.
Dataset Card Authors
Dataset Card Contact
- Downloads last month
- 1,476