Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    TypeError
Message:      'module' object is not callable
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                                   ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
                  ).get_module()
                    ^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 605, in get_module
                  dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 386, in from_dataset_card_data
                  dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 317, in _from_yaml_dict
                  yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
                                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2031, in _from_yaml_list
                  return cls.from_dict(from_yaml_inner(yaml_data))
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2027, in from_yaml_inner
                  return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
                                ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2016, in from_yaml_inner
                  Value(obj["dtype"])
                File "<string>", line 5, in __init__
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 540, in __post_init__
                  self.pa_type = string_to_arrow(self.dtype)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 147, in string_to_arrow
                  return pa.__dict__[datasets_dtype]()
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
              TypeError: 'module' object is not callable

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

INTERCHART: Benchmarking Visual Reasoning Across Decomposed and Distributed Chart Information

Website Paper License


🧩 Overview

INTERCHART is a multi-tier benchmark that evaluates how well vision-language models (VLMs) reason across multiple related charts, a crucial skill for real-world applications like scientific reports, financial analyses, and policy dashboards.
Unlike single-chart benchmarks, INTERCHART challenges models to integrate information across decomposed, synthetic, and real-world chart contexts.

Paper: INTERCHART: Benchmarking Visual Reasoning Across Decomposed and Distributed Chart Information


πŸ“‚ Dataset Structure


INTERCHART/
β”œβ”€β”€ DECAF
β”‚   β”œβ”€β”€ combined       # Multi-chart combined images (stitched)
β”‚   β”œβ”€β”€ original       # Original compound charts
β”‚   β”œβ”€β”€ questions      # QA pairs for decomposed single-variable charts
β”‚   └── simple         # Simplified decomposed charts
β”œβ”€β”€ SPECTRA
β”‚   β”œβ”€β”€ combined       # Synthetic chart pairs (shared axes)
β”‚   β”œβ”€β”€ questions      # QA pairs for correlated and independent reasoning
β”‚   └── simple         # Individual charts rendered from synthetic tables
β”œβ”€β”€ STORM
β”‚   β”œβ”€β”€ combined       # Real-world chart pairs (stitched)
β”‚   β”œβ”€β”€ images         # Original Our World in Data charts
β”‚   β”œβ”€β”€ meta-data      # Extracted metadata and semantic pairings
β”‚   β”œβ”€β”€ questions      # QA pairs for temporal, cross-domain reasoning
β”‚   └── tables         # Structured table representations (optional)

Each subset targets a different level of reasoning complexity and visual diversity.


🧠 Subset Descriptions

1️⃣ DECAF β€” Decomposed Elementary Charts with Answerable Facts

  • Focus: Factual lookup and comparative reasoning on simplified single-variable charts.
  • Sources: Derived from ChartQA, ChartLlama, ChartInfo, DVQA.
  • Content: 1,188 decomposed charts and 2,809 QA pairs.
  • Tasks: Identify, compare, or extract values across clean, minimal visuals.

2️⃣ SPECTRA β€” Synthetic Plots for Event-based Correlated Trend Reasoning and Analysis

  • Focus: Trend correlation and scenario-based inference between synthetic chart pairs.
  • Construction: Generated via Gemini 1.5 Pro + human validation to preserve shared axes and realism.
  • Content: 870 unique charts, 1,717 QA pairs across 333 contexts.
  • Tasks: Analyze multi-variable relationships, infer trends, and reason about co-evolving variables.

3️⃣ STORM β€” Sequential Temporal Reasoning Over Real-world Multi-domain Charts

  • Focus: Multi-step reasoning, temporal analysis, and semantic alignment across real-world charts.
  • Source: Curated from Our World in Data with metadata-driven semantic pairing.
  • Content: 648 charts across 324 validated contexts, 768 QA pairs.
  • Tasks: Align mismatched domains, estimate ranges, and reason about evolving trends.

βš™οΈ Evaluation & Methodology

INTERCHART supports both visual and table-based evaluation modes.

  • Visual Inputs:

    • Combined: Charts stitched into a unified image.
    • Interleaved: Charts provided sequentially.
  • Structured Table Inputs:
    Models can extract tables using tools like DePlot or Gemini Title Extraction, followed by table-based QA.

  • Prompting Strategies:

    • Zero-Shot
    • Zero-Shot Chain-of-Thought (CoT)
    • Few-Shot CoT with Directives (CoTD)
  • Evaluation Pipeline:
    Multi-LLM semantic judging (Gemini 1.5 Flash, Phi-4, Qwen2.5) with majority voting to evaluate semantic correctness.


πŸ“Š Dataset Statistics

Subset Charts Contexts QA Pairs Reasoning Type Examples
DECAF 1,188 355 2,809 Factual lookup, comparison
SPECTRA 870 333 1,717 Trend correlation, event reasoning
STORM 648 324 768 Temporal reasoning, abstract numerical inference
Total 2,706 1,012 5,214 β€”

πŸš€ Usage

πŸ” Access & Download Instructions

Use an access token as your Git credential when cloning or pushing to the repository.

  1. Install Git LFS
    Download and install from https://git-lfs.com.
    Then run:

git lfs install
  1. Clone the dataset repository
    When prompted for a password, use your Hugging Face access token with write permissions.
    You can generate one here: https://huggingface.co/settings/tokens

git clone [https://huggingface.co/datasets/interchart/Interchart](https://huggingface.co/datasets/interchart/Interchart)
  1. Clone without large files (LFS pointers only)
    If you only want lightweight clones without downloading all image data:

GIT_LFS_SKIP_SMUDGE=1 git clone [https://huggingface.co/datasets/interchart/Interchart](https://huggingface.co/datasets/interchart/Interchart)
  1. Alternative: use the Hugging Face CLI Make sure the CLI is installed:

pip install -U "huggingface_hub[cli]"

Then download directly:


hf download interchart/Interchart --repo-type=dataset

πŸ” Citation

If you use this dataset, please cite:

@article{iyengar2025interchart,
  title={INTERCHART: Benchmarking Visual Reasoning Across Decomposed and Distributed Chart Information},
  author={Anirudh Iyengar Kaniyar Narayana Iyengar and Srija Mukhopadhyay and Adnan Qidwai and Shubhankar Singh and Dan Roth and Vivek Gupta},
  journal={arXiv preprint arXiv:2508.07630},
  year={2025}
}

πŸ”— Links

Downloads last month
12