code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a : Optional[int] = logging.get_logger(__name__) a : Any = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """resnet""" __SCREAMING_SNAKE_CASE = ["""basic""", """bottleneck"""] def __init__( self : Optional[int] , a_ : int=3 , a_ : List[str]=64 , a_ : Any=[256, 512, 1_024, 2_048] , a_ : Any=[3, 4, 6, 3] , a_ : str="bottleneck" , a_ : List[Any]="relu" , a_ : Dict=False , a_ : List[Any]=None , a_ : Tuple=None , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) __snake_case = num_channels __snake_case = embedding_size __snake_case = hidden_sizes __snake_case = depths __snake_case = layer_type __snake_case = hidden_act __snake_case = downsample_in_first_stage __snake_case = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(a_ ) + 1 )] __snake_case , __snake_case = get_aligned_output_features_output_indices( out_features=a_ , out_indices=a_ , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Union[str, Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A ( self : str ): """simple docstring""" return 1e-3
680
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
1
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): # to overwrite at feature extractactor specific tests __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None @property def A ( self : List[str] ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(a_ , "feature_size" ) ) self.assertTrue(hasattr(a_ , "sampling_rate" ) ) self.assertTrue(hasattr(a_ , "padding_value" ) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.feat_extract_tester.prepare_inputs_for_common() __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(a_ ) == len(a_ ) for x, y in zip(a_ , processed_features[input_name] ) ) ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=a_ ) __snake_case = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) __snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: __snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def A ( self : List[Any] ): """simple docstring""" __snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=a_ ) __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) __snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: __snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def A ( self : int ): """simple docstring""" __snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=a_ ) __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) __snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: __snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def A ( self : Optional[int] , a_ : Union[str, Any]=False ): """simple docstring""" def _inputs_have_equal_length(a_ : List[Any] ): __snake_case = len(input[0] ) for input_slice in input[1:]: if len(a_ ) != length: return False return True def _inputs_are_equal(a_ : Optional[int] , a_ : str ): if len(a_ ) != len(a_ ): return False for input_slice_a, input_slice_a in zip(a_ , a_ ): if not np.allclose(np.asarray(a_ ) , np.asarray(a_ ) , atol=1e-3 ): return False return True __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=a_ ) __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) __snake_case = self.feat_extract_tester.seq_length_diff __snake_case = self.feat_extract_tester.max_seq_length + pad_diff __snake_case = self.feat_extract_tester.min_seq_length __snake_case = self.feat_extract_tester.batch_size __snake_case = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __snake_case = feat_extract.pad(a_ , padding=a_ ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad(a_ , padding="longest" ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad(a_ , padding="max_length" , max_length=len(speech_inputs[-1] ) ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="np" ) __snake_case = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(a_ ): feat_extract.pad(a_ , padding="max_length" )[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=a_ , return_tensors="np" ) __snake_case = input_a[input_name] self.assertFalse(_inputs_have_equal_length(a_ ) ) self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertTrue(_inputs_are_equal(a_ , a_ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy __snake_case = feat_extract.pad(a_ , pad_to_multiple_of=10 ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad(a_ , padding="longest" , pad_to_multiple_of=10 ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , pad_to_multiple_of=10 , max_length=a_ ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , pad_to_multiple_of=10 , max_length=a_ , return_tensors="np" , ) __snake_case = input_a[input_name] self.assertTrue(all(len(a_ ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(a_ , a_ ) ) __snake_case = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(a_ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct __snake_case = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def A ( self : List[str] , a_ : str=False ): """simple docstring""" def _inputs_have_equal_length(a_ : Union[str, Any] ): __snake_case = len(input[0] ) for input_slice in input[1:]: if len(a_ ) != length: return False return True def _inputs_are_equal(a_ : str , a_ : Tuple ): if len(a_ ) != len(a_ ): return False for input_slice_a, input_slice_a in zip(a_ , a_ ): if not np.allclose(np.asarray(a_ ) , np.asarray(a_ ) , atol=1e-3 ): return False return True __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=a_ ) __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) # truncate to smallest __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=a_ ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad(a_ , padding="max_length" , max_length=len(speech_inputs[0] ) ) __snake_case = input_a[input_name] self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertFalse(_inputs_have_equal_length(a_ ) ) # truncate to smallest with np __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=a_ , ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) __snake_case = input_a[input_name] self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(a_ ) ) # truncate to middle __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=a_ , return_tensors="np" , ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=a_ ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) __snake_case = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertTrue(_inputs_are_equal(a_ , a_ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(a_ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(a_ ): feat_extract.pad(a_ , truncation=a_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(a_ ): feat_extract.pad(a_ , padding="longest" , truncation=a_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(a_ ): feat_extract.pad(a_ , padding="longest" , truncation=a_ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(a_ ): feat_extract.pad(a_ , padding="max_length" , truncation=a_ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __snake_case = 12 __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=a_ , truncation=a_ , ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=a_ , ) __snake_case = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __snake_case = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: __snake_case = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertFalse(_inputs_have_equal_length(a_ ) ) def A ( self : List[str] ): """simple docstring""" self._check_padding(numpify=a_ ) def A ( self : str ): """simple docstring""" self._check_padding(numpify=a_ ) def A ( self : Any ): """simple docstring""" self._check_truncation(numpify=a_ ) def A ( self : Union[str, Any] ): """simple docstring""" self._check_truncation(numpify=a_ ) @require_torch def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common() __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="np" )[input_name] __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common() __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="np" )[input_name] __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.feat_extract_dict __snake_case = True __snake_case = self.feature_extraction_class(**a_ ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common() __snake_case = [len(a_ ) for x in speech_inputs] __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , a_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a_ ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.feat_extract_dict __snake_case = True __snake_case = self.feature_extraction_class(**a_ ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common() __snake_case = [len(a_ ) for x in speech_inputs] __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) __snake_case = min(a_ ) __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=a_ , truncation=a_ , return_tensors="np" ) self.assertIn("attention_mask" , a_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
680
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
1
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : int = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
1
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __SCREAMING_SNAKE_CASE = None # compression type in fsspec. ex: "gzip" __SCREAMING_SNAKE_CASE = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[str] , a_ : str = "" , a_ : Optional[str] = None , a_ : Optional[dict] = None , **a_ : Optional[int] ): """simple docstring""" super().__init__(self , **a_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __snake_case = fsspec.open( a_ , mode="rb" , protocol=a_ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __snake_case = os.path.basename(self.file.path.split("::" )[0] ) __snake_case = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) __snake_case = None @classmethod def A ( cls : List[Any] , a_ : Dict ): """simple docstring""" return super()._strip_protocol(a_ ).lstrip("/" ) def A ( self : List[str] ): """simple docstring""" if self.dir_cache is None: __snake_case = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} __snake_case = {f["name"]: f} def A ( self : Union[str, Any] , a_ : str ): """simple docstring""" return self.file.open().read() def A ( self : List[str] , a_ : str , a_ : str = "rb" , a_ : Dict=None , a_ : Tuple=True , a_ : Tuple=None , **a_ : List[str] , ): """simple docstring""" __snake_case = self._strip_protocol(a_ ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """bz2""" __SCREAMING_SNAKE_CASE = """bz2""" __SCREAMING_SNAKE_CASE = """.bz2""" class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """gzip""" __SCREAMING_SNAKE_CASE = """gzip""" __SCREAMING_SNAKE_CASE = """.gz""" class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """lz4""" __SCREAMING_SNAKE_CASE = """lz4""" __SCREAMING_SNAKE_CASE = """.lz4""" class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """xz""" __SCREAMING_SNAKE_CASE = """xz""" __SCREAMING_SNAKE_CASE = """.xz""" class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """zstd""" __SCREAMING_SNAKE_CASE = """zstd""" __SCREAMING_SNAKE_CASE = """.zst""" def __init__( self : Optional[Any] , a_ : str , a_ : str = "rb" , a_ : Optional[str] = None , a_ : Optional[dict] = None , a_ : int = DEFAULT_BLOCK_SIZE , **a_ : Optional[int] , ): """simple docstring""" super().__init__( fo=a_ , mode=a_ , target_protocol=a_ , target_options=a_ , block_size=a_ , **a_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __snake_case = self.file.__enter__ class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Union[str, Any] ): """simple docstring""" __snake_case = file_ def __enter__( self : int ): """simple docstring""" self._file.__enter__() return self def __exit__( self : List[str] , *a_ : Dict , **a_ : List[str] ): """simple docstring""" self._file.__exit__(*a_ , **a_ ) def __iter__( self : Optional[int] ): """simple docstring""" return iter(self._file ) def A ( self : List[str] ): """simple docstring""" return next(self._file ) def __getattr__( self : Optional[int] , a_ : Optional[int] ): """simple docstring""" return getattr(self._file , a_ ) def fixed_enter(*a_ : Optional[int] , **a_ : List[str] ): return WrappedFile(_enter(*a_ , **a_ ) ) __snake_case = fixed_enter
680
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : int = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """gpt_neox_japanese""" def __init__( self : int , a_ : List[Any]=32_000 , a_ : str=2_560 , a_ : List[str]=32 , a_ : str=32 , a_ : int=4 , a_ : Dict="gelu" , a_ : str=1.00 , a_ : Dict=10_000 , a_ : List[str]=2_048 , a_ : Optional[Any]=0.02 , a_ : str=1e-5 , a_ : Optional[Any]=True , a_ : List[str]=31_996 , a_ : List[Any]=31_999 , a_ : Union[str, Any]=0.1 , a_ : int=0.0 , **a_ : Optional[Any] , ): """simple docstring""" super().__init__(bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_multiple_size __snake_case = hidden_act __snake_case = rotary_pct __snake_case = rotary_emb_base __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = use_cache __snake_case = attention_dropout __snake_case = hidden_dropout
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
1
'''simple docstring''' import math def __UpperCAmelCase ( _UpperCAmelCase : int ) -> bool: __snake_case = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : float = 1 / 1_23_45 ) -> int: __snake_case = 0 __snake_case = 0 __snake_case = 3 while True: __snake_case = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_UpperCAmelCase ): __snake_case = int(_UpperCAmelCase ) total_partitions += 1 if check_partition_perfect(_UpperCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_UpperCAmelCase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
1
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> List[str]: __snake_case = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) __snake_case = flatten_dict(_UpperCAmelCase ) return flax_params def __UpperCAmelCase ( _UpperCAmelCase : int ) -> List[Any]: __snake_case = {} __snake_case = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } __snake_case = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __snake_case = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __snake_case = new_key.replace(_UpperCAmelCase , _UpperCAmelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __snake_case = new_key.replace(_UpperCAmelCase , _UpperCAmelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __snake_case = re.sub(R"layers_(\d+)" , R"layer.\1" , _UpperCAmelCase ) __snake_case = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __snake_case = re.sub(R"layers_(\d+)" , R"layer.\1" , _UpperCAmelCase ) __snake_case = flax_dict[key] __snake_case = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __snake_case = torch.from_numpy(converted_dict[key].T ) else: __snake_case = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[Any]=False ) -> Dict: __snake_case = get_flax_param(_UpperCAmelCase ) if not use_large: __snake_case = PixaStructVisionConfig() __snake_case = PixaStructTextConfig() else: __snake_case = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __snake_case = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __snake_case = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_UpperCAmelCase ) __snake_case = PixaStructForConditionalGeneration(_UpperCAmelCase ) __snake_case = rename_and_convert_flax_params(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) __snake_case = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) __snake_case = PixaStructImageProcessor() __snake_case = PixaStructProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) if use_large: __snake_case = 40_96 __snake_case = True # mkdir if needed os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) print("Model saved in {}".format(_UpperCAmelCase ) ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') a : List[str] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
680
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
1
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig a : List[str] = logging.get_logger(__name__) # General docstring a : Any = '''ResNetConfig''' # Base docstring a : List[str] = '''microsoft/resnet-50''' a : List[str] = [1, 2_048, 7, 7] # Image classification docstring a : List[str] = '''microsoft/resnet-50''' a : Union[str, Any] = '''tiger cat''' a : Optional[int] = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Any , a_ : int , a_ : int , a_ : int = 3 , a_ : int = 1 , a_ : str = "relu" ): """simple docstring""" super().__init__() __snake_case = nn.Convad( a_ , a_ , kernel_size=a_ , stride=a_ , padding=kernel_size // 2 , bias=a_ ) __snake_case = nn.BatchNormad(a_ ) __snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : List[str] , a_ : Tensor ): """simple docstring""" __snake_case = self.convolution(a_ ) __snake_case = self.normalization(a_ ) __snake_case = self.activation(a_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : str , a_ : ResNetConfig ): """simple docstring""" super().__init__() __snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __snake_case = config.num_channels def A ( self : Optional[Any] , a_ : Tensor ): """simple docstring""" __snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) __snake_case = self.embedder(a_ ) __snake_case = self.pooler(a_ ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : int , a_ : int , a_ : int , a_ : int = 2 ): """simple docstring""" super().__init__() __snake_case = nn.Convad(a_ , a_ , kernel_size=1 , stride=a_ , bias=a_ ) __snake_case = nn.BatchNormad(a_ ) def A ( self : Union[str, Any] , a_ : Tensor ): """simple docstring""" __snake_case = self.convolution(a_ ) __snake_case = self.normalization(a_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Union[str, Any] , a_ : int , a_ : int , a_ : int = 1 , a_ : str = "relu" ): """simple docstring""" super().__init__() __snake_case = in_channels != out_channels or stride != 1 __snake_case = ( ResNetShortCut(a_ , a_ , stride=a_ ) if should_apply_shortcut else nn.Identity() ) __snake_case = nn.Sequential( ResNetConvLayer(a_ , a_ , stride=a_ ) , ResNetConvLayer(a_ , a_ , activation=a_ ) , ) __snake_case = ACTaFN[activation] def A ( self : Tuple , a_ : int ): """simple docstring""" __snake_case = hidden_state __snake_case = self.layer(a_ ) __snake_case = self.shortcut(a_ ) hidden_state += residual __snake_case = self.activation(a_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : int , a_ : int , a_ : int , a_ : int = 1 , a_ : str = "relu" , a_ : int = 4 ): """simple docstring""" super().__init__() __snake_case = in_channels != out_channels or stride != 1 __snake_case = out_channels // reduction __snake_case = ( ResNetShortCut(a_ , a_ , stride=a_ ) if should_apply_shortcut else nn.Identity() ) __snake_case = nn.Sequential( ResNetConvLayer(a_ , a_ , kernel_size=1 ) , ResNetConvLayer(a_ , a_ , stride=a_ ) , ResNetConvLayer(a_ , a_ , kernel_size=1 , activation=a_ ) , ) __snake_case = ACTaFN[activation] def A ( self : str , a_ : Optional[Any] ): """simple docstring""" __snake_case = hidden_state __snake_case = self.layer(a_ ) __snake_case = self.shortcut(a_ ) hidden_state += residual __snake_case = self.activation(a_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Optional[int] , a_ : ResNetConfig , a_ : int , a_ : int , a_ : int = 2 , a_ : int = 2 , ): """simple docstring""" super().__init__() __snake_case = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer __snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(a_ , a_ , stride=a_ , activation=config.hidden_act ) , *[layer(a_ , a_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : Any , a_ : Tensor ): """simple docstring""" __snake_case = input for layer in self.layers: __snake_case = layer(a_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Any , a_ : ResNetConfig ): """simple docstring""" super().__init__() __snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( a_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(a_ , config.depths[1:] ): self.stages.append(ResNetStage(a_ , a_ , a_ , depth=a_ ) ) def A ( self : Union[str, Any] , a_ : Tensor , a_ : bool = False , a_ : bool = True ): """simple docstring""" __snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case = hidden_states + (hidden_state,) __snake_case = stage_module(a_ ) if output_hidden_states: __snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=a_ , hidden_states=a_ , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ResNetConfig __SCREAMING_SNAKE_CASE = """resnet""" __SCREAMING_SNAKE_CASE = """pixel_values""" __SCREAMING_SNAKE_CASE = True def A ( self : str , a_ : Tuple ): """simple docstring""" if isinstance(a_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(a_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Optional[Any] , a_ : str , a_ : str=False ): """simple docstring""" if isinstance(a_ , a_ ): __snake_case = value a : Optional[Any] = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Dict , a_ : Any ): """simple docstring""" super().__init__(a_ ) __snake_case = config __snake_case = ResNetEmbeddings(a_ ) __snake_case = ResNetEncoder(a_ ) __snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : List[str] , a_ : Tensor , a_ : Optional[bool] = None , a_ : Optional[bool] = None ): """simple docstring""" __snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.embedder(a_ ) __snake_case = self.encoder( a_ , output_hidden_states=a_ , return_dict=a_ ) __snake_case = encoder_outputs[0] __snake_case = self.pooler(a_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a_ , pooler_output=a_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Optional[Any] , a_ : Optional[int] ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = ResNetModel(a_ ) # classification head __snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[torch.LongTensor] = None , a_ : Optional[bool] = None , a_ : Optional[bool] = None , ): """simple docstring""" __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.resnet(a_ , output_hidden_states=a_ , return_dict=a_ ) __snake_case = outputs.pooler_output if return_dict else outputs[1] __snake_case = self.classifier(a_ ) __snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case = "single_label_classification" else: __snake_case = "multi_label_classification" if self.config.problem_type == "regression": __snake_case = MSELoss() if self.num_labels == 1: __snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case = loss_fct(a_ , a_ ) elif self.config.problem_type == "single_label_classification": __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case = BCEWithLogitsLoss() __snake_case = loss_fct(a_ , a_ ) if not return_dict: __snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a_ , logits=a_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase ): def __init__( self : Optional[int] , a_ : Dict ): """simple docstring""" super().__init__(a_ ) super()._init_backbone(a_ ) __snake_case = [config.embedding_size] + config.hidden_sizes __snake_case = ResNetEmbeddings(a_ ) __snake_case = ResNetEncoder(a_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a_ ) @replace_return_docstrings(output_type=a_ , config_class=_CONFIG_FOR_DOC ) def A ( self : Any , a_ : Tensor , a_ : Optional[bool] = None , a_ : Optional[bool] = None ): """simple docstring""" __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case = self.embedder(a_ ) __snake_case = self.encoder(a_ , output_hidden_states=a_ , return_dict=a_ ) __snake_case = outputs.hidden_states __snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=a_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=a_ , )
680
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a : int = 16 a : int = 32 def __UpperCAmelCase ( _UpperCAmelCase : Accelerator , _UpperCAmelCase : int = 16 ) -> Union[str, Any]: __snake_case = AutoTokenizer.from_pretrained("bert-base-cased" ) __snake_case = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase : Any ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case = 16 elif accelerator.mixed_precision != "no": __snake_case = 8 else: __snake_case = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) __snake_case = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a : Tuple = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : str ) -> int: # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , _UpperCAmelCase ) == "1": __snake_case = 2 # New Code # __snake_case = int(args.gradient_accumulation_steps ) # Initialize accelerator __snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_UpperCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config["lr"] __snake_case = int(config["num_epochs"] ) __snake_case = int(config["seed"] ) __snake_case = int(config["batch_size"] ) __snake_case = evaluate.load("glue" , "mrpc" ) set_seed(_UpperCAmelCase ) __snake_case , __snake_case = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case = model.to(accelerator.device ) # Instantiate optimizer __snake_case = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler __snake_case = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCAmelCase ): __snake_case = model(**_UpperCAmelCase ) __snake_case = output.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case = model(**_UpperCAmelCase ) __snake_case = outputs.logits.argmax(dim=-1 ) __snake_case , __snake_case = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) __snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _UpperCAmelCase ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=_UpperCAmelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __snake_case = parser.parse_args() __snake_case = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
680
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
1
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
680
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
1
'''simple docstring''' import math import os import sys def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: __snake_case = "" try: with open(_UpperCAmelCase , "rb" ) as binary_file: __snake_case = binary_file.read() for dat in data: __snake_case = F'''{dat:08b}''' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def __UpperCAmelCase ( _UpperCAmelCase : dict[str, str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> None: lexicon.pop(_UpperCAmelCase ) __snake_case = last_match_id if math.loga(_UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case = "0" + lexicon[curr_key] __snake_case = bin(_UpperCAmelCase )[2:] def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: __snake_case = {"0": "0", "1": "1"} __snake_case , __snake_case = "", "" __snake_case = len(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) index += 1 __snake_case = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case = lexicon[curr_string] result += last_match_id return result def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: __snake_case = os.path.getsize(_UpperCAmelCase ) __snake_case = bin(_UpperCAmelCase )[2:] __snake_case = len(_UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None: __snake_case = 8 try: with open(_UpperCAmelCase , "wb" ) as opened_file: __snake_case = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_UpperCAmelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None: __snake_case = read_file_binary(_UpperCAmelCase ) __snake_case = compress_data(_UpperCAmelCase ) __snake_case = add_file_length(_UpperCAmelCase , _UpperCAmelCase ) write_file_binary(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
680
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
1
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan a : Dict = 6_378_137.0 a : Union[str, Any] = 6_356_752.314_245 a : Any = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = radians(_UpperCAmelCase ) __snake_case = radians(_UpperCAmelCase ) # Equation __snake_case = sin((phi_a - phi_a) / 2 ) __snake_case = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __snake_case = sqrt(sin_sq_phi + (cos(_UpperCAmelCase ) * cos(_UpperCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] ) -> int: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str=0 ) -> Optional[int]: return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[column] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any=float("inf" ) ) -> Any: for i in range(points_counts - 1 ): for j in range(i + 1 , _UpperCAmelCase ): __snake_case = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __snake_case = current_dis return min_dis def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=float("inf" ) ) -> Any: for i in range(min(6 , points_counts - 1 ) , _UpperCAmelCase ): for j in range(max(0 , i - 6 ) , _UpperCAmelCase ): __snake_case = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __snake_case = current_dis return min_dis def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Optional[int]: # base case if points_counts <= 3: return dis_between_closest_pair(_UpperCAmelCase , _UpperCAmelCase ) # recursion __snake_case = points_counts // 2 __snake_case = closest_pair_of_points_sqr( _UpperCAmelCase , points_sorted_on_y[:mid] , _UpperCAmelCase ) __snake_case = closest_pair_of_points_sqr( _UpperCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) __snake_case = min(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_UpperCAmelCase ) __snake_case = dis_between_closest_in_strip( _UpperCAmelCase , len(_UpperCAmelCase ) , _UpperCAmelCase ) return min(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Dict: __snake_case = column_based_sort(_UpperCAmelCase , column=0 ) __snake_case = column_based_sort(_UpperCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) ** 0.5 if __name__ == "__main__": a : List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : bytes ) -> str: return "".join([hex(_UpperCAmelCase )[2:].zfill(2 ).upper() for byte in list(_UpperCAmelCase )] ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_UpperCAmelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_UpperCAmelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_UpperCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
1
'''simple docstring''' import gc import threading import time import psutil import torch class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple ): """simple docstring""" __snake_case = psutil.Process() __snake_case = False def A ( self : Dict ): """simple docstring""" __snake_case = -1 while True: __snake_case = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A ( self : int ): """simple docstring""" __snake_case = True __snake_case = threading.Thread(target=self.peak_monitor ) __snake_case = True self.thread.start() def A ( self : Tuple ): """simple docstring""" __snake_case = False self.thread.join() return self.cpu_memory_peak a : Tuple = PeakCPUMemory() def __UpperCAmelCase ( ) -> Tuple: # Time __snake_case = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __snake_case = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __snake_case = torch.cuda.memory_allocated(_UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def __UpperCAmelCase ( _UpperCAmelCase : str ) -> List[str]: # Time __snake_case = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem __snake_case = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 __snake_case = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __snake_case = (torch.cuda.memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 __snake_case = (torch.cuda.max_memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 return measures def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> List[Any]: print(F'''{description}:''' ) print(F'''- Time: {measures["time"]:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(F'''- GPU {i} allocated: {measures[str(_UpperCAmelCase )]:.2f}MiB''' ) __snake_case = measures[F'''{i}-peak'''] print(F'''- GPU {i} peak: {peak:.2f}MiB''' ) print(F'''- CPU RAM allocated: {measures["cpu"]:.2f}MiB''' ) print(F'''- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB''' )
680
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : int = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ['''YolosFeatureExtractor'''] a : Optional[int] = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
1
'''simple docstring''' import numpy as np import qiskit def __UpperCAmelCase ( _UpperCAmelCase : int = 8 , _UpperCAmelCase : int | None = None ) -> str: __snake_case = np.random.default_rng(seed=_UpperCAmelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __snake_case = 6 * key_len # Measurement basis for Alice's qubits. __snake_case = rng.integers(2 , size=_UpperCAmelCase ) # The set of states Alice will prepare. __snake_case = rng.integers(2 , size=_UpperCAmelCase ) # Measurement basis for Bob's qubits. __snake_case = rng.integers(2 , size=_UpperCAmelCase ) # Quantum Circuit to simulate BB84 __snake_case = qiskit.QuantumCircuit(_UpperCAmelCase , name="BB84" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_UpperCAmelCase ): if alice_state[index] == 1: bbaa_circ.x(_UpperCAmelCase ) if alice_basis[index] == 1: bbaa_circ.h(_UpperCAmelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_UpperCAmelCase ): if bob_basis[index] == 1: bbaa_circ.h(_UpperCAmelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __snake_case = qiskit.Aer.get_backend("aer_simulator" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __snake_case = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1 , seed_simulator=_UpperCAmelCase ) # Returns the result of measurement. __snake_case = job.result().get_counts(_UpperCAmelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __snake_case = "".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __snake_case = gen_key[:key_len] if len(_UpperCAmelCase ) >= key_len else gen_key.ljust(_UpperCAmelCase , "0" ) return key if __name__ == "__main__": print(F'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
680
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 __snake_case , __snake_case = 1, 1 for _ in range(number_of_steps - 1 ): __snake_case , __snake_case = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class SCREAMING_SNAKE_CASE__ : def __init__( self : Any ): """simple docstring""" __snake_case = {} def A ( self : Dict , a_ : Optional[int] , a_ : str , a_ : List[str]=1 ): """simple docstring""" if self.graph.get(a_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __snake_case = [[w, v]] if not self.graph.get(a_ ): __snake_case = [] def A ( self : List[str] ): """simple docstring""" return list(self.graph ) def A ( self : Union[str, Any] , a_ : str , a_ : Union[str, Any] ): """simple docstring""" if self.graph.get(a_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a_ ) def A ( self : List[str] , a_ : Union[str, Any]=-2 , a_ : str=-1 ): """simple docstring""" if s == d: return [] __snake_case = [] __snake_case = [] if s == -2: __snake_case = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a_ ) != 0: __snake_case = stack[len(a_ ) - 1] else: __snake_case = ss # check if se have reached the starting point if len(a_ ) == 0: return visited def A ( self : str , a_ : List[str]=-1 ): """simple docstring""" if c == -1: __snake_case = floor(random() * 10_000 ) + 10 for i in range(a_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __snake_case = floor(random() * c ) + 1 if n != i: self.add_pair(a_ , a_ , 1 ) def A ( self : str , a_ : Any=-2 ): """simple docstring""" __snake_case = deque() __snake_case = [] if s == -2: __snake_case = list(self.graph )[0] d.append(a_ ) visited.append(a_ ) while d: __snake_case = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def A ( self : List[str] , a_ : Dict ): """simple docstring""" __snake_case = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def A ( self : Union[str, Any] , a_ : Tuple ): """simple docstring""" return len(self.graph[u] ) def A ( self : int , a_ : List[Any]=-2 ): """simple docstring""" __snake_case = [] __snake_case = [] if s == -2: __snake_case = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case = s __snake_case = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __snake_case = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(a_ ) != 0: __snake_case = stack[len(a_ ) - 1] else: __snake_case = ss # check if se have reached the starting point if len(a_ ) == 0: return sorted_nodes def A ( self : Optional[Any] ): """simple docstring""" __snake_case = [] __snake_case = [] __snake_case = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __snake_case = len(a_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(a_ ) != 0: __snake_case = stack[len(a_ ) - 1] else: __snake_case = False indirect_parents.append(a_ ) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(a_ ) == 0: return list(a_ ) def A ( self : Dict ): """simple docstring""" __snake_case = [] __snake_case = [] __snake_case = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __snake_case = len(a_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(a_ ) != 0: __snake_case = stack[len(a_ ) - 1] else: __snake_case = False indirect_parents.append(a_ ) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(a_ ) == 0: return False def A ( self : Optional[Any] , a_ : Optional[int]=-2 , a_ : int=-1 ): """simple docstring""" __snake_case = time() self.dfs(a_ , a_ ) __snake_case = time() return end - begin def A ( self : Any , a_ : str=-2 ): """simple docstring""" __snake_case = time() self.bfs(a_ ) __snake_case = time() return end - begin class SCREAMING_SNAKE_CASE__ : def __init__( self : Union[str, Any] ): """simple docstring""" __snake_case = {} def A ( self : Optional[Any] , a_ : List[str] , a_ : List[str] , a_ : List[Any]=1 ): """simple docstring""" if self.graph.get(a_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __snake_case = [[w, v]] # add the other way if self.graph.get(a_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __snake_case = [[w, u]] def A ( self : Union[str, Any] , a_ : Any , a_ : int ): """simple docstring""" if self.graph.get(a_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a_ ) # the other way round if self.graph.get(a_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(a_ ) def A ( self : List[str] , a_ : Union[str, Any]=-2 , a_ : Dict=-1 ): """simple docstring""" if s == d: return [] __snake_case = [] __snake_case = [] if s == -2: __snake_case = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a_ ) != 0: __snake_case = stack[len(a_ ) - 1] else: __snake_case = ss # check if se have reached the starting point if len(a_ ) == 0: return visited def A ( self : Any , a_ : int=-1 ): """simple docstring""" if c == -1: __snake_case = floor(random() * 10_000 ) + 10 for i in range(a_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __snake_case = floor(random() * c ) + 1 if n != i: self.add_pair(a_ , a_ , 1 ) def A ( self : Any , a_ : Tuple=-2 ): """simple docstring""" __snake_case = deque() __snake_case = [] if s == -2: __snake_case = list(self.graph )[0] d.append(a_ ) visited.append(a_ ) while d: __snake_case = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def A ( self : Union[str, Any] , a_ : List[str] ): """simple docstring""" return len(self.graph[u] ) def A ( self : int ): """simple docstring""" __snake_case = [] __snake_case = [] __snake_case = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __snake_case = len(a_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(a_ ) != 0: __snake_case = stack[len(a_ ) - 1] else: __snake_case = False indirect_parents.append(a_ ) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(a_ ) == 0: return list(a_ ) def A ( self : Tuple ): """simple docstring""" __snake_case = [] __snake_case = [] __snake_case = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __snake_case = len(a_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(a_ ) != 0: __snake_case = stack[len(a_ ) - 1] else: __snake_case = False indirect_parents.append(a_ ) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(a_ ) == 0: return False def A ( self : str ): """simple docstring""" return list(self.graph ) def A ( self : str , a_ : Any=-2 , a_ : Dict=-1 ): """simple docstring""" __snake_case = time() self.dfs(a_ , a_ ) __snake_case = time() return end - begin def A ( self : List[str] , a_ : Optional[int]=-2 ): """simple docstring""" __snake_case = time() self.bfs(a_ ) __snake_case = time() return end - begin
680
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' def __UpperCAmelCase ( ) -> Tuple: __snake_case = 0 for i in range(1 , 10_01 ): total += i**i return str(_UpperCAmelCase )[-10:] if __name__ == "__main__": print(solution())
680
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
1
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a : int = logging.get_logger(__name__) a : Optional[int] = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """dpt""" def __init__( self : List[str] , a_ : Tuple=768 , a_ : Optional[Any]=12 , a_ : Union[str, Any]=12 , a_ : Any=3_072 , a_ : Union[str, Any]="gelu" , a_ : str=0.0 , a_ : List[str]=0.0 , a_ : str=0.02 , a_ : Union[str, Any]=1e-12 , a_ : str=384 , a_ : Optional[int]=16 , a_ : List[str]=3 , a_ : Optional[Any]=False , a_ : int=True , a_ : List[Any]=[2, 5, 8, 11] , a_ : List[Any]="project" , a_ : Dict=[4, 2, 1, 0.5] , a_ : int=[96, 192, 384, 768] , a_ : str=256 , a_ : int=-1 , a_ : List[Any]=False , a_ : Union[str, Any]=True , a_ : str=0.4 , a_ : List[Any]=255 , a_ : str=0.1 , a_ : str=[1, 1_024, 24, 24] , a_ : Tuple=[0, 1] , a_ : str=None , **a_ : Optional[Any] , ): """simple docstring""" super().__init__(**a_ ) __snake_case = hidden_size __snake_case = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } __snake_case = BitConfig(**a_ ) elif isinstance(a_ , a_ ): logger.info("Initializing the config with a `BiT` backbone." ) __snake_case = BitConfig(**a_ ) elif isinstance(a_ , a_ ): __snake_case = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) __snake_case = backbone_featmap_shape __snake_case = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: __snake_case = None __snake_case = None __snake_case = [] __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias __snake_case = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) __snake_case = readout_type __snake_case = reassemble_factors __snake_case = neck_hidden_sizes __snake_case = fusion_hidden_size __snake_case = head_in_index __snake_case = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __snake_case = use_auxiliary_head __snake_case = auxiliary_loss_weight __snake_case = semantic_loss_ignore_index __snake_case = semantic_classifier_dropout def A ( self : List[Any] ): """simple docstring""" __snake_case = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __snake_case = self.backbone_config.to_dict() __snake_case = self.__class__.model_type return output
680
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: return " ".join( "".join(word[::-1] ) if len(_UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
680
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE = frozenset([] ) def A ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a_ , ) __snake_case = PNDMScheduler(skip_prk_steps=a_ ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) __snake_case = CLIPTextModel(a_ ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A ( self : Tuple , a_ : int , a_ : Optional[int]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(a_ ) ).convert("RGB" ).resize((64, 64) ) __snake_case = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(a_ ).startswith("mps" ): __snake_case = torch.manual_seed(a_ ) else: __snake_case = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A ( self : List[Any] ): """simple docstring""" __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = StableDiffusionInpaintPipeline(**a_ ) __snake_case = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_dummy_inputs(a_ ) __snake_case = sd_pipe(**a_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : List[Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Dict ): """simple docstring""" __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) __snake_case = "stabilityai/stable-diffusion-2-inpainting" __snake_case = StableDiffusionInpaintPipeline.from_pretrained(a_ , safety_checker=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , output_type="np" , ) __snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A ( self : Any ): """simple docstring""" __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) __snake_case = "stabilityai/stable-diffusion-2-inpainting" __snake_case = StableDiffusionInpaintPipeline.from_pretrained( a_ , torch_dtype=torch.floataa , safety_checker=a_ , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , output_type="np" , ) __snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A ( self : List[Any] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case = "stabilityai/stable-diffusion-2-inpainting" __snake_case = PNDMScheduler.from_pretrained(a_ , subfolder="scheduler" ) __snake_case = StableDiffusionInpaintPipeline.from_pretrained( a_ , safety_checker=a_ , scheduler=a_ , torch_dtype=torch.floataa , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __snake_case = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , num_inference_steps=2 , output_type="np" , ) __snake_case = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
680
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Optional[Any] ): """simple docstring""" __snake_case = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() __snake_case = dict(zip(a_ , range(len(a_ ) ) ) ) __snake_case = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } __snake_case = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16_000, "return_attention_mask": False, "do_normalize": True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __snake_case = os.path.join(self.tmpdirname , a_ ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) # load decoder from hub __snake_case = "hf-internal-testing/ngram-beam-search-decoder" def A ( self : Dict , **a_ : Optional[int] ): """simple docstring""" __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(a_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **a_ ) def A ( self : Any , **a_ : List[str] ): """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **a_ ) def A ( self : str , **a_ : Tuple ): """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **a_ ) def A ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , a_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , a_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , a_ ) def A ( self : Any ): """simple docstring""" __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def A ( self : Dict ): """simple docstring""" __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(a_ , "include" ): WavaVecaProcessorWithLM( tokenizer=a_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def A ( self : int ): """simple docstring""" __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) __snake_case = floats_list((3, 1_000) ) __snake_case = feature_extractor(a_ , return_tensors="np" ) __snake_case = processor(a_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) __snake_case = "This is a test string" __snake_case = processor(text=a_ ) __snake_case = tokenizer(a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A ( self : str , a_ : List[str]=(2, 10, 16) , a_ : str=77 ): """simple docstring""" np.random.seed(a_ ) return np.random.rand(*a_ ) def A ( self : Tuple ): """simple docstring""" __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(a_ ) __snake_case = decoder.decode_beams(a_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def A ( self : Optional[int] , a_ : Optional[int] ): """simple docstring""" __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(a_ ) else: with get_context(a_ ).Pool() as pool: __snake_case = processor.batch_decode(a_ , a_ ) __snake_case = list(a_ ) with get_context("fork" ).Pool() as p: __snake_case = decoder.decode_beams_batch(a_ , a_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(a_ , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(a_ , decoded_processor.logit_score ) self.assertListEqual(a_ , decoded_processor.lm_score ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -20.0 __snake_case = -4.0 __snake_case = processor.batch_decode( a_ , beam_width=a_ , beam_prune_logp=a_ , token_min_logp=a_ , ) __snake_case = decoded_processor_out.text __snake_case = list(a_ ) with get_context("fork" ).Pool() as pool: __snake_case = decoder.decode_beams_batch( a_ , a_ , beam_width=a_ , beam_prune_logp=a_ , token_min_logp=a_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(a_ , a_ ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , a_ ) self.assertTrue(np.array_equal(a_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , a_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(a_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , a_ , atol=1e-3 ) ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -20.0 __snake_case = True __snake_case = processor.batch_decode( a_ , alpha=a_ , beta=a_ , unk_score_offset=a_ , lm_score_boundary=a_ , ) __snake_case = decoded_processor_out.text __snake_case = list(a_ ) decoder.reset_params( alpha=a_ , beta=a_ , unk_score_offset=a_ , lm_score_boundary=a_ , ) with get_context("fork" ).Pool() as pool: __snake_case = decoder.decode_beams_batch( a_ , a_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(a_ , a_ ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , a_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , a_ ) def A ( self : Tuple ): """simple docstring""" __snake_case = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() __snake_case = os.listdir(a_ ) __snake_case = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(a_ , a_ ) def A ( self : Dict ): """simple docstring""" __snake_case = snapshot_download("hf-internal-testing/processor_with_lm" ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(a_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() __snake_case = os.listdir(a_ ) __snake_case = os.listdir(a_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(a_ , a_ ) def A ( self : Dict ): """simple docstring""" __snake_case = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __snake_case = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) __snake_case = floats_list((3, 1_000) ) __snake_case = processor_wavaveca(a_ , return_tensors="np" ) __snake_case = processor_auto(a_ , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(a_ ) __snake_case = processor_auto.batch_decode(a_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def A ( self : Any ): """simple docstring""" __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def A ( a_ : Any , a_ : str ): """simple docstring""" __snake_case = [d[key] for d in offsets] return retrieved_list def A ( self : List[Any] ): """simple docstring""" __snake_case = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(a_ , output_word_offsets=a_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(a_ , a_ ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def A ( self : int ): """simple docstring""" __snake_case = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(a_ , output_word_offsets=a_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(a_ , a_ ) ) self.assertListEqual( [" ".join(self.get_from_offsets(a_ , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def A ( self : Dict ): """simple docstring""" import torch __snake_case = load_dataset("common_voice" , "en" , split="train" , streaming=a_ ) __snake_case = ds.cast_column("audio" , datasets.Audio(sampling_rate=16_000 ) ) __snake_case = iter(a_ ) __snake_case = next(a_ ) __snake_case = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) __snake_case = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): __snake_case = model(a_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=a_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] __snake_case = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(a_ , "word" ) ) , a_ ) self.assertEqual(" ".join(self.get_from_offsets(a_ , "word" ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(a_ , "start_time" ) ) __snake_case = torch.tensor(self.get_from_offsets(a_ , "end_time" ) ) # fmt: off __snake_case = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __snake_case = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(a_ , a_ , atol=0.01 ) ) self.assertTrue(torch.allclose(a_ , a_ , atol=0.01 ) )
680
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
1
'''simple docstring''' import numpy as np class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] ): """simple docstring""" __snake_case = (0, 0) __snake_case = None __snake_case = 0 __snake_case = 0 __snake_case = 0 def __eq__( self : Tuple , a_ : List[str] ): """simple docstring""" return self.position == cell.position def A ( self : str ): """simple docstring""" print(self.position ) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , a_ : List[str]=(5, 5) ): """simple docstring""" __snake_case = np.zeros(a_ ) __snake_case = world_size[0] __snake_case = world_size[1] def A ( self : Tuple ): """simple docstring""" print(self.w ) def A ( self : Tuple , a_ : List[str] ): """simple docstring""" __snake_case = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __snake_case = cell.position[0] __snake_case = cell.position[1] __snake_case = [] for n in neughbour_cord: __snake_case = current_x + n[0] __snake_case = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __snake_case = Cell() __snake_case = (x, y) __snake_case = cell neighbours.append(a_ ) return neighbours def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ) -> Any: __snake_case = [] __snake_case = [] _open.append(_UpperCAmelCase ) while _open: __snake_case = np.argmin([n.f for n in _open] ) __snake_case = _open[min_f] _closed.append(_open.pop(_UpperCAmelCase ) ) if current == goal: break for n in world.get_neigbours(_UpperCAmelCase ): for c in _closed: if c == n: continue __snake_case = current.g + 1 __snake_case , __snake_case = n.position __snake_case , __snake_case = goal.position __snake_case = (ya - ya) ** 2 + (xa - xa) ** 2 __snake_case = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_UpperCAmelCase ) __snake_case = [] while current.parent is not None: path.append(current.position ) __snake_case = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : int = Gridworld() # Start position and goal a : Dict = Cell() a : List[Any] = (0, 0) a : Dict = Cell() a : Optional[Any] = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : int = astar(world, start, goal) # Just for visual reasons. for i in s: a : int = 1 print(world.w)
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Tuple ): """simple docstring""" __snake_case = tempfile.mkdtemp() __snake_case = SamImageProcessor() __snake_case = SamProcessor(a_ ) processor.save_pretrained(self.tmpdirname ) def A ( self : int , **a_ : Dict ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).image_processor def A ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : Dict ): """simple docstring""" __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : str ): """simple docstring""" __snake_case = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_image_processor(do_normalize=a_ , padding_value=1.0 ) __snake_case = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(a_ , return_tensors="np" ) __snake_case = processor(images=a_ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def A ( self : Dict ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = [torch.ones((1, 3, 5, 5) )] __snake_case = [[1_764, 2_646]] __snake_case = [[683, 1_024]] __snake_case = processor.post_process_masks(a_ , a_ , a_ ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __snake_case = processor.post_process_masks( a_ , torch.tensor(a_ ) , torch.tensor(a_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np __snake_case = [np.ones((1, 3, 5, 5) )] __snake_case = processor.post_process_masks(a_ , np.array(a_ ) , np.array(a_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __snake_case = [[1, 0], [0, 1]] with self.assertRaises(a_ ): __snake_case = processor.post_process_masks(a_ , np.array(a_ ) , np.array(a_ ) ) @require_vision @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : List[Any] ): """simple docstring""" __snake_case = tempfile.mkdtemp() __snake_case = SamImageProcessor() __snake_case = SamProcessor(a_ ) processor.save_pretrained(self.tmpdirname ) def A ( self : Optional[int] , **a_ : Union[str, Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).image_processor def A ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : int ): """simple docstring""" __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : List[str] ): """simple docstring""" __snake_case = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_image_processor(do_normalize=a_ , padding_value=1.0 ) __snake_case = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def A ( self : str ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(a_ , return_tensors="np" ) __snake_case = processor(images=a_ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def A ( self : str ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = [tf.ones((1, 3, 5, 5) )] __snake_case = [[1_764, 2_646]] __snake_case = [[683, 1_024]] __snake_case = processor.post_process_masks(a_ , a_ , a_ , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __snake_case = processor.post_process_masks( a_ , tf.convert_to_tensor(a_ ) , tf.convert_to_tensor(a_ ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np __snake_case = [np.ones((1, 3, 5, 5) )] __snake_case = processor.post_process_masks( a_ , np.array(a_ ) , np.array(a_ ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __snake_case = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __snake_case = processor.post_process_masks( a_ , np.array(a_ ) , np.array(a_ ) , return_tensors="tf" ) @require_vision @require_torchvision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = tempfile.mkdtemp() __snake_case = SamImageProcessor() __snake_case = SamProcessor(a_ ) processor.save_pretrained(self.tmpdirname ) def A ( self : int , **a_ : List[str] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).image_processor def A ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : Any ): """simple docstring""" __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def A ( self : List[Any] ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __snake_case = [tf.convert_to_tensor(a_ )] __snake_case = [torch.tensor(a_ )] __snake_case = [[1_764, 2_646]] __snake_case = [[683, 1_024]] __snake_case = processor.post_process_masks( a_ , a_ , a_ , return_tensors="tf" ) __snake_case = processor.post_process_masks( a_ , a_ , a_ , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(a_ , return_tensors="pt" )["pixel_values"].numpy() __snake_case = processor(images=a_ , return_tensors="pt" )["pixel_values"].numpy() __snake_case = image_processor(a_ , return_tensors="tf" )["pixel_values"].numpy() __snake_case = processor(images=a_ , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(a_ , a_ ) ) self.assertTrue(np.allclose(a_ , a_ ) ) self.assertTrue(np.allclose(a_ , a_ ) )
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
1
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Optional[int]=-1 ): """simple docstring""" __snake_case = label_idx def A ( self : str , a_ : str , a_ : Union[Split, str] ): """simple docstring""" if isinstance(a_ , a_ ): __snake_case = mode.value __snake_case = os.path.join(a_ , f'''{mode}.txt''' ) __snake_case = 1 __snake_case = [] with open(a_ , encoding="utf-8" ) as f: __snake_case = [] __snake_case = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=a_ , labels=a_ ) ) guid_index += 1 __snake_case = [] __snake_case = [] else: __snake_case = line.split(" " ) words.append(splits[0] ) if len(a_ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=a_ , labels=a_ ) ) return examples def A ( self : Union[str, Any] , a_ : TextIO , a_ : TextIO , a_ : List ): """simple docstring""" __snake_case = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(a_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __snake_case = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(a_ ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def A ( self : Union[str, Any] , a_ : str ): """simple docstring""" if path: with open(a_ , "r" ) as f: __snake_case = f.read().splitlines() if "O" not in labels: __snake_case = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[Any] ): """simple docstring""" super().__init__(label_idx=-2 ) def A ( self : List[Any] , a_ : str ): """simple docstring""" if path: with open(a_ , "r" ) as f: __snake_case = f.read().splitlines() if "O" not in labels: __snake_case = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : List[Any] , a_ : str , a_ : Union[Split, str] ): """simple docstring""" if isinstance(a_ , a_ ): __snake_case = mode.value __snake_case = os.path.join(a_ , f'''{mode}.txt''' ) __snake_case = 1 __snake_case = [] with open(a_ , encoding="utf-8" ) as f: for sentence in parse_incr(a_ ): __snake_case = [] __snake_case = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(a_ ) == len(a_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=a_ , labels=a_ ) ) guid_index += 1 return examples def A ( self : str , a_ : TextIO , a_ : TextIO , a_ : List ): """simple docstring""" __snake_case = 0 for sentence in parse_incr(a_ ): __snake_case = preds_list[example_id] __snake_case = "" for token in sentence: out += f'''{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ''' out += "\n" writer.write(a_ ) example_id += 1 def A ( self : Tuple , a_ : str ): """simple docstring""" if path: with open(a_ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
680
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
1
'''simple docstring''' from sklearn.metrics import recall_score import datasets a : List[Any] = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' a : Optional[Any] = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' a : Tuple = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def A ( self : List[str] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def A ( self : int , a_ : Any , a_ : List[Any] , a_ : str=None , a_ : Any=1 , a_ : Tuple="binary" , a_ : List[Any]=None , a_ : Dict="warn" , ): """simple docstring""" __snake_case = recall_score( a_ , a_ , labels=a_ , pos_label=a_ , average=a_ , sample_weight=a_ , zero_division=a_ , ) return {"recall": float(a_ ) if score.size == 1 else score}
680
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
1
'''simple docstring''' a : Optional[Any] = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
680
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[Any] , *a_ : Union[str, Any] , **a_ : Optional[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : str , *a_ : int , **a_ : str ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : str , *a_ : Optional[Any] , **a_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : List[str] , *a_ : int , **a_ : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[int] , *a_ : Optional[Any] , **a_ : Optional[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[int] , *a_ : List[str] , **a_ : Dict ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[int] , *a_ : List[str] , **a_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[Any] , *a_ : str , **a_ : Tuple ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Any , *a_ : Any , **a_ : str ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : str , *a_ : Any , **a_ : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[Any] , *a_ : Union[str, Any] , **a_ : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[int] , *a_ : int , **a_ : List[str] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : List[Any] , *a_ : Union[str, Any] , **a_ : List[str] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[Any] , *a_ : Any , **a_ : Tuple ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[Any] , *a_ : Optional[int] , **a_ : Tuple ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[int] , *a_ : List[Any] , **a_ : int ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[int] , *a_ : Any , **a_ : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : List[str] , *a_ : List[str] , **a_ : List[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : List[str] , *a_ : str , **a_ : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[Any] , *a_ : Tuple , **a_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : int , *a_ : Optional[int] , **a_ : List[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Tuple , *a_ : str , **a_ : List[str] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Dict , *a_ : Dict , **a_ : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Dict , *a_ : Tuple , **a_ : List[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : List[Any] , *a_ : str , **a_ : List[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[int] , *a_ : Optional[int] , **a_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Dict , *a_ : int , **a_ : Optional[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : int , *a_ : int , **a_ : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[Any] , *a_ : List[str] , **a_ : List[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Any , *a_ : str , **a_ : int ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""sentencepiece"""] def __init__( self : Optional[int] , *a_ : Optional[int] , **a_ : List[str] ): """simple docstring""" requires_backends(self , ["sentencepiece"] )
680
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a : Dict = logging.get_logger(__name__) a : Optional[int] = {'''vocab_file''': '''spiece.model'''} a : int = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } a : Dict = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) a : str = 0 a : Optional[Any] = 1 a : int = 2 a : int = 3 a : Optional[int] = 4 class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = """left""" def __init__( self : List[str] , a_ : Dict , a_ : Tuple=False , a_ : Optional[int]=True , a_ : Optional[Any]=False , a_ : int="<s>" , a_ : List[Any]="</s>" , a_ : List[str]="<unk>" , a_ : Any="<sep>" , a_ : Union[str, Any]="<pad>" , a_ : str="<cls>" , a_ : Dict="<mask>" , a_ : List[Any]=["<eop>", "<eod>"] , a_ : Optional[Dict[str, Any]] = None , **a_ : Optional[Any] , ): """simple docstring""" __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) __snake_case = 3 __snake_case = do_lower_case __snake_case = remove_space __snake_case = keep_accents __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def A ( self : Optional[int] ): """simple docstring""" return len(self.sp_model ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): """simple docstring""" __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : List[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : int , a_ : str ): """simple docstring""" if self.remove_space: __snake_case = " ".join(inputs.strip().split() ) else: __snake_case = inputs __snake_case = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __snake_case = unicodedata.normalize("NFKD" , a_ ) __snake_case = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: __snake_case = outputs.lower() return outputs def A ( self : Union[str, Any] , a_ : str ): """simple docstring""" __snake_case = self.preprocess_text(a_ ) __snake_case = self.sp_model.encode(a_ , out_type=a_ ) __snake_case = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __snake_case = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __snake_case = cur_pieces[1:] else: __snake_case = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def A ( self : Union[str, Any] , a_ : Any ): """simple docstring""" return self.sp_model.PieceToId(a_ ) def A ( self : int , a_ : List[Any] ): """simple docstring""" return self.sp_model.IdToPiece(a_ ) def A ( self : Optional[int] , a_ : List[str] ): """simple docstring""" __snake_case = "".join(a_ ).replace(a_ , " " ).strip() return out_string def A ( self : str , a_ : List[int] , a_ : bool = False , a_ : bool = None , a_ : bool = True , **a_ : Optional[Any] , ): """simple docstring""" __snake_case = kwargs.pop("use_source_tokenizer" , a_ ) __snake_case = self.convert_ids_to_tokens(a_ , skip_special_tokens=a_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __snake_case = [] __snake_case = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) __snake_case = [] sub_texts.append(a_ ) else: current_sub_text.append(a_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __snake_case = "".join(a_ ) __snake_case = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __snake_case = self.clean_up_tokenization(a_ ) return clean_text else: return text def A ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1, 1] return ([0] * len(a_ )) + [1, 1] def A ( self : int , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A ( self : List[str] , a_ : str , a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
680
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __SCREAMING_SNAKE_CASE = Features({"""audio""": Audio()} ) __SCREAMING_SNAKE_CASE = Features({"""transcription""": Value("""string""" )} ) __SCREAMING_SNAKE_CASE = "audio" __SCREAMING_SNAKE_CASE = "transcription" def A ( self : Union[str, Any] , a_ : Any ): """simple docstring""" if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , a_ ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) __snake_case = copy.deepcopy(self ) __snake_case = self.input_schema.copy() __snake_case = features[self.audio_column] __snake_case = input_schema return task_template @property def A ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = Rectangle(height=0.5 , width=0.5 ) __snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) __snake_case = Text("CPU" , font_size=24 ) __snake_case = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a_ ) __snake_case = [mem.copy() for i in range(1 )] __snake_case = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case = Text("GPU" , font_size=24 ) __snake_case = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) gpu.align_to(a_ , a_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(a_ ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case = Text("Model" , font_size=24 ) __snake_case = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) model.move_to([3, -1.0, 0] ) self.play( Create(a_ , run_time=1 ) , Create(a_ , run_time=1 ) , Create(a_ , run_time=1 ) , ) __snake_case = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) __snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __snake_case = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=2.5 ) , Write(a_ ) , Write(a_ ) ) self.add(a_ ) __snake_case = [] __snake_case = [] __snake_case = [] for i, rect in enumerate(a_ ): __snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.7 ) cpu_target.move_to(a_ ) cpu_target.generate_target() __snake_case = 0.46 / 4 __snake_case = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=a_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=a_ , buff=0.0 ) cpu_targs.append(a_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(a_ ) ) second_animations.append(MoveToTarget(a_ , run_time=1.5 ) ) self.play(*a_ ) self.play(*a_ ) self.wait()
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __UpperCAmelCase ( _UpperCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : np.ndarray ) -> XGBClassifier: __snake_case = XGBClassifier() classifier.fit(_UpperCAmelCase , _UpperCAmelCase ) return classifier def __UpperCAmelCase ( ) -> None: __snake_case = load_iris() __snake_case , __snake_case = data_handling(_UpperCAmelCase ) __snake_case , __snake_case , __snake_case , __snake_case = train_test_split( _UpperCAmelCase , _UpperCAmelCase , test_size=0.25 ) __snake_case = iris["target_names"] # Create an XGBoost Classifier from the training data __snake_case = xgboost(_UpperCAmelCase , _UpperCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , display_labels=_UpperCAmelCase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
680
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
1
'''simple docstring''' import re import string import numpy as np import datasets a : Any = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' a : Dict = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' a : List[Any] = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def A ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def A ( self : int , a_ : List[str] , a_ : int , a_ : Tuple=None , a_ : Union[str, Any]=False , a_ : Tuple=False , a_ : List[str]=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: __snake_case = np.array([re.sub(a_ , "" , a_ ) for x in predictions] ) __snake_case = np.array([re.sub(a_ , "" , a_ ) for x in references] ) else: __snake_case = np.asarray(a_ ) __snake_case = np.asarray(a_ ) if ignore_case: __snake_case = np.char.lower(a_ ) __snake_case = np.char.lower(a_ ) if ignore_punctuation: __snake_case = string.punctuation.maketrans("" , "" , string.punctuation ) __snake_case = np.char.translate(a_ , table=a_ ) __snake_case = np.char.translate(a_ , table=a_ ) if ignore_numbers: __snake_case = string.digits.maketrans("" , "" , string.digits ) __snake_case = np.char.translate(a_ , table=a_ ) __snake_case = np.char.translate(a_ , table=a_ ) __snake_case = predictions == references return {"exact_match": np.mean(a_ ) * 100}
680
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , a_ : Tuple , a_ : List[str]=13 , a_ : Any=7 , a_ : Union[str, Any]=True , a_ : Union[str, Any]=True , a_ : List[str]=True , a_ : List[Any]=True , a_ : Tuple=99 , a_ : Any=32 , a_ : Optional[int]=2 , a_ : Optional[Any]=4 , a_ : List[Any]=37 , a_ : Union[str, Any]="gelu" , a_ : Optional[Any]=0.1 , a_ : Tuple=0.1 , a_ : Tuple=512 , a_ : str=16 , a_ : str=2 , a_ : int=0.02 , a_ : Tuple=3 , a_ : Union[str, Any]=4 , a_ : Any=None , a_ : Union[str, Any]=0 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope __snake_case = projection_dim def A ( self : int ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) __snake_case = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Any , a_ : Any , a_ : int , a_ : int , a_ : str , a_ : Any , a_ : Optional[Any] , a_ : Dict ): """simple docstring""" __snake_case = TFDPRContextEncoder(config=a_ ) __snake_case = model(a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case = model(a_ , token_type_ids=a_ ) __snake_case = model(a_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def A ( self : str , a_ : Any , a_ : Any , a_ : Tuple , a_ : List[str] , a_ : Dict , a_ : int , a_ : int ): """simple docstring""" __snake_case = TFDPRQuestionEncoder(config=a_ ) __snake_case = model(a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case = model(a_ , token_type_ids=a_ ) __snake_case = model(a_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def A ( self : int , a_ : Tuple , a_ : List[str] , a_ : Optional[int] , a_ : Optional[int] , a_ : Optional[Any] , a_ : Optional[int] , a_ : str ): """simple docstring""" __snake_case = TFDPRReader(config=a_ ) __snake_case = model(a_ , attention_mask=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def A ( self : Any ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {"input_ids": input_ids} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : int ): """simple docstring""" __snake_case = TFDPRModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , hidden_size=37 ) def A ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : List[str] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*a_ ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*a_ ) @slow def A ( self : int ): """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = TFDPRContextEncoder.from_pretrained(a_ ) self.assertIsNotNone(a_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = TFDPRContextEncoder.from_pretrained(a_ ) self.assertIsNotNone(a_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = TFDPRQuestionEncoder.from_pretrained(a_ ) self.assertIsNotNone(a_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = TFDPRReader.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : List[Any] ): """simple docstring""" __snake_case = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) __snake_case = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] __snake_case = model(a_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __snake_case = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
680
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Tuple , a_ : int , a_ : str ): """simple docstring""" __snake_case = params __snake_case = np.array(a_ ) __snake_case = np.array([len(a_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : List[Any] , a_ : int ): """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : Tuple ): """simple docstring""" return len(self.lengths ) def A ( self : List[str] ): """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.params.max_model_input_size __snake_case = self.lengths > max_len logger.info(f'''Splitting {sum(a_ )} too long sequences.''' ) def divide_chunks(a_ : Tuple , a_ : Tuple ): return [l[i : i + n] for i in range(0 , len(a_ ) , a_ )] __snake_case = [] __snake_case = [] if self.params.mlm: __snake_case , __snake_case = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: __snake_case , __snake_case = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __snake_case = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __snake_case = np.insert(a_ , 0 , a_ ) if sub_s[-1] != sep_id: __snake_case = np.insert(a_ , len(a_ ) , a_ ) assert len(a_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(a_ ) new_tok_ids.extend(a_ ) new_lengths.extend([len(a_ ) for l in sub_seqs] ) __snake_case = np.array(a_ ) __snake_case = np.array(a_ ) def A ( self : Dict ): """simple docstring""" __snake_case = len(self ) __snake_case = self.lengths > 11 __snake_case = self.token_ids[indices] __snake_case = self.lengths[indices] __snake_case = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def A ( self : List[Any] ): """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: __snake_case = self.params.special_tok_ids["unk_token"] __snake_case = len(self ) __snake_case = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __snake_case = (unk_occs / self.lengths) < 0.5 __snake_case = self.token_ids[indices] __snake_case = self.lengths[indices] __snake_case = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def A ( self : int ): """simple docstring""" if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def A ( self : List[Any] , a_ : Optional[Any] ): """simple docstring""" __snake_case = [t[0] for t in batch] __snake_case = [t[1] for t in batch] assert len(a_ ) == len(a_ ) # Max for paddings __snake_case = max(a_ ) # Pad token ids if self.params.mlm: __snake_case = self.params.special_tok_ids["pad_token"] else: __snake_case = self.params.special_tok_ids["unk_token"] __snake_case = [list(t.astype(a_ ) ) + [pad_idx] * (max_seq_len_ - len(a_ )) for t in token_ids] assert len(tk_ ) == len(a_ ) assert all(len(a_ ) == max_seq_len_ for t in tk_ ) __snake_case = torch.tensor(tk_ ) # (bs, max_seq_len_) __snake_case = torch.tensor(a_ ) # (bs) return tk_t, lg_t
680
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
1
'''simple docstring''' import functools from typing import Any def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : list[str] ) -> bool: # Validation if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not all( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie __snake_case = {} __snake_case = "WORD_KEEPER" for word in words: __snake_case = trie for c in word: if c not in trie_node: __snake_case = {} __snake_case = trie_node[c] __snake_case = True __snake_case = len(_UpperCAmelCase ) # Dynamic programming method @functools.cache def is_breakable(_UpperCAmelCase : int ) -> bool: if index == len_string: return True __snake_case = trie for i in range(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = trie_node.get(string[i] , _UpperCAmelCase ) if trie_node is None: return False if trie_node.get(_UpperCAmelCase , _UpperCAmelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging a : List[str] = logging.get_logger(__name__) a : Optional[int] = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """bloom""" __SCREAMING_SNAKE_CASE = ["""past_key_values"""] __SCREAMING_SNAKE_CASE = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self : List[str] , a_ : Dict=250_880 , a_ : List[Any]=64 , a_ : int=2 , a_ : int=8 , a_ : Optional[Any]=1e-5 , a_ : Dict=0.02 , a_ : Union[str, Any]=True , a_ : Optional[int]=1 , a_ : int=2 , a_ : Dict=False , a_ : Tuple=0.0 , a_ : str=0.0 , a_ : int=1 , a_ : List[Any]=False , **a_ : Any , ): """simple docstring""" __snake_case = vocab_size # Backward compatibility with n_embed kwarg __snake_case = kwargs.pop("n_embed" , a_ ) __snake_case = hidden_size if n_embed is None else n_embed __snake_case = n_layer __snake_case = n_head __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = use_cache __snake_case = pretraining_tp __snake_case = apply_residual_connection_post_layernorm __snake_case = hidden_dropout __snake_case = attention_dropout __snake_case = bos_token_id __snake_case = eos_token_id __snake_case = slow_but_exact super().__init__(bos_token_id=a_ , eos_token_id=a_ , **a_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.12""" ) def __init__( self : Optional[Any] , a_ : PretrainedConfig , a_ : str = "default" , a_ : List[PatchingSpec] = None , a_ : bool = False , ): """simple docstring""" super().__init__(a_ , task=a_ , patching_specs=a_ , use_past=a_ ) if not getattr(self._config , "pad_token_id" , a_ ): # TODO: how to do that better? __snake_case = 0 @property def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(a_ , direction="inputs" , inverted_values_shape=a_ ) __snake_case = {0: "batch", 1: "past_sequence + sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return common_inputs @property def A ( self : Optional[Any] ): """simple docstring""" return self._config.n_layer @property def A ( self : Optional[Any] ): """simple docstring""" return self._config.n_head @property def A ( self : Optional[Any] ): """simple docstring""" return 1e-3 def A ( self : Union[str, Any] , a_ : "PreTrainedTokenizer" , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional["TensorType"] = None , ): """simple docstring""" __snake_case = super(a_ , self ).generate_dummy_inputs( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) # We need to order the input in the way they appears in the forward() __snake_case = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __snake_case , __snake_case = common_inputs["input_ids"].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case = self._config.hidden_size // self.num_attention_heads __snake_case = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __snake_case = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __snake_case = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(self.num_layers ) ] __snake_case = common_inputs["attention_mask"] if self.use_past: __snake_case = ordered_inputs["attention_mask"].dtype __snake_case = torch.cat( [ordered_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) return ordered_inputs @property def A ( self : Tuple ): """simple docstring""" return 13
680
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem a : Any = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 a : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: if "://" in dataset_path: __snake_case = dataset_path.split("://" )[1] return dataset_path def __UpperCAmelCase ( _UpperCAmelCase : fsspec.AbstractFileSystem ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def __UpperCAmelCase ( _UpperCAmelCase : fsspec.AbstractFileSystem , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: __snake_case = not is_remote_filesystem(_UpperCAmelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_UpperCAmelCase ) , fs._strip_protocol(_UpperCAmelCase ) ) else: fs.mv(_UpperCAmelCase , _UpperCAmelCase , recursive=_UpperCAmelCase ) def __UpperCAmelCase ( ) -> None: if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __snake_case = None __snake_case = None __snake_case = threading.Lock()
680
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , a_ : int , a_ : Any=13 , a_ : str=32 , a_ : str=3 , a_ : Dict=4 , a_ : Any=[10, 20, 30, 40] , a_ : Tuple=[2, 2, 3, 2] , a_ : List[str]=True , a_ : Any=True , a_ : str=37 , a_ : Union[str, Any]="gelu" , a_ : List[Any]=10 , a_ : Union[str, Any]=0.02 , a_ : Dict=["stage2", "stage3", "stage4"] , a_ : Optional[int]=3 , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = out_features __snake_case = num_labels __snake_case = scope __snake_case = num_stages def A ( self : Any ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : List[Any] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def A ( self : Any ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=a_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=a_ , loss_ignore_index=255 , num_labels=self.num_labels , ) def A ( self : Dict , a_ : str , a_ : str , a_ : Dict ): """simple docstring""" __snake_case = UperNetForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Dict ): """simple docstring""" __snake_case = UperNetModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Optional[int] ): """simple docstring""" return def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def A ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def A ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason="UperNet does not have a base model" ) def A ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="UperNet does not have a base model" ) def A ( self : Any ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def A ( self : int ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : List[Any] ): """simple docstring""" pass def A ( self : Any ): """simple docstring""" def check_hidden_states_output(a_ : Optional[Any] , a_ : int , a_ : int ): __snake_case = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(a_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a_ , a_ , a_ ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) __snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="UperNet does not have tied weights" ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = UperNetForSemanticSegmentation.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) __snake_case = Image.open(_UpperCAmelCase ).convert("RGB" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Optional[Any] ): """simple docstring""" __snake_case = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) __snake_case = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(a_ ) __snake_case = prepare_img() __snake_case = processor(images=a_ , return_tensors="pt" ).to(a_ ) with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1e-4 ) ) def A ( self : Any ): """simple docstring""" __snake_case = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) __snake_case = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(a_ ) __snake_case = prepare_img() __snake_case = processor(images=a_ , return_tensors="pt" ).to(a_ ) with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1e-4 ) )
680
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ) -> str: __snake_case = 0 if start < end: __snake_case = randint(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = a[end] __snake_case = a[pivot] __snake_case = temp __snake_case , __snake_case = _in_place_partition(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) count += _in_place_quick_sort(_UpperCAmelCase , _UpperCAmelCase , p - 1 ) count += _in_place_quick_sort(_UpperCAmelCase , p + 1 , _UpperCAmelCase ) return count def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> Any: __snake_case = 0 __snake_case = randint(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = a[end] __snake_case = a[pivot] __snake_case = temp __snake_case = start - 1 for index in range(_UpperCAmelCase , _UpperCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __snake_case = new_pivot_index + 1 __snake_case = a[new_pivot_index] __snake_case = a[index] __snake_case = temp __snake_case = a[new_pivot_index + 1] __snake_case = a[end] __snake_case = temp return new_pivot_index + 1, count a : Dict = TemporaryFile() a : List[Any] = 100 # 1000 elements are to be sorted a , a : Tuple = 0, 1 # mean and standard deviation a : Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a : Optional[Any] = np.load(outfile) a : Union[str, Any] = len(M) - 1 a : List[str] = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
680
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Any = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """informer""" __SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Optional[int] , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : str = "student_t" , a_ : str = "nll" , a_ : int = 1 , a_ : List[int] = None , a_ : Optional[Union[str, bool]] = "mean" , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : Optional[List[int]] = None , a_ : Optional[List[int]] = None , a_ : int = 64 , a_ : int = 32 , a_ : int = 32 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : bool = True , a_ : str = "gelu" , a_ : float = 0.05 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : int = 100 , a_ : float = 0.02 , a_ : str=True , a_ : str = "prob" , a_ : int = 5 , a_ : bool = True , **a_ : int , ): """simple docstring""" __snake_case = prediction_length __snake_case = context_length or prediction_length __snake_case = distribution_output __snake_case = loss __snake_case = input_size __snake_case = num_time_features __snake_case = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __snake_case = scaling __snake_case = num_dynamic_real_features __snake_case = num_static_real_features __snake_case = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __snake_case = cardinality else: __snake_case = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __snake_case = embedding_dimension else: __snake_case = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __snake_case = num_parallel_samples # Transformer architecture configuration __snake_case = input_size * len(self.lags_sequence ) + self._number_of_features __snake_case = d_model __snake_case = encoder_attention_heads __snake_case = decoder_attention_heads __snake_case = encoder_ffn_dim __snake_case = decoder_ffn_dim __snake_case = encoder_layers __snake_case = decoder_layers __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = activation_function __snake_case = init_std __snake_case = use_cache # Informer __snake_case = attention_type __snake_case = sampling_factor __snake_case = distil super().__init__(is_encoder_decoder=a_ , **a_ ) @property def A ( self : Union[str, Any] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
680
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
1
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : Optional[Any] = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """align_text_model""" def __init__( self : Union[str, Any] , a_ : str=30_522 , a_ : int=768 , a_ : Dict=12 , a_ : Dict=12 , a_ : Tuple=3_072 , a_ : List[Any]="gelu" , a_ : Tuple=0.1 , a_ : Dict=0.1 , a_ : Optional[Any]=512 , a_ : List[Any]=2 , a_ : Dict=0.02 , a_ : int=1e-12 , a_ : str=0 , a_ : Tuple="absolute" , a_ : int=True , **a_ : str , ): """simple docstring""" super().__init__(**a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = pad_token_id @classmethod def A ( cls : Optional[Any] , a_ : Union[str, os.PathLike] , **a_ : List[Any] ): """simple docstring""" cls._set_token_in_kwargs(a_ ) __snake_case , __snake_case = cls.get_config_dict(a_ , **a_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": __snake_case = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a_ , **a_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """align_vision_model""" def __init__( self : Union[str, Any] , a_ : int = 3 , a_ : int = 600 , a_ : float = 2.0 , a_ : float = 3.1 , a_ : int = 8 , a_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , a_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , a_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , a_ : List[int] = [] , a_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , a_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , a_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , a_ : float = 0.25 , a_ : str = "swish" , a_ : int = 2_560 , a_ : str = "mean" , a_ : float = 0.02 , a_ : float = 0.001 , a_ : float = 0.99 , a_ : float = 0.2 , **a_ : int , ): """simple docstring""" super().__init__(**a_ ) __snake_case = num_channels __snake_case = image_size __snake_case = width_coefficient __snake_case = depth_coefficient __snake_case = depth_divisor __snake_case = kernel_sizes __snake_case = in_channels __snake_case = out_channels __snake_case = depthwise_padding __snake_case = strides __snake_case = num_block_repeats __snake_case = expand_ratios __snake_case = squeeze_expansion_ratio __snake_case = hidden_act __snake_case = hidden_dim __snake_case = pooling_type __snake_case = initializer_range __snake_case = batch_norm_eps __snake_case = batch_norm_momentum __snake_case = drop_connect_rate __snake_case = sum(a_ ) * 4 @classmethod def A ( cls : Any , a_ : Union[str, os.PathLike] , **a_ : Any ): """simple docstring""" cls._set_token_in_kwargs(a_ ) __snake_case , __snake_case = cls.get_config_dict(a_ , **a_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": __snake_case = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a_ , **a_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """align""" __SCREAMING_SNAKE_CASE = True def __init__( self : int , a_ : Union[str, Any]=None , a_ : Optional[Any]=None , a_ : int=640 , a_ : List[str]=1.0 , a_ : str=0.02 , **a_ : Optional[Any] , ): """simple docstring""" super().__init__(**a_ ) if text_config is None: __snake_case = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: __snake_case = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) __snake_case = AlignTextConfig(**a_ ) __snake_case = AlignVisionConfig(**a_ ) __snake_case = projection_dim __snake_case = temperature_init_value __snake_case = initializer_range @classmethod def A ( cls : Optional[Any] , a_ : AlignTextConfig , a_ : AlignVisionConfig , **a_ : Tuple ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a_ ) def A ( self : Any ): """simple docstring""" __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.text_config.to_dict() __snake_case = self.vision_config.to_dict() __snake_case = self.__class__.model_type return output
680
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
1
'''simple docstring''' import re def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: if len(re.findall("[ATCG]" , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a : Tuple = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
1
'''simple docstring''' import torch from diffusers import DiffusionPipeline class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Optional[Any] , a_ : str , a_ : Optional[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=a_ , scheduler=a_ ) def __call__( self : Optional[Any] ): """simple docstring""" __snake_case = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) __snake_case = 1 __snake_case = self.unet(a_ , a_ ).sample __snake_case = self.scheduler.step(a_ , a_ , a_ ).prev_sample __snake_case = scheduler_output - scheduler_output + torch.ones_like(a_ ) return result
680
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : List[Any] = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """roformer""" def __init__( self : Tuple , a_ : int=50_000 , a_ : Optional[int]=None , a_ : Tuple=768 , a_ : Optional[Any]=12 , a_ : int=12 , a_ : Optional[int]=3_072 , a_ : Union[str, Any]="gelu" , a_ : str=0.1 , a_ : Union[str, Any]=0.1 , a_ : str=1_536 , a_ : Union[str, Any]=2 , a_ : Tuple=0.02 , a_ : str=1e-12 , a_ : int=0 , a_ : Optional[Any]=False , a_ : Optional[Any]=True , **a_ : Any , ): """simple docstring""" super().__init__(pad_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size if embedding_size is None else embedding_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = rotary_value __snake_case = use_cache class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Tuple ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
680
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() a : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = state_dict.pop(_UpperCAmelCase ) __snake_case = val def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: __snake_case = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __snake_case = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) __snake_case = value else: __snake_case = value return new_state_dict def __UpperCAmelCase ( _UpperCAmelCase : str ) -> List[Any]: __snake_case = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __snake_case = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __snake_case = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[:2_56, :] __snake_case = in_proj_bias[:2_56] __snake_case = in_proj_weight[2_56:5_12, :] __snake_case = in_proj_bias[2_56:5_12] __snake_case = in_proj_weight[-2_56:, :] __snake_case = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __snake_case = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __snake_case = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[:2_56, :] __snake_case = in_proj_bias[:2_56] __snake_case = in_proj_weight[2_56:5_12, :] __snake_case = in_proj_bias[2_56:5_12] __snake_case = in_proj_weight[-2_56:, :] __snake_case = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention __snake_case = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) __snake_case = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict __snake_case = in_proj_weight_cross_attn[:2_56, :] __snake_case = in_proj_bias_cross_attn[:2_56] __snake_case = in_proj_weight_cross_attn[2_56:5_12, :] __snake_case = in_proj_bias_cross_attn[2_56:5_12] __snake_case = in_proj_weight_cross_attn[-2_56:, :] __snake_case = in_proj_bias_cross_attn[-2_56:] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __snake_case , __snake_case = image.size __snake_case = max(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = 8_00 if "detection" in checkpoint_url else 10_00 __snake_case = target_max_size / current_max_size __snake_case = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Tuple: __snake_case = F.to_tensor(_UpperCAmelCase ) __snake_case = F.normalize(_UpperCAmelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Any: logger.info("Converting model..." ) # load original state dict __snake_case = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = rename_backbone_keys(_UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __snake_case = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __snake_case = state_dict.pop(_UpperCAmelCase ) __snake_case = val # create HuggingFace model and load state dict __snake_case = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __snake_case = 15 __snake_case = 2 __snake_case = {0: "table", 1: "table rotated"} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} else: __snake_case = 1_25 __snake_case = 6 __snake_case = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = DetrImageProcessor( format="coco_detection" , max_size=8_00 if "detection" in checkpoint_url else 10_00 ) __snake_case = TableTransformerForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # verify our conversion __snake_case = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" __snake_case = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=_UpperCAmelCase ) __snake_case = Image.open(_UpperCAmelCase ).convert("RGB" ) __snake_case = normalize(resize(_UpperCAmelCase , _UpperCAmelCase ) ).unsqueeze(0 ) __snake_case = model(_UpperCAmelCase ) if "detection" in checkpoint_url: __snake_case = (1, 15, 3) __snake_case = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) __snake_case = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: __snake_case = (1, 1_25, 7) __snake_case = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) __snake_case = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) __snake_case = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(_UpperCAmelCase ) image_processor.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a : List[str] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
680
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
1
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a : int = logging.get_logger(__name__) a : List[str] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } a : List[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Optional[int]: for attribute in key.split("." ): __snake_case = getattr(_UpperCAmelCase , _UpperCAmelCase ) if weight_type is not None: __snake_case = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape else: __snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case = value elif weight_type == "weight_g": __snake_case = value elif weight_type == "weight_v": __snake_case = value elif weight_type == "bias": __snake_case = value else: __snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> List[str]: __snake_case = [] __snake_case = fairseq_model.state_dict() __snake_case = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __snake_case = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) __snake_case = True else: for key, mapped_key in MAPPING.items(): __snake_case = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue __snake_case = True if "*" in mapped_key: __snake_case = name.split(_UpperCAmelCase )[0].split("." )[-2] __snake_case = mapped_key.replace("*" , _UpperCAmelCase ) if "weight_g" in name: __snake_case = "weight_g" elif "weight_v" in name: __snake_case = "weight_v" elif "bias" in name: __snake_case = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case = "weight" else: __snake_case = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) continue if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __snake_case = full_name.split("conv_layers." )[-1] __snake_case = name.split("." ) __snake_case = int(items[0] ) __snake_case = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) __snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_UpperCAmelCase ) @torch.no_grad() def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=True ) -> str: if config_path is not None: __snake_case = UniSpeechSatConfig.from_pretrained(_UpperCAmelCase ) else: __snake_case = UniSpeechSatConfig() __snake_case = "" if is_finetuned: __snake_case = UniSpeechSatForCTC(_UpperCAmelCase ) else: __snake_case = UniSpeechSatForPreTraining(_UpperCAmelCase ) __snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) __snake_case = model[0].eval() recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase ) hf_wavavec.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a : Tuple = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
680
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """encodec""" def __init__( self : Any , a_ : Optional[int]=[1.5, 3.0, 6.0, 12.0, 24.0] , a_ : Any=24_000 , a_ : List[Any]=1 , a_ : Optional[Any]=False , a_ : Union[str, Any]=None , a_ : Tuple=None , a_ : List[Any]=128 , a_ : Any=32 , a_ : int=1 , a_ : Union[str, Any]=[8, 5, 4, 2] , a_ : Optional[Any]="weight_norm" , a_ : Optional[Any]=7 , a_ : Any=7 , a_ : str=3 , a_ : Optional[Any]=2 , a_ : Tuple=True , a_ : Union[str, Any]="reflect" , a_ : List[str]=2 , a_ : List[Any]=2 , a_ : str=1.0 , a_ : Optional[Any]=1_024 , a_ : str=None , a_ : List[str]=True , **a_ : str , ): """simple docstring""" __snake_case = target_bandwidths __snake_case = sampling_rate __snake_case = audio_channels __snake_case = normalize __snake_case = chunk_length_s __snake_case = overlap __snake_case = hidden_size __snake_case = num_filters __snake_case = num_residual_layers __snake_case = upsampling_ratios __snake_case = norm_type __snake_case = kernel_size __snake_case = last_kernel_size __snake_case = residual_kernel_size __snake_case = dilation_growth_rate __snake_case = use_causal_conv __snake_case = pad_mode __snake_case = compress __snake_case = num_lstm_layers __snake_case = trim_right_ratio __snake_case = codebook_size __snake_case = codebook_dim if codebook_dim is not None else hidden_size __snake_case = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**a_ ) @property def A ( self : int ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : str ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A ( self : str ): """simple docstring""" __snake_case = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A ( self : Optional[Any] ): """simple docstring""" return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a : int = logging.get_logger(__name__) a : List[str] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Optional[Any] = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } a : Union[str, Any] = {'''facebook/blenderbot-3B''': 128} class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] __SCREAMING_SNAKE_CASE = BlenderbotTokenizer def __init__( self : Optional[Any] , a_ : Optional[Any]=None , a_ : Optional[int]=None , a_ : Tuple=None , a_ : Optional[int]="replace" , a_ : int="<s>" , a_ : int="</s>" , a_ : Union[str, Any]="</s>" , a_ : List[Any]="<s>" , a_ : List[Any]="<unk>" , a_ : Tuple="<pad>" , a_ : Union[str, Any]="<mask>" , a_ : Dict=False , a_ : Union[str, Any]=True , **a_ : Any , ): """simple docstring""" super().__init__( a_ , a_ , tokenizer_file=a_ , errors=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , trim_offsets=a_ , **a_ , ) __snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a_ ) != add_prefix_space: __snake_case = getattr(a_ , pre_tok_state.pop("type" ) ) __snake_case = add_prefix_space __snake_case = pre_tok_class(**a_ ) __snake_case = add_prefix_space __snake_case = "post_processor" __snake_case = getattr(self.backend_tokenizer , a_ , a_ ) if tokenizer_component_instance: __snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case = tuple(state["sep"] ) if "cls" in state: __snake_case = tuple(state["cls"] ) __snake_case = False if state.get("add_prefix_space" , a_ ) != add_prefix_space: __snake_case = add_prefix_space __snake_case = True if state.get("trim_offsets" , a_ ) != trim_offsets: __snake_case = trim_offsets __snake_case = True if changes_to_apply: __snake_case = getattr(a_ , state.pop("type" ) ) __snake_case = component_class(**a_ ) setattr(self.backend_tokenizer , a_ , a_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def A ( self : Dict ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A ( self : List[Any] , a_ : int ): """simple docstring""" __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else value __snake_case = value def A ( self : str , *a_ : int , **a_ : List[str] ): """simple docstring""" __snake_case = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def A ( self : Any , *a_ : Tuple , **a_ : List[str] ): """simple docstring""" __snake_case = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def A ( self : str , a_ : str , a_ : Optional[str] = None ): """simple docstring""" __snake_case = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def A ( self : Tuple , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def A ( self : Optional[Any] , a_ : "Conversation" ): """simple docstring""" __snake_case = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(a_ ) __snake_case = " ".join(a_ ) __snake_case = self.encode(a_ ) if len(a_ ) > self.model_max_length: __snake_case = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a : Any = logging.getLogger(__name__) def __UpperCAmelCase ( ) -> List[Any]: __snake_case = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=_UpperCAmelCase , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=_UpperCAmelCase , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=_UpperCAmelCase , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=_UpperCAmelCase , default="data/dump" , help="The dump file prefix." ) __snake_case = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __snake_case = BertTokenizer.from_pretrained(args.tokenizer_name ) __snake_case = tokenizer.special_tokens_map["cls_token"] # `[CLS]` __snake_case = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": __snake_case = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __snake_case = tokenizer.special_tokens_map["cls_token"] # `<s>` __snake_case = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": __snake_case = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __snake_case = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` __snake_case = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , "r" , encoding="utf8" ) as fp: __snake_case = fp.readlines() logger.info("Start encoding" ) logger.info(F'''{len(_UpperCAmelCase )} examples to process.''' ) __snake_case = [] __snake_case = 0 __snake_case = 1_00_00 __snake_case = time.time() for text in data: __snake_case = F'''{bos} {text.strip()} {sep}''' __snake_case = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) rslt.append(_UpperCAmelCase ) iter += 1 if iter % interval == 0: __snake_case = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __snake_case = time.time() logger.info("Finished binarization" ) logger.info(F'''{len(_UpperCAmelCase )} examples processed.''' ) __snake_case = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' __snake_case = tokenizer.vocab_size if vocab_size < (1 << 16): __snake_case = [np.uintaa(_UpperCAmelCase ) for d in rslt] else: __snake_case = [np.intaa(_UpperCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(_UpperCAmelCase , "wb" ) as handle: pickle.dump(rslt_ , _UpperCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
680
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
1
'''simple docstring''' from functools import lru_cache @lru_cache def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Optional[int] = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sew-d""" def __init__( self : Dict , a_ : List[str]=32 , a_ : int=768 , a_ : List[str]=12 , a_ : List[str]=12 , a_ : List[Any]=3_072 , a_ : Tuple=2 , a_ : int=512 , a_ : Dict=256 , a_ : List[str]=True , a_ : Optional[int]=True , a_ : Any=("p2c", "c2p") , a_ : int="layer_norm" , a_ : Optional[int]="gelu_python" , a_ : Dict=0.1 , a_ : int=0.1 , a_ : int=0.1 , a_ : Optional[Any]=0.0 , a_ : str=0.1 , a_ : Dict=0.02 , a_ : Dict=1e-7 , a_ : List[str]=1e-5 , a_ : Optional[Any]="group" , a_ : Any="gelu" , a_ : int=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , a_ : List[str]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , a_ : str=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , a_ : str=False , a_ : int=128 , a_ : Union[str, Any]=16 , a_ : Optional[int]=True , a_ : Union[str, Any]=0.05 , a_ : str=10 , a_ : Any=2 , a_ : Dict=0.0 , a_ : Tuple=10 , a_ : Any=0 , a_ : Optional[int]="mean" , a_ : str=False , a_ : Dict=False , a_ : Optional[Any]=256 , a_ : Optional[int]=0 , a_ : Dict=1 , a_ : Optional[Any]=2 , **a_ : Union[str, Any] , ): """simple docstring""" super().__init__(**a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ ) __snake_case = hidden_size __snake_case = feat_extract_norm __snake_case = feat_extract_activation __snake_case = list(a_ ) __snake_case = list(a_ ) __snake_case = list(a_ ) __snake_case = conv_bias __snake_case = num_conv_pos_embeddings __snake_case = num_conv_pos_embedding_groups __snake_case = len(self.conv_dim ) __snake_case = num_hidden_layers __snake_case = intermediate_size __snake_case = squeeze_factor __snake_case = max_position_embeddings __snake_case = position_buckets __snake_case = share_att_key __snake_case = relative_attention __snake_case = norm_rel_ebd __snake_case = list(a_ ) __snake_case = hidden_act __snake_case = num_attention_heads __snake_case = hidden_dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = feat_proj_dropout __snake_case = final_dropout __snake_case = layer_norm_eps __snake_case = feature_layer_norm_eps __snake_case = initializer_range __snake_case = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case = apply_spec_augment __snake_case = mask_time_prob __snake_case = mask_time_length __snake_case = mask_time_min_masks __snake_case = mask_feature_prob __snake_case = mask_feature_length __snake_case = mask_feature_min_masks # ctc loss __snake_case = ctc_loss_reduction __snake_case = ctc_zero_infinity # sequence classification __snake_case = use_weighted_layer_sum __snake_case = classifier_proj_size @property def A ( self : str ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
680
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : int = logging.get_logger(__name__) a : Tuple = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """swinv2""" __SCREAMING_SNAKE_CASE = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , a_ : Optional[int]=224 , a_ : Dict=4 , a_ : List[str]=3 , a_ : Optional[Any]=96 , a_ : List[str]=[2, 2, 6, 2] , a_ : Tuple=[3, 6, 12, 24] , a_ : str=7 , a_ : Optional[Any]=4.0 , a_ : Dict=True , a_ : Any=0.0 , a_ : Optional[Any]=0.0 , a_ : str=0.1 , a_ : List[Any]="gelu" , a_ : str=False , a_ : List[Any]=0.02 , a_ : Optional[Any]=1e-5 , a_ : Optional[Any]=32 , **a_ : Union[str, Any] , ): """simple docstring""" super().__init__(**a_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = embed_dim __snake_case = depths __snake_case = len(a_ ) __snake_case = num_heads __snake_case = window_size __snake_case = mlp_ratio __snake_case = qkv_bias __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_absolute_embeddings __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case = int(embed_dim * 2 ** (len(a_ ) - 1) ) __snake_case = (0, 0, 0, 0)
680
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a : Optional[int] = 16 a : Optional[Any] = 32 def __UpperCAmelCase ( _UpperCAmelCase : Accelerator , _UpperCAmelCase : int = 16 , _UpperCAmelCase : str = "bert-base-cased" ) -> Optional[int]: __snake_case = AutoTokenizer.from_pretrained(_UpperCAmelCase ) __snake_case = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase : Any ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __snake_case = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCAmelCase , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(_UpperCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) __snake_case = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ) -> int: # Initialize accelerator __snake_case = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config["lr"] __snake_case = int(config["num_epochs"] ) __snake_case = int(config["seed"] ) __snake_case = int(config["batch_size"] ) __snake_case = args.model_name_or_path set_seed(_UpperCAmelCase ) __snake_case , __snake_case = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained(_UpperCAmelCase , return_dict=_UpperCAmelCase ) # Instantiate optimizer __snake_case = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __snake_case = optimizer_cls(params=model.parameters() , lr=_UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: __snake_case = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: __snake_case = 1 __snake_case = (len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __snake_case = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=0 , num_training_steps=_UpperCAmelCase , ) else: __snake_case = DummyScheduler(_UpperCAmelCase , total_num_steps=_UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over __snake_case = 0 # We also need to keep track of the stating epoch so files are named properly __snake_case = 0 # Now we train the model __snake_case = evaluate.load("glue" , "mrpc" ) __snake_case = 0 __snake_case = {} for epoch in range(_UpperCAmelCase , _UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): __snake_case = model(**_UpperCAmelCase ) __snake_case = outputs.loss __snake_case = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __snake_case = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case = model(**_UpperCAmelCase ) __snake_case = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __snake_case , __snake_case = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_UpperCAmelCase ) - 1: __snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen] __snake_case = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) __snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _UpperCAmelCase ) __snake_case = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: __snake_case = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( ) -> str: __snake_case = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=_UpperCAmelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_UpperCAmelCase , ) parser.add_argument( "--output_dir" , type=_UpperCAmelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=_UpperCAmelCase , default=3 , help="Number of train epochs." , ) __snake_case = parser.parse_args() __snake_case = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> Union[str, Any]: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = np.full((len(_UpperCAmelCase ), sequence_length, 2) , _UpperCAmelCase ) else: __snake_case = np.full((len(_UpperCAmelCase ), sequence_length) , _UpperCAmelCase ) for i, tensor in enumerate(_UpperCAmelCase ): if padding_side == "right": if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = tensor[:sequence_length] else: __snake_case = tensor[:sequence_length] else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = tensor[:sequence_length] else: __snake_case = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( _UpperCAmelCase : int ) -> Union[str, Any]: __snake_case = ord(_UpperCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True __snake_case = unicodedata.category(_UpperCAmelCase ) if cat.startswith("P" ): return True return False @dataclass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = -100 __SCREAMING_SNAKE_CASE = "pt" def A ( self : List[Any] , a_ : str ): """simple docstring""" import torch __snake_case = "label" if "label" in features[0].keys() else "labels" __snake_case = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __snake_case = self.tokenizer.pad( a_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch __snake_case = torch.tensor(batch["entity_ids"] ).shape[1] __snake_case = self.tokenizer.padding_side if padding_side == "right": __snake_case = [ list(a_ ) + [self.label_pad_token_id] * (sequence_length - len(a_ )) for label in labels ] else: __snake_case = [ [self.label_pad_token_id] * (sequence_length - len(a_ )) + list(a_ ) for label in labels ] __snake_case = [feature["ner_tags"] for feature in features] __snake_case = padding_tensor(a_ , -1 , a_ , a_ ) __snake_case = [feature["original_entity_spans"] for feature in features] __snake_case = padding_tensor(a_ , (-1, -1) , a_ , a_ ) __snake_case = {k: torch.tensor(a_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
680
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') a : Union[str, Any] = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Train language if it is different from the evaluation language."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __SCREAMING_SNAKE_CASE = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , _UpperCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) datasets.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __snake_case = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __snake_case = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = train_dataset.features["label"].names if training_args.do_eval: __snake_case = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = eval_dataset.features["label"].names if training_args.do_predict: __snake_case = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = predict_dataset.features["label"].names # Labels __snake_case = len(_UpperCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , idalabel={str(_UpperCAmelCase ): label for i, label in enumerate(_UpperCAmelCase )} , labelaid={label: i for i, label in enumerate(_UpperCAmelCase )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __snake_case = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __snake_case = False def preprocess_function(_UpperCAmelCase : Any ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=_UpperCAmelCase , max_length=data_args.max_seq_length , truncation=_UpperCAmelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: __snake_case = min(len(_UpperCAmelCase ) , data_args.max_train_samples ) __snake_case = train_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): __snake_case = train_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(_UpperCAmelCase ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: __snake_case = min(len(_UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case = eval_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): __snake_case = eval_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __snake_case = min(len(_UpperCAmelCase ) , data_args.max_predict_samples ) __snake_case = predict_dataset.select(range(_UpperCAmelCase ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): __snake_case = predict_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function __snake_case = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCAmelCase : EvalPrediction ): __snake_case = p.predictions[0] if isinstance(p.predictions , _UpperCAmelCase ) else p.predictions __snake_case = np.argmax(_UpperCAmelCase , axis=1 ) return metric.compute(predictions=_UpperCAmelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __snake_case = default_data_collator elif training_args.fpaa: __snake_case = DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) else: __snake_case = None # Initialize our Trainer __snake_case = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: __snake_case = None if training_args.resume_from_checkpoint is not None: __snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case = last_checkpoint __snake_case = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) __snake_case = train_result.metrics __snake_case = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCAmelCase ) ) __snake_case = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , _UpperCAmelCase ) trainer.save_metrics("train" , _UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) __snake_case = trainer.evaluate(eval_dataset=_UpperCAmelCase ) __snake_case = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCAmelCase ) __snake_case = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics("eval" , _UpperCAmelCase ) trainer.save_metrics("eval" , _UpperCAmelCase ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) __snake_case , __snake_case , __snake_case = trainer.predict(_UpperCAmelCase , metric_key_prefix="predict" ) __snake_case = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_UpperCAmelCase ) ) __snake_case = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics("predict" , _UpperCAmelCase ) trainer.save_metrics("predict" , _UpperCAmelCase ) __snake_case = np.argmax(_UpperCAmelCase , axis=1 ) __snake_case = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(_UpperCAmelCase ): __snake_case = label_list[item] writer.write(F'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
680
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
1
'''simple docstring''' import math import sys def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: __snake_case = "" try: with open(_UpperCAmelCase , "rb" ) as binary_file: __snake_case = binary_file.read() for dat in data: __snake_case = F'''{dat:08b}''' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: __snake_case = {"0": "0", "1": "1"} __snake_case , __snake_case = "", "" __snake_case = len(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case = lexicon[curr_string] result += last_match_id __snake_case = last_match_id + "0" if math.loga(_UpperCAmelCase ).is_integer(): __snake_case = {} for curr_key in list(_UpperCAmelCase ): __snake_case = lexicon.pop(_UpperCAmelCase ) __snake_case = new_lex __snake_case = last_match_id + "1" index += 1 __snake_case = "" return result def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None: __snake_case = 8 try: with open(_UpperCAmelCase , "wb" ) as opened_file: __snake_case = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCAmelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: __snake_case = 0 for letter in data_bits: if letter == "1": break counter += 1 __snake_case = data_bits[counter:] __snake_case = data_bits[counter + 1 :] return data_bits def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None: __snake_case = read_file_binary(_UpperCAmelCase ) __snake_case = remove_prefix(_UpperCAmelCase ) __snake_case = decompress_data(_UpperCAmelCase ) write_file_binary(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
680
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : List[Any] = logging.get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> List[str]: __snake_case = b.T __snake_case = np.sum(np.square(_UpperCAmelCase ) , axis=1 ) __snake_case = np.sum(np.square(_UpperCAmelCase ) , axis=0 ) __snake_case = np.matmul(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = aa[:, None] - 2 * ab + ba[None, :] return d def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: __snake_case = x.reshape(-1 , 3 ) __snake_case = squared_euclidean_distance(_UpperCAmelCase , _UpperCAmelCase ) return np.argmin(_UpperCAmelCase , axis=1 ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Union[str, Any] , a_ : Optional[Union[List[List[int]], np.ndarray]] = None , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : bool = True , a_ : bool = True , **a_ : Dict , ): """simple docstring""" super().__init__(**a_ ) __snake_case = size if size is not None else {"height": 256, "width": 256} __snake_case = get_size_dict(a_ ) __snake_case = np.array(a_ ) if clusters is not None else None __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_normalize __snake_case = do_color_quantize def A ( self : List[Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : int , ): """simple docstring""" __snake_case = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( a_ , size=(size["height"], size["width"]) , resample=a_ , data_format=a_ , **a_ ) def A ( self : int , a_ : np.ndarray , a_ : Optional[Union[str, ChannelDimension]] = None , ): """simple docstring""" __snake_case = rescale(image=a_ , scale=1 / 127.5 , data_format=a_ ) __snake_case = image - 1 return image def A ( self : Optional[Any] , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : Optional[bool] = None , a_ : Optional[Union[List[List[int]], np.ndarray]] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **a_ : List[str] , ): """simple docstring""" __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = size if size is not None else self.size __snake_case = get_size_dict(a_ ) __snake_case = resample if resample is not None else self.resample __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __snake_case = clusters if clusters is not None else self.clusters __snake_case = np.array(a_ ) __snake_case = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(a_ ) for image in images] if do_resize: __snake_case = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=a_ ) for image in images] if do_color_quantize: __snake_case = [to_channel_dimension_format(a_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __snake_case = np.array(a_ ) __snake_case = color_quantize(a_ , a_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __snake_case = images.shape[0] __snake_case = images.reshape(a_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __snake_case = list(a_ ) else: __snake_case = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case = {"input_ids": images} return BatchFeature(data=a_ , tensor_type=a_ )
680
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Any = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys a : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a : int = 16 a : Tuple = 32 def __UpperCAmelCase ( _UpperCAmelCase : Accelerator , _UpperCAmelCase : int = 16 , _UpperCAmelCase : str = "bert-base-cased" ) -> Any: __snake_case = AutoTokenizer.from_pretrained(_UpperCAmelCase ) __snake_case = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __snake_case = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCAmelCase , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(_UpperCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) __snake_case = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> str: model.eval() __snake_case = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case = model(**_UpperCAmelCase ) __snake_case = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __snake_case , __snake_case = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_UpperCAmelCase ) - 1: __snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen] __snake_case = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) __snake_case = metric.compute() return eval_metric["accuracy"] def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> Union[str, Any]: # Initialize accelerator __snake_case = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config["lr"] __snake_case = int(config["num_epochs"] ) __snake_case = int(config["seed"] ) __snake_case = int(config["batch_size"] ) __snake_case = args.model_name_or_path set_seed(_UpperCAmelCase ) __snake_case , __snake_case = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained(_UpperCAmelCase , return_dict=_UpperCAmelCase ) # Instantiate optimizer __snake_case = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __snake_case = optimizer_cls(params=model.parameters() , lr=_UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: __snake_case = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: __snake_case = 1 __snake_case = (len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __snake_case = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=0 , num_training_steps=_UpperCAmelCase , ) else: __snake_case = DummyScheduler(_UpperCAmelCase , total_num_steps=_UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over __snake_case = 0 # We also need to keep track of the stating epoch so files are named properly __snake_case = 0 __snake_case = evaluate.load("glue" , "mrpc" ) __snake_case = num_epochs if args.partial_train_epoch is not None: __snake_case = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __snake_case = args.resume_from_checkpoint.split("epoch_" )[1] __snake_case = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __snake_case = int(_UpperCAmelCase ) + 1 __snake_case = evaluation_loop(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) accelerator.print("resumed checkpoint performance:" , _UpperCAmelCase ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , "r" ) as f: __snake_case = json.load(_UpperCAmelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __snake_case = {} for epoch in range(_UpperCAmelCase , _UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): __snake_case = model(**_UpperCAmelCase ) __snake_case = outputs.loss __snake_case = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __snake_case = F'''epoch_{epoch}''' __snake_case = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) __snake_case = evaluation_loop(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = accuracy __snake_case = lr_scheduler.get_lr()[0] __snake_case = optimizer.param_groups[0]["lr"] __snake_case = epoch __snake_case = overall_step accelerator.print(F'''epoch {epoch}:''' , _UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , "w" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( ) -> Tuple: __snake_case = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=_UpperCAmelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_UpperCAmelCase , ) parser.add_argument( "--output_dir" , type=_UpperCAmelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=_UpperCAmelCase , default=2 , help="Number of train epochs." , ) __snake_case = parser.parse_args() __snake_case = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
680
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
1
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : Dict , a_ : List[Any] , a_ : int=13 , a_ : List[str]=[30, 30] , a_ : List[Any]=2 , a_ : List[str]=3 , a_ : Any=True , a_ : Any=True , a_ : List[Any]=32 , a_ : List[Any]=5 , a_ : Dict=4 , a_ : int=37 , a_ : Any="gelu" , a_ : Union[str, Any]=0.1 , a_ : List[str]=0.1 , a_ : Optional[Any]=10 , a_ : Dict=0.02 , a_ : Optional[int]=3 , a_ : Dict=None , a_ : Tuple=8 , a_ : Any=10 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = scope __snake_case = n_targets __snake_case = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __snake_case = (image_size[1] // patch_size) * (image_size[0] // patch_size) __snake_case = num_patches + 1 + self.num_detection_tokens def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) __snake_case = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __snake_case = [] for i in range(self.batch_size ): __snake_case = {} __snake_case = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a_ ) __snake_case = torch.rand(self.n_targets , 4 , device=a_ ) labels.append(a_ ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Tuple ): """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def A ( self : int , a_ : List[str] , a_ : Optional[Any] , a_ : Optional[int] ): """simple docstring""" __snake_case = YolosModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def A ( self : Any , a_ : List[str] , a_ : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = YolosForObjectDetection(a_ ) model.to(a_ ) model.eval() __snake_case = model(pixel_values=a_ ) __snake_case = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) __snake_case = model(pixel_values=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def A ( self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Any , a_ : List[str] , a_ : Tuple , a_ : Optional[Any]=False ): """simple docstring""" __snake_case = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __snake_case = [] for i in range(self.model_tester.batch_size ): __snake_case = {} __snake_case = torch.ones( size=(self.model_tester.n_targets,) , device=a_ , dtype=torch.long ) __snake_case = torch.ones( self.model_tester.n_targets , 4 , device=a_ , dtype=torch.float ) labels.append(a_ ) __snake_case = labels return inputs_dict def A ( self : int ): """simple docstring""" __snake_case = YolosModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : List[str] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True # in YOLOS, the seq_len is different __snake_case = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __snake_case = True __snake_case = False __snake_case = True __snake_case = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case = outputs.attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case = True __snake_case = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case = outputs.attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __snake_case = len(a_ ) # Check attention is always last and order is fine __snake_case = True __snake_case = True __snake_case = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case = 1 self.assertEqual(out_len + added_hidden_states , len(a_ ) ) __snake_case = outputs.attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def A ( self : str ): """simple docstring""" def check_hidden_states_output(a_ : Optional[Any] , a_ : int , a_ : Dict ): __snake_case = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case = outputs.hidden_states __snake_case = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a_ ) , a_ ) # YOLOS has a different seq_length __snake_case = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a_ , a_ , a_ ) def A ( self : Any ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a_ ) @slow def A ( self : Optional[Any] ): """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = YolosModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def __UpperCAmelCase ( ) -> List[str]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Optional[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None @slow def A ( self : Dict ): """simple docstring""" __snake_case = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(a_ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(inputs.pixel_values ) # verify outputs __snake_case = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=a_ , ) __snake_case = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a_ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a_ , atol=1e-4 ) ) # verify postprocessing __snake_case = image_processor.post_process_object_detection( a_ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] __snake_case = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(a_ ) __snake_case = [75, 75, 17, 63, 17] __snake_case = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(a_ ) self.assertEqual(len(results["scores"] ) , 5 ) self.assertTrue(torch.allclose(results["scores"] , a_ , atol=1e-4 ) ) self.assertSequenceEqual(results["labels"].tolist() , a_ ) self.assertTrue(torch.allclose(results["boxes"][0, :] , a_ ) )
680
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int = 10**12 ) -> int: __snake_case = 1 __snake_case = 0 __snake_case = 1 __snake_case = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
680
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
1
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> Dict: # load base model __snake_case = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __snake_case = load_file(_UpperCAmelCase ) __snake_case = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __snake_case = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) __snake_case = pipeline.text_encoder else: __snake_case = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) __snake_case = pipeline.unet # find the target layer __snake_case = layer_infos.pop(0 ) while len(_UpperCAmelCase ) > -1: try: __snake_case = curr_layer.__getattr__(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: __snake_case = layer_infos.pop(0 ) elif len(_UpperCAmelCase ) == 0: break except Exception: if len(_UpperCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __snake_case = layer_infos.pop(0 ) __snake_case = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down" , "lora_up" ) ) pair_keys.append(_UpperCAmelCase ) else: pair_keys.append(_UpperCAmelCase ) pair_keys.append(key.replace("lora_up" , "lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __snake_case = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __snake_case = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCAmelCase , _UpperCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: __snake_case = state_dict[pair_keys[0]].to(torch.floataa ) __snake_case = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCAmelCase , _UpperCAmelCase ) # update visited list for item in pair_keys: visited.append(_UpperCAmelCase ) return pipeline if __name__ == "__main__": a : int = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') a : Any = parser.parse_args() a : Optional[Any] = args.base_model_path a : List[str] = args.checkpoint_path a : Optional[Any] = args.dump_path a : List[str] = args.lora_prefix_unet a : int = args.lora_prefix_text_encoder a : str = args.alpha a : Optional[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) a : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> List[str]: __snake_case = FileLock(str(tmpdir / "foo.lock" ) ) __snake_case = FileLock(str(tmpdir / "foo.lock" ) ) __snake_case = 0.01 with locka.acquire(): with pytest.raises(_UpperCAmelCase ): __snake_case = time.time() locka.acquire(_UpperCAmelCase ) assert time.time() - _start > timeout def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> List[str]: __snake_case = "a" * 10_00 + ".lock" __snake_case = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(_UpperCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 __snake_case = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_UpperCAmelCase ): locka.acquire(0 )
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int = 10 ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or n < 0: raise ValueError("Invalid input" ) __snake_case = 10**n __snake_case = 2_84_33 * (pow(2 , 7_83_04_57 , _UpperCAmelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(10) = }''')
680
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
1
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> list[int]: __snake_case = 0 __snake_case = len(_UpperCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __snake_case = i + 1 else: __snake_case = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
680
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
1
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None , _UpperCAmelCase : dict[str, float] | None = None , _UpperCAmelCase : bool = False , ) -> tuple[int, float, str]: __snake_case = cipher_alphabet or [chr(_UpperCAmelCase ) for i in range(97 , 1_23 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __snake_case = { "a": 0.0_8497, "b": 0.0_1492, "c": 0.0_2202, "d": 0.0_4253, "e": 0.1_1162, "f": 0.0_2228, "g": 0.0_2015, "h": 0.0_6094, "i": 0.0_7546, "j": 0.0_0153, "k": 0.0_1292, "l": 0.0_4025, "m": 0.0_2406, "n": 0.0_6749, "o": 0.0_7507, "p": 0.0_1929, "q": 0.0_0095, "r": 0.0_7587, "s": 0.0_6327, "t": 0.0_9356, "u": 0.0_2758, "v": 0.0_0978, "w": 0.0_2560, "x": 0.0_0150, "y": 0.0_1994, "z": 0.0_0077, } else: # Custom frequencies dictionary __snake_case = frequencies_dict if not case_sensitive: __snake_case = ciphertext.lower() # Chi squared statistic values __snake_case = {} # cycle through all of the shifts for shift in range(len(_UpperCAmelCase ) ): __snake_case = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __snake_case = (alphabet_letters.index(letter.lower() ) - shift) % len( _UpperCAmelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __snake_case = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __snake_case = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __snake_case = decrypted_with_shift.lower().count(_UpperCAmelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __snake_case = frequencies[letter] * occurrences # Complete the chi squared statistic formula __snake_case = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __snake_case = decrypted_with_shift.count(_UpperCAmelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __snake_case = frequencies[letter] * occurrences # Complete the chi squared statistic formula __snake_case = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __snake_case = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_UpperCAmelCase : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] __snake_case = min( _UpperCAmelCase , key=_UpperCAmelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __snake_case ) , ( __snake_case ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
680
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
680
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : List[Any] = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
1
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' from statistics import mean import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int ) -> list: __snake_case = 0 # Number of processes finished __snake_case = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __snake_case = [0] * no_of_process # List to include calculation results __snake_case = [0] * no_of_process # Sort by arrival time. __snake_case = [burst_time[i] for i in np.argsort(_UpperCAmelCase )] __snake_case = [process_name[i] for i in np.argsort(_UpperCAmelCase )] arrival_time.sort() while no_of_process > finished_process_count: __snake_case = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __snake_case = arrival_time[i] __snake_case = 0 # Index showing the location of the process being performed __snake_case = 0 # Saves the current response ratio. __snake_case = 0 for i in range(0 , _UpperCAmelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __snake_case = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __snake_case = temp __snake_case = i # Calculate the turn around time __snake_case = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __snake_case = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int ) -> list: __snake_case = [0] * no_of_process for i in range(0 , _UpperCAmelCase ): __snake_case = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": a : Dict = 5 a : List[Any] = ['''A''', '''B''', '''C''', '''D''', '''E'''] a : List[str] = [1, 2, 3, 4, 5] a : str = [1, 2, 3, 4, 5] a : List[Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) a : Optional[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
680
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """openai/whisper-base""" __SCREAMING_SNAKE_CASE = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) __SCREAMING_SNAKE_CASE = """transcriber""" __SCREAMING_SNAKE_CASE = WhisperProcessor __SCREAMING_SNAKE_CASE = WhisperForConditionalGeneration __SCREAMING_SNAKE_CASE = ["""audio"""] __SCREAMING_SNAKE_CASE = ["""text"""] def A ( self : List[str] , a_ : Dict ): """simple docstring""" return self.pre_processor(a_ , return_tensors="pt" ).input_features def A ( self : Optional[Any] , a_ : int ): """simple docstring""" return self.model.generate(inputs=a_ ) def A ( self : str , a_ : List[str] ): """simple docstring""" return self.pre_processor.batch_decode(a_ , skip_special_tokens=a_ )[0]
680
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
1
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED a : Optional[int] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a : Optional[int] = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __snake_case = bs[:] __snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 __snake_case = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = set() __snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case = char return pairs class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self : Any , a_ : Optional[Any] , a_ : int , a_ : int="replace" , a_ : Optional[int]="<s>" , a_ : Optional[Any]="</s>" , a_ : Dict="</s>" , a_ : Any="<s>" , a_ : List[str]="<unk>" , a_ : List[str]="<pad>" , a_ : int="<mask>" , a_ : Optional[int]=False , **a_ : List[Any] , ): """simple docstring""" __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else bos_token __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else eos_token __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else sep_token __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else cls_token __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else unk_token __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( errors=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , **a_ , ) with open(a_ , encoding="utf-8" ) as vocab_handle: __snake_case = json.load(a_ ) __snake_case = {v: k for k, v in self.encoder.items()} __snake_case = errors # how to handle errors in decoding __snake_case = bytes_to_unicode() __snake_case = {v: k for k, v in self.byte_encoder.items()} with open(a_ , encoding="utf-8" ) as merges_handle: __snake_case = merges_handle.read().split("\n" )[1:-1] __snake_case = [tuple(merge.split() ) for merge in bpe_merges] __snake_case = dict(zip(a_ , range(len(a_ ) ) ) ) __snake_case = {} __snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __snake_case = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A ( self : Dict ): """simple docstring""" return len(self.encoder ) def A ( self : List[Any] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def A ( self : int , a_ : List[Any] ): """simple docstring""" if token in self.cache: return self.cache[token] __snake_case = tuple(a_ ) __snake_case = get_pairs(a_ ) if not pairs: return token while True: __snake_case = min(a_ , key=lambda a_ : self.bpe_ranks.get(a_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case = bigram __snake_case = [] __snake_case = 0 while i < len(a_ ): try: __snake_case = word.index(a_ , a_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case = j if word[i] == first and i < len(a_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case = tuple(a_ ) __snake_case = new_word if len(a_ ) == 1: break else: __snake_case = get_pairs(a_ ) __snake_case = " ".join(a_ ) __snake_case = word return word def A ( self : Tuple , a_ : int ): """simple docstring""" __snake_case = [] for token in re.findall(self.pat , a_ ): __snake_case = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a_ ).split(" " ) ) return bpe_tokens def A ( self : List[Any] , a_ : Optional[int] ): """simple docstring""" return self.encoder.get(a_ , self.encoder.get(self.unk_token ) ) def A ( self : Any , a_ : List[str] ): """simple docstring""" return self.decoder.get(a_ ) def A ( self : Any , a_ : Optional[Any] ): """simple docstring""" __snake_case = "".join(a_ ) __snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def A ( self : Optional[int] , a_ : str , a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __snake_case = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a_ , ensure_ascii=a_ ) + "\n" ) __snake_case = 0 with open(a_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __snake_case = token_index writer.write(" ".join(a_ ) + "\n" ) index += 1 return vocab_file, merge_file def A ( self : Dict , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : List[str] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def A ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self : Optional[Any] , a_ : str , a_ : Dict=False , **a_ : str ): """simple docstring""" __snake_case = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a_ ) > 0 and not text[0].isspace()): __snake_case = " " + text return (text, kwargs) def A ( self : Dict , a_ : Union[Dict[str, EncodedInput], BatchEncoding] , a_ : Optional[int] = None , a_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , a_ : Optional[int] = None , a_ : Optional[bool] = None , ): """simple docstring""" __snake_case = super()._pad( encoded_inputs=a_ , max_length=a_ , padding_strategy=a_ , pad_to_multiple_of=a_ , return_attention_mask=a_ , ) # Load from model defaults if return_attention_mask is None: __snake_case = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __snake_case = len(encoded_inputs["global_attention_mask"] ) != len(a_ ) if needs_to_be_padded: __snake_case = len(a_ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __snake_case = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __snake_case = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
680
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
1
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
1
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : str , a_ : Any , a_ : List[str]=7 , a_ : Union[str, Any]=3 , a_ : Any=18 , a_ : Tuple=30 , a_ : str=400 , a_ : List[str]=True , a_ : Any=None , a_ : List[Any]=True , a_ : Dict=None , a_ : Optional[Any]=True , a_ : List[str]=[0.5, 0.5, 0.5] , a_ : List[Any]=[0.5, 0.5, 0.5] , a_ : List[Any]=False , ): """simple docstring""" __snake_case = size if size is not None else {"height": 20, "width": 20} __snake_case = crop_size if crop_size is not None else {"height": 18, "width": 18} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_center_crop __snake_case = crop_size __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std __snake_case = do_reduce_labels def A ( self : Optional[int] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> List[Any]: __snake_case = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __snake_case = Image.open(dataset[0]["file"] ) __snake_case = Image.open(dataset[1]["file"] ) return image, map def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __snake_case = Image.open(ds[0]["file"] ) __snake_case = Image.open(ds[1]["file"] ) __snake_case = Image.open(ds[2]["file"] ) __snake_case = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = BeitImageProcessor if is_vision_available() else None def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = BeitImageProcessingTester(self ) @property def A ( self : Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self : str ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , "do_resize" ) ) self.assertTrue(hasattr(a_ , "size" ) ) self.assertTrue(hasattr(a_ , "do_center_crop" ) ) self.assertTrue(hasattr(a_ , "center_crop" ) ) self.assertTrue(hasattr(a_ , "do_normalize" ) ) self.assertTrue(hasattr(a_ , "image_mean" ) ) self.assertTrue(hasattr(a_ , "image_std" ) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels , a_ ) __snake_case = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a_ ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels , a_ ) def A ( self : Any ): """simple docstring""" pass def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def A ( self : Tuple ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def A ( self : str ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) __snake_case = [] for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __snake_case = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched __snake_case = image_processing(a_ , a_ , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test not batched input (PIL images) __snake_case , __snake_case = prepare_semantic_single_inputs() __snake_case = image_processing(a_ , a_ , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched input (PIL images) __snake_case , __snake_case = prepare_semantic_batch_inputs() __snake_case = image_processing(a_ , a_ , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) def A ( self : Dict ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __snake_case , __snake_case = prepare_semantic_single_inputs() __snake_case = image_processing(a_ , a_ , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 150 ) __snake_case = True __snake_case = image_processing(a_ , a_ , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 )
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a : Union[str, Any] = datasets.utils.logging.get_logger(__name__) a : Tuple = ['''names''', '''prefix'''] a : Union[str, Any] = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] a : Dict = ['''encoding_errors''', '''on_bad_lines'''] a : List[str] = ['''date_format'''] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): __SCREAMING_SNAKE_CASE = "," __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = "infer" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = "." __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = '"' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 10000 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = "strict" __SCREAMING_SNAKE_CASE = "error" __SCREAMING_SNAKE_CASE = None def A ( self : List[Any] ): """simple docstring""" if self.delimiter is not None: __snake_case = self.delimiter if self.column_names is not None: __snake_case = self.column_names @property def A ( self : int ): """simple docstring""" __snake_case = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , a_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): __SCREAMING_SNAKE_CASE = CsvConfig def A ( self : Dict ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def A ( self : Optional[Any] , a_ : Dict ): """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __snake_case = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case = data_files if isinstance(a_ , a_ ): __snake_case = [files] __snake_case = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] __snake_case = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case = [files] __snake_case = [dl_manager.iter_files(a_ ) for file in files] splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={"files": files} ) ) return splits def A ( self : Any , a_ : pa.Table ): """simple docstring""" if self.config.features is not None: __snake_case = self.config.features.arrow_schema if all(not require_storage_cast(a_ ) for feature in self.config.features.values() ): # cheaper cast __snake_case = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=a_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __snake_case = table_cast(a_ , a_ ) return pa_table def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" __snake_case = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __snake_case = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(a_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): __snake_case = pd.read_csv(a_ , iterator=a_ , dtype=a_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(a_ ): __snake_case = pa.Table.from_pandas(a_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(a_ ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(a_ )}: {e}''' ) raise
680
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import os from distutils.util import strtobool def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: for e in env_keys: __snake_case = int(os.environ.get(_UpperCAmelCase , -1 ) ) if val >= 0: return val return default def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=False ) -> int: __snake_case = os.environ.get(_UpperCAmelCase , str(_UpperCAmelCase ) ) return strtobool(_UpperCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any]="no" ) -> Optional[int]: __snake_case = os.environ.get(_UpperCAmelCase , str(_UpperCAmelCase ) ) return value
680
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = MBartConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = """gelu""" def __init__( self : Union[str, Any] , a_ : List[str] , a_ : str=13 , a_ : str=7 , a_ : Union[str, Any]=True , a_ : Dict=False , a_ : Optional[int]=99 , a_ : List[Any]=32 , a_ : Tuple=2 , a_ : List[str]=4 , a_ : Optional[Any]=37 , a_ : List[str]=0.1 , a_ : Tuple=0.1 , a_ : str=20 , a_ : Dict=2 , a_ : Any=1 , a_ : Any=0 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = eos_token_id __snake_case = pad_token_id __snake_case = bos_token_id def A ( self : int ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __snake_case = prepare_mbart_inputs_dict(a_ , a_ , a_ ) return config, inputs_dict def A ( self : Any , a_ : int , a_ : str ): """simple docstring""" __snake_case = TFMBartModel(config=a_ ).get_decoder() __snake_case = inputs_dict["input_ids"] __snake_case = input_ids[:1, :] __snake_case = inputs_dict["attention_mask"][:1, :] __snake_case = inputs_dict["head_mask"] __snake_case = 1 # first forward pass __snake_case = model(a_ , attention_mask=a_ , head_mask=a_ , use_cache=a_ ) __snake_case , __snake_case = outputs.to_tuple() __snake_case = past_key_values[1] def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Tuple=None , ) -> str: if attention_mask is None: __snake_case = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFMBartForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : int , a_ : Dict , a_ : Optional[Any] , a_ : str , a_ : Tuple , a_ : List[Any] ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def A ( self : Optional[int] ): """simple docstring""" __snake_case = TFMBartModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ ) def A ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a_ ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = [ """ UN Chief Says There Is No Military Solution in Syria""", ] __SCREAMING_SNAKE_CASE = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] __SCREAMING_SNAKE_CASE = """facebook/mbart-large-en-ro""" @cached_property def A ( self : str ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A ( self : List[str] ): """simple docstring""" __snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A ( self : Optional[Any] , **a_ : Optional[Any] ): """simple docstring""" __snake_case = self.translate_src_text(**a_ ) self.assertListEqual(self.expected_text , a_ ) def A ( self : int , **a_ : Optional[int] ): """simple docstring""" __snake_case = self.tokenizer(self.src_text , **a_ , return_tensors="tf" ) __snake_case = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __snake_case = self.tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) return generated_words @slow def A ( self : Optional[int] ): """simple docstring""" self._assert_generated_batch_equal_expected()
680
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a : List[str] = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
1
'''simple docstring''' from math import factorial def __UpperCAmelCase ( _UpperCAmelCase : int = 1_00 ) -> int: return sum(int(_UpperCAmelCase ) for x in str(factorial(_UpperCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
680
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
1
'''simple docstring''' from __future__ import annotations import pandas as pd def __UpperCAmelCase ( _UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> list[int]: __snake_case = [0] * no_of_processes __snake_case = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_UpperCAmelCase ): __snake_case = burst_time[i] __snake_case = 0 __snake_case = 0 __snake_case = 9_99_99_99_99 __snake_case = 0 __snake_case = False # Process until all processes are completed while complete != no_of_processes: for j in range(_UpperCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __snake_case = remaining_time[j] __snake_case = j __snake_case = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __snake_case = remaining_time[short] if minm == 0: __snake_case = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 __snake_case = False # Find finish time of current process __snake_case = increment_time + 1 # Calculate waiting time __snake_case = finish_time - arrival_time[short] __snake_case = finar - burst_time[short] if waiting_time[short] < 0: __snake_case = 0 # Increment time increment_time += 1 return waiting_time def __UpperCAmelCase ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int , _UpperCAmelCase : list[int] ) -> list[int]: __snake_case = [0] * no_of_processes for i in range(_UpperCAmelCase ): __snake_case = burst_time[i] + waiting_time[i] return turn_around_time def __UpperCAmelCase ( _UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> None: __snake_case = 0 __snake_case = 0 for i in range(_UpperCAmelCase ): __snake_case = total_waiting_time + waiting_time[i] __snake_case = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') a : str = int(input()) a : Any = [0] * no_of_processes a : Any = [0] * no_of_processes a : List[str] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) a , a : int = map(int, input().split()) a : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a : Optional[int] = burst_time a : List[Any] = no_of_processes a : List[Any] = waiting_time a : Tuple = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) a : Dict = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
680
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: __snake_case = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> Dict: __snake_case , __snake_case = emb.weight.shape __snake_case = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) __snake_case = emb.weight.data return lin_layer def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> List[str]: __snake_case = torch.load(_UpperCAmelCase , map_location="cpu" ) __snake_case = mam_aaa["args"] or mam_aaa["cfg"]["model"] __snake_case = mam_aaa["model"] remove_ignore_keys_(_UpperCAmelCase ) __snake_case = state_dict["encoder.embed_tokens.weight"].shape[0] __snake_case = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) __snake_case = state_dict["decoder.embed_tokens.weight"] __snake_case = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) __snake_case = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": a : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') a : Optional[Any] = parser.parse_args() a : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
680
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 def __init__( self : Any , a_ : UNetaDModel , a_ : KarrasVeScheduler ): """simple docstring""" super().__init__() self.register_modules(unet=a_ , scheduler=a_ ) @torch.no_grad() def __call__( self : Dict , a_ : int = 1 , a_ : int = 50 , a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a_ : Optional[str] = "pil" , a_ : bool = True , **a_ : List[str] , ): """simple docstring""" __snake_case = self.unet.config.sample_size __snake_case = (batch_size, 3, img_size, img_size) __snake_case = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) __snake_case = randn_tensor(a_ , generator=a_ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper __snake_case = self.scheduler.schedule[t] __snake_case = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat __snake_case , __snake_case = self.scheduler.add_noise_to_input(a_ , a_ , generator=a_ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. __snake_case = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev __snake_case = self.scheduler.step(a_ , a_ , a_ , a_ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. __snake_case = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample __snake_case = self.scheduler.step_correct( a_ , a_ , a_ , a_ , step_output.prev_sample , step_output["derivative"] , ) __snake_case = step_output.prev_sample __snake_case = (sample / 2 + 0.5).clamp(0 , 1 ) __snake_case = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> list: __snake_case = int(_UpperCAmelCase ) if n_element < 1: __snake_case = ValueError("a should be a positive number" ) raise my_error __snake_case = [1] __snake_case , __snake_case , __snake_case = (0, 0, 0) __snake_case = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": a : Optional[int] = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') a : Optional[Any] = hamming(int(n)) print('''-----------------------------------------------------''') print(F'''The list with nth numbers is: {hamming_numbers}''') print('''-----------------------------------------------------''')
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = KandinskyVaaPipeline __SCREAMING_SNAKE_CASE = [ """image_embeds""", """negative_image_embeds""", ] __SCREAMING_SNAKE_CASE = ["""image_embeds""", """negative_image_embeds"""] __SCREAMING_SNAKE_CASE = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __SCREAMING_SNAKE_CASE = False @property def A ( self : Union[str, Any] ): """simple docstring""" return 32 @property def A ( self : int ): """simple docstring""" return 32 @property def A ( self : List[Any] ): """simple docstring""" return self.time_input_dim @property def A ( self : Tuple ): """simple docstring""" return self.time_input_dim * 4 @property def A ( self : Optional[int] ): """simple docstring""" return 100 @property def A ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) __snake_case = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __snake_case = UNetaDConditionModel(**a_ ) return model @property def A ( self : Tuple ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __snake_case = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : Any ): """simple docstring""" __snake_case = self.dummy_unet __snake_case = self.dummy_movq __snake_case = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=a_ , set_alpha_to_one=a_ , steps_offset=1 , prediction_type="epsilon" , thresholding=a_ , ) __snake_case = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def A ( self : Union[str, Any] , a_ : Tuple , a_ : str=0 ): """simple docstring""" __snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(a_ ) ).to(a_ ) __snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( a_ ) if str(a_ ).startswith("mps" ): __snake_case = torch.manual_seed(a_ ) else: __snake_case = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def A ( self : List[str] ): """simple docstring""" __snake_case = "cpu" __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**a_ ) __snake_case = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = pipe(**self.get_dummy_inputs(a_ ) ) __snake_case = output.images __snake_case = pipe( **self.get_dummy_inputs(a_ ) , return_dict=a_ , )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case = np.array( [0.6237976, 1.0, 0.36441332, 1.0, 0.70639634, 0.29877186, 0.85652125, 0.5216843, 0.54454046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) __snake_case = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(a_ ) __snake_case = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) __snake_case = pipeline.to(a_ ) pipeline.set_progress_bar_config(disable=a_ ) __snake_case = "red cat, 4k photo" __snake_case = torch.Generator(device="cuda" ).manual_seed(0 ) __snake_case , __snake_case = pipe_prior( a_ , generator=a_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __snake_case = torch.Generator(device="cuda" ).manual_seed(0 ) __snake_case = pipeline( image_embeds=a_ , negative_image_embeds=a_ , generator=a_ , num_inference_steps=100 , output_type="np" , ) __snake_case = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(a_ , a_ )
680
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(a_ , a_ ) def A ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(a_ ) / "preprocessor_config.json" __snake_case = Path(a_ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(a_ , "w" ) , ) json.dump({"model_type": "clip"} , open(a_ , "w" ) ) __snake_case = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(a_ ) / "preprocessor_config.json" __snake_case = Path(a_ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(a_ , "w" ) , ) json.dump({"model_type": "clip"} , open(a_ , "w" ) ) __snake_case = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type __snake_case = Path(a_ ) / "preprocessor_config.json" __snake_case = Path(a_ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(a_ , "w" ) , ) json.dump({"model_type": "clip"} , open(a_ , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __snake_case = AutoImageProcessor.from_pretrained(a_ ).to_dict() config_dict.pop("image_processor_type" ) __snake_case = CLIPImageProcessor(**a_ ) # save in new folder model_config.save_pretrained(a_ ) config.save_pretrained(a_ ) __snake_case = AutoImageProcessor.from_pretrained(a_ ) # make sure private variable is not incorrectly saved __snake_case = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(a_ , a_ ) def A ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(a_ ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(a_ , "w" ) , ) __snake_case = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : int ): """simple docstring""" with self.assertRaisesRegex( a_ , "clip-base is not a local folder and is not a valid model identifier" ): __snake_case = AutoImageProcessor.from_pretrained("clip-base" ) def A ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( a_ , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __snake_case = AutoImageProcessor.from_pretrained(a_ , revision="aaaaaa" ) def A ( self : Optional[int] ): """simple docstring""" with self.assertRaisesRegex( a_ , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): __snake_case = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def A ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ): __snake_case = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a_ ): __snake_case = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=a_ ) __snake_case = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) __snake_case = AutoImageProcessor.from_pretrained(a_ , trust_remote_code=a_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def A ( self : str ): """simple docstring""" try: AutoConfig.register("custom" , a_ ) AutoImageProcessor.register(a_ , a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): AutoImageProcessor.register(a_ , a_ ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(a_ ) / "preprocessor_config.json" __snake_case = Path(a_ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(a_ , "w" ) , ) json.dump({"model_type": "clip"} , open(a_ , "w" ) ) __snake_case = CustomImageProcessor.from_pretrained(a_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) __snake_case = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A ( self : str ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = True try: AutoConfig.register("custom" , a_ ) AutoImageProcessor.register(a_ , a_ ) # If remote code is not set, the default is to use local __snake_case = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __snake_case = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __snake_case = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(a_ , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
680
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Tuple , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : bool = True , a_ : Dict[str, int] = None , a_ : bool = True , a_ : Union[int, float] = 1 / 255 , a_ : bool = True , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = True , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) __snake_case = size if size is not None else {"shortest_edge": 224} __snake_case = get_size_dict(a_ , default_to_square=a_ ) __snake_case = crop_size if crop_size is not None else {"height": 224, "width": 224} __snake_case = get_size_dict(a_ , default_to_square=a_ , param_name="crop_size" ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_center_crop __snake_case = crop_size __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case = do_convert_rgb def A ( self : str , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : List[Any] , ): """simple docstring""" __snake_case = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __snake_case = get_resize_output_image_size(a_ , size=size["shortest_edge"] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def A ( self : int , a_ : np.ndarray , a_ : Dict[str, int] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Any , ): """simple docstring""" __snake_case = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(a_ , size=(size["height"], size["width"]) , data_format=a_ , **a_ ) def A ( self : str , a_ : np.ndarray , a_ : Union[int, float] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Tuple , ): """simple docstring""" return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def A ( self : Optional[Any] , a_ : np.ndarray , a_ : Union[float, List[float]] , a_ : Union[float, List[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : List[Any] , ): """simple docstring""" return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def A ( self : Dict , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : int = None , a_ : bool = None , a_ : float = None , a_ : bool = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **a_ : Any , ): """simple docstring""" __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = size if size is not None else self.size __snake_case = get_size_dict(a_ , param_name="size" , default_to_square=a_ ) __snake_case = resample if resample is not None else self.resample __snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case = crop_size if crop_size is not None else self.crop_size __snake_case = get_size_dict(a_ , param_name="crop_size" , default_to_square=a_ ) __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case = [convert_to_rgb(a_ ) for image in images] # All transformations expect numpy arrays. __snake_case = [to_numpy_array(a_ ) for image in images] if do_resize: __snake_case = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: __snake_case = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: __snake_case = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] __snake_case = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ )
680
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
1
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( _UpperCAmelCase : list[float] , _UpperCAmelCase : list[float] ) -> float: __snake_case = sorted(numsa + numsa ) __snake_case , __snake_case = divmod(len(_UpperCAmelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() a : Tuple = [float(x) for x in input('''Enter the elements of first array: ''').split()] a : List[Any] = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
680
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : List[Any] = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """convbert""" def __init__( self : Optional[int] , a_ : Tuple=30_522 , a_ : Optional[int]=768 , a_ : Union[str, Any]=12 , a_ : str=12 , a_ : Any=3_072 , a_ : Tuple="gelu" , a_ : List[str]=0.1 , a_ : Tuple=0.1 , a_ : List[Any]=512 , a_ : int=2 , a_ : List[Any]=0.02 , a_ : Optional[int]=1e-12 , a_ : List[Any]=1 , a_ : str=0 , a_ : List[Any]=2 , a_ : Dict=768 , a_ : Union[str, Any]=2 , a_ : Any=9 , a_ : Any=1 , a_ : int=None , **a_ : Tuple , ): """simple docstring""" super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ , ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = embedding_size __snake_case = head_ratio __snake_case = conv_kernel_size __snake_case = num_groups __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : str ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
680
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
1