code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: a_ : Optional[int] = 1 a_ : List[str] = 3 a_ : List[Any] = (32, 32) a_ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__SCREAMING_SNAKE_CASE ) return image @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: torch.manual_seed(0 ) a_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__SCREAMING_SNAKE_CASE , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: torch.manual_seed(0 ) a_ : Dict = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = self.dummy_cond_unet_upscale a_ : Any = DDPMScheduler() a_ : int = DDIMScheduler(prediction_type='''v_prediction''' ) a_ : int = self.dummy_vae a_ : List[Any] = self.dummy_text_encoder a_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a_ : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] a_ : Dict = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk a_ : Dict = StableDiffusionUpscalePipeline( unet=__SCREAMING_SNAKE_CASE , low_res_scheduler=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , max_noise_level=350 , ) a_ : List[str] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = '''A painting of a squirrel eating a burger''' a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : List[Any] = sd_pipe( [prompt] , image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) a_ : Tuple = output.images a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : List[str] = sd_pipe( [prompt] , image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] a_ : List[str] = image[0, -3:, -3:, -1] a_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] a_ : int = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) a_ : Optional[int] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Any ) -> str: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : int = self.dummy_cond_unet_upscale a_ : Any = DDPMScheduler() a_ : Optional[int] = DDIMScheduler(prediction_type='''v_prediction''' ) a_ : Optional[int] = self.dummy_vae a_ : int = self.dummy_text_encoder a_ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a_ : Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] a_ : Tuple = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk a_ : Tuple = StableDiffusionUpscalePipeline( unet=__SCREAMING_SNAKE_CASE , low_res_scheduler=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , max_noise_level=350 , ) a_ : List[Any] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = '''A painting of a squirrel eating a burger''' a_ : List[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) a_ : Optional[Any] = output.images assert image.shape[0] == 2 a_ : Any = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Optional[int] = sd_pipe( [prompt] , image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) a_ : int = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : Union[str, Any] = self.dummy_cond_unet_upscale a_ : List[Any] = DDPMScheduler() a_ : Tuple = DDIMScheduler(prediction_type='''v_prediction''' ) a_ : List[Any] = self.dummy_vae a_ : Optional[int] = self.dummy_text_encoder a_ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a_ : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] a_ : List[str] = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 a_ : Optional[Any] = unet.half() a_ : Optional[Any] = text_encoder.half() # make sure here that pndm scheduler skips prk a_ : List[Any] = StableDiffusionUpscalePipeline( unet=__SCREAMING_SNAKE_CASE , low_res_scheduler=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , max_noise_level=350 , ) a_ : List[str] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = '''A painting of a squirrel eating a burger''' a_ : Dict = torch.manual_seed(0 ) a_ : List[str] = sd_pipe( [prompt] , image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' , ).images a_ : Union[str, Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: a_ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) a_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) a_ : int = '''stabilityai/stable-diffusion-x4-upscaler''' a_ : Tuple = StableDiffusionUpscalePipeline.from_pretrained(__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() a_ : Any = '''a cat sitting on a park bench''' a_ : Optional[int] = torch.manual_seed(0 ) a_ : Tuple = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , ) a_ : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: a_ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) a_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) a_ : int = '''stabilityai/stable-diffusion-x4-upscaler''' a_ : List[Any] = StableDiffusionUpscalePipeline.from_pretrained( __SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() a_ : Optional[int] = '''a cat sitting on a park bench''' a_ : str = torch.manual_seed(0 ) a_ : List[str] = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , ) a_ : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) a_ : int = '''stabilityai/stable-diffusion-x4-upscaler''' a_ : Any = StableDiffusionUpscalePipeline.from_pretrained( __SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() a_ : Tuple = '''a cat sitting on a park bench''' a_ : List[str] = torch.manual_seed(0 ) a_ : List[Any] = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , output_type='''np''' , ) a_ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
666
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } __lowerCAmelCase = { 'facebook/bart-base': 1_024, 'facebook/bart-large': 1_024, 'facebook/bart-large-mnli': 1_024, 'facebook/bart-large-cnn': 1_024, 'facebook/bart-large-xsum': 1_024, 'yjernite/bart_eli5': 1_024, } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] snake_case__ = BartTokenizer def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple="replace" , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : int="</s>" , __SCREAMING_SNAKE_CASE : Tuple="</s>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<s>" , __SCREAMING_SNAKE_CASE : Any="<unk>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<pad>" , __SCREAMING_SNAKE_CASE : Optional[int]="<mask>" , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : int=True , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Tuple: super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , errors=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) a_ : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: a_ : Any = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) a_ : int = add_prefix_space a_ : Union[str, Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) a_ : List[str] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a_ : int = '''post_processor''' a_ : Optional[int] = getattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: a_ : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a_ : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: a_ : List[str] = tuple(state['''cls'''] ) a_ : List[str] = False if state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: a_ : Optional[Any] = add_prefix_space a_ : str = True if state.get('''trim_offsets''' , __SCREAMING_SNAKE_CASE ) != trim_offsets: a_ : Dict = trim_offsets a_ : Any = True if changes_to_apply: a_ : str = getattr(__SCREAMING_SNAKE_CASE , state.pop('''type''' ) ) a_ : List[Any] = component_class(**__SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Any ) -> Dict: a_ : int = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else value a_ : Any = value def SCREAMING_SNAKE_CASE ( self : Any , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> BatchEncoding: a_ : Tuple = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Dict ) -> BatchEncoding: a_ : int = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: a_ : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Dict: a_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : Optional[Any] = [self.sep_token_id] a_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
666
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : int = 10_00 ): a_ , a_ : Union[str, Any] = 1, 1 a_ : List[Any] = 2 while True: a_ : Optional[Any] = 0 a_ : Optional[Any] = fa + fa a_ , a_ : Union[str, Any] = fa, f index += 1 for _ in str(__A ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
666
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "timesformer" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Dict=224 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=8 , __SCREAMING_SNAKE_CASE : Union[str, Any]=768 , __SCREAMING_SNAKE_CASE : Union[str, Any]=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : Tuple=3072 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=1e-6 , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : List[str]="divided_space_time" , __SCREAMING_SNAKE_CASE : str=0 , **__SCREAMING_SNAKE_CASE : int , ) -> Tuple: super().__init__(**__SCREAMING_SNAKE_CASE ) a_ : str = image_size a_ : str = patch_size a_ : Tuple = num_channels a_ : int = num_frames a_ : Optional[int] = hidden_size a_ : int = num_hidden_layers a_ : str = num_attention_heads a_ : Tuple = intermediate_size a_ : str = hidden_act a_ : List[str] = hidden_dropout_prob a_ : List[Any] = attention_probs_dropout_prob a_ : List[Any] = initializer_range a_ : List[Any] = layer_norm_eps a_ : Dict = qkv_bias a_ : Optional[Any] = attention_type a_ : Union[str, Any] = drop_path_rate
666
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: a_ : Union[str, Any] = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) a_ : str = { '''input_ids''': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } a_ : str = model(__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] a_ : Optional[int] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. a_ : Tuple = tf.convert_to_tensor( [ [ [0.068_1762, 0.1089_4451, 0.0677_2504], [-0.0642_3668, 0.0236_6615, 0.0432_9344], [-0.0605_7295, 0.0997_4135, -0.0007_0584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
666
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _UpperCAmelCase ( __A : list , __A : list , __A : list , __A : list , __A : list ): a_ : List[Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__A )] ) a_ : int = np.array(__A ) a_ : str = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __A ) ) , x.transpose() ) , __A ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _UpperCAmelCase ( __A : list , __A : list , __A : list ): a_ : str = (1, 2, 1) a_ : int = (1, 1, 0, 7) a_ : Tuple = SARIMAX( __A , exog=__A , order=__A , seasonal_order=__A ) a_ : List[Any] = model.fit(disp=__A , maxiter=6_00 , method='''nm''' ) a_ : Union[str, Any] = model_fit.predict(1 , len(__A ) , exog=[test_match] ) return result[0] def _UpperCAmelCase ( __A : list , __A : list , __A : list ): a_ : str = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__A , __A ) a_ : Union[str, Any] = regressor.predict(__A ) return y_pred[0] def _UpperCAmelCase ( __A : list ): train_user.sort() a_ : Optional[Any] = np.percentile(__A , 25 ) a_ : Optional[Any] = np.percentile(__A , 75 ) a_ : int = qa - qa a_ : Optional[int] = qa - (iqr * 0.1) return low_lim def _UpperCAmelCase ( __A : list , __A : float ): a_ : Optional[int] = 0 a_ : List[str] = 0 for i in list_vote: if i > actual_result: a_ : Optional[int] = not_safe + 1 else: if abs(abs(__A ) - abs(__A ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __lowerCAmelCase = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] __lowerCAmelCase = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) __lowerCAmelCase = Normalizer().fit_transform(data_input_df.values) # split data __lowerCAmelCase = normalize_df[:, 2].tolist() __lowerCAmelCase = normalize_df[:, 0].tolist() __lowerCAmelCase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __lowerCAmelCase = normalize_df[:, [1, 2]].tolist() __lowerCAmelCase = x[: len(x) - 1] __lowerCAmelCase = x[len(x) - 1 :] # for linear regression & sarimax __lowerCAmelCase = total_date[: len(total_date) - 1] __lowerCAmelCase = total_user[: len(total_user) - 1] __lowerCAmelCase = total_match[: len(total_match) - 1] __lowerCAmelCase = total_date[len(total_date) - 1 :] __lowerCAmelCase = total_user[len(total_user) - 1 :] __lowerCAmelCase = total_match[len(total_match) - 1 :] # voting system with forecasting __lowerCAmelCase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __lowerCAmelCase = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
666
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : str ): a_ : Union[str, Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: a_ : Dict = 1_92 a_ : int = 7_68 a_ : Dict = 12 a_ : List[str] = 3 a_ : Union[str, Any] = [8_00, 13_33] a_ : Optional[int] = False elif yolos_name == "yolos_s_dWr": a_ : Tuple = 3_30 a_ : List[str] = 14 a_ : Any = 6 a_ : List[str] = 13_20 elif "yolos_s" in yolos_name: a_ : int = 3_84 a_ : Any = 15_36 a_ : int = 12 a_ : List[Any] = 6 elif "yolos_b" in yolos_name: a_ : Any = [8_00, 13_44] a_ : List[str] = 91 a_ : List[str] = '''huggingface/label-files''' a_ : str = '''coco-detection-id2label.json''' a_ : Optional[Any] = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) a_ : Any = {int(__A ): v for k, v in idalabel.items()} a_ : Dict = idalabel a_ : Optional[int] = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : dict , __A : YolosConfig , __A : bool = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ : Optional[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) a_ : Optional[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : List[Any] = in_proj_weight[: config.hidden_size, :] a_ : List[Any] = in_proj_bias[: config.hidden_size] a_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ : List[str] = in_proj_weight[-config.hidden_size :, :] a_ : List[Any] = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( __A : str ): if "backbone" in name: a_ : str = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: a_ : Dict = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: a_ : List[Any] = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: a_ : Union[str, Any] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: a_ : str = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: a_ : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: a_ : Union[str, Any] = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: a_ : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: a_ : Any = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: a_ : str = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: a_ : List[Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: a_ : Any = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: a_ : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: a_ : Dict = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: a_ : Any = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: a_ : Tuple = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def _UpperCAmelCase ( __A : dict , __A : YolosForObjectDetection ): for key in orig_state_dict.copy().keys(): a_ : Tuple = orig_state_dict.pop(__A ) if "qkv" in key: a_ : Optional[int] = key.split('''.''' ) a_ : List[str] = int(key_split[2] ) a_ : List[Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: a_ : Optional[Any] = val[:dim, :] a_ : Optional[int] = val[ dim : dim * 2, : ] a_ : List[Any] = val[-dim:, :] else: a_ : Optional[Any] = val[:dim] a_ : str = val[dim : dim * 2] a_ : List[Any] = val[-dim:] else: a_ : List[Any] = val return orig_state_dict def _UpperCAmelCase ( ): a_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : Tuple = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : str , __A : str , __A : str , __A : bool = False ): a_ : str = get_yolos_config(__A ) # load original state_dict a_ : Tuple = torch.load(__A , map_location='''cpu''' )['''model'''] # load 🤗 model a_ : Optional[int] = YolosForObjectDetection(__A ) model.eval() a_ : int = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # Check outputs on an image, prepared by YolosImageProcessor a_ : Dict = 8_00 if yolos_name != '''yolos_ti''' else 5_12 a_ : List[str] = YolosImageProcessor(format='''coco_detection''' , size=__A ) a_ : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) a_ : Dict = model(**__A ) a_ , a_ : Union[str, Any] = outputs.logits, outputs.pred_boxes a_ , a_ : List[Any] = None, None if yolos_name == "yolos_ti": a_ : Union[str, Any] = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) a_ : List[str] = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": a_ : Union[str, Any] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) a_ : Optional[int] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": a_ : Union[str, Any] = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) a_ : Optional[int] = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": a_ : Any = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) a_ : Any = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": a_ : int = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) a_ : Tuple = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , __A , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __A , atol=1E-4 ) Path(__A ).mkdir(exist_ok=__A ) print(f'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__A ) if push_to_hub: a_ : List[Any] = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) a_ : Tuple = model_mapping[yolos_name] image_processor.push_to_hub(__A , organization='''hustvl''' ) model.push_to_hub(__A , organization='''hustvl''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
666
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = ["pixel_values"] def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: super().__init__(**__SCREAMING_SNAKE_CASE ) a_ : Tuple = size if size is not None else {'''shortest_edge''': 256} a_ : str = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) a_ : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} a_ : str = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) a_ : Tuple = do_resize a_ : str = size a_ : Any = resample a_ : Optional[Any] = do_center_crop a_ : Union[str, Any] = crop_size a_ : List[Any] = do_rescale a_ : Dict = rescale_factor a_ : Tuple = do_normalize a_ : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a_ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: a_ : List[Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) a_ : str = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> np.ndarray: a_ : Dict = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : str ) -> np.ndarray: return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> np.ndarray: return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[float] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Union[str, Any]: a_ : Optional[int] = do_resize if do_resize is not None else self.do_resize a_ : Tuple = size if size is not None else self.size a_ : List[Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) a_ : str = resample if resample is not None else self.resample a_ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : Optional[int] = crop_size if crop_size is not None else self.crop_size a_ : List[str] = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) a_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale a_ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize a_ : str = image_mean if image_mean is not None else self.image_mean a_ : Union[str, Any] = image_std if image_std is not None else self.image_std a_ : Dict = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. a_ : Union[str, Any] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: a_ : List[str] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: a_ : List[Any] = [self.center_crop(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: a_ : List[Any] = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: a_ : Dict = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] a_ : Optional[Any] = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] a_ : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Tuple] = None ) -> Dict: a_ : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__SCREAMING_SNAKE_CASE ): a_ : Tuple = target_sizes.numpy() a_ : str = [] for idx in range(len(__SCREAMING_SNAKE_CASE ) ): a_ : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) a_ : List[str] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__SCREAMING_SNAKE_CASE ) else: a_ : List[str] = logits.argmax(dim=1 ) a_ : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _UpperCAmelCase ( __A : List[Any] ): a_ : Optional[Any] = tmp_path / '''file.csv''' a_ : List[Any] = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(__A , '''w''' ) as f: f.write(__A ) return str(__A ) @pytest.fixture def _UpperCAmelCase ( __A : int ): a_ : int = tmp_path / '''malformed_file.csv''' a_ : Union[str, Any] = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(__A , '''w''' ) as f: f.write(__A ) return str(__A ) @pytest.fixture def _UpperCAmelCase ( __A : Optional[Any] , __A : Dict ): a_ : List[str] = tmp_path / '''csv_with_image.csv''' a_ : Dict = textwrap.dedent( f'\\n image\n {image_file}\n ' ) with open(__A , '''w''' ) as f: f.write(__A ) return str(__A ) @pytest.fixture def _UpperCAmelCase ( __A : Optional[Any] ): a_ : Dict = tmp_path / '''csv_with_label.csv''' a_ : Dict = textwrap.dedent( '''\ label good bad good ''' ) with open(__A , '''w''' ) as f: f.write(__A ) return str(__A ) @pytest.fixture def _UpperCAmelCase ( __A : int ): a_ : List[str] = tmp_path / '''csv_with_int_list.csv''' a_ : str = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(__A , '''w''' ) as f: f.write(__A ) return str(__A ) def _UpperCAmelCase ( __A : Union[str, Any] , __A : Optional[int] , __A : List[Any] ): a_ : Optional[int] = Csv() a_ : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__A , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(__A ) in record.message for record in caplog.records ) @require_pil def _UpperCAmelCase ( __A : str ): with open(__A , encoding='''utf-8''' ) as f: a_ : Tuple = f.read().splitlines()[1] a_ : Union[str, Any] = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a_ : Optional[int] = csv._generate_tables([[csv_file_with_image]] ) a_ : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a_ : str = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _UpperCAmelCase ( __A : List[str] ): with open(__A , encoding='''utf-8''' ) as f: a_ : int = f.read().splitlines()[1:] a_ : str = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) a_ : str = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a_ : Dict = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(__A ) for label in labels] def _UpperCAmelCase ( __A : str ): a_ : Optional[int] = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda __A : [int(__A ) for i in x.split()]} ) a_ : Union[str, Any] = csv._generate_tables([[csv_file_with_int_list]] ) a_ : Dict = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a_ : List[Any] = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict=0.2 , __SCREAMING_SNAKE_CASE : str=0.2 ) -> Any: a_ : int = bp_numa a_ : Dict = bp_numa a_ : Union[str, Any] = bp_numa a_ : List[Any] = conva_get[:2] a_ : Optional[Any] = conva_get[2] a_ : List[str] = size_pa a_ : Optional[int] = rate_w a_ : List[Any] = rate_t a_ : int = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] a_ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) a_ : Optional[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) a_ : Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 a_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 a_ : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: # save model dict with pickle a_ : Optional[int] = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as f: pickle.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(f'Model saved: {save_path}' ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: # read saved model with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as f: a_ : Any = pickle.load(__SCREAMING_SNAKE_CASE ) # noqa: S301 a_ : Any = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) a_ : Union[str, Any] = model_dic.get('''size_pooling1''' ) a_ : Any = model_dic.get('''num_bp1''' ) a_ : List[Any] = model_dic.get('''num_bp2''' ) a_ : List[str] = model_dic.get('''num_bp3''' ) a_ : List[Any] = model_dic.get('''rate_weight''' ) a_ : List[str] = model_dic.get('''rate_thre''' ) # create model instance a_ : Tuple = CNN(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # modify model parameter a_ : List[Any] = model_dic.get('''w_conv1''' ) a_ : Optional[Any] = model_dic.get('''wkj''' ) a_ : int = model_dic.get('''vji''' ) a_ : str = model_dic.get('''thre_conv1''' ) a_ : List[Any] = model_dic.get('''thre_bp2''' ) a_ : Any = model_dic.get('''thre_bp3''' ) return conv_ins def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> str: return 1 / (1 + np.exp(-1 * x )) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: return round(__SCREAMING_SNAKE_CASE , 3 ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: # convolution process a_ : Dict = convs[0] a_ : List[Any] = convs[1] a_ : Dict = np.shape(__SCREAMING_SNAKE_CASE )[0] # get the data slice of original image data, data_focus a_ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , __SCREAMING_SNAKE_CASE ): for j_focus in range(0 , size_data - size_conv + 1 , __SCREAMING_SNAKE_CASE ): a_ : Dict = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__SCREAMING_SNAKE_CASE ) # calculate the feature map of every single kernel, and saved as list of matrix a_ : Union[str, Any] = [] a_ : str = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__SCREAMING_SNAKE_CASE ): a_ : Union[str, Any] = [] for i_focus in range(len(__SCREAMING_SNAKE_CASE ) ): a_ : Any = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__SCREAMING_SNAKE_CASE ) ) a_ : str = np.asmatrix(__SCREAMING_SNAKE_CASE ).reshape( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) data_featuremap.append(__SCREAMING_SNAKE_CASE ) # expanding the data slice to One dimenssion a_ : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__SCREAMING_SNAKE_CASE ) ) a_ : int = np.asarray(__SCREAMING_SNAKE_CASE ) return focus_list, data_featuremap def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str="average_pool" ) -> Any: # pooling process a_ : Any = len(featuremaps[0] ) a_ : Union[str, Any] = int(size_map / size_pooling ) a_ : str = [] for i_map in range(len(__SCREAMING_SNAKE_CASE ) ): a_ : Union[str, Any] = featuremaps[i_map] a_ : Optional[Any] = [] for i_focus in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for j_focus in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a_ : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__SCREAMING_SNAKE_CASE ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = np.asmatrix(__SCREAMING_SNAKE_CASE ).reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) featuremap_pooled.append(__SCREAMING_SNAKE_CASE ) return featuremap_pooled def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: # expanding three dimension data to one dimension list a_ : Optional[Any] = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): a_ : Optional[int] = np.shape(data[i] ) a_ : List[str] = data[i].reshape(1 , shapes[0] * shapes[1] ) a_ : List[Any] = data_listed.getA().tolist()[0] data_expanded.extend(__SCREAMING_SNAKE_CASE ) a_ : int = np.asarray(__SCREAMING_SNAKE_CASE ) return data_expanded def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: # expanding matrix to one dimension list a_ : str = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : List[str] = np.shape(__SCREAMING_SNAKE_CASE ) a_ : Tuple = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> str: a_ : Tuple = [] a_ : Dict = 0 for i_map in range(__SCREAMING_SNAKE_CASE ): a_ : Optional[Any] = np.ones((size_map, size_map) ) for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for j in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a_ : Optional[Any] = pd_pool[ i_pool ] a_ : Dict = i_pool + 1 a_ : Tuple = np.multiply( __SCREAMING_SNAKE_CASE , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(__SCREAMING_SNAKE_CASE ) return pd_all def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=bool ) -> int: # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(__SCREAMING_SNAKE_CASE )) ) print((''' - - Shape: Teach_Data ''', np.shape(__SCREAMING_SNAKE_CASE )) ) a_ : int = 0 a_ : Any = [] a_ : Any = 1_0000 while rp < n_repeat and mse >= error_accuracy: a_ : Optional[Any] = 0 print(f'-------------Learning Time {rp}--------------' ) for p in range(len(__SCREAMING_SNAKE_CASE ) ): # print('------------Learning Image: %d--------------'%p) a_ : List[Any] = np.asmatrix(datas_train[p] ) a_ : str = np.asarray(datas_teach[p] ) a_ , a_ : Optional[Any] = self.convolute( __SCREAMING_SNAKE_CASE , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a_ : str = self.pooling(__SCREAMING_SNAKE_CASE , self.size_poolinga ) a_ : Optional[int] = np.shape(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = self._expand(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = data_bp_input a_ : Optional[Any] = np.dot(__SCREAMING_SNAKE_CASE , self.vji.T ) - self.thre_bpa a_ : Any = self.sig(__SCREAMING_SNAKE_CASE ) a_ : Tuple = np.dot(__SCREAMING_SNAKE_CASE , self.wkj.T ) - self.thre_bpa a_ : List[str] = self.sig(__SCREAMING_SNAKE_CASE ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- a_ : Any = np.multiply( (data_teach - bp_outa) , np.multiply(__SCREAMING_SNAKE_CASE , (1 - bp_outa) ) ) a_ : List[str] = np.multiply( np.dot(__SCREAMING_SNAKE_CASE , self.wkj ) , np.multiply(__SCREAMING_SNAKE_CASE , (1 - bp_outa) ) ) a_ : List[str] = np.dot(__SCREAMING_SNAKE_CASE , self.vji ) a_ : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) a_ : str = pd_conva_pooled.T.getA().tolist() a_ : List[Any] = self._calculate_gradient_from_pool( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): a_ : int = self._expand_mat(pd_conva_all[k_conv] ) a_ : Tuple = self.rate_weight * np.dot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : str = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) a_ : int = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer a_ : Optional[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight a_ : Union[str, Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight a_ : Dict = self.thre_bpa - pd_k_all * self.rate_thre a_ : Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image a_ : Optional[int] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) a_ : Union[str, Any] = rp + 1 a_ : str = error_count / patterns all_mse.append(__SCREAMING_SNAKE_CASE ) def draw_error(): a_ : int = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__SCREAMING_SNAKE_CASE , '''+-''' ) plt.plot(__SCREAMING_SNAKE_CASE , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(__SCREAMING_SNAKE_CASE , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f' - - Mse: {mse:.6f}') ) if draw_e: draw_error() return mse def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Dict: # model predict a_ : List[Any] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(__SCREAMING_SNAKE_CASE )) ) for p in range(len(__SCREAMING_SNAKE_CASE ) ): a_ : Tuple = np.asmatrix(datas_test[p] ) a_ , a_ : Optional[int] = self.convolute( __SCREAMING_SNAKE_CASE , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a_ : Union[str, Any] = self.pooling(__SCREAMING_SNAKE_CASE , self.size_poolinga ) a_ : str = self._expand(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = data_bp_input a_ : Any = bp_outa * self.vji.T - self.thre_bpa a_ : Optional[int] = self.sig(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa a_ : List[Any] = self.sig(__SCREAMING_SNAKE_CASE ) produce_out.extend(bp_outa.getA().tolist() ) a_ : Optional[int] = [list(map(self.do_round , __SCREAMING_SNAKE_CASE ) ) for each in produce_out] return np.asarray(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: # return the data of image after convoluting process so we can check it out a_ : str = np.asmatrix(__SCREAMING_SNAKE_CASE ) a_ , a_ : Optional[Any] = self.convolute( __SCREAMING_SNAKE_CASE , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a_ : int = self.pooling(__SCREAMING_SNAKE_CASE , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
666
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int | float] , __A : int , __A : int ): if len(__A ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(__A ) or left < -len(__A ) or right >= len(__A ) or right < -len(__A ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] a_ : Dict = (left + right) >> 1 # the middle a_ : Any = find_max(__A , __A , __A ) # find max in range[left, mid] a_ : str = find_max(__A , mid + 1 , __A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
666
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
1
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowerCAmelCase = 'bart' __lowerCAmelCase = True @st.cache(allow_output_mutation=__A ) def _UpperCAmelCase ( ): if LOAD_DENSE_INDEX: a_ : Tuple = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a_ : Tuple = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a_ : List[str] = qar_model.eval() else: a_ , a_ : str = (None, None) if MODEL_TYPE == "bart": a_ : List[Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a_ : int = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a_ : List[Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a_ : str = sas_model.eval() else: a_ , a_ : Optional[int] = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__A ) def _UpperCAmelCase ( ): if LOAD_DENSE_INDEX: a_ : Optional[int] = faiss.StandardGpuResources() a_ : List[str] = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a_ : Optional[int] = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) a_ : Optional[int] = faiss.IndexFlatIP(1_28 ) a_ : Dict = faiss.index_cpu_to_gpu(__A , 1 , __A ) wikiaab_gpu_index_flat.add(__A ) # TODO fix for larger GPU else: a_ , a_ : List[Any] = (None, None) a_ : Union[str, Any] = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__A ) def _UpperCAmelCase ( ): a_ : List[str] = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a_ : str = elia['''train_eli5'''] a_ : int = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) a_ : Union[str, Any] = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__A ) return (elia_train, eli5_train_q_index) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = load_indexes() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = load_models() __lowerCAmelCase , __lowerCAmelCase = load_train_data() def _UpperCAmelCase ( __A : Tuple , __A : List[str]=10 ): a_ : List[Any] = embed_questions_for_retrieval([question] , __A , __A ) a_ , a_ : Dict = eli5_train_q_index.search(__A , __A ) a_ : Tuple = [elia_train[int(__A )] for i in I[0]] return nn_examples def _UpperCAmelCase ( __A : Union[str, Any] , __A : Optional[Any]="wiki40b" , __A : List[Any]="dense" , __A : List[Any]=10 ): if source == "none": a_ , a_ : List[Any] = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a_ , a_ : List[Any] = query_qa_dense_index( __A , __A , __A , __A , __A , __A ) else: a_ , a_ : Optional[Any] = query_es_index( __A , __A , index_name='''english_wiki40b_snippets_100w''' , n_results=__A , ) a_ : int = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a_ : str = '''question: {} context: {}'''.format(__A , __A ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __A : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __A : None), } ) def _UpperCAmelCase ( __A : Optional[int] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[str]=64 , __A : Optional[Any]=2_56 , __A : int=False , __A : Optional[Any]=2 , __A : int=0.95 , __A : Optional[Any]=0.8 ): with torch.no_grad(): a_ : Optional[Any] = qa_sas_generate( __A , __A , __A , num_answers=1 , num_beams=__A , min_len=__A , max_len=__A , do_sample=__A , temp=__A , top_p=__A , top_k=__A , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar __lowerCAmelCase = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' __lowerCAmelCase = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowerCAmelCase = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) __lowerCAmelCase = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] __lowerCAmelCase = st.sidebar.checkbox('Demo options') if demo_options: __lowerCAmelCase = st.sidebar.selectbox( '', action_list, index=3, ) __lowerCAmelCase = action_list.index(action_st) __lowerCAmelCase = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) __lowerCAmelCase = show_type == 'Show full text of passages' else: __lowerCAmelCase = 3 __lowerCAmelCase = True __lowerCAmelCase = st.sidebar.checkbox('Retrieval options') if retrieval_options: __lowerCAmelCase = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) __lowerCAmelCase = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) __lowerCAmelCase = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: __lowerCAmelCase = 'wiki40b' __lowerCAmelCase = 'dense' __lowerCAmelCase = 'beam' __lowerCAmelCase = 2 __lowerCAmelCase = 64 __lowerCAmelCase = 256 __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = st.sidebar.checkbox('Generation options') if generate_options: __lowerCAmelCase = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) __lowerCAmelCase = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) __lowerCAmelCase = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __lowerCAmelCase = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __lowerCAmelCase = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowerCAmelCase = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowerCAmelCase = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowerCAmelCase = None # start main text __lowerCAmelCase = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] __lowerCAmelCase = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowerCAmelCase = st.text_input('Enter your question here:', '') else: __lowerCAmelCase = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": __lowerCAmelCase , __lowerCAmelCase = make_support(question, source=wiki_source, method='dense', n_results=10) __lowerCAmelCase , __lowerCAmelCase = make_support(question, source=wiki_source, method='sparse', n_results=10) __lowerCAmelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowerCAmelCase = support_list[:10] __lowerCAmelCase = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: __lowerCAmelCase , __lowerCAmelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowerCAmelCase , __lowerCAmelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): __lowerCAmelCase = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) __lowerCAmelCase = res[1].strip() if sec_titles == "": __lowerCAmelCase = '[{}]({})'.format(res[0], wiki_url) else: __lowerCAmelCase = sec_titles.split(' & ') __lowerCAmelCase = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: __lowerCAmelCase = find_nearest_training(question) __lowerCAmelCase = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) __lowerCAmelCase = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) __lowerCAmelCase = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
666
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
1
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCAmelCase = False __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = 'ybelkada/fonts' def _UpperCAmelCase ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _UpperCAmelCase ( __A : Any , __A : Union[str, Any] , __A : int ): requires_backends(__A , ['''torch'''] ) _check_torch_version() a_ : Union[str, Any] = image_tensor.unsqueeze(0 ) a_ : List[str] = torch.nn.functional.unfold(__A , (patch_height, patch_width) , stride=(patch_height, patch_width) ) a_ : List[str] = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , __A , __A , -1 ) a_ : Any = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _UpperCAmelCase ( __A : str , __A : int = 36 , __A : str = "black" , __A : str = "white" , __A : int = 5 , __A : int = 5 , __A : int = 5 , __A : int = 5 , __A : Optional[bytes] = None , __A : Optional[str] = None , ): requires_backends(__A , '''vision''' ) # Add new lines so that each line is no more than 80 characters. a_ : List[Any] = textwrap.TextWrapper(width=80 ) a_ : int = wrapper.wrap(text=__A ) a_ : Optional[Any] = '''\n'''.join(__A ) if font_bytes is not None and font_path is None: a_ : List[Any] = io.BytesIO(__A ) elif font_path is not None: a_ : Any = font_path else: a_ : int = hf_hub_download(__A , '''Arial.TTF''' ) a_ : Optional[Any] = ImageFont.truetype(__A , encoding='''UTF-8''' , size=__A ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. a_ : Tuple = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , __A ) ) a_ , a_ , a_ , a_ : Optional[Any] = temp_draw.textbbox((0, 0) , __A , __A ) # Create the actual image with a bit of padding around the text. a_ : Tuple = text_width + left_padding + right_padding a_ : int = text_height + top_padding + bottom_padding a_ : Union[str, Any] = Image.new('''RGB''' , (image_width, image_height) , __A ) a_ : Dict = ImageDraw.Draw(__A ) draw.text(xy=(left_padding, top_padding) , text=__A , fill=__A , font=__A ) return image def _UpperCAmelCase ( __A : np.ndarray , __A : str , **__A : int ): requires_backends(__A , '''vision''' ) # Convert to PIL image if necessary a_ : Dict = to_pil_image(__A ) a_ : int = render_text(__A , **__A ) a_ : List[Any] = max(header_image.width , image.width ) a_ : List[Any] = int(image.height * (new_width / image.width) ) a_ : Optional[int] = int(header_image.height * (new_width / header_image.width) ) a_ : Union[str, Any] = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary a_ : Optional[int] = to_numpy_array(__A ) if infer_channel_dimension_format(__A ) == ChannelDimension.LAST: a_ : Optional[Any] = to_channel_dimension_format(__A , ChannelDimension.LAST ) return new_image class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = ["flattened_patches"] def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : int = 2048 , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> None: super().__init__(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} a_ : int = do_normalize a_ : Any = do_convert_rgb a_ : List[Any] = max_patches a_ : Any = is_vqa def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : dict , **__SCREAMING_SNAKE_CASE : List[Any] ) -> np.ndarray: requires_backends(self.extract_flattened_patches , '''torch''' ) _check_torch_version() # convert to torch a_ : str = to_channel_dimension_format(__SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) a_ : Any = torch.from_numpy(__SCREAMING_SNAKE_CASE ) a_ , a_ : int = patch_size['''height'''], patch_size['''width'''] a_ , a_ : Dict = get_image_size(__SCREAMING_SNAKE_CASE ) # maximize scale s.t. a_ : Optional[Any] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) a_ : Optional[int] = max(min(math.floor(scale * image_height / patch_height ) , __SCREAMING_SNAKE_CASE ) , 1 ) a_ : List[Any] = max(min(math.floor(scale * image_width / patch_width ) , __SCREAMING_SNAKE_CASE ) , 1 ) a_ : List[Any] = max(num_feasible_rows * patch_height , 1 ) a_ : Dict = max(num_feasible_cols * patch_width , 1 ) a_ : int = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE , antialias=__SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] a_ : Optional[int] = torch_extract_patches(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : int = patches.shape a_ : List[Any] = patches_shape[1] a_ : str = patches_shape[2] a_ : Any = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] a_ : int = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] a_ : List[Any] = torch.arange(__SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , __SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) a_ : List[Any] = torch.arange(__SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(__SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] a_ : Union[str, Any] = row_ids.to(torch.floataa ) a_ : Optional[int] = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] a_ : Dict = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] a_ : Optional[Any] = torch.nn.functional.pad(__SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() a_ : Tuple = to_numpy_array(__SCREAMING_SNAKE_CASE ) return result def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> np.ndarray: if image.dtype == np.uinta: a_ : Dict = image.astype(np.floataa ) # take mean across the whole `image` a_ : Any = np.mean(__SCREAMING_SNAKE_CASE ) a_ : Any = np.std(__SCREAMING_SNAKE_CASE ) a_ : Dict = max(__SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : List[str] , ) -> ImageInput: a_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize a_ : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a_ : Dict = patch_size if patch_size is not None else self.patch_size a_ : Union[str, Any] = max_patches if max_patches is not None else self.max_patches a_ : Union[str, Any] = self.is_vqa if kwargs.get('''data_format''' , __SCREAMING_SNAKE_CASE ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) a_ : int = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: a_ : Optional[Any] = [convert_to_rgb(__SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. a_ : str = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) a_ : int = kwargs.pop('''font_bytes''' , __SCREAMING_SNAKE_CASE ) a_ : Tuple = kwargs.pop('''font_path''' , __SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a_ : str = [header_text] * len(__SCREAMING_SNAKE_CASE ) a_ : int = [ render_header(__SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=__SCREAMING_SNAKE_CASE , font_path=__SCREAMING_SNAKE_CASE ) for i, image in enumerate(__SCREAMING_SNAKE_CASE ) ] if do_normalize: a_ : int = [self.normalize(image=__SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute a_ : Tuple = [ self.extract_flattened_patches(image=__SCREAMING_SNAKE_CASE , max_patches=__SCREAMING_SNAKE_CASE , patch_size=__SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy a_ : int = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] a_ : Dict = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_outputs
666
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
1
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=None ) -> List[str]: # Input as list a_ : Tuple = list(poly_a or [0] )[:] a_ : int = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() a_ : str = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() a_ : Tuple = len(self.polyB ) # Add 0 to make lengths equal a power of 2 a_ : Tuple = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform a_ : Optional[Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product a_ : int = self.__multiply() def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict ) -> List[str]: a_ : Tuple = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(__SCREAMING_SNAKE_CASE ) <= 1: return dft[0] # a_ : Union[str, Any] = self.c_max_length // 2 while next_ncol > 0: a_ : List[str] = [[] for i in range(__SCREAMING_SNAKE_CASE )] a_ : Optional[Any] = self.root**next_ncol # First half of next step a_ : Optional[int] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__SCREAMING_SNAKE_CASE ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step a_ : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__SCREAMING_SNAKE_CASE ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update a_ : Any = new_dft a_ : str = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : List[Any] = self.__dft('''A''' ) a_ : Dict = self.__dft('''B''' ) a_ : Union[str, Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT a_ : List[Any] = 2 while next_ncol <= self.c_max_length: a_ : int = [[] for i in range(__SCREAMING_SNAKE_CASE )] a_ : Tuple = self.root ** (next_ncol // 2) a_ : Dict = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update a_ : Optional[Any] = new_inverse_c next_ncol *= 2 # Unpack a_ : Optional[int] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Optional[int] ) -> List[Any]: a_ : Any = '''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) a_ : Any = '''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) a_ : Optional[Any] = '''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=99 , __SCREAMING_SNAKE_CASE : List[Any]=64 , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : List[Any]=5 , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : Tuple=37 , __SCREAMING_SNAKE_CASE : List[str]="gelu" , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : List[str]=512 , __SCREAMING_SNAKE_CASE : List[str]=16 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : Optional[int]=None , ) -> Dict: a_ : int = parent a_ : List[Any] = batch_size a_ : Tuple = seq_length a_ : int = is_training a_ : Dict = use_input_mask a_ : Optional[int] = use_token_type_ids a_ : Optional[int] = use_labels a_ : Dict = vocab_size a_ : Union[str, Any] = hidden_size a_ : Optional[Any] = embedding_size a_ : int = num_hidden_layers a_ : str = num_attention_heads a_ : Optional[int] = intermediate_size a_ : List[Any] = hidden_act a_ : str = hidden_dropout_prob a_ : List[str] = attention_probs_dropout_prob a_ : Optional[Any] = max_position_embeddings a_ : List[str] = type_vocab_size a_ : Optional[int] = type_sequence_label_size a_ : Dict = initializer_range a_ : str = num_labels a_ : int = num_choices a_ : Tuple = scope def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : List[Any] = None if self.use_input_mask: a_ : int = random_attention_mask([self.batch_size, self.seq_length] ) a_ : str = None if self.use_token_type_ids: a_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : Optional[Any] = None a_ : Optional[Any] = None a_ : Union[str, Any] = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : int = ids_tensor([self.batch_size] , self.num_choices ) a_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: a_ : List[str] = MobileBertModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : List[str] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Tuple = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: a_ : Any = MobileBertForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple ) -> Any: a_ : int = MobileBertForNextSentencePrediction(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Union[str, Any] = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: a_ : Dict = MobileBertForPreTraining(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Union[str, Any] = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , next_sentence_label=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: a_ : List[str] = MobileBertForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Any = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] ) -> Any: a_ : str = self.num_labels a_ : Tuple = MobileBertForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str ) -> List[Any]: a_ : Optional[int] = self.num_labels a_ : Tuple = MobileBertForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> Dict: a_ : Dict = self.num_choices a_ : List[str] = MobileBertForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : List[str] = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: a_ : Tuple = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : List[str] = config_and_inputs a_ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) snake_case__ = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=False ) -> List[str]: a_ : int = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(__SCREAMING_SNAKE_CASE ): a_ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) a_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Any ) -> int: a_ : Dict = MobileBertModelTester(self ) a_ : Union[str, Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( __A : Dict ): return torch.tensor( __A , dtype=torch.long , device=__A , ) __lowerCAmelCase = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: a_ : Union[str, Any] = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(__SCREAMING_SNAKE_CASE ) a_ : Dict = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): a_ : List[str] = model(__SCREAMING_SNAKE_CASE )[0] a_ : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) a_ : List[str] = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ] , device=__SCREAMING_SNAKE_CASE , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE a_ : Optional[Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) a_ : str = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
666
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "mobilenet_v2" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Any=224 , __SCREAMING_SNAKE_CASE : Optional[Any]=1.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=8 , __SCREAMING_SNAKE_CASE : str=8 , __SCREAMING_SNAKE_CASE : Optional[Any]=6 , __SCREAMING_SNAKE_CASE : str=32 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Any="relu6" , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=0.8 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=0.001 , __SCREAMING_SNAKE_CASE : str=255 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> int: super().__init__(**__SCREAMING_SNAKE_CASE ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) a_ : List[str] = num_channels a_ : Optional[Any] = image_size a_ : List[str] = depth_multiplier a_ : Any = depth_divisible_by a_ : Optional[int] = min_depth a_ : List[str] = expand_ratio a_ : Union[str, Any] = output_stride a_ : Any = first_layer_is_expansion a_ : Union[str, Any] = finegrained_output a_ : Tuple = hidden_act a_ : Optional[Any] = tf_padding a_ : Optional[int] = classifier_dropout_prob a_ : Optional[Any] = initializer_range a_ : Union[str, Any] = layer_norm_eps a_ : Any = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float: return 1e-4
666
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Dict ) -> None: warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __lowerCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _UpperCAmelCase ( __A : Optional[int] , __A : str , __A : Dict , __A : List[Any] , __A : List[Any] ): for attribute in key.split('''.''' ): a_ : int = getattr(__A , __A ) if weight_type is not None: a_ : Tuple = getattr(__A , __A ).shape else: a_ : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": a_ : Optional[int] = value elif weight_type == "weight_g": a_ : List[Any] = value elif weight_type == "weight_v": a_ : Any = value elif weight_type == "bias": a_ : List[Any] = value elif weight_type == "running_mean": a_ : str = value elif weight_type == "running_var": a_ : List[str] = value elif weight_type == "num_batches_tracked": a_ : Optional[Any] = value elif weight_type == "inv_freq": a_ : Union[str, Any] = value else: a_ : Tuple = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _UpperCAmelCase ( __A : str , __A : Union[str, Any] , __A : int ): a_ : List[str] = [] a_ : List[str] = fairseq_model.state_dict() a_ : Union[str, Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): a_ : Optional[int] = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) a_ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): a_ : Union[str, Any] = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: a_ : Tuple = True if "*" in mapped_key: a_ : Any = name.split(__A )[0].split('''.''' )[-2] a_ : Tuple = mapped_key.replace('''*''' , __A ) if "pos_bias_u" in name: a_ : List[Any] = None elif "pos_bias_v" in name: a_ : List[Any] = None elif "weight_g" in name: a_ : str = '''weight_g''' elif "weight_v" in name: a_ : List[Any] = '''weight_v''' elif "bias" in name: a_ : List[str] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a_ : List[Any] = '''weight''' elif "running_mean" in name: a_ : Any = '''running_mean''' elif "inv_freq" in name: a_ : List[str] = '''inv_freq''' elif "running_var" in name: a_ : Optional[int] = '''running_var''' elif "num_batches_tracked" in name: a_ : Optional[Any] = '''num_batches_tracked''' else: a_ : Dict = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f'Unused weights: {unused_weights}' ) def _UpperCAmelCase ( __A : str , __A : int , __A : int , __A : List[str] , __A : int ): a_ : Optional[int] = full_name.split('''conv_layers.''' )[-1] a_ : Optional[Any] = name.split('''.''' ) a_ : List[str] = int(items[0] ) a_ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a_ : List[Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a_ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) a_ : List[str] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) a_ : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__A ) @torch.no_grad() def _UpperCAmelCase ( __A : str , __A : int , __A : Dict=None , __A : Tuple=None , __A : int=True ): if config_path is not None: a_ : Dict = WavaVecaConformerConfig.from_pretrained(__A , hidden_act='''swish''' ) else: a_ : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: a_ : Union[str, Any] = '''rotary''' if is_finetuned: if dict_path: a_ : Tuple = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a_ : Dict = target_dict.pad_index a_ : Union[str, Any] = target_dict.bos_index a_ : Dict = target_dict.eos_index a_ : Union[str, Any] = len(target_dict.symbols ) a_ : str = os.path.join(__A , '''vocab.json''' ) if not os.path.isdir(__A ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__A ) ) return os.makedirs(__A , exist_ok=__A ) a_ : Dict = target_dict.indices # fairseq has the <pad> and <s> switched a_ : Union[str, Any] = 0 a_ : Dict = 1 with open(__A , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__A , __A ) a_ : Any = WavaVecaCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__A , ) a_ : Optional[Any] = True if config.feat_extract_norm == '''layer''' else False a_ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) a_ : Dict = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A ) processor.save_pretrained(__A ) a_ : Dict = WavaVecaConformerForCTC(__A ) else: a_ : Any = WavaVecaConformerForPreTraining(__A ) if is_finetuned: a_ , a_ , a_ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: a_ : str = argparse.Namespace(task='''audio_pretraining''' ) a_ : str = fairseq.tasks.setup_task(__A ) a_ , a_ , a_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__A ) a_ : Optional[int] = model[0].eval() recursively_load_weights(__A , __A , not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __lowerCAmelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
666
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] snake_case__ = RobertaTokenizer def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : str="replace" , __SCREAMING_SNAKE_CASE : Optional[Any]="<s>" , __SCREAMING_SNAKE_CASE : Optional[int]="</s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[Any]="<s>" , __SCREAMING_SNAKE_CASE : int="<unk>" , __SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , __SCREAMING_SNAKE_CASE : Optional[int]="<mask>" , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : int=True , **__SCREAMING_SNAKE_CASE : str , ) -> Optional[Any]: super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , errors=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) a_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: a_ : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) a_ : str = add_prefix_space a_ : Dict = pre_tok_class(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = add_prefix_space a_ : str = '''post_processor''' a_ : Any = getattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: a_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a_ : List[str] = tuple(state['''sep'''] ) if "cls" in state: a_ : List[str] = tuple(state['''cls'''] ) a_ : Any = False if state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: a_ : Union[str, Any] = add_prefix_space a_ : Optional[int] = True if state.get('''trim_offsets''' , __SCREAMING_SNAKE_CASE ) != trim_offsets: a_ : Optional[int] = trim_offsets a_ : List[Any] = True if changes_to_apply: a_ : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , state.pop('''type''' ) ) a_ : str = component_class(**__SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> Tuple: a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else value a_ : List[str] = value def SCREAMING_SNAKE_CASE ( self : Optional[int] , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : List[str] ) -> BatchEncoding: a_ : List[str] = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> BatchEncoding: a_ : str = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: a_ : str = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=None ) -> List[Any]: a_ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : int = [self.sep_token_id] a_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
666
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
1
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "visual_bert" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : str=3_0522 , __SCREAMING_SNAKE_CASE : Union[str, Any]=768 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : Union[str, Any]=12 , __SCREAMING_SNAKE_CASE : Dict=12 , __SCREAMING_SNAKE_CASE : List[Any]=3072 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=512 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Dict=1e-12 , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : List[Any]=2 , **__SCREAMING_SNAKE_CASE : int , ) -> str: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : List[str] = vocab_size a_ : Dict = max_position_embeddings a_ : int = hidden_size a_ : List[str] = visual_embedding_dim a_ : str = num_hidden_layers a_ : Dict = num_attention_heads a_ : Dict = intermediate_size a_ : Optional[int] = hidden_act a_ : List[str] = hidden_dropout_prob a_ : Optional[int] = attention_probs_dropout_prob a_ : Optional[Any] = initializer_range a_ : int = type_vocab_size a_ : Union[str, Any] = layer_norm_eps a_ : List[Any] = bypass_transformer a_ : Union[str, Any] = special_visual_initialize
666
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
1
'''simple docstring''' import json import sys def _UpperCAmelCase ( __A : Tuple , __A : Optional[int] ): with open(__A , encoding='''utf-8''' ) as f: a_ : List[str] = json.load(__A ) a_ : Tuple = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(__A ): a_ : Tuple = results[benchmark_name] a_ : List[str] = benchmark_name.split('''/''' )[-1] output_md.append(f'### Benchmark: {benchmark_file_name}' ) a_ : Optional[Any] = '''| metric |''' a_ : Dict = '''|--------|''' a_ : Dict = '''| new / old (diff) |''' for metric_name in sorted(__A ): a_ : List[str] = benchmark_res[metric_name] a_ : Union[str, Any] = metric_vals['''new'''] a_ : List[Any] = metric_vals.get('''old''' , __A ) a_ : Any = metric_vals.get('''diff''' , __A ) a_ : Any = f' {new_val:f}' if isinstance(__A , (int, float) ) else '''None''' if old_val is not None: val_str += f' / {old_val:f}' if isinstance(__A , (int, float) ) else "None" if dif_val is not None: val_str += f' ({dif_val:f})' if isinstance(__A , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(__A ) ) if __name__ == "__main__": __lowerCAmelCase = sys.argv[1] __lowerCAmelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
666
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : int , __A : int ): if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) a_ : List[str] = number_of_bytes // partitions a_ : List[str] = [] for i in range(__A ): a_ : int = i * bytes_per_partition + 1 a_ : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : Tuple , __A : Any ): print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__A ): for j in range(__A ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def _UpperCAmelCase ( __A : Dict , __A : Optional[int] ): a_ : Dict = [[float('''inf''' ) for _ in range(__A )] for _ in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Tuple = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__A ): # looping through rows of graph array for i in range(__A ): # looping through columns of graph array for j in range(__A ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): a_ : Tuple = dist[i][k] + dist[k][j] _print_dist(__A , __A ) return dist, v if __name__ == "__main__": __lowerCAmelCase = int(input('Enter number of vertices: ')) __lowerCAmelCase = int(input('Enter number of edges: ')) __lowerCAmelCase = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): __lowerCAmelCase = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) __lowerCAmelCase = int(input('Enter source:')) __lowerCAmelCase = int(input('Enter destination:')) __lowerCAmelCase = float(input('Enter weight:')) __lowerCAmelCase = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
666
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
1
'''simple docstring''' def _UpperCAmelCase ( __A : int ): if not isinstance(__A , __A ): raise TypeError('''Input value must be an \'int\' type''' ) a_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
666
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
1
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = KandinskyVaaPriorPipeline snake_case__ = ["prompt"] snake_case__ = ["prompt", "negative_prompt"] snake_case__ = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] snake_case__ = False @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: return 32 @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: return 32 @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: return 100 @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: torch.manual_seed(0 ) a_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: torch.manual_seed(0 ) a_ : str = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } a_ : Dict = PriorTransformer(**__SCREAMING_SNAKE_CASE ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a_ : Any = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: torch.manual_seed(0 ) a_ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a_ : Optional[int] = CLIPVisionModelWithProjection(__SCREAMING_SNAKE_CASE ) return model @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: a_ : Optional[int] = CLIPImageProcessor( crop_size=224 , do_center_crop=__SCREAMING_SNAKE_CASE , do_normalize=__SCREAMING_SNAKE_CASE , do_resize=__SCREAMING_SNAKE_CASE , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : Dict = self.dummy_prior a_ : int = self.dummy_image_encoder a_ : List[str] = self.dummy_text_encoder a_ : Tuple = self.dummy_tokenizer a_ : int = self.dummy_image_processor a_ : Optional[int] = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=__SCREAMING_SNAKE_CASE , clip_sample_range=10.0 , ) a_ : Optional[Any] = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any]=0 ) -> Tuple: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : int = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: a_ : str = '''cpu''' a_ : str = self.get_dummy_components() a_ : Dict = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = output.image_embeds a_ : Optional[int] = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0] a_ : Any = image[0, -10:] a_ : List[str] = image_from_tuple[0, -10:] assert image.shape == (1, 32) a_ : List[Any] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: a_ : Union[str, Any] = torch_device == '''cpu''' a_ : Optional[Any] = True a_ : Dict = False self._test_inference_batch_single_identical( test_max_difference=__SCREAMING_SNAKE_CASE , relax_max_difference=__SCREAMING_SNAKE_CASE , test_mean_pixel_difference=__SCREAMING_SNAKE_CASE , ) @skip_mps def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: a_ : str = torch_device == '''cpu''' a_ : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=__SCREAMING_SNAKE_CASE , test_mean_pixel_difference=__SCREAMING_SNAKE_CASE , )
666
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
1
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __lowerCAmelCase = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def _UpperCAmelCase ( __A : str = "dhaka" , __A : int = 5 ): a_ : Union[str, Any] = min(__A , 50 ) # Prevent abuse! a_ : Optional[int] = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } a_ : List[str] = requests.get('''https://www.google.com/search''' , params=__A , headers=__A ) a_ : Tuple = BeautifulSoup(html.text , '''html.parser''' ) a_ : int = ''''''.join( re.findall(R'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) a_ : int = json.dumps(__A ) a_ : List[str] = json.loads(__A ) a_ : Any = re.findall( R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , __A , ) if not matched_google_image_data: return 0 a_ : List[Any] = re.sub( R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(__A ) , ) a_ : List[Any] = re.findall( R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , __A , ) for index, fixed_full_res_image in enumerate(__A ): if index >= max_images: return index a_ : List[Any] = bytes(__A , '''ascii''' ).decode( '''unicode-escape''' ) a_ : List[str] = bytes(__A , '''ascii''' ).decode( '''unicode-escape''' ) a_ : Dict = urllib.request.build_opener() a_ : List[str] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(__A ) a_ : Any = f'query_{query.replace(" " , "_" )}' if not os.path.exists(__A ): os.makedirs(__A ) urllib.request.urlretrieve( # noqa: S310 __A , f'{path_name}/original_size_img_{index}.jpg' ) return index if __name__ == "__main__": try: __lowerCAmelCase = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print('Please provide a search term.') raise
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: a_ : int = tempfile.mkdtemp() a_ : str = SamImageProcessor() a_ : Optional[int] = SamProcessor(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).image_processor def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a_ : List[str] = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : int ) -> str: a_ : List[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a_ : Optional[int] = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) a_ : Dict = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: a_ : List[Any] = self.get_image_processor() a_ : List[Any] = SamProcessor(image_processor=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.prepare_image_inputs() a_ : int = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) a_ : Union[str, Any] = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : Tuple = self.get_image_processor() a_ : List[str] = SamProcessor(image_processor=__SCREAMING_SNAKE_CASE ) a_ : Any = [torch.ones((1, 3, 5, 5) )] a_ : Tuple = [[1764, 2646]] a_ : List[str] = [[683, 1024]] a_ : Dict = processor.post_process_masks(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) a_ : int = processor.post_process_masks( __SCREAMING_SNAKE_CASE , torch.tensor(__SCREAMING_SNAKE_CASE ) , torch.tensor(__SCREAMING_SNAKE_CASE ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np a_ : Dict = [np.ones((1, 3, 5, 5) )] a_ : int = processor.post_process_masks(__SCREAMING_SNAKE_CASE , np.array(__SCREAMING_SNAKE_CASE ) , np.array(__SCREAMING_SNAKE_CASE ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) a_ : Union[str, Any] = [[1, 0], [0, 1]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): a_ : Dict = processor.post_process_masks(__SCREAMING_SNAKE_CASE , np.array(__SCREAMING_SNAKE_CASE ) , np.array(__SCREAMING_SNAKE_CASE ) ) @require_vision @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : Any = tempfile.mkdtemp() a_ : str = SamImageProcessor() a_ : Optional[Any] = SamProcessor(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict , **__SCREAMING_SNAKE_CASE : str ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).image_processor def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a_ : List[str] = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: a_ : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a_ : Union[str, Any] = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) a_ : Any = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : str = self.get_image_processor() a_ : List[str] = SamProcessor(image_processor=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = self.prepare_image_inputs() a_ : Union[str, Any] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) a_ : str = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : Optional[int] = self.get_image_processor() a_ : str = SamProcessor(image_processor=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = [tf.ones((1, 3, 5, 5) )] a_ : Optional[Any] = [[1764, 2646]] a_ : Union[str, Any] = [[683, 1024]] a_ : Optional[int] = processor.post_process_masks(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) a_ : List[Any] = processor.post_process_masks( __SCREAMING_SNAKE_CASE , tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) , tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np a_ : int = [np.ones((1, 3, 5, 5) )] a_ : int = processor.post_process_masks( __SCREAMING_SNAKE_CASE , np.array(__SCREAMING_SNAKE_CASE ) , np.array(__SCREAMING_SNAKE_CASE ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) a_ : Tuple = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): a_ : Optional[Any] = processor.post_process_masks( __SCREAMING_SNAKE_CASE , np.array(__SCREAMING_SNAKE_CASE ) , np.array(__SCREAMING_SNAKE_CASE ) , return_tensors='''tf''' ) @require_vision @require_torchvision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : List[Any] = tempfile.mkdtemp() a_ : Dict = SamImageProcessor() a_ : List[str] = SamProcessor(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **__SCREAMING_SNAKE_CASE : Tuple ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).image_processor def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a_ : List[str] = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : int = self.get_image_processor() a_ : Tuple = SamProcessor(image_processor=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) a_ : List[str] = [tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )] a_ : Optional[Any] = [torch.tensor(__SCREAMING_SNAKE_CASE )] a_ : int = [[1764, 2646]] a_ : Any = [[683, 1024]] a_ : Dict = processor.post_process_masks( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) a_ : Tuple = processor.post_process_masks( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: a_ : Optional[Any] = self.get_image_processor() a_ : Optional[Any] = SamProcessor(image_processor=__SCREAMING_SNAKE_CASE ) a_ : str = self.prepare_image_inputs() a_ : Dict = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' )['''pixel_values'''].numpy() a_ : List[str] = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' )['''pixel_values'''].numpy() a_ : List[Any] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' )['''pixel_values'''].numpy() a_ : Any = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: a_ : Tuple = 1 a_ : Optional[Any] = 3 a_ : List[Any] = (32, 32) a_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__SCREAMING_SNAKE_CASE ) return image @property def SCREAMING_SNAKE_CASE ( self : str ) -> int: torch.manual_seed(0 ) a_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: torch.manual_seed(0 ) a_ : Tuple = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: def extract(*__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Any ): class SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] ) -> int: a_ : List[str] = torch.ones([0] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: self.pixel_values.to(__SCREAMING_SNAKE_CASE ) return self return Out() return extract def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Optional[int] = self.dummy_cond_unet a_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) a_ : Any = self.dummy_vae a_ : Optional[int] = self.dummy_text_encoder a_ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) a_ : Optional[int] = 77 a_ : int = self.dummy_image.to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk a_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Dict = '''A painting of a squirrel eating a burger''' a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Optional[Any] = alt_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__SCREAMING_SNAKE_CASE , ) a_ : int = output.images a_ : List[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : List[str] = alt_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] a_ : Optional[Any] = image[0, -3:, -3:, -1] a_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[Any] = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: a_ : Optional[int] = self.dummy_cond_unet a_ : List[Any] = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) a_ : int = self.dummy_vae a_ : Optional[int] = self.dummy_text_encoder a_ : Optional[int] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) a_ : List[str] = 77 a_ : Tuple = self.dummy_image.to(__SCREAMING_SNAKE_CASE ) # put models in fp16 a_ : str = unet.half() a_ : int = vae.half() a_ : str = bert.half() # make sure here that pndm scheduler skips prk a_ : int = AltDiffusionImgaImgPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__SCREAMING_SNAKE_CASE ) a_ : Any = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = '''A painting of a squirrel eating a burger''' a_ : Any = torch.manual_seed(0 ) a_ : int = alt_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' , image=__SCREAMING_SNAKE_CASE , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: a_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 a_ : List[str] = init_image.resize((760, 504) ) a_ : str = '''BAAI/AltDiffusion''' a_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( __SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() a_ : Dict = '''A fantasy landscape, trending on artstation''' a_ : Any = torch.manual_seed(0 ) a_ : str = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , ) a_ : Optional[Any] = output.images[0] a_ : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) a_ : Union[str, Any] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: a_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) a_ : Optional[int] = init_image.resize((768, 512) ) a_ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) a_ : Union[str, Any] = '''BAAI/AltDiffusion''' a_ : str = AltDiffusionImgaImgPipeline.from_pretrained( __SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() a_ : Optional[Any] = '''A fantasy landscape, trending on artstation''' a_ : Union[str, Any] = torch.manual_seed(0 ) a_ : Tuple = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , ) a_ : List[Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
666
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCAmelCase = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: snake_case__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: snake_case__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: a_ : Dict = ZeroShotClassificationPipeline( model=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str ) -> Any: a_ : List[str] = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , {'''sequence''': ANY(__SCREAMING_SNAKE_CASE ), '''labels''': [ANY(__SCREAMING_SNAKE_CASE )], '''scores''': [ANY(__SCREAMING_SNAKE_CASE )]} ) # No kwarg a_ : Any = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(__SCREAMING_SNAKE_CASE , {'''sequence''': ANY(__SCREAMING_SNAKE_CASE ), '''labels''': [ANY(__SCREAMING_SNAKE_CASE )], '''scores''': [ANY(__SCREAMING_SNAKE_CASE )]} ) a_ : List[Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(__SCREAMING_SNAKE_CASE , {'''sequence''': ANY(__SCREAMING_SNAKE_CASE ), '''labels''': [ANY(__SCREAMING_SNAKE_CASE )], '''scores''': [ANY(__SCREAMING_SNAKE_CASE )]} ) a_ : int = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( __SCREAMING_SNAKE_CASE , {'''sequence''': ANY(__SCREAMING_SNAKE_CASE ), '''labels''': [ANY(__SCREAMING_SNAKE_CASE ), ANY(__SCREAMING_SNAKE_CASE )], '''scores''': [ANY(__SCREAMING_SNAKE_CASE ), ANY(__SCREAMING_SNAKE_CASE )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) a_ : List[str] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( __SCREAMING_SNAKE_CASE , {'''sequence''': ANY(__SCREAMING_SNAKE_CASE ), '''labels''': [ANY(__SCREAMING_SNAKE_CASE ), ANY(__SCREAMING_SNAKE_CASE )], '''scores''': [ANY(__SCREAMING_SNAKE_CASE ), ANY(__SCREAMING_SNAKE_CASE )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) a_ : Union[str, Any] = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , {'''sequence''': ANY(__SCREAMING_SNAKE_CASE ), '''labels''': [ANY(__SCREAMING_SNAKE_CASE )], '''scores''': [ANY(__SCREAMING_SNAKE_CASE )]} ) # https://github.com/huggingface/transformers/issues/13846 a_ : List[str] = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( __SCREAMING_SNAKE_CASE , [ {'''sequence''': ANY(__SCREAMING_SNAKE_CASE ), '''labels''': [ANY(__SCREAMING_SNAKE_CASE ), ANY(__SCREAMING_SNAKE_CASE )], '''scores''': [ANY(__SCREAMING_SNAKE_CASE ), ANY(__SCREAMING_SNAKE_CASE )]} for i in range(1 ) ] , ) a_ : Dict = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( __SCREAMING_SNAKE_CASE , [ {'''sequence''': ANY(__SCREAMING_SNAKE_CASE ), '''labels''': [ANY(__SCREAMING_SNAKE_CASE ), ANY(__SCREAMING_SNAKE_CASE )], '''scores''': [ANY(__SCREAMING_SNAKE_CASE ), ANY(__SCREAMING_SNAKE_CASE )]} for i in range(2 ) ] , ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): classifier(__SCREAMING_SNAKE_CASE , candidate_labels='''politics''' ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): classifier('''Who are you voting for in 2020?''' , candidate_labels=__SCREAMING_SNAKE_CASE ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=__SCREAMING_SNAKE_CASE , ) self.run_entailment_id(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Pipeline ) -> Tuple: a_ : int = zero_shot_classifier.model.config a_ : Union[str, Any] = config.labelaid a_ : List[Any] = zero_shot_classifier.entailment_id a_ : Tuple = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) a_ : Optional[Any] = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) a_ : Optional[int] = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) a_ : str = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) a_ : Optional[int] = original_labelaid self.assertEqual(__SCREAMING_SNAKE_CASE , zero_shot_classifier.entailment_id ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: a_ : Optional[int] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: a_ : Any = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) a_ : int = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: a_ : int = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) a_ : Any = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def SCREAMING_SNAKE_CASE ( self : str ) -> str: a_ : Tuple = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) a_ : Dict = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) a_ : Any = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__SCREAMING_SNAKE_CASE , ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: a_ : Tuple = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) a_ : int = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) a_ : List[str] = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__SCREAMING_SNAKE_CASE , ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
666
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
1
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase = logging.getLogger(__name__) __lowerCAmelCase = tf.data.AUTOTUNE def _UpperCAmelCase ( ): a_ : Optional[Any] = argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=__A , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=__A , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=__A , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=__A , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=__A , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=__A , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=__A , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=__A , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=__A , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=__A , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=__A , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=__A , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=__A , default=5_12 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=__A , default=0.15 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=__A , required=__A , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=__A , help='''Model ID to upload to on the Hugging Face Hub.''' ) a_ : Optional[Any] = parser.parse_args() return args def _UpperCAmelCase ( __A : Dict ): try: if args.tpu_name: a_ : Any = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: a_ : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(__A ) tf.tpu.experimental.initialize_tpu_system(__A ) return tpu def _UpperCAmelCase ( __A : int ): a_ : Tuple = 0 for file in file_list: a_ : Optional[Any] = file.split('''/''' )[-1] a_ : Optional[int] = re.search(R'''-\d+-(\d+)\.tfrecord''' , __A ).group(1 ) a_ : Optional[Any] = int(__A ) num_samples += sample_count return num_samples def _UpperCAmelCase ( __A : Union[str, Any] , __A : Any , __A : List[Any] , __A : Tuple , __A : List[Any] , __A : Optional[Any]=None ): a_ : str = count_samples(__A ) a_ : Any = tf.data.Dataset.from_tensor_slices(__A ) if shuffle: a_ : Union[str, Any] = dataset.shuffle(len(__A ) ) a_ : str = tf.data.TFRecordDataset(__A , num_parallel_reads=__A ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here a_ : Tuple = dataset.apply(tf.data.experimental.assert_cardinality(__A ) ) a_ : str = dataset.map(__A , num_parallel_calls=__A ) if shuffle: assert shuffle_buffer_size is not None a_ : Optional[int] = dataset.shuffle(args.shuffle_buffer_size ) a_ : Any = dataset.batch(__A , drop_remainder=__A ) a_ : Optional[Any] = dataset.map(__A , num_parallel_calls=__A ) a_ : Optional[int] = dataset.prefetch(__A ) return dataset def _UpperCAmelCase ( __A : List[Any] ): if not args.no_tpu: a_ : Optional[int] = initialize_tpu(__A ) a_ : Dict = tf.distribute.TPUStrategy(__A ) else: a_ : Dict = tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) a_ : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer ) a_ : Any = AutoConfig.from_pretrained(args.pretrained_model_config ) a_ : Tuple = tokenizer.vocab_size a_ : Tuple = tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) a_ : Optional[int] = tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) a_ : Any = count_samples(__A ) a_ : Optional[Any] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) a_ : Union[str, Any] = steps_per_epoch * args.num_epochs with strategy.scope(): a_ : Optional[Any] = TFAutoModelForMaskedLM.from_config(__A ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built a_ , a_ : int = create_optimizer( num_train_steps=__A , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__A , metrics=['''accuracy'''] ) def decode_fn(__A : Dict ): a_ : Tuple = { '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__A , __A ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. a_ : Tuple = DataCollatorForLanguageModeling( tokenizer=__A , mlm_probability=args.mlm_probability , mlm=__A , return_tensors='''tf''' ) def mask_with_collator(__A : Dict ): # TF really needs an isin() function a_ : int = ( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) a_ , a_ : int = data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(__A ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__A , ) return batch a_ : List[str] = args.per_replica_batch_size * strategy.num_replicas_in_sync a_ : Union[str, Any] = prepare_dataset( __A , decode_fn=__A , mask_fn=__A , batch_size=__A , shuffle=__A , shuffle_buffer_size=args.shuffle_buffer_size , ) a_ : str = prepare_dataset( __A , decode_fn=__A , mask_fn=__A , batch_size=__A , shuffle=__A , ) a_ : Dict = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__A ) ) model.fit( __A , validation_data=__A , epochs=args.num_epochs , callbacks=__A , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase = parse_args() main(args)
666
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = RoCBertTokenizer snake_case__ = None snake_case__ = False snake_case__ = True snake_case__ = filter_non_english def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: super().setUp() a_ : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] a_ : List[Any] = {} a_ : Any = {} for i, value in enumerate(__SCREAMING_SNAKE_CASE ): a_ : Any = i a_ : List[str] = i a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) a_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ensure_ascii=__SCREAMING_SNAKE_CASE ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ensure_ascii=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: a_ : Any = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) a_ : Optional[int] = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__SCREAMING_SNAKE_CASE ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__SCREAMING_SNAKE_CASE ) , [5, 6, 2, 5, 7, 8] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : str = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: a_ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: a_ : List[str] = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : int = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: a_ : Any = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: a_ : int = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: a_ : Optional[int] = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: a_ : Any = RoCBertBasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] a_ : Union[str, Any] = {} for i, token in enumerate(__SCREAMING_SNAKE_CASE ): a_ : Union[str, Any] = i a_ : int = RoCBertWordpieceTokenizer(vocab=__SCREAMING_SNAKE_CASE , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def SCREAMING_SNAKE_CASE ( self : Any ) -> int: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: a_ : List[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: a_ : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : str = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Dict = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' a_ : str = tokenizer_r.encode_plus( __SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , ) a_ : Optional[int] = tokenizer_r.do_lower_case if hasattr(__SCREAMING_SNAKE_CASE , '''do_lower_case''' ) else False a_ : List[str] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: a_ : List[Any] = ['''的''', '''人''', '''有'''] a_ : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : str = True a_ : List[str] = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : int = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_p.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_p.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[Any] = False a_ : List[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer_p.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = tokenizer_r.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_p.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # it is expected that only the first Chinese character is not preceded by "##". a_ : Optional[int] = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(__SCREAMING_SNAKE_CASE ) ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) a_ : str = tokenizer.encode('''你好''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.encode('''你是谁''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Tuple = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: a_ : Optional[int] = self.get_tokenizers(do_lower_case=__SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): a_ : Union[str, Any] = '''你好,你是谁''' a_ : List[str] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) a_ : Tuple = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = tokenizer.convert_tokens_to_shape_ids(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_tokens_to_pronunciation_ids(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.prepare_for_model( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = tokenizer.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
1
'''simple docstring''' # flake8: noqa # Lint as: python3 __lowerCAmelCase = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
666
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase = '' __lowerCAmelCase = '' __lowerCAmelCase = '' __lowerCAmelCase = 1 # (0 is vertical, 1 is horizontal) def _UpperCAmelCase ( ): a_ , a_ : Tuple = get_dataset(__A , __A ) print('''Processing...''' ) a_ , a_ , a_ : Optional[int] = update_image_and_anno(__A , __A , __A ) for index, image in enumerate(__A ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a_ : List[Any] = random_chars(32 ) a_ : Dict = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] a_ : Dict = f'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(f'/{file_root}.jpg' , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Success {index+1}/{len(__A )} with {file_name}' ) a_ : List[str] = [] for anno in new_annos[index]: a_ : int = f'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(__A ) with open(f'/{file_root}.txt' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _UpperCAmelCase ( __A : str , __A : str ): a_ : List[str] = [] a_ : str = [] for label_file in glob.glob(os.path.join(__A , '''*.txt''' ) ): a_ : int = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__A ) as in_file: a_ : List[Any] = in_file.readlines() a_ : int = os.path.join(__A , f'{label_name}.jpg' ) a_ : Tuple = [] for obj_list in obj_lists: a_ : List[str] = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def _UpperCAmelCase ( __A : list , __A : list , __A : int = 1 ): a_ : Any = [] a_ : List[Any] = [] a_ : Optional[int] = [] for idx in range(len(__A ) ): a_ : Any = [] a_ : Optional[int] = img_list[idx] path_list.append(__A ) a_ : str = anno_list[idx] a_ : List[str] = cva.imread(__A ) if flip_type == 1: a_ : Optional[int] = cva.flip(__A , __A ) for bbox in img_annos: a_ : Any = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: a_ : Any = cva.flip(__A , __A ) for bbox in img_annos: a_ : str = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__A ) new_imgs_list.append(__A ) return new_imgs_list, new_annos_lists, path_list def _UpperCAmelCase ( __A : int = 32 ): assert number_char > 1, "The number of character should greater than 1" a_ : List[str] = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print('DONE ✅')
666
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
1
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __lowerCAmelCase = HUGGINGFACE_HUB_CACHE __lowerCAmelCase = 'config.json' __lowerCAmelCase = 'diffusion_pytorch_model.bin' __lowerCAmelCase = 'diffusion_flax_model.msgpack' __lowerCAmelCase = 'model.onnx' __lowerCAmelCase = 'diffusion_pytorch_model.safetensors' __lowerCAmelCase = 'weights.pb' __lowerCAmelCase = 'https://huggingface.co' __lowerCAmelCase = default_cache_path __lowerCAmelCase = 'diffusers_modules' __lowerCAmelCase = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) __lowerCAmelCase = ['fp16', 'non-ema'] __lowerCAmelCase = '.self_attn'
666
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
1
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _UpperCAmelCase ( __A : int ): a_ : Optional[int] = VideoMAEConfig() set_architecture_configs(__A , __A ) if "finetuned" not in model_name: a_ : List[Any] = False if "finetuned" in model_name: a_ : Optional[int] = '''huggingface/label-files''' if "kinetics" in model_name: a_ : Union[str, Any] = 4_00 a_ : Optional[Any] = '''kinetics400-id2label.json''' elif "ssv2" in model_name: a_ : Union[str, Any] = 1_74 a_ : List[Any] = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) a_ : Dict = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) a_ : str = {int(__A ): v for k, v in idalabel.items()} a_ : Optional[int] = idalabel a_ : int = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] , __A : Optional[Any] ): if "small" in model_name: a_ : Optional[Any] = 3_84 a_ : Union[str, Any] = 15_36 a_ : str = 12 a_ : Optional[Any] = 16 a_ : Union[str, Any] = 12 a_ : List[Any] = 3 a_ : List[str] = 1_92 a_ : Optional[int] = 7_68 elif "large" in model_name: a_ : Optional[int] = 10_24 a_ : Any = 40_96 a_ : List[Any] = 24 a_ : Union[str, Any] = 16 a_ : Dict = 12 a_ : str = 8 a_ : Optional[int] = 5_12 a_ : Any = 20_48 elif "huge" in model_name: a_ : List[str] = 12_80 a_ : int = 51_20 a_ : List[Any] = 32 a_ : Tuple = 16 a_ : Optional[Any] = 12 a_ : Dict = 8 a_ : Any = 6_40 a_ : Any = 25_60 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def _UpperCAmelCase ( __A : List[str] ): if "encoder." in name: a_ : int = name.replace('''encoder.''' , '''''' ) if "cls_token" in name: a_ : int = name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: a_ : Union[str, Any] = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: a_ : int = name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: a_ : str = name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: a_ : Optional[Any] = name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: a_ : int = name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: a_ : int = name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: a_ : Union[str, Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: a_ : Any = name.replace('''attn''' , '''attention.self''' ) if "attn" in name: a_ : Dict = name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: a_ : Tuple = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: a_ : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: a_ : Any = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: a_ : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: a_ : List[str] = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: a_ : List[Any] = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: a_ : Dict = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: a_ : Union[str, Any] = name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: a_ : List[Any] = name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: a_ : Optional[int] = name.replace('''head''' , '''classifier''' ) return name def _UpperCAmelCase ( __A : Tuple , __A : Any ): for key in orig_state_dict.copy().keys(): a_ : int = orig_state_dict.pop(__A ) if key.startswith('''encoder.''' ): a_ : Optional[int] = key.replace('''encoder.''' , '''''' ) if "qkv" in key: a_ : Optional[Any] = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): a_ : Any = config.decoder_hidden_size a_ : int = int(key_split[2] ) a_ : List[Any] = '''decoder.decoder_layers.''' if "weight" in key: a_ : Optional[Any] = val[:dim, :] a_ : Union[str, Any] = val[dim : dim * 2, :] a_ : Union[str, Any] = val[-dim:, :] else: a_ : str = config.hidden_size a_ : Optional[int] = int(key_split[1] ) a_ : Tuple = '''videomae.encoder.layer.''' if "weight" in key: a_ : Dict = val[:dim, :] a_ : str = val[dim : dim * 2, :] a_ : Any = val[-dim:, :] else: a_ : List[str] = val return orig_state_dict def _UpperCAmelCase ( ): a_ : Union[str, Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) a_ : List[Any] = np.load(__A ) return list(__A ) def _UpperCAmelCase ( __A : int , __A : Optional[Any] , __A : Union[str, Any] , __A : int ): a_ : Union[str, Any] = get_videomae_config(__A ) if "finetuned" in model_name: a_ : Union[str, Any] = VideoMAEForVideoClassification(__A ) else: a_ : Any = VideoMAEForPreTraining(__A ) # download original checkpoint, hosted on Google Drive a_ : Optional[int] = '''pytorch_model.bin''' gdown.cached_download(__A , __A , quiet=__A ) a_ : int = torch.load(__A , map_location='''cpu''' ) if "model" in files: a_ : Dict = files['''model'''] else: a_ : str = files['''module'''] a_ : Optional[Any] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) model.eval() # verify model on basic input a_ : Optional[int] = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) a_ : Union[str, Any] = prepare_video() a_ : Tuple = image_processor(__A , return_tensors='''pt''' ) if "finetuned" not in model_name: a_ : str = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) a_ : str = torch.load(__A ) a_ : Any = model(**__A ) a_ : int = outputs.logits a_ : Any = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": a_ : List[str] = torch.Size([1, 4_00] ) a_ : str = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": a_ : Optional[Any] = torch.Size([1, 1_74] ) a_ : Optional[Any] = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": a_ : List[str] = torch.Size([1, 14_08, 15_36] ) a_ : Any = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": a_ : List[Any] = torch.Size([1, 14_08, 15_36] ) a_ : Tuple = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one a_ : List[Any] = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": a_ : Optional[int] = torch.Size([1, 14_08, 15_36] ) a_ : List[Any] = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": a_ : Optional[int] = torch.Size([1, 4_00] ) a_ : Any = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": a_ : List[Any] = torch.Size([1, 4_00] ) a_ : List[Any] = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": a_ : Any = torch.Size([1, 4_00] ) a_ : Optional[int] = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": a_ : Optional[Any] = torch.Size([1, 4_00] ) a_ : List[Any] = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": a_ : List[str] = torch.Size([1, 14_08, 15_36] ) a_ : str = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": a_ : Optional[Any] = torch.Size([1, 1_74] ) a_ : Union[str, Any] = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": a_ : List[str] = torch.Size([1, 14_08, 15_36] ) a_ : Union[str, Any] = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": a_ : Union[str, Any] = torch.Size([1, 1_74] ) a_ : Dict = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __A , atol=1E-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __A , atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": a_ : int = outputs.loss assert torch.allclose(__A , __A , atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__A ) model.save_pretrained(__A ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(__A , organization='''nielsr''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
666
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
666
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bridgetower_vision_model" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]=768 , __SCREAMING_SNAKE_CASE : Tuple=12 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=16 , __SCREAMING_SNAKE_CASE : List[str]=288 , __SCREAMING_SNAKE_CASE : Dict=1 , __SCREAMING_SNAKE_CASE : Tuple=1e-05 , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> int: super().__init__(**__SCREAMING_SNAKE_CASE ) a_ : str = hidden_size a_ : int = num_hidden_layers a_ : Optional[Any] = num_channels a_ : List[Any] = patch_size a_ : int = image_size a_ : Optional[Any] = initializer_factor a_ : Optional[int] = layer_norm_eps a_ : Optional[int] = stop_gradient a_ : Optional[int] = share_layernorm a_ : int = remove_last_layer @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : str ) -> "PretrainedConfig": a_ , a_ : Tuple = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if config_dict.get('''model_type''' ) == "bridgetower": a_ : str = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bridgetower_text_model" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple=5_0265 , __SCREAMING_SNAKE_CASE : Any=768 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[int]=3072 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=514 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=1e-05 , __SCREAMING_SNAKE_CASE : Tuple=1 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : Optional[Any]="absolute" , __SCREAMING_SNAKE_CASE : Optional[Any]=True , **__SCREAMING_SNAKE_CASE : str , ) -> Optional[Any]: super().__init__(**__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = vocab_size a_ : List[Any] = hidden_size a_ : int = num_hidden_layers a_ : Dict = num_attention_heads a_ : Union[str, Any] = hidden_act a_ : Union[str, Any] = initializer_factor a_ : Tuple = intermediate_size a_ : Tuple = hidden_dropout_prob a_ : Optional[int] = attention_probs_dropout_prob a_ : int = max_position_embeddings a_ : int = type_vocab_size a_ : Union[str, Any] = layer_norm_eps a_ : Optional[int] = position_embedding_type a_ : Union[str, Any] = use_cache a_ : Optional[int] = pad_token_id a_ : Optional[Any] = bos_token_id a_ : int = eos_token_id @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> "PretrainedConfig": a_ , a_ : Optional[int] = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if config_dict.get('''model_type''' ) == "bridgetower": a_ : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bridgetower" def __init__( self : int , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=768 , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : List[Any]=1e-05 , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Union[str, Any]="add" , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=6 , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : int , ) -> Dict: # TODO: remove this once the Hub files are updated. a_ : List[Any] = kwargs.pop('''text_config_dict''' , __SCREAMING_SNAKE_CASE ) a_ : Dict = kwargs.pop('''vision_config_dict''' , __SCREAMING_SNAKE_CASE ) super().__init__(**__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = share_cross_modal_transformer_layers a_ : Optional[int] = hidden_act a_ : Optional[int] = hidden_size a_ : Tuple = initializer_factor a_ : Dict = layer_norm_eps a_ : str = share_link_tower_layers a_ : List[Any] = link_tower_type a_ : Dict = num_attention_heads a_ : List[str] = num_hidden_layers a_ : Optional[Any] = tie_word_embeddings a_ : Tuple = init_layernorm_from_vision_encoder if text_config is None: a_ : Any = {} logger.info('''`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.''' ) if vision_config is None: a_ : Optional[Any] = {} logger.info('''`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.''' ) a_ : int = BridgeTowerTextConfig(**__SCREAMING_SNAKE_CASE ) a_ : int = BridgeTowerVisionConfig(**__SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , __SCREAMING_SNAKE_CASE : BridgeTowerTextConfig , __SCREAMING_SNAKE_CASE : BridgeTowerVisionConfig , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: a_ : Optional[Any] = copy.deepcopy(self.__dict__ ) a_ : List[str] = self.text_config.to_dict() a_ : Optional[int] = self.vision_config.to_dict() a_ : Optional[int] = self.__class__.model_type return output
666
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
1
'''simple docstring''' from __future__ import annotations import math def _UpperCAmelCase ( __A : float , __A : int ): a_ : Any = u for i in range(1 , __A ): a_ : int = temp * (u - i) return temp def _UpperCAmelCase ( ): a_ : Tuple = int(input('''enter the numbers of values: ''' ) ) a_ : list[list[float]] = [] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) a_ : List[str] = 0 print('''enter the values of parameters in a list: ''' ) a_ : List[Any] = list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): a_ : Optional[Any] = float(input() ) a_ : Union[str, Any] = int(input('''enter the value to interpolate: ''' ) ) a_ : Any = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): a_ : Optional[Any] = y[j + 1][i - 1] - y[j][i - 1] a_ : Optional[int] = y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
666
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
1
'''simple docstring''' from typing import Any class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: a_ : Union[str, Any] = data a_ : Any = None class SCREAMING_SNAKE_CASE : def __init__( self : Dict ) -> Tuple: a_ : str = None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = self.head while temp is not None: print(temp.data , end=''' ''' ) a_ : Optional[int] = temp.next print() def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Any ) -> List[Any]: a_ : Optional[int] = Node(__SCREAMING_SNAKE_CASE ) a_ : List[str] = self.head a_ : int = new_node def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: if node_data_a == node_data_a: return else: a_ : str = self.head while node_a is not None and node_a.data != node_data_a: a_ : Optional[Any] = node_a.next a_ : Union[str, Any] = self.head while node_a is not None and node_a.data != node_data_a: a_ : Tuple = node_a.next if node_a is None or node_a is None: return a_ , a_ : List[Any] = node_a.data, node_a.data if __name__ == "__main__": __lowerCAmelCase = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
666
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
1
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any=13 , __SCREAMING_SNAKE_CASE : Union[str, Any]=30 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : List[str]=32 , __SCREAMING_SNAKE_CASE : Union[str, Any]=5 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Tuple=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=10 , __SCREAMING_SNAKE_CASE : str=0.02 , ) -> Optional[Any]: a_ : Optional[Any] = parent a_ : Optional[int] = batch_size a_ : int = image_size a_ : int = patch_size a_ : Optional[Any] = num_channels a_ : Any = is_training a_ : Union[str, Any] = use_labels a_ : List[Any] = hidden_size a_ : Optional[int] = num_hidden_layers a_ : Union[str, Any] = num_attention_heads a_ : List[str] = intermediate_size a_ : Dict = hidden_act a_ : Optional[Any] = hidden_dropout_prob a_ : Optional[int] = attention_probs_dropout_prob a_ : List[str] = type_sequence_label_size a_ : Union[str, Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a_ : Tuple = (image_size // patch_size) ** 2 a_ : Optional[Any] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: a_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Any = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, pixel_values def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: a_ : Tuple = FlaxViTModel(config=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) a_ : str = (self.image_size, self.image_size) a_ : Union[str, Any] = (self.patch_size, self.patch_size) a_ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: a_ : Dict = self.type_sequence_label_size a_ : Tuple = FlaxViTForImageClassification(config=__SCREAMING_SNAKE_CASE ) a_ : List[str] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a_ : int = 1 a_ : Optional[Any] = FlaxViTForImageClassification(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : Optional[int] = model(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : str = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ) : Tuple = config_and_inputs a_ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self : str ) -> None: a_ : List[Any] = FlaxViTModelTester(self ) a_ : List[str] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: a_ , a_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Dict = model_class(__SCREAMING_SNAKE_CASE ) a_ : Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Optional[int] = [*signature.parameters.keys()] a_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a_ : str = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : int = model_class(__SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : int ): return model(pixel_values=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) with self.subTest('''JIT Enabled''' ): a_ : int = model_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): a_ : Optional[int] = model_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: for model_class_name in self.all_model_classes: a_ : Union[str, Any] = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) a_ : Optional[int] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
666
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
1
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _UpperCAmelCase ( __A : Dict ): if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
666
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: a_ : Dict = tempfile.mkdtemp() # fmt: off a_ : Tuple = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on a_ : Optional[int] = dict(zip(A__ , range(len(A__ ) ) ) ) a_ : Optional[Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] a_ : int = {'''unk_token''': '''<unk>'''} a_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A__ ) ) a_ : Any = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } a_ : Any = os.path.join(self.tmpdirname , A__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A__ , A__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : Dict ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **A__ ) def SCREAMING_SNAKE_CASE ( self : Dict , **__SCREAMING_SNAKE_CASE : int ) -> str: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: return ViTImageProcessor.from_pretrained(self.tmpdirname , **A__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: a_ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a_ : Optional[int] = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: a_ : Union[str, Any] = self.get_tokenizer() a_ : str = self.get_rust_tokenizer() a_ : Dict = self.get_image_processor() a_ : Any = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) processor_slow.save_pretrained(self.tmpdirname ) a_ : List[str] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A__ ) a_ : Dict = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) processor_fast.save_pretrained(self.tmpdirname ) a_ : List[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A__ ) self.assertIsInstance(processor_fast.tokenizer , A__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A__ ) self.assertIsInstance(processor_fast.image_processor , A__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : int = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a_ : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a_ : Any = self.get_image_processor(do_normalize=A__ , padding_value=1.0 ) a_ : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: a_ : int = self.get_image_processor() a_ : Any = self.get_tokenizer() a_ : Optional[int] = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) a_ : List[str] = self.prepare_image_inputs() a_ : Any = image_processor(A__ , return_tensors='''np''' ) a_ : Optional[Any] = processor(images=A__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : List[str] = self.get_image_processor() a_ : Optional[int] = self.get_tokenizer() a_ : List[str] = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) a_ : Union[str, Any] = '''lower newer''' a_ : Optional[int] = processor(text=A__ ) a_ : str = tokenizer(A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : List[str] = self.get_image_processor() a_ : List[Any] = self.get_tokenizer() a_ : List[str] = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) a_ : Optional[Any] = '''lower newer''' a_ : Union[str, Any] = self.prepare_image_inputs() a_ : List[str] = processor(text=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: a_ : str = self.get_image_processor() a_ : Dict = self.get_tokenizer() a_ : Dict = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) a_ : Optional[int] = self.prepare_image_inputs() a_ : List[str] = self.prepare_image_inputs() a_ : Any = processor(images=A__ , visual_prompt=A__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Optional[Any] = self.get_image_processor() a_ : Optional[int] = self.get_tokenizer() a_ : int = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) a_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a_ : Union[str, Any] = processor.batch_decode(A__ ) a_ : int = tokenizer.batch_decode(A__ ) self.assertListEqual(A__ , A__ )
700
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
0
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _UpperCAmelCase ( __A : str = 3 ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_SCREAMING_SNAKE_CASE ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) a_ : Tuple = QuantumRegister(_SCREAMING_SNAKE_CASE , '''qr''' ) a_ : List[str] = ClassicalRegister(_SCREAMING_SNAKE_CASE , '''cr''' ) a_ : Any = QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a_ : Any = number_of_qubits for i in range(_SCREAMING_SNAKE_CASE ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_SCREAMING_SNAKE_CASE ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_SCREAMING_SNAKE_CASE , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # simulate with 10000 shots a_ : Optional[Any] = Aer.get_backend('''qasm_simulator''' ) a_ : int = execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=1_00_00 ) return job.result().get_counts(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
702
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
0
'''simple docstring''' from numpy import exp, pi, sqrt def _UpperCAmelCase ( __A : List[Any] , __A : List[str] = 0.0 , __A : Optional[Any] = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
0
'''simple docstring''' import os def _UpperCAmelCase ( ): a_ : Optional[int] = os.path.dirname(os.path.realpath(_lowercase ) ) a_ : Tuple = os.path.join(_lowercase , '''triangle.txt''' ) with open(_lowercase ) as f: a_ : Dict = f.readlines() a_ : Tuple = [] for line in triangle: a_ : List[Any] = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(_lowercase ) ) a.append(_lowercase ) for i in range(1 , len(_lowercase ) ): for j in range(len(a[i] ) ): a_ : str = a[i - 1][j] if j != len(a[i - 1] ) else 0 a_ : Optional[int] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_lowercase , _lowercase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
704
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
0
'''simple docstring''' import os from pathlib import Path def _UpperCAmelCase ( ): from torch.utils.cpp_extension import load a_ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" a_ : Optional[int] = [ root / filename for filename in [ "vision.cpp", os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
705
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
0
'''simple docstring''' def _UpperCAmelCase ( __A : Union[str, Any] , __A : List[Any] ): a_ : Dict = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( __A : Union[str, Any] , __A : List[str] , __A : List[Any] ): a_ : str = 0 while b > 0: if b & 1: a_ : Tuple = ((res % c) + (a % c)) % c a += a b >>= 1 return res
706
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
0
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __lowerCAmelCase = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _UpperCAmelCase ( __A : Optional[int] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): if args.student_type == "roberta": a_ : int = False elif args.student_type == "gpt2": a_ : List[Any] = False def _UpperCAmelCase ( __A : Union[str, Any] , __A : str ): if args.student_type == "roberta": a_ : Optional[Any] = False def _UpperCAmelCase ( ): a_ : Any = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=__A , required=__A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=__A , required=__A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=__A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=__A , required=__A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=__A , type=__A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=__A , required=__A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=__A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=__A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=__A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=__A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=__A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=__A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=__A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=__A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=__A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=__A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=__A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=__A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=__A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=__A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=__A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=__A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=__A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=__A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=__A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=__A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=__A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=__A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=__A , default=40_00 , help='''Checkpoint interval.''' ) a_ : str = parser.parse_args() sanity_checks(__A ) # ARGS # init_gpu_params(__A ) set_seed(__A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(f'Param: {args}' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(__A ) , __A , indent=4 ) git_log(args.dump_path ) a_ : Any = MODEL_CLASSES[args.student_type] a_ : Optional[int] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # a_ : List[str] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) a_ : str = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): a_ : str = tokenizer.all_special_tokens.index(__A ) a_ : str = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}' ) a_ : Union[str, Any] = special_tok_ids a_ : Optional[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'Loading data from {args.data_file}' ) with open(args.data_file , '''rb''' ) as fp: a_ : Union[str, Any] = pickle.load(__A ) if args.mlm: logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , '''rb''' ) as fp: a_ : Optional[int] = pickle.load(__A ) a_ : List[Any] = np.maximum(__A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): a_ : Dict = 0.0 # do not predict special tokens a_ : List[str] = torch.from_numpy(__A ) else: a_ : int = None a_ : Optional[int] = LmSeqsDataset(params=__A , data=__A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f'Loading student config from {args.student_config}' ) a_ : str = student_config_class.from_pretrained(args.student_config ) a_ : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(f'Loading pretrained weights from {args.student_pretrained_weights}' ) a_ : Any = student_model_class.from_pretrained(args.student_pretrained_weights , config=__A ) else: a_ : List[Any] = student_model_class(__A ) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}' ) logger.info('''Student loaded.''' ) # TEACHER # a_ : Tuple = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__A ) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}' ) logger.info(f'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__A , __A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__A , __A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() a_ : Optional[Any] = Distiller( params=__A , dataset=__A , token_probs=__A , student=__A , teacher=__A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
707
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'vocab.json'} __lowerCAmelCase = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } __lowerCAmelCase = {'mgp-str': 27} class SCREAMING_SNAKE_CASE ( __A ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int="[GO]" , __SCREAMING_SNAKE_CASE : Union[str, Any]="[GO]" , __SCREAMING_SNAKE_CASE : Optional[Any]="[s]" , __SCREAMING_SNAKE_CASE : Any="[GO]" , **__SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: super().__init__( unk_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as vocab_handle: a_ : List[str] = json.load(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return len(self.vocab ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str ) -> Dict: a_ : List[str] = [] for s in text: char_tokens.extend(__SCREAMING_SNAKE_CASE ) return char_tokens def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict ) -> Tuple: return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: return self.decoder.get(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__SCREAMING_SNAKE_CASE ) ) return a_ : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE , ensure_ascii=__SCREAMING_SNAKE_CASE ) + '''\n''' ) return (vocab_file,)
708
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def _UpperCAmelCase ( __A : int , __A : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _UpperCAmelCase ( __A : int ): a_ : List[str] = [] a_ : Optional[int] = 11 a_ : str = int('''1''' + '''0''' * digit_len ) for num in range(__lowerCAmelCase , __lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__lowerCAmelCase , __lowerCAmelCase ): solutions.append(f'{num}/{den}' ) den += 1 num += 1 a_ : Optional[Any] = 10 return solutions def _UpperCAmelCase ( __A : int = 2 ): a_ : Optional[Any] = 1.0 for fraction in fraction_list(__lowerCAmelCase ): a_ : Any = Fraction(__lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(__lowerCAmelCase ) if __name__ == "__main__": print(solution())
709
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
0
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } __lowerCAmelCase = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } __lowerCAmelCase = { "ctrl": 256, } __lowerCAmelCase = { "Pregnancy": 168_629, "Christianity": 7_675, "Explain": 106_423, "Fitness": 63_440, "Saving": 63_163, "Ask": 27_171, "Ass": 95_985, "Joke": 163_509, "Questions": 45_622, "Thoughts": 49_605, "Retail": 52_342, "Feminism": 164_338, "Writing": 11_992, "Atheism": 192_263, "Netflix": 48_616, "Computing": 39_639, "Opinion": 43_213, "Alone": 44_967, "Funny": 58_917, "Gaming": 40_358, "Human": 4_088, "India": 1_331, "Joker": 77_138, "Diet": 36_206, "Legal": 11_859, "Norman": 4_939, "Tip": 72_689, "Weight": 52_343, "Movies": 46_273, "Running": 23_425, "Science": 2_090, "Horror": 37_793, "Confession": 60_572, "Finance": 12_250, "Politics": 16_360, "Scary": 191_985, "Support": 12_654, "Technologies": 32_516, "Teenage": 66_160, "Event": 32_769, "Learned": 67_460, "Notion": 182_770, "Wikipedia": 37_583, "Books": 6_665, "Extract": 76_050, "Confessions": 102_701, "Conspiracy": 75_932, "Links": 63_674, "Narcissus": 150_425, "Relationship": 54_766, "Relationships": 134_796, "Reviews": 41_671, "News": 4_256, "Translation": 26_820, "multilingual": 128_406, } def _UpperCAmelCase ( __A : Optional[int] ): a_ : Optional[Any] = set() a_ : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a_ : Optional[int] = char a_ : List[Any] = set(lowerCamelCase__ ) return pairs class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = CONTROL_CODES def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any="<unk>" , **__SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: super().__init__(unk_token=UpperCamelCase_ , **UpperCamelCase_ ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: a_ : Union[str, Any] = json.load(UpperCamelCase_ ) a_ : Optional[int] = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: a_ : List[Any] = merges_handle.read().split('''\n''' )[1:-1] a_ : Optional[int] = [tuple(merge.split() ) for merge in merges] a_ : str = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) a_ : List[Any] = {} @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: if token in self.cache: return self.cache[token] a_ : List[Any] = tuple(UpperCamelCase_ ) a_ : Union[str, Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) a_ : Tuple = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: a_ : int = min(UpperCamelCase_ , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break a_ : Optional[int] = bigram a_ : int = [] a_ : Optional[Any] = 0 while i < len(UpperCamelCase_ ): try: a_ : Any = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a_ : Optional[Any] = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a_ : Dict = tuple(UpperCamelCase_ ) a_ : int = new_word if len(UpperCamelCase_ ) == 1: break else: a_ : str = get_pairs(UpperCamelCase_ ) a_ : Any = "@@ ".join(UpperCamelCase_ ) a_ : Union[str, Any] = word[:-4] a_ : Optional[Any] = word return word def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: a_ : int = [] a_ : str = re.findall(r'''\S+\n?''' , UpperCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(''' ''' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> List[str]: return self.decoder.get(UpperCamelCase_ , self.unk_token ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: a_ : List[Any] = " ".join(UpperCamelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] = None ) -> List[str]: if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : int = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : List[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) a_ : List[str] = 0 with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) a_ : List[str] = token_index writer.write(''' '''.join(UpperCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
710
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any=13 , __SCREAMING_SNAKE_CASE : int=7 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Tuple=99 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=37 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : str=512 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : str=0 , ) -> List[Any]: a_ : Dict = parent a_ : str = batch_size a_ : str = seq_length a_ : List[str] = is_training a_ : Optional[Any] = use_input_mask a_ : Optional[Any] = use_token_type_ids a_ : List[Any] = use_labels a_ : Any = vocab_size a_ : List[Any] = hidden_size a_ : Dict = num_hidden_layers a_ : Union[str, Any] = num_attention_heads a_ : Optional[int] = intermediate_size a_ : str = hidden_act a_ : str = hidden_dropout_prob a_ : Dict = attention_probs_dropout_prob a_ : str = max_position_embeddings a_ : Union[str, Any] = type_vocab_size a_ : List[str] = type_sequence_label_size a_ : Optional[int] = initializer_range a_ : Any = num_labels a_ : int = num_choices a_ : List[Any] = scope a_ : Optional[int] = projection_dim def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: a_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py a_ : int = random_attention_mask([self.batch_size, self.seq_length] ) a_ : Dict = None if self.use_token_type_ids: a_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : Tuple = None a_ : Optional[Any] = None a_ : Optional[Any] = None if self.use_labels: a_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) a_ : Tuple = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) a_ : Union[str, Any] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: a_ : Tuple = TFDPRContextEncoder(config=__A ) a_ : Any = model(__A , attention_mask=__A , token_type_ids=__A ) a_ : Dict = model(__A , token_type_ids=__A ) a_ : Any = model(__A ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: a_ : Any = TFDPRQuestionEncoder(config=__A ) a_ : Optional[Any] = model(__A , attention_mask=__A , token_type_ids=__A ) a_ : Tuple = model(__A , token_type_ids=__A ) a_ : List[Any] = model(__A ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: a_ : Optional[int] = TFDPRReader(config=__A ) a_ : int = model(__A , attention_mask=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: a_ : Tuple = self.prepare_config_and_inputs() ( a_ ) : Optional[int] = config_and_inputs a_ : Optional[Any] = {"input_ids": input_ids} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) snake_case__ = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: a_ : Dict = TFDPRModelTester(self ) a_ : Any = ConfigTester(self , config_class=__A , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__A ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__A ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__A ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> int: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : str = TFDPRContextEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Optional[int] = TFDPRContextEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : str = TFDPRQuestionEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Tuple = TFDPRReader.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: a_ : int = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) a_ : Optional[int] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] a_ : Optional[Any] = model(__A )[0] # embedding shape = (1, 768) # compare the actual values for a slice. a_ : Tuple = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
711
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , ) -> List[Any]: super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: a_ : Dict = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) a_ : str = dict(scheduler.config ) a_ : Any = 1 a_ : List[Any] = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: a_ : Union[str, Any] = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) a_ : Dict = dict(scheduler.config ) a_ : int = True a_ : Union[str, Any] = FrozenDict(_a ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[int] = "auto" ) -> Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory a_ : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: self.enable_attention_slicing(_a ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a_ : Optional[int] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] = 512 , __SCREAMING_SNAKE_CASE : Union[str, Any] = 512 , __SCREAMING_SNAKE_CASE : List[Any] = 50 , __SCREAMING_SNAKE_CASE : int = 7.5 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : List[Any] = 1 , __SCREAMING_SNAKE_CASE : Any = 0.0 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : List[str] = None , __SCREAMING_SNAKE_CASE : List[Any] = "pil" , __SCREAMING_SNAKE_CASE : str = True , __SCREAMING_SNAKE_CASE : int = None , __SCREAMING_SNAKE_CASE : str = 1 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]: a_ : int = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) a_ : List[str] = self.segmentation_model(**_a ) a_ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() a_ : Any = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask a_ : Dict = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
712
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
0
'''simple docstring''' def _UpperCAmelCase ( __A : List[Any] ): a_ : List[str] = len(__UpperCAmelCase ) a_ : List[Any] = len(matrix[0] ) a_ : List[str] = min(__UpperCAmelCase , __UpperCAmelCase ) for row in range(__UpperCAmelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , __UpperCAmelCase ): a_ : str = matrix[col][row] / matrix[row][row] for i in range(__UpperCAmelCase , __UpperCAmelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows a_ : Optional[Any] = True for i in range(row + 1 , __UpperCAmelCase ): if matrix[i][row] != 0: a_ , a_ : Optional[Any] = matrix[i], matrix[row] a_ : List[str] = False break if reduce: rank -= 1 for i in range(__UpperCAmelCase ): a_ : Optional[int] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
0
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n' __lowerCAmelCase = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' __lowerCAmelCase = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def _UpperCAmelCase ( __A : Optional[int] ): def remove_articles(__A : Any ): a_ : Dict = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(lowerCAmelCase__ , ''' ''' , lowerCAmelCase__ ) def white_space_fix(__A : Dict ): return " ".join(text.split() ) def remove_punc(__A : Dict ): a_ : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase__ ) ) ) ) def _UpperCAmelCase ( __A : Optional[int] , __A : List[Any] ): return int(normalize_answer(lowerCAmelCase__ ) == normalize_answer(lowerCAmelCase__ ) ) def _UpperCAmelCase ( __A : Any , __A : List[str] ): a_ : int = [any(compute_exact(lowerCAmelCase__ , lowerCAmelCase__ ) for ref in refs ) for pred, refs in zip(lowerCAmelCase__ , lowerCAmelCase__ )] return (sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ )) * 1_00 def _UpperCAmelCase ( __A : List[str] , __A : Any , __A : Any , __A : int ): a_ : Tuple = [rgram for rgrams in rgramslist for rgram in rgrams] a_ : int = Counter(lowerCAmelCase__ ) a_ : Optional[int] = Counter(lowerCAmelCase__ ) a_ : str = Counter() for sgram, scount in sgramcounter.items(): a_ : Union[str, Any] = scount * numref a_ : Any = Counter(lowerCAmelCase__ ) a_ : str = Counter() for cgram, ccount in cgramcounter.items(): a_ : str = ccount * numref # KEEP a_ : Union[str, Any] = sgramcounter_rep & cgramcounter_rep a_ : List[Any] = keepgramcounter_rep & rgramcounter a_ : Optional[int] = sgramcounter_rep & rgramcounter a_ : Union[str, Any] = 0 a_ : Tuple = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a_ : Any = 1 a_ : Union[str, Any] = 1 if len(lowerCAmelCase__ ) > 0: a_ : Optional[int] = keeptmpscorea / len(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) a_ : int = keeptmpscorea / sum(keepgramcounterall_rep.values() ) a_ : Tuple = 0 if keepscore_precision > 0 or keepscore_recall > 0: a_ : Dict = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION a_ : Dict = sgramcounter_rep - cgramcounter_rep a_ : Optional[Any] = delgramcounter_rep - rgramcounter a_ : List[str] = sgramcounter_rep - rgramcounter a_ : Optional[Any] = 0 a_ : str = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a_ : str = 1 if len(lowerCAmelCase__ ) > 0: a_ : Optional[Any] = deltmpscorea / len(lowerCAmelCase__ ) # ADDITION a_ : Union[str, Any] = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) a_ : List[Any] = set(lowerCAmelCase__ ) & set(lowerCAmelCase__ ) a_ : Union[str, Any] = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) a_ : List[Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a_ : str = 1 a_ : List[str] = 1 if len(lowerCAmelCase__ ) > 0: a_ : Optional[Any] = addtmpscore / len(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: a_ : Union[str, Any] = addtmpscore / len(lowerCAmelCase__ ) a_ : Optional[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: a_ : Any = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _UpperCAmelCase ( __A : Optional[int] , __A : Optional[Any] , __A : List[str] ): a_ : str = len(lowerCAmelCase__ ) a_ : Any = ssent.split(''' ''' ) a_ : Optional[int] = csent.split(''' ''' ) a_ : str = [] a_ : List[str] = [] a_ : int = [] a_ : Dict = [] a_ : str = [] a_ : int = [] a_ : Any = [] a_ : List[Any] = [] a_ : Union[str, Any] = [] a_ : str = [] for rsent in rsents: a_ : Any = rsent.split(''' ''' ) a_ : Tuple = [] a_ : Dict = [] a_ : str = [] ragramslist.append(lowerCAmelCase__ ) for i in range(0 , len(lowerCAmelCase__ ) - 1 ): if i < len(lowerCAmelCase__ ) - 1: a_ : Union[str, Any] = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 2: a_ : Dict = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 3: a_ : Optional[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(lowerCAmelCase__ ) ragramslist.append(lowerCAmelCase__ ) ragramslist.append(lowerCAmelCase__ ) ragramslist.append(lowerCAmelCase__ ) for i in range(0 , len(lowerCAmelCase__ ) - 1 ): if i < len(lowerCAmelCase__ ) - 1: a_ : int = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 2: a_ : List[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 3: a_ : Union[str, Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(lowerCAmelCase__ ) for i in range(0 , len(lowerCAmelCase__ ) - 1 ): if i < len(lowerCAmelCase__ ) - 1: a_ : List[str] = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 2: a_ : int = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 3: a_ : str = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(lowerCAmelCase__ ) ((a_) , (a_) , (a_)) : Any = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ((a_) , (a_) , (a_)) : Union[str, Any] = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ((a_) , (a_) , (a_)) : str = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ((a_) , (a_) , (a_)) : str = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a_ : Dict = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 a_ : Union[str, Any] = sum([delascore, delascore, delascore, delascore] ) / 4 a_ : List[Any] = sum([addascore, addascore, addascore, addascore] ) / 4 a_ : Optional[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _UpperCAmelCase ( __A : Optional[int] , __A : int = True , __A : Union[str, Any] = "13a" , __A : Tuple = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: a_ : Union[str, Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: a_ : Optional[Any] = sacrebleu.metrics.bleu._get_tokenizer(lowerCAmelCase__ )()(lowerCAmelCase__ ) else: a_ : List[Any] = sacrebleu.TOKENIZERS[tokenizer]()(lowerCAmelCase__ ) elif tokenizer == "moses": a_ : List[str] = sacremoses.MosesTokenizer().tokenize(lowerCAmelCase__ , return_str=lowerCAmelCase__ , escape=lowerCAmelCase__ ) elif tokenizer == "penn": a_ : int = sacremoses.MosesTokenizer().penn_tokenize(lowerCAmelCase__ , return_str=lowerCAmelCase__ ) else: a_ : str = sentence if not return_str: a_ : Dict = normalized_sent.split() return normalized_sent def _UpperCAmelCase ( __A : int , __A : int , __A : Optional[Any] ): if not (len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) == len(lowerCAmelCase__ )): raise ValueError('''Sources length must match predictions and references lengths.''' ) a_ : Tuple = 0 for src, pred, refs in zip(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): sari_score += SARIsent(normalize(lowerCAmelCase__ ) , normalize(lowerCAmelCase__ ) , [normalize(lowerCAmelCase__ ) for sent in refs] ) a_ : List[str] = sari_score / len(lowerCAmelCase__ ) return 1_00 * sari_score def _UpperCAmelCase ( __A : Optional[int] , __A : Union[str, Any] , __A : List[Any]="exp" , __A : List[Any]=None , __A : List[str]=False , __A : Tuple=False , __A : Any=False , ): a_ : Union[str, Any] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) a_ : str = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] a_ : List[str] = sacrebleu.corpus_bleu( lowerCAmelCase__ , lowerCAmelCase__ , smooth_method=lowerCAmelCase__ , smooth_value=lowerCAmelCase__ , force=lowerCAmelCase__ , lowercase=lowerCAmelCase__ , use_effective_order=lowerCAmelCase__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Dict: a_ : Optional[int] = {} result.update({'''sari''': compute_sari(sources=_UpperCAmelCase , predictions=_UpperCAmelCase , references=_UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_UpperCAmelCase , references=_UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_UpperCAmelCase , references=_UpperCAmelCase )} ) return result
714
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _UpperCAmelCase ( __A : Union[str, Any] , __A : Any , __A : Dict , __A : Tuple , __A : Tuple ): a_ : List[Any] = StableDiffusionPipeline.from_pretrained(__A , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors a_ : str = load_file(__A ) a_ : int = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: a_ : Union[str, Any] = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) a_ : Any = pipeline.text_encoder else: a_ : Union[str, Any] = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) a_ : Any = pipeline.unet # find the target layer a_ : Any = layer_infos.pop(0 ) while len(__A ) > -1: try: a_ : List[Any] = curr_layer.__getattr__(__A ) if len(__A ) > 0: a_ : List[Any] = layer_infos.pop(0 ) elif len(__A ) == 0: break except Exception: if len(__A ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: a_ : Union[str, Any] = layer_infos.pop(0 ) a_ : Optional[Any] = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(__A ) else: pair_keys.append(__A ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: a_ : int = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) a_ : Optional[Any] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__A , __A ).unsqueeze(2 ).unsqueeze(3 ) else: a_ : Tuple = state_dict[pair_keys[0]].to(torch.floataa ) a_ : Optional[Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__A , __A ) # update visited list for item in pair_keys: visited.append(__A ) return pipeline if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = args.base_model_path __lowerCAmelCase = args.checkpoint_path __lowerCAmelCase = args.dump_path __lowerCAmelCase = args.lora_prefix_unet __lowerCAmelCase = args.lora_prefix_text_encoder __lowerCAmelCase = args.alpha __lowerCAmelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __lowerCAmelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
715
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
0
'''simple docstring''' import re def _UpperCAmelCase ( __A : Dict ): a_ : Union[str, Any] = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(_lowerCamelCase , _lowerCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
716
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( _A ): snake_case__ = ["image_processor", "tokenizer"] snake_case__ = "BlipImageProcessor" snake_case__ = ("BertTokenizer", "BertTokenizerFast") def __init__( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: a_ : Dict = False super().__init__(__lowerCamelCase , __lowerCamelCase ) a_ : int = self.image_processor def __call__( self : Tuple , __SCREAMING_SNAKE_CASE : ImageInput = None , __SCREAMING_SNAKE_CASE : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False , __SCREAMING_SNAKE_CASE : Union[bool, str, TruncationStrategy] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: a_ : Optional[int] = self.tokenizer a_ : List[str] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) return text_encoding # add pixel_values a_ : Any = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) if text is not None: a_ : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) else: a_ : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def SCREAMING_SNAKE_CASE ( self : Optional[int] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: a_ : Optional[int] = self.tokenizer.model_input_names a_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
717
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
0
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int=13 , __SCREAMING_SNAKE_CASE : Optional[int]=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Any=99 , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : List[Any]=32 , __SCREAMING_SNAKE_CASE : Tuple=5 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Any=512 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : List[str]=4 , __SCREAMING_SNAKE_CASE : Tuple="last" , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=0 , ) -> List[str]: a_ : int = parent a_ : Dict = batch_size a_ : Dict = seq_length a_ : Dict = is_training a_ : Tuple = use_input_lengths a_ : str = use_token_type_ids a_ : List[str] = use_labels a_ : Any = gelu_activation a_ : int = sinusoidal_embeddings a_ : Union[str, Any] = causal a_ : str = asm a_ : Dict = n_langs a_ : Union[str, Any] = vocab_size a_ : Dict = n_special a_ : List[str] = hidden_size a_ : Union[str, Any] = num_hidden_layers a_ : Dict = num_attention_heads a_ : List[str] = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : int = max_position_embeddings a_ : Dict = type_sequence_label_size a_ : Any = initializer_range a_ : List[str] = num_labels a_ : Union[str, Any] = num_choices a_ : Tuple = summary_type a_ : List[Any] = use_proj a_ : Dict = scope a_ : Union[str, Any] = bos_token_id def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: a_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a_ : Any = None if self.use_input_lengths: a_ : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a_ : Optional[Any] = None if self.use_token_type_ids: a_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) a_ : List[Any] = None a_ : List[str] = None a_ : Optional[int] = None if self.use_labels: a_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : str = ids_tensor([self.batch_size] , 2 ).float() a_ : int = ids_tensor([self.batch_size] , self.num_choices ) a_ : int = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , ) -> str: a_ : Tuple = XLMModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a_ : Any = model(lowerCamelCase_ , lengths=lowerCamelCase_ , langs=lowerCamelCase_ ) a_ : Optional[int] = model(lowerCamelCase_ , langs=lowerCamelCase_ ) a_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , ) -> Tuple: a_ : Any = XLMWithLMHeadModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a_ : Union[str, Any] = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , ) -> Optional[Any]: a_ : List[str] = XLMForQuestionAnsweringSimple(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a_ : int = model(lowerCamelCase_ ) a_ : Optional[int] = model(lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ ) a_ : Union[str, Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , ) -> int: a_ : Dict = XLMForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a_ : Union[str, Any] = model(lowerCamelCase_ ) a_ : str = model( lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , cls_index=lowerCamelCase_ , is_impossible=lowerCamelCase_ , p_mask=lowerCamelCase_ , ) a_ : Tuple = model( lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , cls_index=lowerCamelCase_ , is_impossible=lowerCamelCase_ , ) (a_ ) : List[Any] = result_with_labels.to_tuple() a_ : Dict = model(lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ ) (a_ ) : Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> List[str]: a_ : Optional[Any] = XLMForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a_ : Tuple = model(lowerCamelCase_ ) a_ : Any = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , ) -> Any: a_ : Any = self.num_labels a_ : Optional[int] = XLMForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a_ : List[str] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , ) -> Optional[Any]: a_ : Dict = self.num_choices a_ : List[Any] = XLMForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a_ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: a_ : int = self.prepare_config_and_inputs() ( a_ ) : List[str] = config_and_inputs a_ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): snake_case__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) snake_case__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable snake_case__ = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any=False ) -> Any: a_ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) a_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : List[str] = XLMModelTester(self ) a_ : Dict = ConfigTester(self , config_class=lowerCamelCase_ , emb_dim=37 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=1 ) -> Union[str, Any]: self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual( [isinstance(lowerCamelCase_ , lowerCamelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCamelCase_ ) ) self.assertEqual(len(lowerCamelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCamelCase_ ): # adds PAD dummy token a_ : Any = min_length + idx + 1 a_ : Any = min_length + idx + 1 a_ : int = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=1 ) -> Tuple: self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual( [isinstance(lowerCamelCase_ , lowerCamelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCamelCase_ ) , ) self.assertEqual(len(lowerCamelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCamelCase_ ): # adds PAD dummy token a_ : List[str] = min_length + idx + 1 a_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCamelCase_ ) , ) pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Union[str, Any] = XLMModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Tuple = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(lowerCamelCase_ ) a_ : int = torch.tensor([[14, 447]] , dtype=torch.long , device=lowerCamelCase_ ) # the president a_ : int = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a_ : Optional[int] = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCamelCase_ )
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): snake_case__ = 42 @flax_register_to_config class SCREAMING_SNAKE_CASE ( nn.Module , _UpperCAmelCase , _UpperCAmelCase ): snake_case__ = 32 snake_case__ = 4 snake_case__ = 4 snake_case__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") snake_case__ = False snake_case__ = (320, 640, 1280, 1280) snake_case__ = 2 snake_case__ = 8 snake_case__ = None snake_case__ = 1280 snake_case__ = 0.0 snake_case__ = False snake_case__ = jnp.floataa snake_case__ = True snake_case__ = 0 snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : jax.random.KeyArray ) -> FrozenDict: a_ : Optional[Any] = (1, self.in_channels, self.sample_size, self.sample_size) a_ : Any = jnp.zeros(__UpperCamelCase , dtype=jnp.floataa ) a_ : Any = jnp.ones((1,) , dtype=jnp.intaa ) a_ : int = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a_ , a_ : int = jax.random.split(__UpperCamelCase ) a_ : Dict = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )["params"] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : Any = self.block_out_channels a_ : Optional[Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a_ : str = self.num_attention_heads or self.attention_head_dim # input a_ : str = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a_ : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a_ : int = FlaxTimestepEmbedding(__UpperCamelCase , dtype=self.dtype ) a_ : Tuple = self.only_cross_attention if isinstance(__UpperCamelCase , __UpperCamelCase ): a_ : Any = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__UpperCamelCase , __UpperCamelCase ): a_ : str = (num_attention_heads,) * len(self.down_block_types ) # down a_ : Any = [] a_ : Tuple = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): a_ : List[Any] = output_channel a_ : int = block_out_channels[i] a_ : Optional[int] = i == len(__UpperCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": a_ : str = FlaxCrossAttnDownBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a_ : Optional[Any] = FlaxDownBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__UpperCamelCase ) a_ : Optional[int] = down_blocks # mid a_ : Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up a_ : Any = [] a_ : List[str] = list(reversed(__UpperCamelCase ) ) a_ : int = list(reversed(__UpperCamelCase ) ) a_ : int = list(reversed(__UpperCamelCase ) ) a_ : str = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): a_ : Optional[Any] = output_channel a_ : Dict = reversed_block_out_channels[i] a_ : Union[str, Any] = reversed_block_out_channels[min(i + 1 , len(__UpperCamelCase ) - 1 )] a_ : str = i == len(__UpperCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": a_ : str = FlaxCrossAttnUpBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , prev_output_channel=__UpperCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a_ : str = FlaxUpBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , prev_output_channel=__UpperCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__UpperCamelCase ) a_ : Any = output_channel a_ : Optional[Any] = up_blocks # out a_ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) a_ : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: if not isinstance(__UpperCamelCase , jnp.ndarray ): a_ : List[Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__UpperCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: a_ : List[Any] = timesteps.astype(dtype=jnp.floataa ) a_ : Union[str, Any] = jnp.expand_dims(__UpperCamelCase , 0 ) a_ : List[str] = self.time_proj(__UpperCamelCase ) a_ : List[Any] = self.time_embedding(__UpperCamelCase ) # 2. pre-process a_ : Dict = jnp.transpose(__UpperCamelCase , (0, 2, 3, 1) ) a_ : List[Any] = self.conv_in(__UpperCamelCase ) # 3. down a_ : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(__UpperCamelCase , __UpperCamelCase ): a_ , a_ : Optional[Any] = down_block(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , deterministic=not train ) else: a_ , a_ : int = down_block(__UpperCamelCase , __UpperCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: a_ : str = () for down_block_res_sample, down_block_additional_residual in zip( __UpperCamelCase , __UpperCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) a_ : Optional[Any] = new_down_block_res_samples # 4. mid a_ : Dict = self.mid_block(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: a_ : List[str] = down_block_res_samples[-(self.layers_per_block + 1) :] a_ : List[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__UpperCamelCase , __UpperCamelCase ): a_ : Any = up_block( __UpperCamelCase , temb=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , res_hidden_states_tuple=__UpperCamelCase , deterministic=not train , ) else: a_ : List[str] = up_block(__UpperCamelCase , temb=__UpperCamelCase , res_hidden_states_tuple=__UpperCamelCase , deterministic=not train ) # 6. post-process a_ : Tuple = self.conv_norm_out(__UpperCamelCase ) a_ : Union[str, Any] = nn.silu(__UpperCamelCase ) a_ : Dict = self.conv_out(__UpperCamelCase ) a_ : Optional[int] = jnp.transpose(__UpperCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__UpperCamelCase )
719
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
0
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def _UpperCAmelCase ( __A : List[str] = 1_00_00_00 , __A : Optional[int] = 10 ): a_ : str = defaultdict(__A ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a_ : Union[str, Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a_ : List[str] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__A , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
720
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _UpperCAmelCase ( __A : List[Any] ): a_ : List[str] = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def _UpperCAmelCase ( __A : str , __A : int ): a_ : str = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def _UpperCAmelCase ( __A : Tuple ): a_ : int = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', '''stage2.cls_token''') ) return token def _UpperCAmelCase ( ): a_ : Union[str, Any] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def _UpperCAmelCase ( __A : Union[str, Any] , __A : Union[str, Any] , __A : Optional[Any] , __A : List[Any] ): a_ : Union[str, Any] = """imagenet-1k-id2label.json""" a_ : Optional[Any] = 10_00 a_ : Any = """huggingface/label-files""" a_ : Tuple = num_labels a_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} a_ : List[str] = idalabel a_ : Any = {v: k for k, v in idalabel.items()} a_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": a_ : Any = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": a_ : Any = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: a_ : Optional[int] = [2, 2, 20] a_ : str = [3, 12, 16] a_ : Any = [1_92, 7_68, 10_24] a_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) a_ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) a_ : List[Any] = image_size a_ : str = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''' ) ) a_ : Any = OrderedDict() a_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: a_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) a_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): a_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) a_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): a_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __lowerCAmelCase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
721
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
0
'''simple docstring''' def _UpperCAmelCase ( __A : Any , __A : Union[str, Any] ): '''simple docstring''' a_ : Any = (boundary[1] - boundary[0]) / steps a_ : Any = boundary[0] a_ : int = boundary[1] a_ : Optional[Any] = make_points(snake_case__ , snake_case__ , snake_case__ ) a_ : List[Any] = 0.0 y += (h / 2.0) * f(snake_case__ ) for i in x_i: # print(i) y += h * f(snake_case__ ) y += (h / 2.0) * f(snake_case__ ) return y def _UpperCAmelCase ( __A : List[Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' a_ : str = a + h while x < (b - h): yield x a_ : List[Any] = x + h def _UpperCAmelCase ( __A : str ): # enter your function here '''simple docstring''' a_ : Tuple = (x - 0) * (x - 0) return y def _UpperCAmelCase ( ): '''simple docstring''' a_ : int = 0.0 # Lower bound of integration a_ : List[Any] = 1.0 # Upper bound of integration a_ : Union[str, Any] = 10.0 # define number of steps or resolution a_ : Any = [a, b] # define boundary of integration a_ : Dict = method_a(snake_case__ , snake_case__ ) print(f'y = {y}' ) if __name__ == "__main__": main()
700
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __lowerCAmelCase = logging.get_logger(__name__) # TODO: upload to AWS __lowerCAmelCase = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE ( lowercase__ ): snake_case__ = 'retribert' def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str]=3_0522 , __SCREAMING_SNAKE_CASE : str=768 , __SCREAMING_SNAKE_CASE : Tuple=8 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : Optional[int]=3072 , __SCREAMING_SNAKE_CASE : List[str]="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=512 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : Dict=1e-12 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Dict=128 , __SCREAMING_SNAKE_CASE : List[str]=0 , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> int: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = vocab_size a_ : List[str] = hidden_size a_ : List[Any] = num_hidden_layers a_ : int = num_attention_heads a_ : Optional[int] = hidden_act a_ : List[str] = intermediate_size a_ : str = hidden_dropout_prob a_ : Optional[int] = attention_probs_dropout_prob a_ : Union[str, Any] = max_position_embeddings a_ : List[str] = type_vocab_size a_ : Optional[int] = initializer_range a_ : str = layer_norm_eps a_ : Tuple = share_encoders a_ : str = projection_dim
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
0
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( __A : Callable , __A : float , __A : float , __A : float , __A : float ): a_ : str = int(np.ceil((x_end - xa) / step_size ) ) a_ : int = np.zeros((n + 1,) ) a_ : List[Any] = ya a_ : str = xa for k in range(__A ): a_ : Dict = y[k] + step_size * ode_func(__A , y[k] ) a_ : str = y[k] + ( (step_size / 2) * (ode_func(__A , y[k] ) + ode_func(x + step_size , __A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
703
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
0
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : str , __A : Dict , __A : str , __A : Optional[int]=None , __A : Optional[int]=None ): if "." in tensor_name: a_ : Optional[int] = tensor_name.split('''.''' ) for split in splits[:-1]: a_ : List[Any] = getattr(_lowerCamelCase , _lowerCamelCase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) a_ : Any = new_module a_ : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) a_ : int = tensor_name in module._buffers a_ : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) a_ : str = False a_ : Optional[Any] = False if is_buffer or not is_bitsandbytes_available(): a_ : List[Any] = False a_ : int = False else: a_ : Optional[Any] = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) a_ : Union[str, Any] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: a_ : Union[str, Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: a_ : Dict = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): a_ : int = value.to('''cpu''' ) if value.dtype == torch.inta: a_ : List[Any] = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: a_ : Any = torch.tensor(_lowerCamelCase , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _lowerCamelCase ) and fpaa_statistics is None: a_ : Dict = new_value.T a_ : int = old_value.__dict__ if is_abit: a_ : Optional[int] = bnb.nn.IntaParams(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) elif is_abit: a_ : List[str] = bnb.nn.Paramsabit(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) a_ : List[str] = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(_lowerCamelCase ) ) else: if value is None: a_ : List[str] = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): a_ : Optional[Any] = value.to(_lowerCamelCase ) else: a_ : Any = torch.tensor(_lowerCamelCase , device=_lowerCamelCase ) if is_buffer: a_ : Union[str, Any] = new_value else: a_ : Union[str, Any] = nn.Parameter(_lowerCamelCase , requires_grad=old_value.requires_grad ) a_ : Dict = new_value def _UpperCAmelCase ( __A : Dict , __A : Tuple=None , __A : Any=None , __A : Tuple=None , __A : Union[str, Any]=False ): for name, module in model.named_children(): if current_key_name is None: a_ : Optional[Any] = [] current_key_name.append(_lowerCamelCase ) if (isinstance(_lowerCamelCase , nn.Linear ) or isinstance(_lowerCamelCase , _lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowerCamelCase , _lowerCamelCase ): a_ : List[str] = module.weight.shape else: a_ : Any = module.in_features a_ : int = module.out_features if quantization_config.quantization_method() == "llm_int8": a_ : str = bnb.nn.LinearabitLt( _lowerCamelCase , _lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) a_ : Tuple = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: a_ : Optional[Any] = bnb.nn.Linearabit( _lowerCamelCase , _lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) a_ : str = True # Store the module class in case we need to transpose the weight later a_ : Tuple = type(_lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowerCamelCase ) if len(list(module.children() ) ) > 0: a_ : List[str] = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_been_replaced=_lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _UpperCAmelCase ( __A : Union[str, Any] , __A : Tuple=None , __A : int=None , __A : str=None ): a_ : Optional[Any] = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert a_ : Any = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def _UpperCAmelCase ( *__A : Dict , **__A : List[Any] ): warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , _lowerCamelCase , ) return replace_with_bnb_linear(*_lowerCamelCase , **_lowerCamelCase ) def _UpperCAmelCase ( *__A : Union[str, Any] , **__A : Optional[int] ): warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , _lowerCamelCase , ) return set_module_quantized_tensor_to_device(*_lowerCamelCase , **_lowerCamelCase ) def _UpperCAmelCase ( __A : Tuple ): a_ : int = deepcopy(_lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() a_ : List[str] = find_tied_parameters(_lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCamelCase , _lowerCamelCase ): a_ : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: a_ : Optional[int] = sum(_lowerCamelCase , [] ) a_ : int = len(_lowerCamelCase ) > 0 # Check if it is a base model a_ : Optional[int] = not hasattr(_lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head a_ : Optional[int] = list(model.named_children() ) a_ : int = [list_modules[-1][0]] # add last module together with tied weights a_ : int = set(_lowerCamelCase ) - set(_lowerCamelCase ) a_ : Any = list(set(_lowerCamelCase ) ) + list(_lowerCamelCase ) # remove ".weight" from the keys a_ : Dict = [".weight", ".bias"] a_ : str = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: a_ : Any = name.replace(_lowerCamelCase , '''''' ) filtered_module_names.append(_lowerCamelCase ) return filtered_module_names
704
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
0
'''simple docstring''' def _UpperCAmelCase ( __A : list[int] ): if not numbers: return 0 if not isinstance(__A , (list, tuple) ) or not all( isinstance(__A , __A ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) a_ : str = numbers[0] for i in range(1 , len(__A ) ): # update the maximum and minimum subarray products a_ : Any = numbers[i] if number < 0: a_ : Optional[int] = min_till_now, max_till_now a_ : int = max(__A , max_till_now * number ) a_ : Optional[Any] = min(__A , min_till_now * number ) # update the maximum product found till now a_ : int = max(__A , __A ) return max_prod
705
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger('''transformers.models.speecht5''') __lowerCAmelCase = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __lowerCAmelCase = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __lowerCAmelCase = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __lowerCAmelCase = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __lowerCAmelCase = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __lowerCAmelCase = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __lowerCAmelCase = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __lowerCAmelCase = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __lowerCAmelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __lowerCAmelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCAmelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCAmelCase = [] __lowerCAmelCase = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __lowerCAmelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __lowerCAmelCase = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __lowerCAmelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def _UpperCAmelCase ( __A : List[str] , __A : Optional[Any] , __A : Any , __A : Tuple , __A : Tuple ): for attribute in key.split('''.''' ): a_ : List[Any] = getattr(snake_case__ , snake_case__ ) if weight_type is not None: a_ : Optional[Any] = getattr(snake_case__ , snake_case__ ).shape else: a_ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": a_ : Optional[Any] = value elif weight_type == "weight_g": a_ : List[str] = value elif weight_type == "weight_v": a_ : int = value elif weight_type == "bias": a_ : Tuple = value elif weight_type == "running_mean": a_ : Optional[Any] = value elif weight_type == "running_var": a_ : Optional[Any] = value elif weight_type == "num_batches_tracked": a_ : Optional[Any] = value else: a_ : int = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def _UpperCAmelCase ( __A : Any , __A : int ): for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: a_ : int = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _UpperCAmelCase ( __A : Dict , __A : int , __A : Any ): a_ : Tuple = [] if task == "s2t": a_ : int = hf_model.speechta.encoder.prenet.feature_encoder a_ : Tuple = MAPPING_S2T a_ : Union[str, Any] = IGNORE_KEYS_S2T elif task == "t2s": a_ : int = None a_ : Union[str, Any] = MAPPING_T2S a_ : List[str] = IGNORE_KEYS_T2S elif task == "s2s": a_ : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder a_ : Tuple = MAPPING_S2S a_ : Tuple = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(snake_case__ , snake_case__ ): logger.info(f'{name} was ignored' ) continue a_ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == '''group''' , ) a_ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: a_ : Union[str, Any] = key.split('''.*.''' ) if prefix in name and suffix in name: a_ : Optional[int] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: a_ : Union[str, Any] = True if "*" in mapped_key: a_ : int = name.split(snake_case__ )[0].split('''.''' )[-2] a_ : str = mapped_key.replace('''*''' , snake_case__ ) if "weight_g" in name: a_ : str = """weight_g""" elif "weight_v" in name: a_ : Dict = """weight_v""" elif "bias" in name: a_ : List[str] = """bias""" elif "weight" in name: a_ : Optional[int] = """weight""" elif "running_mean" in name: a_ : int = """running_mean""" elif "running_var" in name: a_ : int = """running_var""" elif "num_batches_tracked" in name: a_ : Union[str, Any] = """num_batches_tracked""" else: a_ : Dict = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(f'Unused weights: {unused_weights}' ) def _UpperCAmelCase ( __A : Union[str, Any] , __A : List[str] , __A : str , __A : Optional[int] , __A : Dict ): a_ : Dict = full_name.split('''conv_layers.''' )[-1] a_ : Dict = name.split('''.''' ) a_ : Union[str, Any] = int(items[0] ) a_ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a_ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a_ : str = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) a_ : List[str] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) a_ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def _UpperCAmelCase ( __A : Tuple , __A : int , __A : Any , __A : List[Any]=None , __A : Tuple=None , __A : Dict=None , ): if config_path is not None: a_ : List[Any] = SpeechTaConfig.from_pretrained(snake_case__ ) else: a_ : List[Any] = SpeechTaConfig() if task == "s2t": a_ : Union[str, Any] = config.max_text_positions a_ : Optional[Any] = SpeechTaForSpeechToText(snake_case__ ) elif task == "t2s": a_ : List[Any] = 18_76 a_ : Tuple = 6_00 a_ : Union[str, Any] = config.max_speech_positions a_ : Dict = SpeechTaForTextToSpeech(snake_case__ ) elif task == "s2s": a_ : List[str] = 18_76 a_ : List[str] = config.max_speech_positions a_ : Dict = SpeechTaForSpeechToSpeech(snake_case__ ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: a_ : str = SpeechTaTokenizer(snake_case__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it a_ : Tuple = AddedToken('''<mask>''' , lstrip=snake_case__ , rstrip=snake_case__ ) a_ : Tuple = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) a_ : List[Any] = SpeechTaFeatureExtractor() a_ : Optional[Any] = SpeechTaProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) processor.save_pretrained(snake_case__ ) a_ : Optional[Any] = torch.load(snake_case__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , snake_case__ , snake_case__ ) model.save_pretrained(snake_case__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(snake_case__ ) model.push_to_hub(snake_case__ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __lowerCAmelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
706
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
0
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _UpperCAmelCase ( __A : Optional[int] , __A : Dict , __A : Union[str, Any]=[] ): a_ : Tuple = size[0] - overlap_pixels * 2 a_ : Optional[int] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels a_ : str = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 a_ : int = np.pad(__snake_case , mode='''linear_ramp''' , pad_width=__snake_case , end_values=0 ) if "l" in remove_borders: a_ : Tuple = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: a_ : List[str] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: a_ : Any = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: a_ : Tuple = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _UpperCAmelCase ( __A : List[Any] , __A : List[Any] , __A : List[str] ): return max(__snake_case , min(__snake_case , __snake_case ) ) def _UpperCAmelCase ( __A : Any , __A : List[str] , __A : str ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _UpperCAmelCase ( __A : Any , __A : int , __A : Optional[int] ): a_ : List[Any] = list(__snake_case ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap a_ : List[str] = clamp_rect(__snake_case , [0, 0] , [image_size[0], image_size[1]] ) return rect def _UpperCAmelCase ( __A : Union[str, Any] , __A : Optional[Any] , __A : str , __A : Optional[int] ): a_ : Tuple = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__snake_case , (original_slice, 0) ) return result def _UpperCAmelCase ( __A : Union[str, Any] , __A : Tuple ): a_ : Tuple = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) a_ : int = tile.crop(__snake_case ) return tile def _UpperCAmelCase ( __A : Optional[int] , __A : Union[str, Any] ): a_ : Any = n % d return n - divisor class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] = 350 , ) -> int: super().__init__( vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , unet=__lowerCAmelCase , low_res_scheduler=__lowerCAmelCase , scheduler=__lowerCAmelCase , max_noise_level=__lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: torch.manual_seed(0 ) a_ : Dict = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) a_ : int = add_overlap_rect(__lowerCAmelCase , __lowerCAmelCase , image.size ) a_ : str = image.crop(__lowerCAmelCase ) a_ : List[str] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] a_ : Optional[Any] = translated_slice_x - (original_image_slice / 2) a_ : Optional[Any] = max(0 , __lowerCAmelCase ) a_ : List[Any] = squeeze_tile(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a_ : str = to_input.size a_ : int = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) a_ : Union[str, Any] = super(__lowerCAmelCase , self ).__call__(image=__lowerCAmelCase , **__lowerCAmelCase ).images[0] a_ : Union[str, Any] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) a_ : Optional[Any] = unsqueeze_tile(__lowerCAmelCase , __lowerCAmelCase ) a_ : Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) a_ : List[str] = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) a_ : Optional[int] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__lowerCAmelCase ) , mode='''L''' , ) final_image.paste( __lowerCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __lowerCAmelCase ) @torch.no_grad() def __call__( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] = 75 , __SCREAMING_SNAKE_CASE : Dict = 9.0 , __SCREAMING_SNAKE_CASE : List[str] = 50 , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : Any = 0.0 , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : Optional[Any] = None , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : Any = 1 , __SCREAMING_SNAKE_CASE : List[str] = 128 , __SCREAMING_SNAKE_CASE : str = 32 , __SCREAMING_SNAKE_CASE : Tuple = 32 , ) -> Optional[Any]: a_ : List[str] = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) a_ : Tuple = math.ceil(image.size[0] / tile_size ) a_ : Tuple = math.ceil(image.size[1] / tile_size ) a_ : str = tcx * tcy a_ : Union[str, Any] = 0 for y in range(__lowerCAmelCase ): for x in range(__lowerCAmelCase ): self._process_tile( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , prompt=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , noise_level=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , eta=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def _UpperCAmelCase ( ): a_ : int = '''stabilityai/stable-diffusion-x4-upscaler''' a_ : Any = StableDiffusionTiledUpscalePipeline.from_pretrained(__snake_case , revision='''fp16''' , torch_dtype=torch.floataa ) a_ : Tuple = pipe.to('''cuda''' ) a_ : Tuple = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(__A : Optional[Any] ): print(f'progress: {obj["progress"]:.4f}' ) obj["image"].save('''diffusers_library_progress.jpg''' ) a_ : Any = pipe(image=__snake_case , prompt='''Black font, white background, vector''' , noise_level=40 , callback=__snake_case ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
707
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
0
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __lowerCAmelCase = parser.parse_args() if args.model_type == "roberta": __lowerCAmelCase = RobertaForMaskedLM.from_pretrained(args.model_name) __lowerCAmelCase = "roberta" elif args.model_type == "gpt2": __lowerCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name) __lowerCAmelCase = "transformer" __lowerCAmelCase = model.state_dict() __lowerCAmelCase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __lowerCAmelCase = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __lowerCAmelCase = F"""{prefix}.embeddings.{w}.weight""" __lowerCAmelCase = state_dict[param_name] for w in ["weight", "bias"]: __lowerCAmelCase = F"""{prefix}.embeddings.LayerNorm.{w}""" __lowerCAmelCase = state_dict[param_name] # Transformer Blocks # __lowerCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __lowerCAmelCase = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] __lowerCAmelCase = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __lowerCAmelCase = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __lowerCAmelCase = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: __lowerCAmelCase = state_dict[F"""lm_head.dense.{w}"""] __lowerCAmelCase = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __lowerCAmelCase = state_dict[F"""{prefix}.ln_f.{w}"""] __lowerCAmelCase = state_dict["lm_head.weight"] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
708
'''simple docstring''' def _UpperCAmelCase ( __A : str , __A : str ): def get_matched_characters(__A : str , __A : str ) -> str: a_ : Union[str, Any] = [] a_ : int = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ : Any = int(max(0 , i - limit ) ) a_ : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__A ) a_ : Any = f'{_stra[0:_stra.index(__A )]} {_stra[_stra.index(__A ) + 1:]}' return "".join(__A ) # matching characters a_ : Optional[Any] = get_matched_characters(__A , __A ) a_ : int = get_matched_characters(__A , __A ) a_ : Any = len(__A ) # transposition a_ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__A , __A ) if ca != ca] ) // 2 ) if not match_count: a_ : Dict = 0.0 else: a_ : Optional[int] = ( 1 / 3 * ( match_count / len(__A ) + match_count / len(__A ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
666
0
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') __lowerCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') __lowerCAmelCase = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: __lowerCAmelCase = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __lowerCAmelCase = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
709
'''simple docstring''' import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE ( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() a_ : str = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) a_ : Dict = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> str: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=1 ) -> Dict: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: a_ : Dict = W_supports['''sizes'''].tolist() a_ : Tuple = W_supports['''start_token_id'''].item() a_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a_ : int = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Any = self.BERT(**__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = None a_ : Tuple = None a_ : List[str] = W_supports['''input_ids'''] == start_token_id a_ : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: a_ : str = 0 else: a_ : str = support_sizes[i - 1] a_ : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] a_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] a_ : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) a_ : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a_ : Any = torch.vstack((p_starts, p_start) ) a_ : Dict = torch.vstack((p_ends, p_end) ) else: a_ : Optional[int] = p_start a_ : List[Any] = p_end return p_starts, p_ends
666
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): snake_case__ = "rwkv" snake_case__ = {"max_position_embeddings": "context_length"} def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]=5_0277 , __SCREAMING_SNAKE_CASE : str=1024 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4096 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=1e-5 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , __SCREAMING_SNAKE_CASE : Dict=6 , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Tuple=True , **__SCREAMING_SNAKE_CASE : List[str] , ) -> List[Any]: a_ : int = vocab_size a_ : Tuple = context_length a_ : str = hidden_size a_ : str = num_hidden_layers a_ : int = attention_hidden_size if attention_hidden_size is not None else hidden_size a_ : List[Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size a_ : Any = layer_norm_epsilon a_ : List[str] = rescale_every a_ : int = use_cache a_ : Optional[Any] = bos_token_id a_ : Union[str, Any] = eos_token_id super().__init__( tie_word_embeddings=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
710
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"image": Image()} ) snake_case__ = Features({"labels": ClassLabel} ) snake_case__ = "image" snake_case__ = "labels" def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) a_ : Optional[int] = copy.deepcopy(self ) a_ : int = self.label_schema.copy() a_ : Tuple = features[self.label_column] a_ : str = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
666
0
'''simple docstring''' def _UpperCAmelCase ( __A : Optional[Any] ): a_ : Dict = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _UpperCAmelCase ( __A : Optional[Any] = 1_00 ): a_ : Union[str, Any] = 1 a_ : List[str] = 2 for i in range(2 , max_n + 1 ): a_ : Union[str, Any] = pre_numerator a_ : Optional[Any] = 2 * i // 3 if i % 3 == 0 else 1 a_ : int = cur_numerator a_ : Tuple = e_cont * pre_numerator + temp return sum_digits(_snake_case ) if __name__ == "__main__": print(F"""{solution() = }""")
711
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : tuple[int, int] , __A : int ): a_ , a_ : List[str] = position a_ : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : Any = [] for position in positions: a_ , a_ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def _UpperCAmelCase ( __A : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ): if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): a_ , a_ : Dict = position if board[y][x] == 0: a_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True a_ : Tuple = 0 return False def _UpperCAmelCase ( __A : int ): a_ : List[str] = [[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Optional[Any] = 1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board a_ : Union[str, Any] = 0 a_ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
666
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __lowerCAmelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __lowerCAmelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __lowerCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def _UpperCAmelCase ( __A : List[Any] , __A : Dict ): a_ : int = len([g for position, g in enumerate(_lowercase ) if g == main_target[position]] ) return (item, float(_lowercase )) def _UpperCAmelCase ( __A : str , __A : List[Any] ): a_ : Optional[Any] = random.randint(0 , len(_lowercase ) - 1 ) a_ : List[str] = parent_a[:random_slice] + parent_a[random_slice:] a_ : Optional[int] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _UpperCAmelCase ( __A : Optional[Any] , __A : Any ): a_ : Any = list(_lowercase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: a_ : List[Any] = random.choice(_lowercase ) return "".join(_lowercase ) def _UpperCAmelCase ( __A : Tuple , __A : Dict , __A : Optional[Any] , ): a_ : List[str] = [] # Generate more children proportionally to the fitness score. a_ : Optional[int] = int(parent_a[1] * 1_00 ) + 1 a_ : Tuple = 10 if child_n >= 10 else child_n for _ in range(_lowercase ): a_ : Optional[int] = population_score[random.randint(0 , _lowercase )][0] a_ : Optional[Any] = crossover(parent_a[0] , _lowercase ) # Append new string to the population list. pop.append(mutate(_lowercase , _lowercase ) ) pop.append(mutate(_lowercase , _lowercase ) ) return pop def _UpperCAmelCase ( __A : Optional[int] , __A : Optional[Any] , __A : List[str] = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: a_ : List[Any] = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. a_ : str = sorted({c for c in target if c not in genes} ) if not_in_genes_list: a_ : List[Any] = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_lowercase ) # Generate random starting population. a_ : Union[str, Any] = [] for _ in range(_lowercase ): population.append(''''''.join([random.choice(_lowercase ) for i in range(len(_lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. a_ : Dict = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. a_ : List[Any] = [evaluate(_lowercase , _lowercase ) for item in population] # Check if there is a matching evolution. a_ : Any = sorted(_lowercase , key=lambda __A : x[1] , reverse=_lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. a_ : Union[str, Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowercase ) # Normalize population score to be between 0 and 1. a_ : List[Any] = [ (item, score / len(_lowercase )) for item, score in population_score ] # This is selection for i in range(_lowercase ): population.extend(select(population_score[int(_lowercase )] , _lowercase , _lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowercase ) > N_POPULATION: break if __name__ == "__main__": __lowerCAmelCase = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) __lowerCAmelCase = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) __lowerCAmelCase = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
712
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "yolos" def __init__( self : Any , __SCREAMING_SNAKE_CASE : Any=768 , __SCREAMING_SNAKE_CASE : List[str]=12 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : Tuple=3072 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Tuple=1e-12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=[512, 864] , __SCREAMING_SNAKE_CASE : Dict=16 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : int=100 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : List[Any]=5 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=5 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Any=0.1 , **__SCREAMING_SNAKE_CASE : str , ) -> Optional[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) a_ : int = hidden_size a_ : List[Any] = num_hidden_layers a_ : Optional[int] = num_attention_heads a_ : Tuple = intermediate_size a_ : Union[str, Any] = hidden_act a_ : int = hidden_dropout_prob a_ : Any = attention_probs_dropout_prob a_ : List[Any] = initializer_range a_ : List[str] = layer_norm_eps a_ : int = image_size a_ : Optional[int] = patch_size a_ : List[str] = num_channels a_ : Optional[int] = qkv_bias a_ : Optional[int] = num_detection_tokens a_ : Dict = use_mid_position_embeddings a_ : int = auxiliary_loss # Hungarian matcher a_ : Any = class_cost a_ : Tuple = bbox_cost a_ : Dict = giou_cost # Loss coefficients a_ : int = bbox_loss_coefficient a_ : Union[str, Any] = giou_loss_coefficient a_ : Dict = eos_coefficient class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> float: return 1e-4 @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return 12
713
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __A : str , __A : dict ): a_ : Tuple = BeautifulSoup(requests.get(__A , params=__A ).content , '''html.parser''' ) a_ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) a_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
666
0
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( __A : Tuple , __A : Optional[Any] , __A : List[str] ): return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def _UpperCAmelCase ( __A : Dict , __A : Union[str, Any] , __A : Dict , __A : Optional[int]="attention" ): a_ : Tuple = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) a_ : Tuple = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) a_ : str = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) a_ : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) a_ : Tuple = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) a_ : Any = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) a_ : Dict = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) a_ : List[str] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _UpperCAmelCase ( __A : Dict , __A : str , __A : Optional[int] , __A : Dict=False ): if split_mlp_wi: a_ : List[str] = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] a_ : List[Any] = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] a_ : Any = (wi_a, wi_a) else: a_ : str = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] a_ : Optional[Any] = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def _UpperCAmelCase ( __A : str , __A : int , __A : Any , __A : Dict ): return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def _UpperCAmelCase ( __A : List[str] , *, __A : List[str] , __A : Any , __A : List[Any] = False ): a_ : List[Any] = traverse_util.flatten_dict(variables['''target'''] ) a_ : Optional[int] = {"""/""".join(__A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a_ : Optional[int] = """encoder/encoder/mlp/wi_0/kernel""" in old print('''Split MLP:''' , __A ) a_ : Tuple = collections.OrderedDict() # Shared embeddings. a_ : List[Any] = old["""token_embedder/embedding"""] # Encoder. for i in range(__A ): # Block i, layer 0 (Self Attention). a_ : int = tax_layer_norm_lookup(__A , __A , '''encoder''' , '''pre_attention_layer_norm''' ) a_ : Dict = tax_attention_lookup(__A , __A , '''encoder''' , '''attention''' ) a_ : List[Any] = layer_norm a_ : Optional[Any] = k.T a_ : Tuple = o.T a_ : Any = q.T a_ : Optional[int] = v.T # Block i, layer 1 (MLP). a_ : Optional[Any] = tax_layer_norm_lookup(__A , __A , '''encoder''' , '''pre_mlp_layer_norm''' ) a_ : Tuple = tax_mlp_lookup(__A , __A , '''encoder''' , __A ) a_ : List[str] = layer_norm if split_mlp_wi: a_ : Dict = wi[0].T a_ : Optional[int] = wi[1].T else: a_ : Optional[Any] = wi.T a_ : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer a_ : List[str] = tax_relpos_bias_lookup( __A , __A , '''encoder''' ).T a_ : List[Any] = old["""encoder/encoder_norm/scale"""] if not scalable_attention: a_ : List[Any] = tax_relpos_bias_lookup( __A , 0 , '''encoder''' ).T a_ : Any = tax_relpos_bias_lookup( __A , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__A ): # Block i, layer 0 (Self Attention). a_ : int = tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_self_attention_layer_norm''' ) a_ : Optional[int] = tax_attention_lookup(__A , __A , '''decoder''' , '''self_attention''' ) a_ : Dict = layer_norm a_ : str = k.T a_ : Optional[Any] = o.T a_ : Union[str, Any] = q.T a_ : Optional[Any] = v.T # Block i, layer 1 (Cross Attention). a_ : Optional[int] = tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_cross_attention_layer_norm''' ) a_ : Optional[Any] = tax_attention_lookup(__A , __A , '''decoder''' , '''encoder_decoder_attention''' ) a_ : List[Any] = layer_norm a_ : Union[str, Any] = k.T a_ : Tuple = o.T a_ : List[Any] = q.T a_ : Dict = v.T # Block i, layer 2 (MLP). a_ : int = tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_mlp_layer_norm''' ) a_ : Union[str, Any] = tax_mlp_lookup(__A , __A , '''decoder''' , __A ) a_ : Optional[Any] = layer_norm if split_mlp_wi: a_ : int = wi[0].T a_ : Dict = wi[1].T else: a_ : List[Any] = wi.T a_ : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer a_ : Any = tax_relpos_bias_lookup(__A , __A , '''decoder''' ).T a_ : str = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a_ : Dict = old["""decoder/logits_dense/kernel"""].T return new def _UpperCAmelCase ( __A : List[str] , __A : str ): a_ : List[str] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a_ : Union[str, Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a_ : int = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) a_ : Union[str, Any] = state_dict["""shared.weight"""] return state_dict def _UpperCAmelCase ( __A : List[Any] , __A : str , __A : Union[str, Any] , __A : Optional[Any] , __A : str ): a_ : str = checkpoints.load_tax_checkpoint(__A ) a_ : Dict = convert_tax_to_pytorch( __A , num_layers=config.num_layers , is_encoder_only=__A , scalable_attention=__A ) a_ : Union[str, Any] = make_state_dict(__A , __A ) model.load_state_dict(__A , strict=__A ) def _UpperCAmelCase ( __A : Tuple , __A : Any , __A : str , __A : Optional[Any] = False , __A : Dict = False , ): a_ : Dict = MTaConfig.from_json_file(__A ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a_ : Dict = UMTaEncoderModel(__A ) else: a_ : Dict = UMTaForConditionalGeneration(__A ) # Load weights from tf checkpoint load_tax_weights_in_ta(__A , __A , __A , __A , __A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__A ) # Verify that we can load the checkpoint. model.from_pretrained(__A ) print('''Done''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) __lowerCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
714
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def _UpperCAmelCase ( __A : str , __A : str ): if "xprophetnet" in prophetnet_checkpoint_path: a_ : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) else: a_ : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__A ) a_ , a_ : Any = ProphetNetForConditionalGeneration.from_pretrained( __A , output_loading_info=__A ) a_ : str = ['''key_proj''', '''value_proj''', '''query_proj'''] a_ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: a_ : List[str] = key.split('''.''' ) if attributes[0] == "lm_head": a_ : List[str] = prophet a_ : Dict = prophet_old else: a_ : str = prophet.prophetnet a_ : int = prophet_old.model a_ : str = False for attribute in attributes: if attribute in mapping: a_ : Dict = mapping[attribute] if not hasattr(__A , __A ) and len(__A ) > 0: a_ : List[str] = attribute elif hasattr(__A , __A ): a_ : Union[str, Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a_ : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) a_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a_ : Union[str, Any] = old_model.bias logger.info(f'{attribute} is initialized' ) a_ : Dict = True break elif attribute in special_keys and hasattr(__A , '''in_proj_weight''' ): a_ : Tuple = old_model.in_proj_weight.shape[0] // 3 a_ : Any = getattr(__A , __A ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a_ : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a_ : List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a_ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a_ : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a_ : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a_ : Optional[Any] = True break if attribute.isdigit(): a_ : Union[str, Any] = model[int(__A )] a_ : str = old_model[int(__A )] else: a_ : Tuple = getattr(__A , __A ) if old_attribute == "": a_ : List[str] = old_model else: if not hasattr(__A , __A ): raise ValueError(f'{old_model} does not have {old_attribute}' ) a_ : Optional[Any] = getattr(__A , __A ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
666
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE ( lowercase__ ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__lowercase , '''num_attention_heads''' ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=13 , __SCREAMING_SNAKE_CASE : str=64 , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : List[str]=1 , __SCREAMING_SNAKE_CASE : int=16 , __SCREAMING_SNAKE_CASE : Optional[int]=[128, 256, 384] , __SCREAMING_SNAKE_CASE : List[Any]=[4, 6, 8] , __SCREAMING_SNAKE_CASE : str=[2, 3, 4] , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16, 16] , __SCREAMING_SNAKE_CASE : int=0 , __SCREAMING_SNAKE_CASE : str=[2, 2, 2] , __SCREAMING_SNAKE_CASE : Tuple=[2, 2, 2] , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : List[str]=2 , ) -> Tuple: a_ : List[Any] = parent a_ : Tuple = batch_size a_ : Tuple = image_size a_ : List[Any] = num_channels a_ : Any = kernel_size a_ : List[Any] = stride a_ : Optional[int] = padding a_ : Optional[int] = hidden_sizes a_ : Any = num_attention_heads a_ : int = depths a_ : List[Any] = key_dim a_ : Optional[int] = drop_path_rate a_ : Tuple = patch_size a_ : Union[str, Any] = attention_ratio a_ : List[str] = mlp_ratio a_ : str = initializer_range a_ : Dict = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] a_ : Optional[int] = is_training a_ : Tuple = use_labels a_ : Optional[int] = num_labels a_ : str = initializer_range def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: a_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Union[str, Any] = None if self.use_labels: a_ : int = ids_tensor([self.batch_size] , self.num_labels ) a_ : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str ) -> List[str]: a_ : List[Any] = LevitModel(config=__lowercase ) model.to(__lowercase ) model.eval() a_ : Optional[Any] = model(__lowercase ) a_ : Optional[Any] = (self.image_size, self.image_size) a_ , a_ : Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): a_ : str = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) a_ : Any = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: a_ : Union[str, Any] = self.num_labels a_ : Optional[int] = LevitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() a_ : List[Any] = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: a_ : str = self.prepare_config_and_inputs() a_ , a_ , a_ : Dict = config_and_inputs a_ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) snake_case__ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : Tuple = LevitModelTester(self ) a_ : List[Any] = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: pass @unittest.skip(reason='''Levit does not output attentions''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ , a_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[int] = model_class(__lowercase ) a_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Any = [*signature.parameters.keys()] a_ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: def check_hidden_states_output(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ): a_ : str = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): a_ : List[Any] = model(**self._prepare_for_class(__lowercase , __lowercase ) ) a_ : List[Any] = outputs.hidden_states a_ : Optional[int] = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowercase ) , __lowercase ) a_ : Union[str, Any] = (self.model_tester.image_size, self.model_tester.image_size) a_ , a_ : Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): a_ : str = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) a_ : Union[str, Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : List[str] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Union[str, Any] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=False ) -> Any: a_ : Optional[int] = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: if not self.model_tester.is_training: return a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : str = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowercase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue a_ : Optional[Any] = model_class(__lowercase ) model.to(__lowercase ) model.train() a_ : List[str] = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) a_ : Tuple = model(**__lowercase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a_ : Dict = False a_ : List[str] = True for model_class in self.all_model_classes: if model_class in get_values(__lowercase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue a_ : Tuple = model_class(__lowercase ) model.gradient_checkpointing_enable() model.to(__lowercase ) model.train() a_ : Optional[int] = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) a_ : Any = model(**__lowercase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() a_ : int = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowercase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'Testing {model_class} with {problem_type["title"]}' ): a_ : List[str] = problem_type['''title'''] a_ : str = problem_type['''num_labels'''] a_ : Union[str, Any] = model_class(__lowercase ) model.to(__lowercase ) model.train() a_ : Any = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if problem_type["num_labels"] > 1: a_ : Any = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) a_ : str = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowercase ) as warning_list: a_ : List[str] = model(**__lowercase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Any = LevitModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def _UpperCAmelCase ( ): a_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : int ) -> Any: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : Optional[Any] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowercase ) a_ : Optional[Any] = self.default_image_processor a_ : int = prepare_img() a_ : Optional[int] = image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): a_ : Any = model(**__lowercase ) # verify the logits a_ : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) a_ : Any = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
715
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
0
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def _UpperCAmelCase ( __A : Optional[Any] ): if hor == 1_28: a_ : int = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a_ : Tuple = (32, 1_28, 2_56) a_ : List[str] = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: a_ : Union[str, Any] = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a_ : str = (32, 64, 1_28, 2_56) a_ : Union[str, Any] = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") a_ : List[Any] = torch.load(f'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) a_ : Optional[int] = model.state_dict() a_ : Union[str, Any] = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_55_36, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } a_ : int = UNetaDModel(**_lowerCAmelCase ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) a_ : List[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a_ : Tuple = state_dict.pop(_lowerCAmelCase ) hf_value_function.load_state_dict(_lowerCAmelCase ) torch.save(hf_value_function.state_dict() , f'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(f'hub/hopper-medium-v2/unet/hor{hor}/config.json' , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def _UpperCAmelCase ( ): a_ : Tuple = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 1_28, 2_56), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_55_36, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } a_ : Tuple = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) a_ : int = model a_ : Tuple = UNetaDModel(**_lowerCAmelCase ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) a_ : List[str] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a_ : Union[str, Any] = state_dict.pop(_lowerCAmelCase ) hf_value_function.load_state_dict(_lowerCAmelCase ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
716
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) a_ : List[Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) a_ : Any = DDPMScheduler() a_ : str = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 ) a_ : List[Any] = output.audios[0] a_ : Dict = output.images[0] a_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 a_ : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) a_ : int = DDIMScheduler() a_ : Dict = self.dummy_vqvae_and_unet a_ : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) a_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) a_ : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) a_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 a_ : List[str] = self.dummy_unet_condition a_ : Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) a_ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) np.random.seed(0 ) a_ : Any = torch.rand((1, 1, 10) ) a_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.images[0] a_ : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : Any = torch_device a_ : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) a_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(42 ) a_ : List[str] = pipe(generator=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = output.audios[0] a_ : Tuple = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] a_ : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] a_ : Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
666
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _UpperCAmelCase ( __A : str = "laptop" ): a_ : Optional[Any] = f'https://www.amazon.in/laptop/s?k={product}' a_ : Optional[Any] = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } a_ : List[str] = BeautifulSoup(requests.get(__A , headers=__A ).text ) # Initialize a Pandas dataframe with the column titles a_ : List[str] = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: a_ : Tuple = item.ha.text a_ : Optional[Any] = '''https://www.amazon.in/''' + item.ha.a['''href'''] a_ : Optional[int] = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: a_ : int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: a_ : List[Any] = '''Not available''' try: a_ : List[Any] = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: a_ : Any = '''''' try: a_ : str = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 1_00 ) except ValueError: a_ : Any = float('''nan''' ) except AttributeError: pass a_ : Union[str, Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] a_ : int = ''' ''' a_ : Union[str, Any] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": __lowerCAmelCase = '''headphones''' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
717
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) a_ : List[Any] = DetaConfig( backbone_config=__A , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__A , with_box_refine=__A , two_stage=__A , ) # set labels a_ : Optional[Any] = '''huggingface/label-files''' if "o365" in model_name: a_ : Optional[Any] = 3_66 a_ : Tuple = '''object365-id2label.json''' else: a_ : Any = 91 a_ : Union[str, Any] = '''coco-detection-id2label.json''' a_ : Tuple = num_labels a_ : str = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) a_ : Optional[int] = {int(__A ): v for k, v in idalabel.items()} a_ : int = idalabel a_ : Dict = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( __A : List[str] ): a_ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( __A : str , __A : int , __A : Tuple ): a_ : str = dct.pop(__A ) a_ : Dict = val def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] ): a_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) a_ : str = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Optional[Any] = in_proj_weight[:dim, :] a_ : List[Any] = in_proj_bias[: dim] a_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] a_ : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : int = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( __A : Dict , __A : Dict ): # transformer decoder self-attention layers a_ : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention a_ : int = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a_ : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[:hidden_size, :] a_ : Tuple = in_proj_bias[:hidden_size] a_ : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] a_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size:, :] a_ : int = in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): a_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a_ : List[str] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __A : int , __A : int , __A : Any ): a_ : Union[str, Any] = get_deta_config(__A ) # load original state dict if model_name == "deta-swin-large": a_ : Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": a_ : List[str] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) a_ : List[Any] = torch.load(__A , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__A , param.shape ) # rename keys a_ : Union[str, Any] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_swin_q_k_v(__A , config.backbone_config ) read_in_decoder_q_k_v(__A , __A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: a_ : Optional[Any] = state_dict.pop(__A ) a_ : int = val if "input_proj" in key: a_ : str = state_dict.pop(__A ) a_ : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: a_ : List[str] = state_dict.pop(__A ) a_ : List[Any] = val # finally, create HuggingFace model and load state dict a_ : Dict = DetaForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() a_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__A ) # load image processor a_ : List[Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image a_ : Dict = prepare_img() a_ : Optional[int] = processor(images=__A , return_tensors='''pt''' ) a_ : Any = encoding['''pixel_values'''] a_ : int = model(pixel_values.to(__A ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": a_ : Optional[int] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) a_ : Tuple = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": a_ : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) a_ : Any = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__A ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__A ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
666
0
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : Tuple ): a_ : Optional[Any] = str(__lowerCAmelCase ) return len(__lowerCAmelCase ) == 9 and set(__lowerCAmelCase ) == set('''123456789''' ) def _UpperCAmelCase ( ): for base_num in range(99_99 , 49_99 , -1 ): a_ : List[Any] = 10_00_02 * base_num if is_9_pandigital(__lowerCAmelCase ): return candidate for base_num in range(3_33 , 99 , -1 ): a_ : Dict = 1_00_20_03 * base_num if is_9_pandigital(__lowerCAmelCase ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = DDIMPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: torch.manual_seed(0 ) a_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) a_ : str = DDIMScheduler() a_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> str: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Dict = '''cpu''' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images a_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) a_ : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) a_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Optional[Any] = '''google/ddpm-cifar10-32''' a_ : Optional[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Dict = DDIMScheduler() a_ : List[str] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : Tuple = ddim(generator=__SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : List[str] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : int = '''google/ddpm-ema-bedroom-256''' a_ : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Tuple = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a_ : Tuple = torch.manual_seed(0 ) a_ : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
666
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _UpperCAmelCase ( __A : Optional[int] , __A : Dict , __A : List[Any]=None , __A : str=None ): if attention_mask is None: a_ : Any = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class SCREAMING_SNAKE_CASE : snake_case__ = OPTConfig snake_case__ = {} snake_case__ = "gelu" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]=13 , __SCREAMING_SNAKE_CASE : List[Any]=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Any=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=20 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=0 , __SCREAMING_SNAKE_CASE : Any=16 , __SCREAMING_SNAKE_CASE : Any=16 , ) -> Optional[int]: a_ : Union[str, Any] = parent a_ : Dict = batch_size a_ : str = seq_length a_ : Dict = is_training a_ : Dict = use_labels a_ : List[Any] = vocab_size a_ : Dict = hidden_size a_ : int = num_hidden_layers a_ : str = num_attention_heads a_ : Dict = intermediate_size a_ : Tuple = hidden_act a_ : str = hidden_dropout_prob a_ : str = attention_probs_dropout_prob a_ : str = max_position_embeddings a_ : Dict = eos_token_id a_ : int = pad_token_id a_ : str = bos_token_id a_ : Optional[Any] = embed_dim a_ : List[str] = word_embed_proj_dim a_ : Any = False def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: a_ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a_ : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a_ : Any = tf.concat([input_ids, eos_tensor] , axis=1 ) a_ : int = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase_ , **self.config_updates , ) a_ : int = prepare_opt_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: a_ : int = TFOPTModel(config=lowerCAmelCase_ ) a_ : Dict = inputs_dict['''input_ids'''] a_ : Dict = input_ids[:1, :] a_ : Optional[int] = inputs_dict['''attention_mask'''][:1, :] a_ : Dict = 1 # first forward pass a_ : List[str] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) a_ , a_ : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a_ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) a_ : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a_ : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) a_ : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a_ : List[str] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] a_ : Dict = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a_ : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a_ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] a_ : int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) @require_tf class SCREAMING_SNAKE_CASE ( __a , __a , unittest.TestCase ): snake_case__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () snake_case__ = (TFOPTForCausalLM,) if is_tf_available() else () snake_case__ = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = 10 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: a_ : List[str] = TFOPTModelTester(self ) a_ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ): if hasattr(lowerCAmelCase_ , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase_ , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings a_ : Optional[int] = model_class(config=lowerCAmelCase_ ) a_ : List[str] = _get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) a_ : Dict = _get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase_ ) a_ : List[Any] = _get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) a_ : List[Any] = _get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. a_ : int = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase_ ) # check that weights remain the same after resizing a_ : str = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: a_ : int = False self.assertTrue(lowerCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase_ ) a_ : Optional[Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: a_ : int = False self.assertTrue(lowerCAmelCase_ ) def _UpperCAmelCase ( __A : Any ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ = 99 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 a_ : List[Any] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) a_ : Optional[Any] = input_ids.shape[0] a_ : Any = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : str ) -> str: a_ : Any = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) a_ : Union[str, Any] = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) a_ : int = tf.not_equal(lowerCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): a_ : List[str] = model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).last_hidden_state a_ : Optional[int] = (1, 11, 512) self.assertEqual(output.shape , lowerCAmelCase_ ) a_ : List[Any] = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-3 ) ) a_ : List[str] = tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) a_ : Union[str, Any] = xla_generate(lowerCAmelCase_ , lowerCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-2 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: super().setUp() a_ : str = '''facebook/opt-350m''' def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Optional[int] = TFOPTForCausalLM.from_pretrained(self.path_model ) a_ : List[str] = GPTaTokenizer.from_pretrained(self.path_model ) a_ : Union[str, Any] = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False a_ : str = tokenizer(lowerCAmelCase_ , return_tensors='''tf''' , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) a_ : Any = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) a_ : Optional[int] = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) a_ : str = tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) a_ : Any = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : Dict = '''facebook/opt-125m''' a_ : Tuple = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] a_ : Any = [] a_ : List[str] = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) a_ : List[str] = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: a_ : List[str] = tokenizer(lowerCAmelCase_ , return_tensors='''tf''' ).input_ids a_ : str = model.generate(lowerCAmelCase_ , max_length=10 ) a_ : List[Any] = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : Dict = '''facebook/opt-350m''' a_ : Tuple = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) a_ : Tuple = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) a_ : List[Any] = '''left''' # use different length sentences to test batching a_ : int = [ '''Hello, my dog is a little''', '''Today, I''', ] a_ : Union[str, Any] = tokenizer(lowerCAmelCase_ , return_tensors='''tf''' , padding=lowerCAmelCase_ ) a_ : Tuple = inputs['''input_ids'''] a_ : Any = model.generate(input_ids=lowerCAmelCase_ , attention_mask=inputs['''attention_mask'''] ) a_ : List[str] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids a_ : List[str] = model.generate(input_ids=lowerCAmelCase_ ) a_ : List[str] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) a_ : Union[str, Any] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids a_ : Any = model.generate(input_ids=lowerCAmelCase_ , max_length=model.config.max_length - num_paddings ) a_ : int = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) a_ : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase_ ) a_ : Dict = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase_ ) a_ : Optional[int] = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , [non_padded_sentence, padded_sentence] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: a_ : int = '''facebook/opt-350m''' a_ : Dict = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] a_ : Optional[int] = [] a_ : List[Any] = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) a_ : int = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: a_ : int = tokenizer(lowerCAmelCase_ , return_tensors='''tf''' ).input_ids a_ : List[str] = model.generate(lowerCAmelCase_ , max_length=10 ) a_ : str = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
719
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Dict ) -> Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = None snake_case__ = None snake_case__ = None # Automatically constructed snake_case__ = "dict" snake_case__ = None snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None a_ : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self : Any ) -> Optional[Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: a_ : str = set(self.languages ) if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ : int = [] for lang, text in translation_dict.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
666
0
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase ): snake_case__ = OpenAIGPTTokenizer snake_case__ = OpenAIGPTTokenizerFast snake_case__ = True snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] a_ : Optional[Any] = dict(zip(__a , range(len(__a ) ) ) ) a_ : Optional[int] = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] a_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__a ) ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Dict ) -> str: return "lower newer", "lower newer" def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : List[Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) a_ : str = """lower""" a_ : str = ["""low""", """er</w>"""] a_ : List[Any] = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) a_ : Union[str, Any] = tokens + ["""<unk>"""] a_ : Tuple = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int]=15 ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input a_ : List[Any] = """This is a simple input""" a_ : Dict = ["""This is a simple input 1""", """This is a simple input 2"""] a_ : Any = ("""This is a simple input""", """This is a pair""") a_ : Any = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='''max_length''' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='''max_length''' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='''max_length''' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='''max_length''' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='''max_length''' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='''max_length''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: pass @require_ftfy @require_spacy @require_tokenizers class SCREAMING_SNAKE_CASE ( __lowercase ): pass
720
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __lowerCAmelCase = object() # For specifying empty leaf dict `{}` __lowerCAmelCase = object() def _UpperCAmelCase ( __A : List[Any] , __A : List[Any] ): a_ : List[str] = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(_UpperCamelCase ) - len(_UpperCamelCase ) + 1 ): a_ : Union[str, Any] = [x.match(_UpperCamelCase ) for x, y in zip(_UpperCamelCase , ks[i:] )] if matches and all(_UpperCamelCase ): return True return False def _UpperCAmelCase ( __A : Union[str, Any] ): def replace(__A : int , __A : Optional[int] ): for rule, replacement in rules: if _match(_UpperCamelCase , _UpperCamelCase ): return replacement return val return replace def _UpperCAmelCase ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , _UpperCamelCase )), (("transformer", "wte", "embedding"), P('''mp''' , _UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(_UpperCamelCase , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , _UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(_UpperCamelCase , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , _UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase ( __A : str ): a_ : int = _get_partition_rules() a_ : Dict = _replacement_rules(_UpperCamelCase ) a_ : Optional[Any] = {k: _unmatched for k in flatten_dict(_UpperCamelCase )} a_ : Optional[Any] = {k: replace(_UpperCamelCase , _UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(_UpperCamelCase ) )
721
'''simple docstring''' from math import pi, sqrt, tan def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a_ : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase ( __A : float , __A : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase ( __A : float , __A : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__A , 2 ) * torus_radius * tube_radius def _UpperCAmelCase ( __A : float , __A : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _UpperCAmelCase ( __A : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a_ : int = (sidea + sidea + sidea) / 2 a_ : Optional[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase ( __A : float , __A : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _UpperCAmelCase ( __A : float , __A : float , __A : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase ( __A : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _UpperCAmelCase ( __A : float , __A : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _UpperCAmelCase ( __A : float , __A : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase ( __A : int , __A : float ): if not isinstance(__A , __A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
666
0
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : @staticmethod def SCREAMING_SNAKE_CASE ( *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Any ) -> int: pass def _UpperCAmelCase ( __A : Image ): '''simple docstring''' a_ : int = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _UpperCAmelCase ( __A : Image ): '''simple docstring''' a_ : int = np.array(__A ) a_ : int = npimg.shape return {"hash": hashimage(__A ), "shape": shape} @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) snake_case__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: a_ : Dict = MaskGenerationPipeline(model=A__ , image_processor=A__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass @slow @require_torch def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : List[Any] = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) a_ : Optional[int] = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing a_ : Optional[Any] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(A__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(A__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : int = '''facebook/sam-vit-huge''' a_ : int = pipeline('''mask-generation''' , model=A__ ) a_ : Dict = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing a_ : Union[str, Any] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(A__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(A__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, ] , )
700
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = IFInpaintingSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[Any]: if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): a_ : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a_ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a_ : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
666
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowerCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The column name of the images in the files."} ) snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "A folder containing the training data."} ) snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "A folder containing the validation data."} ) snake_case__ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: a_ : Optional[Any] = {} if self.train_dir is not None: a_ : Dict = self.train_dir if self.validation_dir is not None: a_ : Optional[int] = self.validation_dir a_ : Any = data_files if data_files else None @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch." ) } , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) snake_case__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case__ = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Name or path of preprocessor config."} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case__ = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = field( default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def _UpperCAmelCase ( __A : List[Any] ): a_ : List[str] = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def _UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a_ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ , a_ , a_ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ , a_ , a_ : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a_ : int = training_args.get_process_log_level() logger.setLevel(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. a_ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a_ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. a_ : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. a_ : Dict = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: a_ : Dict = ds['''train'''].train_test_split(data_args.train_val_split ) a_ : Any = split['''train'''] a_ : str = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ : Any = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: a_ : int = ViTMAEConfig.from_pretrained(model_args.config_name , **_SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: a_ : List[str] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_SCREAMING_SNAKE_CASE ) else: a_ : Union[str, Any] = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: a_ : List[str] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: a_ : Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_SCREAMING_SNAKE_CASE ) else: a_ : Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: a_ : List[str] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) a_ : List[Any] = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) if training_args.do_train: a_ : Union[str, Any] = ds['''train'''].column_names else: a_ : Optional[int] = ds['''validation'''].column_names if data_args.image_column_name is not None: a_ : Optional[int] = data_args.image_column_name elif "image" in column_names: a_ : int = '''image''' elif "img" in column_names: a_ : Any = '''img''' else: a_ : Optional[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: a_ : List[str] = image_processor.size['''shortest_edge'''] else: a_ : Union[str, Any] = (image_processor.size['''height'''], image_processor.size['''width''']) a_ : Optional[Any] = Compose( [ Lambda(lambda __A : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(_SCREAMING_SNAKE_CASE , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__A : str ): a_ : List[Any] = [transforms(_SCREAMING_SNAKE_CASE ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: a_ : Dict = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: a_ : List[Any] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_SCREAMING_SNAKE_CASE ) # Compute absolute learning rate a_ : List[Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: a_ : List[Any] = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer a_ : Optional[Any] = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: a_ : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: a_ : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: a_ : Optional[int] = last_checkpoint a_ : List[Any] = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a_ : Optional[int] = trainer.evaluate() trainer.log_metrics('''eval''' , _SCREAMING_SNAKE_CASE ) trainer.save_metrics('''eval''' , _SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub a_ : Dict = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**_SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( __A : List[Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
0
'''simple docstring''' from jiwer import compute_measures import datasets __lowerCAmelCase = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __lowerCAmelCase = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' __lowerCAmelCase = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[int]=False ) -> List[str]: if concatenate_texts: return compute_measures(__UpperCamelCase , __UpperCamelCase )["wer"] else: a_ : Optional[int] = 0 a_ : str = 0 for prediction, reference in zip(__UpperCamelCase , __UpperCamelCase ): a_ : Any = compute_measures(__UpperCamelCase , __UpperCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
702
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bloom" snake_case__ = ["past_key_values"] snake_case__ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=25_0880 , __SCREAMING_SNAKE_CASE : Dict=64 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : Any=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=False , **__SCREAMING_SNAKE_CASE : str , ) -> Any: a_ : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a_ : Any = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = hidden_size if n_embed is None else n_embed a_ : int = n_layer a_ : str = n_head a_ : Optional[int] = layer_norm_epsilon a_ : Dict = initializer_range a_ : List[str] = use_cache a_ : Dict = pretraining_tp a_ : Optional[Any] = apply_residual_connection_post_layernorm a_ : Optional[Any] = hidden_dropout a_ : List[str] = attention_dropout a_ : Dict = bos_token_id a_ : Optional[int] = eos_token_id a_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = version.parse("1.12" ) def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" , __SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? a_ : Tuple = 0 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: a_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return self._config.n_head @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizer" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : Dict = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() a_ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a_ , a_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a_ : str = seqlen + 2 a_ : Any = self._config.hidden_size // self.num_attention_heads a_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a_ : List[str] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] a_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: a_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype a_ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 13
666
0
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _UpperCAmelCase ( __A : Optional[int] ): # picklable for multiprocessing return x.sum() def _UpperCAmelCase ( __A : Optional[Any] ): # picklable for multiprocessing return i + 1 @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = 42 snake_case__ = 42 class SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: a_ : Tuple = {} a_ : Any = [] a_ : Any = 1 a_ : List[str] = [1, 2] a_ : Dict = {"""a""": 1, """b""": 2} a_ : Tuple = {"""a""": [1, 2], """b""": [3, 4]} a_ : Optional[Any] = {"""a""": {"""1""": 1}, """b""": 2} a_ : List[str] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} a_ : List[str] = {} a_ : List[Any] = [] a_ : Optional[int] = 2 a_ : List[Any] = [2, 3] a_ : List[str] = {"""a""": 2, """b""": 3} a_ : Tuple = {"""a""": [2, 3], """b""": [4, 5]} a_ : Optional[Any] = {"""a""": {"""1""": 2}, """b""": 3} a_ : Optional[int] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) a_ : Optional[Any] = 2 self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) a_ : List[str] = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} a_ : List[str] = {"""a""": 2, """b""": 0, """c""": 2} a_ : Any = { """a""": np.eye(2 ).astype(lowercase__ ), """b""": np.zeros(3 ).astype(lowercase__ ), """c""": np.ones(2 ).astype(lowercase__ ), } self.assertEqual(map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ ) , lowercase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ , num_proc=lowercase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(lowercase__ ): # can't pickle a local lambda map_nested(lambda __SCREAMING_SNAKE_CASE : x + 1 , lowercase__ , num_proc=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : List[str] = {"""a""": 1, """b""": 2} a_ : Dict = {"""a""": 3, """b""": 4} a_ : Dict = {"""a""": 5, """b""": 6} a_ : List[Any] = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowercase__ , lowercase__ , lowercase__ ) ) , lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: class SCREAMING_SNAKE_CASE : snake_case__ = """bar""" a_ : Dict = Foo() self.assertEqual(foo.my_attr , '''bar''' ) with temporary_assignment(lowercase__ , '''my_attr''' , '''BAR''' ): self.assertEqual(foo.my_attr , '''BAR''' ) self.assertEqual(foo.my_attr , '''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _UpperCAmelCase ( __A : Tuple , __A : int , __A : Optional[Any] ): with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: a_ : Optional[Any] = {f'{i}': i for i in range(SCREAMING_SNAKE_CASE__ )} a_ : Union[str, Any] = map_nested(lambda __A : x + 10 , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): @require_tf def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: import tensorflow as tf from tensorflow.keras import layers a_ : Tuple = layers.Dense(2 ) def gen_random_output(): a_ : List[Any] = tf.random.uniform((1, 3) ) return model(lowercase__ ).numpy() with temp_seed(42 , set_tensorflow=lowercase__ ): a_ : Tuple = gen_random_output() with temp_seed(42 , set_tensorflow=lowercase__ ): a_ : str = gen_random_output() a_ : Optional[int] = gen_random_output() np.testing.assert_equal(lowercase__ , lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def SCREAMING_SNAKE_CASE ( self : Any ) -> int: import torch def gen_random_output(): a_ : Any = torch.nn.Linear(3 , 2 ) a_ : Optional[int] = torch.rand(1 , 3 ) return model(lowercase__ ).detach().numpy() with temp_seed(42 , set_pytorch=lowercase__ ): a_ : Optional[Any] = gen_random_output() with temp_seed(42 , set_pytorch=lowercase__ ): a_ : Optional[Any] = gen_random_output() a_ : Tuple = gen_random_output() np.testing.assert_equal(lowercase__ , lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): a_ : List[Any] = gen_random_output() with temp_seed(42 ): a_ : Union[str, Any] = gen_random_output() a_ : Optional[Any] = gen_random_output() np.testing.assert_equal(lowercase__ , lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('''input_data''' , [{}] ) def _UpperCAmelCase ( __A : str ): a_ : Union[str, Any] = NestedDataStructure(SCREAMING_SNAKE_CASE__ ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def _UpperCAmelCase ( __A : Tuple , __A : List[Any] ): a_ : Dict = NestedDataStructure(SCREAMING_SNAKE_CASE__ ).flatten() assert output == expected_output def _UpperCAmelCase ( ): a_ : Union[str, Any] = A(x=1 , y='''foobar''' ) a_ : List[Any] = {"""x""": 1, """y""": """foobar"""} assert asdict(SCREAMING_SNAKE_CASE__ ) == expected_output a_ : Tuple = {"""a""": {"""b""": A(x=10 , y='''foo''' )}, """c""": [A(x=20 , y='''bar''' )]} a_ : Union[str, Any] = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(SCREAMING_SNAKE_CASE__ ) == expected_output with pytest.raises(SCREAMING_SNAKE_CASE__ ): asdict([1, A(x=10 , y='''foo''' )] ) def _UpperCAmelCase ( __A : str ): return text.split() def _UpperCAmelCase ( __A : Dict ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _UpperCAmelCase ( ): with Pool(2 ) as pool: a_ : Optional[int] = list(iflatmap_unordered(SCREAMING_SNAKE_CASE__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(SCREAMING_SNAKE_CASE__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: a_ : Union[str, Any] = list(iflatmap_unordered(SCREAMING_SNAKE_CASE__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(SCREAMING_SNAKE_CASE__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: a_ : Optional[int] = [] for yield_time, content in iflatmap_unordered( SCREAMING_SNAKE_CASE__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(SCREAMING_SNAKE_CASE__ ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(SCREAMING_SNAKE_CASE__ ) == 4
704
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): snake_case__ = CycleDiffusionPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: torch.manual_seed(0 ) a_ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) a_ : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) a_ : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) a_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) a_ : Optional[int] = CLIPTextModel(__snake_case ) a_ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a_ : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any=0 ) -> List[Any]: a_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) a_ : int = image / 2 + 0.5 if str(__snake_case ).startswith('''mps''' ): a_ : Union[str, Any] = torch.manual_seed(__snake_case ) else: a_ : List[str] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a_ : str = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: a_ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator a_ : int = self.get_dummy_components() a_ : Optional[int] = CycleDiffusionPipeline(**__snake_case ) a_ : Tuple = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a_ : int = self.get_dummy_inputs(__snake_case ) a_ : Optional[Any] = pipe(**__snake_case ) a_ : int = output.images a_ : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a_ : Any = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: a_ : Union[str, Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(__snake_case , '''half''' ): a_ : Tuple = module.half() a_ : List[str] = CycleDiffusionPipeline(**__snake_case ) a_ : Any = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a_ : List[Any] = self.get_dummy_inputs(__snake_case ) a_ : Any = pipe(**__snake_case ) a_ : Dict = output.images a_ : List[str] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a_ : Optional[int] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: return super().test_inference_batch_single_identical() @skip_mps def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: return super().test_dict_tuple_outputs_equivalent() @skip_mps def SCREAMING_SNAKE_CASE ( self : str ) -> int: return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: a_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) a_ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) a_ : Optional[Any] = init_image.resize((512, 512) ) a_ : List[Any] = '''CompVis/stable-diffusion-v1-4''' a_ : List[Any] = DDIMScheduler.from_pretrained(__snake_case , subfolder='''scheduler''' ) a_ : Dict = CycleDiffusionPipeline.from_pretrained( __snake_case , scheduler=__snake_case , safety_checker=__snake_case , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a_ : Union[str, Any] = '''A black colored car''' a_ : List[Any] = '''A blue colored car''' a_ : Optional[Any] = torch.manual_seed(0 ) a_ : str = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='''np''' , ) a_ : Optional[Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) a_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) a_ : Tuple = init_image.resize((512, 512) ) a_ : List[str] = '''CompVis/stable-diffusion-v1-4''' a_ : Any = DDIMScheduler.from_pretrained(__snake_case , subfolder='''scheduler''' ) a_ : Optional[Any] = CycleDiffusionPipeline.from_pretrained(__snake_case , scheduler=__snake_case , safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a_ : Optional[int] = '''A black colored car''' a_ : Optional[int] = '''A blue colored car''' a_ : Optional[Any] = torch.manual_seed(0 ) a_ : str = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='''np''' , ) a_ : Optional[Any] = output.images assert np.abs(image - expected_image ).max() < 2e-2
705
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : list[int] ): a_ : int = len(__A ) // 2 # choose the middle 3 elements a_ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
666
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _UpperCAmelCase ( __A : List[str] ): a_ : List[str] = [] for line in lines: a_ : Optional[int] = re.sub(R'''#.*''' , '''''' , __A ) # remove comments if line: filtered_lines.append(__A ) a_ : Union[str, Any] = '''\n'''.join(__A ) # Make a hash from all this code a_ : int = full_str.encode('''utf-8''' ) return shaaaa(__A ).hexdigest() # get importable module names and hash for caching __lowerCAmelCase = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __lowerCAmelCase = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __lowerCAmelCase = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __lowerCAmelCase = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
706
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = LongformerTokenizer snake_case__ = True snake_case__ = LongformerTokenizerFast snake_case__ = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : Optional[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Any = {'''unk_token''': '''<unk>'''} a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__SCREAMING_SNAKE_CASE : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: a_ : Union[str, Any] = '''lower newer''' a_ : List[Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a_ : List[str] = '''lower newer''' a_ : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a_ : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokens + [tokenizer.unk_token] a_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) a_ : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE ( self : str ) -> int: a_ : str = self.get_tokenizer() a_ : int = '''Encode this sequence.''' a_ : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) a_ : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens a_ : Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space a_ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = '''Encode <mask> sequence''' a_ : List[str] = '''Encode <mask>sequence''' a_ : int = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = encoded.index(__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Any = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : str = '''A, <mask> AllenNLP sentence.''' a_ : List[Any] = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Dict = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a_ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a_ : Dict = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` a_ : Union[str, Any] = f'{text_of_1_token} {text_of_1_token}' a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Any = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Tuple = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Union[str, Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : int = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) a_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE ) a_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
666
0
'''simple docstring''' from __future__ import annotations import math __lowerCAmelCase = '2020.9.26' __lowerCAmelCase = 'xcodz-dot, cclaus, dhruvmanila' def _UpperCAmelCase ( __A : List[str] , __A : Optional[int] , __A : Tuple , __A : Dict , __A : List[str] ): if not all(isinstance(lowercase_ , (float, int) ) for val in locals().values() ): a_ : Any = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(lowercase_ ) a_ : Tuple = ((x * distance) / (z + distance)) * scale a_ : Union[str, Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _UpperCAmelCase ( __A : Optional[int] , __A : List[str] , __A : Optional[int] , __A : Any , __A : Union[str, Any] ): if not isinstance(lowercase_ , lowercase_ ): raise TypeError('''Axis must be a str''' ) a_ : List[str] = locals() del input_variables["axis"] if not all(isinstance(lowercase_ , (float, int) ) for val in input_variables.values() ): a_ : Any = ( "Input values except axis must either be float or int: " f'{list(input_variables.values() )}' ) raise TypeError(lowercase_ ) a_ : List[str] = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": a_ : Tuple = x * math.cos(lowercase_ ) - y * math.sin(lowercase_ ) a_ : str = y * math.cos(lowercase_ ) + x * math.sin(lowercase_ ) a_ : Union[str, Any] = z elif axis == "x": a_ : Any = y * math.cos(lowercase_ ) - z * math.sin(lowercase_ ) a_ : List[Any] = z * math.cos(lowercase_ ) + y * math.sin(lowercase_ ) a_ : Optional[Any] = x elif axis == "y": a_ : Any = x * math.cos(lowercase_ ) - z * math.sin(lowercase_ ) a_ : Dict = z * math.cos(lowercase_ ) + x * math.sin(lowercase_ ) a_ : List[Any] = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
707
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __lowerCAmelCase = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __lowerCAmelCase = '▁' class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<s>" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Tuple="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) a_ : Tuple = vocab_file a_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) a_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a_ : Any = len(self.sp_model ) - 1 a_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: a_ : Dict = [] a_ : List[Any] = '''''' a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token a_ : Dict = True a_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Tuple = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self : Dict ) -> int: a_ : Dict = self.__dict__.copy() a_ : List[str] = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: a_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a_ : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: a_ : Any = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
666
0