code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase ( UpperCAmelCase__ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = 5 # Realm tok _lowerCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _lowerCAmelCase = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) _lowerCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _lowerCAmelCase = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) def __lowerCAmelCase ( self ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def __lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ): _lowerCAmelCase = RealmConfig(num_block_records=self.num_block_records ) return config def __lowerCAmelCase ( self ): _lowerCAmelCase = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def __lowerCAmelCase ( self ): _lowerCAmelCase = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=__lowerCAmelCase , ) return block_records def __lowerCAmelCase ( self ): _lowerCAmelCase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = self.get_dummy_retriever() _lowerCAmelCase = retriever.tokenizer _lowerCAmelCase = np.array([0, 3] , dtype='''long''' ) _lowerCAmelCase = tokenizer(['''Test question'''] ).input_ids _lowerCAmelCase = tokenizer( ['''the fourth'''] , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ).input_ids _lowerCAmelCase = config.reader_seq_len _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = retriever( __lowerCAmelCase , __lowerCAmelCase , answer_ids=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors='''np''' ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = self.get_dummy_retriever() _lowerCAmelCase = retriever.tokenizer _lowerCAmelCase = np.array([0, 3, 5] , dtype='''long''' ) _lowerCAmelCase = tokenizer(['''Test question'''] ).input_ids _lowerCAmelCase = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ).input_ids _lowerCAmelCase = config.reader_seq_len _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = retriever( __lowerCAmelCase , __lowerCAmelCase , answer_ids=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors='''np''' ) self.assertEqual([False, True, True] , __lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path _lowerCAmelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: _lowerCAmelCase = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) _lowerCAmelCase = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
710
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->Dict: _lowerCAmelCase = args.pruning_method _lowerCAmelCase = args.threshold _lowerCAmelCase = args.model_name_or_path.rstrip('''/''' ) _lowerCAmelCase = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _lowerCAmelCase = torch.load(os.path.join(_snake_case , '''pytorch_model.bin''' ) ) _lowerCAmelCase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowerCAmelCase = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowerCAmelCase = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _lowerCAmelCase = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowerCAmelCase = MagnitudeBinarizer.apply(inputs=_snake_case , threshold=_snake_case ) _lowerCAmelCase = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowerCAmelCase = name[:-6] _lowerCAmelCase = model[f'''{prefix_}mask_scores'''] _lowerCAmelCase = TopKBinarizer.apply(_snake_case , _snake_case ) _lowerCAmelCase = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowerCAmelCase = name[:-6] _lowerCAmelCase = model[f'''{prefix_}mask_scores'''] _lowerCAmelCase = ThresholdBinarizer.apply(_snake_case , _snake_case , _snake_case ) _lowerCAmelCase = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowerCAmelCase = name[:-6] _lowerCAmelCase = model[f'''{prefix_}mask_scores'''] _lowerCAmelCase , _lowerCAmelCase = -0.1, 1.1 _lowerCAmelCase = torch.sigmoid(_snake_case ) _lowerCAmelCase = s * (r - l) + l _lowerCAmelCase = s_bar.clamp(min=0.0 , max=1.0 ) _lowerCAmelCase = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: _lowerCAmelCase = os.path.join( os.path.dirname(_snake_case ) , f'''bertarized_{os.path.basename(_snake_case )}''' ) if not os.path.isdir(_snake_case ): shutil.copytree(_snake_case , _snake_case ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(_snake_case , os.path.join(_snake_case , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) UpperCAmelCase_ = parser.parse_args() main(args)
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import numpy as np def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->List[Any]: return 1 / (1 + np.exp(-vector )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Tuple: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
712
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''roberta-prelayernorm''' def __init__( self , _lowerCAmelCase=50_265 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3_072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase ( snake_case_ ): @property def __lowerCAmelCase ( self ): if self.task == "multiple-choice": _lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
713
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ = logging.getLogger() UpperCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase ( UpperCAmelCase__ ): def __lowerCAmelCase ( self , _lowerCAmelCase ): os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) _lowerCAmelCase = {"""source""": """What is love ?""", """target""": """life"""} _lowerCAmelCase = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _lowerCAmelCase = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(_lowerCAmelCase , F'''{split}.{field}''' ) , '''w''' ) as f: f.write(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = "pytorch" ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = os.path.join(_lowerCAmelCase , '''output''' ) _lowerCAmelCase = os.path.join(_lowerCAmelCase , '''data''' ) self._create_dummy_data(data_dir=_lowerCAmelCase ) _lowerCAmelCase = F''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(F'''--gpus={gpus}''' ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) _lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) _lowerCAmelCase = os.path.join(_lowerCAmelCase , '''metrics.json''' ) with open(_lowerCAmelCase ) as f: _lowerCAmelCase = json.load(_lowerCAmelCase ) return result @require_torch_gpu def __lowerCAmelCase ( self ): _lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def __lowerCAmelCase ( self ): _lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def __lowerCAmelCase ( self ): _lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def __lowerCAmelCase ( self ): _lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase_ = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } UpperCAmelCase_ = { "facebook/bart-base": 1_0_2_4, "facebook/bart-large": 1_0_2_4, "facebook/bart-large-mnli": 1_0_2_4, "facebook/bart-large-cnn": 1_0_2_4, "facebook/bart-large-xsum": 1_0_2_4, "yjernite/bart_eli5": 1_0_2_4, } @lru_cache() def UpperCAmelCase__ ( )->Union[str, Any]: _lowerCAmelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _lowerCAmelCase = bs[:] _lowerCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE_ ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase = [chr(SCREAMING_SNAKE_CASE_ ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->Union[str, Any]: _lowerCAmelCase = set() _lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase = char return pairs class UpperCAmelCase ( lowercase__ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ["""input_ids""", """attention_mask"""] def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="replace" , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=False , **_lowerCAmelCase , ): _lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token _lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token _lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token _lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token _lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token _lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding='''utf-8''' ) as vocab_handle: _lowerCAmelCase = json.load(__lowercase ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} _lowerCAmelCase = errors # how to handle errors in decoding _lowerCAmelCase = bytes_to_unicode() _lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding='''utf-8''' ) as merges_handle: _lowerCAmelCase = merges_handle.read().split('''\n''' )[1:-1] _lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) _lowerCAmelCase = {} _lowerCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def __lowerCAmelCase ( self ): return len(self.encoder ) def __lowerCAmelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCAmelCase ): if token in self.cache: return self.cache[token] _lowerCAmelCase = tuple(__lowercase ) _lowerCAmelCase = get_pairs(__lowercase ) if not pairs: return token while True: _lowerCAmelCase = min(__lowercase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(__lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase = bigram _lowerCAmelCase = [] _lowerCAmelCase = 0 while i < len(__lowercase ): try: _lowerCAmelCase = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase = tuple(__lowercase ) _lowerCAmelCase = new_word if len(__lowercase ) == 1: break else: _lowerCAmelCase = get_pairs(__lowercase ) _lowerCAmelCase = ''' '''.join(__lowercase ) _lowerCAmelCase = word return word def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = [] for token in re.findall(self.pat , __lowercase ): _lowerCAmelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(''' ''' ) ) return bpe_tokens def __lowerCAmelCase ( self , _lowerCAmelCase ): return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCAmelCase ): return self.decoder.get(__lowercase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = ''''''.join(__lowercase ) _lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '''\n''' ) _lowerCAmelCase = 0 with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _lowerCAmelCase = token_index writer.write(''' '''.join(__lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] _lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=False , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()): _lowerCAmelCase = ''' ''' + text return (text, kwargs)
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCAmelCase_ = None UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase_ = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } UpperCAmelCase_ = { """facebook/mbart-large-en-ro""": 1_0_2_4, """facebook/mbart-large-cc25""": 1_0_2_4, } # fmt: off UpperCAmelCase_ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class UpperCAmelCase ( __snake_case ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE__ = MBartTokenizer SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ): _lowerCAmelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( vocab_file=A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , src_lang=A_ , tgt_lang=A_ , additional_special_tokens=A_ , **A_ , ) _lowerCAmelCase = vocab_file _lowerCAmelCase = False if not self.vocab_file else True _lowerCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) _lowerCAmelCase = { lang_code: self.convert_tokens_to_ids(A_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase = src_lang if src_lang is not None else "en_XX" _lowerCAmelCase = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ): return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(A_ , add_special_tokens=A_ , return_tensors=A_ , **A_ ) _lowerCAmelCase = self.convert_tokens_to_ids(A_ ) _lowerCAmelCase = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = "en_XX" , _lowerCAmelCase = None , _lowerCAmelCase = "ro_RO" , **_lowerCAmelCase , ): _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def __lowerCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.convert_tokens_to_ids(A_ ) _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] _lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.convert_tokens_to_ids(A_ ) _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] _lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return _lowerCAmelCase = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
716
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( UpperCamelCase__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) @torch.no_grad() def __call__( self , _lowerCAmelCase = 1 , _lowerCAmelCase = 100 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , ): if audio_length_in_s is None: _lowerCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate _lowerCAmelCase = audio_length_in_s * self.unet.config.sample_rate _lowerCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) _lowerCAmelCase = int(_lowerCAmelCase ) if sample_size % down_scale_factor != 0: _lowerCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) _lowerCAmelCase = int(_lowerCAmelCase ) _lowerCAmelCase = next(iter(self.unet.parameters() ) ).dtype _lowerCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowerCAmelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowerCAmelCase = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) # set step values self.scheduler.set_timesteps(_lowerCAmelCase , device=audio.device ) _lowerCAmelCase = self.scheduler.timesteps.to(_lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCAmelCase = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 _lowerCAmelCase = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() _lowerCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_lowerCAmelCase )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(__lowerCAmelCase , '''_dynamo''' ): return False return isinstance(__lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int = True )->List[str]: _lowerCAmelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _lowerCAmelCase = is_compiled_module(__lowerCAmelCase ) if is_compiled: _lowerCAmelCase = model _lowerCAmelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCAmelCase = model.module if not keep_fpaa_wrapper: _lowerCAmelCase = getattr(__lowerCAmelCase , '''forward''' ) _lowerCAmelCase = model.__dict__.pop('''_original_forward''' , __lowerCAmelCase ) if original_forward is not None: while hasattr(__lowerCAmelCase , '''__wrapped__''' ): _lowerCAmelCase = forward.__wrapped__ if forward == original_forward: break _lowerCAmelCase = forward if getattr(__lowerCAmelCase , '''_converted_to_transformer_engine''' , __lowerCAmelCase ): convert_model(__lowerCAmelCase , to_transformer_engine=__lowerCAmelCase ) if is_compiled: _lowerCAmelCase = model _lowerCAmelCase = compiled_model return model def UpperCAmelCase__ ( )->Dict: PartialState().wait_for_everyone() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] )->str: if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCAmelCase , __lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCAmelCase , __lowerCAmelCase ) @contextmanager def UpperCAmelCase__ ( **_SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: for key, value in kwargs.items(): _lowerCAmelCase = str(__lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->str: if not hasattr(__lowerCAmelCase , '''__qualname__''' ) and not hasattr(__lowerCAmelCase , '''__name__''' ): _lowerCAmelCase = getattr(__lowerCAmelCase , '''__class__''' , __lowerCAmelCase ) if hasattr(__lowerCAmelCase , '''__qualname__''' ): return obj.__qualname__ if hasattr(__lowerCAmelCase , '''__name__''' ): return obj.__name__ return str(__lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] )->Dict: for key, value in source.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCAmelCase = destination.setdefault(__lowerCAmelCase , {} ) merge_dicts(__lowerCAmelCase , __lowerCAmelCase ) else: _lowerCAmelCase = value return destination def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict = None )->List[str]: if port is None: _lowerCAmelCase = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
718
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict )->Dict: return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase__ ( )->List[Any]: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
719
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( __lowercase ,__lowercase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = StableDiffusionXLImgaImgPipeline SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {'''latents'''} SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__a , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _lowerCAmelCase = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=32 , ) _lowerCAmelCase = CLIPTextModel(__a ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__a ) _lowerCAmelCase = CLIPTextModelWithProjection(__a ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__a ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): _lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) _lowerCAmelCase = image / 2 + 0.5 if str(__a ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(__a ) else: _lowerCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**__a ) _lowerCAmelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) _lowerCAmelCase = self.get_dummy_inputs(__a ) _lowerCAmelCase = sd_pipe(**__a ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self ): pass def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**__a ) _lowerCAmelCase = sd_pipe.to(__a ) _lowerCAmelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) # forward without prompt embeds _lowerCAmelCase = self.get_dummy_inputs(__a ) _lowerCAmelCase = 3 * ["""this is a negative prompt"""] _lowerCAmelCase = negative_prompt _lowerCAmelCase = 3 * [inputs["""prompt"""]] _lowerCAmelCase = sd_pipe(**__a ) _lowerCAmelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds _lowerCAmelCase = self.get_dummy_inputs(__a ) _lowerCAmelCase = 3 * ["""this is a negative prompt"""] _lowerCAmelCase = 3 * [inputs.pop('''prompt''' )] ( _lowerCAmelCase ) = sd_pipe.encode_prompt(__a , negative_prompt=__a ) _lowerCAmelCase = sd_pipe( **__a , prompt_embeds=__a , negative_prompt_embeds=__a , pooled_prompt_embeds=__a , negative_pooled_prompt_embeds=__a , ) _lowerCAmelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase="cpu" , _lowerCAmelCase=torch.floataa , _lowerCAmelCase=0 ): _lowerCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) _lowerCAmelCase = np.random.RandomState(__a ).standard_normal((1, 4, 64, 64) ) _lowerCAmelCase = torch.from_numpy(__a ).to(device=__a , dtype=__a ) _lowerCAmelCase = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _lowerCAmelCase = self.get_inputs(__a ) _lowerCAmelCase = pipe(**__a ).images _lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
720
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = jnp.ones((batch_size, length) ) / length return scores def __lowerCAmelCase ( self ): _lowerCAmelCase = None _lowerCAmelCase = 20 _lowerCAmelCase = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase__ ) # tweak scores to not be uniform anymore _lowerCAmelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _lowerCAmelCase = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _lowerCAmelCase = jax.nn.softmax(UpperCAmelCase__ , axis=-1 ) _lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) _lowerCAmelCase = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__ ) , axis=-1 ) _lowerCAmelCase = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = None _lowerCAmelCase = 10 _lowerCAmelCase = 2 # create ramp distribution _lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, vocab_size) ).copy() _lowerCAmelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size _lowerCAmelCase = FlaxTopKLogitsWarper(3 ) _lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _lowerCAmelCase = 5 _lowerCAmelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, length) ).copy() _lowerCAmelCase = top_k_warp_safety_check(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def __lowerCAmelCase ( self ): _lowerCAmelCase = None _lowerCAmelCase = 10 _lowerCAmelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _lowerCAmelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) _lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) _lowerCAmelCase = np.exp(top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _lowerCAmelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # check edge cases with negative and extreme logits _lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _lowerCAmelCase = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _lowerCAmelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def __lowerCAmelCase ( self ): _lowerCAmelCase = 20 _lowerCAmelCase = 4 _lowerCAmelCase = 0 _lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__ ) # check that min length is applied at length 5 _lowerCAmelCase = ids_tensor((batch_size, 20) , vocab_size=20 ) _lowerCAmelCase = 5 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = 15 _lowerCAmelCase = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = 20 _lowerCAmelCase = 4 _lowerCAmelCase = 0 _lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) # check that all scores are -inf except the bos_token_id score _lowerCAmelCase = ids_tensor((batch_size, 1) , vocab_size=20 ) _lowerCAmelCase = 1 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _lowerCAmelCase = 3 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = 20 _lowerCAmelCase = 4 _lowerCAmelCase = 0 _lowerCAmelCase = 5 _lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached _lowerCAmelCase = ids_tensor((batch_size, 4) , vocab_size=20 ) _lowerCAmelCase = 4 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _lowerCAmelCase = 3 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = 4 _lowerCAmelCase = 10 _lowerCAmelCase = 15 _lowerCAmelCase = 2 _lowerCAmelCase = 1 _lowerCAmelCase = 15 # dummy input_ids and scores _lowerCAmelCase = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__ ) _lowerCAmelCase = input_ids.copy() _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = scores.copy() # instantiate all dist processors _lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCAmelCase = FlaxTopKLogitsWarper(3 ) _lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = 10 # no processor list _lowerCAmelCase = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # with processor list _lowerCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCAmelCase = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = 4 _lowerCAmelCase = 10 _lowerCAmelCase = 15 _lowerCAmelCase = 2 _lowerCAmelCase = 1 _lowerCAmelCase = 15 # dummy input_ids and scores _lowerCAmelCase = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__ ) _lowerCAmelCase = input_ids.copy() _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = scores.copy() # instantiate all dist processors _lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCAmelCase = FlaxTopKLogitsWarper(3 ) _lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = 10 # no processor list def run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) return scores # with processor list def run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCAmelCase = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) return scores _lowerCAmelCase = jax.jit(UpperCAmelCase__ ) _lowerCAmelCase = jax.jit(UpperCAmelCase__ ) _lowerCAmelCase = jitted_run_no_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = jitted_run_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
721
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
700
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
664
0
from __future__ import annotations import time import numpy as np UpperCAmelCase_ = [8, 5, 9, 7] UpperCAmelCase_ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] UpperCAmelCase_ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = claim_vector _lowerCAmelCase = allocated_resources_table _lowerCAmelCase = maximum_claim_table def __lowerCAmelCase ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowerCAmelCase ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowerCAmelCase ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_lowerCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowerCAmelCase ( self ): return {self.__need().index(_lowerCAmelCase ): i for i in self.__need()} def __lowerCAmelCase ( self , **_lowerCAmelCase ): _lowerCAmelCase = self.__need() _lowerCAmelCase = self.__allocated_resources_table _lowerCAmelCase = self.__available_resources() _lowerCAmelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: _lowerCAmelCase = False for each_need in need_list: _lowerCAmelCase = True for index, need in enumerate(_lowerCAmelCase ): if need > available_resources[index]: _lowerCAmelCase = False break if execution: _lowerCAmelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _lowerCAmelCase = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_lowerCAmelCase ) # update available/freed resources stack _lowerCAmelCase = np.array(_lowerCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(_lowerCAmelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def __lowerCAmelCase ( self ): print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(_lowerCAmelCase ) + 1}''' + ''' '''.join(F'''{it:>8}''' for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(_lowerCAmelCase ) + 1}''' + ''' '''.join(F'''{it:>8}''' for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(_lowerCAmelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(_lowerCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
701
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
664
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ = 1_6 UpperCAmelCase_ = 3_2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = 1_6 )->Tuple: _lowerCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowerCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_SCREAMING_SNAKE_CASE : Any ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_SCREAMING_SNAKE_CASE : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase = 1_6 elif accelerator.mixed_precision != "no": _lowerCAmelCase = 8 else: _lowerCAmelCase = None return tokenizer.pad( lowercase__ , padding='''longest''' , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowerCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) _lowerCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] )->Dict: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowercase__ ) == "1": _lowerCAmelCase = 2 # New Code # _lowerCAmelCase = int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase = config['''lr'''] _lowerCAmelCase = int(config['''num_epochs'''] ) _lowerCAmelCase = int(config['''seed'''] ) _lowerCAmelCase = int(config['''batch_size'''] ) _lowerCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) set_seed(lowercase__ ) _lowerCAmelCase , _lowerCAmelCase = get_dataloaders(lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase = AdamW(params=model.parameters() , lr=lowercase__ ) # Instantiate scheduler _lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowercase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase__ ): _lowerCAmelCase = model(**lowercase__ ) _lowerCAmelCase = output.loss accelerator.backward(lowercase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase = model(**lowercase__ ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) _lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowercase__ ) def UpperCAmelCase__ ( )->str: _lowerCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase__ , default=lowercase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=lowercase__ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
702
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
0
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 , _SCREAMING_SNAKE_CASE : List[str] = 1 , _SCREAMING_SNAKE_CASE : Optional[Any] = 1.0e4 , _SCREAMING_SNAKE_CASE : Optional[Any] = False , _SCREAMING_SNAKE_CASE : Dict = 1.0 , )->Optional[Any]: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' _lowerCAmelCase = float(embedding_dim // 2 ) _lowerCAmelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _lowerCAmelCase = min_timescale * jnp.exp(jnp.arange(lowerCAmelCase_ , dtype=jnp.floataa ) * -log_timescale_increment ) _lowerCAmelCase = jnp.expand_dims(lowerCAmelCase_ , 1 ) * jnp.expand_dims(lowerCAmelCase_ , 0 ) # scale embeddings _lowerCAmelCase = scale * emb if flip_sin_to_cos: _lowerCAmelCase = jnp.concatenate([jnp.cos(lowerCAmelCase_ ), jnp.sin(lowerCAmelCase_ )] , axis=1 ) else: _lowerCAmelCase = jnp.concatenate([jnp.sin(lowerCAmelCase_ ), jnp.cos(lowerCAmelCase_ )] , axis=1 ) _lowerCAmelCase = jnp.reshape(lowerCAmelCase_ , [jnp.shape(lowerCAmelCase_ )[0], embedding_dim] ) return signal class UpperCAmelCase ( nn.Module ): SCREAMING_SNAKE_CASE__ = 3_2 SCREAMING_SNAKE_CASE__ = jnp.floataa @nn.compact def __call__( self , _lowerCAmelCase ): _lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(lowercase__ ) _lowerCAmelCase = nn.silu(lowercase__ ) _lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(lowercase__ ) return temb class UpperCAmelCase ( nn.Module ): SCREAMING_SNAKE_CASE__ = 3_2 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 1 @nn.compact def __call__( self , _lowerCAmelCase ): return get_sinusoidal_embeddings( lowercase__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
703
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
0
import random def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : bool = False )->List[str]: _lowerCAmelCase = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->List[Any]: return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
704
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
706
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->str: _lowerCAmelCase = torch.load(lowercase_ , map_location='''cpu''' ) if "model" in sd.keys(): _lowerCAmelCase = torch.load(lowercase_ , map_location='''cpu''' )["model"] # pop unnecessary weights _lowerCAmelCase = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase_ ) _lowerCAmelCase = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCAmelCase = sd.pop(lowercase_ ) _lowerCAmelCase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCAmelCase = sd[key] # We split QKV in separate Q,K,V _lowerCAmelCase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) _lowerCAmelCase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) _lowerCAmelCase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) _lowerCAmelCase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCAmelCase = torch.split(lowercase_ , depth // 3 , dim=0 ) _lowerCAmelCase = q _lowerCAmelCase = k _lowerCAmelCase = v del sd[key] return sd @torch.no_grad() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int=None )->int: _lowerCAmelCase = load_checkpoint(lowercase_ ) if config is not None: _lowerCAmelCase = OPTConfig.from_pretrained(lowercase_ ) else: _lowerCAmelCase = OPTConfig() _lowerCAmelCase = OPTModel(lowercase_ ).half().eval() model.load_state_dict(lowercase_ ) # Check results Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") UpperCAmelCase_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
707
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] )->List[str]: _lowerCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 _lowerCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowerCAmelCase = min(__UpperCamelCase , __UpperCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
708
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 2_5_6 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self , *, _lowerCAmelCase = 0.85 , ): _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_duplicate_clusters() with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str: _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple: global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) return ds_filter, duplicate_clusters
664
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowerCAmelCase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class UpperCAmelCase ( _lowerCAmelCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = embedding_size def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = TFMobileBertModel(config=_lowerCAmelCase ) _lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCAmelCase = model(_lowerCAmelCase ) _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def __lowerCAmelCase ( self ): _lowerCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = [1, 6, 30_522] self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
709
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = process _lowerCAmelCase = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): _lowerCAmelCase = self.dataset[i] _lowerCAmelCase = self.process(_lowerCAmelCase , **self.params ) return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = loader _lowerCAmelCase = infer _lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowerCAmelCase = None _lowerCAmelCase = loader_batch_size # Internal bookkeeping _lowerCAmelCase = None _lowerCAmelCase = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first _lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowerCAmelCase = next(self.iterator ) _lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _lowerCAmelCase = processed _lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) _lowerCAmelCase = None return self def __lowerCAmelCase ( self ): if self.subiterator is None: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) _lowerCAmelCase = next(self.subiterator ) return processed class UpperCAmelCase ( snake_case_ ): def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowerCAmelCase = False _lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size _lowerCAmelCase = processed _lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: _lowerCAmelCase = processed _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) return accumulator class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return self.dataset[i][self.key] class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = keya _lowerCAmelCase = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
664
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase ( UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , **_lowerCAmelCase , ): super().__init__(**_a ) _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 224} _lowerCAmelCase = get_size_dict(_a , default_to_square=_a ) _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase = get_size_dict(_a , default_to_square=_a , param_name='''crop_size''' ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase = do_convert_rgb def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowerCAmelCase = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowerCAmelCase = get_resize_output_image_size(_a , size=size['''shortest_edge'''] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowerCAmelCase = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_a , size=(size['''height'''], size['''width''']) , data_format=_a , **_a ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ): _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_a , param_name='''size''' , default_to_square=_a ) _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_a , param_name='''crop_size''' , default_to_square=_a ) _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_a ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_a , _a ) for image in images] _lowerCAmelCase = {"""pixel_values""": images} return BatchFeature(data=_a , tensor_type=_a )
710
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Optional[int] )->int: _lowerCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_config(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) AutoTokenizer.from_pretrained(__UpperCamelCase ).save_pretrained(__UpperCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir("fixtures") class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): _lowerCAmelCase = mock.Mock() _lowerCAmelCase = 500 _lowerCAmelCase = {} _lowerCAmelCase = HTTPError _lowerCAmelCase = {} # Download this model to make sure it's in the cache. _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self ): _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def __lowerCAmelCase ( cls ): _lowerCAmelCase = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def __lowerCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __lowerCAmelCase ( self ): _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='''test-feature-extractor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def __lowerCAmelCase ( self ): CustomFeatureExtractor.register_for_auto_class() _lowerCAmelCase = CustomFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
712
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
0
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int | float | str , _SCREAMING_SNAKE_CASE : int | float | str )->list[str]: if nth_term == "": return [""] _lowerCAmelCase = int(__snake_case ) _lowerCAmelCase = int(__snake_case ) _lowerCAmelCase = [] for temp in range(int(__snake_case ) ): series.append(f'''1 / {pow(temp + 1 , int(__snake_case ) )}''' if series else '''1''' ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = int(input("Enter the last number (nth term) of the P-Series")) UpperCAmelCase_ = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
713
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
0
class UpperCAmelCase ( __lowercase ): pass class UpperCAmelCase ( __lowercase ): pass class UpperCAmelCase : def __init__( self ): _lowerCAmelCase = [ [], [], [], ] def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(__A ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def __lowerCAmelCase ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self ): return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class UpperCAmelCase : def __init__( self ): _lowerCAmelCase = [] def __lowerCAmelCase ( self , _lowerCAmelCase ): if len(self.queue ) == 100: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(__A ) def __lowerCAmelCase ( self ): if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: _lowerCAmelCase = min(self.queue ) self.queue.remove(__A ) return data def __str__( self ): return str(self.queue ) def UpperCAmelCase__ ( )->Union[str, Any]: _lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 1_0 ) fpq.enqueue(1 , 7_0 ) fpq.enqueue(0 , 1_0_0 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 6_4 ) fpq.enqueue(0 , 1_2_8 ) print(a__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(a__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def UpperCAmelCase__ ( )->str: _lowerCAmelCase = ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(a__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(a__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ = logging.get_logger(__name__) class UpperCAmelCase ( UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = ['''input_features''', '''attention_mask'''] def __init__( self , _lowerCAmelCase=80 , _lowerCAmelCase=16_000 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=25 , _lowerCAmelCase="hamming_window" , _lowerCAmelCase=32_768.0 , _lowerCAmelCase=0.97 , _lowerCAmelCase=1.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , **_lowerCAmelCase , ): super().__init__(feature_size=__A , sampling_rate=__A , padding_value=__A , **__A ) _lowerCAmelCase = feature_size _lowerCAmelCase = sampling_rate _lowerCAmelCase = padding_value _lowerCAmelCase = hop_length _lowerCAmelCase = win_length _lowerCAmelCase = frame_signal_scale _lowerCAmelCase = preemphasis_coeff _lowerCAmelCase = mel_floor _lowerCAmelCase = normalize_means _lowerCAmelCase = normalize_vars _lowerCAmelCase = win_function _lowerCAmelCase = return_attention_mask _lowerCAmelCase = win_length * sampling_rate // 1_000 _lowerCAmelCase = hop_length * sampling_rate // 1_000 _lowerCAmelCase = optimal_fft_length(self.sample_size ) _lowerCAmelCase = (self.n_fft // 2) + 1 def __lowerCAmelCase ( self , _lowerCAmelCase ): if self.win_function == "hamming_window": _lowerCAmelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=__A ) else: _lowerCAmelCase = window_function(window_length=self.sample_size , name=self.win_function ) _lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _lowerCAmelCase = spectrogram( one_waveform * self.frame_signal_scale , window=__A , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__A , preemphasis=self.preemphasis_coeff , mel_filters=__A , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if self.normalize_means: _lowerCAmelCase = x[:input_length].mean(axis=0 ) _lowerCAmelCase = np.subtract(__A , __A ) if self.normalize_vars: _lowerCAmelCase = x[:input_length].std(axis=0 ) _lowerCAmelCase = np.divide(__A , __A ) if input_length < x.shape[0]: _lowerCAmelCase = padding_value # make sure array is in float32 _lowerCAmelCase = x.astype(np.floataa ) return x def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowerCAmelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__A , __A , self.padding_value ) for x, n in zip(__A , __A )] def __call__( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _lowerCAmelCase = isinstance(__A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowerCAmelCase = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(__A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A , np.ndarray ): _lowerCAmelCase = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [raw_speech] # extract fbank features _lowerCAmelCase = [self._extract_mfsc_features(__A ) for one_waveform in raw_speech] # convert into correct format for padding _lowerCAmelCase = BatchFeature({'''input_features''': features} ) _lowerCAmelCase = self.pad( __A , padding=__A , max_length=__A , truncation=__A , pad_to_multiple_of=__A , return_attention_mask=__A , **__A , ) # make sure list is in array format _lowerCAmelCase = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __A ): _lowerCAmelCase = [np.asarray(__A , dtype=np.floataa ) for feature in input_features] _lowerCAmelCase = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: _lowerCAmelCase = [np.asarray(__A , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowerCAmelCase = ( np.array(__A , dtype=np.intaa ) if self._get_padding_strategies(__A , max_length=__A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowerCAmelCase = self.normalize( padded_inputs['''input_features'''] , attention_mask=__A ) if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(__A ) return padded_inputs
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def __SCREAMING_SNAKE_CASE ( )->str: assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def __SCREAMING_SNAKE_CASE ( )->Dict: _lowerCAmelCase = '''mock-s3-bucket''' _lowerCAmelCase = f'''s3://{mock_bucket}''' _lowerCAmelCase = extract_path_from_uri(_UpperCAmelCase ) assert dataset_path.startswith('''s3://''' ) is False _lowerCAmelCase = '''./local/path''' _lowerCAmelCase = extract_path_from_uri(_UpperCAmelCase ) assert dataset_path == new_dataset_path def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Union[str, Any]: _lowerCAmelCase = is_remote_filesystem(_UpperCAmelCase ) assert is_remote is True _lowerCAmelCase = fsspec.filesystem('''file''' ) _lowerCAmelCase = is_remote_filesystem(_UpperCAmelCase ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , _UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple )->Any: _lowerCAmelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} _lowerCAmelCase = input_paths[compression_fs_class.protocol] if input_path is None: _lowerCAmelCase = f'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) _lowerCAmelCase = fsspec.filesystem(compression_fs_class.protocol , fo=_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase = os.path.basename(_UpperCAmelCase ) _lowerCAmelCase = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(_UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f, open(_UpperCAmelCase , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] )->int: _lowerCAmelCase = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} _lowerCAmelCase = compressed_file_paths[protocol] _lowerCAmelCase = '''dataset.jsonl''' _lowerCAmelCase = f'''{protocol}://{member_file_path}::{compressed_file_path}''' _lowerCAmelCase , *_lowerCAmelCase = fsspec.get_fs_token_paths(_UpperCAmelCase ) assert fs.isfile(_UpperCAmelCase ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict )->Dict: _lowerCAmelCase = hf_api.dataset_info(_UpperCAmelCase , token=_UpperCAmelCase ) _lowerCAmelCase = HfFileSystem(repo_info=_UpperCAmelCase , token=_UpperCAmelCase ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(_UpperCAmelCase ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def __SCREAMING_SNAKE_CASE ( )->Optional[int]: _lowerCAmelCase = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_UpperCAmelCase , _UpperCAmelCase , clobber=_UpperCAmelCase ) with pytest.warns(_UpperCAmelCase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_UpperCAmelCase ) == 1 assert ( str(warning_info[0].message ) == f'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
716
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCAmelCase : SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None UpperCAmelCase_ = namedtuple("CoinsDistribResult", "moves excess") def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode | None )->int: if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _lowerCAmelCase = get_distrib(node.left ) _lowerCAmelCase = get_distrib(node.right ) _lowerCAmelCase = 1 - left_distrib_excess _lowerCAmelCase = 1 - right_distrib_excess _lowerCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCAmelCase ( snake_case_ ): @slow @require_torch def __lowerCAmelCase ( self ): _lowerCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) _lowerCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) _lowerCAmelCase = bertabert.config.encoder.vocab_size _lowerCAmelCase = tokenizer.sep_token_id _lowerCAmelCase = tokenizer.cls_token_id _lowerCAmelCase = 128 _lowerCAmelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) _lowerCAmelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) _lowerCAmelCase = train_dataset.select(range(32 ) ) _lowerCAmelCase = val_dataset.select(range(16 ) ) _lowerCAmelCase = 4 def _map_to_encoder_decoder_inputs(_lowerCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] _lowerCAmelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__A , max_length=512 ) _lowerCAmelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__A , max_length=128 ) _lowerCAmelCase = inputs.input_ids _lowerCAmelCase = inputs.attention_mask _lowerCAmelCase = outputs.input_ids _lowerCAmelCase = outputs.input_ids.copy() _lowerCAmelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] _lowerCAmelCase = outputs.attention_mask assert all(len(__A ) == 512 for x in inputs.input_ids ) assert all(len(__A ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_lowerCAmelCase ): _lowerCAmelCase = pred.label_ids _lowerCAmelCase = pred.predictions # all unnecessary tokens are removed _lowerCAmelCase = tokenizer.batch_decode(__A , skip_special_tokens=__A ) _lowerCAmelCase = tokenizer.batch_decode(__A , skip_special_tokens=__A ) _lowerCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__A ) )] ) / len(__A ) return {"accuracy": accuracy} # map train dataset _lowerCAmelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__A , batch_size=__A , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset _lowerCAmelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__A , batch_size=__A , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = SeqaSeqTrainingArguments( output_dir=__A , per_device_train_batch_size=__A , per_device_eval_batch_size=__A , predict_with_generate=__A , evaluation_strategy='''steps''' , do_train=__A , do_eval=__A , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _lowerCAmelCase = SeqaSeqTrainer( model=__A , args=__A , compute_metrics=_compute_metrics , train_dataset=__A , eval_dataset=__A , tokenizer=__A , ) # start training trainer.train()
718
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase : def __init__( self , _lowerCAmelCase , ): _lowerCAmelCase = parent _lowerCAmelCase = 13 _lowerCAmelCase = 7 _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = 99 _lowerCAmelCase = 32 _lowerCAmelCase = 2 _lowerCAmelCase = 4 _lowerCAmelCase = 37 _lowerCAmelCase = """gelu""" _lowerCAmelCase = 0.1 _lowerCAmelCase = 0.1 _lowerCAmelCase = 512 _lowerCAmelCase = 16 _lowerCAmelCase = 2 _lowerCAmelCase = 0.02 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = None def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = TFDistilBertModel(config=_lowercase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase = model(_lowercase ) _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = TFDistilBertForMaskedLM(config=_lowercase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = TFDistilBertForQuestionAnswering(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFDistilBertForSequenceClassification(_lowercase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = TFDistilBertForMultipleChoice(_lowercase ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFDistilBertForTokenClassification(_lowercase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() (_lowerCAmelCase) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( __snake_case ,__snake_case ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): _lowerCAmelCase = TFDistilBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , dim=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowercase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowercase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowercase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowercase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowercase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowercase ) @slow def __lowerCAmelCase ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _lowerCAmelCase = TFDistilBertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_tf class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(_lowercase )[0] _lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , _lowercase ) _lowerCAmelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-4 )
719
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCAmelCase_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCAmelCase_ = typing.Union[np.floataa, int, float] # noqa: UP007 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Vector , _SCREAMING_SNAKE_CASE : Vector )->VectorOut: return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Vector , _SCREAMING_SNAKE_CASE : Vector )->VectorOut: return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def UpperCAmelCase__ ( )->None: from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0_0_0_0 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
720
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = KandinskyVaaControlnetPipeline SCREAMING_SNAKE_CASE__ = ['image_embeds', 'negative_image_embeds', 'hint'] SCREAMING_SNAKE_CASE__ = ['image_embeds', 'negative_image_embeds', 'hint'] SCREAMING_SNAKE_CASE__ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE__ = False @property def __lowerCAmelCase ( self ): return 32 @property def __lowerCAmelCase ( self ): return 32 @property def __lowerCAmelCase ( self ): return self.time_input_dim @property def __lowerCAmelCase ( self ): return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ): return 100 @property def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _lowerCAmelCase = UNetaDConditionModel(**_a ) return model @property def __lowerCAmelCase ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ): _lowerCAmelCase = self.dummy_unet _lowerCAmelCase = self.dummy_movq _lowerCAmelCase = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create hint _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_a ) else: _lowerCAmelCase = torch.Generator(device=_a ).manual_seed(_a ) _lowerCAmelCase = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_a ) _lowerCAmelCase = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(_a ) ) _lowerCAmelCase = output.images _lowerCAmelCase = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) _lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) _lowerCAmelCase = torch.from_numpy(np.array(_a ) ).float() / 255.0 _lowerCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _lowerCAmelCase = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) _lowerCAmelCase = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _lowerCAmelCase = '''A robot, 4k photo''' _lowerCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _lowerCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 ) _lowerCAmelCase = pipeline( image_embeds=_a , negative_image_embeds=_a , hint=_a , generator=_a , num_inference_steps=100 , output_type='''np''' , ) _lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a , _a )
721
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable UpperCAmelCase_ = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
664
0
from math import isqrt def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->List[str]: return all(number % divisor != 0 for divisor in range(2 , isqrt(_SCREAMING_SNAKE_CASE ) + 1 ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple = 1_0**6 )->Any: _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 7 while prime_candidate < max_prime: primes_count += is_prime(_SCREAMING_SNAKE_CASE ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
701
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
664
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): _lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase__ ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase__ ) _lowerCAmelCase = model.generate(lowercase__ , max_new_tokens=10 , do_sample=lowercase__ ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(lowercase__ ) model.generate(lowercase__ , max_new_tokens=10 , do_sample=lowercase__ , streamer=lowercase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(lowercase__ , lowercase__ ) def __lowerCAmelCase ( self ): _lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase__ ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase__ ) _lowerCAmelCase = model.generate(lowercase__ , max_new_tokens=10 , do_sample=lowercase__ ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) _lowerCAmelCase = TextIteratorStreamer(lowercase__ ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=lowercase__ ) thread.start() _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowercase__ , lowercase__ ) def __lowerCAmelCase ( self ): _lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase__ ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase__ ) _lowerCAmelCase = model.generate(lowercase__ , max_new_tokens=10 , do_sample=lowercase__ ) _lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(lowercase__ , skip_prompt=lowercase__ ) model.generate(lowercase__ , max_new_tokens=10 , do_sample=lowercase__ , streamer=lowercase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(lowercase__ , lowercase__ ) def __lowerCAmelCase ( self ): _lowerCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(lowercase__ ) _lowerCAmelCase = -1 _lowerCAmelCase = torch.ones((1, 5) , device=lowercase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(lowercase__ , skip_special_tokens=lowercase__ ) model.generate(lowercase__ , max_new_tokens=1 , do_sample=lowercase__ , streamer=lowercase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCAmelCase = cs.out[:-1] # Remove the final "\n" _lowerCAmelCase = tokenizer(lowercase__ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase__ ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase__ ) _lowerCAmelCase = TextIteratorStreamer(lowercase__ , timeout=0.001 ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=lowercase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowercase__ ): _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text
702
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
0
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )->Any: _lowerCAmelCase = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = CLIPConfig SCREAMING_SNAKE_CASE__ = ['''CLIPEncoderLayer'''] def __init__( self , _lowerCAmelCase ): super().__init__(_lowerCAmelCase ) _lowerCAmelCase = CLIPVisionModel(config.vision_config ) _lowerCAmelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowerCAmelCase ) _lowerCAmelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_lowerCAmelCase ) _lowerCAmelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowerCAmelCase ) _lowerCAmelCase = nn.Parameter(torch.ones(17 ) , requires_grad=_lowerCAmelCase ) _lowerCAmelCase = nn.Parameter(torch.ones(3 ) , requires_grad=_lowerCAmelCase ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.vision_model(_lowerCAmelCase )[1] # pooled_output _lowerCAmelCase = self.visual_projection(_lowerCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase = cosine_distance(_lowerCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase = cosine_distance(_lowerCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase = [] _lowerCAmelCase = image_embeds.shape[0] for i in range(_lowerCAmelCase ): _lowerCAmelCase = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase = special_cos_dist[i][concept_idx] _lowerCAmelCase = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) _lowerCAmelCase = 0.01 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase = cos_dist[i][concept_idx] _lowerCAmelCase = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowerCAmelCase ) result.append(_lowerCAmelCase ) _lowerCAmelCase = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.vision_model(_lowerCAmelCase )[1] # pooled_output _lowerCAmelCase = self.visual_projection(_lowerCAmelCase ) _lowerCAmelCase = cosine_distance(_lowerCAmelCase , self.special_care_embeds ) _lowerCAmelCase = cosine_distance(_lowerCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase = 0.0 _lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase = special_care * 0.01 _lowerCAmelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
703
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( __A ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) @torch.no_grad() def __call__( self , _lowerCAmelCase = 1 , _lowerCAmelCase = 100 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , ): if audio_length_in_s is None: _lowerCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate _lowerCAmelCase = audio_length_in_s * self.unet.config.sample_rate _lowerCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) _lowerCAmelCase = int(_lowerCAmelCase ) if sample_size % down_scale_factor != 0: _lowerCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) _lowerCAmelCase = int(_lowerCAmelCase ) _lowerCAmelCase = next(iter(self.unet.parameters() ) ).dtype _lowerCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowerCAmelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowerCAmelCase = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) # set step values self.scheduler.set_timesteps(_lowerCAmelCase , device=audio.device ) _lowerCAmelCase = self.scheduler.timesteps.to(_lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCAmelCase = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 _lowerCAmelCase = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() _lowerCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_lowerCAmelCase )
704
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple )->List[str]: _lowerCAmelCase = '''''' for i in table: res += inp[i - 1] return res def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] )->int: return data[1:] + data[0] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )->Dict: _lowerCAmelCase = '''''' for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] )->Union[str, Any]: _lowerCAmelCase = int('''0b''' + data[0] + data[-1] , 2 ) _lowerCAmelCase = int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any )->Any: _lowerCAmelCase = message[:4] _lowerCAmelCase = message[4:] _lowerCAmelCase = apply_table(__snake_case , __snake_case ) _lowerCAmelCase = xor(__snake_case , __snake_case ) _lowerCAmelCase = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 _lowerCAmelCase = apply_sbox(__snake_case , temp[4:] ) _lowerCAmelCase = '''0''' * (2 - len(__snake_case )) + l # noqa: E741 _lowerCAmelCase = '''0''' * (2 - len(__snake_case )) + r _lowerCAmelCase = apply_table(l + r , __snake_case ) _lowerCAmelCase = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": UpperCAmelCase_ = input("Enter 10 bit key: ") UpperCAmelCase_ = input("Enter 8 bit message: ") UpperCAmelCase_ = [6, 3, 7, 4, 8, 5, 1_0, 9] UpperCAmelCase_ = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] UpperCAmelCase_ = [2, 4, 3, 1] UpperCAmelCase_ = [2, 6, 3, 1, 4, 8, 5, 7] UpperCAmelCase_ = [4, 1, 3, 5, 7, 2, 8, 6] UpperCAmelCase_ = [4, 1, 2, 3, 2, 3, 4, 1] UpperCAmelCase_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCAmelCase_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCAmelCase_ = apply_table(key, paa_table) UpperCAmelCase_ = temp[:5] UpperCAmelCase_ = temp[5:] UpperCAmelCase_ = left_shift(left) UpperCAmelCase_ = left_shift(right) UpperCAmelCase_ = apply_table(left + right, pa_table) UpperCAmelCase_ = left_shift(left) UpperCAmelCase_ = left_shift(right) UpperCAmelCase_ = left_shift(left) UpperCAmelCase_ = left_shift(right) UpperCAmelCase_ = apply_table(left + right, pa_table) # encryption UpperCAmelCase_ = apply_table(message, IP) UpperCAmelCase_ = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ = temp[4:] + temp[:4] UpperCAmelCase_ = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption UpperCAmelCase_ = apply_table(CT, IP) UpperCAmelCase_ = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ = temp[4:] + temp[:4] UpperCAmelCase_ = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
705
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
0
UpperCAmelCase_ = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
706
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase ( __lowerCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''ctrl''' SCREAMING_SNAKE_CASE__ = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=246_534 , _lowerCAmelCase=256 , _lowerCAmelCase=1_280 , _lowerCAmelCase=8_192 , _lowerCAmelCase=48 , _lowerCAmelCase=16 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-6 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , **_lowerCAmelCase , ): _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = dff _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache super().__init__(**a_ )
707
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
0
import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''naver-clova-ix/donut-base-finetuned-docvqa''' SCREAMING_SNAKE_CASE__ = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) SCREAMING_SNAKE_CASE__ = '''document_qa''' SCREAMING_SNAKE_CASE__ = AutoProcessor SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel SCREAMING_SNAKE_CASE__ = ['''image''', '''text'''] SCREAMING_SNAKE_CASE__ = ['''text'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCAmelCase = task_prompt.replace('''{user_input}''' , _lowerCAmelCase ) _lowerCAmelCase = self.pre_processor.tokenizer( _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors='''pt''' ).input_ids _lowerCAmelCase = self.pre_processor(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __lowerCAmelCase ( self , _lowerCAmelCase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_lowerCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_lowerCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_lowerCAmelCase , ).sequences def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.pre_processor.batch_decode(_lowerCAmelCase )[0] _lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) _lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) _lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , _lowerCAmelCase , count=1 ).strip() # remove first task start token _lowerCAmelCase = self.pre_processor.tokenajson(_lowerCAmelCase ) return sequence["answer"]
708
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 2_5_6 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self , *, _lowerCAmelCase = 0.85 , ): _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_duplicate_clusters() with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str: _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple: global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) return ds_filter, duplicate_clusters
664
0
import random from typing import Any def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list[Any]: for _ in range(len(_A ) ): _lowerCAmelCase = random.randint(0 , len(_A ) - 1 ) _lowerCAmelCase = random.randint(0 , len(_A ) - 1 ) _lowerCAmelCase , _lowerCAmelCase = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ = ['python', 'says', 'hello', '!'] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
709
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = process _lowerCAmelCase = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): _lowerCAmelCase = self.dataset[i] _lowerCAmelCase = self.process(_lowerCAmelCase , **self.params ) return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = loader _lowerCAmelCase = infer _lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowerCAmelCase = None _lowerCAmelCase = loader_batch_size # Internal bookkeeping _lowerCAmelCase = None _lowerCAmelCase = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first _lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowerCAmelCase = next(self.iterator ) _lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _lowerCAmelCase = processed _lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) _lowerCAmelCase = None return self def __lowerCAmelCase ( self ): if self.subiterator is None: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) _lowerCAmelCase = next(self.subiterator ) return processed class UpperCAmelCase ( snake_case_ ): def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowerCAmelCase = False _lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size _lowerCAmelCase = processed _lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: _lowerCAmelCase = processed _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) return accumulator class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return self.dataset[i][self.key] class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = keya _lowerCAmelCase = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
664
0
from pathlib import Path import numpy as np from PIL import Image def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->str: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Union[str, Any]: return (gray > 1_2_7) & (gray <= 2_5_5) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )->Dict: _lowerCAmelCase = np.zeros_like(A_ ) _lowerCAmelCase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image _lowerCAmelCase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): _lowerCAmelCase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() _lowerCAmelCase = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCAmelCase_ = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' UpperCAmelCase_ = np.array(Image.open(lena_path)) # kernel to be applied UpperCAmelCase_ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCAmelCase_ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCAmelCase_ = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
710
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] = 0 )->list: _lowerCAmelCase = length or len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowerCAmelCase = list_data[i + 1], list_data[i] _lowerCAmelCase = True return list_data if not swapped else bubble_sort(_SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
from math import pi, sqrt, tan def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] )->float: if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str )->float: if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->float: if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->float: if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] )->float: if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )->float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) _lowerCAmelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any )->float: if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] )->float: if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__snake_case , 2 ) * torus_radius * tube_radius def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int )->float: if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->float: if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] )->float: if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] )->float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) _lowerCAmelCase = (sidea + sidea + sidea) / 2 _lowerCAmelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )->float: if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] )->float: if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->float: if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] )->float: if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int )->float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] )->float: if not isinstance(__snake_case , __snake_case ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(F"""Rectangle: {area_rectangle(1_0, 2_0) = }""") print(F"""Square: {area_square(1_0) = }""") print(F"""Triangle: {area_triangle(1_0, 1_0) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }""") print(F"""Parallelogram: {area_parallelogram(1_0, 2_0) = }""") print(F"""Rhombus: {area_rhombus(1_0, 2_0) = }""") print(F"""Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }""") print(F"""Circle: {area_circle(2_0) = }""") print(F"""Ellipse: {area_ellipse(1_0, 2_0) = }""") print("\nSurface Areas of various geometric shapes: \n") print(F"""Cube: {surface_area_cube(2_0) = }""") print(F"""Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }""") print(F"""Sphere: {surface_area_sphere(2_0) = }""") print(F"""Hemisphere: {surface_area_hemisphere(2_0) = }""") print(F"""Cone: {surface_area_cone(1_0, 2_0) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }""") print(F"""Cylinder: {surface_area_cylinder(1_0, 2_0) = }""") print(F"""Torus: {surface_area_torus(2_0, 1_0) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 1_0) = }""") print(F"""Square: {area_reg_polygon(4, 1_0) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 1_0) = }""")
712
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str=None )->Optional[Any]: _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _lowerCAmelCase = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _lowerCAmelCase = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ ).json() _lowerCAmelCase = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) _lowerCAmelCase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): _lowerCAmelCase = requests.get(url + f'''&page={i + 2}''' , headers=lowerCamelCase_ ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int]=None )->int: _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _lowerCAmelCase = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _lowerCAmelCase = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ ).json() _lowerCAmelCase = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) _lowerCAmelCase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): _lowerCAmelCase = requests.get(url + f'''&page={i + 2}''' , headers=lowerCamelCase_ ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int )->List[str]: _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _lowerCAmelCase = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ , allow_redirects=lowerCamelCase_ ) _lowerCAmelCase = result.headers["""Location"""] _lowerCAmelCase = requests.get(lowerCamelCase_ , allow_redirects=lowerCamelCase_ ) _lowerCAmelCase = os.path.join(lowerCamelCase_ , f'''{artifact_name}.zip''' ) with open(lowerCamelCase_ , '''wb''' ) as fp: fp.write(response.content ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any=None )->Union[str, Any]: _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = None with zipfile.ZipFile(lowerCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(lowerCamelCase_ ) as f: for line in f: _lowerCAmelCase = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase = line[: line.index(''': ''' )] _lowerCAmelCase = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed _lowerCAmelCase = line[len('''FAILED ''' ) :] failed_tests.append(lowerCamelCase_ ) elif filename == "job_name.txt": _lowerCAmelCase = line if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(lowerCamelCase_ )} for `errors` ''' f'''and {len(lowerCamelCase_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' ''' problem.''' ) _lowerCAmelCase = None if job_name and job_links: _lowerCAmelCase = job_links.get(lowerCamelCase_ , lowerCamelCase_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(lowerCamelCase_ , lowerCamelCase_ )] return result def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int=None )->Optional[int]: _lowerCAmelCase = [] _lowerCAmelCase = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for p in os.listdir(lowerCamelCase_ ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(lowerCamelCase_ , job_links=lowerCamelCase_ ) ) return errors def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any]=None )->Tuple: _lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=lowerCamelCase_ ) ) return r def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->List[Any]: _lowerCAmelCase = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): _lowerCAmelCase = test.split('''/''' )[2] else: _lowerCAmelCase = None return test def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str]=None )->Dict: _lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase = [x for x in logs if x[2] is not None] _lowerCAmelCase = {x[2] for x in logs} _lowerCAmelCase = {} for test in tests: _lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase = {"""count""": n_errors, """errors""": error_counts} _lowerCAmelCase = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=lowerCamelCase_ ) ) return r def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->Any: _lowerCAmelCase = """| no. | error | status |""" _lowerCAmelCase = """|-:|:-|:-|""" _lowerCAmelCase = [header, sep] for error in reduced_by_error: _lowerCAmelCase = reduced_by_error[error]["""count"""] _lowerCAmelCase = f'''| {count} | {error[:1_0_0]} | |''' lines.append(lowerCamelCase_ ) return "\n".join(lowerCamelCase_ ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->Union[str, Any]: _lowerCAmelCase = """| model | no. of errors | major error | count |""" _lowerCAmelCase = """|-:|-:|-:|-:|""" _lowerCAmelCase = [header, sep] for model in reduced_by_model: _lowerCAmelCase = reduced_by_model[model]["""count"""] _lowerCAmelCase = list(reduced_by_model[model]['''errors'''].items() )[0] _lowerCAmelCase = f'''| {model} | {count} | {error[:6_0]} | {_count} |''' lines.append(lowerCamelCase_ ) return "\n".join(lowerCamelCase_ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") UpperCAmelCase_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCAmelCase_ = get_job_links(args.workflow_run_id, token=args.token) UpperCAmelCase_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCAmelCase_ = k.find(" / ") UpperCAmelCase_ = k[index + len(" / ") :] UpperCAmelCase_ = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCAmelCase_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCAmelCase_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCAmelCase_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCAmelCase_ = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCAmelCase_ = reduce_by_error(errors) UpperCAmelCase_ = reduce_by_model(errors) UpperCAmelCase_ = make_github_table(reduced_by_error) UpperCAmelCase_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
713
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class UpperCAmelCase ( __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = 'lxmert' SCREAMING_SNAKE_CASE__ = {} def __init__( self , _lowerCAmelCase=30_522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=9_500 , _lowerCAmelCase=1_600 , _lowerCAmelCase=400 , _lowerCAmelCase=3_072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=9 , _lowerCAmelCase=5 , _lowerCAmelCase=5 , _lowerCAmelCase=2_048 , _lowerCAmelCase=4 , _lowerCAmelCase=6.67 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ): _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = num_qa_labels _lowerCAmelCase = num_object_labels _lowerCAmelCase = num_attr_labels _lowerCAmelCase = l_layers _lowerCAmelCase = x_layers _lowerCAmelCase = r_layers _lowerCAmelCase = visual_feat_dim _lowerCAmelCase = visual_pos_dim _lowerCAmelCase = visual_loss_normalizer _lowerCAmelCase = task_matched _lowerCAmelCase = task_mask_lm _lowerCAmelCase = task_obj_predict _lowerCAmelCase = task_qa _lowerCAmelCase = visual_obj_loss _lowerCAmelCase = visual_attr_loss _lowerCAmelCase = visual_feat_loss _lowerCAmelCase = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**UpperCamelCase_ )
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
0
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments UpperCAmelCase_ = logging.getLogger(__name__) @dataclass class UpperCAmelCase ( _UpperCamelCase ): SCREAMING_SNAKE_CASE__ = field( default=0.0 ,metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) SCREAMING_SNAKE_CASE__ = field(default=_UpperCamelCase ,metadata={'''help''': '''Whether to SortishSamler or not.'''} ) SCREAMING_SNAKE_CASE__ = field( default=_UpperCamelCase ,metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) SCREAMING_SNAKE_CASE__ = field(default=_UpperCamelCase ,metadata={'''help''': '''whether to use adafactor'''} ) SCREAMING_SNAKE_CASE__ = field( default=_UpperCamelCase ,metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) SCREAMING_SNAKE_CASE__ = field( default=_UpperCamelCase ,metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) SCREAMING_SNAKE_CASE__ = field(default=_UpperCamelCase ,metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) SCREAMING_SNAKE_CASE__ = field( default=_UpperCamelCase ,metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) SCREAMING_SNAKE_CASE__ = field( default='''linear''' ,metadata={'''help''': f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} ,)
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
0
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] )->float: return round(float(moles / volume ) * nfactor ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )->float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple )->float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] )->float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
716
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->str: _lowerCAmelCase = len(snake_case__ ) _lowerCAmelCase = len(snake_case__ ) _lowerCAmelCase = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCAmelCase = [] for char_count in range(snake_case__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case__ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=99 , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=9 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase=8 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.002 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=None , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = encoder_seq_length _lowerCAmelCase = decoder_seq_length # For common tests _lowerCAmelCase = self.decoder_seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = d_ff _lowerCAmelCase = relative_attention_num_buckets _lowerCAmelCase = dropout_rate _lowerCAmelCase = initializer_factor _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = decoder_start_token_id _lowerCAmelCase = None _lowerCAmelCase = decoder_layers def __lowerCAmelCase ( self ): return TaConfig.from_pretrained('''google/umt5-base''' ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , ): if attention_mask is None: _lowerCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _lowerCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _lowerCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase__ ) if decoder_head_mask is None: _lowerCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase__ ) if cross_attn_head_mask is None: _lowerCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _lowerCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase = self.get_config() _lowerCAmelCase = config.num_attention_heads _lowerCAmelCase = self.prepare_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, input_dict def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCAmelCase ( self ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __lowerCAmelCase ( self ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = UMTaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _lowerCAmelCase = model( input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , ) _lowerCAmelCase = model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ) _lowerCAmelCase = result.last_hidden_state _lowerCAmelCase = result.past_key_values _lowerCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = UMTaModel(config=UpperCAmelCase__ ).get_decoder().to(UpperCAmelCase__ ).eval() # first forward pass _lowerCAmelCase = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) _lowerCAmelCase = model(UpperCAmelCase__ ) _lowerCAmelCase = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) self.parent.assertTrue(len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) ) self.parent.assertTrue(len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) + 1 ) _lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = model(UpperCAmelCase__ )['''last_hidden_state'''] _lowerCAmelCase = model(UpperCAmelCase__ , past_key_values=UpperCAmelCase__ )['''last_hidden_state'''] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = UMTaModel(config=UpperCAmelCase__ ).to(UpperCAmelCase__ ).half().eval() _lowerCAmelCase = model(**UpperCAmelCase__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(UpperCAmelCase__ ).any().item() ) @require_torch class UpperCAmelCase ( snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = (UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE__ = [0.8, 0.9] def __lowerCAmelCase ( self ): _lowerCAmelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=UpperCAmelCase__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase__ ) def __lowerCAmelCase ( self ): _lowerCAmelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = config_and_inputs[0] _lowerCAmelCase = UMTaForConditionalGeneration(UpperCAmelCase__ ).eval() model.to(UpperCAmelCase__ ) _lowerCAmelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ ), } for attn_name, (name, mask) in zip(UpperCAmelCase__ , head_masking.items() ): _lowerCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _lowerCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ ) _lowerCAmelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , **UpperCAmelCase__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step _lowerCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __lowerCAmelCase ( self ): pass @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=UpperCAmelCase__ ).to(UpperCAmelCase__ ) _lowerCAmelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=UpperCAmelCase__ , legacy=UpperCAmelCase__ ) _lowerCAmelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _lowerCAmelCase = tokenizer(UpperCAmelCase__ , return_tensors='''pt''' , padding=UpperCAmelCase__ ).input_ids # fmt: off _lowerCAmelCase = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = model.generate(input_ids.to(UpperCAmelCase__ ) ) _lowerCAmelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _lowerCAmelCase = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
718
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
719
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->List[Any]: _lowerCAmelCase = [0] * len(__a ) _lowerCAmelCase = [] _lowerCAmelCase = [1] * len(__a ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__a ) ): if indegree[i] == 0: queue.append(__a ) while queue: _lowerCAmelCase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _lowerCAmelCase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__a ) print(max(__a ) ) # Adjacency list of Graph UpperCAmelCase_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
720
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( _snake_case ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = CodeGenTokenizer SCREAMING_SNAKE_CASE__ = CodeGenTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = {"""add_prefix_space""": True} SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCAmelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _lowerCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCAmelCase = {"unk_token": "<unk>"} _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(snake_case_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(snake_case_ ) ) def __lowerCAmelCase ( self , **_lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , **_lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = "lower newer" _lowerCAmelCase = "lower newer" return input_text, output_text def __lowerCAmelCase ( self ): _lowerCAmelCase = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase = "lower newer" _lowerCAmelCase = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCAmelCase = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _lowerCAmelCase = tokens + [tokenizer.unk_token] _lowerCAmelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=snake_case_ ) _lowerCAmelCase = "lower newer" # Testing tokenization _lowerCAmelCase = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ ) _lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens _lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) _lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens _lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=snake_case_ ) _lowerCAmelCase = tokenizer.encode(snake_case_ , add_prefix_space=snake_case_ ) _lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing the unknown token _lowerCAmelCase = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __lowerCAmelCase ( self , _lowerCAmelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) # Simple input _lowerCAmelCase = "This is a simple input" _lowerCAmelCase = ["This is a simple input 1", "This is a simple input 2"] _lowerCAmelCase = ("This is a simple input", "This is a pair") _lowerCAmelCase = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding='''max_length''' ) # Simple input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding='''max_length''' ) # Simple input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding='''max_length''' , ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding='''max_length''' ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding='''max_length''' ) # Pair input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding='''max_length''' , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input _lowerCAmelCase = "This is a simple input" _lowerCAmelCase = ["This is a simple input looooooooong", "This is a simple input"] _lowerCAmelCase = ("This is a simple input", "This is a pair") _lowerCAmelCase = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCAmelCase = tokenizer.pad_token_id _lowerCAmelCase = tokenizer(snake_case_ , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) _lowerCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors='''np''' ) _lowerCAmelCase = tokenizer(*snake_case_ , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) _lowerCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def __lowerCAmelCase ( self ): _lowerCAmelCase = "$$$" _lowerCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=snake_case_ , add_bos_token=snake_case_ ) _lowerCAmelCase = "This is a simple input" _lowerCAmelCase = ["This is a simple input 1", "This is a simple input 2"] _lowerCAmelCase = tokenizer.bos_token_id _lowerCAmelCase = tokenizer(snake_case_ ) _lowerCAmelCase = tokenizer(snake_case_ ) self.assertEqual(out_s.input_ids[0] , snake_case_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , snake_case_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) _lowerCAmelCase = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCAmelCase = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCAmelCase = tokenizer.encode(snake_case_ ) _lowerCAmelCase = ["^#", re.escape('''<|endoftext|>''' ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCAmelCase = tokenizer.decode(snake_case_ , truncate_before_pattern=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self ): pass
721
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
0
import math def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float )->float: if ( not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float )->float: if ( not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
700
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
664
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class UpperCAmelCase ( __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = ["input_values", "padding_mask"] def __init__( self , _lowerCAmelCase = 1 , _lowerCAmelCase = 24_000 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): super().__init__(feature_size=_lowerCamelCase , sampling_rate=_lowerCamelCase , padding_value=_lowerCamelCase , **_lowerCamelCase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def __lowerCAmelCase ( self ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __lowerCAmelCase ( self ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowerCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowerCamelCase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowerCamelCase , dtype=np.floataa ) elif isinstance(_lowerCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowerCamelCase ).T] # verify inputs are valid for idx, example in enumerate(_lowerCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = '''max_length''' else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , padding=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if padding: _lowerCAmelCase = padded_inputs.pop('''attention_mask''' ) _lowerCAmelCase = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs
701
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
664
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } UpperCAmelCase_ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] )->Dict: for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCAmelCase = '''lm_head''' _lowerCAmelCase = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: _lowerCAmelCase = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: _lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] )->List[Any]: _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCAmelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(lowerCamelCase_ )[0].split('''.''' )[-2] _lowerCAmelCase = mapped_key.replace('''*''' , lowerCamelCase_ ) if "weight_g" in name: _lowerCAmelCase = '''weight_g''' elif "weight_v" in name: _lowerCAmelCase = '''weight_v''' elif "bias" in name: _lowerCAmelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = '''weight''' else: _lowerCAmelCase = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] )->Union[str, Any]: _lowerCAmelCase = full_name.split('''conv_layers.''' )[-1] _lowerCAmelCase = name.split('''.''' ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase_ ) @torch.no_grad() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : List[str]=True )->Optional[int]: if config_path is not None: _lowerCAmelCase = UniSpeechConfig.from_pretrained(lowerCamelCase_ ) else: _lowerCAmelCase = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load_from_json(lowerCamelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(lowerCamelCase_ , '''vocab.json''' ) if not os.path.isdir(lowerCamelCase_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowerCamelCase_ ) ) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 4_2 _lowerCAmelCase = 4_3 with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowerCamelCase_ , ) _lowerCAmelCase = True if config.feat_extract_norm == '''layer''' else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) _lowerCAmelCase = UniSpeechForCTC(lowerCamelCase_ ) else: _lowerCAmelCase = UniSpeechForPreTraining(lowerCamelCase_ ) if is_finetuned: _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCAmelCase = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) hf_unispeech.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCAmelCase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
702
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
0
'''simple docstring''' import baseaa def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->bytes: return baseaa.baaencode(string.encode('''utf-8''' ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->str: return baseaa.baadecode(UpperCamelCase__ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
703
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase_ = logging.get_logger(__name__) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )->Optional[int]: _lowerCAmelCase = b.T _lowerCAmelCase = np.sum(np.square(__SCREAMING_SNAKE_CASE ) , axis=1 ) _lowerCAmelCase = np.sum(np.square(__SCREAMING_SNAKE_CASE ) , axis=0 ) _lowerCAmelCase = np.matmul(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _lowerCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: _lowerCAmelCase = x.reshape(-1 , 3 ) _lowerCAmelCase = squared_euclidean_distance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return np.argmin(__SCREAMING_SNAKE_CASE , axis=1 ) class UpperCAmelCase ( snake_case__ ): SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = True , _lowerCAmelCase = True , **_lowerCAmelCase , ): super().__init__(**lowercase_ ) _lowerCAmelCase = size if size is not None else {"height": 256, "width": 256} _lowerCAmelCase = get_size_dict(lowercase_ ) _lowerCAmelCase = np.array(lowercase_ ) if clusters is not None else None _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_normalize _lowerCAmelCase = do_color_quantize def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowerCAmelCase = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase_ , size=(size['''height'''], size['''width''']) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , ): _lowerCAmelCase = rescale(image=lowercase_ , scale=1 / 127.5 , data_format=lowercase_ ) _lowerCAmelCase = image - 1 return image def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ): _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(lowercase_ ) _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _lowerCAmelCase = clusters if clusters is not None else self.clusters _lowerCAmelCase = np.array(lowercase_ ) _lowerCAmelCase = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(lowercase_ ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(image=lowercase_ ) for image in images] if do_color_quantize: _lowerCAmelCase = [to_channel_dimension_format(lowercase_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _lowerCAmelCase = np.array(lowercase_ ) _lowerCAmelCase = color_quantize(lowercase_ , lowercase_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _lowerCAmelCase = images.shape[0] _lowerCAmelCase = images.reshape(lowercase_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _lowerCAmelCase = list(lowercase_ ) else: _lowerCAmelCase = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] _lowerCAmelCase = {"input_ids": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
704
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase_ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->Any: if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 1_0: _lowerCAmelCase = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 1_0: _lowerCAmelCase = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 1_0: _lowerCAmelCase = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 1_0: _lowerCAmelCase = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: _lowerCAmelCase = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: _lowerCAmelCase = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: _lowerCAmelCase = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict )->Optional[int]: _lowerCAmelCase = {} import re _lowerCAmelCase = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) _lowerCAmelCase = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _lowerCAmelCase = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) _lowerCAmelCase = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) _lowerCAmelCase = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _lowerCAmelCase = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) _lowerCAmelCase = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) _lowerCAmelCase = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _lowerCAmelCase = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = regex_match.groups() _lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' _lowerCAmelCase = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = regex_match.groups() _lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase = {'''1''': 1, '''3''': 2}[groups[-2]] _lowerCAmelCase = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' _lowerCAmelCase = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _lowerCAmelCase = prefix + resnet_block _lowerCAmelCase = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = regex_match.groups() _lowerCAmelCase = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' _lowerCAmelCase = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = regex_match.groups() _lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' _lowerCAmelCase = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = regex_match.groups() _lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase = {'''1''': 1, '''3''': 2}[groups[-2]] _lowerCAmelCase = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' _lowerCAmelCase = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _lowerCAmelCase = prefix + resnet_block _lowerCAmelCase = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = regex_match.groups() _lowerCAmelCase = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' _lowerCAmelCase = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = regex_match.groups() _lowerCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' _lowerCAmelCase = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = regex_match.groups() _lowerCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase = {'''1''': 1, '''3''': 2}[groups[-2]] _lowerCAmelCase = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' _lowerCAmelCase = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _lowerCAmelCase = prefix + resnet_block _lowerCAmelCase = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = regex_match.groups() _lowerCAmelCase = f'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' _lowerCAmelCase = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # keep original key else: _lowerCAmelCase = original_key _lowerCAmelCase = replace_key(_SCREAMING_SNAKE_CASE ) if f'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(f'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[f'''{key_prefix}.{key}'''].shape: _lowerCAmelCase = model_state_dict[f'''{key_prefix}.{key}'''] print(f'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) _lowerCAmelCase = original_key _lowerCAmelCase = original_key _lowerCAmelCase = value return new_dict @torch.no_grad() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : List[str]=None )->Dict: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): _lowerCAmelCase = requests.get(f'''{PREFIX}{file}''' , allow_redirects=_SCREAMING_SNAKE_CASE ) os.makedirs(f'''{pytorch_dump_folder_path}/''' , exist_ok=_SCREAMING_SNAKE_CASE ) open(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , '''wb''' ).write(r.content ) _lowerCAmelCase = MODEL_MAPPING[model_name.split('''/''' )[-1]] _lowerCAmelCase = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = JukeboxModel(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [] _lowerCAmelCase = {} for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = torch.load(f'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['''model'''] _lowerCAmelCase = {} for k in old_dic.keys(): if k.endswith('''.b''' ): _lowerCAmelCase = old_dic[k] elif k.endswith('''.w''' ): _lowerCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase = old_dic[k] else: _lowerCAmelCase = old_dic[k] _lowerCAmelCase = '''vqvae''' if i == 0 else f'''priors.{3 - i}''' _lowerCAmelCase = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) weight_dict.append(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(f'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase_ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
705
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class UpperCAmelCase ( __lowercase ): def __init__( self , **_lowerCAmelCase ): super().__init__(**_lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ): return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , **_lowerCAmelCase ): _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="This is a photo of {}." ): _lowerCAmelCase = load_image(_lowerCAmelCase ) _lowerCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowerCAmelCase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework , padding=_lowerCAmelCase ) _lowerCAmelCase = [text_inputs] return inputs def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = model_inputs.pop('''candidate_labels''' ) _lowerCAmelCase = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _lowerCAmelCase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = model_outputs.pop('''candidate_labels''' ) _lowerCAmelCase = model_outputs["logits"][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 ) _lowerCAmelCase = probs.tolist() if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = [scores] elif self.framework == "tf": _lowerCAmelCase = stable_softmax(_lowerCAmelCase , axis=-1 ) _lowerCAmelCase = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowerCAmelCase = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(_lowerCAmelCase , _lowerCAmelCase ) , key=lambda _lowerCAmelCase : -x[0] ) ] return result
706
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow UpperCAmelCase_ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ = logging.getLogger() def UpperCAmelCase__ ( )->Optional[int]: _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _lowerCAmelCase = parser.parse_args() return args.f def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str="eval" )->str: _lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , f'''{split}_results.json''' ) if os.path.exists(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , '''r''' ) as f: return json.load(_SCREAMING_SNAKE_CASE ) raise ValueError(f'''can\'t find {path}''' ) UpperCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase ( snake_case_ ): '''simple docstring''' def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = F'''\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_flax_glue.main() _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = F'''\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_clm_flax.main() _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = F'''\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_summarization_flax.main() _lowerCAmelCase = get_results(__UpperCamelCase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = F'''\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_mlm_flax.main() _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = F'''\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_ta_mlm_flax.main() _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowerCAmelCase ( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _lowerCAmelCase = 7 if get_gpu_count() > 1 else 2 _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = F'''\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_flax_ner.main() _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = F'''\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_qa.main() _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
707
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
0
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration UpperCAmelCase_ = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->List[str]: _lowerCAmelCase = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] )->Optional[Any]: _lowerCAmelCase = list(s_dict.keys() ) for key in keys: _lowerCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: _lowerCAmelCase = new_key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f'''{key} -> {new_key}''' ) _lowerCAmelCase = s_dict.pop(_SCREAMING_SNAKE_CASE ) return s_dict def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: _lowerCAmelCase = emb.weight.shape _lowerCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = emb.weight.data return lin_layer def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->bytes: os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = os.path.basename(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = url.split('''/''' )[-2] _lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if os.path.exists(_SCREAMING_SNAKE_CASE ) and not os.path.isfile(_SCREAMING_SNAKE_CASE ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = open(_SCREAMING_SNAKE_CASE , '''rb''' ).read() if hashlib.shaaaa(_SCREAMING_SNAKE_CASE ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_SCREAMING_SNAKE_CASE ) as source, open(_SCREAMING_SNAKE_CASE , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=_SCREAMING_SNAKE_CASE , unit_divisor=1_0_2_4 ) as loop: while True: _lowerCAmelCase = source.read(8_1_9_2 ) if not buffer: break output.write(_SCREAMING_SNAKE_CASE ) loop.update(len(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = open(_SCREAMING_SNAKE_CASE , '''rb''' ).read() if hashlib.shaaaa(_SCREAMING_SNAKE_CASE ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any )->Optional[Any]: if ".pt" not in checkpoint_path: _lowerCAmelCase = _download(_MODELS[checkpoint_path] ) else: _lowerCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _lowerCAmelCase = original_checkpoint["""dims"""] _lowerCAmelCase = original_checkpoint["""model_state_dict"""] _lowerCAmelCase = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) rename_keys(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = True _lowerCAmelCase = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] _lowerCAmelCase = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_SCREAMING_SNAKE_CASE , decoder_ffn_dim=_SCREAMING_SNAKE_CASE , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) _lowerCAmelCase = WhisperForConditionalGeneration(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = model.model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0 and not set(_SCREAMING_SNAKE_CASE ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: _lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCAmelCase = proj_out_weights model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
708
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 2_5_6 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self , *, _lowerCAmelCase = 0.85 , ): _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_duplicate_clusters() with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str: _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple: global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) return ds_filter, duplicate_clusters
664
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") UpperCAmelCase_ = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) UpperCAmelCase_ = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) UpperCAmelCase_ = BeautifulSoup(res.text, "html.parser") UpperCAmelCase_ = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
709
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = process _lowerCAmelCase = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): _lowerCAmelCase = self.dataset[i] _lowerCAmelCase = self.process(_lowerCAmelCase , **self.params ) return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = loader _lowerCAmelCase = infer _lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowerCAmelCase = None _lowerCAmelCase = loader_batch_size # Internal bookkeeping _lowerCAmelCase = None _lowerCAmelCase = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first _lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowerCAmelCase = next(self.iterator ) _lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _lowerCAmelCase = processed _lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) _lowerCAmelCase = None return self def __lowerCAmelCase ( self ): if self.subiterator is None: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) _lowerCAmelCase = next(self.subiterator ) return processed class UpperCAmelCase ( snake_case_ ): def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowerCAmelCase = False _lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size _lowerCAmelCase = processed _lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: _lowerCAmelCase = processed _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) return accumulator class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return self.dataset[i][self.key] class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = keya _lowerCAmelCase = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
664
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( a__ ): SCREAMING_SNAKE_CASE__ = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE__ = "ChineseCLIPImageProcessor" SCREAMING_SNAKE_CASE__ = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCamelCase_ , ) _lowerCAmelCase = kwargs.pop('''feature_extractor''' ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase = self.image_processor def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if images is not None: _lowerCAmelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None and images is not None: _lowerCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCamelCase_ , ) return self.image_processor_class
710
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
0
import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = str(id_ ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = [] _lowerCAmelCase = {} # {vertex:distance} def __lt__( self , _lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def __lowerCAmelCase ( self , _lowerCAmelCase ): self.neighbors.append(UpperCamelCase__ ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = weight def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple )->Optional[Any]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : Vertex )->Optional[int]: _lowerCAmelCase = [] for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = graph[:] while q: _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ) q.remove(_SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : Vertex )->int: for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) hq.heapify(_SCREAMING_SNAKE_CASE ) while h: _lowerCAmelCase = hq.heappop(_SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] hq.heapify(_SCREAMING_SNAKE_CASE ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase__ ( )->Optional[int]: pass if __name__ == "__main__": import doctest doctest.testmod()
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCAmelCase : # setable values SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None # sigma(t_i) @classmethod def __lowerCAmelCase ( cls ): return cls() @dataclass class UpperCAmelCase ( __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = 4_2 class UpperCAmelCase ( __UpperCAmelCase ,__UpperCAmelCase ): @property def __lowerCAmelCase ( self ): return True @register_to_config def __init__( self , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 100 , _lowerCAmelCase = 1.007 , _lowerCAmelCase = 80 , _lowerCAmelCase = 0.05 , _lowerCAmelCase = 50 , ): pass def __lowerCAmelCase ( self ): return KarrasVeSchedulerState.create() def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = () ): _lowerCAmelCase = jnp.arange(0 , lowerCAmelCase_ )[::-1].copy() _lowerCAmelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCAmelCase_ , schedule=jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) , timesteps=lowerCAmelCase_ , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if self.config.s_min <= sigma <= self.config.s_max: _lowerCAmelCase = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: _lowerCAmelCase = 0 # sample eps ~ N(0, S_noise^2 * I) _lowerCAmelCase = random.split(lowerCAmelCase_ , num=1 ) _lowerCAmelCase = self.config.s_noise * random.normal(key=lowerCAmelCase_ , shape=sample.shape ) _lowerCAmelCase = sigma + gamma * sigma _lowerCAmelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ): _lowerCAmelCase = sample_hat + sigma_hat * model_output _lowerCAmelCase = (sample_hat - pred_original_sample) / sigma_hat _lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , state=lowerCAmelCase_ ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ): _lowerCAmelCase = sample_prev + sigma_prev * model_output _lowerCAmelCase = (sample_prev - pred_original_sample) / sigma_prev _lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , state=lowerCAmelCase_ ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): raise NotImplementedError()
712
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
0
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(a_ ) == 0: return [] _lowerCAmelCase = min(a_ ), max(a_ ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(a_ )] for i in my_list: buckets[int(i - min_value )].append(a_ ) return [v for bucket in buckets for v in sorted(a_ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
713
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): @property def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __lowerCAmelCase ( self ): _lowerCAmelCase = self.dummy_uncond_unet _lowerCAmelCase = ScoreSdeVeScheduler() _lowerCAmelCase = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_A ).images _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_A , return_dict=_A )[ 0 ] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): _lowerCAmelCase = '''google/ncsnpp-church-256''' _lowerCAmelCase = UNetaDModel.from_pretrained(_A ) _lowerCAmelCase = ScoreSdeVeScheduler.from_pretrained(_A ) _lowerCAmelCase = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=_A ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
0
import argparse import os import re import packaging.version UpperCAmelCase_ = "examples/" UpperCAmelCase_ = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCAmelCase_ = { "init": "src/transformers/__init__.py", "setup": "setup.py", } UpperCAmelCase_ = "README.md" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] )->str: with open(UpperCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCAmelCase = f.read() _lowerCAmelCase , _lowerCAmelCase = REPLACE_PATTERNS[pattern] _lowerCAmelCase = replace.replace('''VERSION''' , UpperCAmelCase__ ) _lowerCAmelCase = re_pattern.sub(UpperCAmelCase__ , UpperCAmelCase__ ) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCAmelCase__ ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->List[Any]: for folder, directories, fnames in os.walk(UpperCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , pattern='''examples''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any]=False )->List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not patch: update_version_in_examples(UpperCAmelCase__ ) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = '''🤗 Transformers currently provides the following architectures''' _lowerCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCAmelCase = f.readlines() # Find the start of the list. _lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _lowerCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCAmelCase__ ) def UpperCAmelCase__ ( )->Union[str, Any]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: _lowerCAmelCase = f.read() _lowerCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCAmelCase__ ).groups()[0] return packaging.version.parse(UpperCAmelCase__ ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict=False )->Tuple: _lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _lowerCAmelCase = default_version.base_version elif patch: _lowerCAmelCase = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _lowerCAmelCase = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _lowerCAmelCase = input(f'''Which version are you releasing? [{default_version}]''' ) if len(UpperCAmelCase__ ) == 0: _lowerCAmelCase = default_version print(f'''Updating version to {version}.''' ) global_version_update(UpperCAmelCase__ , patch=UpperCAmelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def UpperCAmelCase__ ( )->Dict: _lowerCAmelCase = get_version() _lowerCAmelCase = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _lowerCAmelCase = current_version.base_version # Check with the user we got that right. _lowerCAmelCase = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(UpperCAmelCase__ ) == 0: _lowerCAmelCase = dev_version print(f'''Updating version to {version}.''' ) global_version_update(UpperCAmelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCAmelCase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' ,'''False''' ) ) is not True ,reason='''Skipping test because should only be run when releasing minor transformers version''' ,) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=_lowerCAmelCase , ) assert hasattr(self , '''env''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = F'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings _lowerCAmelCase = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_lowerCAmelCase , instance_count=_lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=_lowerCAmelCase , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_lowerCAmelCase , py_version='''py36''' , ) def __lowerCAmelCase ( self , _lowerCAmelCase ): TrainingJobAnalytics(_lowerCAmelCase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.create_estimator(_lowerCAmelCase ) # run training estimator.fit() # result dataframe _lowerCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) _lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowerCAmelCase )
716
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
0
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple="attention" )->str: _lowerCAmelCase = params[f'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] _lowerCAmelCase = params[f'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] _lowerCAmelCase = params[f'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] _lowerCAmelCase = params[f'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int]=False )->Tuple: if split_mlp_wi: _lowerCAmelCase = params[f'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] _lowerCAmelCase = params[f'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] _lowerCAmelCase = (wi_a, wi_a) else: _lowerCAmelCase = params[f'''{prefix}/layers_{i}/mlp/wi/kernel'''] _lowerCAmelCase = params[f'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )->List[str]: return params[f'''{prefix}/layers_{i}/{layer_name}/scale'''] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , *, _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] )->List[str]: _lowerCAmelCase = traverse_util.flatten_dict(variables['''target'''] ) _lowerCAmelCase = {'''/'''.join(_SCREAMING_SNAKE_CASE ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _lowerCAmelCase = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = collections.OrderedDict() # Shared embeddings. _lowerCAmelCase = old['''token_embedder/embedding'''] # Encoder. for i in range(_SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). _lowerCAmelCase = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_attention_layer_norm''' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = tax_attention_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''encoder''' , '''attention''' ) _lowerCAmelCase = layer_norm _lowerCAmelCase = k.T _lowerCAmelCase = o.T _lowerCAmelCase = q.T _lowerCAmelCase = v.T # Block i, layer 1 (MLP). _lowerCAmelCase = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_mlp_layer_norm''' ) _lowerCAmelCase , _lowerCAmelCase = tax_mlp_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''encoder''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = layer_norm if split_mlp_wi: _lowerCAmelCase = wi[0].T _lowerCAmelCase = wi[1].T else: _lowerCAmelCase = wi.T _lowerCAmelCase = wo.T _lowerCAmelCase = old[ '''encoder/relpos_bias/rel_embedding''' ].T _lowerCAmelCase = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(_SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). _lowerCAmelCase = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_self_attention_layer_norm''' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = tax_attention_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''decoder''' , '''self_attention''' ) _lowerCAmelCase = layer_norm _lowerCAmelCase = k.T _lowerCAmelCase = o.T _lowerCAmelCase = q.T _lowerCAmelCase = v.T # Block i, layer 1 (Cross Attention). _lowerCAmelCase = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_cross_attention_layer_norm''' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = tax_attention_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''decoder''' , '''encoder_decoder_attention''' ) _lowerCAmelCase = layer_norm _lowerCAmelCase = k.T _lowerCAmelCase = o.T _lowerCAmelCase = q.T _lowerCAmelCase = v.T # Block i, layer 2 (MLP). _lowerCAmelCase = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_mlp_layer_norm''' ) _lowerCAmelCase , _lowerCAmelCase = tax_mlp_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''decoder''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = layer_norm if split_mlp_wi: _lowerCAmelCase = wi[0].T _lowerCAmelCase = wi[1].T else: _lowerCAmelCase = wi.T _lowerCAmelCase = wo.T _lowerCAmelCase = old['''decoder/decoder_norm/scale'''] _lowerCAmelCase = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _lowerCAmelCase = old['''decoder/logits_dense/kernel'''].T return new def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Union[str, Any]: _lowerCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _lowerCAmelCase = state_dict['''shared.weight'''] return state_dict def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = checkpoints.load_tax_checkpoint(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = convert_tax_to_pytorch(_SCREAMING_SNAKE_CASE , num_layers=config.num_layers , is_encoder_only=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = make_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict = False )->List[str]: _lowerCAmelCase = TaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _lowerCAmelCase = TaEncoderModel(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = TaForConditionalGeneration(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tax_weights_in_ta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) # Verify that we can load the checkpoint. model.from_pretrained(_SCREAMING_SNAKE_CASE ) print('''Done''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) UpperCAmelCase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
0
from sklearn.metrics import recall_score import datasets UpperCAmelCase_ = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' UpperCAmelCase_ = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' UpperCAmelCase_ = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=1 , _lowerCAmelCase="binary" , _lowerCAmelCase=None , _lowerCAmelCase="warn" , ): _lowerCAmelCase = recall_score( _lowerCAmelCase , _lowerCAmelCase , labels=_lowerCAmelCase , pos_label=_lowerCAmelCase , average=_lowerCAmelCase , sample_weight=_lowerCAmelCase , zero_division=_lowerCAmelCase , ) return {"recall": float(_lowerCAmelCase ) if score.size == 1 else score}
719
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
720
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase_ = logging.get_logger(__name__) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->List[List[ImageInput]]: if isinstance(lowerCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCamelCase__ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = ["""pixel_values"""] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name='''crop_size''' ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = resample _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" in size: _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size['''shortest_edge'''] , default_to_square=_lowerCAmelCase ) elif "height" in size and "width" in size: _lowerCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _lowerCAmelCase = to_numpy_array(_lowerCAmelCase ) if do_resize: _lowerCAmelCase = self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) if do_center_crop: _lowerCAmelCase = self.center_crop(_lowerCAmelCase , size=_lowerCAmelCase ) if do_rescale: _lowerCAmelCase = self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) if do_normalize: _lowerCAmelCase = self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) _lowerCAmelCase = to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) return image def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ): _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name='''crop_size''' ) if not valid_images(_lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) _lowerCAmelCase = make_batched(_lowerCAmelCase ) _lowerCAmelCase = [ [ self._preprocess_image( image=_lowerCAmelCase , do_resize=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , do_center_crop=_lowerCAmelCase , crop_size=_lowerCAmelCase , do_rescale=_lowerCAmelCase , rescale_factor=_lowerCAmelCase , do_normalize=_lowerCAmelCase , image_mean=_lowerCAmelCase , image_std=_lowerCAmelCase , data_format=_lowerCAmelCase , ) for img in video ] for video in videos ] _lowerCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
721
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
0
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("T") UpperCAmelCase_ = TypeVar("U") class UpperCAmelCase ( Generic[T, U] ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = key _lowerCAmelCase = val _lowerCAmelCase = None _lowerCAmelCase = None def __repr__( self ): return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class UpperCAmelCase ( Generic[T, U] ): def __init__( self ): _lowerCAmelCase = DoubleLinkedListNode(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = DoubleLinkedListNode(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = self.rear, self.head def __repr__( self ): _lowerCAmelCase = ['''DoubleLinkedList'''] _lowerCAmelCase = self.head while node.next is not None: rep.append(str(_lowerCAmelCase ) ) _lowerCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCAmelCase = node _lowerCAmelCase = previous _lowerCAmelCase = node _lowerCAmelCase = self.rear def __lowerCAmelCase ( self , _lowerCAmelCase ): if node.prev is None or node.next is None: return None _lowerCAmelCase = node.next _lowerCAmelCase = node.prev _lowerCAmelCase = None _lowerCAmelCase = None return node class UpperCAmelCase ( Generic[T, U] ): SCREAMING_SNAKE_CASE__ = {} def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = DoubleLinkedList() _lowerCAmelCase = capacity _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = {} def __repr__( self ): return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , _lowerCAmelCase ): return key in self.cache def __lowerCAmelCase ( self , _lowerCAmelCase ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _lowerCAmelCase = self.cache[key] _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_lowerCAmelCase ) return node.val self.miss += 1 return None def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_lowerCAmelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCAmelCase = DoubleLinkedListNode(_lowerCAmelCase , _lowerCAmelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _lowerCAmelCase = value self.list.add(_lowerCAmelCase ) @classmethod def __lowerCAmelCase ( cls , _lowerCAmelCase = 128 ): def cache_decorator_inner(_lowerCAmelCase ) -> Callable[..., U]: def cache_decorator_wrapper(*_lowerCAmelCase ) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCAmelCase = LRUCache(_lowerCAmelCase ) _lowerCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _lowerCAmelCase = func(*_lowerCAmelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , _lowerCAmelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_lowerCAmelCase , '''cache_info''' , _lowerCAmelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
700
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
664
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 20} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_flip_channel_order def __lowerCAmelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = MobileViTImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = MobileViTImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_flip_channel_order''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): pass def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
701
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
664
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase : SCREAMING_SNAKE_CASE__ = field( default=snake_case_ ,metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(snake_case_ )} ) SCREAMING_SNAKE_CASE__ = field( default=snake_case_ ,metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) SCREAMING_SNAKE_CASE__ = field( default=1_2_8 ,metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } ,) SCREAMING_SNAKE_CASE__ = field( default=1_2_8 ,metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} ,) SCREAMING_SNAKE_CASE__ = field( default=6_4 ,metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } ,) SCREAMING_SNAKE_CASE__ = field( default=3_0 ,metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } ,) SCREAMING_SNAKE_CASE__ = field( default=snake_case_ ,metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) SCREAMING_SNAKE_CASE__ = field( default=snake_case_ ,metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) SCREAMING_SNAKE_CASE__ = field( default=0.0 ,metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) SCREAMING_SNAKE_CASE__ = field( default=2_0 ,metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) SCREAMING_SNAKE_CASE__ = field( default=0 ,metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } ,) SCREAMING_SNAKE_CASE__ = field(default=1 ,metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''train''' SCREAMING_SNAKE_CASE__ = '''dev''' class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = 4_2 SCREAMING_SNAKE_CASE__ = 4_2 def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = Split.train , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = "pt" , ): _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = '''v2''' if args.version_2_with_negative else '''v1''' _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + '''.lock''' with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features['''features'''] _lowerCAmelCase = self.old_features.get('''dataset''' , _lowerCAmelCase ) _lowerCAmelCase = self.old_features.get('''examples''' , _lowerCAmelCase ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowerCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowerCAmelCase , ) _lowerCAmelCase = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , _lowerCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): return len(self.features ) def __getitem__( self , _lowerCAmelCase ): # Convert to Tensors and build dataset _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
702
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
0
'''simple docstring''' from torch import nn class UpperCAmelCase ( nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__() _lowerCAmelCase = class_size _lowerCAmelCase = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _lowerCAmelCase = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) _lowerCAmelCase = self.mlp(_lowerCAmelCase ) return logits
703
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
0
UpperCAmelCase_ = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) UpperCAmelCase_ = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 1_2, "Pm": 1_5, "Em": 1_8, "Zm": 2_1, "Ym": 2_4, } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = from_type.lower().strip('''s''' ) _lowerCAmelCase = to_type.lower().strip('''s''' ) _lowerCAmelCase = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if from_sanitized not in METRIC_CONVERSION: _lowerCAmelCase = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}''' ) raise ValueError(_SCREAMING_SNAKE_CASE ) if to_sanitized not in METRIC_CONVERSION: _lowerCAmelCase = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}''' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = METRIC_CONVERSION[from_sanitized] _lowerCAmelCase = METRIC_CONVERSION[to_sanitized] _lowerCAmelCase = 1 if from_exponent > to_exponent: _lowerCAmelCase = from_exponent - to_exponent else: _lowerCAmelCase = -(to_exponent - from_exponent) return value * pow(1_0 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
704
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } UpperCAmelCase_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ = DistilBertTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowerCAmelCase = getattr(_lowerCAmelCase , normalizer_state.pop('''type''' ) ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = strip_accents _lowerCAmelCase = tokenize_chinese_chars _lowerCAmelCase = normalizer_class(**_lowerCAmelCase ) _lowerCAmelCase = do_lower_case def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowerCAmelCase = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
705
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } UpperCAmelCase_ = { "b0": { "hidden_dim": 1_2_8_0, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 2_2_4, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1_2_8_0, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 2_4_0, "dropout_rate": 0.2, "dw_padding": [1_6], }, "b2": { "hidden_dim": 1_4_0_8, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 2_6_0, "dropout_rate": 0.3, "dw_padding": [5, 8, 1_6], }, "b3": { "hidden_dim": 1_5_3_6, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 3_0_0, "dropout_rate": 0.3, "dw_padding": [5, 1_8], }, "b4": { "hidden_dim": 1_7_9_2, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 3_8_0, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2_0_4_8, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 4_5_6, "dropout_rate": 0.4, "dw_padding": [1_3, 2_7], }, "b6": { "hidden_dim": 2_3_0_4, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 5_2_8, "dropout_rate": 0.5, "dw_padding": [3_1], }, "b7": { "hidden_dim": 2_5_6_0, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 6_0_0, "dropout_rate": 0.5, "dw_padding": [1_8], }, } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: _lowerCAmelCase = EfficientNetConfig() _lowerCAmelCase = CONFIG_MAP[model_name]['''hidden_dim'''] _lowerCAmelCase = CONFIG_MAP[model_name]['''width_coef'''] _lowerCAmelCase = CONFIG_MAP[model_name]['''depth_coef'''] _lowerCAmelCase = CONFIG_MAP[model_name]['''image_size'''] _lowerCAmelCase = CONFIG_MAP[model_name]['''dropout_rate'''] _lowerCAmelCase = CONFIG_MAP[model_name]['''dw_padding'''] _lowerCAmelCase = '''huggingface/label-files''' _lowerCAmelCase = '''imagenet-1k-id2label.json''' _lowerCAmelCase = 1_0_0_0 _lowerCAmelCase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) _lowerCAmelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ ( )->str: _lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCAmelCase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->int: _lowerCAmelCase = CONFIG_MAP[model_name]['''image_size'''] _lowerCAmelCase = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_SCREAMING_SNAKE_CASE , ) return preprocessor def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] _lowerCAmelCase = sorted(set(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE , range(_SCREAMING_SNAKE_CASE ) )} _lowerCAmelCase = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: _lowerCAmelCase = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) _lowerCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: _lowerCAmelCase = '''efficientnet.''' + item[1] _lowerCAmelCase = '''classifier.weight''' _lowerCAmelCase = '''classifier.bias''' return key_mapping def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple )->Dict: for key, value in tf_params.items(): if "normalization" in key: continue _lowerCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: _lowerCAmelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _lowerCAmelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _lowerCAmelCase = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: _lowerCAmelCase = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE , weights='''imagenet''' , input_tensor=_SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , pooling=_SCREAMING_SNAKE_CASE , classes=1_0_0_0 , classifier_activation='''softmax''' , ) _lowerCAmelCase = original_model.trainable_variables _lowerCAmelCase = original_model.non_trainable_variables _lowerCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _lowerCAmelCase = param.numpy() _lowerCAmelCase = list(tf_params.keys() ) # Load HuggingFace model _lowerCAmelCase = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() _lowerCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) _lowerCAmelCase = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image _lowerCAmelCase = convert_image_processor(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): _lowerCAmelCase = hf_model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = outputs.logits.detach().numpy() # Original model inference _lowerCAmelCase = False _lowerCAmelCase = CONFIG_MAP[model_name]['''image_size'''] _lowerCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _lowerCAmelCase = image.img_to_array(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = np.expand_dims(_SCREAMING_SNAKE_CASE , axis=0 ) _lowerCAmelCase = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) _lowerCAmelCase = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") UpperCAmelCase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
706
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
0
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1_0_0_0 )->int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
707
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->int: _lowerCAmelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Tuple: _lowerCAmelCase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _lowerCAmelCase = s_dict.pop(_SCREAMING_SNAKE_CASE ) elif "subsample" in key: _lowerCAmelCase = s_dict.pop(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] )->Any: _lowerCAmelCase , _lowerCAmelCase = emb.weight.shape _lowerCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = emb.weight.data return lin_layer def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple )->str: _lowerCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _lowerCAmelCase = mam_aaa['''args'''] _lowerCAmelCase = mam_aaa['''model'''] _lowerCAmelCase = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) rename_keys(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = state_dict['''decoder.embed_tokens.weight'''].shape[0] _lowerCAmelCase = args.share_decoder_input_output_embed _lowerCAmelCase = [int(_SCREAMING_SNAKE_CASE ) for i in args.conv_kernel_sizes.split(''',''' )] _lowerCAmelCase = SpeechaTextConfig( vocab_size=_SCREAMING_SNAKE_CASE , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(_SCREAMING_SNAKE_CASE ) , conv_channels=args.conv_channels , conv_kernel_sizes=_SCREAMING_SNAKE_CASE , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_SCREAMING_SNAKE_CASE , num_beams=5 , max_length=2_0_0 , use_cache=_SCREAMING_SNAKE_CASE , decoder_start_token_id=2 , early_stopping=_SCREAMING_SNAKE_CASE , ) _lowerCAmelCase = SpeechaTextForConditionalGeneration(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = model.model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0 and not set(_SCREAMING_SNAKE_CASE ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: _lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCAmelCase = lm_head_weights model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase_ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
708
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 2_5_6 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self , *, _lowerCAmelCase = 0.85 , ): _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_duplicate_clusters() with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str: _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple: global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) return ds_filter, duplicate_clusters
664
0
import torch from transformers import AutoModel class UpperCAmelCase ( torch.nn.Module ): def __init__( self , _lowerCAmelCase="sayef/fsner-bert-base-uncased" ): super(_lowerCAmelCase , self ).__init__() _lowerCAmelCase = AutoModel.from_pretrained(_lowerCAmelCase , return_dict=_lowerCAmelCase ) _lowerCAmelCase = torch.nn.CosineSimilarity(3 , 1E-08 ) _lowerCAmelCase = torch.nn.Softmax(dim=1 ) def __lowerCAmelCase ( self , **_lowerCAmelCase ): return self.bert(**_lowerCAmelCase ).last_hidden_state def __lowerCAmelCase ( self , _lowerCAmelCase ): return token_embeddings.sum(2 , keepdim=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=1 ): return self.softmax(T * self.cos(_lowerCAmelCase , _lowerCAmelCase ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = W_supports['''sizes'''].tolist() _lowerCAmelCase = W_supports['''start_token_id'''].item() _lowerCAmelCase = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _lowerCAmelCase = self.BERT(**_lowerCAmelCase ) _lowerCAmelCase = self.BERT(**_lowerCAmelCase ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = W_supports['''input_ids'''] == start_token_id _lowerCAmelCase = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(_lowerCAmelCase ): if i == 0: _lowerCAmelCase = 0 else: _lowerCAmelCase = support_sizes[i - 1] _lowerCAmelCase = S[s : s + size][start_token_masks[s : s + size]] _lowerCAmelCase = S[s : s + size][end_token_masks[s : s + size]] _lowerCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _lowerCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _lowerCAmelCase = torch.vstack((p_starts, p_start) ) _lowerCAmelCase = torch.vstack((p_ends, p_end) ) else: _lowerCAmelCase = p_start _lowerCAmelCase = p_end return p_starts, p_ends
709
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = process _lowerCAmelCase = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): _lowerCAmelCase = self.dataset[i] _lowerCAmelCase = self.process(_lowerCAmelCase , **self.params ) return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = loader _lowerCAmelCase = infer _lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowerCAmelCase = None _lowerCAmelCase = loader_batch_size # Internal bookkeeping _lowerCAmelCase = None _lowerCAmelCase = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first _lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowerCAmelCase = next(self.iterator ) _lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _lowerCAmelCase = processed _lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) _lowerCAmelCase = None return self def __lowerCAmelCase ( self ): if self.subiterator is None: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) _lowerCAmelCase = next(self.subiterator ) return processed class UpperCAmelCase ( snake_case_ ): def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowerCAmelCase = False _lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size _lowerCAmelCase = processed _lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: _lowerCAmelCase = processed _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) return accumulator class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return self.dataset[i][self.key] class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = keya _lowerCAmelCase = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
664
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } UpperCAmelCase_ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )->Optional[Any]: for attribute in key.split('''.''' ): _lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any )->List[str]: _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCAmelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(_SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] _lowerCAmelCase = mapped_key.replace('''*''' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowerCAmelCase = '''weight_g''' elif "weight_v" in name: _lowerCAmelCase = '''weight_v''' elif "bias" in name: _lowerCAmelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = '''weight''' else: _lowerCAmelCase = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int )->str: _lowerCAmelCase = full_name.split('''conv_layers.''' )[-1] _lowerCAmelCase = name.split('''.''' ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : List[Any]=True )->Any: if config_path is not None: _lowerCAmelCase = UniSpeechSatConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = UniSpeechSatConfig() _lowerCAmelCase = '''''' if is_finetuned: _lowerCAmelCase = UniSpeechSatForCTC(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = UniSpeechSatForPreTraining(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) _lowerCAmelCase = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCAmelCase_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
710
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = image.size _lowerCAmelCase , _lowerCAmelCase = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 _lowerCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) _lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 _lowerCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ) return 2.0 * image - 1.0 class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): super().__init__() self.register_modules(vqvae=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) @torch.no_grad() def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = 1 , _lowerCAmelCase = 100 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = None , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , ): if isinstance(_lowerCAmelCase , PIL.Image.Image ): _lowerCAmelCase = 1 elif isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_lowerCAmelCase )}''' ) if isinstance(_lowerCAmelCase , PIL.Image.Image ): _lowerCAmelCase = preprocess(_lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _lowerCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) _lowerCAmelCase = next(self.unet.parameters() ).dtype _lowerCAmelCase = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) _lowerCAmelCase = image.to(device=self.device , dtype=_lowerCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_lowerCAmelCase , device=self.device ) _lowerCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase = {} if accepts_eta: _lowerCAmelCase = eta for t in self.progress_bar(_lowerCAmelCase ): # concat latents and low resolution image in the channel dimension. _lowerCAmelCase = torch.cat([latents, image] , dim=1 ) _lowerCAmelCase = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) # predict the noise residual _lowerCAmelCase = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample # decode the image latents with the VQVAE _lowerCAmelCase = self.vqvae.decode(_lowerCAmelCase ).sample _lowerCAmelCase = torch.clamp(_lowerCAmelCase , -1.0 , 1.0 ) _lowerCAmelCase = image / 2 + 0.5 _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=4 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_choices def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_attention_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCAmelCase ( self ): _lowerCAmelCase = FlaxAlbertModelTester(self ) @slow def __lowerCAmelCase ( self ): for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained('''albert-base-v2''' ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _lowerCAmelCase = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _lowerCAmelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _lowerCAmelCase = (1, 11, 768) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) )
712
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
713
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE__ = '''BlipImageProcessor''' SCREAMING_SNAKE_CASE__ = '''AutoTokenizer''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self.image_processor def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _lowerCAmelCase = self.tokenizer _lowerCAmelCase = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding # add pixel_values _lowerCAmelCase = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) if text is not None: _lowerCAmelCase = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) else: _lowerCAmelCase = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCAmelCase_ = "\\n Text data.\n Second line of data." UpperCAmelCase_ = "file" @pytest.fixture(scope='''session''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->str: _lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') _lowerCAmelCase = bytes(_SCREAMING_SNAKE_CASE , '''utf-8''' ) with zstd.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->int: with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] )->Optional[Any]: _lowerCAmelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} _lowerCAmelCase = input_paths[compression_format] _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: _lowerCAmelCase = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: _lowerCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple )->int: _lowerCAmelCase = '''custom_cache''' _lowerCAmelCase = '''custom_extracted_dir''' _lowerCAmelCase = tmp_path / '''custom_extracted_path''' if default_extracted: _lowerCAmelCase = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCAmelCase = xz_file _lowerCAmelCase = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] )->Union[str, Any]: # absolute path _lowerCAmelCase = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path _lowerCAmelCase = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->int: # absolute path _lowerCAmelCase = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path _lowerCAmelCase = '''./__missing_file__.txt''' with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->Tuple: _lowerCAmelCase = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(_SCREAMING_SNAKE_CASE ) as f: _lowerCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->Optional[int]: with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->Optional[int]: _lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get('''https://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get('''ftp://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Any: _lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get('''s3://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head('''s3://huggingface.co''' )
715
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
0
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE : Optional[int] )->str: _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __SCREAMING_SNAKE_CASE ( )->List[Any]: _lowerCAmelCase = 1 _lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(_SCREAMING_SNAKE_CASE ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
716
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } UpperCAmelCase_ = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } UpperCAmelCase_ = { "ctrl": 2_5_6, } UpperCAmelCase_ = { "Pregnancy": 1_6_8_6_2_9, "Christianity": 7_6_7_5, "Explain": 1_0_6_4_2_3, "Fitness": 6_3_4_4_0, "Saving": 6_3_1_6_3, "Ask": 2_7_1_7_1, "Ass": 9_5_9_8_5, "Joke": 1_6_3_5_0_9, "Questions": 4_5_6_2_2, "Thoughts": 4_9_6_0_5, "Retail": 5_2_3_4_2, "Feminism": 1_6_4_3_3_8, "Writing": 1_1_9_9_2, "Atheism": 1_9_2_2_6_3, "Netflix": 4_8_6_1_6, "Computing": 3_9_6_3_9, "Opinion": 4_3_2_1_3, "Alone": 4_4_9_6_7, "Funny": 5_8_9_1_7, "Gaming": 4_0_3_5_8, "Human": 4_0_8_8, "India": 1_3_3_1, "Joker": 7_7_1_3_8, "Diet": 3_6_2_0_6, "Legal": 1_1_8_5_9, "Norman": 4_9_3_9, "Tip": 7_2_6_8_9, "Weight": 5_2_3_4_3, "Movies": 4_6_2_7_3, "Running": 2_3_4_2_5, "Science": 2_0_9_0, "Horror": 3_7_7_9_3, "Confession": 6_0_5_7_2, "Finance": 1_2_2_5_0, "Politics": 1_6_3_6_0, "Scary": 1_9_1_9_8_5, "Support": 1_2_6_5_4, "Technologies": 3_2_5_1_6, "Teenage": 6_6_1_6_0, "Event": 3_2_7_6_9, "Learned": 6_7_4_6_0, "Notion": 1_8_2_7_7_0, "Wikipedia": 3_7_5_8_3, "Books": 6_6_6_5, "Extract": 7_6_0_5_0, "Confessions": 1_0_2_7_0_1, "Conspiracy": 7_5_9_3_2, "Links": 6_3_6_7_4, "Narcissus": 1_5_0_4_2_5, "Relationship": 5_4_7_6_6, "Relationships": 1_3_4_7_9_6, "Reviews": 4_1_6_7_1, "News": 4_2_5_6, "Translation": 2_6_8_2_0, "multilingual": 1_2_8_4_0_6, } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple )->Union[str, Any]: _lowerCAmelCase = set() _lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase = char _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) return pairs class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = CONTROL_CODES def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="<unk>" , **_lowerCAmelCase ): super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _lowerCAmelCase = json.load(_lowerCAmelCase ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} with open(_lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _lowerCAmelCase = merges_handle.read().split('''\n''' )[1:-1] _lowerCAmelCase = [tuple(merge.split() ) for merge in merges] _lowerCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowerCAmelCase = {} @property def __lowerCAmelCase ( self ): return len(self.encoder ) def __lowerCAmelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCAmelCase ): if token in self.cache: return self.cache[token] _lowerCAmelCase = tuple(_lowerCAmelCase ) _lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _lowerCAmelCase = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: _lowerCAmelCase = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase = bigram _lowerCAmelCase = [] _lowerCAmelCase = 0 while i < len(_lowerCAmelCase ): try: _lowerCAmelCase = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase = tuple(_lowerCAmelCase ) _lowerCAmelCase = new_word if len(_lowerCAmelCase ) == 1: break else: _lowerCAmelCase = get_pairs(_lowerCAmelCase ) _lowerCAmelCase = '''@@ '''.join(_lowerCAmelCase ) _lowerCAmelCase = word[:-4] _lowerCAmelCase = word return word def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = [] _lowerCAmelCase = re.findall(R'''\S+\n?''' , _lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def __lowerCAmelCase ( self , _lowerCAmelCase ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCAmelCase ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = ''' '''.join(_lowerCAmelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + '''\n''' ) _lowerCAmelCase = 0 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _lowerCAmelCase = token_index writer.write(''' '''.join(_lowerCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger("transformers.models.speecht5") UpperCAmelCase_ = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } UpperCAmelCase_ = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } UpperCAmelCase_ = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } UpperCAmelCase_ = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } UpperCAmelCase_ = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } UpperCAmelCase_ = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } UpperCAmelCase_ = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } UpperCAmelCase_ = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } UpperCAmelCase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCAmelCase_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase_ = [] UpperCAmelCase_ = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] UpperCAmelCase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] UpperCAmelCase_ = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] UpperCAmelCase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int )->Tuple: for attribute in key.split('''.''' ): _lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "running_mean": _lowerCAmelCase = value elif weight_type == "running_var": _lowerCAmelCase = value elif weight_type == "num_batches_tracked": _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] )->Dict: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCAmelCase , _lowerCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->int: _lowerCAmelCase = [] if task == "s2t": _lowerCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _lowerCAmelCase = MAPPING_S2T _lowerCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": _lowerCAmelCase = None _lowerCAmelCase = MAPPING_T2S _lowerCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": _lowerCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _lowerCAmelCase = MAPPING_S2S _lowerCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info(f'''{name} was ignored''' ) continue _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _lowerCAmelCase , _lowerCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: _lowerCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(_SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] _lowerCAmelCase = mapped_key.replace('''*''' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowerCAmelCase = '''weight_g''' elif "weight_v" in name: _lowerCAmelCase = '''weight_v''' elif "bias" in name: _lowerCAmelCase = '''bias''' elif "weight" in name: _lowerCAmelCase = '''weight''' elif "running_mean" in name: _lowerCAmelCase = '''running_mean''' elif "running_var" in name: _lowerCAmelCase = '''running_var''' elif "num_batches_tracked" in name: _lowerCAmelCase = '''num_batches_tracked''' else: _lowerCAmelCase = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )->List[str]: _lowerCAmelCase = full_name.split('''conv_layers.''' )[-1] _lowerCAmelCase = name.split('''.''' ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Tuple=None , )->Optional[Any]: if config_path is not None: _lowerCAmelCase = SpeechTaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = SpeechTaConfig() if task == "s2t": _lowerCAmelCase = config.max_text_positions _lowerCAmelCase = SpeechTaForSpeechToText(_SCREAMING_SNAKE_CASE ) elif task == "t2s": _lowerCAmelCase = 1_8_7_6 _lowerCAmelCase = 6_0_0 _lowerCAmelCase = config.max_speech_positions _lowerCAmelCase = SpeechTaForTextToSpeech(_SCREAMING_SNAKE_CASE ) elif task == "s2s": _lowerCAmelCase = 1_8_7_6 _lowerCAmelCase = config.max_speech_positions _lowerCAmelCase = SpeechTaForSpeechToSpeech(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: _lowerCAmelCase = SpeechTaTokenizer(_SCREAMING_SNAKE_CASE , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken('''<mask>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _lowerCAmelCase = SpeechTaFeatureExtractor() _lowerCAmelCase = SpeechTaProcessor(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = torch.load(_SCREAMING_SNAKE_CASE ) recursively_load_weights(fairseq_checkpoint['''model'''] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
718
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
0
import csv import tweepy # Twitter API credentials UpperCAmelCase_ = "" UpperCAmelCase_ = "" UpperCAmelCase_ = "" UpperCAmelCase_ = "" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->None: # authorize twitter, initialize tweepy _lowerCAmelCase = tweepy.OAuthHandler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) auth.set_access_token(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = tweepy.API(_SCREAMING_SNAKE_CASE ) # initialize a list to hold all the tweepy Tweets _lowerCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _lowerCAmelCase = api.user_timeline(screen_name=_SCREAMING_SNAKE_CASE , count=2_0_0 ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # save the id of the oldest tweet less one _lowerCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_SCREAMING_SNAKE_CASE ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _lowerCAmelCase = api.user_timeline( screen_name=_SCREAMING_SNAKE_CASE , count=2_0_0 , max_id=_SCREAMING_SNAKE_CASE ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # update the id of the oldest tweet less one _lowerCAmelCase = alltweets[-1].id - 1 print(f'''...{len(_SCREAMING_SNAKE_CASE )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _lowerCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' , '''w''' ) as f: _lowerCAmelCase = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
719
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
0
from typing import List from .keymap import KEYMAP, get_character def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Tuple: def decorator(_SCREAMING_SNAKE_CASE : List[Any] ): _lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , '''handle_key''' , [] ) handle += [key] setattr(_SCREAMING_SNAKE_CASE , '''handle_key''' , _SCREAMING_SNAKE_CASE ) return func return decorator def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : List[str] )->Tuple: def decorator(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , '''handle_key''' , [] ) handle += keys setattr(_SCREAMING_SNAKE_CASE , '''handle_key''' , _SCREAMING_SNAKE_CASE ) return func return decorator class UpperCAmelCase ( snake_case_ ): def __new__( cls , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = super().__new__(cls , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not hasattr(_lowerCAmelCase , '''key_handler''' ): setattr(_lowerCAmelCase , '''key_handler''' , {} ) setattr(_lowerCAmelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _lowerCAmelCase = getattr(_lowerCAmelCase , '''handle_key''' , [] ) for key in handled_keys: _lowerCAmelCase = value return new_cls @staticmethod def __lowerCAmelCase ( cls ): _lowerCAmelCase = get_character() if char != KEYMAP["undefined"]: _lowerCAmelCase = ord(_lowerCAmelCase ) _lowerCAmelCase = cls.key_handler.get(_lowerCAmelCase ) if handler: _lowerCAmelCase = char return handler(cls ) else: return None def UpperCAmelCase__ ( cls : Union[str, Any] )->Optional[Any]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
720
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCAmelCase_ = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" UpperCAmelCase_ = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" UpperCAmelCase_ = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="auto" , _lowerCAmelCase=-1 , _lowerCAmelCase=0.9 , _lowerCAmelCase=5 , _lowerCAmelCase=500 , _lowerCAmelCase="gpt2-large" , _lowerCAmelCase=-1 , _lowerCAmelCase=1_024 , _lowerCAmelCase=25 , _lowerCAmelCase=5 , _lowerCAmelCase=True , _lowerCAmelCase=25 , ): _lowerCAmelCase = compute_mauve( p_text=_lowerCAmelCase , q_text=_lowerCAmelCase , p_features=_lowerCAmelCase , q_features=_lowerCAmelCase , p_tokens=_lowerCAmelCase , q_tokens=_lowerCAmelCase , num_buckets=_lowerCAmelCase , pca_max_data=_lowerCAmelCase , kmeans_explained_var=_lowerCAmelCase , kmeans_num_redo=_lowerCAmelCase , kmeans_max_iter=_lowerCAmelCase , featurize_model_name=_lowerCAmelCase , device_id=_lowerCAmelCase , max_text_length=_lowerCAmelCase , divergence_curve_discretization_size=_lowerCAmelCase , mauve_scaling_factor=_lowerCAmelCase , verbose=_lowerCAmelCase , seed=_lowerCAmelCase , ) return out
721
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
0