code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ) -> int: if not nums: return 0 _lowerCAmelCase : Union[str, Any] = nums[0] _lowerCAmelCase : Any = 0 for num in nums[1:]: _lowerCAmelCase : List[Any] = ( max_excluding + num, max(_lowerCamelCase ,_lowerCamelCase ), ) return max(_lowerCamelCase ,_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} _a : Any = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } _a : Union[str, Any] = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } _a : Union[str, Any] = '▁' class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , a__ , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__ = None , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Union[str, Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token _lowerCAmelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) _lowerCAmelCase : Optional[Any] = vocab_file _lowerCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) _lowerCAmelCase : Any = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} _lowerCAmelCase : List[str] = len(self.sp_model ) - 1 _lowerCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Dict = [self.cls_token_id] _lowerCAmelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __A ( self ): return len(self.sp_model ) def __A ( self ): _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self , a__ ): return self.sp_model.encode(a__ , out_type=a__ ) def __A ( self , a__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Optional[int] = self.sp_model.PieceToId(a__ ) return spm_id if spm_id else self.unk_token_id def __A ( self , a__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a__ ) def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : int = """""" _lowerCAmelCase : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token _lowerCAmelCase : int = True _lowerCAmelCase : Any = [] else: current_sub_tokens.append(a__ ) _lowerCAmelCase : Any = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : Any = None return state def __setstate__( self , a__ ): _lowerCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : Tuple = {} _lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Optional[Any] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , """wb""" ) as fi: _lowerCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
719
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _a : Optional[int] = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[int]=None ) -> str: require_version(deps[pkg] ,_lowerCamelCase )
720
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _a : str = None _a : List[str] = logging.get_logger(__name__) _a : List[str] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _a : Optional[int] = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } _a : Union[str, Any] = { 'facebook/mbart-large-en-ro': 1_024, 'facebook/mbart-large-cc25': 1_024, } # fmt: off _a : List[Any] = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : int = ["input_ids", "attention_mask"] _UpperCamelCase : Tuple = MBartTokenizer _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self , a__=None , a__=None , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=None , a__=None , a__=None , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Dict = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( vocab_file=a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , src_lang=a__ , tgt_lang=a__ , additional_special_tokens=a__ , **a__ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Dict = False if not self.vocab_file else True _lowerCAmelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _lowerCAmelCase : str = { lang_code: self.convert_tokens_to_ids(a__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : Optional[int] = src_lang if src_lang is not None else """en_XX""" _lowerCAmelCase : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __A ( self ): return self._src_lang @src_lang.setter def __A ( self , a__ ): _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self , a__ , a__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Any = [self.sep_token_id] _lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , a__ , a__ , a__ , a__ , **a__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Optional[int] = src_lang _lowerCAmelCase : int = self(a__ , add_special_tokens=a__ , return_tensors=a__ , **a__ ) _lowerCAmelCase : Dict = self.convert_tokens_to_ids(a__ ) _lowerCAmelCase : Optional[int] = tgt_lang_id return inputs def __A ( self , a__ , a__ = "en_XX" , a__ = None , a__ = "ro_RO" , **a__ , ): _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(a__ , a__ , **a__ ) def __A ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = self.convert_tokens_to_ids(a__ ) _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] _lowerCAmelCase : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self , a__ ): _lowerCAmelCase : Any = self.convert_tokens_to_ids(a__ ) _lowerCAmelCase : Tuple = [] _lowerCAmelCase : List[Any] = [self.eos_token_id, self.cur_lang_code] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self , a__ , a__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return _lowerCAmelCase : Tuple = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') _a : Any = parser.parse_args() if args.model_type == "bert": _a : Any = BertForMaskedLM.from_pretrained(args.model_name) _a : str = 'bert' else: raise ValueError('args.model_type should be "bert".') _a : Tuple = model.state_dict() _a : Optional[int] = {} for w in ["word_embeddings", "position_embeddings"]: _a : str = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a : Any = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a : List[str] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a : Dict = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a : Tuple = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a : Optional[Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a : Optional[int] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a : List[str] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a : str = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a : Dict = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a : Optional[int] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a : int = state_dict['cls.predictions.decoder.weight'] _a : List[str] = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: _a : Optional[int] = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a : Tuple = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
700
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
0
"""simple docstring""" class __A : def __init__( self ): _lowerCAmelCase : dict[str, TrieNode] = {} # Mapping from char to TrieNode _lowerCAmelCase : Tuple = False def __A ( self , a__ ): for word in words: self.insert(a__ ) def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = self for char in word: if char not in curr.nodes: _lowerCAmelCase : List[str] = TrieNode() _lowerCAmelCase : str = curr.nodes[char] _lowerCAmelCase : int = True def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = self for char in word: if char not in curr.nodes: return False _lowerCAmelCase : Tuple = curr.nodes[char] return curr.is_leaf def __A ( self , a__ ): def _delete(a__ , a__ , a__ ) -> bool: if index == len(a__ ): # If word does not exist if not curr.is_leaf: return False _lowerCAmelCase : Optional[Any] = False return len(curr.nodes ) == 0 _lowerCAmelCase : Union[str, Any] = word[index] _lowerCAmelCase : Tuple = curr.nodes.get(a__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _lowerCAmelCase : Dict = _delete(a__ , a__ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , a__ , 0 ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : TrieNode ,_lowerCamelCase : str ) -> None: if node.is_leaf: print(_lowerCamelCase ,end=""" """ ) for key, value in node.nodes.items(): print_words(_lowerCamelCase ,word + key ) def SCREAMING_SNAKE_CASE ( ) -> bool: _lowerCAmelCase : Dict = """banana bananas bandana band apple all beast""".split() _lowerCAmelCase : Dict = TrieNode() root.insert_many(_lowerCamelCase ) # print_words(root, "") assert all(root.find(_lowerCamelCase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : bool ) -> None: print(str(_lowerCamelCase ) ,"""works!""" if passes else """doesn't work :(""" ) def SCREAMING_SNAKE_CASE ( ) -> None: assert test_trie() def SCREAMING_SNAKE_CASE ( ) -> None: print_results("""Testing trie functionality""" ,test_trie() ) if __name__ == "__main__": main()
701
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
0
"""simple docstring""" import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Tuple ,_lowerCamelCase : Any ,_lowerCamelCase : Tuple ) -> List[Any]: _lowerCAmelCase : Optional[int] = multiprocessing.Manager() _lowerCAmelCase : Optional[Any] = manager.list() _lowerCAmelCase : Dict = multiprocessing.Process(target=_lowerCamelCase ,args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ) -> Any: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _lowerCAmelCase : List[Any] = shutil.rmtree _lowerCAmelCase : List[Any] = os.rmdir _lowerCAmelCase : Optional[Any] = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _lowerCAmelCase : List[Any] = {} with swallow_io(): with time_limit(_lowerCamelCase ): exec(_lowerCamelCase ,_lowerCamelCase ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(f"failed: {e}" ) # Needed for cleaning up. _lowerCAmelCase : Tuple = rmtree _lowerCAmelCase : Optional[Any] = rmdir _lowerCAmelCase : List[Any] = chdir @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> Union[str, Any]: def signal_handler(_lowerCamelCase : List[str] ,_lowerCamelCase : str ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL ,_lowerCamelCase ) signal.signal(signal.SIGALRM ,_lowerCamelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL ,0 ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ) -> List[Any]: _lowerCAmelCase : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(_lowerCamelCase ): with contextlib.redirect_stderr(_lowerCamelCase ): with redirect_stdin(_lowerCamelCase ): yield @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ) -> List[Any]: with tempfile.TemporaryDirectory() as dirname: with chdir(_lowerCamelCase ): yield dirname class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( io.StringIO ): def __A ( self , *a__ , **a__ ): raise OSError def __A ( self , *a__ , **a__ ): raise OSError def __A ( self , *a__ , **a__ ): raise OSError def __A ( self , *a__ , **a__ ): return False class __A ( contextlib._RedirectStream ): # type: ignore _UpperCamelCase : Dict = "stdin" @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> Tuple: if root == ".": yield return _lowerCAmelCase : List[Any] = os.getcwd() os.chdir(_lowerCamelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any]=None ) -> int: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS ,(maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA ,(maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK ,(maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _lowerCAmelCase : Any = None _lowerCAmelCase : Tuple = None import os _lowerCAmelCase : int = """1""" _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : int = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Any = None _lowerCAmelCase : int = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : str = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Dict = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : str = None _lowerCAmelCase : Dict = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Any = None _lowerCAmelCase : Any = None _lowerCAmelCase : str = None _lowerCAmelCase : Any = None _lowerCAmelCase : str = None _lowerCAmelCase : Dict = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Dict = None _lowerCAmelCase : Any = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Optional[Any] = None import shutil _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Optional[int] = None import subprocess _lowerCAmelCase : List[Any] = None # type: ignore _lowerCAmelCase : Tuple = None import sys _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Dict = None
702
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _a : Optional[int] = logging.get_logger('transformers.models.speecht5') _a : List[str] = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } _a : Optional[int] = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } _a : Tuple = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } _a : List[str] = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } _a : Dict = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } _a : Any = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } _a : Dict = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } _a : Any = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } _a : Tuple = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _a : Tuple = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _a : Tuple = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _a : Optional[Any] = [] _a : Any = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] _a : Optional[Any] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] _a : Union[str, Any] = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] _a : List[Any] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ,_lowerCamelCase : str ,_lowerCamelCase : List[Any] ) -> Optional[int]: for attribute in key.split(""".""" ): _lowerCAmelCase : Optional[Any] = getattr(_lowerCamelCase ,_lowerCamelCase ) if weight_type is not None: _lowerCAmelCase : str = getattr(_lowerCamelCase ,_lowerCamelCase ).shape else: _lowerCAmelCase : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : List[str] = value elif weight_type == "weight_g": _lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_v": _lowerCAmelCase : Optional[Any] = value elif weight_type == "bias": _lowerCAmelCase : Tuple = value elif weight_type == "running_mean": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "running_var": _lowerCAmelCase : str = value elif weight_type == "num_batches_tracked": _lowerCAmelCase : Dict = value else: _lowerCAmelCase : List[Any] = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ) -> Dict: for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCAmelCase : Union[str, Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : int ,_lowerCamelCase : Union[str, Any] ) -> str: _lowerCAmelCase : str = [] if task == "s2t": _lowerCAmelCase : Tuple = hf_model.speechta.encoder.prenet.feature_encoder _lowerCAmelCase : str = MAPPING_S2T _lowerCAmelCase : Union[str, Any] = IGNORE_KEYS_S2T elif task == "t2s": _lowerCAmelCase : Tuple = None _lowerCAmelCase : Optional[int] = MAPPING_T2S _lowerCAmelCase : Dict = IGNORE_KEYS_T2S elif task == "s2s": _lowerCAmelCase : Dict = hf_model.speechta.encoder.prenet.feature_encoder _lowerCAmelCase : str = MAPPING_S2S _lowerCAmelCase : List[str] = IGNORE_KEYS_S2S else: raise ValueError(f"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCamelCase ,_lowerCamelCase ): logger.info(f"{name} was ignored" ) continue _lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,hf_model.config.feat_extract_norm == """group""" ,) _lowerCAmelCase : int = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _lowerCAmelCase : Optional[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: _lowerCAmelCase : List[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _lowerCAmelCase : List[str] = True if "*" in mapped_key: _lowerCAmelCase : Optional[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase : List[Any] = mapped_key.replace("""*""" ,_lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase : Tuple = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : Optional[int] = """weight_v""" elif "bias" in name: _lowerCAmelCase : Dict = """bias""" elif "weight" in name: _lowerCAmelCase : Dict = """weight""" elif "running_mean" in name: _lowerCAmelCase : str = """running_mean""" elif "running_var" in name: _lowerCAmelCase : int = """running_var""" elif "num_batches_tracked" in name: _lowerCAmelCase : Optional[int] = """num_batches_tracked""" else: _lowerCAmelCase : Union[str, Any] = None set_recursively(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Any ) -> Optional[int]: _lowerCAmelCase : List[str] = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : List[Any] = name.split(""".""" ) _lowerCAmelCase : str = int(items[0] ) _lowerCAmelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Any=None ,_lowerCamelCase : Optional[Any]=None ,_lowerCamelCase : Optional[int]=None ,) -> Union[str, Any]: if config_path is not None: _lowerCAmelCase : Dict = SpeechTaConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : Optional[Any] = SpeechTaConfig() if task == "s2t": _lowerCAmelCase : List[str] = config.max_text_positions _lowerCAmelCase : Tuple = SpeechTaForSpeechToText(_lowerCamelCase ) elif task == "t2s": _lowerCAmelCase : Union[str, Any] = 1876 _lowerCAmelCase : Tuple = 600 _lowerCAmelCase : Any = config.max_speech_positions _lowerCAmelCase : Optional[int] = SpeechTaForTextToSpeech(_lowerCamelCase ) elif task == "s2s": _lowerCAmelCase : int = 1876 _lowerCAmelCase : Optional[int] = config.max_speech_positions _lowerCAmelCase : Optional[int] = SpeechTaForSpeechToSpeech(_lowerCamelCase ) else: raise ValueError(f"Unknown task name: {task}" ) if vocab_path: _lowerCAmelCase : List[str] = SpeechTaTokenizer(_lowerCamelCase ,model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _lowerCAmelCase : int = AddedToken("""<mask>""" ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) _lowerCAmelCase : str = SpeechTaFeatureExtractor() _lowerCAmelCase : Optional[int] = SpeechTaProcessor(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = torch.load(_lowerCamelCase ) recursively_load_weights(fairseq_checkpoint["""model"""] ,_lowerCamelCase ,_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _a : Optional[int] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
703
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["speech"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""speech"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["speech"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""speech"""] )
704
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ,_lowerCamelCase : list ,_lowerCamelCase : int ) -> list: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) _lowerCAmelCase : Dict = [[0] * n for i in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = y_points[i] for i in range(2 ,_lowerCamelCase ): for j in range(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : List[Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch _a : Any = random.Random() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=1.0 ,_lowerCamelCase : List[Any]=None ,_lowerCamelCase : Dict=None ) -> int: if rng is None: _lowerCAmelCase : List[str] = global_rng _lowerCAmelCase : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=400 , a__=2000 , a__=1 , a__=0.0 , a__=16000 , a__=True , a__=80 , a__=16 , a__=64 , a__="hann_window" , a__=80 , a__=7600 , a__=1e-10 , a__=True , ): _lowerCAmelCase : Any = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Union[str, Any] = min_seq_length _lowerCAmelCase : Any = max_seq_length _lowerCAmelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCAmelCase : Optional[Any] = feature_size _lowerCAmelCase : int = padding_value _lowerCAmelCase : List[Any] = sampling_rate _lowerCAmelCase : Tuple = do_normalize _lowerCAmelCase : Dict = num_mel_bins _lowerCAmelCase : Dict = hop_length _lowerCAmelCase : Any = win_length _lowerCAmelCase : Optional[int] = win_function _lowerCAmelCase : List[Any] = fmin _lowerCAmelCase : List[str] = fmax _lowerCAmelCase : List[str] = mel_floor _lowerCAmelCase : Any = return_attention_mask def __A ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __A ( self , a__=False , a__=False ): def _flatten(a__ ): return list(itertools.chain(*a__ ) ) if equal_length: _lowerCAmelCase : Dict = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _lowerCAmelCase : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase : List[str] = [np.asarray(a__ ) for x in speech_inputs] return speech_inputs def __A ( self , a__=False , a__=False ): if equal_length: _lowerCAmelCase : str = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCAmelCase : List[str] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase : Union[str, Any] = [np.asarray(a__ ) for x in speech_inputs] return speech_inputs @require_torch class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = SpeechTaFeatureExtractor def __A ( self ): _lowerCAmelCase : Any = SpeechTaFeatureExtractionTester(self ) def __A ( self , a__ ): self.assertTrue(np.all(np.mean(a__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a__ , axis=0 ) - 1 ) < 1e-3 ) ) def __A ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : List[Any] = [np.asarray(a__ ) for speech_input in speech_inputs] # Test not batched input _lowerCAmelCase : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values _lowerCAmelCase : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) # Test batched _lowerCAmelCase : Union[str, Any] = feat_extract(a__ , return_tensors="""np""" ).input_values _lowerCAmelCase : Tuple = feat_extract(a__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(a__ , a__ ): self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) def __A ( self ): _lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : Any = ["""longest""", """max_length""", """do_not_pad"""] _lowerCAmelCase : str = [None, 1600, None] for max_length, padding in zip(a__ , a__ ): _lowerCAmelCase : List[Any] = feat_extract(a__ , padding=a__ , max_length=a__ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __A ( self ): _lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Union[str, Any] = range(800 , 1400 , 200 ) _lowerCAmelCase : int = [floats_list((1, x) )[0] for x in lengths] _lowerCAmelCase : int = ["""longest""", """max_length""", """do_not_pad"""] _lowerCAmelCase : Optional[int] = [None, 1600, None] for max_length, padding in zip(a__ , a__ ): _lowerCAmelCase : Any = feat_extract(a__ , max_length=a__ , padding=a__ ) _lowerCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __A ( self ): _lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : int = feat_extract( a__ , truncation=a__ , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) _lowerCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __A ( self ): _lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : Optional[Any] = feat_extract( a__ , truncation=a__ , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _lowerCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : List[Any] = feat_extract( a__ , truncation=a__ , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __A ( self ): _lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Optional[int] = np.random.rand(100 ).astype(np.floataa ) _lowerCAmelCase : Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCAmelCase : Optional[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _lowerCAmelCase : List[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __A ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : Tuple = [np.asarray(a__ ) for speech_input in speech_inputs] # Test feature size _lowerCAmelCase : List[str] = feature_extractor(audio_target=a__ , padding=a__ , return_tensors="""np""" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input _lowerCAmelCase : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_values _lowerCAmelCase : Union[str, Any] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) # Test batched _lowerCAmelCase : List[Any] = feature_extractor(a__ , return_tensors="""np""" ).input_values _lowerCAmelCase : Any = feature_extractor(a__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(a__ , a__ ): self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowerCAmelCase : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowerCAmelCase : str = np.asarray(a__ ) _lowerCAmelCase : List[Any] = feature_extractor(a__ , return_tensors="""np""" ).input_values _lowerCAmelCase : List[Any] = feature_extractor(a__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(a__ , a__ ): self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) def __A ( self ): _lowerCAmelCase : Any = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase : Optional[Any] = feat_extract.model_input_names[0] _lowerCAmelCase : Tuple = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(a__ ) == len(a__ ) for x, y in zip(a__ , processed_features[input_name] ) ) ) _lowerCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a__ ) _lowerCAmelCase : Any = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) _lowerCAmelCase : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self ): _lowerCAmelCase : Dict = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a__ ) _lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase : Tuple = feat_extract.model_input_names[0] _lowerCAmelCase : Any = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) _lowerCAmelCase : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase : Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self ): _lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase : int = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : str = feat_extract.model_input_names[0] _lowerCAmelCase : List[str] = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase : Any = feat_extract.num_mel_bins # hack! _lowerCAmelCase : Optional[int] = feat_extract.pad(a__ , padding="""longest""" , return_tensors="""np""" )[input_name] _lowerCAmelCase : str = feat_extract.pad(a__ , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __A ( self ): _lowerCAmelCase : List[str] = self.feat_extract_dict _lowerCAmelCase : Dict = True _lowerCAmelCase : str = self.feature_extraction_class(**a__ ) _lowerCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : Optional[int] = [len(a__ ) for x in speech_inputs] _lowerCAmelCase : Tuple = feat_extract.model_input_names[0] _lowerCAmelCase : List[str] = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase : str = feat_extract.num_mel_bins # hack! _lowerCAmelCase : Tuple = feat_extract.pad(a__ , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , a__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.feat_extract_dict _lowerCAmelCase : List[str] = True _lowerCAmelCase : Dict = self.feature_extraction_class(**a__ ) _lowerCAmelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_target() _lowerCAmelCase : int = [len(a__ ) for x in speech_inputs] _lowerCAmelCase : Optional[int] = feat_extract.model_input_names[0] _lowerCAmelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase : List[Any] = min(a__ ) _lowerCAmelCase : Optional[int] = feat_extract.num_mel_bins # hack! _lowerCAmelCase : Tuple = feat_extract.pad( a__ , padding="""max_length""" , max_length=a__ , truncation=a__ , return_tensors="""np""" ) self.assertIn("""attention_mask""" , a__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __A ( self , a__ ): from datasets import load_dataset _lowerCAmelCase : str = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _lowerCAmelCase : Union[str, Any] = ds.sort("""id""" ).select(range(a__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def __A ( self ): # fmt: off _lowerCAmelCase : Union[str, Any] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on _lowerCAmelCase : Tuple = self._load_datasamples(1 ) _lowerCAmelCase : int = SpeechTaFeatureExtractor() _lowerCAmelCase : int = feature_extractor(a__ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , a__ , atol=1e-6 ) ) def __A ( self ): # fmt: off _lowerCAmelCase : str = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on _lowerCAmelCase : Optional[int] = self._load_datasamples(1 ) _lowerCAmelCase : Optional[Any] = SpeechTaFeatureExtractor() _lowerCAmelCase : Tuple = feature_extractor(audio_target=a__ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a__ , atol=1e-4 ) )
706
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
0
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=400 , a__=True , a__=None , a__=True , ): _lowerCAmelCase : List[Any] = size if size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : Union[str, Any] = min_resolution _lowerCAmelCase : str = max_resolution _lowerCAmelCase : Optional[Any] = do_resize _lowerCAmelCase : Tuple = size _lowerCAmelCase : Optional[Any] = do_normalize def __A ( self ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def __A ( self ): _lowerCAmelCase : Any = ImageGPTImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , """clusters""" ) ) self.assertTrue(hasattr(a__ , """do_resize""" ) ) self.assertTrue(hasattr(a__ , """size""" ) ) self.assertTrue(hasattr(a__ , """do_normalize""" ) ) def __A ( self ): _lowerCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __A ( self ): _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) _lowerCAmelCase : List[str] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(a__ , obj[key] ) ) else: self.assertEqual(obj[key] , a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Union[str, Any] = os.path.join(a__ , """image_processor.json""" ) image_processor_first.to_json_file(a__ ) _lowerCAmelCase : str = self.image_processing_class.from_json_file(a__ ).to_dict() _lowerCAmelCase : Tuple = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , a__ ) def __A ( self ): _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(a__ ) _lowerCAmelCase : str = self.image_processing_class.from_pretrained(a__ ).to_dict() _lowerCAmelCase : str = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , a__ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def __A ( self ): pass def SCREAMING_SNAKE_CASE ( ) -> Dict: _lowerCAmelCase : str = load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" ) _lowerCAmelCase : List[Any] = Image.open(dataset[4]["""file"""] ) _lowerCAmelCase : Tuple = Image.open(dataset[5]["""file"""] ) _lowerCAmelCase : List[str] = [imagea, imagea] return images @require_vision @require_torch class __A ( unittest.TestCase ): @slow def __A ( self ): _lowerCAmelCase : Union[str, Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _lowerCAmelCase : Dict = prepare_images() # test non-batched _lowerCAmelCase : Tuple = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) _lowerCAmelCase : Optional[int] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , a__ ) # test batched _lowerCAmelCase : List[Any] = image_processing(a__ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) _lowerCAmelCase : List[Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , a__ )
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): @property def __A ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __A ( self ): _lowerCAmelCase : List[Any] = ort.SessionOptions() _lowerCAmelCase : Union[str, Any] = False return options def __A ( self ): _lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _lowerCAmelCase : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[str] = """A red cat sitting on a park bench""" _lowerCAmelCase : str = np.random.RandomState(0 ) _lowerCAmelCase : List[Any] = pipe( prompt=a__ , image=a__ , mask_image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
708
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ) -> int: if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 ,len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _lowerCAmelCase : Optional[int] = grid[0] for row_n in range(1 ,len(_lowerCamelCase ) ): _lowerCAmelCase : str = grid[row_n] _lowerCAmelCase : Any = fill_row(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[int] = grid[row_n] return grid[-1][-1] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list ,_lowerCamelCase : list ) -> list: current_row[0] += row_above[0] for cell_n in range(1 ,len(_lowerCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] ,row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = "Wav2Vec2FeatureExtractor" _UpperCamelCase : Optional[Any] = "AutoTokenizer" def __init__( self , a__ , a__ ): super().__init__(a__ , a__ ) _lowerCAmelCase : str = self.feature_extractor _lowerCAmelCase : Dict = False @classmethod def __A ( cls , a__ , **a__ ): try: return super().from_pretrained(a__ , **a__ ) except OSError: warnings.warn( F"Loading a tokenizer inside {cls.__name__} from a config that does not" """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , a__ , ) _lowerCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(a__ , **a__ ) _lowerCAmelCase : Tuple = WavaVecaCTCTokenizer.from_pretrained(a__ , **a__ ) return cls(feature_extractor=a__ , tokenizer=a__ ) def __call__( self , *a__ , **a__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a__ , **a__ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) _lowerCAmelCase : str = kwargs.pop("""raw_speech""" ) else: _lowerCAmelCase : Optional[int] = kwargs.pop("""audio""" , a__ ) _lowerCAmelCase : str = kwargs.pop("""sampling_rate""" , a__ ) _lowerCAmelCase : Any = kwargs.pop("""text""" , a__ ) if len(a__ ) > 0: _lowerCAmelCase : List[Any] = args[0] _lowerCAmelCase : List[Any] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _lowerCAmelCase : Optional[Any] = self.feature_extractor(a__ , *a__ , sampling_rate=a__ , **a__ ) if text is not None: _lowerCAmelCase : int = self.tokenizer(a__ , **a__ ) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase : Optional[int] = encodings["""input_ids"""] return inputs def __A ( self , *a__ , **a__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*a__ , **a__ ) _lowerCAmelCase : List[Any] = kwargs.pop("""input_features""" , a__ ) _lowerCAmelCase : List[Any] = kwargs.pop("""labels""" , a__ ) if len(a__ ) > 0: _lowerCAmelCase : Union[str, Any] = args[0] _lowerCAmelCase : Optional[Any] = args[1:] if input_features is not None: _lowerCAmelCase : Dict = self.feature_extractor.pad(a__ , *a__ , **a__ ) if labels is not None: _lowerCAmelCase : Optional[Any] = self.tokenizer.pad(a__ , **a__ ) if labels is None: return input_features elif input_features is None: return labels else: _lowerCAmelCase : List[Any] = labels["""input_ids"""] return input_features def __A ( self , *a__ , **a__ ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __A ( self , *a__ , **a__ ): return self.tokenizer.decode(*a__ , **a__ ) @contextmanager def __A ( self ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) _lowerCAmelCase : str = True _lowerCAmelCase : str = self.tokenizer yield _lowerCAmelCase : Union[str, Any] = self.feature_extractor _lowerCAmelCase : Optional[Any] = False
710
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
0
"""simple docstring""" from collections.abc import Callable import numpy as np def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Callable ,_lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Any = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Optional[Any] = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : Any = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : int = y[k] + step_size * ode_func(_lowerCamelCase ,y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
0
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
712
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def SCREAMING_SNAKE_CASE ( ) -> int: _lowerCAmelCase : Optional[Any] = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" _lowerCAmelCase : List[Any] = Image.open(requests.get(_lowerCamelCase ,stream=_lowerCamelCase ).raw ).convert("""RGB""" ) return image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ) -> str: _lowerCAmelCase : int = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : List[Any] ) -> List[Any]: _lowerCAmelCase : str = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : List[str] ) -> str: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCAmelCase : int = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias" ) _lowerCAmelCase : List[Any] = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _lowerCAmelCase : Any = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase ,requires_grad=_lowerCamelCase ), v_bias) ) _lowerCAmelCase : Optional[Any] = qkv_bias def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> List[str]: _lowerCAmelCase : int = 364 if """coco""" in model_name else 224 _lowerCAmelCase : int = InstructBlipVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: _lowerCAmelCase : str = TaConfig.from_pretrained("""google/flan-t5-xl""" ,dense_act_fn="""gelu""" ,bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCAmelCase : Optional[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" ,dense_act_fn="""gelu""" ,bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: _lowerCAmelCase : Dict = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" ,vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: _lowerCAmelCase : Tuple = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" ,vocab_size=32001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 _lowerCAmelCase : List[Any] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() _lowerCAmelCase : Optional[Any] = InstructBlipConfig(vision_config=_lowerCamelCase ,text_config=_lowerCamelCase ,qformer_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : List[Any]=None ,_lowerCamelCase : Any=False ) -> Any: _lowerCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-uncased""" ,truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: _lowerCAmelCase : str = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" ,truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) _lowerCAmelCase : Any = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" ,truncation_side="""left""" ,bos_token="""</s>""" ,unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) _lowerCAmelCase : Dict = get_blipa_config(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = InstructBlipForConditionalGeneration(_lowerCamelCase ).eval() _lowerCAmelCase : List[Any] = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } _lowerCAmelCase : Union[str, Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _lowerCAmelCase : Union[str, Any] = """cuda:1""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase : Optional[int] = """cuda:2""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase : Tuple = load_model_and_preprocess( name=_lowerCamelCase ,model_type=_lowerCamelCase ,is_eval=_lowerCamelCase ,device=_lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys _lowerCAmelCase : List[str] = original_model.state_dict() _lowerCAmelCase : Any = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCAmelCase : int = state_dict.pop(_lowerCamelCase ) if key.startswith("""Qformer.bert""" ): _lowerCAmelCase : Tuple = key.replace("""Qformer.bert""" ,"""qformer""" ) if "attention.self" in key: _lowerCAmelCase : int = key.replace("""self""" ,"""attention""" ) if "llm_proj" in key: _lowerCAmelCase : Dict = key.replace("""llm_proj""" ,"""language_projection""" ) if "t5_proj" in key: _lowerCAmelCase : Dict = key.replace("""t5_proj""" ,"""language_projection""" ) if key.startswith("""llm_model""" ): _lowerCAmelCase : str = key.replace("""llm_model""" ,"""language_model""" ) if key.startswith("""t5""" ): _lowerCAmelCase : Optional[Any] = key.replace("""t5""" ,"""language""" ) _lowerCAmelCase : Dict = val # read in qv biases read_in_q_v_bias(_lowerCamelCase ,_lowerCamelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_lowerCamelCase ,strict=_lowerCamelCase ) _lowerCAmelCase : int = load_demo_image() _lowerCAmelCase : Dict = """What is unusual about this image?""" # create processor _lowerCAmelCase : int = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} ,image_mean=_lowerCamelCase ,image_std=_lowerCamelCase ) _lowerCAmelCase : List[str] = InstructBlipProcessor( image_processor=_lowerCamelCase ,tokenizer=_lowerCamelCase ,qformer_tokenizer=_lowerCamelCase ,) _lowerCAmelCase : Optional[Any] = processor(images=_lowerCamelCase ,text=_lowerCamelCase ,return_tensors="""pt""" ).to(_lowerCamelCase ) # make sure processor creates exact same pixel values _lowerCAmelCase : Any = vis_processors["""eval"""](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCAmelCase : List[str] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) ,_lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "vicuna" in model_name: _lowerCAmelCase : Dict = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits _lowerCAmelCase : str = hf_model(**_lowerCamelCase ).logits else: _lowerCAmelCase : Dict = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits _lowerCAmelCase : Union[str, Any] = tokenizer("""\n""" ,return_tensors="""pt""" ).input_ids.to(_lowerCamelCase ) _lowerCAmelCase : List[Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id ,-100 ) _lowerCAmelCase : str = hf_model(**_lowerCamelCase ,labels=_lowerCamelCase ).logits print("""First values of original logits:""" ,original_logits[0, :3, :3] ) print("""First values of HF logits:""" ,logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape _lowerCAmelCase : Optional[Any] = 1e-4 if """vicuna""" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) ,_lowerCamelCase ,atol=_lowerCamelCase ) print("""Looks ok!""" ) print("""Generating with original model...""" ) _lowerCAmelCase : str = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} ,num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) _lowerCAmelCase : int = hf_model.generate( **_lowerCamelCase ,do_sample=_lowerCamelCase ,num_beams=5 ,max_length=256 ,min_length=1 ,top_p=0.9 ,repetition_penalty=1.5 ,length_penalty=1.0 ,temperature=1 ,) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? _lowerCAmelCase : List[str] = 2 print("""Original generation:""" ,_lowerCamelCase ) _lowerCAmelCase : List[str] = processor.batch_decode(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [text.strip() for text in output_text] print("""HF generation:""" ,_lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f"Salesforce/{model_name}" ) hf_model.push_to_hub(f"Salesforce/{model_name}" ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() _a : str = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) _a : Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
713
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[int] = logging.get_logger(__name__) _a : Any = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "data2vec-vision" def __init__( self , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=1e-12 , a__=224 , a__=16 , a__=3 , a__=False , a__=False , a__=False , a__=False , a__=0.1 , a__=0.1 , a__=True , a__=[3, 5, 7, 11] , a__=[1, 2, 3, 6] , a__=True , a__=0.4 , a__=256 , a__=1 , a__=False , a__=255 , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : int = image_size _lowerCAmelCase : Any = patch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : Tuple = use_mask_token _lowerCAmelCase : Tuple = use_absolute_position_embeddings _lowerCAmelCase : str = use_relative_position_bias _lowerCAmelCase : Dict = use_shared_relative_position_bias _lowerCAmelCase : Optional[Any] = layer_scale_init_value _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : str = out_indices _lowerCAmelCase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : str = use_auxiliary_head _lowerCAmelCase : Optional[int] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : Tuple = auxiliary_num_convs _lowerCAmelCase : Dict = auxiliary_concat_input _lowerCAmelCase : Optional[int] = semantic_loss_ignore_index class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = version.parse("1.11" ) @property def __A ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __A ( self ): return 1e-4
714
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = "pix2struct_text_model" _UpperCamelCase : Optional[Any] = ["past_key_values"] _UpperCamelCase : Optional[int] = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a__=50244 , a__=768 , a__=64 , a__=2048 , a__=12 , a__=12 , a__=32 , a__=128 , a__=0.1 , a__=1e-6 , a__=1.0 , a__="gelu_new" , a__=0 , a__=False , a__=0 , a__=1 , a__=False , a__=True , **a__ , ): _lowerCAmelCase : str = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : str = d_kv _lowerCAmelCase : Optional[Any] = d_ff _lowerCAmelCase : Optional[Any] = num_layers _lowerCAmelCase : Tuple = num_heads _lowerCAmelCase : Union[str, Any] = relative_attention_num_buckets _lowerCAmelCase : Union[str, Any] = relative_attention_max_distance _lowerCAmelCase : str = dropout_rate _lowerCAmelCase : Optional[int] = layer_norm_epsilon _lowerCAmelCase : Tuple = initializer_factor _lowerCAmelCase : str = use_cache _lowerCAmelCase : List[Any] = eos_token_id _lowerCAmelCase : str = decoder_start_token_id # for backwards compatibility _lowerCAmelCase : Tuple = dense_act_fn super().__init__( pad_token_id=a__ , eos_token_id=a__ , decoder_start_token_id=a__ , tie_word_embeddings=a__ , is_decoder=a__ , **a__ , ) @classmethod def __A ( cls , a__ , **a__ ): cls._set_token_in_kwargs(a__ ) _lowerCAmelCase : Any = cls.get_config_dict(a__ , **a__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _lowerCAmelCase : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a__ , **a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = "pix2struct_vision_model" def __init__( self , a__=768 , a__=768 , a__=2048 , a__=64 , a__=12 , a__=12 , a__="gelu_new" , a__=1e-6 , a__=0.0 , a__=0.0 , a__=1e-10 , a__=1.0 , a__=4096 , a__=32 , a__=128 , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : Optional[Any] = patch_embed_hidden_size _lowerCAmelCase : Any = d_ff _lowerCAmelCase : Optional[Any] = dropout_rate _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Optional[Any] = initializer_factor _lowerCAmelCase : Optional[Any] = attention_dropout _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : int = dense_act_fn _lowerCAmelCase : Union[str, Any] = seq_len _lowerCAmelCase : Optional[Any] = relative_attention_num_buckets _lowerCAmelCase : Dict = relative_attention_max_distance _lowerCAmelCase : Union[str, Any] = d_kv @classmethod def __A ( cls , a__ , **a__ ): cls._set_token_in_kwargs(a__ ) _lowerCAmelCase : Tuple = cls.get_config_dict(a__ , **a__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _lowerCAmelCase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a__ , **a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = "pix2struct" _UpperCamelCase : int = True def __init__( self , a__=None , a__=None , a__=1.0 , a__=0.0_2 , a__=False , a__=False , a__=True , **a__ , ): super().__init__(tie_word_embeddings=a__ , is_encoder_decoder=a__ , **a__ ) if text_config is None: _lowerCAmelCase : Any = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: _lowerCAmelCase : List[str] = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) _lowerCAmelCase : Tuple = PixaStructTextConfig(**a__ ) _lowerCAmelCase : List[str] = PixaStructVisionConfig(**a__ ) _lowerCAmelCase : Optional[int] = self.text_config.decoder_start_token_id _lowerCAmelCase : List[str] = self.text_config.pad_token_id _lowerCAmelCase : Dict = self.text_config.eos_token_id _lowerCAmelCase : Optional[int] = initializer_factor _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Optional[Any] = self.initializer_range _lowerCAmelCase : Union[str, Any] = self.initializer_range _lowerCAmelCase : List[Any] = is_vqa @classmethod def __A ( cls , a__ , a__ , **a__ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : Optional[Any] = self.text_config.to_dict() _lowerCAmelCase : Union[str, Any] = self.vision_config.to_dict() _lowerCAmelCase : Any = self.__class__.model_type return output
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
716
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
0
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @register_to_config def __init__( self , a__ = 128 , a__ = 256 , a__ = 2000.0 , a__ = 768 , a__ = 12 , a__ = 12 , a__ = 64 , a__ = 2048 , a__ = 0.1 , ): super().__init__() _lowerCAmelCase : str = nn.Sequential( nn.Linear(a__ , d_model * 4 , bias=a__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=a__ ) , nn.SiLU() , ) _lowerCAmelCase : Optional[Any] = nn.Embedding(a__ , a__ ) _lowerCAmelCase : str = False _lowerCAmelCase : Optional[int] = nn.Linear(a__ , a__ , bias=a__ ) _lowerCAmelCase : int = nn.Dropout(p=a__ ) _lowerCAmelCase : str = nn.ModuleList() for lyr_num in range(a__ ): # FiLM conditional T5 decoder _lowerCAmelCase : Optional[int] = DecoderLayer(d_model=a__ , d_kv=a__ , num_heads=a__ , d_ff=a__ , dropout_rate=a__ ) self.decoders.append(a__ ) _lowerCAmelCase : Union[str, Any] = TaLayerNorm(a__ ) _lowerCAmelCase : List[str] = nn.Dropout(p=a__ ) _lowerCAmelCase : Dict = nn.Linear(a__ , a__ , bias=a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Tuple = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase : List[Any] = self.conditioning_emb(a__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : str = torch.broadcast_to( torch.arange(a__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase : List[Any] = self.position_encoding(a__ ) _lowerCAmelCase : Dict = self.continuous_inputs_projection(a__ ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(a__ ) # decoder: No padding present. _lowerCAmelCase : List[Any] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Any = [(x, self.encoder_decoder_mask(a__ , a__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase : Any = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Optional[int] = lyr( a__ , conditioning_emb=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , )[0] _lowerCAmelCase : List[str] = self.decoder_norm(a__ ) _lowerCAmelCase : Optional[int] = self.post_dropout(a__ ) _lowerCAmelCase : int = self.spec_out(a__ ) return spec_out class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ , a__ , a__=1e-6 ): super().__init__() _lowerCAmelCase : Any = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=a__ , d_kv=a__ , num_heads=a__ , dropout_rate=a__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=a__ , d_kv=a__ , num_heads=a__ , dropout_rate=a__ , layer_norm_epsilon=a__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=a__ , d_ff=a__ , dropout_rate=a__ , layer_norm_epsilon=a__ ) ) def __A ( self , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , ): _lowerCAmelCase : List[Any] = self.layer[0]( a__ , conditioning_emb=a__ , attention_mask=a__ , ) if encoder_hidden_states is not None: _lowerCAmelCase : Dict = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( a__ , key_value_states=a__ , attention_mask=a__ , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](a__ , a__ ) return (hidden_states,) class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ ): super().__init__() _lowerCAmelCase : Tuple = TaLayerNorm(a__ ) _lowerCAmelCase : Optional[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=a__ ) _lowerCAmelCase : Tuple = Attention(query_dim=a__ , heads=a__ , dim_head=a__ , out_bias=a__ , scale_qk=a__ ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(a__ ) def __A ( self , a__ , a__=None , a__=None , ): # pre_self_attention_layer_norm _lowerCAmelCase : List[str] = self.layer_norm(a__ ) if conditioning_emb is not None: _lowerCAmelCase : Tuple = self.FiLMLayer(a__ , a__ ) # Self-attention block _lowerCAmelCase : List[str] = self.attention(a__ ) _lowerCAmelCase : str = hidden_states + self.dropout(a__ ) return hidden_states class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ , a__ ): super().__init__() _lowerCAmelCase : Tuple = Attention(query_dim=a__ , heads=a__ , dim_head=a__ , out_bias=a__ , scale_qk=a__ ) _lowerCAmelCase : Any = TaLayerNorm(a__ , eps=a__ ) _lowerCAmelCase : Tuple = nn.Dropout(a__ ) def __A ( self , a__ , a__=None , a__=None , ): _lowerCAmelCase : int = self.layer_norm(a__ ) _lowerCAmelCase : List[str] = self.attention( a__ , encoder_hidden_states=a__ , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase : Dict = hidden_states + self.dropout(a__ ) return layer_output class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ ): super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=a__ , d_ff=a__ , dropout_rate=a__ ) _lowerCAmelCase : str = TaFiLMLayer(in_features=d_model * 4 , out_features=a__ ) _lowerCAmelCase : Dict = TaLayerNorm(a__ , eps=a__ ) _lowerCAmelCase : int = nn.Dropout(a__ ) def __A ( self , a__ , a__=None ): _lowerCAmelCase : Optional[int] = self.layer_norm(a__ ) if conditioning_emb is not None: _lowerCAmelCase : Any = self.film(a__ , a__ ) _lowerCAmelCase : Optional[int] = self.DenseReluDense(a__ ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(a__ ) return hidden_states class __A ( nn.Module ): def __init__( self , a__ , a__ , a__ ): super().__init__() _lowerCAmelCase : int = nn.Linear(a__ , a__ , bias=a__ ) _lowerCAmelCase : List[str] = nn.Linear(a__ , a__ , bias=a__ ) _lowerCAmelCase : Any = nn.Linear(a__ , a__ , bias=a__ ) _lowerCAmelCase : Dict = nn.Dropout(a__ ) _lowerCAmelCase : Any = NewGELUActivation() def __A ( self , a__ ): _lowerCAmelCase : Tuple = self.act(self.wi_a(a__ ) ) _lowerCAmelCase : Dict = self.wi_a(a__ ) _lowerCAmelCase : Any = hidden_gelu * hidden_linear _lowerCAmelCase : Optional[Any] = self.dropout(a__ ) _lowerCAmelCase : List[str] = self.wo(a__ ) return hidden_states class __A ( nn.Module ): def __init__( self , a__ , a__=1e-6 ): super().__init__() _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.ones(a__ ) ) _lowerCAmelCase : str = eps def __A ( self , a__ ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase : List[str] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=a__ ) _lowerCAmelCase : Optional[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __A ( nn.Module ): def __A ( self , a__ ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(a__ , 3.0 )) )) class __A ( nn.Module ): def __init__( self , a__ , a__ ): super().__init__() _lowerCAmelCase : List[Any] = nn.Linear(a__ , out_features * 2 , bias=a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[int] = self.scale_bias(a__ ) _lowerCAmelCase : str = torch.chunk(a__ , 2 , -1 ) _lowerCAmelCase : str = x * (1 + scale) + shift return x
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Any = parent _lowerCAmelCase : str = 13 _lowerCAmelCase : Dict = 7 _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Dict = False _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Union[str, Any] = 99 _lowerCAmelCase : List[str] = 32 _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : str = 4 _lowerCAmelCase : Tuple = 37 _lowerCAmelCase : Dict = """gelu""" _lowerCAmelCase : Union[str, Any] = 0.1 _lowerCAmelCase : Dict = 0.1 _lowerCAmelCase : Tuple = 512 _lowerCAmelCase : Optional[int] = 16 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : Optional[int] = 0.0_2 _lowerCAmelCase : int = 3 _lowerCAmelCase : Tuple = 4 _lowerCAmelCase : Union[str, Any] = None def __A ( self ): _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Any = None if self.use_input_mask: _lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : List[str] = None _lowerCAmelCase : int = None _lowerCAmelCase : List[Any] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Optional[int] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFDistilBertModel(config=a__ ) _lowerCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase : List[Any] = model(a__ ) _lowerCAmelCase : Optional[int] = [input_ids, input_mask] _lowerCAmelCase : Tuple = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = TFDistilBertForMaskedLM(config=a__ ) _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase : List[str] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = TFDistilBertForQuestionAnswering(config=a__ ) _lowerCAmelCase : Tuple = { """input_ids""": input_ids, """attention_mask""": input_mask, } _lowerCAmelCase : Optional[Any] = model(a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFDistilBertForSequenceClassification(a__ ) _lowerCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : Optional[Any] = TFDistilBertForMultipleChoice(a__ ) _lowerCAmelCase : str = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : Optional[int] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } _lowerCAmelCase : Union[str, Any] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : int = TFDistilBertForTokenClassification(a__ ) _lowerCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase : str = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self ): _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() (_lowerCAmelCase) : List[str] = config_and_inputs _lowerCAmelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Tuple = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _UpperCamelCase : Tuple = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : Any = False _UpperCamelCase : List[str] = False def __A ( self ): _lowerCAmelCase : Optional[int] = TFDistilBertModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self , config_class=a__ , dim=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a__ ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a__ ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a__ ) @slow def __A ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _lowerCAmelCase : int = TFDistilBertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_tf class __A ( unittest.TestCase ): @slow def __A ( self ): _lowerCAmelCase : int = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase : Optional[Any] = model(a__ )[0] _lowerCAmelCase : Dict = [1, 6, 768] self.assertEqual(output.shape , a__ ) _lowerCAmelCase : Optional[Any] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-4 )
718
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Dict = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _a : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
719
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
720
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
0
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self , a__ , a__=13 , a__=32 , a__=2 , a__=3 , a__=16 , a__=[32, 64, 128] , a__=[1, 2, 1] , a__=[2, 2, 4] , a__=2 , a__=2.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=True , a__=0.0_2 , a__=1e-5 , a__=True , a__=None , a__=True , a__=10 , a__=8 , a__=["stage1", "stage2"] , a__=[1, 2] , ): _lowerCAmelCase : str = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Tuple = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : List[Any] = num_heads _lowerCAmelCase : Optional[int] = window_size _lowerCAmelCase : Optional[int] = mlp_ratio _lowerCAmelCase : Optional[Any] = qkv_bias _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : int = drop_path_rate _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : List[Any] = use_absolute_embeddings _lowerCAmelCase : Union[str, Any] = patch_norm _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : Optional[int] = scope _lowerCAmelCase : Any = use_labels _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : Tuple = encoder_stride _lowerCAmelCase : str = out_features _lowerCAmelCase : Tuple = out_indices def __A ( self ): _lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Dict = self.get_config() return config, pixel_values, labels def __A ( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = FocalNetModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = model(a__ ) _lowerCAmelCase : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Dict = FocalNetBackbone(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Optional[int] = FocalNetBackbone(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Union[str, Any] = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = FocalNetForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = model(a__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Any = FocalNetForMaskedImageModeling(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = model(a__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : str = self.type_sequence_label_size _lowerCAmelCase : Tuple = FocalNetForImageClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Any = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : str = 1 _lowerCAmelCase : int = FocalNetForImageClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ): _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() _lowerCAmelCase : Any = config_and_inputs _lowerCAmelCase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Any = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _UpperCamelCase : Optional[Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Optional[Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Any = False def __A ( self ): _lowerCAmelCase : Optional[Any] = FocalNetModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=a__ , embed_dim=37 , has_text_modality=a__ ) def __A ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ): return def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __A ( self ): pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase : List[Any] = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase : str = model_class(a__ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : List[str] = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCAmelCase : Union[str, Any] = outputs.hidden_states _lowerCAmelCase : List[str] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a__ ) , a__ ) # FocalNet has a different seq_length _lowerCAmelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(a__ ) , a__ ) _lowerCAmelCase : Union[str, Any] = reshaped_hidden_states[0].shape _lowerCAmelCase : List[str] = ( reshaped_hidden_states[0].view(a__ , a__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase : int = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = 3 _lowerCAmelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase : str = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : int = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) @slow def __A ( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Any = FocalNetModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = _config_zero_init(a__ ) for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(config=a__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class __A ( unittest.TestCase ): @cached_property def __A ( self ): # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : List[str] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(a__ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase : str = image_processor(images=a__ , return_tensors="""pt""" ).to(a__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**a__ ) # verify the logits _lowerCAmelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCAmelCase : Any = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Any = (FocalNetBackbone,) if is_torch_available() else () _UpperCamelCase : int = FocalNetConfig _UpperCamelCase : List[str] = False def __A ( self ): _lowerCAmelCase : Any = FocalNetModelTester(self )
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) _a : Dict = parser.parse_args() _a : List[str] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
700
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Image ,_lowerCamelCase : int ) -> Image: _lowerCAmelCase : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _a : str = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
663
0
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : BigBirdConfig _UpperCamelCase : jnp.dtype = jnp.floataa _UpperCamelCase : bool = True def __A ( self ): super().setup() _lowerCAmelCase : int = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *a__ , **a__ ): _lowerCAmelCase : Union[str, Any] = super().__call__(*a__ , **a__ ) _lowerCAmelCase : Any = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : int ,_lowerCamelCase : Tuple ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ) -> List[str]: def cross_entropy(_lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ,_lowerCamelCase : Optional[Any]=None ): _lowerCAmelCase : List[Any] = logits.shape[-1] _lowerCAmelCase : str = (labels[..., None] == jnp.arange(_lowerCamelCase )[None]).astype("""f4""" ) _lowerCAmelCase : int = jax.nn.log_softmax(_lowerCamelCase ,axis=-1 ) _lowerCAmelCase : str = -jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: _lowerCAmelCase : Tuple = reduction(_lowerCamelCase ) return loss _lowerCAmelCase : str = partial(_lowerCamelCase ,reduction=jnp.mean ) _lowerCAmelCase : List[Any] = cross_entropy(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Tuple = cross_entropy(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : List[str] = cross_entropy(_lowerCamelCase ,_lowerCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __A : _UpperCamelCase : str = "google/bigbird-roberta-base" _UpperCamelCase : int = 3_000 _UpperCamelCase : int = 10_500 _UpperCamelCase : int = 128 _UpperCamelCase : int = 3 _UpperCamelCase : int = 1 _UpperCamelCase : int = 5 # tx_args _UpperCamelCase : float = 3E-5 _UpperCamelCase : float = 0.0 _UpperCamelCase : int = 20_000 _UpperCamelCase : float = 0.0_0_9_5 _UpperCamelCase : str = "bigbird-roberta-natural-questions" _UpperCamelCase : str = "training-expt" _UpperCamelCase : str = "data/nq-training.jsonl" _UpperCamelCase : str = "data/nq-validation.jsonl" def __A ( self ): os.makedirs(self.base_dir , exist_ok=a__ ) _lowerCAmelCase : Union[str, Any] = os.path.join(self.base_dir , self.save_dir ) _lowerCAmelCase : int = self.batch_size_per_device * jax.device_count() @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , a__ ): _lowerCAmelCase : Dict = self.collate_fn(a__ ) _lowerCAmelCase : Dict = jax.tree_util.tree_map(a__ , a__ ) return batch def __A ( self , a__ ): _lowerCAmelCase : str = self.fetch_inputs(features["""input_ids"""] ) _lowerCAmelCase : int = { """input_ids""": jnp.array(a__ , dtype=jnp.intaa ), """attention_mask""": jnp.array(a__ , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def __A ( self , a__ ): _lowerCAmelCase : List[Any] = [self._fetch_inputs(a__ ) for ids in input_ids] return zip(*a__ ) def __A ( self , a__ ): _lowerCAmelCase : List[Any] = [1 for _ in range(len(a__ ) )] while len(a__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : List[str] ,_lowerCamelCase : Any=None ) -> Any: if seed is not None: _lowerCAmelCase : Any = dataset.shuffle(seed=_lowerCamelCase ) for i in range(len(_lowerCamelCase ) // batch_size ): _lowerCAmelCase : int = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_lowerCamelCase ) @partial(jax.pmap ,axis_name="""batch""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ,**_lowerCamelCase : int ) -> str: def loss_fn(_lowerCamelCase : Tuple ): _lowerCAmelCase : List[Any] = model_inputs.pop("""start_labels""" ) _lowerCAmelCase : List[str] = model_inputs.pop("""end_labels""" ) _lowerCAmelCase : List[Any] = model_inputs.pop("""pooled_labels""" ) _lowerCAmelCase : List[Any] = state.apply_fn(**_lowerCamelCase ,params=_lowerCamelCase ,dropout_rng=_lowerCamelCase ,train=_lowerCamelCase ) _lowerCAmelCase : Tuple = outputs return state.loss_fn( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) _lowerCAmelCase : List[Any] = jax.random.split(_lowerCamelCase ) _lowerCAmelCase : Tuple = jax.value_and_grad(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = grad_fn(state.params ) _lowerCAmelCase : Tuple = jax.lax.pmean({"""loss""": loss} ,axis_name="""batch""" ) _lowerCAmelCase : Dict = jax.lax.pmean(_lowerCamelCase ,"""batch""" ) _lowerCAmelCase : Tuple = state.apply_gradients(grads=_lowerCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name="""batch""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,**_lowerCamelCase : List[str] ) -> List[str]: _lowerCAmelCase : Tuple = model_inputs.pop("""start_labels""" ) _lowerCAmelCase : Optional[Any] = model_inputs.pop("""end_labels""" ) _lowerCAmelCase : int = model_inputs.pop("""pooled_labels""" ) _lowerCAmelCase : Tuple = state.apply_fn(**_lowerCamelCase ,params=state.params ,train=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = outputs _lowerCAmelCase : Tuple = state.loss_fn(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Tuple = jax.lax.pmean({"""loss""": loss} ,axis_name="""batch""" ) return metrics class __A ( train_state.TrainState ): _UpperCamelCase : Callable = struct.field(pytree_node=SCREAMING_SNAKE_CASE_ ) @dataclass class __A : _UpperCamelCase : Args _UpperCamelCase : Callable _UpperCamelCase : Callable _UpperCamelCase : Callable _UpperCamelCase : Callable _UpperCamelCase : wandb _UpperCamelCase : Callable = None def __A ( self , a__ , a__ , a__ , a__=None ): _lowerCAmelCase : str = model.params _lowerCAmelCase : str = TrainState.create( apply_fn=model.__call__ , params=a__ , tx=a__ , loss_fn=a__ , ) if ckpt_dir is not None: _lowerCAmelCase : Any = restore_checkpoint(a__ , a__ ) _lowerCAmelCase : Dict = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } _lowerCAmelCase : str = build_tx(**a__ ) _lowerCAmelCase : str = train_state.TrainState( step=a__ , apply_fn=model.__call__ , params=a__ , tx=a__ , opt_state=a__ , ) _lowerCAmelCase : int = args _lowerCAmelCase : str = data_collator _lowerCAmelCase : Optional[Any] = lr _lowerCAmelCase : int = params _lowerCAmelCase : Any = jax_utils.replicate(a__ ) return state def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = self.args _lowerCAmelCase : Union[str, Any] = len(a__ ) // args.batch_size _lowerCAmelCase : Optional[int] = jax.random.PRNGKey(0 ) _lowerCAmelCase : Any = jax.random.split(a__ , jax.device_count() ) for epoch in range(args.max_epochs ): _lowerCAmelCase : str = jnp.array(0 , dtype=jnp.floataa ) _lowerCAmelCase : Optional[Any] = get_batched_dataset(a__ , args.batch_size , seed=a__ ) _lowerCAmelCase : Optional[Any] = 0 for batch in tqdm(a__ , total=a__ , desc=F"Running EPOCH-{epoch}" ): _lowerCAmelCase : Optional[int] = self.data_collator(a__ ) _lowerCAmelCase : Optional[Any] = self.train_step_fn(a__ , a__ , **a__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: _lowerCAmelCase : int = jax_utils.unreplicate(state.step ) _lowerCAmelCase : int = running_loss.item() / i _lowerCAmelCase : Optional[Any] = self.scheduler_fn(state_step - 1 ) _lowerCAmelCase : str = self.evaluate(a__ , a__ ) _lowerCAmelCase : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(a__ ) ) self.logger.log(a__ , commit=a__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"-e{epoch}-s{i}" , state=a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Dict = get_batched_dataset(a__ , self.args.batch_size ) _lowerCAmelCase : List[Any] = len(a__ ) // self.args.batch_size _lowerCAmelCase : str = jnp.array(0 , dtype=jnp.floataa ) _lowerCAmelCase : List[str] = 0 for batch in tqdm(a__ , total=a__ , desc="""Evaluating ... """ ): _lowerCAmelCase : Any = self.data_collator(a__ ) _lowerCAmelCase : Tuple = self.val_step_fn(a__ , **a__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def __A ( self , a__ , a__ ): _lowerCAmelCase : int = jax_utils.unreplicate(a__ ) print(F"SAVING CHECKPOINT IN {save_dir}" , end=""" ... """ ) self.model_save_fn(a__ , params=state.params ) with open(os.path.join(a__ , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(a__ , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(a__ , """data_collator.joblib""" ) ) with open(os.path.join(a__ , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , a__ ) print("""DONE""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[Any] ) -> Union[str, Any]: print(f"RESTORING CHECKPOINT FROM {save_dir}" ,end=""" ... """ ) with open(os.path.join(_lowerCamelCase ,"""flax_model.msgpack""" ) ,"""rb""" ) as f: _lowerCAmelCase : List[Any] = from_bytes(state.params ,f.read() ) with open(os.path.join(_lowerCamelCase ,"""opt_state.msgpack""" ) ,"""rb""" ) as f: _lowerCAmelCase : Optional[int] = from_bytes(state.opt_state ,f.read() ) _lowerCAmelCase : int = joblib.load(os.path.join(_lowerCamelCase ,"""args.joblib""" ) ) _lowerCAmelCase : List[Any] = joblib.load(os.path.join(_lowerCamelCase ,"""data_collator.joblib""" ) ) with open(os.path.join(_lowerCamelCase ,"""training_state.json""" ) ,"""r""" ) as f: _lowerCAmelCase : Tuple = json.load(_lowerCamelCase ) _lowerCAmelCase : List[str] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : int ,_lowerCamelCase : Any ,_lowerCamelCase : str ) -> List[str]: _lowerCAmelCase : Union[str, Any] = num_train_steps - warmup_steps _lowerCAmelCase : Tuple = optax.linear_schedule(init_value=_lowerCamelCase ,end_value=_lowerCamelCase ,transition_steps=_lowerCamelCase ) _lowerCAmelCase : str = optax.linear_schedule(init_value=_lowerCamelCase ,end_value=1e-7 ,transition_steps=_lowerCamelCase ) _lowerCAmelCase : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Any ,_lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ) -> str: def weight_decay_mask(_lowerCamelCase : List[Any] ): _lowerCAmelCase : List[str] = traverse_util.flatten_dict(_lowerCamelCase ) _lowerCAmelCase : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(_lowerCamelCase ) _lowerCAmelCase : List[Any] = scheduler_fn(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = optax.adamw(learning_rate=_lowerCamelCase ,weight_decay=_lowerCamelCase ,mask=_lowerCamelCase ) return tx, lr
701
"""simple docstring""" class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A ( SCREAMING_SNAKE_CASE_ ): pass class __A : def __init__( self ): _lowerCAmelCase : Union[str, Any] = [ [], [], [], ] def __A ( self , a__ , a__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(a__ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __A ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self ): _lowerCAmelCase : int = [] def __A ( self , a__ ): if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(a__ ) def __A ( self ): if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase : int = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self ): return str(self.queue ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
663
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> list[int]: _lowerCAmelCase : Any = [True] * limit _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : Any = False _lowerCAmelCase : List[Any] = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): _lowerCAmelCase : str = i * 2 while index < limit: _lowerCAmelCase : Any = False _lowerCAmelCase : str = index + i _lowerCAmelCase : Tuple = [2] for i in range(3 ,_lowerCamelCase ,2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : Union[str, Any] = prime_sieve(_lowerCamelCase ) _lowerCAmelCase : str = 0 _lowerCAmelCase : List[str] = 0 for i in range(len(_lowerCamelCase ) ): for j in range(i + length ,len(_lowerCamelCase ) ): _lowerCAmelCase : str = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _lowerCAmelCase : List[Any] = j - i _lowerCAmelCase : str = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
702
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = AudioClassificationPipeline(model=a__ , feature_extractor=a__ ) # test with a raw waveform _lowerCAmelCase : Optional[int] = np.zeros((34000,) ) _lowerCAmelCase : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def __A ( self , a__ , a__ ): _lowerCAmelCase , _lowerCAmelCase : List[Any] = examples _lowerCAmelCase : List[Any] = audio_classifier(a__ ) # by default a model is initialized with num_labels=2 self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) _lowerCAmelCase : Tuple = audio_classifier(a__ , top_k=1 ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) self.run_torchaudio(a__ ) @require_torchaudio def __A ( self , a__ ): import datasets # test with a local file _lowerCAmelCase : int = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : List[Any] = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : str = audio_classifier(a__ ) self.assertEqual( a__ , [ {"""score""": ANY(a__ ), """label""": ANY(a__ )}, {"""score""": ANY(a__ ), """label""": ANY(a__ )}, ] , ) @require_torch def __A ( self ): _lowerCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : Any = np.ones((8000,) ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) _lowerCAmelCase : List[str] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _lowerCAmelCase : str = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : int = audio_classifier(a__ , top_k=4 ) self.assertIn(nested_simplify(a__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ): import datasets _lowerCAmelCase : Optional[Any] = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=a__ ) _lowerCAmelCase : str = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : List[str] = audio_classifier(a__ , top_k=4 ) self.assertEqual( nested_simplify(a__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __A ( self ): pass
663
0
"""simple docstring""" _a : Optional[Any] = 'Tobias Carryer' from time import time class __A : def __init__( self , a__ , a__ , a__ , a__=int(time() ) ): # noqa: B008 _lowerCAmelCase : Any = multiplier _lowerCAmelCase : str = increment _lowerCAmelCase : Union[str, Any] = modulo _lowerCAmelCase : str = seed def __A ( self ): _lowerCAmelCase : List[Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. _a : Optional[Any] = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
703
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _a : int = logging.get_logger(__name__) @dataclass class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **a__ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCAmelCase : Union[str, Any] = deprecated_arg[3:] _lowerCAmelCase : Optional[Any] = not kwargs.pop(a__ ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) _lowerCAmelCase : Dict = kwargs.pop("""tpu_name""" , self.tpu_name ) _lowerCAmelCase : Optional[Any] = kwargs.pop("""device_idx""" , self.device_idx ) _lowerCAmelCase : int = kwargs.pop("""eager_mode""" , self.eager_mode ) _lowerCAmelCase : List[str] = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**a__ ) _UpperCamelCase : str = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Name of TPU"} , ) _UpperCamelCase : int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) _UpperCamelCase : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Benchmark models in eager model."} ) _UpperCamelCase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def __A ( self ): requires_backends(self , ["""tf"""] ) _lowerCAmelCase : int = None if self.tpu: try: if self.tpu_name: _lowerCAmelCase : int = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _lowerCAmelCase : int = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _lowerCAmelCase : List[Any] = None return tpu @cached_property def __A ( self ): requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _lowerCAmelCase : List[str] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) _lowerCAmelCase : Dict = tf.distribute.OneDeviceStrategy(device=F"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU _lowerCAmelCase : str = tf.distribute.OneDeviceStrategy(device=F"/cpu:{self.device_idx}" ) return strategy @property def __A ( self ): requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def __A ( self ): requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def __A ( self ): requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def __A ( self ): requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __A ( self ): return self.n_gpu > 0
704
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
663
0
"""simple docstring""" import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : List[str] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Any = _ask_options( """In which compute environment are you running?""" ,["""This machine""", """AWS (Amazon SageMaker)"""] ,_convert_compute_environment ,) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase : str = get_sagemaker_input() else: _lowerCAmelCase : Union[str, Any] = get_cluster_input() return config def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any]=None ) -> Optional[Any]: if subparsers is not None: _lowerCAmelCase : Union[str, Any] = subparsers.add_parser("""config""" ,description=_lowerCamelCase ) else: _lowerCAmelCase : Tuple = argparse.ArgumentParser("""Accelerate config command""" ,description=_lowerCamelCase ) parser.add_argument( """--config_file""" ,default=_lowerCamelCase ,help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) ,) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> List[Any]: _lowerCAmelCase : Optional[Any] = get_user_input() if args.config_file is not None: _lowerCAmelCase : Tuple = args.config_file else: if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : List[Any] = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(_lowerCamelCase ) else: config.to_yaml_file(_lowerCamelCase ) print(f"accelerate configuration saved at {config_file}" ) def SCREAMING_SNAKE_CASE ( ) -> int: _lowerCAmelCase : List[str] = config_command_parser() _lowerCAmelCase : List[Any] = parser.parse_args() config_command(_lowerCamelCase ) if __name__ == "__main__": main()
705
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __A ( self ): _lowerCAmelCase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowerCAmelCase : Optional[Any] = """今天天气真好!""" _lowerCAmelCase : Any = ["""今天""", """天气""", """真""", """好""", """!"""] _lowerCAmelCase : str = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = """今天天气真好!""" _lowerCAmelCase : Optional[Any] = [tokenizer.bos_token] + tokens _lowerCAmelCase : Optional[int] = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCAmelCase : Tuple = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
663
0
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : Tuple = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } _a : Optional[Any] = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } _a : List[str] = { 'ctrl': 256, } _a : List[Any] = { 'Pregnancy': 168_629, 'Christianity': 7_675, 'Explain': 106_423, 'Fitness': 63_440, 'Saving': 63_163, 'Ask': 27_171, 'Ass': 95_985, 'Joke': 163_509, 'Questions': 45_622, 'Thoughts': 49_605, 'Retail': 52_342, 'Feminism': 164_338, 'Writing': 11_992, 'Atheism': 192_263, 'Netflix': 48_616, 'Computing': 39_639, 'Opinion': 43_213, 'Alone': 44_967, 'Funny': 58_917, 'Gaming': 40_358, 'Human': 4_088, 'India': 1_331, 'Joker': 77_138, 'Diet': 36_206, 'Legal': 11_859, 'Norman': 4_939, 'Tip': 72_689, 'Weight': 52_343, 'Movies': 46_273, 'Running': 23_425, 'Science': 2_090, 'Horror': 37_793, 'Confession': 60_572, 'Finance': 12_250, 'Politics': 16_360, 'Scary': 191_985, 'Support': 12_654, 'Technologies': 32_516, 'Teenage': 66_160, 'Event': 32_769, 'Learned': 67_460, 'Notion': 182_770, 'Wikipedia': 37_583, 'Books': 6_665, 'Extract': 76_050, 'Confessions': 102_701, 'Conspiracy': 75_932, 'Links': 63_674, 'Narcissus': 150_425, 'Relationship': 54_766, 'Relationships': 134_796, 'Reviews': 41_671, 'News': 4_256, 'Translation': 26_820, 'multilingual': 128_406, } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> Optional[int]: _lowerCAmelCase : str = set() _lowerCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : List[str] = char _lowerCAmelCase : str = set(_lowerCamelCase ) return pairs class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : int = CONTROL_CODES def __init__( self , a__ , a__ , a__="<unk>" , **a__ ): super().__init__(unk_token=a__ , **a__ ) with open(a__ , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase : Union[str, Any] = json.load(a__ ) _lowerCAmelCase : int = {v: k for k, v in self.encoder.items()} with open(a__ , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase : List[str] = merges_handle.read().split("""\n""" )[1:-1] _lowerCAmelCase : List[Any] = [tuple(merge.split() ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : Optional[int] = {} @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , a__ ): if token in self.cache: return self.cache[token] _lowerCAmelCase : int = tuple(a__ ) _lowerCAmelCase : Tuple = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) _lowerCAmelCase : List[str] = get_pairs(a__ ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase : Optional[Any] = bigram _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : str = 0 while i < len(a__ ): try: _lowerCAmelCase : Dict = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Any = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Dict = tuple(a__ ) _lowerCAmelCase : List[Any] = new_word if len(a__ ) == 1: break else: _lowerCAmelCase : Optional[int] = get_pairs(a__ ) _lowerCAmelCase : Any = """@@ """.join(a__ ) _lowerCAmelCase : List[Any] = word[:-4] _lowerCAmelCase : Optional[int] = word return word def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[Any] = re.findall(r"""\S+\n?""" , a__ ) for token in words: split_tokens.extend(list(self.bpe(a__ ).split(""" """ ) ) ) return split_tokens def __A ( self , a__ ): return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __A ( self , a__ ): return self.decoder.get(a__ , self.unk_token ) def __A ( self , a__ ): _lowerCAmelCase : List[str] = """ """.join(a__ ).replace("""@@ """ , """""" ).strip() return out_string def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Union[str, Any] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : Any = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + """\n""" ) _lowerCAmelCase : Optional[int] = 0 with open(a__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase : List[Any] = token_index writer.write(""" """.join(a__ ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
706
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
0
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def SCREAMING_SNAKE_CASE ( _lowerCamelCase : NDArray[floataa] ,_lowerCamelCase : NDArray[floataa] ,_lowerCamelCase : list[int] ,_lowerCamelCase : int ,) -> list[float]: _lowerCAmelCase : Union[str, Any] = coefficient_matrix.shape _lowerCAmelCase : Optional[int] = constant_matrix.shape if rowsa != colsa: _lowerCAmelCase : int = f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(_lowerCamelCase ) if colsa != 1: _lowerCAmelCase : str = f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(_lowerCamelCase ) if rowsa != rowsa: _lowerCAmelCase : Any = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != rowsa: _lowerCAmelCase : Dict = ( """Number of initial values must be equal to number of rows in coefficient """ f"matrix but received {len(_lowerCamelCase )} and {rowsa}" ) raise ValueError(_lowerCamelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) _lowerCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) _lowerCAmelCase : Optional[int] = table.shape strictly_diagonally_dominant(_lowerCamelCase ) # Iterates the whole matrix for given number of times for _ in range(_lowerCamelCase ): _lowerCAmelCase : int = [] for row in range(_lowerCamelCase ): _lowerCAmelCase : str = 0 for col in range(_lowerCamelCase ): if col == row: _lowerCAmelCase : int = table[row][col] elif col == cols - 1: _lowerCAmelCase : Tuple = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _lowerCAmelCase : List[str] = (temp + val) / denom new_val.append(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = new_val return [float(_lowerCamelCase ) for i in new_val] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : NDArray[floataa] ) -> bool: _lowerCAmelCase : Any = table.shape _lowerCAmelCase : Union[str, Any] = True for i in range(0 ,_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : int ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Dict ) -> int: # Initialise PyTorch model _lowerCAmelCase : Any = FunnelConfig.from_json_file(_lowerCamelCase ) print(f"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase : Optional[int] = FunnelBaseModel(_lowerCamelCase ) if base_model else FunnelModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() ,_lowerCamelCase ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) _a : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
708
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a : int = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
663
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> List[str]: _lowerCAmelCase : List[Any] = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: _lowerCAmelCase : List[Any] = 1024 _lowerCAmelCase : Tuple = 4096 _lowerCAmelCase : Optional[int] = 24 _lowerCAmelCase : Any = 16 _lowerCAmelCase : Any = [5, 11, 17, 23] _lowerCAmelCase : List[str] = [256, 512, 1024, 1024] _lowerCAmelCase : Dict = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _lowerCAmelCase : Tuple = 768 _lowerCAmelCase : List[str] = [1, 1, 1, 0.5] _lowerCAmelCase : int = [256, 512, 768, 768] _lowerCAmelCase : Optional[Any] = 150 _lowerCAmelCase : Optional[Any] = 16 _lowerCAmelCase : Dict = (1, 384, 384) _lowerCAmelCase : str = False _lowerCAmelCase : int = """project""" if "ade" in checkpoint_url: _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 768 _lowerCAmelCase : Dict = [1, 1, 1, 0.5] _lowerCAmelCase : Any = 150 _lowerCAmelCase : str = 16 _lowerCAmelCase : Dict = """huggingface/label-files""" _lowerCAmelCase : Optional[int] = """ade20k-id2label.json""" _lowerCAmelCase : Optional[Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase ,_lowerCamelCase ,repo_type="""dataset""" ) ) ,"""r""" ) ) _lowerCAmelCase : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : List[Any] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : List[Any] = [1, 150, 480, 480] return config, expected_shape def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Union[str, Any]: _lowerCAmelCase : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> Dict: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCAmelCase : List[Any] = name.replace("""pretrained.model""" ,"""dpt.encoder""" ) if "pretrained.model" in name: _lowerCAmelCase : int = name.replace("""pretrained.model""" ,"""dpt.embeddings""" ) if "patch_embed" in name: _lowerCAmelCase : str = name.replace("""patch_embed""" ,"""""" ) if "pos_embed" in name: _lowerCAmelCase : Optional[int] = name.replace("""pos_embed""" ,"""position_embeddings""" ) if "attn.proj" in name: _lowerCAmelCase : int = name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "proj" in name and "project" not in name: _lowerCAmelCase : int = name.replace("""proj""" ,"""projection""" ) if "blocks" in name: _lowerCAmelCase : str = name.replace("""blocks""" ,"""layer""" ) if "mlp.fc1" in name: _lowerCAmelCase : List[Any] = name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase : int = name.replace("""mlp.fc2""" ,"""output.dense""" ) if "norm1" in name and "backbone" not in name: _lowerCAmelCase : str = name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name and "backbone" not in name: _lowerCAmelCase : int = name.replace("""norm2""" ,"""layernorm_after""" ) if "scratch.output_conv" in name: _lowerCAmelCase : str = name.replace("""scratch.output_conv""" ,"""head""" ) if "scratch" in name: _lowerCAmelCase : List[str] = name.replace("""scratch""" ,"""neck""" ) if "layer1_rn" in name: _lowerCAmelCase : Dict = name.replace("""layer1_rn""" ,"""convs.0""" ) if "layer2_rn" in name: _lowerCAmelCase : List[Any] = name.replace("""layer2_rn""" ,"""convs.1""" ) if "layer3_rn" in name: _lowerCAmelCase : Optional[Any] = name.replace("""layer3_rn""" ,"""convs.2""" ) if "layer4_rn" in name: _lowerCAmelCase : List[str] = name.replace("""layer4_rn""" ,"""convs.3""" ) if "refinenet" in name: _lowerCAmelCase : Optional[Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCAmelCase : List[str] = name.replace(f"refinenet{layer_idx}" ,f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: _lowerCAmelCase : Optional[Any] = name.replace("""out_conv""" ,"""projection""" ) if "resConfUnit1" in name: _lowerCAmelCase : Optional[int] = name.replace("""resConfUnit1""" ,"""residual_layer1""" ) if "resConfUnit2" in name: _lowerCAmelCase : Optional[int] = name.replace("""resConfUnit2""" ,"""residual_layer2""" ) if "conv1" in name: _lowerCAmelCase : Optional[Any] = name.replace("""conv1""" ,"""convolution1""" ) if "conv2" in name: _lowerCAmelCase : Optional[Any] = name.replace("""conv2""" ,"""convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess1.0.project.0""" ,"""neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess2.0.project.0""" ,"""neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCAmelCase : List[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""" ,"""neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCAmelCase : int = name.replace("""pretrained.act_postprocess4.0.project.0""" ,"""neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCAmelCase : int = name.replace("""pretrained.act_postprocess1.3""" ,"""neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: _lowerCAmelCase : List[str] = name.replace("""pretrained.act_postprocess1.4""" ,"""neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: _lowerCAmelCase : List[str] = name.replace("""pretrained.act_postprocess2.3""" ,"""neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: _lowerCAmelCase : Union[str, Any] = name.replace("""pretrained.act_postprocess2.4""" ,"""neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: _lowerCAmelCase : Any = name.replace("""pretrained.act_postprocess3.3""" ,"""neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: _lowerCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess4.3""" ,"""neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: _lowerCAmelCase : Dict = name.replace("""pretrained.act_postprocess4.4""" ,"""neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: _lowerCAmelCase : List[Any] = name.replace("""pretrained""" ,"""dpt""" ) if "bn" in name: _lowerCAmelCase : Tuple = name.replace("""bn""" ,"""batch_norm""" ) if "head" in name: _lowerCAmelCase : Dict = name.replace("""head""" ,"""head.head""" ) if "encoder.norm" in name: _lowerCAmelCase : Union[str, Any] = name.replace("""encoder.norm""" ,"""layernorm""" ) if "auxlayer" in name: _lowerCAmelCase : Any = name.replace("""auxlayer""" ,"""auxiliary_head.head""" ) if "backbone" in name: _lowerCAmelCase : int = name.replace("""backbone""" ,"""backbone.bit.encoder""" ) if ".." in name: _lowerCAmelCase : Dict = name.replace("""..""" ,""".""" ) if "stem.conv" in name: _lowerCAmelCase : Any = name.replace("""stem.conv""" ,"""bit.embedder.convolution""" ) if "blocks" in name: _lowerCAmelCase : List[str] = name.replace("""blocks""" ,"""layers""" ) if "convolution" in name and "backbone" in name: _lowerCAmelCase : str = name.replace("""convolution""" ,"""conv""" ) if "layer" in name and "backbone" in name: _lowerCAmelCase : Any = name.replace("""layer""" ,"""layers""" ) if "backbone.bit.encoder.bit" in name: _lowerCAmelCase : str = name.replace("""backbone.bit.encoder.bit""" ,"""backbone.bit""" ) if "embedder.conv" in name: _lowerCAmelCase : List[str] = name.replace("""embedder.conv""" ,"""embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: _lowerCAmelCase : List[str] = name.replace("""backbone.bit.encoder.stem.norm""" ,"""backbone.bit.embedder.norm""" ) return name def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Optional[Any] ) -> List[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : str = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) _lowerCAmelCase : Optional[int] = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Any = in_proj_weight[: config.hidden_size, :] _lowerCAmelCase : int = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase : int = Image.open(requests.get(_lowerCamelCase ,stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Tuple ,_lowerCamelCase : List[Any] ) -> str: _lowerCAmelCase : Tuple = get_dpt_config(_lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _lowerCAmelCase : Optional[Any] = torch.load(_lowerCamelCase ,map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(_lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): _lowerCAmelCase : List[Any] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase ,_lowerCamelCase ) # load HuggingFace model _lowerCAmelCase : List[str] = DPTForSemanticSegmentation(_lowerCamelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # Check outputs on an image _lowerCAmelCase : Union[str, Any] = 480 if """ade""" in checkpoint_url else 384 _lowerCAmelCase : Optional[Any] = DPTImageProcessor(size=_lowerCamelCase ) _lowerCAmelCase : List[Any] = prepare_img() _lowerCAmelCase : Optional[Any] = image_processor(_lowerCamelCase ,return_tensors="""pt""" ) # forward pass _lowerCAmelCase : Optional[Any] = model(**_lowerCamelCase ).logits if """ade""" in checkpoint_url else model(**_lowerCamelCase ).predicted_depth if show_prediction: _lowerCAmelCase : Union[str, Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) ,size=(image.size[1], image.size[0]) ,mode="""bicubic""" ,align_corners=_lowerCamelCase ,) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) _a : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
709
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : _UpperCamelCase : int _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def SCREAMING_SNAKE_CASE ( ) -> Node | None: _lowerCAmelCase : Tuple = Node(1 ) _lowerCAmelCase : int = Node(2 ) _lowerCAmelCase : int = Node(3 ) _lowerCAmelCase : Any = Node(4 ) _lowerCAmelCase : Dict = Node(5 ) return tree def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] if root is None: return output _lowerCAmelCase : Union[str, Any] = deque([root] ) while process_queue: _lowerCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> Sequence[Node | None]: _lowerCAmelCase : list[Any] = [] def populate_output(_lowerCamelCase : Node | None ,_lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCamelCase ,_lowerCamelCase ) return output def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _lowerCAmelCase : list[Sequence[Node | None]] = [] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = height(_lowerCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase ,_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = 0 return output def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _lowerCAmelCase : int = make_tree() print(f"In-order Traversal: {inorder(_lowerCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_lowerCamelCase )}" ) print(f"Post-order Traversal: {postorder(_lowerCamelCase )}" ,"""\n""" ) print(f"Height of Tree: {height(_lowerCamelCase )}" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCamelCase ) + 1 ): print(f"Level {level}:" ,get_nodes_from_left_to_right(_lowerCamelCase ,level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
663
0
"""simple docstring""" import os def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(_lowerCamelCase ) ,_lowerCamelCase ) ) as input_file: _lowerCAmelCase : Dict = [ [int(_lowerCamelCase ) for element in line.split(""",""" )] for line in input_file.readlines() ] _lowerCAmelCase : str = len(_lowerCamelCase ) _lowerCAmelCase : Tuple = len(matrix[0] ) _lowerCAmelCase : Dict = [[-1 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): _lowerCAmelCase : List[Any] = matrix[i][0] for j in range(1 ,_lowerCamelCase ): for i in range(_lowerCamelCase ): _lowerCAmelCase : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 ,_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = min( minimal_path_sums[i][j] ,minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 ,-1 ,-1 ): _lowerCAmelCase : List[Any] = min( minimal_path_sums[i][j] ,minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
710
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
663
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.0_2 , a__=3 , a__=None , ): _lowerCAmelCase : int = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Dict = is_training _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Union[str, Any] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Optional[int] = (image_size // patch_size) ** 2 _lowerCAmelCase : Tuple = num_patches + 1 def __A ( self ): _lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Union[str, Any] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def __A ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFViTModel(config=a__ ) _lowerCAmelCase : Optional[Any] = model(a__ , training=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _lowerCAmelCase : str = self.image_size // 2 _lowerCAmelCase : Optional[Any] = pixel_values[:, :, :image_size, :image_size] _lowerCAmelCase : List[str] = model(a__ , interpolate_pos_encoding=a__ , training=a__ ) _lowerCAmelCase : int = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : List[str] = TFViTForImageClassification(a__ ) _lowerCAmelCase : Any = model(a__ , labels=a__ , training=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _lowerCAmelCase : Any = self.image_size // 2 _lowerCAmelCase : int = pixel_values[:, :, :image_size, :image_size] _lowerCAmelCase : Dict = model(a__ , interpolate_pos_encoding=a__ , training=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Any = TFViTForImageClassification(a__ ) _lowerCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _UpperCamelCase : List[str] = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[Any] = False def __A ( self ): _lowerCAmelCase : List[str] = TFViTModelTester(self ) _lowerCAmelCase : Tuple = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __A ( self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _lowerCAmelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , tf.keras.layers.Layer ) ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(a__ ) _lowerCAmelCase : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def __A ( self ): _lowerCAmelCase : Optional[int] = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE ( ) -> Dict: _lowerCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __A ( unittest.TestCase ): @cached_property def __A ( self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : Dict = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) _lowerCAmelCase : List[Any] = self.default_image_processor _lowerCAmelCase : Union[str, Any] = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=a__ , return_tensors="""tf""" ) # forward pass _lowerCAmelCase : Tuple = model(**a__ ) # verify the logits _lowerCAmelCase : int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCAmelCase : Optional[Any] = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , a__ , atol=1e-4 )
711
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCAmelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase : Any = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float64""" ,[dim] ) _lowerCAmelCase : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase : List[Any] = tf.placeholder("""int32""" ) _lowerCAmelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase ,_lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase : Optional[int] = tf.reduce_mean(_lowerCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase : Dict = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : Any = tf.placeholder("""float""" ,[dim] ) _lowerCAmelCase : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase ,_lowerCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase : Any = tf.placeholder("""float""" ,[noofclusters] ) _lowerCAmelCase : str = tf.argmin(_lowerCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase : List[str] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCAmelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase : Any = [ sess.run(_lowerCamelCase ,feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase : Any = sess.run( _lowerCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCAmelCase : List[Any] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase : Optional[int] = sess.run( _lowerCamelCase ,feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase : Optional[int] = sess.run(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sess.run(_lowerCamelCase ) return centroids, assignments
663
0
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _a : Optional[Any] = getLogger(__name__) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : str ,_lowerCamelCase : str ,_lowerCamelCase : int = 8 ,_lowerCamelCase : int = 1024 ,_lowerCamelCase : Optional[Any]="val" ,_lowerCamelCase : List[str]=None ,_lowerCamelCase : List[str]=False ,_lowerCamelCase : Tuple="summarization" ,_lowerCamelCase : Dict=None ,_lowerCamelCase : int=1 ,_lowerCamelCase : Dict = None ,_lowerCamelCase : str="" ,**_lowerCamelCase : Optional[Any] ,) -> Dict: _lowerCAmelCase : List[str] = str(_lowerCamelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" ,rank=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = Path(_lowerCamelCase ) _lowerCAmelCase : List[Any] = save_dir.joinpath(f"rank_{local_rank}_output.json" ) torch.cuda.set_device(_lowerCamelCase ) _lowerCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained(_lowerCamelCase ).cuda() if fpaa: _lowerCAmelCase : Tuple = model.half() # determine if we need to increase num_beams use_task_specific_params(_lowerCamelCase ,_lowerCamelCase ) # update config with task specific params _lowerCAmelCase : List[Any] = generate_kwargs.pop("""num_beams""" ,model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _lowerCAmelCase : Optional[int] = num_return_sequences _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(_lowerCamelCase ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: _lowerCAmelCase : List[str] = tokenizer.model_max_length if prefix is None: _lowerCAmelCase : Union[str, Any] = prefix or getattr(model.config ,"""prefix""" ,"""""" ) or """""" _lowerCAmelCase : Union[str, Any] = SeqaSeqDataset( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,max_target_length=1024 ,type_path=_lowerCamelCase ,n_obs=_lowerCamelCase ,prefix=_lowerCamelCase ,**_lowerCamelCase ,) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _lowerCAmelCase : List[str] = ds.make_sortish_sampler(_lowerCamelCase ,distributed=_lowerCamelCase ,add_extra_examples=_lowerCamelCase ,shuffle=_lowerCamelCase ) _lowerCAmelCase : Any = DataLoader(_lowerCamelCase ,sampler=_lowerCamelCase ,batch_size=_lowerCamelCase ,collate_fn=ds.collate_fn ) _lowerCAmelCase : int = [] for batch in tqdm(_lowerCamelCase ): _lowerCAmelCase : str = model.generate( input_ids=batch["""input_ids"""].to(model.device ) ,attention_mask=batch["""attention_mask"""].to(model.device ) ,num_return_sequences=_lowerCamelCase ,num_beams=_lowerCamelCase ,**_lowerCamelCase ,) _lowerCAmelCase : str = tokenizer.batch_decode(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ,clean_up_tokenization_spaces=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = batch["""ids"""] if num_return_sequences > 1: _lowerCAmelCase : List[Any] = chunks(_lowerCamelCase ,_lowerCamelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_lowerCamelCase ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(_lowerCamelCase ,_lowerCamelCase ) return results, sampler.num_replicas def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : List[Any] = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" ,type=_lowerCamelCase ,help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" ,type=_lowerCamelCase ,help="""like facebook/bart-large-cnn,t5-base, etc.""" ,default="""sshleifer/distilbart-xsum-12-3""" ,) parser.add_argument("""--save_dir""" ,type=_lowerCamelCase ,help="""where to save""" ,default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" ,type=_lowerCamelCase ,default=_lowerCamelCase ) parser.add_argument( """--type_path""" ,type=_lowerCamelCase ,default="""test""" ,help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" ,type=_lowerCamelCase ,default="""summarization""" ,help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" ,type=_lowerCamelCase ,default=8 ,required=_lowerCamelCase ,help="""batch size""" ) parser.add_argument( """--local_rank""" ,type=_lowerCamelCase ,default=-1 ,required=_lowerCamelCase ,help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" ,type=_lowerCamelCase ,default=_lowerCamelCase ,required=_lowerCamelCase ,help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" ,type=_lowerCamelCase ,default=1 ,required=_lowerCamelCase ,help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" ,type=_lowerCamelCase ,default=600 ,required=_lowerCamelCase ,help="""How long should master process wait for other processes to finish.""" ,) parser.add_argument("""--src_lang""" ,type=_lowerCamelCase ,default=_lowerCamelCase ,required=_lowerCamelCase ) parser.add_argument("""--tgt_lang""" ,type=_lowerCamelCase ,default=_lowerCamelCase ,required=_lowerCamelCase ) parser.add_argument( """--prefix""" ,type=_lowerCamelCase ,required=_lowerCamelCase ,default=_lowerCamelCase ,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" ,action="""store_true""" ) parser.add_argument("""--debug""" ,action="""store_true""" ) _lowerCAmelCase : List[Any] = time.time() _lowerCAmelCase : str = parser.parse_known_args() _lowerCAmelCase : Union[str, Any] = parse_numeric_n_bool_cl_kwargs(_lowerCamelCase ) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}" ) _lowerCAmelCase : str = Path(args.save_dir + """_tmp""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) # this handles locking. _lowerCAmelCase : Any = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _lowerCAmelCase : Union[str, Any] = {} if args.src_lang is not None: _lowerCAmelCase : Any = args.src_lang if args.tgt_lang is not None: _lowerCAmelCase : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = eval_data_dir( args.data_dir ,_lowerCamelCase ,args.model_name ,type_path=args.type_path ,bs=args.bs ,fpaa=args.fpaa ,task=args.task ,local_rank=args.local_rank ,n_obs=args.n_obs ,max_source_length=args.max_source_length ,num_return_sequences=args.num_return_sequences ,prefix=args.prefix ,dataset_kwargs=_lowerCamelCase ,**_lowerCamelCase ,) if args.local_rank <= 0: _lowerCAmelCase : Optional[int] = Path(args.save_dir ) save_dir.mkdir(exist_ok=_lowerCamelCase ) _lowerCAmelCase : List[str] = gather_results_from_each_node(_lowerCamelCase ,_lowerCamelCase ,args.sync_timeout ) _lowerCAmelCase : List[Any] = combine_partial_results(_lowerCamelCase ) if args.num_return_sequences > 1: _lowerCAmelCase : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(_lowerCamelCase ,_lowerCamelCase ) return _lowerCAmelCase : Union[str, Any] = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(_lowerCamelCase ) as f: _lowerCAmelCase : List[Any] = [x.rstrip() for x in f.readlines()][: len(_lowerCamelCase )] # Calculate metrics, save metrics, and save _generations.txt _lowerCAmelCase : List[str] = """translation""" in args.task _lowerCAmelCase : List[Any] = calculate_bleu if calc_bleu else calculate_rouge _lowerCAmelCase : str = """bleu""" if calc_bleu else """rouge""" _lowerCAmelCase : Dict = score_fn(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Any = len(_lowerCamelCase ) _lowerCAmelCase : int = time.time() - start_time _lowerCAmelCase : Optional[Any] = round(runtime / metrics["""n_obs"""] ,4 ) _lowerCAmelCase : Any = num_replicas # TODO(@stas00): add whatever metadata to metrics _lowerCAmelCase : Union[str, Any] = save_dir.joinpath(f"{args.type_path}_{metric_name}.json" ) save_json(_lowerCamelCase ,_lowerCamelCase ,indent=_lowerCamelCase ) print(_lowerCamelCase ) write_txt_file(_lowerCamelCase ,save_dir.joinpath(f"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(_lowerCamelCase ,save_dir.joinpath(f"{args.type_path}.target" ) ) else: shutil.rmtree(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> List: _lowerCAmelCase : Union[str, Any] = [] for partial_result in partial_results: records.extend(_lowerCamelCase ) _lowerCAmelCase : Any = sorted(_lowerCamelCase ,key=lambda _lowerCamelCase : x["id"] ) _lowerCAmelCase : str = [x["""pred"""] for x in records] return preds def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : List[str] ,_lowerCamelCase : List[str] ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files _lowerCAmelCase : Optional[int] = time.time() logger.info("""waiting for all nodes to finish""" ) _lowerCAmelCase : str = None while (time.time() - start_wait) < timeout: _lowerCAmelCase : List[Any] = list(save_dir.glob("""rank_*.json""" ) ) if len(_lowerCamelCase ) < num_replicas: continue try: # make sure all json files are fully saved _lowerCAmelCase : Any = lmap(_lowerCamelCase ,_lowerCamelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
712
"""simple docstring""" _a : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] _a : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
663
0
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Dict ,_lowerCamelCase : Union[str, Any] ) -> Tuple: # Initialise PyTorch model _lowerCAmelCase : str = RemBertConfig.from_json_file(_lowerCamelCase ) print("""Building PyTorch model from configuration: {}""".format(str(_lowerCamelCase ) ) ) _lowerCAmelCase : Optional[Any] = RemBertModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_lowerCamelCase ) ) torch.save(model.state_dict() ,_lowerCamelCase ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
713
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ShapEPipeline _UpperCamelCase : Optional[Any] = ["prompt"] _UpperCamelCase : Tuple = ["prompt"] _UpperCamelCase : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCamelCase : str = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 8 @property def __A ( self ): _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(a__ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowerCAmelCase : Any = PriorTransformer(**a__ ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : Dict = ShapERenderer(**a__ ) return model def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.dummy_prior _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : List[Any] = self.dummy_tokenizer _lowerCAmelCase : Dict = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=a__ , clip_sample=a__ , clip_sample_range=1.0 , ) _lowerCAmelCase : List[Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Dict = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = self.pipeline_class(**a__ ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) ) _lowerCAmelCase : List[str] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ): _lowerCAmelCase : Any = torch_device == """cpu""" _lowerCAmelCase : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a__ , relax_max_difference=a__ , ) def __A ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**a__ ) _lowerCAmelCase : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[Any] = self.get_dummy_inputs(a__ ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : str = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**a__ , num_images_per_prompt=a__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowerCAmelCase : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Any = pipe( """a shark""" , generator=a__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a__ , a__ )
714
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
663
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : int = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = "sew-d" def __init__( self , a__=32 , a__=768 , a__=12 , a__=12 , a__=3072 , a__=2 , a__=512 , a__=256 , a__=True , a__=True , a__=("p2c", "c2p") , a__="layer_norm" , a__="gelu_python" , a__=0.1 , a__=0.1 , a__=0.1 , a__=0.0 , a__=0.1 , a__=0.0_2 , a__=1e-7 , a__=1e-5 , a__="group" , a__="gelu" , a__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , a__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , a__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , a__=False , a__=128 , a__=16 , a__=True , a__=0.0_5 , a__=10 , a__=2 , a__=0.0 , a__=10 , a__=0 , a__="mean" , a__=False , a__=False , a__=256 , a__=0 , a__=1 , a__=2 , **a__ , ): super().__init__(**a__ , pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ ) _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[Any] = feat_extract_norm _lowerCAmelCase : Any = feat_extract_activation _lowerCAmelCase : Optional[int] = list(a__ ) _lowerCAmelCase : Dict = list(a__ ) _lowerCAmelCase : Tuple = list(a__ ) _lowerCAmelCase : int = conv_bias _lowerCAmelCase : Any = num_conv_pos_embeddings _lowerCAmelCase : List[Any] = num_conv_pos_embedding_groups _lowerCAmelCase : int = len(self.conv_dim ) _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : int = squeeze_factor _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Optional[Any] = position_buckets _lowerCAmelCase : List[str] = share_att_key _lowerCAmelCase : Optional[Any] = relative_attention _lowerCAmelCase : str = norm_rel_ebd _lowerCAmelCase : Any = list(a__ ) _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : List[str] = attention_dropout _lowerCAmelCase : Union[str, Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : int = final_dropout _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : List[Any] = feature_layer_norm_eps _lowerCAmelCase : str = initializer_range _lowerCAmelCase : List[str] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : List[Any] = apply_spec_augment _lowerCAmelCase : List[Any] = mask_time_prob _lowerCAmelCase : Any = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : Optional[int] = mask_feature_prob _lowerCAmelCase : List[str] = mask_feature_length _lowerCAmelCase : Any = mask_feature_min_masks # ctc loss _lowerCAmelCase : Tuple = ctc_loss_reduction _lowerCAmelCase : List[str] = ctc_zero_infinity # sequence classification _lowerCAmelCase : Union[str, Any] = use_weighted_layer_sum _lowerCAmelCase : Optional[int] = classifier_proj_size @property def __A ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = (PNDMScheduler,) _UpperCamelCase : Optional[Any] = (("num_inference_steps", 50),) def __A ( self , **a__ ): _lowerCAmelCase : Optional[int] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**a__ ) return config def __A ( self , a__=0 , **a__ ): _lowerCAmelCase : str = dict(self.forward_default_kwargs ) _lowerCAmelCase : str = kwargs.pop("""num_inference_steps""" , a__ ) _lowerCAmelCase : Tuple = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config(**a__ ) _lowerCAmelCase : Any = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals _lowerCAmelCase : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) _lowerCAmelCase : Any = scheduler_class.from_pretrained(a__ ) new_scheduler.set_timesteps(a__ ) # copy over dummy past residuals _lowerCAmelCase : str = dummy_past_residuals[:] _lowerCAmelCase : Optional[int] = scheduler.step_prk(a__ , a__ , a__ , **a__ ).prev_sample _lowerCAmelCase : Any = new_scheduler.step_prk(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCAmelCase : Tuple = scheduler.step_plms(a__ , a__ , a__ , **a__ ).prev_sample _lowerCAmelCase : Optional[int] = new_scheduler.step_plms(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self ): pass def __A ( self , a__=0 , **a__ ): _lowerCAmelCase : List[str] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop("""num_inference_steps""" , a__ ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : str = 0.1 * sample _lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) _lowerCAmelCase : List[Any] = scheduler_class.from_pretrained(a__ ) # copy over dummy past residuals new_scheduler.set_timesteps(a__ ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : Optional[int] = dummy_past_residuals[:] _lowerCAmelCase : int = scheduler.step_prk(a__ , a__ , a__ , **a__ ).prev_sample _lowerCAmelCase : int = new_scheduler.step_prk(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCAmelCase : List[str] = scheduler.step_plms(a__ , a__ , a__ , **a__ ).prev_sample _lowerCAmelCase : Optional[Any] = new_scheduler.step_plms(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self , **a__ ): _lowerCAmelCase : List[Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**a__ ) _lowerCAmelCase : Tuple = scheduler_class(**a__ ) _lowerCAmelCase : List[Any] = 10 _lowerCAmelCase : Optional[int] = self.dummy_model() _lowerCAmelCase : int = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCAmelCase : int = model(a__ , a__ ) _lowerCAmelCase : List[Any] = scheduler.step_prk(a__ , a__ , a__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCAmelCase : Dict = model(a__ , a__ ) _lowerCAmelCase : Tuple = scheduler.step_plms(a__ , a__ , a__ ).prev_sample return sample def __A ( self ): _lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) _lowerCAmelCase : Optional[Any] = kwargs.pop("""num_inference_steps""" , a__ ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Dict = scheduler_class(**a__ ) _lowerCAmelCase : Optional[int] = self.dummy_sample _lowerCAmelCase : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(a__ , """set_timesteps""" ): scheduler.set_timesteps(a__ ) elif num_inference_steps is not None and not hasattr(a__ , """set_timesteps""" ): _lowerCAmelCase : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] _lowerCAmelCase : Dict = dummy_past_residuals[:] _lowerCAmelCase : Union[str, Any] = scheduler.step_prk(a__ , 0 , a__ , **a__ ).prev_sample _lowerCAmelCase : Any = scheduler.step_prk(a__ , 1 , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCAmelCase : Tuple = scheduler.step_plms(a__ , 0 , a__ , **a__ ).prev_sample _lowerCAmelCase : List[Any] = scheduler.step_plms(a__ , 1 , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __A ( self ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def __A ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a__ ) _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config(steps_offset=1 ) _lowerCAmelCase : Optional[Any] = scheduler_class(**a__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def __A ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def __A ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a__ ) def __A ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def __A ( self ): for t in [1, 5, 10]: self.check_over_forward(time_step=a__ ) def __A ( self ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=a__ ) def __A ( self ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 _lowerCAmelCase : Dict = 27 for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Union[str, Any] = self.get_scheduler_config() _lowerCAmelCase : int = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCAmelCase : Optional[Any] = scheduler.step_prk(a__ , a__ , a__ ).prev_sample def __A ( self ): with self.assertRaises(a__ ): _lowerCAmelCase : List[Any] = self.scheduler_classes[0] _lowerCAmelCase : List[Any] = self.get_scheduler_config() _lowerCAmelCase : Optional[Any] = scheduler_class(**a__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __A ( self ): _lowerCAmelCase : Dict = self.full_loop() _lowerCAmelCase : Union[str, Any] = torch.sum(torch.abs(a__ ) ) _lowerCAmelCase : int = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def __A ( self ): _lowerCAmelCase : List[str] = self.full_loop(prediction_type="""v_prediction""" ) _lowerCAmelCase : Optional[int] = torch.sum(torch.abs(a__ ) ) _lowerCAmelCase : int = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def __A ( self ): # We specify different beta, so that the first alpha is 0.99 _lowerCAmelCase : str = self.full_loop(set_alpha_to_one=a__ , beta_start=0.0_1 ) _lowerCAmelCase : Dict = torch.sum(torch.abs(a__ ) ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def __A ( self ): # We specify different beta, so that the first alpha is 0.99 _lowerCAmelCase : Dict = self.full_loop(set_alpha_to_one=a__ , beta_start=0.0_1 ) _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(a__ ) ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
716
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = DiTPipeline _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=a__ , ) _lowerCAmelCase : Optional[int] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Optional[Any] = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(a__ ) else: _lowerCAmelCase : Tuple = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Any = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : List[Any] = """cpu""" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(a__ ) _lowerCAmelCase : List[str] = pipe(**a__ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __A ( self ): self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : int = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase : Union[str, Any] = pipe.get_label_ids(a__ ) _lowerCAmelCase : Any = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def __A ( self ): _lowerCAmelCase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase : List[str] = ["""vase""", """umbrella"""] _lowerCAmelCase : Optional[int] = pipe.get_label_ids(a__ ) _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(a__ , a__ ): _lowerCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
663
0
"""simple docstring""" _a : Optional[Any] = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _a : List[str] = concatenate_datasets _a : Optional[Any] = DownloadConfig _a : Tuple = DownloadManager _a : List[str] = DownloadMode _a : Tuple = DownloadConfig _a : Union[str, Any] = DownloadMode _a : Optional[int] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *a__ , **a__ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
663
0
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : str = torch.nn.Linear(10 , 10 ) _lowerCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCAmelCase : Optional[Any] = Accelerator() _lowerCAmelCase : Tuple = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
718
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
0
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) _a : Dict = 299_792_458 # Symbols _a : Union[str, Any] = symbols('ct x y z') def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ) -> float: if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ) -> float: return 1 / sqrt(1 - beta(_lowerCamelCase ) ** 2 ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ) -> np.ndarray: return np.array( [ [gamma(_lowerCamelCase ), -gamma(_lowerCamelCase ) * beta(_lowerCamelCase ), 0, 0], [-gamma(_lowerCamelCase ) * beta(_lowerCamelCase ), gamma(_lowerCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : np.ndarray | None = None ) -> np.ndarray: # Ensure event is not empty if event is None: _lowerCAmelCase : Tuple = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_lowerCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: _a : Union[str, Any] = transform(29_979_245) print('Example of four vector: ') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values _a : Optional[Any] = {ct: c, x: 1, y: 1, z: 1} _a : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
719
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
0
"""simple docstring""" import numpy as np from transformers import Pipeline def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Dict: _lowerCAmelCase : List[str] = np.max(_lowerCamelCase ,axis=-1 ,keepdims=_lowerCamelCase ) _lowerCAmelCase : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=_lowerCamelCase ) class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self , **a__ ): _lowerCAmelCase : int = {} if "second_text" in kwargs: _lowerCAmelCase : Optional[int] = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def __A ( self , a__ , a__=None ): return self.tokenizer(a__ , text_pair=a__ , return_tensors=self.framework ) def __A ( self , a__ ): return self.model(**a__ ) def __A ( self , a__ ): _lowerCAmelCase : Any = model_outputs.logits[0].numpy() _lowerCAmelCase : List[Any] = softmax(a__ ) _lowerCAmelCase : List[str] = np.argmax(a__ ) _lowerCAmelCase : Optional[int] = self.model.config.idalabel[best_class] _lowerCAmelCase : Optional[Any] = probabilities[best_class].item() _lowerCAmelCase : Any = logits.tolist() return {"label": label, "score": score, "logits": logits}
720
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,_lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
663
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : list[str] ) -> str: _lowerCAmelCase : List[str] = """""" for word_or_phrase in separated: if not isinstance(_lowerCamelCase ,_lowerCamelCase ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(_lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
0
def UpperCAmelCase__ ( )->int: return [ a * b * (1_0_0_0 - a - b) for a in range(1 , 9_9_9 ) for b in range(_SCREAMING_SNAKE_CASE , 9_9_9 ) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(F"""{solution() = }""")
664
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
664
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _lowerCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_lowerCAmelCase ) ) def __lowerCAmelCase ( self , _lowerCAmelCase ): return "lower newer", "lower newer" def __lowerCAmelCase ( self ): _lowerCAmelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _lowerCAmelCase = '''lower''' _lowerCAmelCase = ['''low''', '''er</w>'''] _lowerCAmelCase = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = tokens + ['''<unk>'''] _lowerCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) # Simple input _lowerCAmelCase = '''This is a simple input''' _lowerCAmelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCAmelCase = ('''This is a simple input''', '''This is a pair''') _lowerCAmelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='''max_length''' , ) def __lowerCAmelCase ( self ): pass @require_ftfy @require_spacy @require_tokenizers class UpperCAmelCase ( snake_case_ ): pass
664
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
664
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
1
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''MCTCTFeatureExtractor''' SCREAMING_SNAKE_CASE__ = '''AutoTokenizer''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCAmelCase , **_lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _lowerCAmelCase = kwargs.pop('''raw_speech''' ) else: _lowerCAmelCase = kwargs.pop('''audio''' , _lowerCAmelCase ) _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) _lowerCAmelCase = kwargs.pop('''text''' , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _lowerCAmelCase = self.feature_extractor(_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase = encodings['''input_ids'''] return inputs def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = kwargs.pop('''input_features''' , _lowerCAmelCase ) _lowerCAmelCase = kwargs.pop('''labels''' , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if input_features is not None: _lowerCAmelCase = self.feature_extractor.pad(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) if labels is not None: _lowerCAmelCase = self.tokenizer.pad(_lowerCAmelCase , **_lowerCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: _lowerCAmelCase = labels['''input_ids'''] return input_features def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @contextmanager def __lowerCAmelCase ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _lowerCAmelCase = True _lowerCAmelCase = self.tokenizer yield _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False
664
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] _lowerCAmelCase = DisjunctiveConstraint(_lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , _lowerCAmelCase ) ) with self.assertRaises(_lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_lowerCAmelCase ): DisjunctiveConstraint(_lowerCAmelCase ) # fails here def __lowerCAmelCase ( self ): _lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] _lowerCAmelCase = DisjunctiveConstraint(_lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = dc.update(1 ) _lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(_lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = dc.update(2 ) _lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(_lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = dc.update(3 ) _lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(_lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _lowerCAmelCase = DisjunctiveConstraint(_lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
664
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
1
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->str: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = divmod(_SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(_SCREAMING_SNAKE_CASE ) + str(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->str: _lowerCAmelCase = str(_SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError('''No input value was provided''' ) _lowerCAmelCase = '''-''' if number.startswith('''-''' ) else '''''' _lowerCAmelCase = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f'''{negative}0b{binary_recursive(int(_SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
664
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
664
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
1
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1_0_0_0 )->int: _lowerCAmelCase , _lowerCAmelCase = 1, 1 _lowerCAmelCase = 2 while True: _lowerCAmelCase = 0 _lowerCAmelCase = fa + fa _lowerCAmelCase , _lowerCAmelCase = fa, f index += 1 for _ in str(_SCREAMING_SNAKE_CASE ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
664
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
664
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 2_5_6 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self , *, _lowerCAmelCase = 0.85 , ): _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_duplicate_clusters() with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str: _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple: global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) return ds_filter, duplicate_clusters
664
1
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Optional[int]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str]=0 )->List[Any]: return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x[column] ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str=float('''inf''' ) )->Dict: for i in range(points_counts - 1 ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCAmelCase = current_dis return min_dis def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str]=float('''inf''' ) )->Union[str, Any]: for i in range(min(6 , points_counts - 1 ) , _SCREAMING_SNAKE_CASE ): for j in range(max(0 , i - 6 ) , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCAmelCase = current_dis return min_dis def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->Optional[int]: # base case if points_counts <= 3: return dis_between_closest_pair(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # recursion _lowerCAmelCase = points_counts // 2 _lowerCAmelCase = closest_pair_of_points_sqr( _SCREAMING_SNAKE_CASE , points_sorted_on_y[:mid] , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = closest_pair_of_points_sqr( _SCREAMING_SNAKE_CASE , points_sorted_on_y[mid:] , points_counts - mid ) _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = dis_between_closest_in_strip( _SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) return min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] )->str: _lowerCAmelCase = column_based_sort(_SCREAMING_SNAKE_CASE , column=0 ) _lowerCAmelCase = column_based_sort(_SCREAMING_SNAKE_CASE , column=1 ) return ( closest_pair_of_points_sqr( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase_ = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
664
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = process _lowerCAmelCase = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): _lowerCAmelCase = self.dataset[i] _lowerCAmelCase = self.process(_lowerCAmelCase , **self.params ) return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = loader _lowerCAmelCase = infer _lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowerCAmelCase = None _lowerCAmelCase = loader_batch_size # Internal bookkeeping _lowerCAmelCase = None _lowerCAmelCase = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first _lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowerCAmelCase = next(self.iterator ) _lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _lowerCAmelCase = processed _lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) _lowerCAmelCase = None return self def __lowerCAmelCase ( self ): if self.subiterator is None: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) _lowerCAmelCase = next(self.subiterator ) return processed class UpperCAmelCase ( snake_case_ ): def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowerCAmelCase = False _lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size _lowerCAmelCase = processed _lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: _lowerCAmelCase = processed _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) return accumulator class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return self.dataset[i][self.key] class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = keya _lowerCAmelCase = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
664
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCAmelCase : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None def __lowerCAmelCase ( self ): return self.__class__(**{k: copy.deepcopy(_lowerCAmelCase ) for k, v in self.__dict__.items()} )
664
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Union[str, Any] , **_SCREAMING_SNAKE_CASE : Tuple )->Tuple: requires_backends(_SCREAMING_SNAKE_CASE , ['''torch'''] ) def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: requires_backends(_SCREAMING_SNAKE_CASE , ['''torch'''] ) def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Any )->Tuple: requires_backends(_SCREAMING_SNAKE_CASE , ['''torch'''] ) def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Any )->Dict: requires_backends(_SCREAMING_SNAKE_CASE , ['''torch'''] ) def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : List[str] )->Dict: requires_backends(_SCREAMING_SNAKE_CASE , ['''torch'''] ) def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Any , **_SCREAMING_SNAKE_CASE : Optional[int] )->Tuple: requires_backends(_SCREAMING_SNAKE_CASE , ['''torch'''] ) def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Union[str, Any] , **_SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: requires_backends(_SCREAMING_SNAKE_CASE , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) class UpperCAmelCase ( metaclass=snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['''torch'''] )
664
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = 3 _lowerCAmelCase = 250 _lowerCAmelCase = ids_tensor((batch_size, length) , _lowerCAmelCase ) _lowerCAmelCase = torch.ones((batch_size, length) , device=_lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(5 ) _lowerCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MaxLengthCriteria(max_length=10 ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(5 ) _lowerCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) def __lowerCAmelCase ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _lowerCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_lowerCAmelCase ) , 1 )
664
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCAmelCase ( snake_case_ ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
664
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
1
from functools import lru_cache @lru_cache def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->int: if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
664
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )->Optional[Any]: assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] )->Any: _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCAmelCase = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str )->List[str]: _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowerCAmelCase = features.copy() if features else default_expected_features _lowerCAmelCase = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->int: with contextlib.closing(sqlitea.connect(_SCREAMING_SNAKE_CASE ) ) as con: _lowerCAmelCase = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict )->Dict: _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''tmp.sql''' ) _lowerCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(_SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() _lowerCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] )->str: _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''tmp.sql''' ) _lowerCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(_SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() _lowerCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = iter_sql_file(_SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] )->Optional[Any]: _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''tmp.sql''' ) _lowerCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_SCREAMING_SNAKE_CASE ).read() with pytest.raises(_SCREAMING_SNAKE_CASE ): SqlDatasetWriter(_SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
664
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCAmelCase_ = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" UpperCAmelCase_ = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , ): _lowerCAmelCase = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _lowerCAmelCase = TER( normalized=_lowerCAmelCase , no_punct=_lowerCAmelCase , asian_support=_lowerCAmelCase , case_sensitive=_lowerCAmelCase , ) _lowerCAmelCase = sb_ter.corpus_score(_lowerCAmelCase , _lowerCAmelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
664
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
1
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase : @staticmethod def __lowerCAmelCase ( *_lowerCAmelCase , **_lowerCAmelCase ): pass def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. UpperCAmelCase_ = ( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = pipeline( '''document-question-answering''' , model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = list(zip(*apply_tesseract(load_image(_lowerCAmelCase ) , _lowerCAmelCase , '''''' ) ) ) _lowerCAmelCase = '''What is the placebo?''' _lowerCAmelCase = [ { '''image''': load_image(_lowerCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dqa_pipeline(_lowerCAmelCase , top_k=2 ) self.assertEqual( _lowerCAmelCase , [ [ {'''score''': ANY(_lowerCAmelCase ), '''answer''': ANY(_lowerCAmelCase ), '''start''': ANY(_lowerCAmelCase ), '''end''': ANY(_lowerCAmelCase )}, {'''score''': ANY(_lowerCAmelCase ), '''answer''': ANY(_lowerCAmelCase ), '''start''': ANY(_lowerCAmelCase ), '''end''': ANY(_lowerCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __lowerCAmelCase ( self ): _lowerCAmelCase = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = '''How many cats are there?''' _lowerCAmelCase = [ {'''score''': 0.0_001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] _lowerCAmelCase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(_lowerCAmelCase , decimals=4 ) , _lowerCAmelCase ) _lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(_lowerCAmelCase , decimals=4 ) , _lowerCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _lowerCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _lowerCAmelCase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual(_lowerCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes _lowerCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , words=_lowerCAmelCase , boxes=_lowerCAmelCase , top_k=2 ) self.assertEqual(_lowerCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __lowerCAmelCase ( self ): _lowerCAmelCase = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = '''What is the invoice number?''' _lowerCAmelCase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.9_944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.9_944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __lowerCAmelCase ( self ): _lowerCAmelCase = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = '''What is the invoice number?''' _lowerCAmelCase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.9_974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.9_974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __lowerCAmelCase ( self ): _lowerCAmelCase = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=_lowerCAmelCase ) _lowerCAmelCase = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=_lowerCAmelCase , revision='''3dc6de3''' , ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = '''What is the invoice number?''' _lowerCAmelCase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.4_251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) _lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.4_251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) _lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) _lowerCAmelCase = list(zip(*apply_tesseract(load_image(_lowerCAmelCase ) , _lowerCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None _lowerCAmelCase = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.4_251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __lowerCAmelCase ( self ): _lowerCAmelCase = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=_lowerCAmelCase ) _lowerCAmelCase = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=_lowerCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = '''What is the invoice number?''' _lowerCAmelCase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.9_999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) _lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) _lowerCAmelCase = list(zip(*apply_tesseract(load_image(_lowerCAmelCase ) , _lowerCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None _lowerCAmelCase = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.9_999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def __lowerCAmelCase ( self ): _lowerCAmelCase = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = '''What is the invoice number?''' _lowerCAmelCase = dqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(_lowerCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __lowerCAmelCase ( self ): pass
664
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ = 1_6 UpperCAmelCase_ = 3_2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 1_6 )->Tuple: _lowerCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowerCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_SCREAMING_SNAKE_CASE : List[Any] ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_SCREAMING_SNAKE_CASE : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase = 1_6 elif accelerator.mixed_precision != "no": _lowerCAmelCase = 8 else: _lowerCAmelCase = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowerCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] )->Optional[Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _SCREAMING_SNAKE_CASE ) == "1": _lowerCAmelCase = 2 # Initialize accelerator _lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase = config['''lr'''] _lowerCAmelCase = int(config['''num_epochs'''] ) _lowerCAmelCase = int(config['''seed'''] ) _lowerCAmelCase = int(config['''batch_size'''] ) _lowerCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_SCREAMING_SNAKE_CASE ) def inner_training_loop(_SCREAMING_SNAKE_CASE : int ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate scheduler _lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=1_0_0 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = outputs.loss accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) _lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _SCREAMING_SNAKE_CASE ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase__ ( )->int: _lowerCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=24 , _lowerCAmelCase=2 , _lowerCAmelCase=6 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=None , _lowerCAmelCase=1_000 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = scope _lowerCAmelCase = range_bbox def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase = bbox[i, j, 3] _lowerCAmelCase = bbox[i, j, 1] _lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase = bbox[i, j, 2] _lowerCAmelCase = bbox[i, j, 0] _lowerCAmelCase = t _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCAmelCase ( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = LiltModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , bbox=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , bbox=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = LiltForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = LiltForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return True def __lowerCAmelCase ( self ): _lowerCAmelCase = LiltModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = LiltModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): _lowerCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_lowerCAmelCase ) _lowerCAmelCase = torch.tensor([[1, 2]] , device=_lowerCAmelCase ) _lowerCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase ) _lowerCAmelCase = torch.Size([1, 2, 768] ) _lowerCAmelCase = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=_lowerCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _lowerCAmelCase , atol=1E-3 ) )
664
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCAmelCase_ = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) UpperCAmelCase_ = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} UpperCAmelCase_ = "zero2" UpperCAmelCase_ = "zero3" UpperCAmelCase_ = [ZEROa, ZEROa] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] )->Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCAmelCase = parameterized.to_safe_name('''_'''.join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test UpperCAmelCase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class UpperCAmelCase ( snake_case_ ): @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCAmelCase , name_func=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): self.run_and_check( stage=_lowerCAmelCase , model=_lowerCAmelCase , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) def __lowerCAmelCase ( self , _lowerCAmelCase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 10 , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = True , ): _lowerCAmelCase = models[model] _lowerCAmelCase = self.run_trainer( stage=_lowerCAmelCase , model_name=_lowerCAmelCase , eval_steps=_lowerCAmelCase , num_train_epochs=1 , distributed=_lowerCAmelCase , fpaa=_lowerCAmelCase , ) self.do_checks(_lowerCAmelCase ) return output_dir def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 10 , _lowerCAmelCase = 1 , _lowerCAmelCase = True , _lowerCAmelCase = True , ): _lowerCAmelCase = self.get_auto_remove_tmp_dir('''./xxx''' , after=_lowerCAmelCase ) _lowerCAmelCase = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_lowerCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCAmelCase = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCAmelCase = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCAmelCase = self.get_launcher(_lowerCAmelCase ) _lowerCAmelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) return output_dir def __lowerCAmelCase ( self , _lowerCAmelCase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCAmelCase = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
664
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
1
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : int )->list[tuple[int, int]]: _lowerCAmelCase , _lowerCAmelCase = position _lowerCAmelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _lowerCAmelCase = [] for position in positions: _lowerCAmelCase , _lowerCAmelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_SCREAMING_SNAKE_CASE ) return permissible_positions def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[list[int]] )->bool: return not any(elem == 0 for row in board for elem in row ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : int )->bool: if is_complete(_SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase , _lowerCAmelCase = position if board[y][x] == 0: _lowerCAmelCase = curr + 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , curr + 1 ): return True _lowerCAmelCase = 0 return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->list[list[int]]: _lowerCAmelCase = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board _lowerCAmelCase = 0 _lowerCAmelCase = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
664
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = params _lowerCAmelCase = np.array(_lowerCAmelCase ) _lowerCAmelCase = np.array([len(_lowerCAmelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , _lowerCAmelCase ): return (self.token_ids[index], self.lengths[index]) def __len__( self ): return len(self.lengths ) def __lowerCAmelCase ( self ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.params.max_model_input_size _lowerCAmelCase = self.lengths > max_len logger.info(F'''Splitting {sum(_lowerCAmelCase )} too long sequences.''' ) def divide_chunks(_lowerCAmelCase , _lowerCAmelCase ): return [l[i : i + n] for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase )] _lowerCAmelCase = [] _lowerCAmelCase = [] if self.params.mlm: _lowerCAmelCase , _lowerCAmelCase = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: _lowerCAmelCase , _lowerCAmelCase = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _lowerCAmelCase = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _lowerCAmelCase = np.insert(_lowerCAmelCase , 0 , _lowerCAmelCase ) if sub_s[-1] != sep_id: _lowerCAmelCase = np.insert(_lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) assert len(_lowerCAmelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_lowerCAmelCase ) new_tok_ids.extend(_lowerCAmelCase ) new_lengths.extend([len(_lowerCAmelCase ) for l in sub_seqs] ) _lowerCAmelCase = np.array(_lowerCAmelCase ) _lowerCAmelCase = np.array(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = len(self ) _lowerCAmelCase = self.lengths > 11 _lowerCAmelCase = self.token_ids[indices] _lowerCAmelCase = self.lengths[indices] _lowerCAmelCase = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def __lowerCAmelCase ( self ): if "unk_token" not in self.params.special_tok_ids: return else: _lowerCAmelCase = self.params.special_tok_ids['''unk_token'''] _lowerCAmelCase = len(self ) _lowerCAmelCase = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _lowerCAmelCase = (unk_occs / self.lengths) < 0.5 _lowerCAmelCase = self.token_ids[indices] _lowerCAmelCase = self.lengths[indices] _lowerCAmelCase = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def __lowerCAmelCase ( self ): if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = [t[0] for t in batch] _lowerCAmelCase = [t[1] for t in batch] assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) # Max for paddings _lowerCAmelCase = max(_lowerCAmelCase ) # Pad token ids if self.params.mlm: _lowerCAmelCase = self.params.special_tok_ids['''pad_token'''] else: _lowerCAmelCase = self.params.special_tok_ids['''unk_token'''] _lowerCAmelCase = [list(t.astype(_lowerCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(_lowerCAmelCase )) for t in token_ids] assert len(tk_ ) == len(_lowerCAmelCase ) assert all(len(_lowerCAmelCase ) == max_seq_len_ for t in tk_ ) _lowerCAmelCase = torch.tensor(tk_ ) # (bs, max_seq_len_) _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) # (bs) return tk_t, lg_t
664
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
664
1
from collections import namedtuple UpperCAmelCase_ = namedtuple("from_to", "from_ to") UpperCAmelCase_ = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1_0_0_0), "kilolitre": from_to(1, 1), "gallon": from_to(0.0_0454, 264.172), "cubicyard": from_to(0.7_6455, 1.3_0795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.0_0023_6588, 4226.75), } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ''', '''.join(_SCREAMING_SNAKE_CASE ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ''', '''.join(_SCREAMING_SNAKE_CASE ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
664
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
664
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE__ = '''AutoImageProcessor''' SCREAMING_SNAKE_CASE__ = '''AutoTokenizer''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self.image_processor def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if images is not None: _lowerCAmelCase = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and images is not None: _lowerCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): return ["input_ids", "attention_mask", "pixel_values"]
664
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCAmelCase_ = False UpperCAmelCase_ = False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Namespace )->Optional[int]: return TrainCommand(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( snake_case_ ): @staticmethod def __lowerCAmelCase ( _lowerCAmelCase ): _lowerCAmelCase = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowerCAmelCase , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=_lowerCAmelCase , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=_lowerCAmelCase , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=_lowerCAmelCase , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=_lowerCAmelCase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowerCAmelCase , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=_lowerCAmelCase , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=_lowerCAmelCase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=_lowerCAmelCase , default=32 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=_lowerCAmelCase , default=64 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=_lowerCAmelCase , default=3E-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=_lowerCAmelCase , default=1E-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=_lowerCAmelCase ) def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = logging.get_logger('''transformers-cli/training''' ) _lowerCAmelCase = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowerCAmelCase ) _lowerCAmelCase = args.output _lowerCAmelCase = args.column_label _lowerCAmelCase = args.column_text _lowerCAmelCase = args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase = None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase = args.validation_split _lowerCAmelCase = args.train_batch_size _lowerCAmelCase = args.valid_batch_size _lowerCAmelCase = args.learning_rate _lowerCAmelCase = args.adam_epsilon def __lowerCAmelCase ( self ): if self.framework == "tf": return self.run_tf() return self.run_torch() def __lowerCAmelCase ( self ): raise NotImplementedError def __lowerCAmelCase ( self ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
664
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
1
UpperCAmelCase_ = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 1_0: "a", 1_1: "b", 1_2: "c", 1_3: "d", 1_4: "e", 1_5: "f", } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float )->str: assert type(_SCREAMING_SNAKE_CASE ) in (int, float) and decimal == int(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = '''''' _lowerCAmelCase = False if decimal < 0: _lowerCAmelCase = True decimal *= -1 while decimal > 0: _lowerCAmelCase , _lowerCAmelCase = divmod(_SCREAMING_SNAKE_CASE , 1_6 ) _lowerCAmelCase = values[remainder] + hexadecimal _lowerCAmelCase = '''0x''' + hexadecimal if negative: _lowerCAmelCase = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
664
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ = { "facebook/dpr-ctx_encoder-single-nq-base": 5_1_2, "facebook/dpr-ctx_encoder-multiset-base": 5_1_2, } UpperCAmelCase_ = { "facebook/dpr-question_encoder-single-nq-base": 5_1_2, "facebook/dpr-question_encoder-multiset-base": 5_1_2, } UpperCAmelCase_ = { "facebook/dpr-reader-single-nq-base": 5_1_2, "facebook/dpr-reader-multiset-base": 5_1_2, } UpperCAmelCase_ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase_ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase_ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ = DPRContextEncoderTokenizer class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ = DPRQuestionEncoderTokenizer UpperCAmelCase_ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCAmelCase_ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCAmelCase_ = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(snake_case_ ) class UpperCAmelCase : def __call__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): if titles is None and texts is None: return super().__call__( _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) elif titles is None or texts is None: _lowerCAmelCase = titles if texts is None else texts return super().__call__( _lowerCAmelCase , _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) _lowerCAmelCase = titles if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [titles] _lowerCAmelCase = texts if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [texts] _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = questions if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [questions] * n_passages assert len(_lowerCAmelCase ) == len( _lowerCAmelCase ), F'''There should be as many titles than texts but got {len(_lowerCAmelCase )} titles and {len(_lowerCAmelCase )} texts.''' _lowerCAmelCase = super().__call__(_lowerCAmelCase , _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase )['''input_ids'''] _lowerCAmelCase = super().__call__(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase )['''input_ids'''] _lowerCAmelCase = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCAmelCase , _lowerCAmelCase ) ] } if return_attention_mask is not False: _lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase = attention_mask return self.pad(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 16 , _lowerCAmelCase = 64 , _lowerCAmelCase = 4 , ): _lowerCAmelCase = reader_input['''input_ids'''] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = reader_output[:3] _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = sorted(range(_lowerCAmelCase ) , reverse=_lowerCAmelCase , key=relevance_logits.__getitem__ ) _lowerCAmelCase = [] for doc_id in sorted_docs: _lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCAmelCase , top_spans=_lowerCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCAmelCase , start_index=_lowerCAmelCase , end_index=_lowerCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = [] for start_index, start_score in enumerate(_lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] , reverse=_lowerCAmelCase ) _lowerCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'''Wrong span indices: [{start_index}:{end_index}]''' _lowerCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(snake_case_ ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = READER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = READER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ = DPRReaderTokenizer
664
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''xlm-prophetnet''' SCREAMING_SNAKE_CASE__ = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self , _lowerCAmelCase = 0.1 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 30_522 , _lowerCAmelCase = 1_024 , _lowerCAmelCase = 4_096 , _lowerCAmelCase = 12 , _lowerCAmelCase = 16 , _lowerCAmelCase = 4_096 , _lowerCAmelCase = 12 , _lowerCAmelCase = 16 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 512 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 32 , _lowerCAmelCase = 128 , _lowerCAmelCase = False , _lowerCAmelCase = 0.0 , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = 1 , _lowerCAmelCase = 2 , **_lowerCAmelCase , ): _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = num_encoder_layers _lowerCAmelCase = num_encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = num_decoder_layers _lowerCAmelCase = num_decoder_attention_heads _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = init_std # Normal(0, this parameter) _lowerCAmelCase = activation_function # parameters for xlmprophetnet _lowerCAmelCase = ngram _lowerCAmelCase = num_buckets _lowerCAmelCase = relative_max_distance _lowerCAmelCase = disable_ngram_loss _lowerCAmelCase = eps # 3 Types of Dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = dropout _lowerCAmelCase = use_cache super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) @property def __lowerCAmelCase ( self ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __lowerCAmelCase ( self , _lowerCAmelCase ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
664
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=30 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=0.6 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = mask_ratio _lowerCAmelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCAmelCase = (image_size // patch_size) ** 2 _lowerCAmelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = TFViTMAEModel(config=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = TFViTMAEForPreTraining(_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , training=_lowerCAmelCase ) # expected sequence length = num_patches _lowerCAmelCase = (self.image_size // self.patch_size) ** 2 _lowerCAmelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = TFViTMAEForPreTraining(_lowerCAmelCase ) _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(_lowerCAmelCase , training=_lowerCAmelCase ) _lowerCAmelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = config_and_inputs _lowerCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( snake_case_ ,snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): _lowerCAmelCase = TFViTMAEModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __lowerCAmelCase ( self ): pass def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): # make the mask reproducible np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , noise=_lowerCAmelCase ) _lowerCAmelCase = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCAmelCase = model(**_lowerCAmelCase , noise=_lowerCAmelCase ) _lowerCAmelCase = outputs_dict[0].numpy() _lowerCAmelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def __lowerCAmelCase ( self ): # make the mask reproducible np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCAmelCase ): _lowerCAmelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCAmelCase ): _lowerCAmelCase = v.numpy() else: _lowerCAmelCase = np.array(_lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = prepare_numpy_arrays(_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , noise=_lowerCAmelCase ) _lowerCAmelCase = model(**_lowerCAmelCase , noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # make masks reproducible np.random.seed(2 ) _lowerCAmelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase = tf.constant(_lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCAmelCase = tf_noise super().check_pt_tf_models(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # make mask reproducible np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCAmelCase ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(_lowerCAmelCase , _lowerCAmelCase ),) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCAmelCase , '''_keras_serializable''' , _lowerCAmelCase ) } _lowerCAmelCase = int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase = tf.convert_to_tensor(_lowerCAmelCase ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: _lowerCAmelCase = main_layer_class(_lowerCAmelCase ) _lowerCAmelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _lowerCAmelCase = tf.keras.Model(_lowerCAmelCase , outputs=main_layer(_lowerCAmelCase ) ) _lowerCAmelCase = model(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(_lowerCAmelCase , '''keras_model.h5''' ) model.save(_lowerCAmelCase ) _lowerCAmelCase = tf.keras.models.load_model( _lowerCAmelCase , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCAmelCase , tf.keras.Model ) _lowerCAmelCase = model(_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase , _lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): # make mask reproducible np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": _lowerCAmelCase = outputs.last_hidden_state.numpy() _lowerCAmelCase = 0 else: _lowerCAmelCase = outputs.logits.numpy() _lowerCAmelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase , saved_model=_lowerCAmelCase ) _lowerCAmelCase = model_class.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": _lowerCAmelCase = after_outputs['''last_hidden_state'''].numpy() _lowerCAmelCase = 0 else: _lowerCAmelCase = after_outputs['''logits'''].numpy() _lowerCAmelCase = 0 _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1E-5 ) def __lowerCAmelCase ( self ): # make mask reproducible np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , noise=_lowerCAmelCase ) _lowerCAmelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCAmelCase ) _lowerCAmelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _lowerCAmelCase = model_class.from_config(model.config ) _lowerCAmelCase = new_model(_lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) _lowerCAmelCase = new_model(_lowerCAmelCase , noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase , _lowerCAmelCase ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __lowerCAmelCase ( self ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __lowerCAmelCase ( self ): pass @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(_lowerCAmelCase ) def UpperCAmelCase__ ( )->Optional[Any]: _lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) _lowerCAmelCase = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCAmelCase = ViTMAEConfig() _lowerCAmelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCAmelCase = np.random.uniform(size=(1, num_patches) ) # forward pass _lowerCAmelCase = model(**_lowerCAmelCase , noise=_lowerCAmelCase ) # verify the logits _lowerCAmelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowerCAmelCase = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 )
664
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
1
UpperCAmelCase_ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
664
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 2_5_6 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self , *, _lowerCAmelCase = 0.85 , ): _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_duplicate_clusters() with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str: _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple: global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) return ds_filter, duplicate_clusters
664
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCAmelCase_ = "\\n Text data.\n Second line of data." UpperCAmelCase_ = "file" @pytest.fixture(scope='''session''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->str: _lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') _lowerCAmelCase = bytes(_SCREAMING_SNAKE_CASE , '''utf-8''' ) with zstd.open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->int: with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , '''w''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] )->Optional[Any]: _lowerCAmelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} _lowerCAmelCase = input_paths[compression_format] _lowerCAmelCase = tmp_path / '''cache''' _lowerCAmelCase = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: _lowerCAmelCase = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: _lowerCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple )->int: _lowerCAmelCase = '''custom_cache''' _lowerCAmelCase = '''custom_extracted_dir''' _lowerCAmelCase = tmp_path / '''custom_extracted_path''' if default_extracted: _lowerCAmelCase = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCAmelCase = xz_file _lowerCAmelCase = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] )->Union[str, Any]: # absolute path _lowerCAmelCase = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path _lowerCAmelCase = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->int: # absolute path _lowerCAmelCase = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path _lowerCAmelCase = '''./__missing_file__.txt''' with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->Tuple: _lowerCAmelCase = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(_SCREAMING_SNAKE_CASE ) as f: _lowerCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->Optional[int]: with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->Optional[int]: _lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get('''https://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get('''ftp://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Any: _lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get('''s3://huggingface.co''' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head('''s3://huggingface.co''' )
664
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = process _lowerCAmelCase = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): _lowerCAmelCase = self.dataset[i] _lowerCAmelCase = self.process(_lowerCAmelCase , **self.params ) return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowerCAmelCase = loader _lowerCAmelCase = infer _lowerCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowerCAmelCase = None _lowerCAmelCase = loader_batch_size # Internal bookkeeping _lowerCAmelCase = None _lowerCAmelCase = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowerCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowerCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Convert ModelOutput to tuple first _lowerCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowerCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowerCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowerCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowerCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowerCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowerCAmelCase = self._loader_batch_data.__class__(_lowerCAmelCase ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowerCAmelCase = next(self.iterator ) _lowerCAmelCase = self.infer(_lowerCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _lowerCAmelCase = processed _lowerCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __iter__( self ): _lowerCAmelCase = iter(self.loader ) _lowerCAmelCase = None return self def __lowerCAmelCase ( self ): if self.subiterator is None: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowerCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) _lowerCAmelCase = next(self.subiterator ) return processed class UpperCAmelCase ( snake_case_ ): def __iter__( self ): _lowerCAmelCase = iter(self.loader ) return self def __lowerCAmelCase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowerCAmelCase = False _lowerCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator while not is_last: _lowerCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = processed else: _lowerCAmelCase = list(processed.keys() )[0] _lowerCAmelCase = processed[key] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = len(_lowerCAmelCase ) else: _lowerCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowerCAmelCase = observed_batch_size _lowerCAmelCase = processed _lowerCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _lowerCAmelCase = self.loader_batch_item() _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) if is_last: return accumulator else: _lowerCAmelCase = processed _lowerCAmelCase = item.pop('''is_last''' ) accumulator.append(_lowerCAmelCase ) return accumulator class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return self.dataset[i][self.key] class UpperCAmelCase ( snake_case_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = dataset _lowerCAmelCase = keya _lowerCAmelCase = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _lowerCAmelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
664
1
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , ): _lowerCAmelCase = size if size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DPTImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = DPTImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
664
import numpy class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. _lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCAmelCase = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ): _lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ): _lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for iteration in range(1 , iterations + 1 ): _lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: _lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = input_arr _lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : numpy.ndarray )->numpy.ndarray: return (value) * (1 - (value)) def UpperCAmelCase__ ( )->int: _lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=1_0 , give_loss=_SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase_ = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , ): _lowerCAmelCase = [file for file in os.listdir(_lowerCAmelCase ) if os.path.isfile(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )] if identifier is not None: _lowerCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): for n_ in n_identifier: _lowerCAmelCase = [file for file in files if n_ not in file] else: _lowerCAmelCase = [file for file in files if n_identifier not in file] _lowerCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _lowerCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , _lowerCAmelCase ) if only_modules: _lowerCAmelCase = file.split('''.''' )[0] try: _lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = doctest.DocTestSuite(_lowerCAmelCase ) _lowerCAmelCase = unittest.TextTestRunner().run(_lowerCAmelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: _lowerCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __lowerCAmelCase ( self ): _lowerCAmelCase = Path('''src/transformers''' ) _lowerCAmelCase = '''modeling''' _lowerCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(_lowerCAmelCase , identifier=_lowerCAmelCase , ignore_files=_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = Path('''src/transformers''' ) _lowerCAmelCase = '''tokenization''' self.analyze_directory(_lowerCAmelCase , identifier=_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = Path('''src/transformers''' ) _lowerCAmelCase = '''configuration''' self.analyze_directory(_lowerCAmelCase , identifier=_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = Path('''src/transformers''' ) _lowerCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(_lowerCAmelCase , n_identifier=_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = Path('''docs/source''' ) _lowerCAmelCase = ['''favicon.ico'''] self.analyze_directory(_lowerCAmelCase , ignore_files=_lowerCAmelCase , only_modules=_lowerCAmelCase )
664
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } UpperCAmelCase_ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )->Optional[Any]: for attribute in key.split('''.''' ): _lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any )->List[str]: _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCAmelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(_SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] _lowerCAmelCase = mapped_key.replace('''*''' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowerCAmelCase = '''weight_g''' elif "weight_v" in name: _lowerCAmelCase = '''weight_v''' elif "bias" in name: _lowerCAmelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = '''weight''' else: _lowerCAmelCase = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int )->str: _lowerCAmelCase = full_name.split('''conv_layers.''' )[-1] _lowerCAmelCase = name.split('''.''' ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : List[Any]=True )->Any: if config_path is not None: _lowerCAmelCase = UniSpeechSatConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = UniSpeechSatConfig() _lowerCAmelCase = '''''' if is_finetuned: _lowerCAmelCase = UniSpeechSatForCTC(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = UniSpeechSatForPreTraining(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) _lowerCAmelCase = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCAmelCase_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
664
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
1
from jiwer import compute_measures import datasets UpperCAmelCase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCAmelCase_ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" UpperCAmelCase_ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False ): if concatenate_texts: return compute_measures(_lowerCAmelCase , _lowerCAmelCase )["wer"] else: _lowerCAmelCase = 0 _lowerCAmelCase = 0 for prediction, reference in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = compute_measures(_lowerCAmelCase , _lowerCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
664
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
1
from math import ceil, sqrt def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1_0_0_0_0_0_0 )->int: _lowerCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _lowerCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _lowerCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"""{solution() = }""")
664
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
1
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->float: _lowerCAmelCase = 0 while len(_SCREAMING_SNAKE_CASE ) > 1: _lowerCAmelCase = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _lowerCAmelCase = files.index(min(_SCREAMING_SNAKE_CASE ) ) temp += files[min_index] files.pop(_SCREAMING_SNAKE_CASE ) files.append(_SCREAMING_SNAKE_CASE ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
664
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
1
UpperCAmelCase_ = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) UpperCAmelCase_ = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 1_2, "Pm": 1_5, "Em": 1_8, "Zm": 2_1, "Ym": 2_4, } def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = from_type.lower().strip('''s''' ) _lowerCAmelCase = to_type.lower().strip('''s''' ) _lowerCAmelCase = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if from_sanitized not in METRIC_CONVERSION: _lowerCAmelCase = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}''' ) raise ValueError(_SCREAMING_SNAKE_CASE ) if to_sanitized not in METRIC_CONVERSION: _lowerCAmelCase = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}''' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = METRIC_CONVERSION[from_sanitized] _lowerCAmelCase = METRIC_CONVERSION[to_sanitized] _lowerCAmelCase = 1 if from_exponent > to_exponent: _lowerCAmelCase = from_exponent - to_exponent else: _lowerCAmelCase = -(to_exponent - from_exponent) return value * pow(1_0 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
664
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] )->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): _lowerCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): _lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Any: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )->int: _lowerCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 1_0_0 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] )->Optional[int]: _lowerCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCAmelCase = scount * numref _lowerCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCAmelCase = ccount * numref # KEEP _lowerCAmelCase = sgramcounter_rep & cgramcounter_rep _lowerCAmelCase = keepgramcounter_rep & rgramcounter _lowerCAmelCase = sgramcounter_rep & rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCAmelCase = sgramcounter_rep - cgramcounter_rep _lowerCAmelCase = delgramcounter_rep - rgramcounter _lowerCAmelCase = sgramcounter_rep - rgramcounter _lowerCAmelCase = 0 _lowerCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCAmelCase = 1 _lowerCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str )->List[Any]: _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = ssent.split(''' ''' ) _lowerCAmelCase = csent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for rsent in rsents: _lowerCAmelCase = rsent.split(''' ''' ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _lowerCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True )->int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _lowerCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _lowerCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = sentence if not return_str: _lowerCAmelCase = normalized_sent.split() return normalized_sent def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->str: if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _lowerCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]="exp" , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , )->str: _lowerCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = {} result.update({'''sari''': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase )} ) return result
664
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = XLMTokenizer SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _lowerCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowerCAmelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_lowerCAmelCase ) ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = '''lower newer''' _lowerCAmelCase = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self ): _lowerCAmelCase = XLMTokenizer(self.vocab_file , self.merges_file ) _lowerCAmelCase = '''lower''' _lowerCAmelCase = ['''low''', '''er</w>'''] _lowerCAmelCase = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = tokens + ['''<unk>'''] _lowerCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) _lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
664
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
1
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger("transformers.models.speecht5") UpperCAmelCase_ = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } UpperCAmelCase_ = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } UpperCAmelCase_ = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } UpperCAmelCase_ = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } UpperCAmelCase_ = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } UpperCAmelCase_ = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } UpperCAmelCase_ = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } UpperCAmelCase_ = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } UpperCAmelCase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCAmelCase_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase_ = [] UpperCAmelCase_ = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] UpperCAmelCase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] UpperCAmelCase_ = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] UpperCAmelCase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int )->Tuple: for attribute in key.split('''.''' ): _lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowerCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "running_mean": _lowerCAmelCase = value elif weight_type == "running_var": _lowerCAmelCase = value elif weight_type == "num_batches_tracked": _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] )->Dict: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCAmelCase , _lowerCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->int: _lowerCAmelCase = [] if task == "s2t": _lowerCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _lowerCAmelCase = MAPPING_S2T _lowerCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": _lowerCAmelCase = None _lowerCAmelCase = MAPPING_T2S _lowerCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": _lowerCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _lowerCAmelCase = MAPPING_S2S _lowerCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info(f'''{name} was ignored''' ) continue _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _lowerCAmelCase , _lowerCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: _lowerCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(_SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] _lowerCAmelCase = mapped_key.replace('''*''' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowerCAmelCase = '''weight_g''' elif "weight_v" in name: _lowerCAmelCase = '''weight_v''' elif "bias" in name: _lowerCAmelCase = '''bias''' elif "weight" in name: _lowerCAmelCase = '''weight''' elif "running_mean" in name: _lowerCAmelCase = '''running_mean''' elif "running_var" in name: _lowerCAmelCase = '''running_var''' elif "num_batches_tracked" in name: _lowerCAmelCase = '''num_batches_tracked''' else: _lowerCAmelCase = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )->List[str]: _lowerCAmelCase = full_name.split('''conv_layers.''' )[-1] _lowerCAmelCase = name.split('''.''' ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Tuple=None , )->Optional[Any]: if config_path is not None: _lowerCAmelCase = SpeechTaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = SpeechTaConfig() if task == "s2t": _lowerCAmelCase = config.max_text_positions _lowerCAmelCase = SpeechTaForSpeechToText(_SCREAMING_SNAKE_CASE ) elif task == "t2s": _lowerCAmelCase = 1_8_7_6 _lowerCAmelCase = 6_0_0 _lowerCAmelCase = config.max_speech_positions _lowerCAmelCase = SpeechTaForTextToSpeech(_SCREAMING_SNAKE_CASE ) elif task == "s2s": _lowerCAmelCase = 1_8_7_6 _lowerCAmelCase = config.max_speech_positions _lowerCAmelCase = SpeechTaForSpeechToSpeech(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: _lowerCAmelCase = SpeechTaTokenizer(_SCREAMING_SNAKE_CASE , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken('''<mask>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _lowerCAmelCase = SpeechTaFeatureExtractor() _lowerCAmelCase = SpeechTaProcessor(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = torch.load(_SCREAMING_SNAKE_CASE ) recursively_load_weights(fairseq_checkpoint['''model'''] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
664
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
664
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
1
import random def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : Optional[int] )->tuple: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int )->Any: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None _lowerCAmelCase = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] _lowerCAmelCase = 0 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
664
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCAmelCase_ = logging.get_logger(__name__) @dataclass class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCAmelCase = deprecated_arg[3:] _lowerCAmelCase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) _lowerCAmelCase = kwargs.pop('''tpu_name''' , self.tpu_name ) _lowerCAmelCase = kwargs.pop('''device_idx''' , self.device_idx ) _lowerCAmelCase = kwargs.pop('''eager_mode''' , self.eager_mode ) _lowerCAmelCase = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = field( default=snake_case_ ,metadata={'''help''': '''Name of TPU'''} ,) SCREAMING_SNAKE_CASE__ = field( default=0 ,metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} ,) SCREAMING_SNAKE_CASE__ = field(default=snake_case_ ,metadata={'''help''': '''Benchmark models in eager model.'''} ) SCREAMING_SNAKE_CASE__ = field( default=snake_case_ ,metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } ,) @cached_property def __lowerCAmelCase ( self ): requires_backends(self , ['''tf'''] ) _lowerCAmelCase = None if self.tpu: try: if self.tpu_name: _lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _lowerCAmelCase = None return tpu @cached_property def __lowerCAmelCase ( self ): requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _lowerCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) _lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU _lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def __lowerCAmelCase ( self ): requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def __lowerCAmelCase ( self ): requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def __lowerCAmelCase ( self ): requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def __lowerCAmelCase ( self ): requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __lowerCAmelCase ( self ): return self.n_gpu > 0
664
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = int(_SCREAMING_SNAKE_CASE ) # Initialize Result _lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_SCREAMING_SNAKE_CASE ): # Find denominations while int(_SCREAMING_SNAKE_CASE ) >= int(_SCREAMING_SNAKE_CASE ): total_value -= int(_SCREAMING_SNAKE_CASE ) answer.append(_SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ = [] UpperCAmelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCAmelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
664
1
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[int] )->int: if not nums: return 0 _lowerCAmelCase = nums[0] _lowerCAmelCase = 0 for num in nums[1:]: _lowerCAmelCase , _lowerCAmelCase = ( max_excluding + num, max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
664
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] )->Dict: # Initialise PyTorch model _lowerCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
664
1
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase_ = threading.Lock() UpperCAmelCase_ = None UpperCAmelCase_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } UpperCAmelCase_ = logging.WARNING UpperCAmelCase_ = True def UpperCAmelCase__ ( )->str: _lowerCAmelCase = os.getenv('''TRANSFORMERS_VERBOSITY''' , _SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def UpperCAmelCase__ ( )->str: return __name__.split('''.''' )[0] def UpperCAmelCase__ ( )->logging.Logger: return logging.getLogger(_get_library_name() ) def UpperCAmelCase__ ( )->None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowerCAmelCase = logging.StreamHandler() # Set sys.stderr as stream. _lowerCAmelCase = sys.stderr.flush # Apply our default configuration to the library root logger. _lowerCAmelCase = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowerCAmelCase = False def UpperCAmelCase__ ( )->None: global _default_handler with _lock: if not _default_handler: return _lowerCAmelCase = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowerCAmelCase = None def UpperCAmelCase__ ( )->Optional[Any]: return log_levels def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[str] = None )->logging.Logger: if name is None: _lowerCAmelCase = _get_library_name() _configure_library_root_logger() return logging.getLogger(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int )->None: _configure_library_root_logger() _get_library_root_logger().setLevel(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->Optional[int]: return set_verbosity(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->Union[str, Any]: return set_verbosity(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->Dict: return set_verbosity(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->Optional[Any]: return set_verbosity(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase__ ( )->None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : logging.Handler )->None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : logging.Handler )->None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->None: _configure_library_root_logger() _lowerCAmelCase = False def UpperCAmelCase__ ( )->None: _configure_library_root_logger() _lowerCAmelCase = True def UpperCAmelCase__ ( )->None: _lowerCAmelCase = _get_library_root_logger().handlers for handler in handlers: _lowerCAmelCase = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( )->None: _lowerCAmelCase = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any , *_SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : Union[str, Any] )->Optional[Any]: _lowerCAmelCase = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , _SCREAMING_SNAKE_CASE ) if no_advisory_warnings: return self.warning(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = warning_advice @functools.lru_cache(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , *_SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : Optional[int] )->Dict: self.warning(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = warning_once class UpperCAmelCase : def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): # pylint: disable=unused-argument _lowerCAmelCase = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , _lowerCAmelCase ): def empty_fn(*_lowerCAmelCase , **_lowerCAmelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return class UpperCAmelCase : def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): if _tqdm_active: return tqdm_lib.tqdm(*_lowerCAmelCase , **_lowerCAmelCase ) else: return EmptyTqdm(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): _lowerCAmelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase_ = _tqdm_cls() def UpperCAmelCase__ ( )->bool: global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase__ ( )->List[Any]: global _tqdm_active _lowerCAmelCase = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase__ ( )->Optional[int]: global _tqdm_active _lowerCAmelCase = False hf_hub_utils.disable_progress_bars()
664
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "Hello world! cécé herlolip" def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool )->List[Any]: _lowerCAmelCase = FairseqRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout _lowerCAmelCase = roberta.model.encoder.sentence_encoder _lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = XLMRobertaXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(_SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase = model.roberta.encoder.layer[i] _lowerCAmelCase = roberta_sent_encoder.layers[i] _lowerCAmelCase = layer.attention _lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase = roberta_layer.final_layer_norm.weight _lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # output _lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase = roberta_layer.fca.weight _lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight _lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase = roberta.model.encoder.lm_head.weight _lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase = roberta.encode(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] if classification_head: _lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_SCREAMING_SNAKE_CASE ) ) else: _lowerCAmelCase = roberta.model(_SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowerCAmelCase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(_SCREAMING_SNAKE_CASE ).mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
664
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->List[str]: _lowerCAmelCase = 1.5 _lowerCAmelCase = int(factor * num_class_images ) _lowerCAmelCase = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(f'''{class_data_dir}/images''' , exist_ok=_SCREAMING_SNAKE_CASE ) if len(list(Path(f'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: _lowerCAmelCase = client.query(text=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1e4: break else: _lowerCAmelCase = int(factor * num_images ) _lowerCAmelCase = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = tqdm(desc='''downloading real regularization images''' , total=_SCREAMING_SNAKE_CASE ) with open(f'''{class_data_dir}/caption.txt''' , '''w''' ) as fa, open(f'''{class_data_dir}/urls.txt''' , '''w''' ) as fa, open( f'''{class_data_dir}/images.txt''' , '''w''' ) as fa: while total < num_class_images: _lowerCAmelCase = class_images[count] count += 1 try: _lowerCAmelCase = requests.get(images['''url'''] ) if img.status_code == 2_0_0: _lowerCAmelCase = Image.open(BytesIO(img.content ) ) with open(f'''{class_data_dir}/images/{total}.jpg''' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(f'''{class_data_dir}/images/{total}.jpg''' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase__ ( )->List[str]: _lowerCAmelCase = argparse.ArgumentParser('''''' , add_help=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_0_0 , type=_SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
664
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
1
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->bool: _lowerCAmelCase = get_failure_array(_SCREAMING_SNAKE_CASE ) # 2) Step through text searching for pattern _lowerCAmelCase , _lowerCAmelCase = 0, 0 # index into text, pattern while i < len(_SCREAMING_SNAKE_CASE ): if pattern[j] == text[i]: if j == (len(_SCREAMING_SNAKE_CASE ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _lowerCAmelCase = failure[j - 1] continue i += 1 return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->list[int]: _lowerCAmelCase = [0] _lowerCAmelCase = 0 _lowerCAmelCase = 1 while j < len(_SCREAMING_SNAKE_CASE ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _lowerCAmelCase = failure[i - 1] continue j += 1 failure.append(_SCREAMING_SNAKE_CASE ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase_ = "abc1abc12" UpperCAmelCase_ = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCAmelCase_ = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase_ = "ABABX" UpperCAmelCase_ = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCAmelCase_ = "AAAB" UpperCAmelCase_ = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCAmelCase_ = "abcdabcy" UpperCAmelCase_ = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCAmelCase_ = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
664
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self , _lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): _lowerCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sgugger/tiny-distilbert-classification''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , only_pretrain_model=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , torchscript=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , fpaa=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) # set architectures equal to `None` _lowerCAmelCase = None _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tinier_bart''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tinier_bart''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , save_to_csv=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowerCAmelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowerCAmelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowerCAmelCase , '''env.csv''' ) , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''env.csv''' ) ).exists() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase , '''sequential''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''current''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCAmelCase , '''log.txt''' ) , log_print=_lowerCAmelCase , trace_memory_line_by_line=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''log.txt''' ) ).exists() )
664
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 class UpperCAmelCase ( snake_case_ ,snake_case_ ): @register_to_config def __init__( self , _lowerCAmelCase = 3 , _lowerCAmelCase = 3 , _lowerCAmelCase = ("DownEncoderBlock2D",) , _lowerCAmelCase = ("UpDecoderBlock2D",) , _lowerCAmelCase = (64,) , _lowerCAmelCase = 1 , _lowerCAmelCase = "silu" , _lowerCAmelCase = 3 , _lowerCAmelCase = 32 , _lowerCAmelCase = 256 , _lowerCAmelCase = 32 , _lowerCAmelCase = None , _lowerCAmelCase = 0.18_215 , _lowerCAmelCase = "group" , ): super().__init__() # pass init params to Encoder _lowerCAmelCase = Encoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , down_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , double_z=_lowerCAmelCase , ) _lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowerCAmelCase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) _lowerCAmelCase = VectorQuantizer(_lowerCAmelCase , _lowerCAmelCase , beta=0.25 , remap=_lowerCAmelCase , sane_index_shape=_lowerCAmelCase ) _lowerCAmelCase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) # pass init params to Decoder _lowerCAmelCase = Decoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , up_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , norm_type=_lowerCAmelCase , ) @apply_forward_hook def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = True ): _lowerCAmelCase = self.encoder(_lowerCAmelCase ) _lowerCAmelCase = self.quant_conv(_lowerCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCAmelCase ) @apply_forward_hook def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = True ): # also go through quantization layer if not force_not_quantize: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.quantize(_lowerCAmelCase ) else: _lowerCAmelCase = h _lowerCAmelCase = self.post_quant_conv(_lowerCAmelCase ) _lowerCAmelCase = self.decoder(_lowerCAmelCase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = True ): _lowerCAmelCase = sample _lowerCAmelCase = self.encode(_lowerCAmelCase ).latents _lowerCAmelCase = self.decode(_lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase )
664
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
1