code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from random import shuffle
import tensorflow as tf
from numpy import array
def lowerCamelCase ( lowerCamelCase : Dict , lowerCamelCase : Optional[Any]):
A_ : str = int(lowerCamelCase)
assert noofclusters < len(lowerCamelCase)
# Find out the dimensionality
A_ : Union[str, Any] = len(vectors[0])
# Will help select random centroids from among the available vectors
A_ : int = list(range(len(lowerCamelCase)))
shuffle(lowerCamelCase)
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
A_ : Dict = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
A_ : Union[str, Any] = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
A_ : List[Any] = [
tf.Variable(vectors[vector_indices[i]]) for i in range(lowerCamelCase)
]
##These nodes will assign the centroid Variables the appropriate
##values
A_ : str = tf.placeholder("""float64""" , [dim])
A_ : Dict = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowerCamelCase , lowerCamelCase))
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
A_ : List[Any] = [tf.Variable(0) for i in range(len(lowerCamelCase))]
##These nodes will assign an assignment Variable the appropriate
##value
A_ : List[str] = tf.placeholder("""int32""")
A_ : Tuple = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowerCamelCase , lowerCamelCase))
##Now lets construct the node that will compute the mean
# The placeholder for the input
A_ : Optional[int] = tf.placeholder("""float""" , [None, dim])
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
A_ : str = tf.reduce_mean(lowerCamelCase , 0)
##Node for computing Euclidean distances
# Placeholders for input
A_ : List[Any] = tf.placeholder("""float""" , [dim])
A_ : str = tf.placeholder("""float""" , [dim])
A_ : str = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowerCamelCase , lowerCamelCase) , 2)))
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
A_ : int = tf.placeholder("""float""" , [noofclusters])
A_ : Optional[int] = tf.argmin(lowerCamelCase , 0)
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
A_ : List[Any] = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowerCamelCase)
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
A_ : Tuple = 100
for _ in range(lowerCamelCase):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowerCamelCase)):
A_ : Tuple = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
A_ : Dict = [
sess.run(lowerCamelCase , feed_dict={va: vect, va: sess.run(lowerCamelCase)})
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
A_ : int = sess.run(
lowerCamelCase , feed_dict={centroid_distances: distances})
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment})
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowerCamelCase):
# Collect all the vectors assigned to this cluster
A_ : str = [
vectors[i]
for i in range(len(lowerCamelCase))
if sess.run(assignments[i]) == cluster_n
]
# Compute new centroid location
A_ : str = sess.run(
lowerCamelCase , feed_dict={mean_input: array(lowerCamelCase)})
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location})
# Return centroids and assignments
A_ : Optional[Any] = sess.run(lowerCamelCase)
A_ : Dict = sess.run(lowerCamelCase)
return centroids, assignments
| 703 |
'''simple docstring'''
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]="pt"):
A_ : Optional[int] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase) and not line.startswith(""" """) else {}
A_ : Optional[int] = padding_side
return tokenizer(
[line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , )
def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , ):
A_ : Dict = input_ids.ne(lowerCamelCase).any(dim=0)
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : Tuple="train" ,_a : Optional[int]=None ,_a : Any=None ,_a : int=None ,_a : Union[str, Any]="" ,):
'''simple docstring'''
super().__init__()
A_ : Union[str, Any] = Path(_a ).joinpath(type_path + """.source""" )
A_ : Any = Path(_a ).joinpath(type_path + """.target""" )
A_ : Dict = self.get_char_lens(self.src_file )
A_ : Optional[int] = max_source_length
A_ : List[str] = max_target_length
assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}'
A_ : List[Any] = tokenizer
A_ : Optional[Any] = prefix
if n_obs is not None:
A_ : Any = self.src_lens[:n_obs]
A_ : Optional[int] = src_lang
A_ : Tuple = tgt_lang
def __len__( self : Tuple ):
'''simple docstring'''
return len(self.src_lens )
def __getitem__( self : List[str] ,_a : Tuple ):
'''simple docstring'''
A_ : int = index + 1 # linecache starts at 1
A_ : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,_a ).rstrip("""\n""" )
A_ : Dict = linecache.getline(str(self.tgt_file ) ,_a ).rstrip("""\n""" )
assert source_line, f'empty source line for index {index}'
assert tgt_line, f'empty tgt line for index {index}'
# Need to add eos token manually for T5
if isinstance(self.tokenizer ,_a ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
A_ : List[str] = (
self.tokenizer.question_encoder if isinstance(self.tokenizer ,_a ) else self.tokenizer
)
A_ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,_a ) else self.tokenizer
A_ : Optional[int] = encode_line(_a ,_a ,self.max_source_length ,"""right""" )
A_ : Optional[int] = encode_line(_a ,_a ,self.max_target_length ,"""right""" )
A_ : Optional[Any] = source_inputs["""input_ids"""].squeeze()
A_ : Dict = target_inputs["""input_ids"""].squeeze()
A_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def _a ( _a : int ):
'''simple docstring'''
return [len(_a ) for x in Path(_a ).open().readlines()]
def _a ( self : Optional[int] ,_a : Dict ):
'''simple docstring'''
A_ : str = torch.stack([x["""input_ids"""] for x in batch] )
A_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] )
A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] )
A_ : Union[str, Any] = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer ,_a )
else self.tokenizer.pad_token_id
)
A_ : str = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer ,_a )
else self.tokenizer.pad_token_id
)
A_ : List[str] = trim_batch(_a ,_a )
A_ , A_ : Union[str, Any] = trim_batch(_a ,_a ,attention_mask=_a )
A_ : List[str] = {
"""input_ids""": source_ids,
"""attention_mask""": source_mask,
"""decoder_input_ids""": y,
}
return batch
__magic_name__ = getLogger(__name__)
def lowerCamelCase ( lowerCamelCase : List[List]):
return list(itertools.chain.from_iterable(lowerCamelCase))
def lowerCamelCase ( lowerCamelCase : str):
A_ : Union[str, Any] = get_git_info()
save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json"""))
def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : List[str]=4 , **lowerCamelCase : List[str]):
with open(lowerCamelCase , """w""") as f:
json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase)
def lowerCamelCase ( lowerCamelCase : Any):
with open(lowerCamelCase) as f:
return json.load(lowerCamelCase)
def lowerCamelCase ( ):
A_ : List[str] = git.Repo(search_parent_directories=lowerCamelCase)
A_ : Union[str, Any] = {
"""repo_id""": str(lowerCamelCase),
"""repo_sha""": str(repo.head.object.hexsha),
"""repo_branch""": str(repo.active_branch),
"""hostname""": str(socket.gethostname()),
}
return repo_infos
def lowerCamelCase ( lowerCamelCase : Callable , lowerCamelCase : Iterable):
return list(map(lowerCamelCase , lowerCamelCase))
def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Union[str, Any]):
with open(lowerCamelCase , """wb""") as f:
return pickle.dump(lowerCamelCase , lowerCamelCase)
def lowerCamelCase ( lowerCamelCase : List[str]):
def remove_articles(lowerCamelCase : Any):
return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase)
def white_space_fix(lowerCamelCase : List[Any]):
return " ".join(text.split())
def remove_punc(lowerCamelCase : Union[str, Any]):
A_ : Optional[int] = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(lowerCamelCase : List[str]):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase))))
def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int):
A_ : Tuple = normalize_answer(lowerCamelCase).split()
A_ : Dict = normalize_answer(lowerCamelCase).split()
A_ : int = Counter(lowerCamelCase) & Counter(lowerCamelCase)
A_ : Any = sum(common.values())
if num_same == 0:
return 0
A_ : Any = 1.0 * num_same / len(lowerCamelCase)
A_ : Any = 1.0 * num_same / len(lowerCamelCase)
A_ : Any = (2 * precision * recall) / (precision + recall)
return fa
def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Any):
return normalize_answer(lowerCamelCase) == normalize_answer(lowerCamelCase)
def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str]):
assert len(lowerCamelCase) == len(lowerCamelCase)
A_ : Any = 0
for hypo, pred in zip(lowerCamelCase , lowerCamelCase):
em += exact_match_score(lowerCamelCase , lowerCamelCase)
if len(lowerCamelCase) > 0:
em /= len(lowerCamelCase)
return {"em": em}
def lowerCamelCase ( lowerCamelCase : Union[str, Any]):
return model_prefix.startswith("""rag""")
def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any]):
A_ : Optional[Any] = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
A_ : Tuple = """dropout_rate"""
for p in extra_params:
if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase):
if not hasattr(lowerCamelCase , lowerCamelCase) and not hasattr(lowerCamelCase , equivalent_param[p]):
logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase))
delattr(lowerCamelCase , lowerCamelCase)
continue
A_ : Tuple = p if hasattr(lowerCamelCase , lowerCamelCase) else equivalent_param[p]
setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase))
delattr(lowerCamelCase , lowerCamelCase)
return hparams, config
| 27 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__magic_name__ = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = ['ConvNextFeatureExtractor']
__magic_name__ = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 704 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__magic_name__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = ['NllbTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = ['NllbTokenizerFast']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 27 | 0 |
'''simple docstring'''
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
__magic_name__ = logging.getLogger(__name__)
def lowerCamelCase ( lowerCamelCase : Tuple=2 , lowerCamelCase : Tuple=3 , lowerCamelCase : Tuple=16 , lowerCamelCase : int = 10 , lowerCamelCase : int = 2):
def get_dataset(lowerCamelCase : Optional[int]):
A_ : Tuple = torch.randn(batch_size * n_batches , 1)
return TensorDataset(lowerCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1))
A_ : str = get_dataset(lowerCamelCase)
A_ : Optional[Any] = get_dataset(lowerCamelCase)
A_ : List[Any] = DataLoader(lowerCamelCase , shuffle=lowerCamelCase , batch_size=lowerCamelCase , num_workers=4)
A_ : Optional[Any] = DataLoader(lowerCamelCase , shuffle=lowerCamelCase , batch_size=lowerCamelCase , num_workers=4)
return (train_dataloader, valid_dataloader)
def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : str=None):
A_ : List[str] = []
for epoch in range(lowerCamelCase):
# Train quickly
model.train()
for batch in dataloader:
A_ : int = batch
A_ : Optional[int] = model(lowerCamelCase)
A_ : str = torch.nn.functional.mse_loss(lowerCamelCase , lowerCamelCase)
accelerator.backward(lowerCamelCase)
optimizer.step()
optimizer.zero_grad()
rands.append(random.random()) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class __lowerCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] ):
'''simple docstring'''
super().__init__()
A_ : Optional[Any] = nn.Parameter(torch.randn(1 ) )
A_ : List[str] = nn.Parameter(torch.randn(1 ) )
def _a ( self : List[Any] ,_a : int ):
'''simple docstring'''
return x * self.a + self.b
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def _a ( self : Union[str, Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
A_ : Optional[Any] = DummyModel()
A_ : Optional[int] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 )
A_ : int = dummy_dataloaders()
A_ : int = ProjectConfiguration(total_limit=1 ,project_dir=_a ,automatic_checkpoint_naming=_a )
# Train baseline
A_ : Optional[Any] = Accelerator(project_config=_a )
A_ : Union[str, Any] = accelerator.prepare(
_a ,_a ,_a ,_a )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 )
def _a ( self : Union[str, Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
A_ : Optional[Any] = DummyModel()
A_ : Dict = torch.optim.Adam(params=model.parameters() ,lr=1e-3 )
A_ : Optional[Any] = dummy_dataloaders()
# Train baseline
A_ : List[Any] = Accelerator()
A_ : Dict = accelerator.prepare(
_a ,_a ,_a ,_a )
# Save initial
A_ : Dict = os.path.join(_a ,"""initial""" )
accelerator.save_state(_a )
(A_) : Optional[Any] = model.a.item(), model.b.item()
A_ : Tuple = optimizer.state_dict()
A_ : List[str] = train(3 ,_a ,_a ,_a ,_a )
(A_) : Union[str, Any] = model.a.item(), model.b.item()
A_ : Optional[int] = optimizer.state_dict()
# Train partially
set_seed(42 )
A_ : Optional[Any] = DummyModel()
A_ : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 )
A_ : Tuple = dummy_dataloaders()
A_ : Optional[Any] = Accelerator()
A_ : Optional[int] = accelerator.prepare(
_a ,_a ,_a ,_a )
accelerator.load_state(_a )
(A_) : Any = model.a.item(), model.b.item()
A_ : str = optimizer.state_dict()
self.assertEqual(_a ,_a )
self.assertEqual(_a ,_a )
self.assertEqual(_a ,_a )
A_ : Tuple = train(2 ,_a ,_a ,_a ,_a )
# Save everything
A_ : Any = os.path.join(_a ,"""checkpoint""" )
accelerator.save_state(_a )
# Load everything back in and make sure all states work
accelerator.load_state(_a )
test_rands += train(1 ,_a ,_a ,_a ,_a )
(A_) : List[str] = model.a.item(), model.b.item()
A_ : Optional[Any] = optimizer.state_dict()
self.assertEqual(_a ,_a )
self.assertEqual(_a ,_a )
self.assertEqual(_a ,_a )
self.assertEqual(_a ,_a )
def _a ( self : Dict ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
A_ : List[str] = DummyModel()
A_ : List[str] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 )
A_ : Dict = dummy_dataloaders()
A_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_a )
# Train baseline
A_ : int = Accelerator(project_dir=_a ,project_config=_a )
A_ : Tuple = accelerator.prepare(
_a ,_a ,_a ,_a )
# Save initial
accelerator.save_state()
(A_) : Tuple = model.a.item(), model.b.item()
A_ : Union[str, Any] = optimizer.state_dict()
A_ : Tuple = train(3 ,_a ,_a ,_a ,_a )
(A_) : Any = model.a.item(), model.b.item()
A_ : List[Any] = optimizer.state_dict()
# Train partially
set_seed(42 )
A_ : Any = DummyModel()
A_ : Tuple = torch.optim.Adam(params=model.parameters() ,lr=1e-3 )
A_ : Any = dummy_dataloaders()
A_ : Union[str, Any] = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=_a )
A_ : List[Any] = Accelerator(project_dir=_a ,project_config=_a )
A_ : Union[str, Any] = accelerator.prepare(
_a ,_a ,_a ,_a )
accelerator.load_state(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_0""" ) )
(A_) : Optional[int] = model.a.item(), model.b.item()
A_ : List[str] = optimizer.state_dict()
self.assertEqual(_a ,_a )
self.assertEqual(_a ,_a )
self.assertEqual(_a ,_a )
A_ : Optional[int] = train(2 ,_a ,_a ,_a ,_a )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_1""" ) )
test_rands += train(1 ,_a ,_a ,_a ,_a )
(A_) : List[Any] = model.a.item(), model.b.item()
A_ : Optional[int] = optimizer.state_dict()
self.assertEqual(_a ,_a )
self.assertEqual(_a ,_a )
self.assertEqual(_a ,_a )
self.assertEqual(_a ,_a )
def _a ( self : int ):
'''simple docstring'''
A_ : Optional[int] = torch.tensor([1, 2, 3] )
A_ : str = torch.tensor([2, 3, 4] )
A_ : str = DummyModel()
A_ : Tuple = torch.optim.Adam(net.parameters() )
A_ : List[str] = Accelerator()
with self.assertRaises(_a ) as ve:
accelerator.register_for_checkpointing(_a ,_a ,_a ,_a )
A_ : Union[str, Any] = str(ve.exception )
self.assertTrue("""Item at index 0""" in message )
self.assertTrue("""Item at index 1""" in message )
self.assertFalse("""Item at index 2""" in message )
self.assertFalse("""Item at index 3""" in message )
def _a ( self : Tuple ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
A_ : List[str] = DummyModel()
A_ : Any = torch.optim.Adam(params=model.parameters() ,lr=1e-3 )
A_ : str = torch.optim.lr_scheduler.StepLR(_a ,step_size=1 ,gamma=0.99 )
A_ : List[str] = dummy_dataloaders()
A_ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=_a )
# Train baseline
A_ : List[Any] = Accelerator(project_dir=_a ,project_config=_a )
A_ : str = accelerator.prepare(
_a ,_a ,_a ,_a ,_a )
# Save initial
accelerator.save_state()
A_ : List[Any] = scheduler.state_dict()
train(3 ,_a ,_a ,_a ,_a ,_a )
self.assertNotEqual(_a ,scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_0""" ) )
self.assertEqual(_a ,scheduler.state_dict() )
def _a ( self : Union[str, Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
A_ : Any = DummyModel()
A_ : str = ProjectConfiguration(automatic_checkpoint_naming=_a ,total_limit=2 )
# Train baseline
A_ : List[str] = Accelerator(project_dir=_a ,project_config=_a )
A_ : List[str] = accelerator.prepare(_a )
# Save 3 states:
for _ in range(11 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_9""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_a ,"""checkpoints""" ,"""checkpoint_10""" ) ) )
@require_cuda
def _a ( self : Any ):
'''simple docstring'''
A_ : List[str] = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
execute_subprocess_async(_a ,env=os.environ.copy() )
if __name__ == "__main__":
__magic_name__ = '/tmp/accelerate/state_checkpointing'
__magic_name__ = DummyModel()
__magic_name__ = torch.optim.Adam(params=model.parameters(), lr=1e-3)
__magic_name__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9)
__magic_name__ , __magic_name__ = dummy_dataloaders()
__magic_name__ = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
__magic_name__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no')
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
__magic_name__ , __magic_name__ = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
__magic_name__ = group['params'][0].device
break
assert param_device.type == accelerator.device.type
__magic_name__ = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu')
for group in optimizer.param_groups:
__magic_name__ = group['params'][0].device
break
assert (
param_device.type == torch.device('cpu').type
), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device')
for group in optimizer.param_groups:
__magic_name__ = group['params'][0].device
break
assert (
param_device.type == accelerator.device.type
), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match='Unsupported optimizer map location passed'):
accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid')
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 705 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
a_ = KandinskyVaaControlnetPipeline
a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""]
a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""]
a_ = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
a_ = False
@property
def _a ( self : Any ):
'''simple docstring'''
return 32
@property
def _a ( self : Tuple ):
'''simple docstring'''
return 32
@property
def _a ( self : Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def _a ( self : str ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def _a ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def _a ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
A_ : List[Any] = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
A_ : Tuple = UNetaDConditionModel(**_a )
return model
@property
def _a ( self : List[str] ):
'''simple docstring'''
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def _a ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
A_ : int = VQModel(**self.dummy_movq_kwargs )
return model
def _a ( self : List[str] ):
'''simple docstring'''
A_ : Optional[Any] = self.dummy_unet
A_ : int = self.dummy_movq
A_ : Tuple = DDIMScheduler(
num_train_timesteps=1000 ,beta_schedule="""linear""" ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=_a ,set_alpha_to_one=_a ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_a ,)
A_ : int = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def _a ( self : Dict ,_a : str ,_a : Union[str, Any]=0 ):
'''simple docstring'''
A_ : Dict = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_a ) ).to(_a )
A_ : int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to(
_a )
# create hint
A_ : List[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_a ) ).to(_a )
if str(_a ).startswith("""mps""" ):
A_ : Optional[Any] = torch.manual_seed(_a )
else:
A_ : str = torch.Generator(device=_a ).manual_seed(_a )
A_ : List[Any] = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def _a ( self : Dict ):
'''simple docstring'''
A_ : List[Any] = """cpu"""
A_ : List[str] = self.get_dummy_components()
A_ : Tuple = self.pipeline_class(**_a )
A_ : Dict = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
A_ : Tuple = pipe(**self.get_dummy_inputs(_a ) )
A_ : Tuple = output.images
A_ : Optional[Any] = pipe(
**self.get_dummy_inputs(_a ) ,return_dict=_a ,)[0]
A_ : Tuple = image[0, -3:, -3:, -1]
A_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A_ : List[Any] = np.array(
[0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def _a ( self : Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : Any ):
'''simple docstring'''
A_ : Tuple = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
A_ : Optional[int] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
A_ : Optional[int] = torch.from_numpy(np.array(_a ) ).float() / 255.0
A_ : List[Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 )
A_ : List[Any] = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa )
pipe_prior.to(_a )
A_ : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" ,torch_dtype=torch.floataa )
A_ : Union[str, Any] = pipeline.to(_a )
pipeline.set_progress_bar_config(disable=_a )
A_ : Optional[Any] = """A robot, 4k photo"""
A_ : Any = torch.Generator(device="""cuda""" ).manual_seed(0 )
A_ , A_ : List[str] = pipe_prior(
_a ,generator=_a ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple()
A_ : int = torch.Generator(device="""cuda""" ).manual_seed(0 )
A_ : List[Any] = pipeline(
image_embeds=_a ,negative_image_embeds=_a ,hint=_a ,generator=_a ,num_inference_steps=100 ,output_type="""np""" ,)
A_ : Dict = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(_a ,_a )
| 27 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
a_ = ShapEImgaImgPipeline
a_ = ["""image"""]
a_ = ["""image"""]
a_ = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
a_ = False
@property
def _a ( self : str ):
'''simple docstring'''
return 32
@property
def _a ( self : str ):
'''simple docstring'''
return 32
@property
def _a ( self : List[Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def _a ( self : List[str] ):
'''simple docstring'''
return 8
@property
def _a ( self : Dict ):
'''simple docstring'''
torch.manual_seed(0 )
A_ : Tuple = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size ,image_size=64 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1 ,)
A_ : Optional[Any] = CLIPVisionModel(_a )
return model
@property
def _a ( self : str ):
'''simple docstring'''
A_ : Tuple = CLIPImageProcessor(
crop_size=224 ,do_center_crop=_a ,do_normalize=_a ,do_resize=_a ,image_mean=[0.48145466, 0.4578275, 0.40821073] ,image_std=[0.26862954, 0.26130258, 0.27577711] ,resample=3 ,size=224 ,)
return image_processor
@property
def _a ( self : str ):
'''simple docstring'''
torch.manual_seed(0 )
A_ : Tuple = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""embedding_proj_norm_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
A_ : Optional[Any] = PriorTransformer(**_a )
return model
@property
def _a ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
A_ : List[str] = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
A_ : List[Any] = ShapERenderer(**_a )
return model
def _a ( self : List[str] ):
'''simple docstring'''
A_ : str = self.dummy_prior
A_ : Union[str, Any] = self.dummy_image_encoder
A_ : List[Any] = self.dummy_image_processor
A_ : Union[str, Any] = self.dummy_renderer
A_ : List[Any] = HeunDiscreteScheduler(
beta_schedule="""exp""" ,num_train_timesteps=1024 ,prediction_type="""sample""" ,use_karras_sigmas=_a ,clip_sample=_a ,clip_sample_range=1.0 ,)
A_ : Tuple = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""image_processor""": image_processor,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def _a ( self : int ,_a : Dict ,_a : List[str]=0 ):
'''simple docstring'''
A_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_a ) ).to(_a )
if str(_a ).startswith("""mps""" ):
A_ : Optional[int] = torch.manual_seed(_a )
else:
A_ : List[str] = torch.Generator(device=_a ).manual_seed(_a )
A_ : Tuple = {
"""image""": input_image,
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def _a ( self : Optional[Any] ):
'''simple docstring'''
A_ : Optional[Any] = """cpu"""
A_ : Tuple = self.get_dummy_components()
A_ : Optional[int] = self.pipeline_class(**_a )
A_ : Optional[int] = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
A_ : Optional[Any] = pipe(**self.get_dummy_inputs(_a ) )
A_ : Tuple = output.images[0]
A_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
A_ : Dict = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _a ( self : Optional[int] ):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def _a ( self : List[Any] ):
'''simple docstring'''
A_ : int = torch_device == """cpu"""
A_ : List[Any] = True
self._test_inference_batch_single_identical(
batch_size=2 ,test_max_difference=_a ,relax_max_difference=_a ,)
def _a ( self : Union[str, Any] ):
'''simple docstring'''
A_ : str = self.get_dummy_components()
A_ : Optional[int] = self.pipeline_class(**_a )
A_ : List[str] = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
A_ : str = 1
A_ : str = 2
A_ : List[Any] = self.get_dummy_inputs(_a )
for key in inputs.keys():
if key in self.batch_params:
A_ : str = batch_size * [inputs[key]]
A_ : Dict = pipe(**_a ,num_images_per_prompt=_a )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def _a ( self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : List[Any] ):
'''simple docstring'''
A_ : Any = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" )
A_ : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_img2img_out.npy""" )
A_ : Tuple = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" )
A_ : Union[str, Any] = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
A_ : Dict = torch.Generator(device=_a ).manual_seed(0 )
A_ : Optional[Any] = pipe(
_a ,generator=_a ,guidance_scale=3.0 ,num_inference_steps=64 ,frame_size=64 ,output_type="""np""" ,).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_a ,_a )
| 706 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = """deberta-v2"""
def __init__( self : Optional[Any] ,_a : Union[str, Any]=128100 ,_a : Optional[int]=1536 ,_a : Dict=24 ,_a : int=24 ,_a : Tuple=6144 ,_a : Union[str, Any]="gelu" ,_a : List[Any]=0.1 ,_a : Dict=0.1 ,_a : int=512 ,_a : int=0 ,_a : int=0.02 ,_a : int=1e-7 ,_a : List[str]=False ,_a : Union[str, Any]=-1 ,_a : List[Any]=0 ,_a : Optional[Any]=True ,_a : Tuple=None ,_a : Any=0 ,_a : int="gelu" ,**_a : Any ,):
'''simple docstring'''
super().__init__(**_a )
A_ : Union[str, Any] = hidden_size
A_ : Dict = num_hidden_layers
A_ : Union[str, Any] = num_attention_heads
A_ : List[Any] = intermediate_size
A_ : List[Any] = hidden_act
A_ : Optional[int] = hidden_dropout_prob
A_ : Dict = attention_probs_dropout_prob
A_ : int = max_position_embeddings
A_ : Any = type_vocab_size
A_ : List[Any] = initializer_range
A_ : int = relative_attention
A_ : Tuple = max_relative_positions
A_ : int = pad_token_id
A_ : Tuple = position_biased_input
# Backwards compatibility
if type(_a ) == str:
A_ : str = [x.strip() for x in pos_att_type.lower().split("""|""" )]
A_ : Any = pos_att_type
A_ : Optional[int] = vocab_size
A_ : Tuple = layer_norm_eps
A_ : Any = kwargs.get("""pooler_hidden_size""" ,_a )
A_ : Union[str, Any] = pooler_dropout
A_ : List[Any] = pooler_hidden_act
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def _a ( self : Any ):
'''simple docstring'''
if self.task == "multiple-choice":
A_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
A_ : Any = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def _a ( self : Optional[int] ):
'''simple docstring'''
return 12
def _a ( self : int ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 3 ,_a : int = 40 ,_a : int = 40 ,_a : "PreTrainedTokenizerBase" = None ,):
'''simple docstring'''
A_ : Any = super().generate_dummy_inputs(preprocessor=_a ,framework=_a )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 27 | 0 |
'''simple docstring'''
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
__magic_name__ = logging.get_logger(__name__)
def lowerCamelCase ( lowerCamelCase : Any):
A_ : str = r"""\w+[.]\d+"""
A_ : int = re.findall(lowerCamelCase , lowerCamelCase)
for pat in pats:
A_ : Optional[int] = key.replace(lowerCamelCase , """_""".join(pat.split(""".""")))
return key
def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any]):
A_ : Optional[int] = pt_tuple_key[:-1] + ("""scale""",)
if (
any("""norm""" in str_ for str_ in pt_tuple_key)
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
A_ : Any = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
A_ : str = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
A_ : List[str] = pt_tuple_key[:-1] + ("""embedding""",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
A_ : Tuple = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
A_ : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0)
return renamed_pt_tuple_key, pt_tensor
# linear layer
A_ : Optional[int] = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight":
A_ : List[str] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
A_ : int = pt_tuple_key[:-1] + ("""weight""",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
A_ : Union[str, Any] = pt_tuple_key[:-1] + ("""bias""",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : List[Any]=42):
# Step 1: Convert pytorch tensor to numpy
A_ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
A_ : Dict = flax_model.init_weights(PRNGKey(lowerCamelCase))
A_ : Any = flatten_dict(lowerCamelCase)
A_ : List[str] = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
A_ : Optional[int] = rename_key(lowerCamelCase)
A_ : Optional[Any] = tuple(renamed_pt_key.split("""."""))
# Correctly rename weight parameters
A_ : Optional[int] = rename_key_and_reshape_tensor(lowerCamelCase , lowerCamelCase , lowerCamelCase)
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.')
# also add unexpected weight so that warning is thrown
A_ : int = jnp.asarray(lowerCamelCase)
return unflatten_dict(lowerCamelCase)
| 707 |
'''simple docstring'''
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('Googling.....')
__magic_name__ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:])
__magic_name__ = requests.get(url, headers={'UserAgent': UserAgent().random})
# res.raise_for_status()
with open('project1a.html', 'wb') as out_file: # only for knowing the class
for data in res.iter_content(10_000):
out_file.write(data)
__magic_name__ = BeautifulSoup(res.text, 'html.parser')
__magic_name__ = list(soup.select('.eZt8xd'))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('href'))
else:
webbrowser.open(f"""https://google.com{link.get('href')}""")
| 27 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,):
'''simple docstring'''
A_ : Optional[Any] = parent
A_ : str = batch_size
A_ : int = seq_length
A_ : Union[str, Any] = is_training
A_ : Optional[Any] = use_token_type_ids
A_ : int = use_labels
A_ : Dict = vocab_size
A_ : List[Any] = hidden_size
A_ : Tuple = num_hidden_layers
A_ : Optional[int] = num_attention_heads
A_ : int = intermediate_size
A_ : Tuple = hidden_act
A_ : int = hidden_dropout_prob
A_ : Dict = attention_probs_dropout_prob
A_ : Any = max_position_embeddings
A_ : Optional[Any] = type_vocab_size
A_ : Tuple = type_sequence_label_size
A_ : int = initializer_range
A_ : Optional[Any] = num_labels
A_ : str = num_choices
A_ : Optional[Any] = scope
A_ : List[Any] = self.vocab_size - 1
def _a ( self : Any ):
'''simple docstring'''
A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
A_ : List[Any] = None
if self.use_token_type_ids:
A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
A_ : int = None
A_ : str = None
A_ : Union[str, Any] = None
if self.use_labels:
A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
A_ : Any = ids_tensor([self.batch_size] ,self.num_choices )
A_ : List[Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,)
A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ):
'''simple docstring'''
A_ : Optional[Any] = OpenAIGPTModel(config=_a )
model.to(_a )
model.eval()
A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a )
A_ : str = model(_a ,token_type_ids=_a )
A_ : Dict = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ):
'''simple docstring'''
A_ : str = OpenAIGPTLMHeadModel(_a )
model.to(_a )
model.eval()
A_ : Any = model(_a ,token_type_ids=_a ,labels=_a )
self.parent.assertEqual(result.loss.shape ,() )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ):
'''simple docstring'''
A_ : Any = OpenAIGPTDoubleHeadsModel(_a )
model.to(_a )
model.eval()
A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a )
self.parent.assertEqual(result.loss.shape ,() )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ):
'''simple docstring'''
A_ : List[str] = self.num_labels
A_ : int = OpenAIGPTForSequenceClassification(_a )
model.to(_a )
model.eval()
A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _a ( self : Tuple ):
'''simple docstring'''
A_ : Union[str, Any] = self.prepare_config_and_inputs()
(
A_
) : str = config_and_inputs
A_ : int = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
a_ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
a_ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
a_ = (
{
"""feature-extraction""": OpenAIGPTModel,
"""text-classification""": OpenAIGPTForSequenceClassification,
"""text-generation""": OpenAIGPTLMHeadModel,
"""zero-shot""": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ):
'''simple docstring'''
A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
A_ : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,)
A_ : Any = inputs_dict["""labels"""]
A_ : Any = inputs_dict["""labels"""]
A_ : Tuple = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,)
A_ : int = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=_a )
return inputs_dict
def _a ( self : Union[str, Any] ):
'''simple docstring'''
A_ : Tuple = OpenAIGPTModelTester(self )
A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 )
def _a ( self : Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _a ( self : Optional[Any] ):
'''simple docstring'''
A_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_a )
def _a ( self : Tuple ):
'''simple docstring'''
A_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_a )
def _a ( self : List[Any] ):
'''simple docstring'''
A_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_a )
def _a ( self : Union[str, Any] ):
'''simple docstring'''
A_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a )
@slow
def _a ( self : List[Any] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a )
self.assertIsNotNone(_a )
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def _a ( self : List[str] ):
'''simple docstring'''
A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" )
model.to(_a )
A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is
A_ : Dict = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
A_ : int = model.generate(_a ,do_sample=_a )
self.assertListEqual(output_ids[0].tolist() ,_a )
| 708 |
'''simple docstring'''
from ... import PretrainedConfig
__magic_name__ = {
'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json',
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
a_ = """nezha"""
def __init__( self : int ,_a : Union[str, Any]=21128 ,_a : int=768 ,_a : Any=12 ,_a : List[str]=12 ,_a : str=3072 ,_a : int="gelu" ,_a : int=0.1 ,_a : str=0.1 ,_a : Tuple=512 ,_a : List[Any]=64 ,_a : Dict=2 ,_a : List[Any]=0.02 ,_a : Optional[Any]=1e-12 ,_a : List[Any]=0.1 ,_a : Union[str, Any]=0 ,_a : Any=2 ,_a : Union[str, Any]=3 ,_a : int=True ,**_a : int ,):
'''simple docstring'''
super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a )
A_ : Tuple = vocab_size
A_ : int = hidden_size
A_ : Any = num_hidden_layers
A_ : List[Any] = num_attention_heads
A_ : Tuple = hidden_act
A_ : List[Any] = intermediate_size
A_ : List[str] = hidden_dropout_prob
A_ : Tuple = attention_probs_dropout_prob
A_ : Dict = max_position_embeddings
A_ : Optional[Any] = max_relative_position
A_ : List[Any] = type_vocab_size
A_ : int = initializer_range
A_ : Tuple = layer_norm_eps
A_ : Dict = classifier_dropout
A_ : int = use_cache
| 27 | 0 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
a_ = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"""
def _a ( self : int ,_a : Optional[int]=0 ):
'''simple docstring'''
A_ : Any = np.random.RandomState(_a )
A_ : List[str] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def _a ( self : Union[str, Any] ):
'''simple docstring'''
A_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=_a )
A_ : Union[str, Any] = self.get_dummy_inputs()
A_ : List[Any] = pipe(**_a ).images
A_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ : List[Any] = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _a ( self : Any ):
'''simple docstring'''
A_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
A_ : Any = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=_a )
pipe.set_progress_bar_config(disable=_a )
A_ : Dict = self.get_dummy_inputs()
A_ : Union[str, Any] = pipe(**_a ).images
A_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ : int = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _a ( self : Dict ):
'''simple docstring'''
A_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
A_ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
A_ : Optional[int] = self.get_dummy_inputs()
A_ : Optional[int] = pipe(**_a ).images
A_ : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ : int = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _a ( self : Union[str, Any] ):
'''simple docstring'''
A_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
A_ : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
A_ : Dict = self.get_dummy_inputs()
A_ : Union[str, Any] = pipe(**_a ).images
A_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ : Dict = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _a ( self : Optional[Any] ):
'''simple docstring'''
A_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
A_ : Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
A_ : Union[str, Any] = self.get_dummy_inputs()
A_ : Any = pipe(**_a ).images
A_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ : Tuple = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _a ( self : List[Any] ):
'''simple docstring'''
A_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
A_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
A_ : Tuple = self.get_dummy_inputs()
A_ : int = pipe(**_a ).images
A_ : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ : Union[str, Any] = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _a ( self : Union[str, Any] ):
'''simple docstring'''
A_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=_a )
A_ : str = self.get_dummy_inputs()
A_ : List[str] = 3 * [inputs["""prompt"""]]
# forward
A_ : Optional[Any] = pipe(**_a )
A_ : Any = output.images[0, -3:, -3:, -1]
A_ : str = self.get_dummy_inputs()
A_ : Tuple = 3 * [inputs.pop("""prompt""" )]
A_ : List[Any] = pipe.tokenizer(
_a ,padding="""max_length""" ,max_length=pipe.tokenizer.model_max_length ,truncation=_a ,return_tensors="""np""" ,)
A_ : Union[str, Any] = text_inputs["""input_ids"""]
A_ : Tuple = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0]
A_ : Optional[int] = prompt_embeds
# forward
A_ : int = pipe(**_a )
A_ : Union[str, Any] = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
def _a ( self : Dict ):
'''simple docstring'''
A_ : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=_a )
A_ : Tuple = self.get_dummy_inputs()
A_ : Union[str, Any] = 3 * ["""this is a negative prompt"""]
A_ : Any = negative_prompt
A_ : Optional[Any] = 3 * [inputs["""prompt"""]]
# forward
A_ : Tuple = pipe(**_a )
A_ : Any = output.images[0, -3:, -3:, -1]
A_ : List[Any] = self.get_dummy_inputs()
A_ : List[str] = 3 * [inputs.pop("""prompt""" )]
A_ : List[Any] = []
for p in [prompt, negative_prompt]:
A_ : int = pipe.tokenizer(
_a ,padding="""max_length""" ,max_length=pipe.tokenizer.model_max_length ,truncation=_a ,return_tensors="""np""" ,)
A_ : Tuple = text_inputs["""input_ids"""]
embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] )
A_ : Union[str, Any] = embeds
# forward
A_ : List[Any] = pipe(**_a )
A_ : str = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
@nightly
@require_onnxruntime
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@property
def _a ( self : Tuple ):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _a ( self : Any ):
'''simple docstring'''
A_ : Union[str, Any] = ort.SessionOptions()
A_ : int = False
return options
def _a ( self : Any ):
'''simple docstring'''
A_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" ,revision="""onnx""" ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
sd_pipe.set_progress_bar_config(disable=_a )
A_ : Optional[int] = """A painting of a squirrel eating a burger"""
np.random.seed(0 )
A_ : Dict = sd_pipe([prompt] ,guidance_scale=6.0 ,num_inference_steps=10 ,output_type="""np""" )
A_ : Tuple = output.images
A_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A_ : Tuple = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _a ( self : Optional[int] ):
'''simple docstring'''
A_ : Dict = DDIMScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,subfolder="""scheduler""" ,revision="""onnx""" )
A_ : int = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,scheduler=_a ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
sd_pipe.set_progress_bar_config(disable=_a )
A_ : Dict = """open neural network exchange"""
A_ : Optional[int] = np.random.RandomState(0 )
A_ : Union[str, Any] = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=_a ,output_type="""np""" )
A_ : Tuple = output.images
A_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A_ : str = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _a ( self : Any ):
'''simple docstring'''
A_ : str = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,subfolder="""scheduler""" ,revision="""onnx""" )
A_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,scheduler=_a ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
sd_pipe.set_progress_bar_config(disable=_a )
A_ : Optional[int] = """open neural network exchange"""
A_ : Optional[Any] = np.random.RandomState(0 )
A_ : int = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=_a ,output_type="""np""" )
A_ : str = output.images
A_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A_ : str = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _a ( self : Any ):
'''simple docstring'''
A_ : int = 0
def test_callback_fn(_a : int ,_a : int ,_a : np.ndarray ) -> None:
A_ : Any = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 64, 64)
A_ : Union[str, Any] = latents[0, -3:, -3:, -1]
A_ : str = np.array(
[-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
A_ : Any = latents[0, -3:, -3:, -1]
A_ : int = np.array(
[-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3
A_ : int = False
A_ : int = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
pipe.set_progress_bar_config(disable=_a )
A_ : List[str] = """Andromeda galaxy in a bottle"""
A_ : List[Any] = np.random.RandomState(0 )
pipe(
prompt=_a ,num_inference_steps=5 ,guidance_scale=7.5 ,generator=_a ,callback=_a ,callback_steps=1 ,)
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def _a ( self : Dict ):
'''simple docstring'''
A_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
assert isinstance(_a ,_a )
assert pipe.safety_checker is None
A_ : List[str] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_a )
A_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(_a )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
A_ : int = pipe("""example prompt""" ,num_inference_steps=2 ).images[0]
assert image is not None
| 709 |
'''simple docstring'''
from __future__ import annotations
def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str):
A_ , A_ : List[Any] = set(lowerCamelCase), [start]
while stack:
A_ : Optional[Any] = stack.pop()
explored.add(lowerCamelCase)
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v]):
if adj not in explored:
stack.append(lowerCamelCase)
return explored
__magic_name__ = {
'A': ['B', 'C', 'D'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B', 'D'],
'E': ['B', 'F'],
'F': ['C', 'E', 'G'],
'G': ['F'],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, 'A'))
| 27 | 0 |
'''simple docstring'''
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__magic_name__ = {
'vocab_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
__magic_name__ = {
'vocab_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
__magic_name__ = {
'vocab_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json'
),
},
}
__magic_name__ = {
'facebook/dpr-ctx_encoder-single-nq-base': 512,
'facebook/dpr-ctx_encoder-multiset-base': 512,
}
__magic_name__ = {
'facebook/dpr-question_encoder-single-nq-base': 512,
'facebook/dpr-question_encoder-multiset-base': 512,
}
__magic_name__ = {
'facebook/dpr-reader-single-nq-base': 512,
'facebook/dpr-reader-multiset-base': 512,
}
__magic_name__ = {
'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True},
}
__magic_name__ = {
'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True},
}
__magic_name__ = {
'facebook/dpr-reader-single-nq-base': {'do_lower_case': True},
'facebook/dpr-reader-multiset-base': {'do_lower_case': True},
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = VOCAB_FILES_NAMES
a_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
a_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
a_ = DPRContextEncoderTokenizer
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = VOCAB_FILES_NAMES
a_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
a_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
a_ = DPRQuestionEncoderTokenizer
__magic_name__ = collections.namedtuple(
'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text']
)
__magic_name__ = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits'])
__magic_name__ = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n '
@add_start_docstrings(__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase :
'''simple docstring'''
def __call__( self : Any ,_a : List[str] ,_a : Optional[str] = None ,_a : Optional[str] = None ,_a : Union[bool, str] = False ,_a : Union[bool, str] = False ,_a : Optional[int] = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[bool] = None ,**_a : Tuple ,):
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
_a ,padding=_a ,truncation=_a ,max_length=_a ,return_tensors=_a ,return_attention_mask=_a ,**_a ,)
elif titles is None or texts is None:
A_ : int = titles if texts is None else texts
return super().__call__(
_a ,_a ,padding=_a ,truncation=_a ,max_length=_a ,return_tensors=_a ,return_attention_mask=_a ,**_a ,)
A_ : List[Any] = titles if not isinstance(_a ,_a ) else [titles]
A_ : Dict = texts if not isinstance(_a ,_a ) else [texts]
A_ : Tuple = len(_a )
A_ : Optional[Any] = questions if not isinstance(_a ,_a ) else [questions] * n_passages
assert len(_a ) == len(
_a ), f'There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.'
A_ : str = super().__call__(_a ,_a ,padding=_a ,truncation=_a )["""input_ids"""]
A_ : Union[str, Any] = super().__call__(_a ,add_special_tokens=_a ,padding=_a ,truncation=_a )["""input_ids"""]
A_ : str = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_a ,_a )
]
}
if return_attention_mask is not False:
A_ : List[str] = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
A_ : int = attention_mask
return self.pad(_a ,padding=_a ,max_length=_a ,return_tensors=_a )
def _a ( self : Optional[int] ,_a : BatchEncoding ,_a : DPRReaderOutput ,_a : int = 16 ,_a : int = 64 ,_a : int = 4 ,):
'''simple docstring'''
A_ : Dict = reader_input["""input_ids"""]
A_ : Optional[int] = reader_output[:3]
A_ : Dict = len(_a )
A_ : Dict = sorted(range(_a ) ,reverse=_a ,key=relevance_logits.__getitem__ )
A_ : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
A_ : Tuple = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
A_ : List[Any] = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
A_ : List[str] = sequence_ids.index(self.pad_token_id )
else:
A_ : Union[str, Any] = len(_a )
A_ : Tuple = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_a ,top_spans=_a ,)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_a ,start_index=_a ,end_index=_a ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) )
if len(_a ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def _a ( self : Optional[int] ,_a : List[int] ,_a : List[int] ,_a : int ,_a : int ,):
'''simple docstring'''
A_ : List[str] = []
for start_index, start_score in enumerate(_a ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
A_ : Any = sorted(_a ,key=lambda _a : x[1] ,reverse=_a )
A_ : List[str] = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]'
A_ : List[str] = end_index - start_index + 1
assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}'
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_a ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = VOCAB_FILES_NAMES
a_ = READER_PRETRAINED_VOCAB_FILES_MAP
a_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = READER_PRETRAINED_INIT_CONFIGURATION
a_ = ["""input_ids""", """attention_mask"""]
a_ = DPRReaderTokenizer
| 710 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__magic_name__ = logging.get_logger(__name__)
def lowerCamelCase ( lowerCamelCase : Dict):
A_ : List[str] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
A_ : Union[str, Any] = [144, 192, 240]
A_ : int = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
A_ : List[str] = [96, 120, 144]
A_ : Any = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
A_ : Any = [64, 80, 96]
A_ : List[str] = [16, 16, 24, 48, 64, 80, 320]
A_ : Any = 0.05
A_ : List[Any] = 2.0
if mobilevit_name.startswith("""deeplabv3_"""):
A_ : int = 512
A_ : Optional[int] = 16
A_ : List[Any] = 21
A_ : List[str] = """pascal-voc-id2label.json"""
else:
A_ : str = 1000
A_ : Any = """imagenet-1k-id2label.json"""
A_ : Any = """huggingface/label-files"""
A_ : List[str] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""") , """r"""))
A_ : str = {int(lowerCamelCase): v for k, v in idalabel.items()}
A_ : Any = idalabel
A_ : List[str] = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int=False):
for i in range(1 , 6):
if F'layer_{i}.' in name:
A_ : Tuple = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.')
if "conv_1." in name:
A_ : Union[str, Any] = name.replace("""conv_1.""" , """conv_stem.""")
if ".block." in name:
A_ : Optional[Any] = name.replace(""".block.""" , """.""")
if "exp_1x1" in name:
A_ : Union[str, Any] = name.replace("""exp_1x1""" , """expand_1x1""")
if "red_1x1" in name:
A_ : int = name.replace("""red_1x1""" , """reduce_1x1""")
if ".local_rep.conv_3x3." in name:
A_ : List[str] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""")
if ".local_rep.conv_1x1." in name:
A_ : Optional[int] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""")
if ".norm." in name:
A_ : Tuple = name.replace(""".norm.""" , """.normalization.""")
if ".conv." in name:
A_ : List[Any] = name.replace(""".conv.""" , """.convolution.""")
if ".conv_proj." in name:
A_ : str = name.replace(""".conv_proj.""" , """.conv_projection.""")
for i in range(0 , 2):
for j in range(0 , 4):
if F'.{i}.{j}.' in name:
A_ : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.')
for i in range(2 , 6):
for j in range(0 , 4):
if F'.{i}.{j}.' in name:
A_ : Dict = name.replace(F'.{i}.{j}.' , F'.{i}.')
if "expand_1x1" in name:
A_ : Union[str, Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""")
if "conv_3x3" in name:
A_ : str = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""")
if "reduce_1x1" in name:
A_ : Union[str, Any] = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""")
for i in range(2 , 5):
if F'.global_rep.{i}.weight' in name:
A_ : List[Any] = name.replace(F'.global_rep.{i}.weight' , """.layernorm.weight""")
if F'.global_rep.{i}.bias' in name:
A_ : Optional[int] = name.replace(F'.global_rep.{i}.bias' , """.layernorm.bias""")
if ".global_rep." in name:
A_ : Optional[Any] = name.replace(""".global_rep.""" , """.transformer.""")
if ".pre_norm_mha.0." in name:
A_ : int = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""")
if ".pre_norm_mha.1.out_proj." in name:
A_ : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""")
if ".pre_norm_ffn.0." in name:
A_ : Dict = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""")
if ".pre_norm_ffn.1." in name:
A_ : Any = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""")
if ".pre_norm_ffn.4." in name:
A_ : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""")
if ".transformer." in name:
A_ : Any = name.replace(""".transformer.""" , """.transformer.layer.""")
if ".aspp_layer." in name:
A_ : int = name.replace(""".aspp_layer.""" , """.""")
if ".aspp_pool." in name:
A_ : Tuple = name.replace(""".aspp_pool.""" , """.""")
if "seg_head." in name:
A_ : Optional[int] = name.replace("""seg_head.""" , """segmentation_head.""")
if "segmentation_head.classifier.classifier." in name:
A_ : List[str] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""")
if "classifier.fc." in name:
A_ : str = name.replace("""classifier.fc.""" , """classifier.""")
elif (not base_model) and ("segmentation_head." not in name):
A_ : str = """mobilevit.""" + name
return name
def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int]=False):
if base_model:
A_ : Dict = """"""
else:
A_ : Any = """mobilevit."""
for key in orig_state_dict.copy().keys():
A_ : List[Any] = orig_state_dict.pop(lowerCamelCase)
if key[:8] == "encoder.":
A_ : int = key[8:]
if "qkv" in key:
A_ : Any = key.split(""".""")
A_ : str = int(key_split[0][6:]) - 1
A_ : int = int(key_split[3])
A_ : Optional[Any] = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}')
A_ : Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size
A_ : Optional[Any] = (
F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'
)
if "weight" in key:
A_ : Dict = val[:dim, :]
A_ : Optional[int] = val[dim : dim * 2, :]
A_ : List[Any] = val[-dim:, :]
else:
A_ : Optional[Any] = val[:dim]
A_ : List[Any] = val[dim : dim * 2]
A_ : Any = val[-dim:]
else:
A_ : List[str] = val
return orig_state_dict
def lowerCamelCase ( ):
A_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A_ : Dict = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw)
return im
@torch.no_grad()
def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int=False):
A_ : Optional[Any] = get_mobilevit_config(lowerCamelCase)
# load original state_dict
A_ : List[Any] = torch.load(lowerCamelCase , map_location="""cpu""")
# load 🤗 model
if mobilevit_name.startswith("""deeplabv3_"""):
A_ : List[str] = MobileViTForSemanticSegmentation(lowerCamelCase).eval()
else:
A_ : str = MobileViTForImageClassification(lowerCamelCase).eval()
A_ : str = convert_state_dict(lowerCamelCase , lowerCamelCase)
model.load_state_dict(lowerCamelCase)
# Check outputs on an image, prepared by MobileViTImageProcessor
A_ : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32)
A_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""")
A_ : List[Any] = model(**lowerCamelCase)
A_ : Dict = outputs.logits
if mobilevit_name.startswith("""deeplabv3_"""):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
A_ : int = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
])
elif mobilevit_name == "deeplabv3_mobilevit_xs":
A_ : Tuple = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
])
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
A_ : Tuple = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
])
else:
raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}')
assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4)
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
A_ : Tuple = torch.tensor([-0.9866, 0.2392, -1.1241])
elif mobilevit_name == "mobilevit_xs":
A_ : Any = torch.tensor([-2.4761, -0.9399, -1.9587])
elif mobilevit_name == "mobilevit_xxs":
A_ : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653])
else:
raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}')
assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4)
Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase)
print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}')
model.save_pretrained(lowerCamelCase)
print(F'Saving image processor to {pytorch_dump_folder_path}')
image_processor.save_pretrained(lowerCamelCase)
if push_to_hub:
A_ : str = {
"""mobilevit_s""": """mobilevit-small""",
"""mobilevit_xs""": """mobilevit-x-small""",
"""mobilevit_xxs""": """mobilevit-xx-small""",
"""deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""",
"""deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""",
"""deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""",
}
print("""Pushing to the hub...""")
A_ : Union[str, Any] = model_mapping[mobilevit_name]
image_processor.push_to_hub(lowerCamelCase , organization="""apple""")
model.push_to_hub(lowerCamelCase , organization="""apple""")
if __name__ == "__main__":
__magic_name__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--mobilevit_name',
default='mobilevit_s',
type=str,
help=(
'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','
' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'
),
)
parser.add_argument(
'--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__magic_name__ = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 27 | 0 |
'''simple docstring'''
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def lowerCamelCase ( lowerCamelCase : Tuple):
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@staticmethod
def _a ( _a : ArgumentParser ):
'''simple docstring'''
A_ : Any = parser.add_parser("""download""" )
download_parser.add_argument(
"""--cache-dir""" ,type=_a ,default=_a ,help="""Path to location to store the models""" )
download_parser.add_argument(
"""--force""" ,action="""store_true""" ,help="""Force the model to be download even if already in cache-dir""" )
download_parser.add_argument(
"""--trust-remote-code""" ,action="""store_true""" ,help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" ,)
download_parser.add_argument("""model""" ,type=_a ,help="""Name of the model to download""" )
download_parser.set_defaults(func=_a )
def __init__( self : List[str] ,_a : str ,_a : str ,_a : bool ,_a : bool ):
'''simple docstring'''
A_ : int = model
A_ : Tuple = cache
A_ : Tuple = force
A_ : str = trust_remote_code
def _a ( self : str ):
'''simple docstring'''
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
| 711 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__magic_name__ = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = ["""pixel_values"""]
def __init__( self : Optional[Any] ,_a : bool = True ,_a : Dict[str, int] = None ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : bool = True ,_a : Dict[str, int] = None ,_a : bool = True ,_a : Union[int, float] = 1 / 255 ,_a : bool = True ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = True ,**_a : Dict ,):
'''simple docstring'''
super().__init__(**_a )
A_ : Tuple = size if size is not None else {"""shortest_edge""": 224}
A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a )
A_ : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ,param_name="""crop_size""" )
A_ : Any = do_resize
A_ : List[str] = size
A_ : Union[str, Any] = resample
A_ : Dict = do_center_crop
A_ : List[str] = crop_size
A_ : Any = do_rescale
A_ : Union[str, Any] = rescale_factor
A_ : Any = do_normalize
A_ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
A_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD
A_ : Tuple = do_convert_rgb
def _a ( self : Optional[int] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[Any] ,):
'''simple docstring'''
A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a )
if "shortest_edge" not in size:
raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
A_ : Tuple = get_resize_output_image_size(_a ,size=size["""shortest_edge"""] ,default_to_square=_a )
return resize(_a ,size=_a ,resample=_a ,data_format=_a ,**_a )
def _a ( self : List[Any] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[int] ,):
'''simple docstring'''
A_ : Optional[int] = get_size_dict(_a )
if "height" not in size or "width" not in size:
raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(_a ,size=(size["""height"""], size["""width"""]) ,data_format=_a ,**_a )
def _a ( self : Any ,_a : np.ndarray ,_a : Union[int, float] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Any ,):
'''simple docstring'''
return rescale(_a ,scale=_a ,data_format=_a ,**_a )
def _a ( self : Any ,_a : np.ndarray ,_a : Union[float, List[float]] ,_a : Union[float, List[float]] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : List[str] ,):
'''simple docstring'''
return normalize(_a ,mean=_a ,std=_a ,data_format=_a ,**_a )
def _a ( self : Optional[Any] ,_a : ImageInput ,_a : bool = None ,_a : Dict[str, int] = None ,_a : PILImageResampling = None ,_a : bool = None ,_a : int = None ,_a : bool = None ,_a : float = None ,_a : bool = None ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[ChannelDimension] = ChannelDimension.FIRST ,**_a : int ,):
'''simple docstring'''
A_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
A_ : Tuple = size if size is not None else self.size
A_ : Optional[int] = get_size_dict(_a ,param_name="""size""" ,default_to_square=_a )
A_ : List[str] = resample if resample is not None else self.resample
A_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop
A_ : Any = crop_size if crop_size is not None else self.crop_size
A_ : int = get_size_dict(_a ,param_name="""crop_size""" ,default_to_square=_a )
A_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
A_ : Any = do_normalize if do_normalize is not None else self.do_normalize
A_ : int = image_mean if image_mean is not None else self.image_mean
A_ : int = image_std if image_std is not None else self.image_std
A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
A_ : int = make_list_of_images(_a )
if not valid_images(_a ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
A_ : Optional[int] = [convert_to_rgb(_a ) for image in images]
# All transformations expect numpy arrays.
A_ : Dict = [to_numpy_array(_a ) for image in images]
if do_resize:
A_ : int = [self.resize(image=_a ,size=_a ,resample=_a ) for image in images]
if do_center_crop:
A_ : Tuple = [self.center_crop(image=_a ,size=_a ) for image in images]
if do_rescale:
A_ : List[str] = [self.rescale(image=_a ,scale=_a ) for image in images]
if do_normalize:
A_ : Any = [self.normalize(image=_a ,mean=_a ,std=_a ) for image in images]
A_ : List[str] = [to_channel_dimension_format(_a ,_a ) for image in images]
A_ : List[str] = {"""pixel_values""": images}
return BatchFeature(data=_a ,tensor_type=_a )
| 27 | 0 |
'''simple docstring'''
def lowerCamelCase ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple):
A_ : List[str] = """"""
for i in table:
res += inp[i - 1]
return res
def lowerCamelCase ( lowerCamelCase : List[Any]):
return data[1:] + data[0]
def lowerCamelCase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any]):
A_ : List[Any] = """"""
for i in range(len(lowerCamelCase)):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : int):
A_ : str = int("""0b""" + data[0] + data[-1] , 2)
A_ : Tuple = int("""0b""" + data[1:3] , 2)
return bin(s[row][col])[2:]
def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : Tuple):
A_ : Any = message[:4]
A_ : Optional[Any] = message[4:]
A_ : Any = apply_table(lowerCamelCase , lowerCamelCase)
A_ : str = xor(lowerCamelCase , lowerCamelCase)
A_ : Tuple = apply_sbox(lowerCamelCase , temp[:4]) # noqa: E741
A_ : Any = apply_sbox(lowerCamelCase , temp[4:])
A_ : List[str] = """0""" * (2 - len(lowerCamelCase)) + l # noqa: E741
A_ : Tuple = """0""" * (2 - len(lowerCamelCase)) + r
A_ : Optional[Any] = apply_table(l + r , lowerCamelCase)
A_ : Union[str, Any] = xor(lowerCamelCase , lowerCamelCase)
return temp + right
if __name__ == "__main__":
__magic_name__ = input('Enter 10 bit key: ')
__magic_name__ = input('Enter 8 bit message: ')
__magic_name__ = [6, 3, 7, 4, 8, 5, 10, 9]
__magic_name__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
__magic_name__ = [2, 4, 3, 1]
__magic_name__ = [2, 6, 3, 1, 4, 8, 5, 7]
__magic_name__ = [4, 1, 3, 5, 7, 2, 8, 6]
__magic_name__ = [4, 1, 2, 3, 2, 3, 4, 1]
__magic_name__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
__magic_name__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
__magic_name__ = apply_table(key, paa_table)
__magic_name__ = temp[:5]
__magic_name__ = temp[5:]
__magic_name__ = left_shift(left)
__magic_name__ = left_shift(right)
__magic_name__ = apply_table(left + right, pa_table)
__magic_name__ = left_shift(left)
__magic_name__ = left_shift(right)
__magic_name__ = left_shift(left)
__magic_name__ = left_shift(right)
__magic_name__ = apply_table(left + right, pa_table)
# encryption
__magic_name__ = apply_table(message, IP)
__magic_name__ = function(expansion, sa, sa, keya, temp)
__magic_name__ = temp[4:] + temp[:4]
__magic_name__ = function(expansion, sa, sa, keya, temp)
__magic_name__ = apply_table(temp, IP_inv)
print('Cipher text is:', CT)
# decryption
__magic_name__ = apply_table(CT, IP)
__magic_name__ = function(expansion, sa, sa, keya, temp)
__magic_name__ = temp[4:] + temp[:4]
__magic_name__ = function(expansion, sa, sa, keya, temp)
__magic_name__ = apply_table(temp, IP_inv)
print('Plain text after decypting is:', PT)
| 712 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
__magic_name__ = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,*_a : Optional[Any] ,**_a : Optional[int] ):
'''simple docstring'''
warnings.warn(
"""The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use OwlViTImageProcessor instead.""" ,_a ,)
super().__init__(*_a ,**_a )
| 27 | 0 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Dict=None , **lowerCamelCase : Any):
A_ : int = [x.strip() for x in open(lowerCamelCase).readlines()]
A_ : Tuple = [x.strip() for x in open(lowerCamelCase).readlines()][: len(lowerCamelCase)]
A_ : Tuple = calculate_rouge(lowerCamelCase , lowerCamelCase , **lowerCamelCase)
if save_path is not None:
save_json(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase)
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 713 |
'''simple docstring'''
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : complex , lowerCamelCase : str = "x" , lowerCamelCase : float = 10**-10 , lowerCamelCase : int = 1 , ):
A_ : int = symbols(lowerCamelCase)
A_ : List[Any] = lambdify(lowerCamelCase , lowerCamelCase)
A_ : List[str] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase))
A_ : str = starting_point
while True:
if diff_function(lowerCamelCase) != 0:
A_ : int = prev_guess - multiplicity * func(lowerCamelCase) / diff_function(
lowerCamelCase)
else:
raise ZeroDivisionError("""Could not find root""") from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess) < precision:
return next_guess
A_ : Union[str, Any] = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""")
# Find root of polynomial
# Find fourth Root of 5
print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""")
# Find value of e
print(
'The root of log(y) - 1 = 0 is ',
f"""{newton_raphson('log(y) - 1', 2, variable='y')}""",
)
# Exponential Roots
print(
'The root of exp(x) - 1 = 0 is',
f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}""",
)
# Find root of cos(x)
print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
| 27 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = ["""onnx"""]
def __init__( self : Any ,*_a : int ,**_a : Optional[Any] ):
'''simple docstring'''
requires_backends(self ,["""onnx"""] )
@classmethod
def _a ( cls : List[Any] ,*_a : Tuple ,**_a : str ):
'''simple docstring'''
requires_backends(cls ,["""onnx"""] )
@classmethod
def _a ( cls : str ,*_a : List[Any] ,**_a : List[str] ):
'''simple docstring'''
requires_backends(cls ,["""onnx"""] )
| 714 |
'''simple docstring'''
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
__magic_name__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class __lowerCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_a : Dict ):
'''simple docstring'''
super().__init__()
A_ : List[str] = torchvision.models.resnetaaa(pretrained=_a )
A_ : int = list(model.children() )[:-2]
A_ : int = nn.Sequential(*_a )
A_ : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def _a ( self : str ,_a : Optional[int] ):
'''simple docstring'''
A_ : Tuple = self.pool(self.model(_a ) )
A_ : Any = torch.flatten(_a ,start_dim=2 )
A_ : str = out.transpose(1 ,2 ).contiguous()
return out # BxNx2048
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Dict ,_a : Dict ,_a : Optional[Any] ):
'''simple docstring'''
A_ : Dict = [json.loads(_a ) for l in open(_a )]
A_ : Optional[int] = os.path.dirname(_a )
A_ : Optional[Any] = tokenizer
A_ : Optional[Any] = labels
A_ : List[Any] = len(_a )
A_ : str = max_seq_length
A_ : str = transforms
def __len__( self : str ):
'''simple docstring'''
return len(self.data )
def __getitem__( self : Tuple ,_a : Optional[Any] ):
'''simple docstring'''
A_ : Optional[int] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] ,add_special_tokens=_a ) )
A_ , A_ , A_ : Dict = sentence[0], sentence[1:-1], sentence[-1]
A_ : Optional[int] = sentence[: self.max_seq_length]
A_ : Any = torch.zeros(self.n_classes )
A_ : Tuple = 1
A_ : Optional[Any] = Image.open(os.path.join(self.data_dir ,self.data[index]["""img"""] ) ).convert("""RGB""" )
A_ : Union[str, Any] = self.transforms(_a )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def _a ( self : List[Any] ):
'''simple docstring'''
A_ : str = Counter()
for row in self.data:
label_freqs.update(row["""label"""] )
return label_freqs
def lowerCamelCase ( lowerCamelCase : str):
A_ : List[Any] = [len(row["""sentence"""]) for row in batch]
A_ , A_ : Dict = len(lowerCamelCase), max(lowerCamelCase)
A_ : Optional[int] = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long)
A_ : Tuple = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long)
for i_batch, (input_row, length) in enumerate(zip(lowerCamelCase , lowerCamelCase)):
A_ : str = input_row["""sentence"""]
A_ : Tuple = 1
A_ : int = torch.stack([row["""image"""] for row in batch])
A_ : str = torch.stack([row["""label"""] for row in batch])
A_ : List[Any] = torch.stack([row["""image_start_token"""] for row in batch])
A_ : Tuple = torch.stack([row["""image_end_token"""] for row in batch])
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def lowerCamelCase ( ):
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def lowerCamelCase ( ):
return transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ),
])
| 27 | 0 |
'''simple docstring'''
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training')
# TF training parameters
__magic_name__ = False
__magic_name__ = False
def lowerCamelCase ( lowerCamelCase : Namespace):
return TrainCommand(lowerCamelCase)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@staticmethod
def _a ( _a : ArgumentParser ):
'''simple docstring'''
A_ : Union[str, Any] = parser.add_parser("""train""" ,help="""CLI tool to train a model on a task.""" )
train_parser.add_argument(
"""--train_data""" ,type=_a ,required=_a ,help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" ,)
train_parser.add_argument(
"""--column_label""" ,type=_a ,default=0 ,help="""Column of the dataset csv file with example labels.""" )
train_parser.add_argument(
"""--column_text""" ,type=_a ,default=1 ,help="""Column of the dataset csv file with example texts.""" )
train_parser.add_argument(
"""--column_id""" ,type=_a ,default=2 ,help="""Column of the dataset csv file with example ids.""" )
train_parser.add_argument(
"""--skip_first_row""" ,action="""store_true""" ,help="""Skip the first row of the csv file (headers).""" )
train_parser.add_argument("""--validation_data""" ,type=_a ,default="""""" ,help="""path to validation dataset.""" )
train_parser.add_argument(
"""--validation_split""" ,type=_a ,default=0.1 ,help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" ,)
train_parser.add_argument("""--output""" ,type=_a ,default="""./""" ,help="""path to saved the trained model.""" )
train_parser.add_argument(
"""--task""" ,type=_a ,default="""text_classification""" ,help="""Task to train the model on.""" )
train_parser.add_argument(
"""--model""" ,type=_a ,default="""bert-base-uncased""" ,help="""Model's name or path to stored model.""" )
train_parser.add_argument("""--train_batch_size""" ,type=_a ,default=32 ,help="""Batch size for training.""" )
train_parser.add_argument("""--valid_batch_size""" ,type=_a ,default=64 ,help="""Batch size for validation.""" )
train_parser.add_argument("""--learning_rate""" ,type=_a ,default=3e-5 ,help="""Learning rate.""" )
train_parser.add_argument("""--adam_epsilon""" ,type=_a ,default=1e-08 ,help="""Epsilon for Adam optimizer.""" )
train_parser.set_defaults(func=_a )
def __init__( self : Optional[Any] ,_a : Namespace ):
'''simple docstring'''
A_ : int = logging.get_logger("""transformers-cli/training""" )
A_ : Optional[Any] = """tf""" if is_tf_available() else """torch"""
os.makedirs(args.output ,exist_ok=_a )
A_ : Any = args.output
A_ : str = args.column_label
A_ : List[Any] = args.column_text
A_ : Dict = args.column_id
self.logger.info(f'Loading {args.task} pipeline for {args.model}' )
if args.task == "text_classification":
A_ : List[Any] = TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'Loading dataset from {args.train_data}' )
A_ : Tuple = Processor.create_from_csv(
args.train_data ,column_label=args.column_label ,column_text=args.column_text ,column_id=args.column_id ,skip_first_row=args.skip_first_row ,)
A_ : List[Any] = None
if args.validation_data:
self.logger.info(f'Loading validation dataset from {args.validation_data}' )
A_ : Tuple = Processor.create_from_csv(
args.validation_data ,column_label=args.column_label ,column_text=args.column_text ,column_id=args.column_id ,skip_first_row=args.skip_first_row ,)
A_ : int = args.validation_split
A_ : Optional[Any] = args.train_batch_size
A_ : List[Any] = args.valid_batch_size
A_ : List[Any] = args.learning_rate
A_ : Optional[int] = args.adam_epsilon
def _a ( self : Optional[int] ):
'''simple docstring'''
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def _a ( self : List[Any] ):
'''simple docstring'''
raise NotImplementedError
def _a ( self : Dict ):
'''simple docstring'''
self.pipeline.fit(
self.train_dataset ,validation_data=self.valid_dataset ,validation_split=self.validation_split ,learning_rate=self.learning_rate ,adam_epsilon=self.adam_epsilon ,train_batch_size=self.train_batch_size ,valid_batch_size=self.valid_batch_size ,)
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 715 |
'''simple docstring'''
from __future__ import annotations
import math
def lowerCamelCase ( lowerCamelCase : int):
if num <= 0:
A_ : List[Any] = F'{num}: Invalid input, please enter a positive integer.'
raise ValueError(lowerCamelCase)
A_ : str = [True] * (num + 1)
A_ : Tuple = []
A_ : str = 2
A_ : Any = int(math.sqrt(lowerCamelCase))
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(lowerCamelCase)
# Set multiples of start be False
for i in range(start * start , num + 1 , lowerCamelCase):
if sieve[i] is True:
A_ : Union[str, Any] = False
start += 1
for j in range(end + 1 , num + 1):
if sieve[j] is True:
prime.append(lowerCamelCase)
return prime
if __name__ == "__main__":
print(prime_sieve(int(input('Enter a positive integer: ').strip())))
| 27 | 0 |
'''simple docstring'''
import os
import string
import sys
__magic_name__ = 1 << 8
__magic_name__ = {
'tab': ord('\t'),
'newline': ord('\r'),
'esc': 27,
'up': 65 + ARROW_KEY_FLAG,
'down': 66 + ARROW_KEY_FLAG,
'right': 67 + ARROW_KEY_FLAG,
'left': 68 + ARROW_KEY_FLAG,
'mod_int': 91,
'undefined': sys.maxsize,
'interrupt': 3,
'insert': 50,
'delete': 51,
'pg_up': 53,
'pg_down': 54,
}
__magic_name__ = KEYMAP['up']
__magic_name__ = KEYMAP['left']
if sys.platform == "win32":
__magic_name__ = []
__magic_name__ = {
b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG,
b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG,
}
for i in range(10):
__magic_name__ = ord(str(i))
def lowerCamelCase ( ):
if os.name == "nt":
import msvcrt
A_ : List[Any] = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(lowerCamelCase) == 0:
# Read the keystroke
A_ : Optional[int] = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
A_ : Optional[int] = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
A_ : Optional[int] = chr(WIN_KEYMAP[cha])
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""]))
WIN_CH_BUFFER.append(lowerCamelCase)
if ord(lowerCamelCase) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126))
A_ : List[Any] = chr(KEYMAP["""esc"""])
except KeyError:
A_ : str = cha[1]
else:
A_ : List[Any] = ch.decode(lowerCamelCase)
else:
A_ : List[Any] = WIN_CH_BUFFER.pop(0)
elif os.name == "posix":
import termios
import tty
A_ : Optional[int] = sys.stdin.fileno()
A_ : Union[str, Any] = termios.tcgetattr(lowerCamelCase)
try:
tty.setraw(lowerCamelCase)
A_ : Optional[Any] = sys.stdin.read(1)
finally:
termios.tcsetattr(lowerCamelCase , termios.TCSADRAIN , lowerCamelCase)
return ch
def lowerCamelCase ( ):
A_ : Union[str, Any] = get_raw_chars()
if ord(lowerCamelCase) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(lowerCamelCase) == KEYMAP["esc"]:
A_ : str = get_raw_chars()
if ord(lowerCamelCase) == KEYMAP["mod_int"]:
A_ : List[str] = get_raw_chars()
if ord(lowerCamelCase) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowerCamelCase) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(lowerCamelCase) + ARROW_KEY_FLAG)
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 716 |
'''simple docstring'''
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
__magic_name__ = trt.Logger(trt.Logger.WARNING)
__magic_name__ = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
__magic_name__ = logging.getLogger(__name__)
__magic_name__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--onnx_model_path',
default=None,
type=str,
required=True,
help='Path to ONNX model: ',
)
parser.add_argument(
'--output_dir',
default=None,
type=str,
required=True,
help='The output directory where the model checkpoints and predictions will be written.',
)
# Other parameters
parser.add_argument(
'--tokenizer_name',
default='',
type=str,
required=True,
help='Pretrained tokenizer name or path if not the same as model_name',
)
parser.add_argument(
'--version_2_with_negative',
action='store_true',
help='If true, the SQuAD examples contain some that do not have an answer.',
)
parser.add_argument(
'--null_score_diff_threshold',
type=float,
default=0.0,
help='If null_score - best_non_null is greater than the threshold predict null.',
)
parser.add_argument(
'--max_seq_length',
default=384,
type=int,
help=(
'The maximum total input sequence length after WordPiece tokenization. Sequences '
'longer than this will be truncated, and sequences shorter than this will be padded.'
),
)
parser.add_argument(
'--doc_stride',
default=128,
type=int,
help='When splitting up a long document into chunks, how much stride to take between chunks.',
)
parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.')
parser.add_argument(
'--n_best_size',
default=20,
type=int,
help='The total number of n-best predictions to generate in the nbest_predictions.json output file.',
)
parser.add_argument(
'--max_answer_length',
default=30,
type=int,
help=(
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
),
)
parser.add_argument('--seed', type=int, default=42, help='random seed for initialization')
parser.add_argument(
'--dataset_name',
type=str,
default=None,
required=True,
help='The name of the dataset to use (via the datasets library).',
)
parser.add_argument(
'--dataset_config_name',
type=str,
default=None,
help='The configuration name of the dataset to use (via the datasets library).',
)
parser.add_argument(
'--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.'
)
parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets')
parser.add_argument(
'--fp16',
action='store_true',
help='Whether to use 16-bit (mixed) precision instead of 32-bit',
)
parser.add_argument(
'--int8',
action='store_true',
help='Whether to use INT8',
)
__magic_name__ = parser.parse_args()
if args.tokenizer_name:
__magic_name__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
'You are instantiating a new tokenizer from scratch. This is not supported by this script.'
'You can do it from another script, save it, and load it from here, using --tokenizer_name.'
)
logger.info('Training/evaluation parameters %s', args)
__magic_name__ = args.per_device_eval_batch_size
__magic_name__ = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
__magic_name__ = True
__magic_name__ = 'temp_engine/bert-fp32.engine'
if args.fpaa:
__magic_name__ = 'temp_engine/bert-fp16.engine'
if args.inta:
__magic_name__ = 'temp_engine/bert-int8.engine'
# import ONNX file
if not os.path.exists('temp_engine'):
os.makedirs('temp_engine')
__magic_name__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, 'rb') as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
__magic_name__ = [network.get_input(i) for i in range(network.num_inputs)]
__magic_name__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
__magic_name__ = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
__magic_name__ = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
__magic_name__ = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, 'wb') as f:
f.write(engine.serialize())
def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str]):
A_ : str = np.asarray(inputs["""input_ids"""] , dtype=np.intaa)
A_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa)
A_ : Optional[int] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa)
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase)
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase)
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase)
# start time
A_ : List[Any] = time.time()
# Run inference
context.execute_async(
bindings=[int(lowerCamelCase) for d_inp in d_inputs] + [int(lowerCamelCase), int(lowerCamelCase)] , stream_handle=stream.handle)
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase)
cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase)
# Synchronize the stream and take time
stream.synchronize()
# end time
A_ : str = time.time()
A_ : Tuple = end_time - start_time
A_ : Any = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
__magic_name__ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__magic_name__ = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError('Evaluation requires a dataset name')
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
__magic_name__ = raw_datasets['validation'].column_names
__magic_name__ = 'question' if 'question' in column_names else column_names[0]
__magic_name__ = 'context' if 'context' in column_names else column_names[1]
__magic_name__ = 'answers' if 'answers' in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
__magic_name__ = tokenizer.padding_side == 'right'
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."""
)
__magic_name__ = min(args.max_seq_length, tokenizer.model_max_length)
def lowerCamelCase ( lowerCamelCase : Dict):
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
# left whitespace
A_ : List[Any] = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
A_ : Optional[int] = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase , return_offsets_mapping=lowerCamelCase , padding="""max_length""" , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
A_ : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""")
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
A_ : Union[str, Any] = []
for i in range(len(tokenized_examples["""input_ids"""])):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
A_ : Any = tokenized_examples.sequence_ids(lowerCamelCase)
A_ : Tuple = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
A_ : Union[str, Any] = sample_mapping[i]
tokenized_examples["example_id"].append(examples["""id"""][sample_index])
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
A_ : Dict = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["""offset_mapping"""][i])
]
return tokenized_examples
__magic_name__ = raw_datasets['validation']
# Validation Feature Creation
__magic_name__ = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc='Running tokenizer on validation dataset',
)
__magic_name__ = default_data_collator
__magic_name__ = eval_dataset.remove_columns(['example_id', 'offset_mapping'])
__magic_name__ = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]="eval"):
# Post-processing: we match the start logits and end logits to answers in the original context.
A_ : Tuple = postprocess_qa_predictions(
examples=lowerCamelCase , features=lowerCamelCase , predictions=lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
A_ : Dict = [
{"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items()
]
else:
A_ : Union[str, Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()]
A_ : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=lowerCamelCase , label_ids=lowerCamelCase)
__magic_name__ = load_metric('squad_v2' if args.version_2_with_negative else 'squad')
# Evaluation!
logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path)
with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def lowerCamelCase ( lowerCamelCase : Union[str, Any]):
return trt.volume(engine.get_binding_shape(lowerCamelCase)) * engine.get_binding_dtype(lowerCamelCase).itemsize
# Allocate device memory for inputs and outputs.
__magic_name__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
__magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
__magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
__magic_name__ = cuda.mem_alloc(h_outputa.nbytes)
__magic_name__ = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
__magic_name__ = cuda.Stream()
# Evaluation
logger.info('***** Running Evaluation *****')
logger.info(f""" Num examples = {len(eval_dataset)}""")
logger.info(f""" Batch size = {args.per_device_eval_batch_size}""")
__magic_name__ = 0.0
__magic_name__ = 0
__magic_name__ = timeit.default_timer()
__magic_name__ = None
for step, batch in enumerate(eval_dataloader):
__magic_name__ , __magic_name__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
__magic_name__ , __magic_name__ = outputs
__magic_name__ = torch.tensor(start_logits)
__magic_name__ = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
__magic_name__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
__magic_name__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
__magic_name__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
__magic_name__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
__magic_name__ = nested_truncate(all_preds, len(eval_dataset))
__magic_name__ = timeit.default_timer() - start_time
logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter))
logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000))
logger.info('Total Number of Inference = %d', niter)
__magic_name__ = post_processing_function(eval_examples, eval_dataset, all_preds)
__magic_name__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(f"""Evaluation metrics: {eval_metric}""")
| 27 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__magic_name__ = logging.get_logger(__name__)
def lowerCamelCase ( lowerCamelCase : Dict):
'''simple docstring'''
A_ : List[str] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
A_ : Union[str, Any] = [144, 192, 240]
A_ : int = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
A_ : List[str] = [96, 120, 144]
A_ : Any = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
A_ : Any = [64, 80, 96]
A_ : List[str] = [16, 16, 24, 48, 64, 80, 320]
A_ : Any = 0.05
A_ : List[Any] = 2.0
if mobilevit_name.startswith("""deeplabv3_"""):
A_ : int = 512
A_ : Optional[int] = 16
A_ : List[Any] = 21
A_ : List[str] = """pascal-voc-id2label.json"""
else:
A_ : str = 1000
A_ : Any = """imagenet-1k-id2label.json"""
A_ : Any = """huggingface/label-files"""
A_ : List[str] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""") , """r"""))
A_ : str = {int(lowerCamelCase): v for k, v in idalabel.items()}
A_ : Any = idalabel
A_ : List[str] = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int=False):
'''simple docstring'''
for i in range(1 , 6):
if F'layer_{i}.' in name:
A_ : Tuple = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.')
if "conv_1." in name:
A_ : Union[str, Any] = name.replace("""conv_1.""" , """conv_stem.""")
if ".block." in name:
A_ : Optional[Any] = name.replace(""".block.""" , """.""")
if "exp_1x1" in name:
A_ : Union[str, Any] = name.replace("""exp_1x1""" , """expand_1x1""")
if "red_1x1" in name:
A_ : int = name.replace("""red_1x1""" , """reduce_1x1""")
if ".local_rep.conv_3x3." in name:
A_ : List[str] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""")
if ".local_rep.conv_1x1." in name:
A_ : Optional[int] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""")
if ".norm." in name:
A_ : Tuple = name.replace(""".norm.""" , """.normalization.""")
if ".conv." in name:
A_ : List[Any] = name.replace(""".conv.""" , """.convolution.""")
if ".conv_proj." in name:
A_ : str = name.replace(""".conv_proj.""" , """.conv_projection.""")
for i in range(0 , 2):
for j in range(0 , 4):
if F'.{i}.{j}.' in name:
A_ : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.')
for i in range(2 , 6):
for j in range(0 , 4):
if F'.{i}.{j}.' in name:
A_ : Dict = name.replace(F'.{i}.{j}.' , F'.{i}.')
if "expand_1x1" in name:
A_ : Union[str, Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""")
if "conv_3x3" in name:
A_ : str = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""")
if "reduce_1x1" in name:
A_ : Union[str, Any] = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""")
for i in range(2 , 5):
if F'.global_rep.{i}.weight' in name:
A_ : List[Any] = name.replace(F'.global_rep.{i}.weight' , """.layernorm.weight""")
if F'.global_rep.{i}.bias' in name:
A_ : Optional[int] = name.replace(F'.global_rep.{i}.bias' , """.layernorm.bias""")
if ".global_rep." in name:
A_ : Optional[Any] = name.replace(""".global_rep.""" , """.transformer.""")
if ".pre_norm_mha.0." in name:
A_ : int = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""")
if ".pre_norm_mha.1.out_proj." in name:
A_ : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""")
if ".pre_norm_ffn.0." in name:
A_ : Dict = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""")
if ".pre_norm_ffn.1." in name:
A_ : Any = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""")
if ".pre_norm_ffn.4." in name:
A_ : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""")
if ".transformer." in name:
A_ : Any = name.replace(""".transformer.""" , """.transformer.layer.""")
if ".aspp_layer." in name:
A_ : int = name.replace(""".aspp_layer.""" , """.""")
if ".aspp_pool." in name:
A_ : Tuple = name.replace(""".aspp_pool.""" , """.""")
if "seg_head." in name:
A_ : Optional[int] = name.replace("""seg_head.""" , """segmentation_head.""")
if "segmentation_head.classifier.classifier." in name:
A_ : List[str] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""")
if "classifier.fc." in name:
A_ : str = name.replace("""classifier.fc.""" , """classifier.""")
elif (not base_model) and ("segmentation_head." not in name):
A_ : str = """mobilevit.""" + name
return name
def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int]=False):
'''simple docstring'''
if base_model:
A_ : Dict = """"""
else:
A_ : Any = """mobilevit."""
for key in orig_state_dict.copy().keys():
A_ : List[Any] = orig_state_dict.pop(lowerCamelCase)
if key[:8] == "encoder.":
A_ : int = key[8:]
if "qkv" in key:
A_ : Any = key.split(""".""")
A_ : str = int(key_split[0][6:]) - 1
A_ : int = int(key_split[3])
A_ : Optional[Any] = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}')
A_ : Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size
A_ : Optional[Any] = (
F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'
)
if "weight" in key:
A_ : Dict = val[:dim, :]
A_ : Optional[int] = val[dim : dim * 2, :]
A_ : List[Any] = val[-dim:, :]
else:
A_ : Optional[Any] = val[:dim]
A_ : List[Any] = val[dim : dim * 2]
A_ : Any = val[-dim:]
else:
A_ : List[str] = val
return orig_state_dict
def lowerCamelCase ( ):
'''simple docstring'''
A_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A_ : Dict = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw)
return im
@torch.no_grad()
def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int=False):
'''simple docstring'''
A_ : Optional[Any] = get_mobilevit_config(lowerCamelCase)
# load original state_dict
A_ : List[Any] = torch.load(lowerCamelCase , map_location="""cpu""")
# load 🤗 model
if mobilevit_name.startswith("""deeplabv3_"""):
A_ : List[str] = MobileViTForSemanticSegmentation(lowerCamelCase).eval()
else:
A_ : str = MobileViTForImageClassification(lowerCamelCase).eval()
A_ : str = convert_state_dict(lowerCamelCase , lowerCamelCase)
model.load_state_dict(lowerCamelCase)
# Check outputs on an image, prepared by MobileViTImageProcessor
A_ : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32)
A_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""")
A_ : List[Any] = model(**lowerCamelCase)
A_ : Dict = outputs.logits
if mobilevit_name.startswith("""deeplabv3_"""):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
A_ : int = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
])
elif mobilevit_name == "deeplabv3_mobilevit_xs":
A_ : Tuple = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
])
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
A_ : Tuple = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
])
else:
raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}')
assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4)
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
A_ : Tuple = torch.tensor([-0.9866, 0.2392, -1.1241])
elif mobilevit_name == "mobilevit_xs":
A_ : Any = torch.tensor([-2.4761, -0.9399, -1.9587])
elif mobilevit_name == "mobilevit_xxs":
A_ : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653])
else:
raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}')
assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4)
Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase)
print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}')
model.save_pretrained(lowerCamelCase)
print(F'Saving image processor to {pytorch_dump_folder_path}')
image_processor.save_pretrained(lowerCamelCase)
if push_to_hub:
A_ : str = {
"""mobilevit_s""": """mobilevit-small""",
"""mobilevit_xs""": """mobilevit-x-small""",
"""mobilevit_xxs""": """mobilevit-xx-small""",
"""deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""",
"""deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""",
"""deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""",
}
print("""Pushing to the hub...""")
A_ : Union[str, Any] = model_mapping[mobilevit_name]
image_processor.push_to_hub(lowerCamelCase , organization="""apple""")
model.push_to_hub(lowerCamelCase , organization="""apple""")
if __name__ == "__main__":
__magic_name__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--mobilevit_name',
default='mobilevit_s',
type=str,
help=(
'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','
' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'
),
)
parser.add_argument(
'--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__magic_name__ = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 717 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__magic_name__ = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = ['ConvNextFeatureExtractor']
__magic_name__ = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 27 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__ = {
'configuration_bigbird_pegasus': [
'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BigBirdPegasusConfig',
'BigBirdPegasusOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST',
'BigBirdPegasusForCausalLM',
'BigBirdPegasusForConditionalGeneration',
'BigBirdPegasusForQuestionAnswering',
'BigBirdPegasusForSequenceClassification',
'BigBirdPegasusModel',
'BigBirdPegasusPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 718 |
'''simple docstring'''
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {
'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json',
'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json',
'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json',
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = """owlvit_text_model"""
def __init__( self : Union[str, Any] ,_a : Any=49408 ,_a : Any=512 ,_a : Tuple=2048 ,_a : Dict=12 ,_a : Optional[int]=8 ,_a : Tuple=16 ,_a : Tuple="quick_gelu" ,_a : Optional[Any]=1e-5 ,_a : List[Any]=0.0 ,_a : Optional[int]=0.02 ,_a : Dict=1.0 ,_a : Dict=0 ,_a : Any=49406 ,_a : Tuple=49407 ,**_a : List[Any] ,):
'''simple docstring'''
super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a )
A_ : Tuple = vocab_size
A_ : int = hidden_size
A_ : Optional[int] = intermediate_size
A_ : Optional[int] = num_hidden_layers
A_ : Union[str, Any] = num_attention_heads
A_ : int = max_position_embeddings
A_ : str = hidden_act
A_ : Union[str, Any] = layer_norm_eps
A_ : Tuple = attention_dropout
A_ : Union[str, Any] = initializer_range
A_ : List[Any] = initializer_factor
@classmethod
def _a ( cls : List[str] ,_a : Union[str, os.PathLike] ,**_a : str ):
'''simple docstring'''
cls._set_token_in_kwargs(_a )
A_ , A_ : int = cls.get_config_dict(_a ,**_a )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("""model_type""" ) == "owlvit":
A_ : Union[str, Any] = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_a ,**_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = """owlvit_vision_model"""
def __init__( self : List[Any] ,_a : Optional[Any]=768 ,_a : Tuple=3072 ,_a : Dict=12 ,_a : int=12 ,_a : Dict=3 ,_a : Tuple=768 ,_a : int=32 ,_a : int="quick_gelu" ,_a : List[Any]=1e-5 ,_a : Tuple=0.0 ,_a : List[Any]=0.02 ,_a : str=1.0 ,**_a : int ,):
'''simple docstring'''
super().__init__(**_a )
A_ : List[str] = hidden_size
A_ : Union[str, Any] = intermediate_size
A_ : Union[str, Any] = num_hidden_layers
A_ : Optional[Any] = num_attention_heads
A_ : int = num_channels
A_ : str = image_size
A_ : List[Any] = patch_size
A_ : int = hidden_act
A_ : List[Any] = layer_norm_eps
A_ : List[str] = attention_dropout
A_ : str = initializer_range
A_ : str = initializer_factor
@classmethod
def _a ( cls : List[Any] ,_a : Union[str, os.PathLike] ,**_a : str ):
'''simple docstring'''
cls._set_token_in_kwargs(_a )
A_ , A_ : Optional[int] = cls.get_config_dict(_a ,**_a )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("""model_type""" ) == "owlvit":
A_ : List[str] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_a ,**_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = """owlvit"""
a_ = True
def __init__( self : Union[str, Any] ,_a : List[str]=None ,_a : List[str]=None ,_a : Dict=512 ,_a : List[Any]=2.6592 ,_a : Optional[Any]=True ,**_a : Optional[int] ,):
'''simple docstring'''
super().__init__(**_a )
if text_config is None:
A_ : List[Any] = {}
logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" )
if vision_config is None:
A_ : Tuple = {}
logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" )
A_ : Dict = OwlViTTextConfig(**_a )
A_ : Dict = OwlViTVisionConfig(**_a )
A_ : Any = projection_dim
A_ : Optional[int] = logit_scale_init_value
A_ : Optional[int] = return_dict
A_ : Dict = 1.0
@classmethod
def _a ( cls : Union[str, Any] ,_a : Union[str, os.PathLike] ,**_a : Optional[int] ):
'''simple docstring'''
cls._set_token_in_kwargs(_a )
A_ , A_ : List[Any] = cls.get_config_dict(_a ,**_a )
if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_a ,**_a )
@classmethod
def _a ( cls : int ,_a : Dict ,_a : Dict ,**_a : List[str] ):
'''simple docstring'''
A_ : str = {}
A_ : int = text_config
A_ : Union[str, Any] = vision_config
return cls.from_dict(_a ,**_a )
def _a ( self : Optional[int] ):
'''simple docstring'''
A_ : Dict = copy.deepcopy(self.__dict__ )
A_ : str = self.text_config.to_dict()
A_ : Optional[int] = self.vision_config.to_dict()
A_ : List[Any] = self.__class__.model_type
return output
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def _a ( self : int ):
'''simple docstring'''
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
] )
@property
def _a ( self : str ):
'''simple docstring'''
return OrderedDict(
[
("""logits_per_image""", {0: """batch"""}),
("""logits_per_text""", {0: """batch"""}),
("""text_embeds""", {0: """batch"""}),
("""image_embeds""", {0: """batch"""}),
] )
@property
def _a ( self : Optional[Any] ):
'''simple docstring'''
return 1e-4
def _a ( self : int ,_a : "ProcessorMixin" ,_a : int = -1 ,_a : int = -1 ,_a : Optional["TensorType"] = None ,):
'''simple docstring'''
A_ : Any = super().generate_dummy_inputs(
processor.tokenizer ,batch_size=_a ,seq_length=_a ,framework=_a )
A_ : Any = super().generate_dummy_inputs(
processor.image_processor ,batch_size=_a ,framework=_a )
return {**text_input_dict, **image_input_dict}
@property
def _a ( self : Optional[Any] ):
'''simple docstring'''
return 14
| 27 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,_a : int ,_a : int=7 ,_a : str=3 ,_a : Dict=18 ,_a : Optional[int]=30 ,_a : int=400 ,_a : List[Any]=True ,_a : List[str]=None ,_a : Any=True ,_a : Any=[0.5, 0.5, 0.5] ,_a : Tuple=[0.5, 0.5, 0.5] ,):
'''simple docstring'''
A_ : Union[str, Any] = size if size is not None else {"""height""": 18, """width""": 18}
A_ : Tuple = parent
A_ : Any = batch_size
A_ : Tuple = num_channels
A_ : int = image_size
A_ : Union[str, Any] = min_resolution
A_ : List[str] = max_resolution
A_ : str = do_resize
A_ : Dict = size
A_ : str = do_normalize
A_ : Union[str, Any] = image_mean
A_ : str = image_std
def _a ( self : Union[str, Any] ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
a_ = DPTImageProcessor if is_vision_available() else None
def _a ( self : List[Any] ):
'''simple docstring'''
A_ : Tuple = DPTImageProcessingTester(self )
@property
def _a ( self : Dict ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _a ( self : int ):
'''simple docstring'''
A_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a ,"""image_mean""" ) )
self.assertTrue(hasattr(_a ,"""image_std""" ) )
self.assertTrue(hasattr(_a ,"""do_normalize""" ) )
self.assertTrue(hasattr(_a ,"""do_resize""" ) )
self.assertTrue(hasattr(_a ,"""size""" ) )
def _a ( self : Any ):
'''simple docstring'''
A_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""height""": 18, """width""": 18} )
A_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 )
self.assertEqual(image_processor.size ,{"""height""": 42, """width""": 42} )
def _a ( self : Optional[int] ):
'''simple docstring'''
A_ : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a ,Image.Image )
# Test not batched input
A_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
# Test batched
A_ : Union[str, Any] = image_processing(_a ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def _a ( self : Tuple ):
'''simple docstring'''
A_ : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_a ,numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a ,np.ndarray )
# Test not batched input
A_ : List[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
# Test batched
A_ : Optional[Any] = image_processing(_a ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def _a ( self : Union[str, Any] ):
'''simple docstring'''
A_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_a ,torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a ,torch.Tensor )
# Test not batched input
A_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
# Test batched
A_ : Union[str, Any] = image_processing(_a ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
| 719 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
__magic_name__ = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = ["""input_features""", """is_longer"""]
def __init__( self : Dict ,_a : Optional[int]=64 ,_a : List[Any]=48000 ,_a : str=480 ,_a : Optional[Any]=10 ,_a : Optional[int]=1024 ,_a : Tuple=0.0 ,_a : str=False ,_a : float = 0 ,_a : float = 14000 ,_a : int = None ,_a : str = "fusion" ,_a : str = "repeatpad" ,**_a : Tuple ,):
'''simple docstring'''
super().__init__(
feature_size=_a ,sampling_rate=_a ,padding_value=_a ,return_attention_mask=_a ,**_a ,)
A_ : Tuple = top_db
A_ : Tuple = truncation
A_ : Optional[Any] = padding
A_ : Optional[int] = fft_window_size
A_ : Dict = (fft_window_size >> 1) + 1
A_ : Any = hop_length
A_ : List[Any] = max_length_s
A_ : Tuple = max_length_s * sampling_rate
A_ : Tuple = sampling_rate
A_ : Optional[int] = frequency_min
A_ : Tuple = frequency_max
A_ : Tuple = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm=_a ,mel_scale="""htk""" ,)
A_ : Dict = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_a ,min_frequency=_a ,max_frequency=_a ,sampling_rate=_a ,norm="""slaney""" ,mel_scale="""slaney""" ,)
def _a ( self : int ):
'''simple docstring'''
A_ : int = copy.deepcopy(self.__dict__ )
A_ : Tuple = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def _a ( self : Dict ,_a : np.array ,_a : Optional[np.array] = None ):
'''simple docstring'''
A_ : List[str] = spectrogram(
_a ,window_function(self.fft_window_size ,"""hann""" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=_a ,log_mel="""dB""" ,)
return log_mel_spectrogram.T
def _a ( self : Optional[int] ,_a : Dict ,_a : Optional[Any] ,_a : Optional[int] ):
'''simple docstring'''
A_ : Dict = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
A_ : List[Any] = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
A_ : int = [0]
# randomly choose index for each part
A_ : List[str] = np.random.choice(ranges[0] )
A_ : int = np.random.choice(ranges[1] )
A_ : Optional[int] = np.random.choice(ranges[2] )
A_ : Tuple = mel[idx_front : idx_front + chunk_frames, :]
A_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :]
A_ : Dict = mel[idx_back : idx_back + chunk_frames, :]
A_ : Optional[int] = torch.tensor(mel[None, None, :] )
A_ : Dict = torch.nn.functional.interpolate(
_a ,size=[chunk_frames, 64] ,mode="""bilinear""" ,align_corners=_a )
A_ : str = mel_shrink[0][0].numpy()
A_ : Tuple = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 )
return mel_fusion
def _a ( self : Dict ,_a : np.array ,_a : Optional[Any] ,_a : int ,_a : Dict ):
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
A_ : Dict = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
A_ : Tuple = len(_a ) - max_length
A_ : Optional[int] = np.random.randint(0 ,overflow + 1 )
A_ : List[Any] = waveform[idx : idx + max_length]
A_ : Optional[Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
A_ : Dict = self._np_extract_fbank_features(_a ,self.mel_filters )
A_ : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
A_ : Optional[int] = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
A_ : Optional[int] = np.stack([mel, mel, mel, mel] ,axis=0 )
A_ : str = False
else:
A_ : str = self._random_mel_fusion(_a ,_a ,_a )
A_ : Optional[Any] = True
else:
raise NotImplementedError(f'data_truncating {truncation} not implemented' )
else:
A_ : Optional[int] = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
A_ : int = int(max_length / len(_a ) )
A_ : Any = np.stack(np.tile(_a ,n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
A_ : List[str] = int(max_length / len(_a ) )
A_ : Optional[Any] = np.stack(np.tile(_a ,_a ) )
A_ : Any = np.pad(_a ,(0, max_length - waveform.shape[0]) ,mode="""constant""" ,constant_values=0 )
if truncation == "fusion":
A_ : List[Any] = self._np_extract_fbank_features(_a ,self.mel_filters )
A_ : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 )
else:
A_ : Union[str, Any] = self._np_extract_fbank_features(_a ,self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : List[Any] ,_a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_a : str = None ,_a : Optional[str] = None ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : Optional[Union[str, TensorType]] = None ,**_a : Any ,):
'''simple docstring'''
A_ : List[str] = truncation if truncation is not None else self.truncation
A_ : List[Any] = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'
f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'
f' was sampled with {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
A_ : Any = isinstance(_a ,np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'Only mono-channel audio is supported for input to {self}' )
A_ : int = is_batched_numpy or (
isinstance(_a ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) ))
)
if is_batched:
A_ : Optional[int] = [np.asarray(_a ,dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_a ,np.ndarray ):
A_ : str = np.asarray(_a ,dtype=np.floataa )
elif isinstance(_a ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
A_ : Tuple = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
A_ : Any = [np.asarray(_a )]
# convert to mel spectrogram, truncate and pad if needed.
A_ : str = [
self._get_input_mel(_a ,max_length if max_length else self.nb_max_samples ,_a ,_a )
for waveform in raw_speech
]
A_ : int = []
A_ : Any = []
for mel, longer in padded_inputs:
input_mel.append(_a )
is_longer.append(_a )
if truncation == "fusion" and sum(_a ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
A_ : List[Any] = np.random.randint(0 ,len(_a ) )
A_ : List[str] = True
if isinstance(input_mel[0] ,_a ):
A_ : Tuple = [np.asarray(_a ,dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
A_ : List[str] = [[longer] for longer in is_longer]
A_ : Optional[Any] = {"""input_features""": input_mel, """is_longer""": is_longer}
A_ : int = BatchFeature(_a )
if return_tensors is not None:
A_ : int = input_features.convert_to_tensors(_a )
return input_features
| 27 | 0 |
'''simple docstring'''
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
__magic_name__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class __lowerCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ,_a : Dict ):
'''simple docstring'''
super().__init__()
A_ : List[str] = torchvision.models.resnetaaa(pretrained=_a )
A_ : int = list(model.children() )[:-2]
A_ : int = nn.Sequential(*_a )
A_ : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def _a ( self : str ,_a : Optional[int] ):
'''simple docstring'''
A_ : Tuple = self.pool(self.model(_a ) )
A_ : Any = torch.flatten(_a ,start_dim=2 )
A_ : str = out.transpose(1 ,2 ).contiguous()
return out # BxNx2048
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Dict ,_a : Dict ,_a : Optional[Any] ):
'''simple docstring'''
A_ : Dict = [json.loads(_a ) for l in open(_a )]
A_ : Optional[int] = os.path.dirname(_a )
A_ : Optional[Any] = tokenizer
A_ : Optional[Any] = labels
A_ : List[Any] = len(_a )
A_ : str = max_seq_length
A_ : str = transforms
def __len__( self : str ):
'''simple docstring'''
return len(self.data )
def __getitem__( self : Tuple ,_a : Optional[Any] ):
'''simple docstring'''
A_ : Optional[int] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] ,add_special_tokens=_a ) )
A_ : Dict = sentence[0], sentence[1:-1], sentence[-1]
A_ : Optional[int] = sentence[: self.max_seq_length]
A_ : Any = torch.zeros(self.n_classes )
A_ : Tuple = 1
A_ : Optional[Any] = Image.open(os.path.join(self.data_dir ,self.data[index]["""img"""] ) ).convert("""RGB""" )
A_ : Union[str, Any] = self.transforms(_a )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def _a ( self : List[Any] ):
'''simple docstring'''
A_ : str = Counter()
for row in self.data:
label_freqs.update(row["""label"""] )
return label_freqs
def lowerCamelCase ( lowerCamelCase : str):
A_ : List[Any] = [len(row["""sentence"""]) for row in batch]
A_ : Dict = len(lowerCamelCase), max(lowerCamelCase)
A_ : Optional[int] = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long)
A_ : Tuple = torch.zeros(lowerCamelCase , lowerCamelCase , dtype=torch.long)
for i_batch, (input_row, length) in enumerate(zip(lowerCamelCase , lowerCamelCase)):
A_ : str = input_row["""sentence"""]
A_ : Tuple = 1
A_ : int = torch.stack([row["""image"""] for row in batch])
A_ : str = torch.stack([row["""label"""] for row in batch])
A_ : List[Any] = torch.stack([row["""image_start_token"""] for row in batch])
A_ : Tuple = torch.stack([row["""image_end_token"""] for row in batch])
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def lowerCamelCase ( ):
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def lowerCamelCase ( ):
return transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ),
])
| 720 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,):
'''simple docstring'''
A_ : Optional[Any] = parent
A_ : str = batch_size
A_ : int = seq_length
A_ : Union[str, Any] = is_training
A_ : Optional[Any] = use_token_type_ids
A_ : int = use_labels
A_ : Dict = vocab_size
A_ : List[Any] = hidden_size
A_ : Tuple = num_hidden_layers
A_ : Optional[int] = num_attention_heads
A_ : int = intermediate_size
A_ : Tuple = hidden_act
A_ : int = hidden_dropout_prob
A_ : Dict = attention_probs_dropout_prob
A_ : Any = max_position_embeddings
A_ : Optional[Any] = type_vocab_size
A_ : Tuple = type_sequence_label_size
A_ : int = initializer_range
A_ : Optional[Any] = num_labels
A_ : str = num_choices
A_ : Optional[Any] = scope
A_ : List[Any] = self.vocab_size - 1
def _a ( self : Any ):
'''simple docstring'''
A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
A_ : List[Any] = None
if self.use_token_type_ids:
A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
A_ : int = None
A_ : str = None
A_ : Union[str, Any] = None
if self.use_labels:
A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
A_ : Any = ids_tensor([self.batch_size] ,self.num_choices )
A_ : List[Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,)
A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ):
'''simple docstring'''
A_ : Optional[Any] = OpenAIGPTModel(config=_a )
model.to(_a )
model.eval()
A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a )
A_ : str = model(_a ,token_type_ids=_a )
A_ : Dict = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ):
'''simple docstring'''
A_ : str = OpenAIGPTLMHeadModel(_a )
model.to(_a )
model.eval()
A_ : Any = model(_a ,token_type_ids=_a ,labels=_a )
self.parent.assertEqual(result.loss.shape ,() )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ):
'''simple docstring'''
A_ : Any = OpenAIGPTDoubleHeadsModel(_a )
model.to(_a )
model.eval()
A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a )
self.parent.assertEqual(result.loss.shape ,() )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ):
'''simple docstring'''
A_ : List[str] = self.num_labels
A_ : int = OpenAIGPTForSequenceClassification(_a )
model.to(_a )
model.eval()
A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _a ( self : Tuple ):
'''simple docstring'''
A_ : Union[str, Any] = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) : str = config_and_inputs
A_ : int = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
a_ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
a_ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
a_ = (
{
"""feature-extraction""": OpenAIGPTModel,
"""text-classification""": OpenAIGPTForSequenceClassification,
"""text-generation""": OpenAIGPTLMHeadModel,
"""zero-shot""": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ):
'''simple docstring'''
A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
A_ : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,)
A_ : Any = inputs_dict["""labels"""]
A_ : Any = inputs_dict["""labels"""]
A_ : Tuple = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,)
A_ : int = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=_a )
return inputs_dict
def _a ( self : Union[str, Any] ):
'''simple docstring'''
A_ : Tuple = OpenAIGPTModelTester(self )
A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 )
def _a ( self : Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _a ( self : Optional[Any] ):
'''simple docstring'''
A_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_a )
def _a ( self : Tuple ):
'''simple docstring'''
A_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_a )
def _a ( self : List[Any] ):
'''simple docstring'''
A_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_a )
def _a ( self : Union[str, Any] ):
'''simple docstring'''
A_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a )
@slow
def _a ( self : List[Any] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a )
self.assertIsNotNone(_a )
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def _a ( self : List[str] ):
'''simple docstring'''
A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" )
model.to(_a )
A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is
A_ : Dict = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
A_ : int = model.generate(_a ,do_sample=_a )
self.assertListEqual(output_ids[0].tolist() ,_a )
| 27 | 0 |
'''simple docstring'''
def lowerCamelCase ( lowerCamelCase : str):
A_ : int = 0
# if input_string is "aba" than new_input_string become "a|b|a"
A_ : Dict = """"""
A_ : Any = """"""
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(lowerCamelCase) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
A_ : List[Any] = 0, 0
# length[i] shows the length of palindromic substring with center i
A_ : Union[str, Any] = [1 for i in range(len(lowerCamelCase))]
# for each character in new_string find corresponding palindromic string
A_ : Union[str, Any] = 0
for j in range(len(lowerCamelCase)):
A_ : Union[str, Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1)
while (
j - k >= 0
and j + k < len(lowerCamelCase)
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
A_ : Optional[Any] = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
A_ : str = j - k + 1 # noqa: E741
A_ : Any = j + k - 1
# update max_length and start position
if max_length < length[j]:
A_ : str = length[j]
A_ : List[str] = j
# create that string
A_ : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 721 |
'''simple docstring'''
import baseaa
def lowerCamelCase ( lowerCamelCase : str):
return baseaa.aaaencode(string.encode("""utf-8"""))
def lowerCamelCase ( lowerCamelCase : bytes):
return baseaa.aaadecode(lowerCamelCase).decode("""utf-8""")
if __name__ == "__main__":
import doctest
doctest.testmod()
| 27 | 0 |
"""simple docstring"""
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
A_ = '''.'''
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
A_ = [
'''Assert''',
'''AssignVariableOp''',
'''EmptyTensorList''',
'''MergeV2Checkpoints''',
'''ReadVariableOp''',
'''ResourceGather''',
'''RestoreV2''',
'''SaveV2''',
'''ShardedFilename''',
'''StatefulPartitionedCall''',
'''StaticRegexFullMatch''',
'''VarHandleOp''',
]
def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : Union[str, Any] = SavedModel()
_snake_case : Optional[Any] = []
with open(os.path.join(snake_case__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f:
_snake_case : Any = json.load(snake_case__ )["""opsets"""]
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(snake_case__ )] )
with open(snake_case__ , """rb""" ) as f:
saved_model.ParseFromString(f.read() )
_snake_case : List[Any] = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
_snake_case : Tuple = sorted(snake_case__ )
_snake_case : str = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(snake_case__ )
if strict and len(snake_case__ ) > 0:
raise Exception(F"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops )
elif len(snake_case__ ) > 0:
print(F"Found the following incompatible ops for the opset {opset}:" )
print(*snake_case__ , sep="""\n""" )
else:
print(F"The saved model {saved_model_path} can properly be converted with ONNX." )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''')
parser.add_argument(
'''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.'''
)
parser.add_argument(
'''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.'''
)
parser.add_argument(
'''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)'''
)
A_ = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 28 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ):
"""simple docstring"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ):
"""simple docstring"""
_snake_case : Optional[Any] = []
for old_item in old_list:
_snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" )
_snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" )
_snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" )
_snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" )
_snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" )
_snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ):
"""simple docstring"""
_snake_case : Dict = []
for old_item in old_list:
_snake_case : Dict = old_item
_snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" )
_snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" )
_snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ):
"""simple docstring"""
assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_snake_case : Union[str, Any] = old_checkpoint[path]
_snake_case : Optional[int] = old_tensor.shape[0] // 3
_snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3
_snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 )
_snake_case : Union[str, Any] = query.reshape(snake_case__ )
_snake_case : Tuple = key.reshape(snake_case__ )
_snake_case : Any = value.reshape(snake_case__ )
for path in paths:
_snake_case : List[Any] = path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0]
else:
_snake_case : Optional[Any] = old_checkpoint[path["""old"""]]
def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ):
"""simple docstring"""
_snake_case : int = {}
_snake_case : Tuple = checkpoint["""time_embed.0.weight"""]
_snake_case : List[str] = checkpoint["""time_embed.0.bias"""]
_snake_case : List[str] = checkpoint["""time_embed.2.weight"""]
_snake_case : Tuple = checkpoint["""time_embed.2.bias"""]
_snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""]
_snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""]
_snake_case : List[Any] = checkpoint["""out.0.weight"""]
_snake_case : Any = checkpoint["""out.0.bias"""]
_snake_case : Any = checkpoint["""out.2.weight"""]
_snake_case : List[str] = checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_snake_case : Any = {
layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
# Retrieves the keys for the middle blocks only
_snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_snake_case : Optional[int] = {
layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
# Retrieves the keys for the output blocks only
_snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_snake_case : List[Any] = {
layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
for i in range(1 , snake_case__ ):
_snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1)
_snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1)
_snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key]
_snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key]
if F"input_blocks.{i}.0.op.weight" in checkpoint:
_snake_case : Union[str, Any] = checkpoint[
F"input_blocks.{i}.0.op.weight"
]
_snake_case : Dict = checkpoint[
F"input_blocks.{i}.0.op.bias"
]
continue
_snake_case : Optional[int] = renew_resnet_paths(snake_case__ )
_snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
_snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ )
if len(snake_case__ ):
_snake_case : str = renew_attention_paths(snake_case__ )
_snake_case : List[str] = {
"""old""": F"input_blocks.{i}.1",
"""new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}",
}
_snake_case : Optional[int] = {
F"input_blocks.{i}.1.qkv.bias": {
"""key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"""query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"""value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
F"input_blocks.{i}.1.qkv.weight": {
"""key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"""query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"""value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , )
_snake_case : int = middle_blocks[0]
_snake_case : List[str] = middle_blocks[1]
_snake_case : Any = middle_blocks[2]
_snake_case : Dict = renew_resnet_paths(snake_case__ )
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ )
_snake_case : Any = renew_resnet_paths(snake_case__ )
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ )
_snake_case : Dict = renew_attention_paths(snake_case__ )
_snake_case : Tuple = {
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ )
for i in range(snake_case__ ):
_snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1)
_snake_case : Dict = i % (config["""num_res_blocks"""] + 1)
_snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]]
_snake_case : Any = {}
for layer in output_block_layers:
_snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(snake_case__ )
else:
_snake_case : str = [layer_name]
if len(snake_case__ ) > 1:
_snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key]
_snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key]
_snake_case : List[Any] = renew_resnet_paths(snake_case__ )
_snake_case : int = renew_resnet_paths(snake_case__ )
_snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_snake_case : Any = checkpoint[
F"output_blocks.{i}.{index}.conv.weight"
]
_snake_case : Optional[int] = checkpoint[
F"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(snake_case__ ) == 2:
_snake_case : Any = []
if len(snake_case__ ):
_snake_case : str = renew_attention_paths(snake_case__ )
_snake_case : str = {
"""old""": F"output_blocks.{i}.1",
"""new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
_snake_case : int = {
F"output_blocks.{i}.1.qkv.bias": {
"""key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"""query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"""value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
F"output_blocks.{i}.1.qkv.weight": {
"""key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"""query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"""value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , )
else:
_snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] )
_snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] )
_snake_case : Any = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the architecture.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
A_ = parser.parse_args()
A_ = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
A_ = json.loads(f.read())
A_ = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
A_ = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 28 | 1 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or number < 0:
raise ValueError("""Input must be a non-negative integer""" )
_snake_case : Dict = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
"""simple docstring"""
from typing import Any
def UpperCAmelCase__ (snake_case__ : list ):
"""simple docstring"""
if not input_list:
return []
_snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list]
_snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "char"
lowercase__ = "bpe"
lowercase__ = "wp"
A_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowercase( __a ):
'''simple docstring'''
lowercase__ = ["image_processor", "char_tokenizer"]
lowercase__ = "ViTImageProcessor"
lowercase__ = "MgpstrTokenizer"
def __init__( self: Tuple, a_: Any=None, a_: Tuple=None, **a_: Dict ):
'''simple docstring'''
_snake_case : List[str] = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""", a_, )
_snake_case : List[str] = kwargs.pop("""feature_extractor""" )
_snake_case : int = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
_snake_case : List[str] = tokenizer
_snake_case : Tuple = AutoTokenizer.from_pretrained("""gpt2""" )
_snake_case : List[Any] = AutoTokenizer.from_pretrained("""bert-base-uncased""" )
super().__init__(a_, a_ )
def __call__( self: Any, a_: Any=None, a_: List[Any]=None, a_: Any=None, **a_: Tuple ):
'''simple docstring'''
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
_snake_case : int = self.image_processor(a_, return_tensors=a_, **a_ )
if text is not None:
_snake_case : Union[str, Any] = self.char_tokenizer(a_, return_tensors=a_, **a_ )
if text is None:
return inputs
elif images is None:
return encodings
else:
_snake_case : Optional[int] = encodings["""input_ids"""]
return inputs
def UpperCamelCase_ ( self: str, a_: Union[str, Any] ):
'''simple docstring'''
_snake_case , _snake_case , _snake_case : Union[str, Any] = sequences
_snake_case : List[Any] = char_preds.size(0 )
_snake_case , _snake_case : Optional[int] = self._decode_helper(a_, """char""" )
_snake_case , _snake_case : Union[str, Any] = self._decode_helper(a_, """bpe""" )
_snake_case , _snake_case : List[str] = self._decode_helper(a_, """wp""" )
_snake_case : List[str] = []
_snake_case : List[Any] = []
for i in range(a_ ):
_snake_case : Any = [char_scores[i], bpe_scores[i], wp_scores[i]]
_snake_case : str = [char_strs[i], bpe_strs[i], wp_strs[i]]
_snake_case : Union[str, Any] = scores.index(max(a_ ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_snake_case : Tuple = {}
_snake_case : List[str] = final_strs
_snake_case : Optional[int] = final_scores
_snake_case : Optional[int] = char_strs
_snake_case : Optional[Any] = bpe_strs
_snake_case : Dict = wp_strs
return out
def UpperCamelCase_ ( self: Any, a_: List[Any], a_: Any ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
_snake_case : int = self.char_decode
_snake_case : Optional[int] = 1
_snake_case : str = """[s]"""
elif format == DecodeType.BPE:
_snake_case : Dict = self.bpe_decode
_snake_case : Any = 2
_snake_case : str = """#"""
elif format == DecodeType.WORDPIECE:
_snake_case : Optional[int] = self.wp_decode
_snake_case : Optional[int] = 102
_snake_case : List[str] = """[SEP]"""
else:
raise ValueError(f"Format {format} is not supported." )
_snake_case , _snake_case : List[str] = [], []
_snake_case : str = pred_logits.size(0 )
_snake_case : List[str] = pred_logits.size(1 )
_snake_case , _snake_case : List[Any] = pred_logits.topk(1, dim=-1, largest=a_, sorted=a_ )
_snake_case : Optional[int] = preds_index.view(-1, a_ )[:, 1:]
_snake_case : Tuple = decoder(a_ )
_snake_case , _snake_case : Any = torch.nn.functional.softmax(a_, dim=2 ).max(dim=2 )
_snake_case : Dict = preds_max_prob[:, 1:]
for index in range(a_ ):
_snake_case : Optional[int] = preds_str[index].find(a_ )
_snake_case : Dict = preds_str[index][:pred_eos]
_snake_case : List[Any] = preds_index[index].cpu().tolist()
_snake_case : Tuple = pred_index.index(a_ ) if eos_token in pred_index else -1
_snake_case : str = preds_max_prob[index][: pred_eos_index + 1]
_snake_case : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(a_ )
conf_scores.append(a_ )
return dec_strs, conf_scores
def UpperCamelCase_ ( self: Union[str, Any], a_: List[Any] ):
'''simple docstring'''
_snake_case : Union[str, Any] = [seq.replace(""" """, """""" ) for seq in self.char_tokenizer.batch_decode(a_ )]
return decode_strs
def UpperCamelCase_ ( self: Optional[Any], a_: Dict ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(a_ )
def UpperCamelCase_ ( self: List[Any], a_: Optional[Any] ):
'''simple docstring'''
_snake_case : str = [seq.replace(""" """, """""" ) for seq in self.wp_tokenizer.batch_decode(a_ )]
return decode_strs
| 28 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''',
'''BridgeTower/bridgetower-base-itm-mlm''': (
'''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json'''
),
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower_vision_model"
def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ):
'''simple docstring'''
super().__init__(**a_ )
_snake_case : str = hidden_size
_snake_case : int = num_hidden_layers
_snake_case : Any = num_channels
_snake_case : Union[str, Any] = patch_size
_snake_case : Dict = image_size
_snake_case : Optional[Any] = initializer_factor
_snake_case : Any = layer_norm_eps
_snake_case : int = stop_gradient
_snake_case : Any = share_layernorm
_snake_case : List[Any] = remove_last_layer
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ )
if config_dict.get("""model_type""" ) == "bridgetower":
_snake_case : str = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a_, **a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower_text_model"
def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ):
'''simple docstring'''
super().__init__(**a_ )
_snake_case : str = vocab_size
_snake_case : Optional[int] = hidden_size
_snake_case : Dict = num_hidden_layers
_snake_case : Optional[int] = num_attention_heads
_snake_case : Optional[int] = hidden_act
_snake_case : List[Any] = initializer_factor
_snake_case : Optional[int] = intermediate_size
_snake_case : int = hidden_dropout_prob
_snake_case : Tuple = attention_probs_dropout_prob
_snake_case : List[str] = max_position_embeddings
_snake_case : Optional[int] = type_vocab_size
_snake_case : List[Any] = layer_norm_eps
_snake_case : Dict = position_embedding_type
_snake_case : Dict = use_cache
_snake_case : int = pad_token_id
_snake_case : Union[str, Any] = bos_token_id
_snake_case : Union[str, Any] = eos_token_id
@classmethod
def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ):
'''simple docstring'''
_snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ )
if config_dict.get("""model_type""" ) == "bridgetower":
_snake_case : Union[str, Any] = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a_, **a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower"
def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ):
'''simple docstring'''
_snake_case : str = kwargs.pop("""text_config_dict""", a_ )
_snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ )
super().__init__(**a_ )
_snake_case : str = share_cross_modal_transformer_layers
_snake_case : Any = hidden_act
_snake_case : Union[str, Any] = hidden_size
_snake_case : Union[str, Any] = initializer_factor
_snake_case : Dict = layer_norm_eps
_snake_case : Dict = share_link_tower_layers
_snake_case : Optional[int] = link_tower_type
_snake_case : Any = num_attention_heads
_snake_case : int = num_hidden_layers
_snake_case : int = tie_word_embeddings
_snake_case : Optional[Any] = init_layernorm_from_vision_encoder
if text_config is None:
_snake_case : Optional[Any] = {}
logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" )
if vision_config is None:
_snake_case : str = {}
logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" )
_snake_case : Any = BridgeTowerTextConfig(**a_ )
_snake_case : List[Any] = BridgeTowerVisionConfig(**a_ )
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ):
'''simple docstring'''
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[int] = copy.deepcopy(self.__dict__ )
_snake_case : str = self.text_config.to_dict()
_snake_case : List[str] = self.vision_config.to_dict()
_snake_case : Tuple = self.__class__.model_type
return output
| 28 | 1 |
"""simple docstring"""
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowercase( __a , __a ):
'''simple docstring'''
@register_to_config
def __init__( self: str, *,
a_: int = 4, a_: int = 768, a_: int, a_: str, ):
'''simple docstring'''
super().__init__()
_snake_case : Optional[int] = nn.Parameter(torch.zeros(a_ ) )
# parameters for additional clip time embeddings
_snake_case : List[Any] = nn.Linear(a_, a_ )
_snake_case : str = nn.Linear(a_, a_ )
# parameters for encoder hidden states
_snake_case : Optional[Any] = clip_extra_context_tokens
_snake_case : Any = nn.Linear(
a_, self.clip_extra_context_tokens * cross_attention_dim )
_snake_case : Optional[int] = nn.Linear(a_, a_ )
_snake_case : Dict = nn.LayerNorm(a_ )
def UpperCamelCase_ ( self: Any, *, a_: Union[str, Any], a_: List[Any], a_: Optional[Any], a_: Dict ):
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
_snake_case : Union[str, Any] = image_embeddings.shape[0]
_snake_case : str = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
_snake_case : Union[str, Any] = classifier_free_guidance_embeddings.expand(
a_, -1 )
_snake_case : Tuple = torch.cat([classifier_free_guidance_embeddings, image_embeddings], dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
_snake_case : str = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
_snake_case : Tuple = self.embedding_proj(a_ )
_snake_case : Tuple = self.clip_image_embeddings_project_to_time_embeddings(a_ )
_snake_case : str = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
_snake_case : int = self.clip_extra_context_tokens_proj(a_ )
_snake_case : Any = clip_extra_context_tokens.reshape(a_, -1, self.clip_extra_context_tokens )
_snake_case : str = clip_extra_context_tokens.permute(0, 2, 1 )
_snake_case : int = self.encoder_hidden_states_proj(a_ )
_snake_case : str = self.text_encoder_hidden_states_norm(a_ )
_snake_case : List[str] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states], dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 28 |
"""simple docstring"""
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png"""
_snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" )
return image
def UpperCAmelCase__ (snake_case__ : Any ):
"""simple docstring"""
_snake_case : str = []
# fmt: off
# vision encoder
rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") )
rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") )
rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") )
rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") )
# QFormer
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") )
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") )
# fmt: on
return rename_keys
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : Optional[Any] = dct.pop(snake_case__ )
_snake_case : Optional[int] = val
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ):
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
_snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" )
_snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" )
# next, set bias in the state dict
_snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) )
_snake_case : Dict = qkv_bias
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ):
"""simple docstring"""
_snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24
_snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
_snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict()
elif "opt-6.7b" in model_name:
_snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict()
elif "t5-xl" in model_name:
_snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
_snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
_snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ )
return config, image_size
@torch.no_grad()
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ):
"""simple docstring"""
_snake_case : List[str] = (
AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" )
if """opt""" in model_name
else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" )
)
_snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0]
_snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ )
_snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval()
_snake_case : int = {
"""blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""),
"""blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""),
"""blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""),
"""blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""),
"""blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""),
"""blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""),
"""blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""),
}
_snake_case , _snake_case : List[Any] = model_name_to_original[model_name]
# load original model
print("""Loading original model...""" )
_snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu"""
_snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess(
name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ )
original_model.eval()
print("""Done!""" )
# update state dict keys
_snake_case : Any = original_model.state_dict()
_snake_case : Dict = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
_snake_case : str = state_dict.pop(snake_case__ )
if key.startswith("""Qformer.bert""" ):
_snake_case : str = key.replace("""Qformer.bert""" , """qformer""" )
if "attention.self" in key:
_snake_case : Any = key.replace("""self""" , """attention""" )
if "opt_proj" in key:
_snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" )
if "t5_proj" in key:
_snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" )
if key.startswith("""opt""" ):
_snake_case : List[Any] = key.replace("""opt""" , """language""" )
if key.startswith("""t5""" ):
_snake_case : List[Any] = key.replace("""t5""" , """language""" )
_snake_case : str = val
# read in qv biases
read_in_q_v_bias(snake_case__ , snake_case__ )
_snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ )
assert len(snake_case__ ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
_snake_case : Any = load_demo_image()
_snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ )
_snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ )
# create processor
_snake_case : Any = BlipImageProcessor(
size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ )
_snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
_snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ )
# make sure processor creates exact same pixel values
assert torch.allclose(snake_case__ , snake_case__ )
original_model.to(snake_case__ )
hf_model.to(snake_case__ )
with torch.no_grad():
if "opt" in model_name:
_snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits
_snake_case : int = hf_model(snake_case__ , snake_case__ ).logits
else:
_snake_case : str = original_model(
{"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits
_snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
_snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits
assert original_logits.shape == logits.shape
print("""First values of original logits:""" , original_logits[0, :3, :3] )
print("""First values of HF logits:""" , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
_snake_case : List[str] = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ )
assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
_snake_case : Union[str, Any] = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ )
else:
# cast to same type
_snake_case : int = logits.dtype
assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 )
print("""Looks ok!""" )
print("""Generating a caption...""" )
_snake_case : Any = """"""
_snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ )
_snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} )
_snake_case : Tuple = hf_model.generate(
snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print("""Original generation:""" , snake_case__ )
_snake_case : Optional[Any] = input_ids.shape[1]
_snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ )
_snake_case : Optional[Any] = [text.strip() for text in output_text]
print("""HF generation:""" , snake_case__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(snake_case__ )
hf_model.save_pretrained(snake_case__ )
if push_to_hub:
processor.push_to_hub(F"nielsr/{model_name}" )
hf_model.push_to_hub(F"nielsr/{model_name}" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
A_ = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
A_ = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 1 |
"""simple docstring"""
from typing import Any
def UpperCAmelCase__ (snake_case__ : list ):
"""simple docstring"""
if not input_list:
return []
_snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list]
_snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
"""simple docstring"""
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def UpperCAmelCase__ (snake_case__ : Optional[int] ):
"""simple docstring"""
print("""Loading config file...""" )
def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ):
_snake_case : Union[str, Any] = []
for k, v in d.items():
_snake_case : List[str] = parent_key + sep + k if parent_key else k
if isinstance(snake_case__ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() )
else:
items.append((new_key, v) )
return dict(snake_case__ )
_snake_case : Dict = argparse.Namespace()
with open(snake_case__ , """r""" ) as yaml_file:
try:
_snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader )
_snake_case : Any = flatten_yaml_as_dict(snake_case__ )
for k, v in flat_cfg.items():
setattr(snake_case__ , snake_case__ , snake_case__ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) )
return config
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : Dict = MobileViTVaConfig()
_snake_case : Optional[int] = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
_snake_case : Dict = 10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
_snake_case : Union[str, Any] = 3_84
else:
_snake_case : Optional[Any] = 2_56
_snake_case : str = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
_snake_case : str = 2_10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
_snake_case : Dict = 3_84
else:
_snake_case : Union[str, Any] = 2_56
_snake_case : Tuple = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
_snake_case : Tuple = 1_51
_snake_case : str = 5_12
_snake_case : List[Any] = """ade20k-id2label.json"""
_snake_case : Union[str, Any] = True
elif task_name.startswith("""voc_""" ):
_snake_case : List[Any] = 21
_snake_case : List[str] = 5_12
_snake_case : int = """pascal-voc-id2label.json"""
_snake_case : int = True
# orig_config
_snake_case : int = load_orig_config_file(snake_case__ )
assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model"
_snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 )
assert (
getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
_snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
_snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 )
if "_deeplabv3" in task_name:
_snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] )
_snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 )
_snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 )
# id2label
_snake_case : Union[str, Any] = """huggingface/label-files"""
_snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) )
_snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()}
_snake_case : Tuple = idalabel
_snake_case : Any = {v: k for k, v in idalabel.items()}
return config
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : List[str] = dct.pop(snake_case__ )
_snake_case : List[Any] = val
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ):
"""simple docstring"""
if base_model:
_snake_case : Any = """"""
else:
_snake_case : Union[str, Any] = """mobilevitv2."""
_snake_case : Dict = []
for k in state_dict.keys():
if k[:8] == "encoder.":
_snake_case : List[str] = k[8:]
else:
_snake_case : str = k
if ".block." in k:
_snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" )
if ".conv." in k:
_snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" )
if ".norm." in k:
_snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" )
if "conv_1." in k:
_snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." )
for i in [1, 2]:
if F"layer_{i}." in k:
_snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
_snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" )
if ".red_1x1." in k:
_snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" )
for i in [3, 4, 5]:
if F"layer_{i}.0." in k:
_snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if F"layer_{i}.1.local_rep.0." in k:
_snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if F"layer_{i}.1.local_rep.1." in k:
_snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
_snake_case : Optional[Any] = [0, 1]
elif i == 4:
_snake_case : Any = [0, 1, 2, 3]
elif i == 5:
_snake_case : List[Any] = [0, 1, 2]
for j in j_in:
if F"layer_{i}.1.global_rep.{j}." in k:
_snake_case : Any = k_new.replace(
F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if F"layer_{i}.1.global_rep.{j+1}." in k:
_snake_case : List[Any] = k_new.replace(
F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." )
if F"layer_{i}.1.conv_proj." in k:
_snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
_snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" )
if "pre_norm_attn.1." in k:
_snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" )
if "pre_norm_ffn.0." in k:
_snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" )
if "pre_norm_ffn.1." in k:
_snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
_snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" )
if "classifier.1." in k:
_snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" )
if "seg_head." in k:
_snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" )
if ".aspp_layer." in k:
_snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" )
if ".aspp_pool." in k:
_snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" )
rename_keys.append((k, k_new) )
return rename_keys
def UpperCAmelCase__ (snake_case__ : str ):
"""simple docstring"""
_snake_case : List[str] = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(snake_case__ )
for k in keys_to_ignore:
state_dict.pop(snake_case__ , snake_case__ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
_snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ )
# load original state_dict
_snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
_snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval()
_snake_case : List[Any] = False
else:
_snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval()
_snake_case : Optional[Any] = False
# remove and rename some keys of load the original model
_snake_case : Union[str, Any] = checkpoint
remove_unused_keys(snake_case__ )
_snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
# load modified state_dict
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
_snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" )
_snake_case : Optional[Any] = model(**snake_case__ )
# verify classification model
if task_name.startswith("""imagenet""" ):
_snake_case : List[str] = outputs.logits
_snake_case : Any = logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
_snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] )
assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(F"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--task''',
default='''imagenet1k_256''',
type=str,
help=(
'''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '''
'''
Classification (ImageNet-1k)
- MobileViTV2 (256x256) : imagenet1k_256
- MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384
- MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :
imagenet21k_to_1k_256
- MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on
ImageNet-1k 384x384) : imagenet21k_to_1k_384
Segmentation
- ADE20K Dataset : ade20k_deeplabv3
- Pascal VOC 2012 Dataset: voc_deeplabv3
'''
),
choices=[
'''imagenet1k_256''',
'''imagenet1k_384''',
'''imagenet21k_to_1k_256''',
'''imagenet21k_to_1k_384''',
'''ade20k_deeplabv3''',
'''voc_deeplabv3''',
],
)
parser.add_argument(
'''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
A_ = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 28 | 1 |
"""simple docstring"""
from __future__ import annotations
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
_snake_case : Optional[Any] = 2
_snake_case : List[str] = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(snake_case__ )
if n > 1:
factors.append(snake_case__ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
"""simple docstring"""
import os
import sys
import unittest
A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
A_ = os.path.join(git_repo_path, '''src''', '''diffusers''')
class lowercase( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" )
self.assertEqual(a_, """torch""" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
_snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" )
self.assertEqual(a_, """torch_and_transformers""" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
_snake_case : Union[str, Any] = find_backend(
""" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" )
self.assertEqual(a_, """torch_and_transformers_and_onnx""" )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : Dict = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""", a_ )
self.assertIn("""torch_and_transformers""", a_ )
self.assertIn("""flax_and_transformers""", a_ )
self.assertIn("""torch_and_transformers_and_onnx""", a_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""UNet2DModel""", objects["""torch"""] )
self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] )
self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] )
self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] )
self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] )
self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" )
self.assertEqual(a_, """\nCONSTANT = None\n""" )
_snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" )
self.assertEqual(
a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
_snake_case : List[Any] = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
_snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" )
self.assertEqual(a_, a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
"""
_snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""], a_ )
| 28 | 1 |
"""simple docstring"""
from __future__ import annotations
def UpperCAmelCase__ (snake_case__ : list[int] ): # This function is recursive
"""simple docstring"""
_snake_case : Optional[int] = len(snake_case__ )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
_snake_case : Dict = array[0]
_snake_case : List[Any] = False
_snake_case : Any = 1
_snake_case : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
_snake_case : int = True
_snake_case : str = [element for element in array[i:] if element >= array[i]]
_snake_case : Optional[int] = longest_subsequence(snake_case__ )
if len(snake_case__ ) > len(snake_case__ ):
_snake_case : str = temp_array
else:
i += 1
_snake_case : Optional[int] = [element for element in array[1:] if element >= pivot]
_snake_case : Union[str, Any] = [pivot, *longest_subsequence(snake_case__ )]
if len(snake_case__ ) > len(snake_case__ ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
A_ = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''OwlViTFeatureExtractor''']
A_ = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 28 | 1 |
"""simple docstring"""
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
A_ = logging.get_logger(__name__)
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[str] ):
"""simple docstring"""
try:
with open(snake_case__ , """rb""" ) as flax_state_f:
_snake_case : int = from_bytes(snake_case__ , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(snake_case__ ) as f:
if f.read().startswith("""version""" ):
raise OSError(
"""You seem to have cloned a repository without having git-lfs installed. Please"""
""" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"""
""" folder you cloned.""" )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " )
return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : List[Any] ):
"""simple docstring"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
"""Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"""
""" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"""
""" instructions.""" )
raise
# check if we have bf16 weights
_snake_case : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values()
if any(snake_case__ ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"""Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """
"""before loading those in PyTorch model.""" )
_snake_case : Tuple = jax.tree_util.tree_map(
lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ )
_snake_case : Optional[int] = """"""
_snake_case : Dict = flatten_dict(snake_case__ , sep=""".""" )
_snake_case : int = pt_model.state_dict()
# keep track of unexpected & missing keys
_snake_case : Optional[Any] = []
_snake_case : str = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
_snake_case : Tuple = flax_key_tuple.split(""".""" )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
_snake_case : str = flax_key_tuple_array[:-1] + ["""weight"""]
_snake_case : str = jnp.transpose(snake_case__ , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
_snake_case : List[str] = flax_key_tuple_array[:-1] + ["""weight"""]
_snake_case : str = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
_snake_case : Union[str, Any] = flax_key_tuple_array[:-1] + ["""weight"""]
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(snake_case__ ):
_snake_case : str = (
flax_key_tuple_string.replace("""_0""" , """.0""" )
.replace("""_1""" , """.1""" )
.replace("""_2""" , """.2""" )
.replace("""_3""" , """.3""" )
.replace("""_4""" , """.4""" )
.replace("""_5""" , """.5""" )
.replace("""_6""" , """.6""" )
.replace("""_7""" , """.7""" )
.replace("""_8""" , """.8""" )
.replace("""_9""" , """.9""" )
)
_snake_case : Dict = """.""".join(snake_case__ )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." )
else:
# add weight to pytorch dict
_snake_case : Optional[Any] = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor
_snake_case : Optional[Any] = torch.from_numpy(snake_case__ )
# remove from missing keys
missing_keys.remove(snake_case__ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(snake_case__ )
pt_model.load_state_dict(snake_case__ )
# re-transform missing_keys to list
_snake_case : Tuple = list(snake_case__ )
if len(snake_case__ ) > 0:
logger.warning(
"""Some weights of the Flax model were not used when initializing the PyTorch model"""
F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
""" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"""
F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
""" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"""
""" FlaxBertForSequenceClassification model).""" )
if len(snake_case__ ) > 0:
logger.warning(
F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
""" use it for predictions and inference.""" )
return pt_model
| 28 |
"""simple docstring"""
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
A_ = logging.get_logger(__name__)
def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ):
"""simple docstring"""
def run_func(snake_case__ : Tuple ):
@wraps(snake_case__ )
def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ):
return func(*snake_case__ , **snake_case__ )
@wraps(snake_case__ )
@tf.function(experimental_compile=snake_case__ )
def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ):
return func(*snake_case__ , **snake_case__ )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
"""Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : List[str] = random.Random()
_snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = 42
lowercase__ = 42
lowercase__ = "TensorFlow"
@property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
return tf.__version__
def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : List[str] = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ )
return self._measure_speed(_inference )
def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : Tuple = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ )
return self._measure_speed(_train )
def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ):
'''simple docstring'''
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ )
_snake_case : str = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ )
return self._measure_memory(_inference )
def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ):
'''simple docstring'''
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ )
_snake_case : Dict = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ )
return self._measure_memory(_train )
def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : List[Any] = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
_snake_case : List[Any] = (
hasattr(a_, """architectures""" )
and isinstance(config.architectures, a_ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] )
_snake_case : Dict = getattr(a_, a_ )
_snake_case : Any = model_cls(a_ )
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
_snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ )
# encoder-decoder has vocab size saved differently
_snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size
_snake_case : List[str] = random_input_ids(a_, a_, a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_decoder_forward():
return model(a_, decoder_input_ids=a_, training=a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_forward():
return model(a_, training=a_ )
_snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : str = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" )
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
_snake_case : Tuple = (
hasattr(a_, """architectures""" )
and isinstance(config.architectures, a_ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case : str = __import__("""transformers""", fromlist=[model_class] )
_snake_case : Tuple = getattr(a_, a_ )
_snake_case : Any = model_cls(a_ )
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
_snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ )
# encoder-decoder has vocab size saved differently
_snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size
_snake_case : int = random_input_ids(a_, a_, a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_decoder_train():
_snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0]
_snake_case : str = tf.gradients(a_, model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_train():
_snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0]
_snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables )
return gradients
_snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def UpperCamelCase_ ( self: Union[str, Any], a_: str ):
'''simple docstring'''
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" )
timeit.repeat(a_, repeat=1, number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
_snake_case : Dict = timeit.repeat(
a_, repeat=self.args.repeat, number=10, )
return min(a_ ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}" )
def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ):
'''simple docstring'''
logger.info(
"""Note that TensorFlow allocates more memory than """
"""it might need to speed up computation. """
"""The memory reported here corresponds to the memory """
"""reported by `nvidia-smi`, which can vary depending """
"""on total available memory on the GPU that is used.""" )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
"""`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"""
""" consumption line by line.""" )
_snake_case : List[Any] = start_memory_tracing("""transformers""" )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"""Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"""
""" with `args.memory=False`""" )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
"""py3nvml not installed, we won't log GPU memory usage. """
"""Install py3nvml (pip install py3nvml) to log information about GPU.""" )
_snake_case : Optional[Any] = """N/A"""
else:
logger.info(
"""Measuring total GPU usage on GPU device. Make sure to not have additional processes"""
""" running on the same GPU.""" )
# init nvml
nvml.nvmlInit()
func()
_snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
_snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ )
_snake_case : List[str] = meminfo.used
_snake_case : Any = Memory(a_ )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
"""When enabling line by line tracing, the max peak memory for CPU is inaccurate in"""
""" TensorFlow.""" )
_snake_case : List[Any] = None
else:
_snake_case : int = measure_peak_memory_cpu(a_ )
_snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes
if self.args.trace_memory_line_by_line:
_snake_case : Tuple = stop_memory_tracing(a_ )
if memory is None:
_snake_case : int = summary.total
else:
_snake_case : int = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}" )
return "N/A", None
| 28 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
A_ = logging.get_logger(__name__)
class lowercase( __a ):
'''simple docstring'''
def __init__( self: int, *a_: Dict, **a_: Optional[int] ):
'''simple docstring'''
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""", a_, )
super().__init__(*a_, **a_ )
| 28 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : str ):
"""simple docstring"""
_snake_case : str = int(snake_case__ )
# Initialize Result
_snake_case : str = []
# Traverse through all denomination
for denomination in reversed(snake_case__ ):
# Find denominations
while int(snake_case__ ) >= int(snake_case__ ):
total_value -= int(snake_case__ )
answer.append(snake_case__ ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
A_ = []
A_ = '''0'''
if (
input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower()
== "y"
):
A_ = int(input('''Enter the number of denominations you want to add: ''').strip())
for i in range(0, n):
denominations.append(int(input(F'''Denomination {i}: ''').strip()))
A_ = input('''Enter the change you want to make in Indian Currency: ''').strip()
else:
# All denominations of Indian Currency if user does not enter
A_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00]
A_ = input('''Enter the change you want to make: ''').strip()
if int(value) == 0 or int(value) < 0:
print('''The total value cannot be zero or negative.''')
else:
print(F'''Following is minimal change for {value}: ''')
A_ = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=''' ''')
| 28 | 1 |
"""simple docstring"""
import copy
import random
from transformers import CLIPTokenizer
class lowercase( __a ):
'''simple docstring'''
def __init__( self: Optional[int], *a_: Optional[Any], **a_: Dict ):
'''simple docstring'''
super().__init__(*a_, **a_ )
_snake_case : int = {}
def UpperCamelCase_ ( self: Union[str, Any], a_: Dict, *a_: Any, **a_: List[Any] ):
'''simple docstring'''
_snake_case : Dict = super().add_tokens(a_, *a_, **a_ )
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {placeholder_token}. Please pass a different"
""" `placeholder_token` that is not already in the tokenizer.""" )
def UpperCamelCase_ ( self: Optional[int], a_: Tuple, *a_: Dict, a_: int=1, **a_: Any ):
'''simple docstring'''
_snake_case : str = []
if num_vec_per_token == 1:
self.try_adding_tokens(a_, *a_, **a_ )
output.append(a_ )
else:
_snake_case : int = []
for i in range(a_ ):
_snake_case : Union[str, Any] = placeholder_token + f"_{i}"
self.try_adding_tokens(a_, *a_, **a_ )
output.append(a_ )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
f"The tokenizer already has placeholder token {token} that can get confused with"
f" {placeholder_token}keep placeholder tokens independent" )
_snake_case : Tuple = output
def UpperCamelCase_ ( self: Tuple, a_: Optional[Any], a_: Dict=False, a_: Dict=1.0 ):
'''simple docstring'''
if isinstance(a_, a_ ):
_snake_case : Tuple = []
for i in range(len(a_ ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=a_ ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
_snake_case : str = self.token_map[placeholder_token]
_snake_case : Optional[int] = tokens[: 1 + int(len(a_ ) * prop_tokens_to_load )]
if vector_shuffle:
_snake_case : Any = copy.copy(a_ )
random.shuffle(a_ )
_snake_case : str = text.replace(a_, """ """.join(a_ ) )
return text
def __call__( self: Union[str, Any], a_: str, *a_: Union[str, Any], a_: int=False, a_: Dict=1.0, **a_: int ):
'''simple docstring'''
return super().__call__(
self.replace_placeholder_tokens_in_text(
a_, vector_shuffle=a_, prop_tokens_to_load=a_ ), *a_, **a_, )
def UpperCamelCase_ ( self: Optional[int], a_: Optional[Any], *a_: Dict, a_: Optional[Any]=False, a_: Optional[Any]=1.0, **a_: Union[str, Any] ):
'''simple docstring'''
return super().encode(
self.replace_placeholder_tokens_in_text(
a_, vector_shuffle=a_, prop_tokens_to_load=a_ ), *a_, **a_, )
| 28 |
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ):
'''simple docstring'''
_snake_case : Optional[int] = parent
_snake_case : Optional[Any] = 100
_snake_case : Any = batch_size
_snake_case : List[Any] = image_size
_snake_case : Optional[Any] = patch_size
_snake_case : str = num_channels
_snake_case : Tuple = is_training
_snake_case : Tuple = use_labels
_snake_case : Any = hidden_size
_snake_case : Optional[int] = num_hidden_layers
_snake_case : List[str] = num_attention_heads
_snake_case : Union[str, Any] = intermediate_size
_snake_case : Dict = hidden_act
_snake_case : str = hidden_dropout_prob
_snake_case : Optional[int] = attention_probs_dropout_prob
_snake_case : Optional[Any] = type_sequence_label_size
_snake_case : Any = initializer_range
_snake_case : List[str] = scope
_snake_case : int = out_indices
_snake_case : Optional[Any] = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_snake_case : Dict = (image_size // patch_size) ** 2
_snake_case : str = num_patches + 1
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : List[Any] = None
_snake_case : Tuple = None
if self.use_labels:
_snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size )
_snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
_snake_case : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, )
def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ):
'''simple docstring'''
_snake_case : str = BeitModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Dict = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ):
'''simple docstring'''
_snake_case : List[str] = BeitForMaskedImageModeling(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Union[str, Any] = model(a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ):
'''simple docstring'''
_snake_case : Any = self.type_sequence_label_size
_snake_case : Any = BeitForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : List[Any] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_snake_case : Any = 1
_snake_case : str = BeitForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_snake_case : Optional[Any] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ):
'''simple docstring'''
_snake_case : List[str] = self.num_labels
_snake_case : List[Any] = BeitForSemanticSegmentation(a_ )
model.to(a_ )
model.eval()
_snake_case : List[str] = model(a_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
_snake_case : str = model(a_, labels=a_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Tuple = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs
_snake_case : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": BeitModel,
"image-classification": BeitForImageClassification,
"image-segmentation": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Dict = BeitModelTester(self )
_snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""BEiT does not use inputs_embeds""" )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : List[str] = model_class(a_ )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
_snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a_, nn.Linear ) )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Any = model_class(a_ )
_snake_case : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : List[Any] = [*signature.parameters.keys()]
_snake_case : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a_ )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
_snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Any = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]:
continue
_snake_case : List[Any] = model_class(a_ )
model.to(a_ )
model.train()
_snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : List[Any] = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_snake_case : Dict = False
_snake_case : Optional[Any] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(a_ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
_snake_case : Any = model_class(a_ )
model.gradient_checkpointing_enable()
model.to(a_ )
model.train()
_snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : int = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : int = _config_zero_init(a_ )
for model_class in self.all_model_classes:
_snake_case : Tuple = model_class(config=a_ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", )
@slow
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Optional[int] = BeitModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ )
_snake_case : Dict = self.default_image_processor
_snake_case : Dict = prepare_img()
_snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ )
# prepare bool_masked_pos
_snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ )
_snake_case : Dict = outputs.logits
# verify the logits
_snake_case : Optional[int] = torch.Size((1, 196, 8_192) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[Any] = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) )
@slow
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ )
_snake_case : List[Any] = self.default_image_processor
_snake_case : Any = prepare_img()
_snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : int = model(**a_ )
_snake_case : Optional[int] = outputs.logits
# verify the logits
_snake_case : Tuple = torch.Size((1, 1_000) )
self.assertEqual(logits.shape, a_ )
_snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ )
self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) )
_snake_case : str = 281
self.assertEqual(logits.argmax(-1 ).item(), a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to(
a_ )
_snake_case : int = self.default_image_processor
_snake_case : Optional[Any] = prepare_img()
_snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Union[str, Any] = model(**a_ )
_snake_case : Dict = outputs.logits
# verify the logits
_snake_case : Tuple = torch.Size((1, 21_841) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ )
self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) )
_snake_case : List[str] = 2_396
self.assertEqual(logits.argmax(-1 ).item(), a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
_snake_case : int = model.to(a_ )
_snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ )
_snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" )
_snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] )
_snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
_snake_case : Union[str, Any] = outputs.logits
# verify the logits
_snake_case : List[str] = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" )
if is_pillow_less_than_a:
_snake_case : Any = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
], device=a_, )
else:
_snake_case : Optional[Any] = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
], device=a_, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
_snake_case : List[Any] = model.to(a_ )
_snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ )
_snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" )
_snake_case : str = Image.open(ds[0]["""file"""] )
_snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
_snake_case : Union[str, Any] = outputs.logits.detach().cpu()
_snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] )
_snake_case : Optional[int] = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape, a_ )
_snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ )
_snake_case : List[str] = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape, a_ )
| 28 | 1 |
"""simple docstring"""
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
A_ = ''''''
A_ = ''''''
A_ = ''''''
A_ = 1 # (0 is vertical, 1 is horizontal)
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case , _snake_case : Any = get_dataset(snake_case__ , snake_case__ )
print("""Processing...""" )
_snake_case , _snake_case , _snake_case : List[Any] = update_image_and_anno(snake_case__ , snake_case__ , snake_case__ )
for index, image in enumerate(snake_case__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
_snake_case : Optional[Any] = random_chars(32 )
_snake_case : Tuple = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0]
_snake_case : Dict = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , snake_case__ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(snake_case__ )} with {file_name}" )
_snake_case : Optional[int] = []
for anno in new_annos[index]:
_snake_case : str = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(snake_case__ )
with open(F"/{file_root}.txt" , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ):
"""simple docstring"""
_snake_case : List[str] = []
_snake_case : List[str] = []
for label_file in glob.glob(os.path.join(snake_case__ , """*.txt""" ) ):
_snake_case : int = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(snake_case__ ) as in_file:
_snake_case : Union[str, Any] = in_file.readlines()
_snake_case : int = os.path.join(snake_case__ , F"{label_name}.jpg" )
_snake_case : str = []
for obj_list in obj_lists:
_snake_case : Dict = obj_list.rstrip("""\n""" ).split(""" """ )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(snake_case__ )
labels.append(snake_case__ )
return img_paths, labels
def UpperCAmelCase__ (snake_case__ : list , snake_case__ : list , snake_case__ : int = 1 ):
"""simple docstring"""
_snake_case : Dict = []
_snake_case : Any = []
_snake_case : List[Any] = []
for idx in range(len(snake_case__ ) ):
_snake_case : Optional[int] = []
_snake_case : Any = img_list[idx]
path_list.append(snake_case__ )
_snake_case : Tuple = anno_list[idx]
_snake_case : Any = cva.imread(snake_case__ )
if flip_type == 1:
_snake_case : Optional[int] = cva.flip(snake_case__ , snake_case__ )
for bbox in img_annos:
_snake_case : List[str] = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
_snake_case : List[Any] = cva.flip(snake_case__ , snake_case__ )
for bbox in img_annos:
_snake_case : int = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(snake_case__ )
new_imgs_list.append(snake_case__ )
return new_imgs_list, new_annos_lists, path_list
def UpperCAmelCase__ (snake_case__ : int = 32 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
_snake_case : Dict = ascii_lowercase + digits
return "".join(random.choice(snake_case__ ) for _ in range(snake_case__ ) )
if __name__ == "__main__":
main()
print('''DONE ✅''')
| 28 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase( __a ):
'''simple docstring'''
lowercase__ = (IPNDMScheduler,)
lowercase__ = (("num_inference_steps", 50),)
def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : List[Any] = {"""num_train_timesteps""": 1_000}
config.update(**a_ )
return config
def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ):
'''simple docstring'''
_snake_case : Optional[int] = dict(self.forward_default_kwargs )
_snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ )
_snake_case : Optional[Any] = self.dummy_sample
_snake_case : Dict = 0.1 * sample
_snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_snake_case : int = self.get_scheduler_config(**a_ )
_snake_case : Dict = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals
_snake_case : int = dummy_past_residuals[:]
if time_step is None:
_snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
_snake_case : Tuple = scheduler_class.from_pretrained(a_ )
new_scheduler.set_timesteps(a_ )
# copy over dummy past residuals
_snake_case : Optional[Any] = dummy_past_residuals[:]
_snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ):
'''simple docstring'''
_snake_case : str = dict(self.forward_default_kwargs )
_snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ )
_snake_case : Optional[int] = self.dummy_sample
_snake_case : Tuple = 0.1 * sample
_snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_snake_case : Any = self.get_scheduler_config()
_snake_case : Tuple = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals (must be after setting timesteps)
_snake_case : Union[str, Any] = dummy_past_residuals[:]
if time_step is None:
_snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
_snake_case : List[str] = scheduler_class.from_pretrained(a_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(a_ )
# copy over dummy past residual (must be after setting timesteps)
_snake_case : List[str] = dummy_past_residuals[:]
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.scheduler_classes[0]
_snake_case : Any = self.get_scheduler_config(**a_ )
_snake_case : List[Any] = scheduler_class(**a_ )
_snake_case : Union[str, Any] = 10
_snake_case : Union[str, Any] = self.dummy_model()
_snake_case : List[Any] = self.dummy_sample_deter
scheduler.set_timesteps(a_ )
for i, t in enumerate(scheduler.timesteps ):
_snake_case : Optional[Any] = model(a_, a_ )
_snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
_snake_case : Union[str, Any] = model(a_, a_ )
_snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample
return sample
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : str = dict(self.forward_default_kwargs )
_snake_case : int = kwargs.pop("""num_inference_steps""", a_ )
for scheduler_class in self.scheduler_classes:
_snake_case : Union[str, Any] = self.get_scheduler_config()
_snake_case : Tuple = scheduler_class(**a_ )
_snake_case : Dict = self.dummy_sample
_snake_case : List[str] = 0.1 * sample
if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ):
scheduler.set_timesteps(a_ )
elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ):
_snake_case : Dict = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
_snake_case : List[str] = dummy_past_residuals[:]
_snake_case : Optional[int] = scheduler.timesteps[5]
_snake_case : Optional[Any] = scheduler.timesteps[6]
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
_snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=a_, time_step=a_ )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=a_, time_step=a_ )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = self.full_loop()
_snake_case : Optional[int] = torch.mean(torch.abs(a_ ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 28 | 1 |
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A_ = logging.get_logger(__name__)
A_ = {
'''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "deformable_detr"
lowercase__ = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self: Tuple, a_: List[str]=True, a_: str=None, a_: Tuple=3, a_: Optional[int]=300, a_: List[Any]=1_024, a_: Union[str, Any]=6, a_: int=1_024, a_: Optional[int]=8, a_: Tuple=6, a_: List[str]=1_024, a_: Dict=8, a_: str=0.0, a_: Dict=True, a_: Any="relu", a_: List[str]=256, a_: List[Any]=0.1, a_: List[Any]=0.0, a_: Optional[int]=0.0, a_: Tuple=0.02, a_: List[Any]=1.0, a_: Union[str, Any]=True, a_: Dict=False, a_: List[str]="sine", a_: Optional[int]="resnet50", a_: List[str]=True, a_: Optional[Any]=False, a_: Tuple=4, a_: List[str]=4, a_: Tuple=4, a_: List[Any]=False, a_: List[Any]=300, a_: Dict=False, a_: Optional[int]=1, a_: int=5, a_: Union[str, Any]=2, a_: Optional[int]=1, a_: Tuple=1, a_: Tuple=5, a_: int=2, a_: Tuple=0.1, a_: Dict=0.25, a_: str=False, **a_: Dict, ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
_snake_case : str = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(a_, a_ ):
_snake_case : List[Any] = backbone_config.get("""model_type""" )
_snake_case : int = CONFIG_MAPPING[backbone_model_type]
_snake_case : Optional[Any] = config_class.from_dict(a_ )
_snake_case : Any = use_timm_backbone
_snake_case : List[str] = backbone_config
_snake_case : int = num_channels
_snake_case : Any = num_queries
_snake_case : str = max_position_embeddings
_snake_case : int = d_model
_snake_case : Optional[int] = encoder_ffn_dim
_snake_case : List[str] = encoder_layers
_snake_case : int = encoder_attention_heads
_snake_case : str = decoder_ffn_dim
_snake_case : int = decoder_layers
_snake_case : List[Any] = decoder_attention_heads
_snake_case : int = dropout
_snake_case : Tuple = attention_dropout
_snake_case : int = activation_dropout
_snake_case : List[str] = activation_function
_snake_case : List[Any] = init_std
_snake_case : int = init_xavier_std
_snake_case : Optional[int] = encoder_layerdrop
_snake_case : int = auxiliary_loss
_snake_case : Any = position_embedding_type
_snake_case : Optional[Any] = backbone
_snake_case : Tuple = use_pretrained_backbone
_snake_case : int = dilation
# deformable attributes
_snake_case : str = num_feature_levels
_snake_case : str = encoder_n_points
_snake_case : Optional[int] = decoder_n_points
_snake_case : str = two_stage
_snake_case : Optional[int] = two_stage_num_proposals
_snake_case : Dict = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError("""If two_stage is True, with_box_refine must be True.""" )
# Hungarian matcher
_snake_case : Tuple = class_cost
_snake_case : List[Any] = bbox_cost
_snake_case : List[str] = giou_cost
# Loss coefficients
_snake_case : List[Any] = mask_loss_coefficient
_snake_case : List[str] = dice_loss_coefficient
_snake_case : Any = bbox_loss_coefficient
_snake_case : Dict = giou_loss_coefficient
_snake_case : Any = eos_coefficient
_snake_case : str = focal_alpha
_snake_case : int = disable_custom_kernels
super().__init__(is_encoder_decoder=a_, **a_ )
@property
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
return self.d_model
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case : Any = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_snake_case : Dict = self.backbone_config.to_dict()
_snake_case : int = self.__class__.model_type
return output
| 28 |
"""simple docstring"""
from __future__ import annotations
import math
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
_snake_case : Any = []
for num in range(len(snake_case__ ) ):
_snake_case : Optional[int] = 0
while 2 * i * i <= odd_composites[num]:
_snake_case : Optional[int] = odd_composites[num] - 2 * i * i
if is_prime(snake_case__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(snake_case__ ) == n:
return list_nums
return []
def UpperCAmelCase__ ():
"""simple docstring"""
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'''{solution() = }''')
| 28 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase( __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = GPTSanJapaneseTokenizer
lowercase__ = False
lowercase__ = {"do_clean_text": False, "add_prefix_space": False}
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
super().setUp()
# fmt: off
_snake_case : Optional[int] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""]
# fmt: on
_snake_case : Tuple = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀
_snake_case : Tuple = {"""unk_token""": """<unk>"""}
_snake_case : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] )
_snake_case : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""emoji_file"""] )
with open(self.vocab_file, """w""", encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
with open(self.emoji_file, """w""" ) as emoji_writer:
emoji_writer.write(json.dumps(a_ ) )
def UpperCamelCase_ ( self: Dict, **a_: List[Any] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname, **a_ )
def UpperCamelCase_ ( self: int, a_: Any ):
'''simple docstring'''
_snake_case : Optional[Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀"""
_snake_case : Optional[int] = """こんにちは、世界。 \nこんばんは、世界。😀"""
return input_text, output_text
def UpperCamelCase_ ( self: Any, a_: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : Any = self.get_input_output_texts(a_ )
_snake_case : Tuple = tokenizer.encode(a_, add_special_tokens=a_ )
_snake_case : str = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ )
return text, ids
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Tuple = self.get_tokenizer()
# Testing tokenization
_snake_case : Tuple = """こんにちは、世界。 こんばんは、㔺界。"""
_snake_case : Union[str, Any] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""]
_snake_case : List[Any] = tokenizer.tokenize(a_ )
self.assertListEqual(a_, a_ )
# Testing conversion to ids without special tokens
_snake_case : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
_snake_case : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_ )
self.assertListEqual(a_, a_ )
# Testing conversion to ids with special tokens
_snake_case : Any = tokens + [tokenizer.unk_token]
_snake_case : List[str] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
_snake_case : List[Any] = tokenizer.convert_tokens_to_ids(a_ )
self.assertListEqual(a_, a_ )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case : Tuple = self.get_tokenizer()
# Testing tokenization
_snake_case : Optional[int] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。"""
_snake_case : List[str] = """こんにちは、、、、世界。こんばんは、、、、世界。"""
_snake_case : Optional[Any] = tokenizer.encode(a_ )
_snake_case : Tuple = tokenizer.decode(a_ )
self.assertEqual(a_, a_ )
@slow
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Dict = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
_snake_case : Optional[Any] = """こんにちは、世界。"""
_snake_case : List[Any] = """こんばんは、㔺界。😀"""
_snake_case : Tuple = """こんにちは、世界。こんばんは、世界。😀"""
_snake_case : str = tokenizer.encode(prefix_text + input_text )
_snake_case : Optional[Any] = tokenizer.encode("""""", prefix_text=prefix_text + input_text )
_snake_case : Optional[int] = tokenizer.encode(a_, prefix_text=a_ )
_snake_case : List[Any] = tokenizer.decode(a_ )
_snake_case : str = tokenizer.decode(a_ )
_snake_case : Union[str, Any] = tokenizer.decode(a_ )
self.assertEqual(a_, a_ )
self.assertEqual(a_, a_ )
self.assertEqual(a_, a_ )
@slow
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : str = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
_snake_case : Union[str, Any] = """こんにちは、世界。"""
_snake_case : Optional[Any] = """こんばんは、㔺界。😀"""
_snake_case : Dict = len(tokenizer.encode(a_ ) ) - 2
_snake_case : List[Any] = len(tokenizer.encode(a_ ) ) - 2
_snake_case : Tuple = [1] + [0] * (len_prefix + len_text + 1)
_snake_case : Dict = [1] * (len_prefix + len_text + 1) + [0]
_snake_case : List[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
_snake_case : List[Any] = tokenizer(prefix_text + input_text ).token_type_ids
_snake_case : Optional[int] = tokenizer("""""", prefix_text=prefix_text + input_text ).token_type_ids
_snake_case : Optional[Any] = tokenizer(a_, prefix_text=a_ ).token_type_ids
self.assertListEqual(a_, a_ )
self.assertListEqual(a_, a_ )
self.assertListEqual(a_, a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : int = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
_snake_case : int = tokenizer.encode("""あンいワ""" )
_snake_case : Optional[int] = tokenizer.encode("""""", prefix_text="""あンいワ""" )
_snake_case : Union[str, Any] = tokenizer.encode("""いワ""", prefix_text="""あン""" )
self.assertEqual(tokenizer.decode(a_ ), tokenizer.decode(a_ ) )
self.assertEqual(tokenizer.decode(a_ ), tokenizer.decode(a_ ) )
self.assertNotEqual(a_, a_ )
self.assertNotEqual(a_, a_ )
self.assertEqual(x_token_a[1], x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1], x_token_a[3] ) # SEG token
@slow
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Dict = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
_snake_case : List[str] = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]]
_snake_case : Dict = tokenizer(a_, padding=a_ )
_snake_case : List[Any] = tokenizer.batch_encode_plus(a_, padding=a_ )
# fmt: off
_snake_case : Any = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]]
_snake_case : Union[str, Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
_snake_case : Tuple = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids, a_ )
self.assertListEqual(x_token.token_type_ids, a_ )
self.assertListEqual(x_token.attention_mask, a_ )
self.assertListEqual(x_token_a.input_ids, a_ )
self.assertListEqual(x_token_a.token_type_ids, a_ )
self.assertListEqual(x_token_a.attention_mask, a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
| 28 |
"""simple docstring"""
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class lowercase:
'''simple docstring'''
def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
_snake_case : Optional[int] = device
_snake_case : str = CLIPTokenizerFast.from_pretrained(a_ )
_snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073]
_snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711]
_snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std )
_snake_case : Optional[int] = torchvision.transforms.Resize(224 )
_snake_case : str = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self: List[str], a_: str ):
'''simple docstring'''
_snake_case : Optional[int] = self.resize(a_ )
_snake_case : List[Any] = self.center_crop(a_ )
_snake_case : Optional[Any] = self.normalize(a_ )
return images
def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ):
'''simple docstring'''
_snake_case : Optional[int] = self.tokenizer(text=a_, **a_ )
_snake_case : Any = self.preprocess_img(a_ )
_snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ):
'''simple docstring'''
super().__init__()
_snake_case : int = None
_snake_case : List[str] = device if device else get_device()
if vqgan:
_snake_case : Any = vqgan
else:
_snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ )
self.vqgan.eval()
if clip:
_snake_case : Tuple = clip
else:
_snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" )
self.clip.to(self.device )
_snake_case : List[str] = ProcessorGradientFlow(device=self.device )
_snake_case : Union[str, Any] = iterations
_snake_case : Dict = lr
_snake_case : Optional[int] = log
_snake_case : List[str] = make_grid
_snake_case : Union[str, Any] = return_val
_snake_case : List[str] = quantize
_snake_case : List[str] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ):
'''simple docstring'''
_snake_case : Dict = []
if output_path is None:
_snake_case : Tuple = """./animation.gif"""
if input_path is None:
_snake_case : Any = self.save_path
_snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) )
if not len(a_ ):
raise ValueError(
"""No images found in save path, aborting (did you pass save_intermediate=True to the generate"""
""" function?)""" )
if len(a_ ) == 1:
print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" )
_snake_case : List[Any] = total_duration / len(a_ )
_snake_case : Optional[Any] = [frame_duration] * len(a_ )
if extend_frames:
_snake_case : Optional[int] = 1.5
_snake_case : int = 3
for file_name in paths:
if file_name.endswith(""".png""" ):
images.append(imageio.imread(a_ ) )
imageio.mimsave(a_, a_, duration=a_ )
print(f"gif saved to {output_path}" )
def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ):
'''simple docstring'''
if not (path or img):
raise ValueError("""Input either path or tensor""" )
if img is not None:
raise NotImplementedError
_snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device )
_snake_case : int = preprocess_vqgan(a_ )
_snake_case , *_snake_case : List[Any] = self.vqgan.encode(a_ )
return z
def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = self.latent.detach().requires_grad_()
_snake_case : Tuple = base_latent + transform_vector
if self.quantize:
_snake_case , *_snake_case : Any = self.vqgan.quantize(a_ )
else:
_snake_case : List[Any] = trans_latent
return self.vqgan.decode(a_ )
def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ):
'''simple docstring'''
_snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ )
_snake_case : Any = self.clip(**a_ )
_snake_case : str = clip_outputs.logits_per_image
if weights is not None:
_snake_case : Any = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ):
'''simple docstring'''
_snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) )
if neg_prompts:
_snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] )
else:
_snake_case : Tuple = torch.tensor([1], device=self.device )
_snake_case : int = -torch.log(a_ ) + torch.log(a_ )
return loss
def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ):
'''simple docstring'''
_snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device )
_snake_case : Dict = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
_snake_case : str = self._add_vector(a_ )
_snake_case : List[Any] = loop_post_process(a_ )
_snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ )
print("""CLIP loss""", a_ )
if self.log:
wandb.log({"""CLIP Loss""": clip_loss} )
clip_loss.backward(retain_graph=a_ )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ):
'''simple docstring'''
wandb.init(reinit=a_, project="""face-editor""" )
wandb.config.update({"""Positive Prompts""": positive_prompts} )
wandb.config.update({"""Negative Prompts""": negative_prompts} )
wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} )
if image_path:
_snake_case : Any = Image.open(a_ )
_snake_case : str = image.resize((256, 256) )
wandb.log("""Original Image""", wandb.Image(a_ ) )
def UpperCamelCase_ ( self: str, a_: List[Any] ):
'''simple docstring'''
if not prompts:
return []
_snake_case : List[str] = []
_snake_case : Tuple = []
if isinstance(a_, a_ ):
_snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )]
for prompt in prompts:
if isinstance(a_, (tuple, list) ):
_snake_case : List[Any] = prompt[0]
_snake_case : Optional[Any] = float(prompt[1] )
elif ":" in prompt:
_snake_case , _snake_case : List[Any] = prompt.split(""":""" )
_snake_case : str = float(a_ )
else:
_snake_case : int = prompt
_snake_case : Union[str, Any] = 1.0
processed_prompts.append(a_ )
weights.append(a_ )
return {
"prompts": processed_prompts,
"weights": torch.tensor(a_, device=self.device ),
}
def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ):
'''simple docstring'''
if image_path:
_snake_case : Union[str, Any] = self._get_latent(a_ )
else:
_snake_case : Any = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(a_, a_, a_ )
assert pos_prompts, "You must provide at least one positive prompt."
_snake_case : str = self.process_prompts(a_ )
_snake_case : Dict = self.process_prompts(a_ )
if save_final and save_path is None:
_snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) )
if not os.path.exists(a_ ):
os.makedirs(a_ )
else:
_snake_case : List[Any] = save_path + """_""" + get_timestamp()
os.makedirs(a_ )
_snake_case : Optional[Any] = save_path
_snake_case : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print("""Original Image""" )
show_pil(custom_to_pil(a_ ) )
_snake_case : List[Any] = loop_post_process(a_ )
for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ):
if show_intermediate:
show_pil(a_ )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({"""Image""": wandb.Image(a_ )} )
if show_final:
show_pil(a_ )
if save_final:
transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Optional[Any] ):
"""simple docstring"""
if openai_config_file == "":
_snake_case : int = OpenAIGPTConfig()
else:
_snake_case : str = OpenAIGPTConfig.from_json_file(snake_case__ )
_snake_case : int = OpenAIGPTModel(snake_case__ )
# Load weights from numpy
load_tf_weights_in_openai_gpt(snake_case__ , snake_case__ , snake_case__ )
# Save pytorch-model
_snake_case : Any = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_snake_case : List[str] = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(F"Save PyTorch model to {pytorch_weights_dump_path}" )
torch.save(model.state_dict() , snake_case__ )
print(F"Save configuration file to {pytorch_config_dump_path}" )
with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--openai_checkpoint_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the TensorFlow checkpoint path.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--openai_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained OpenAI model. \n'''
'''This specifies the model architecture.'''
),
)
A_ = parser.parse_args()
convert_openai_checkpoint_to_pytorch(
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
)
| 28 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or number < 0:
raise ValueError("""Input must be a non-negative integer""" )
_snake_case : Dict = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
"""simple docstring"""
from collections.abc import Callable
import numpy as np
def UpperCAmelCase__ (snake_case__ : Callable , snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float ):
"""simple docstring"""
_snake_case : Any = int(np.ceil((x_end - xa) / step_size ) )
_snake_case : Any = np.zeros((n + 1,) )
_snake_case : Optional[int] = ya
_snake_case : Optional[int] = xa
for k in range(snake_case__ ):
_snake_case : Optional[int] = y[k] + step_size * ode_func(snake_case__ , y[k] )
_snake_case : Any = y[k] + (
(step_size / 2) * (ode_func(snake_case__ , y[k] ) + ode_func(x + step_size , snake_case__ ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ):
'''simple docstring'''
_snake_case : int = parent
_snake_case : int = batch_size
_snake_case : List[Any] = image_size
_snake_case : List[str] = num_channels
_snake_case : Tuple = num_stages
_snake_case : Union[str, Any] = hidden_sizes
_snake_case : List[Any] = depths
_snake_case : Tuple = is_training
_snake_case : List[str] = use_labels
_snake_case : Tuple = intermediate_size
_snake_case : List[str] = hidden_act
_snake_case : Optional[Any] = num_labels
_snake_case : Tuple = initializer_range
_snake_case : Tuple = out_features
_snake_case : Tuple = out_indices
_snake_case : Dict = scope
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : Any = None
if self.use_labels:
_snake_case : Dict = ids_tensor([self.batch_size], self.num_labels )
_snake_case : Optional[Any] = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return ConvNextVaConfig(
num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, )
def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ):
'''simple docstring'''
_snake_case : int = ConvNextVaModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Any = model(a_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), )
def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[int] = ConvNextVaForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : Optional[int] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ):
'''simple docstring'''
_snake_case : List[str] = ConvNextVaBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : int = model(a_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ), len(config.out_features ) )
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_snake_case : Tuple = None
_snake_case : Tuple = ConvNextVaBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : List[Any] = model(a_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ), 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ), 1 )
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Dict = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : Any = config_and_inputs
_snake_case : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[Any] = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : List[str] = config_and_inputs
_snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowercase__ = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Tuple = ConvNextVaModelTester(self )
_snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels()
_snake_case : List[Any] = True
if model_class.__name__ in [
*get_values(a_ ),
*get_values(a_ ),
]:
continue
_snake_case : Tuple = model_class(a_ )
model.to(a_ )
model.train()
_snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Any = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels()
_snake_case : Any = False
_snake_case : List[Any] = True
if (
model_class.__name__
in [*get_values(a_ ), *get_values(a_ )]
or not model_class.supports_gradient_checkpointing
):
continue
_snake_case : Dict = model_class(a_ )
model.to(a_ )
model.gradient_checkpointing_enable()
model.train()
_snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Optional[int] = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : List[str] = model_class(a_ )
_snake_case : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : int = [*signature.parameters.keys()]
_snake_case : Union[str, Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ):
_snake_case : Optional[Any] = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
_snake_case : Any = model(**self._prepare_for_class(a_, a_ ) )
_snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(a_ ), expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Optional[Any] = True
check_hidden_states_output(a_, a_, a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : List[str] = True
check_hidden_states_output(a_, a_, a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : str = ConvNextVaModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ )
_snake_case : Union[str, Any] = self.default_image_processor
_snake_case : List[Any] = prepare_img()
_snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
# verify the logits
_snake_case : Optional[int] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
| 28 | 1 |
"""simple docstring"""
A_ = {
'''A''': ['''B''', '''C''', '''E'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F''', '''G'''],
'''D''': ['''B'''],
'''E''': ['''A''', '''B''', '''D'''],
'''F''': ['''C'''],
'''G''': ['''C'''],
}
def UpperCAmelCase__ (snake_case__ : dict , snake_case__ : str , snake_case__ : Any ):
"""simple docstring"""
_snake_case : Dict = set()
# keep track of all the paths to be checked
_snake_case : str = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
_snake_case : Union[str, Any] = queue.pop(0 )
# get the last node from the path
_snake_case : int = path[-1]
if node not in explored:
_snake_case : Optional[int] = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
_snake_case : int = list(snake_case__ )
new_path.append(snake_case__ )
queue.append(snake_case__ )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(snake_case__ )
# in case there's no path between the 2 nodes
return []
def UpperCAmelCase__ (snake_case__ : dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ):
"""simple docstring"""
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
_snake_case : int = [start]
_snake_case : Optional[int] = set(snake_case__ )
# Keep tab on distances from `start` node.
_snake_case : Optional[Any] = {start: 0, target: -1}
while queue:
_snake_case : Dict = queue.pop(0 )
if node == target:
_snake_case : List[str] = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(snake_case__ )
queue.append(snake_case__ )
_snake_case : List[Any] = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
| 28 |
"""simple docstring"""
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ):
"""simple docstring"""
assert isinstance(snake_case__ , snake_case__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ):
"""simple docstring"""
_snake_case : str = tmp_path / """cache"""
_snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : str = tmp_path / """cache"""
_snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : List[Any] = features.copy() if features else default_expected_features
_snake_case : List[Any] = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
_snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : List[str] = tmp_path / """cache"""
_snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" , [str, list] )
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ):
"""simple docstring"""
if issubclass(snake_case__ , snake_case__ ):
_snake_case : Optional[Any] = parquet_path
elif issubclass(snake_case__ , snake_case__ ):
_snake_case : int = [parquet_path]
_snake_case : Union[str, Any] = tmp_path / """cache"""
_snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ):
"""simple docstring"""
assert isinstance(snake_case__ , snake_case__ )
for split in splits:
_snake_case : int = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : Tuple = tmp_path / """cache"""
_snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_snake_case : Tuple = ParquetDatasetReader(
{"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_parquet_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : Optional[int] = tmp_path / """cache"""
_snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : Optional[Any] = features.copy() if features else default_expected_features
_snake_case : Dict = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
_snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ):
"""simple docstring"""
if split:
_snake_case : int = {split: parquet_path}
else:
_snake_case : Optional[Any] = """train"""
_snake_case : int = {"""train""": parquet_path, """test""": parquet_path}
_snake_case : Dict = tmp_path / """cache"""
_snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" )
assert writer.write() > 0
_snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" )
_snake_case : int = pf.read()
assert dataset.data.table == output_table
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" )
_snake_case : Tuple = {"""image""": [image_path]}
_snake_case : Optional[int] = Features({"""image""": Image()} )
_snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ )
_snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" )
assert writer.write() > 0
_snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) )
assert dataset.features == reloaded_dataset.features
_snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"""feature, expected""" , [
(Features({"""foo""": Value("""int32""" )} ), None),
(Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ):
"""simple docstring"""
assert get_writer_batch_size(snake_case__ ) == expected
| 28 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A_ = {
'''configuration_efficientnet''': [
'''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''EfficientNetConfig''',
'''EfficientNetOnnxConfig''',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''EfficientNetImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''EfficientNetForImageClassification''',
'''EfficientNetModel''',
'''EfficientNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 28 |
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ):
'''simple docstring'''
_snake_case : Dict = parent
_snake_case : Dict = batch_size
_snake_case : Optional[Any] = image_size
_snake_case : int = num_channels
_snake_case : Tuple = num_stages
_snake_case : int = hidden_sizes
_snake_case : List[str] = depths
_snake_case : str = is_training
_snake_case : Dict = use_labels
_snake_case : List[str] = intermediate_size
_snake_case : Optional[int] = hidden_act
_snake_case : Any = type_sequence_label_size
_snake_case : List[str] = initializer_range
_snake_case : Union[str, Any] = out_features
_snake_case : Dict = num_labels
_snake_case : int = scope
_snake_case : Dict = num_stages
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : Optional[int] = None
if self.use_labels:
_snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
_snake_case : Tuple = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return UperNetConfig(
backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, )
def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ):
'''simple docstring'''
_snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Tuple = model(a_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Any = self.prepare_config_and_inputs()
(
(
_snake_case
) , (
_snake_case
) , (
_snake_case
) ,
) : List[Any] = config_and_inputs
_snake_case : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : List[str] = UperNetModelTester(self )
_snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Dict = model_class(a_ )
_snake_case : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : Tuple = [*signature.parameters.keys()]
_snake_case : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*a_ )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ):
_snake_case : Optional[Any] = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
_snake_case : Any = model(**self._prepare_for_class(a_, a_ ) )
_snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case : List[str] = self.model_tester.num_stages
self.assertEqual(len(a_ ), expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
_snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : int = True
check_hidden_states_output(a_, a_, a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : Optional[int] = True
check_hidden_states_output(a_, a_, a_ )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Tuple = _config_zero_init(a_ )
_snake_case : Dict = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_snake_case : Optional[int] = model_class(config=a_ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
pass
@slow
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Union[str, Any] = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class lowercase( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
_snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ )
_snake_case : Dict = prepare_img()
_snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ )
with torch.no_grad():
_snake_case : Tuple = model(**a_ )
_snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : int = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
_snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ )
_snake_case : List[str] = prepare_img()
_snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ )
with torch.no_grad():
_snake_case : Optional[Any] = model(**a_ )
_snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : Optional[Any] = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
| 28 | 1 |
"""simple docstring"""
A_ = [
'''Audio''',
'''Array2D''',
'''Array3D''',
'''Array4D''',
'''Array5D''',
'''ClassLabel''',
'''Features''',
'''Sequence''',
'''Value''',
'''Image''',
'''Translation''',
'''TranslationVariableLanguages''',
]
from .audio import Audio
from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value
from .image import Image
from .translation import Translation, TranslationVariableLanguages
| 28 |
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
A_ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
A_ = [ord(letter) for letter in string.ascii_lowercase]
A_ = {ord(char) for char in VALID_CHARS}
A_ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ):
"""simple docstring"""
_snake_case : str = ""
_snake_case : int
_snake_case : int
_snake_case : int
for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ):
_snake_case : List[str] = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(snake_case__ )
return decoded
def UpperCAmelCase__ (snake_case__ : list[int] ):
"""simple docstring"""
_snake_case : list[str] = []
for key in product(snake_case__ , repeat=3 ):
_snake_case : List[Any] = try_key(snake_case__ , snake_case__ )
if encoded is not None:
possibles.append(snake_case__ )
return possibles
def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : str ):
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def UpperCAmelCase__ (snake_case__ : str = "p059_cipher.txt" ):
"""simple docstring"""
_snake_case : list[int]
_snake_case : list[str]
_snake_case : str
_snake_case : str
_snake_case : str = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" )
_snake_case : List[Any] = [int(snake_case__ ) for number in data.strip().split(""",""" )]
_snake_case : Optional[Any] = filter_valid_chars(snake_case__ )
for common_word in COMMON_WORDS:
_snake_case : Union[str, Any] = filter_common_word(snake_case__ , snake_case__ )
if len(snake_case__ ) == 1:
break
_snake_case : Optional[int] = possibles[0]
return sum(ord(snake_case__ ) for char in decoded_text )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 28 | 1 |
"""simple docstring"""
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str=0.9_99 , snake_case__ : Dict="cosine" , ):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(snake_case__ : Optional[Any] ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(snake_case__ : Optional[int] ):
return math.exp(t * -12.0 )
else:
raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" )
_snake_case : List[Any] = []
for i in range(snake_case__ ):
_snake_case : Tuple = i / num_diffusion_timesteps
_snake_case : Optional[int] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) )
return torch.tensor(snake_case__ , dtype=torch.floataa )
class lowercase( __a , __a ):
'''simple docstring'''
lowercase__ = [e.name for e in KarrasDiffusionSchedulers]
lowercase__ = 2
@register_to_config
def __init__( self: Tuple, a_: int = 1_000, a_: float = 0.00_085, a_: float = 0.012, a_: str = "linear", a_: Optional[Union[np.ndarray, List[float]]] = None, a_: str = "epsilon", a_: str = "linspace", a_: int = 0, ):
'''simple docstring'''
if trained_betas is not None:
_snake_case : Tuple = torch.tensor(a_, dtype=torch.floataa )
elif beta_schedule == "linear":
_snake_case : Dict = torch.linspace(a_, a_, a_, dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_snake_case : List[str] = (
torch.linspace(beta_start**0.5, beta_end**0.5, a_, dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_snake_case : str = betas_for_alpha_bar(a_ )
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" )
_snake_case : int = 1.0 - self.betas
_snake_case : Optional[Any] = torch.cumprod(self.alphas, dim=0 )
# set all values
self.set_timesteps(a_, a_, a_ )
def UpperCamelCase_ ( self: Tuple, a_: List[str], a_: Dict=None ):
'''simple docstring'''
if schedule_timesteps is None:
_snake_case : List[Any] = self.timesteps
_snake_case : Any = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
_snake_case : List[Any] = 1 if len(a_ ) > 1 else 0
else:
_snake_case : int = timestep.cpu().item() if torch.is_tensor(a_ ) else timestep
_snake_case : Tuple = self._index_counter[timestep_int]
return indices[pos].item()
@property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def UpperCamelCase_ ( self: Optional[Any], a_: torch.FloatTensor, a_: Union[float, torch.FloatTensor], ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.index_for_timestep(a_ )
if self.state_in_first_order:
_snake_case : List[str] = self.sigmas[step_index]
else:
_snake_case : Any = self.sigmas_interpol[step_index]
_snake_case : List[str] = sample / ((sigma**2 + 1) ** 0.5)
return sample
def UpperCamelCase_ ( self: List[str], a_: int, a_: Union[str, torch.device] = None, a_: Optional[int] = None, ):
'''simple docstring'''
_snake_case : Union[str, Any] = num_inference_steps
_snake_case : Optional[int] = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
_snake_case : Optional[int] = np.linspace(0, num_train_timesteps - 1, a_, dtype=a_ )[::-1].copy()
elif self.config.timestep_spacing == "leading":
_snake_case : int = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_snake_case : int = (np.arange(0, a_ ) * step_ratio).round()[::-1].copy().astype(a_ )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
_snake_case : Optional[int] = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_snake_case : Tuple = (np.arange(a_, 0, -step_ratio )).round().copy().astype(a_ )
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." )
_snake_case : Dict = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
_snake_case : Dict = torch.from_numpy(np.log(a_ ) ).to(a_ )
_snake_case : int = np.interp(a_, np.arange(0, len(a_ ) ), a_ )
_snake_case : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
_snake_case : str = torch.from_numpy(a_ ).to(device=a_ )
# interpolate sigmas
_snake_case : int = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp()
_snake_case : Optional[int] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
_snake_case : Optional[Any] = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(a_ ).startswith("""mps""" ):
# mps does not support float64
_snake_case : Dict = torch.from_numpy(a_ ).to(a_, dtype=torch.floataa )
else:
_snake_case : Optional[Any] = torch.from_numpy(a_ ).to(a_ )
# interpolate timesteps
_snake_case : Tuple = self.sigma_to_t(a_ ).to(a_, dtype=timesteps.dtype )
_snake_case : List[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten()
_snake_case : List[str] = torch.cat([timesteps[:1], interleaved_timesteps] )
_snake_case : Optional[Any] = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
_snake_case : List[str] = defaultdict(a_ )
def UpperCamelCase_ ( self: Optional[Any], a_: Tuple ):
'''simple docstring'''
_snake_case : Tuple = sigma.log()
# get distribution
_snake_case : Any = log_sigma - self.log_sigmas[:, None]
# get sigmas range
_snake_case : int = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
_snake_case : Dict = low_idx + 1
_snake_case : List[str] = self.log_sigmas[low_idx]
_snake_case : int = self.log_sigmas[high_idx]
# interpolate sigmas
_snake_case : Any = (low - log_sigma) / (low - high)
_snake_case : Dict = w.clamp(0, 1 )
# transform interpolation to time range
_snake_case : Tuple = (1 - w) * low_idx + w * high_idx
_snake_case : List[Any] = t.view(sigma.shape )
return t
@property
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
return self.sample is None
def UpperCamelCase_ ( self: Any, a_: Union[torch.FloatTensor, np.ndarray], a_: Union[float, torch.FloatTensor], a_: Union[torch.FloatTensor, np.ndarray], a_: bool = True, ):
'''simple docstring'''
_snake_case : Any = self.index_for_timestep(a_ )
# advance index counter by 1
_snake_case : List[str] = timestep.cpu().item() if torch.is_tensor(a_ ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
_snake_case : Union[str, Any] = self.sigmas[step_index]
_snake_case : Optional[Any] = self.sigmas_interpol[step_index + 1]
_snake_case : Union[str, Any] = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
_snake_case : int = self.sigmas[step_index - 1]
_snake_case : Any = self.sigmas_interpol[step_index]
_snake_case : Tuple = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
_snake_case : Optional[int] = 0
_snake_case : List[str] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
_snake_case : str = sigma_hat if self.state_in_first_order else sigma_interpol
_snake_case : Optional[Any] = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
_snake_case : Dict = sigma_hat if self.state_in_first_order else sigma_interpol
_snake_case : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("""prediction_type not implemented yet: sample""" )
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
_snake_case : int = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
_snake_case : Tuple = sigma_interpol - sigma_hat
# store for 2nd order step
_snake_case : str = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
_snake_case : Optional[Any] = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
_snake_case : Any = sigma_next - sigma_hat
_snake_case : Optional[int] = self.sample
_snake_case : Optional[Any] = None
_snake_case : Union[str, Any] = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=a_ )
def UpperCamelCase_ ( self: Optional[Any], a_: torch.FloatTensor, a_: torch.FloatTensor, a_: torch.FloatTensor, ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(a_ ):
# mps does not support float64
_snake_case : Dict = self.timesteps.to(original_samples.device, dtype=torch.floataa )
_snake_case : List[Any] = timesteps.to(original_samples.device, dtype=torch.floataa )
else:
_snake_case : Optional[Any] = self.timesteps.to(original_samples.device )
_snake_case : Any = timesteps.to(original_samples.device )
_snake_case : List[str] = [self.index_for_timestep(a_, a_ ) for t in timesteps]
_snake_case : Tuple = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
_snake_case : List[Any] = sigma.unsqueeze(-1 )
_snake_case : Any = original_samples + noise * sigma
return noisy_samples
def __len__( self: Union[str, Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 28 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowercase( __a ):
'''simple docstring'''
lowercase__ = ["image_processor", "feature_extractor"]
lowercase__ = "TvltImageProcessor"
lowercase__ = "TvltFeatureExtractor"
def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ):
'''simple docstring'''
super().__init__(image_processor=a_, feature_extractor=a_ )
_snake_case : Any = image_processor
_snake_case : Dict = feature_extractor
def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ):
'''simple docstring'''
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""" )
_snake_case : Optional[int] = None
if images is not None:
_snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ )
if images_mixed is not None:
_snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ )
if audio is not None:
_snake_case : Any = self.feature_extractor(
a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ )
_snake_case : List[str] = {}
if audio is not None:
output_dict.update(a_ )
if images is not None:
output_dict.update(a_ )
if images_mixed_dict is not None:
output_dict.update(a_ )
return output_dict
@property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Dict = self.image_processor.model_input_names
_snake_case : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 28 | 1 |
"""simple docstring"""
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
A_ = [
'''cross_validation.py''',
'''gradient_accumulation.py''',
'''local_sgd.py''',
'''multi_process_metrics.py''',
'''memory.py''',
'''automatic_gradient_accumulation.py''',
'''fsdp_with_peak_mem_tracking.py''',
'''deepspeed_with_config_support.py''',
'''megatron_lm_gpt_pretraining.py''',
]
class lowercase( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self: List[Any], a_: str, a_: bool, a_: str = None, a_: list = None ):
'''simple docstring'''
_snake_case : List[Any] = None
_snake_case : Union[str, Any] = os.path.abspath(os.path.join("""examples""", """by_feature""" ) )
_snake_case : List[Any] = os.path.abspath("""examples""" )
for item in os.listdir(a_ ):
if item not in EXCLUDE_EXAMPLES:
_snake_case : List[Any] = os.path.join(a_, a_ )
if os.path.isfile(a_ ) and ".py" in item_path:
with self.subTest(
tested_script=a_, feature_script=a_, tested_section="""main()""" if parser_only else """training_function()""", ):
_snake_case : Dict = compare_against_test(
os.path.join(a_, a_ ), a_, a_, a_ )
_snake_case : Any = """\n""".join(a_ )
if special_strings is not None:
for string in special_strings:
_snake_case : int = diff.replace(a_, """""" )
self.assertEqual(a_, """""" )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
self.one_complete_example("""complete_nlp_example.py""", a_ )
self.one_complete_example("""complete_nlp_example.py""", a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : List[str] = os.path.abspath(os.path.join("""examples""", """cv_example.py""" ) )
_snake_case : Optional[Any] = [
""" """ * 16 + """{\n\n""",
""" """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""",
""" """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""",
""" """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""",
""" """ * 20 + """\"epoch\": epoch,\n\n""",
""" """ * 16 + """},\n\n""",
""" """ * 16 + """step=epoch,\n""",
""" """ * 12,
""" """ * 8 + """for step, batch in enumerate(active_dataloader):\n""",
]
self.one_complete_example("""complete_cv_example.py""", a_, a_, a_ )
self.one_complete_example("""complete_cv_example.py""", a_, a_, a_ )
@mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = False
@classmethod
def UpperCamelCase_ ( cls: Any ):
'''simple docstring'''
super().setUpClass()
_snake_case : int = tempfile.mkdtemp()
_snake_case : Any = os.path.join(cls._tmpdir, """default_config.yml""" )
write_basic_config(save_location=cls.configPath )
_snake_case : Any = ["""accelerate""", """launch""", """--config_file""", cls.configPath]
@classmethod
def UpperCamelCase_ ( cls: Dict ):
'''simple docstring'''
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : Optional[Any] = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir, """epoch_0""" ) ) )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[Any] = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split()
_snake_case : List[str] = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir, """step_2""" ) ) )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : str = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'epoch_0' )}\n ".split()
_snake_case : Optional[Any] = run_command(self._launch_args + testargs, return_stdout=a_ )
self.assertNotIn("""epoch 0:""", a_ )
self.assertIn("""epoch 1:""", a_ )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : List[Any] = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, 'step_2' )}\n ".split()
_snake_case : Dict = run_command(self._launch_args + testargs, return_stdout=a_ )
if torch.cuda.is_available():
_snake_case : Dict = torch.cuda.device_count()
else:
_snake_case : Optional[Any] = 1
if num_processes > 1:
self.assertNotIn("""epoch 0:""", a_ )
self.assertIn("""epoch 1:""", a_ )
else:
self.assertIn("""epoch 0:""", a_ )
self.assertIn("""epoch 1:""", a_ )
@slow
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Union[str, Any] = """
examples/by_feature/cross_validation.py
--num_folds 2
""".split()
with mock.patch.dict(os.environ, {"""TESTING_MOCKED_DATALOADERS""": """0"""} ):
_snake_case : Optional[int] = run_command(self._launch_args + testargs, return_stdout=a_ )
_snake_case : List[Any] = re.findall("""({.+})""", a_ )
_snake_case : List[Any] = [r for r in results if """accuracy""" in r][-1]
_snake_case : List[Any] = ast.literal_eval(a_ )
self.assertGreaterEqual(results["""accuracy"""], 0.75 )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : List[Any] = ["""examples/by_feature/multi_process_metrics.py"""]
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
_snake_case : Dict = f"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(a_, """tracking""" ) ) )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Optional[Any] = ["""examples/by_feature/gradient_accumulation.py"""]
run_command(self._launch_args + testargs )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Any = ["""examples/by_feature/local_sgd.py"""]
run_command(self._launch_args + testargs )
| 28 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
A_ = '''pt'''
elif is_tf_available():
A_ = '''tf'''
else:
A_ = '''jax'''
class lowercase( __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = ByTaTokenizer
lowercase__ = False
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
super().setUp()
_snake_case : List[str] = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
return ByTaTokenizer.from_pretrained("""google/byt5-small""" )
def UpperCamelCase_ ( self: List[Any], **a_: int ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ )
def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ):
'''simple docstring'''
_snake_case : List[Any] = []
for i in range(len(a_ ) ):
try:
_snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) )
_snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) )
if max_length is not None and len(a_ ) > max_length:
_snake_case : Tuple = toks[:max_length]
if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0:
while len(a_ ) < min_length:
_snake_case : List[str] = toks + toks
# toks_str = [t[1] for t in toks]
_snake_case : Tuple = [t[0] for t in toks]
# Ensure consistency
_snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ )
if " " not in output_txt and len(a_ ) > 1:
_snake_case : Dict = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ )
+ """ """
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ )
)
if with_prefix_space:
_snake_case : Union[str, Any] = """ """ + output_txt
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
return output_txt, output_ids
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[int] = self.ta_base_tokenizer
_snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] )
_snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] )
self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[str] = self.ta_base_tokenizer
_snake_case : Tuple = """Unicode €."""
_snake_case : List[Any] = tokenizer(a_ )
_snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded["""input_ids"""], a_ )
# decoding
_snake_case : Tuple = tokenizer.decode(a_ )
self.assertEqual(a_, """Unicode €.</s>""" )
_snake_case : Tuple = tokenizer("""e è é ê ë""" )
_snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded["""input_ids"""], a_ )
# decoding
_snake_case : int = tokenizer.decode(a_ )
self.assertEqual(a_, """e è é ê ë</s>""" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Dict = self.ta_base_tokenizer
_snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
# fmt: off
_snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
_snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ )
self.assertIsInstance(a_, a_ )
if FRAMEWORK != "jax":
_snake_case : List[str] = list(batch.input_ids.numpy()[0] )
else:
_snake_case : Optional[int] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(a_, a_ )
self.assertEqual((2, 37), batch.input_ids.shape )
self.assertEqual((2, 37), batch.attention_mask.shape )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : List[Any] = self.ta_base_tokenizer
_snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
_snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("""input_ids""", a_ )
self.assertIn("""attention_mask""", a_ )
self.assertNotIn("""decoder_input_ids""", a_ )
self.assertNotIn("""decoder_attention_mask""", a_ )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.ta_base_tokenizer
_snake_case : Dict = [
"""Summary of the text.""",
"""Another summary.""",
]
_snake_case : Optional[int] = tokenizer(
text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ )
self.assertEqual(32, targets["""input_ids"""].shape[1] )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : int = self.ta_base_tokenizer
_snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""]
_snake_case : Dict = ["""Summary of the text. </s>"""]
# fmt: off
_snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
_snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
_snake_case : Optional[Any] = tokenizer(a_, text_target=a_ )
self.assertEqual(a_, batch["""input_ids"""][0] )
self.assertEqual(a_, batch["""labels"""][0] )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length, 42 )
# Now let's start the test
_snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
_snake_case : List[str] = tempfile.mkdtemp()
_snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
tokenizer.save_pretrained(a_ )
_snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ )
_snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ )
self.assertListEqual(a_, a_ )
shutil.rmtree(a_ )
_snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
_snake_case : Union[str, Any] = tempfile.mkdtemp()
_snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running"""
tokenizer.add_tokens(["""bim""", """bambam"""] )
_snake_case : Optional[Any] = tokenizer.additional_special_tokens
additional_special_tokens.append("""new_additional_special_token""" )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
tokenizer.save_pretrained(a_ )
_snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ )
_snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ )
self.assertListEqual(a_, a_ )
self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length, 42 )
_snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 )
self.assertEqual(tokenizer.model_max_length, 43 )
shutil.rmtree(a_ )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Optional[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(a_ )
with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file:
_snake_case : Union[str, Any] = json.load(a_ )
with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file:
_snake_case : List[Any] = json.load(a_ )
_snake_case : int = [f"<extra_id_{i}>" for i in range(125 )]
_snake_case : Optional[int] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
_snake_case : Dict = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile:
json.dump(a_, a_ )
with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile:
json.dump(a_, a_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_snake_case : Optional[int] = tokenizer_class.from_pretrained(
a_, )
self.assertIn(
"""an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )]
_snake_case : List[Any] = tokenizer_class.from_pretrained(
a_, additional_special_tokens=a_, )
self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens )
self.assertEqual(
["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : List[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(a_ )
_snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ )
self.assertTrue(tokenizer.decode([255] ) == """""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
_snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""]
_snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ )
self.assertIsInstance(a_, a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
_snake_case : Optional[int] = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
_snake_case : Any = 0
_snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(
a_, skip_special_tokens=a_ )
for attr in attributes_list:
setattr(a_, attr + """_id""", a_ )
self.assertEqual(getattr(a_, a_ ), a_ )
self.assertEqual(getattr(a_, attr + """_id""" ), a_ )
setattr(a_, attr + """_id""", a_ )
self.assertEqual(getattr(a_, a_ ), a_ )
self.assertEqual(getattr(a_, attr + """_id""" ), a_ )
setattr(a_, """additional_special_tokens_ids""", [] )
self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] )
self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] )
setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] )
self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] )
self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
| 28 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''',
'''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''',
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "luke"
def __init__( self: Dict, a_: str=50_267, a_: Tuple=500_000, a_: Tuple=768, a_: Optional[Any]=256, a_: Optional[Any]=12, a_: Tuple=12, a_: Union[str, Any]=3_072, a_: Any="gelu", a_: Optional[int]=0.1, a_: Optional[int]=0.1, a_: Tuple=512, a_: Optional[Any]=2, a_: Union[str, Any]=0.02, a_: Union[str, Any]=1E-12, a_: Any=True, a_: Any=None, a_: Tuple=1, a_: Optional[int]=0, a_: Union[str, Any]=2, **a_: List[Any], ):
'''simple docstring'''
super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ )
_snake_case : Optional[int] = vocab_size
_snake_case : Any = entity_vocab_size
_snake_case : Optional[Any] = hidden_size
_snake_case : Union[str, Any] = entity_emb_size
_snake_case : str = num_hidden_layers
_snake_case : Union[str, Any] = num_attention_heads
_snake_case : Any = hidden_act
_snake_case : Union[str, Any] = intermediate_size
_snake_case : str = hidden_dropout_prob
_snake_case : Any = attention_probs_dropout_prob
_snake_case : int = max_position_embeddings
_snake_case : List[Any] = type_vocab_size
_snake_case : List[str] = initializer_range
_snake_case : Optional[Any] = layer_norm_eps
_snake_case : Dict = use_entity_aware_attention
_snake_case : List[Any] = classifier_dropout
| 28 |
"""simple docstring"""
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class lowercase( __a ):
'''simple docstring'''
@staticmethod
@abstractmethod
def UpperCamelCase_ ( a_: ArgumentParser ):
'''simple docstring'''
raise NotImplementedError()
@abstractmethod
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
raise NotImplementedError()
| 28 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: List[str], *a_: Optional[Any], **a_: Optional[int] ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: List[Any], *a_: List[str], **a_: Optional[int] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Optional[Any], *a_: Tuple, **a_: Union[str, Any] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: Any, *a_: Union[str, Any], **a_: Optional[Any] ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Optional[Any], *a_: Optional[int], **a_: List[Any] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: List[str], *a_: List[str], **a_: int ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: List[Any], *a_: Optional[int], **a_: List[Any] ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Tuple, *a_: Optional[Any], **a_: Optional[Any] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Optional[Any], *a_: Optional[int], **a_: Optional[int] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: Any, *a_: Any, **a_: Union[str, Any] ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Dict, *a_: str, **a_: Tuple ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Any, *a_: Dict, **a_: Tuple ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: Optional[int], *a_: Union[str, Any], **a_: int ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], *a_: List[str], **a_: Optional[int] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: List[str], *a_: str, **a_: int ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: int, *a_: str, **a_: List[Any] ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: str, *a_: int, **a_: Union[str, Any] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Optional[int], *a_: int, **a_: Optional[int] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: Optional[Any], *a_: List[str], **a_: Dict ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: List[str], *a_: List[str], **a_: Tuple ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Any, *a_: Dict, **a_: List[str] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: List[Any], *a_: Any, **a_: Dict ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: str, *a_: List[Any], **a_: Optional[Any] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: str, *a_: int, **a_: str ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: str, *a_: Optional[Any], **a_: List[Any] ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Dict, *a_: Dict, **a_: Tuple ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Optional[int], *a_: Tuple, **a_: Dict ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: List[str], *a_: Union[str, Any], **a_: Any ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: List[str], *a_: Dict, **a_: str ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: int, *a_: Dict, **a_: str ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: Optional[Any], *a_: str, **a_: str ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Optional[Any], *a_: Tuple, **a_: Union[str, Any] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Dict, *a_: Union[str, Any], **a_: List[str] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: Optional[int], *a_: Dict, **a_: List[Any] ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: List[Any], *a_: List[Any], **a_: Union[str, Any] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Any, *a_: Tuple, **a_: Dict ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
class lowercase( metaclass=__a ):
'''simple docstring'''
lowercase__ = ["flax"]
def __init__( self: int, *a_: Optional[Any], **a_: int ):
'''simple docstring'''
requires_backends(self, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], *a_: Tuple, **a_: List[Any] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls: str, *a_: int, **a_: List[Any] ):
'''simple docstring'''
requires_backends(cls, ["""flax"""] )
| 28 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''',
'''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''',
'''junnyu/roformer_chinese_char_small''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'''
),
'''junnyu/roformer_chinese_char_base''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'''
),
'''junnyu/roformer_small_discriminator''': (
'''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'''
),
'''junnyu/roformer_small_generator''': (
'''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'''
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "roformer"
def __init__( self: List[str], a_: Tuple=50_000, a_: Optional[Any]=None, a_: List[str]=768, a_: Union[str, Any]=12, a_: Optional[int]=12, a_: Optional[Any]=3_072, a_: List[str]="gelu", a_: List[str]=0.1, a_: Tuple=0.1, a_: Optional[int]=1_536, a_: Any=2, a_: Optional[int]=0.02, a_: Tuple=1E-12, a_: Dict=0, a_: str=False, a_: Dict=True, **a_: Dict, ):
'''simple docstring'''
super().__init__(pad_token_id=a_, **a_ )
_snake_case : int = vocab_size
_snake_case : int = hidden_size if embedding_size is None else embedding_size
_snake_case : Dict = hidden_size
_snake_case : Optional[int] = num_hidden_layers
_snake_case : Any = num_attention_heads
_snake_case : Dict = hidden_act
_snake_case : Optional[int] = intermediate_size
_snake_case : List[Any] = hidden_dropout_prob
_snake_case : Union[str, Any] = attention_probs_dropout_prob
_snake_case : Any = max_position_embeddings
_snake_case : Tuple = type_vocab_size
_snake_case : List[Any] = initializer_range
_snake_case : List[Any] = layer_norm_eps
_snake_case : Optional[Any] = rotary_value
_snake_case : List[str] = use_cache
class lowercase( __a ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
if self.task == "multiple-choice":
_snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case : List[str] = {0: """batch""", 1: """sequence"""}
_snake_case : List[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 28 | 1 |
"""simple docstring"""
import os
from collections import deque
import torch
from torch.utils.data import Dataset
class lowercase( __a ):
'''simple docstring'''
def __init__( self: Optional[int], a_: Union[str, Any]="", a_: Optional[Any]="train" ):
'''simple docstring'''
assert os.path.isdir(a_ )
_snake_case : str = []
_snake_case : Tuple = os.listdir(a_ )
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
_snake_case : Optional[int] = os.path.join(a_, a_ )
if not os.path.isfile(a_ ):
continue
self.documents.append(a_ )
def __len__( self: Tuple ):
'''simple docstring'''
return len(self.documents )
def __getitem__( self: Optional[int], a_: Optional[int] ):
'''simple docstring'''
_snake_case : str = self.documents[idx]
_snake_case : str = document_path.split("""/""" )[-1]
with open(a_, encoding="""utf-8""" ) as source:
_snake_case : Dict = source.read()
_snake_case , _snake_case : Optional[Any] = process_story(a_ )
return document_name, story_lines, summary_lines
def UpperCAmelCase__ (snake_case__ : str ):
"""simple docstring"""
_snake_case : int = list(filter(lambda snake_case__ : len(snake_case__ ) != 0 , [line.strip() for line in raw_story.split("""\n""" )] ) )
# for some unknown reason some lines miss a period, add it
_snake_case : Tuple = [_add_missing_period(snake_case__ ) for line in nonempty_lines]
# gather article lines
_snake_case : str = []
_snake_case : List[str] = deque(snake_case__ )
while True:
try:
_snake_case : Any = lines.popleft()
if element.startswith("""@highlight""" ):
break
story_lines.append(snake_case__ )
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
_snake_case : Tuple = list(filter(lambda snake_case__ : not t.startswith("""@highlight""" ) , snake_case__ ) )
return story_lines, summary_lines
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
_snake_case : Dict = [""".""", """!""", """?""", """...""", """'""", """`""", """\"""", """\u2019""", """\u2019""", """)"""]
if line.startswith("""@highlight""" ):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Any ):
"""simple docstring"""
if len(snake_case__ ) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(snake_case__ )) )
return sequence
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Any ):
"""simple docstring"""
_snake_case : Union[str, Any] = torch.ones_like(snake_case__ )
_snake_case : List[str] = sequence == pad_token_id
_snake_case : Union[str, Any] = 0
return mask
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int] ):
"""simple docstring"""
_snake_case : List[str] = [tokenizer.encode(snake_case__ ) for line in story_lines]
_snake_case : List[Any] = [token for sentence in story_lines_token_ids for token in sentence]
_snake_case : Optional[int] = [tokenizer.encode(snake_case__ ) for line in summary_lines]
_snake_case : List[Any] = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[Any] ):
"""simple docstring"""
_snake_case : Optional[Any] = []
for sequence in batch:
_snake_case : Union[str, Any] = -1
_snake_case : List[Any] = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2 )
batch_embeddings.append(snake_case__ )
return torch.tensor(snake_case__ )
| 28 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ):
"""simple docstring"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ):
"""simple docstring"""
_snake_case : Optional[Any] = []
for old_item in old_list:
_snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" )
_snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" )
_snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" )
_snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" )
_snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" )
_snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ):
"""simple docstring"""
_snake_case : Dict = []
for old_item in old_list:
_snake_case : Dict = old_item
_snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" )
_snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" )
_snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ):
"""simple docstring"""
assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_snake_case : Union[str, Any] = old_checkpoint[path]
_snake_case : Optional[int] = old_tensor.shape[0] // 3
_snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3
_snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 )
_snake_case : Union[str, Any] = query.reshape(snake_case__ )
_snake_case : Tuple = key.reshape(snake_case__ )
_snake_case : Any = value.reshape(snake_case__ )
for path in paths:
_snake_case : List[Any] = path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0]
else:
_snake_case : Optional[Any] = old_checkpoint[path["""old"""]]
def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ):
"""simple docstring"""
_snake_case : int = {}
_snake_case : Tuple = checkpoint["""time_embed.0.weight"""]
_snake_case : List[str] = checkpoint["""time_embed.0.bias"""]
_snake_case : List[str] = checkpoint["""time_embed.2.weight"""]
_snake_case : Tuple = checkpoint["""time_embed.2.bias"""]
_snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""]
_snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""]
_snake_case : List[Any] = checkpoint["""out.0.weight"""]
_snake_case : Any = checkpoint["""out.0.bias"""]
_snake_case : Any = checkpoint["""out.2.weight"""]
_snake_case : List[str] = checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_snake_case : Any = {
layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
# Retrieves the keys for the middle blocks only
_snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_snake_case : Optional[int] = {
layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
# Retrieves the keys for the output blocks only
_snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_snake_case : List[Any] = {
layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
for i in range(1 , snake_case__ ):
_snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1)
_snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1)
_snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key]
_snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key]
if F"input_blocks.{i}.0.op.weight" in checkpoint:
_snake_case : Union[str, Any] = checkpoint[
F"input_blocks.{i}.0.op.weight"
]
_snake_case : Dict = checkpoint[
F"input_blocks.{i}.0.op.bias"
]
continue
_snake_case : Optional[int] = renew_resnet_paths(snake_case__ )
_snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
_snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ )
if len(snake_case__ ):
_snake_case : str = renew_attention_paths(snake_case__ )
_snake_case : List[str] = {
"""old""": F"input_blocks.{i}.1",
"""new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}",
}
_snake_case : Optional[int] = {
F"input_blocks.{i}.1.qkv.bias": {
"""key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"""query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"""value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
F"input_blocks.{i}.1.qkv.weight": {
"""key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"""query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"""value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , )
_snake_case : int = middle_blocks[0]
_snake_case : List[str] = middle_blocks[1]
_snake_case : Any = middle_blocks[2]
_snake_case : Dict = renew_resnet_paths(snake_case__ )
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ )
_snake_case : Any = renew_resnet_paths(snake_case__ )
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ )
_snake_case : Dict = renew_attention_paths(snake_case__ )
_snake_case : Tuple = {
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ )
for i in range(snake_case__ ):
_snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1)
_snake_case : Dict = i % (config["""num_res_blocks"""] + 1)
_snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]]
_snake_case : Any = {}
for layer in output_block_layers:
_snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(snake_case__ )
else:
_snake_case : str = [layer_name]
if len(snake_case__ ) > 1:
_snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key]
_snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key]
_snake_case : List[Any] = renew_resnet_paths(snake_case__ )
_snake_case : int = renew_resnet_paths(snake_case__ )
_snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_snake_case : Any = checkpoint[
F"output_blocks.{i}.{index}.conv.weight"
]
_snake_case : Optional[int] = checkpoint[
F"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(snake_case__ ) == 2:
_snake_case : Any = []
if len(snake_case__ ):
_snake_case : str = renew_attention_paths(snake_case__ )
_snake_case : str = {
"""old""": F"output_blocks.{i}.1",
"""new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
_snake_case : int = {
F"output_blocks.{i}.1.qkv.bias": {
"""key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"""query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"""value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
F"output_blocks.{i}.1.qkv.weight": {
"""key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"""query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"""value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , )
else:
_snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] )
_snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] )
_snake_case : Any = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the architecture.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
A_ = parser.parse_args()
A_ = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
A_ = json.loads(f.read())
A_ = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
A_ = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 28 | 1 |
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
A_ = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
class lowercase( __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = XLMProphetNetTokenizer
lowercase__ = False
lowercase__ = True
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_snake_case : Tuple = XLMProphetNetTokenizer(a_, keep_accents=a_ )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : Tuple = """[PAD]"""
_snake_case : Tuple = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ), a_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ), a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0], """[PAD]""" )
self.assertEqual(vocab_keys[1], """[CLS]""" )
self.assertEqual(vocab_keys[-1], """j""" )
self.assertEqual(len(a_ ), 1_012 )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size, 1_012 )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Tuple = XLMProphetNetTokenizer(a_, keep_accents=a_ )
_snake_case : Optional[Any] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(a_, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a_ ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], )
_snake_case : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
a_, [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
], )
_snake_case : int = tokenizer.convert_tokens_to_ids(a_ )
self.assertListEqual(
a_, [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
], )
_snake_case : str = tokenizer.convert_ids_to_tokens(a_ )
self.assertListEqual(
a_, [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""[UNK]""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""[UNK]""",
""".""",
], )
@cached_property
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" )
@slow
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : int = """Hello World!"""
_snake_case : Optional[int] = [35_389, 6_672, 49, 2]
self.assertListEqual(a_, self.big_tokenizer.encode(a_ ) )
@slow
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case : Tuple = {"""input_ids""": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a_, model_name="""microsoft/xprophetnet-large-wiki100-cased""", revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""", )
| 28 |
"""simple docstring"""
from typing import Any
def UpperCAmelCase__ (snake_case__ : list ):
"""simple docstring"""
if not input_list:
return []
_snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list]
_snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
A_ = argparse.ArgumentParser(
description=(
'''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'''
''' Distillation'''
)
)
parser.add_argument('''--model_type''', default='''bert''', choices=['''bert'''])
parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str)
parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str)
parser.add_argument('''--vocab_transform''', action='''store_true''')
A_ = parser.parse_args()
if args.model_type == "bert":
A_ = BertForMaskedLM.from_pretrained(args.model_name)
A_ = '''bert'''
else:
raise ValueError('''args.model_type should be "bert".''')
A_ = model.state_dict()
A_ = {}
for w in ["word_embeddings", "position_embeddings"]:
A_ = state_dict[F'''{prefix}.embeddings.{w}.weight''']
for w in ["weight", "bias"]:
A_ = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}''']
A_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
A_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}'''
]
A_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}'''
]
A_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}'''
]
A_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}'''
]
A_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}'''
]
A_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}'''
]
A_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}'''
]
A_ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}'''
]
std_idx += 1
A_ = state_dict['''cls.predictions.decoder.weight''']
A_ = state_dict['''cls.predictions.bias''']
if args.vocab_transform:
for w in ["weight", "bias"]:
A_ = state_dict[F'''cls.predictions.transform.dense.{w}''']
A_ = state_dict[F'''cls.predictions.transform.LayerNorm.{w}''']
print(F'''N layers selected for distillation: {std_idx}''')
print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''')
print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''')
torch.save(compressed_sd, args.dump_checkpoint)
| 28 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''',
'''BridgeTower/bridgetower-base-itm-mlm''': (
'''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json'''
),
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower_vision_model"
def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ):
'''simple docstring'''
super().__init__(**a_ )
_snake_case : str = hidden_size
_snake_case : int = num_hidden_layers
_snake_case : Any = num_channels
_snake_case : Union[str, Any] = patch_size
_snake_case : Dict = image_size
_snake_case : Optional[Any] = initializer_factor
_snake_case : Any = layer_norm_eps
_snake_case : int = stop_gradient
_snake_case : Any = share_layernorm
_snake_case : List[Any] = remove_last_layer
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ )
if config_dict.get("""model_type""" ) == "bridgetower":
_snake_case : str = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a_, **a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower_text_model"
def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ):
'''simple docstring'''
super().__init__(**a_ )
_snake_case : str = vocab_size
_snake_case : Optional[int] = hidden_size
_snake_case : Dict = num_hidden_layers
_snake_case : Optional[int] = num_attention_heads
_snake_case : Optional[int] = hidden_act
_snake_case : List[Any] = initializer_factor
_snake_case : Optional[int] = intermediate_size
_snake_case : int = hidden_dropout_prob
_snake_case : Tuple = attention_probs_dropout_prob
_snake_case : List[str] = max_position_embeddings
_snake_case : Optional[int] = type_vocab_size
_snake_case : List[Any] = layer_norm_eps
_snake_case : Dict = position_embedding_type
_snake_case : Dict = use_cache
_snake_case : int = pad_token_id
_snake_case : Union[str, Any] = bos_token_id
_snake_case : Union[str, Any] = eos_token_id
@classmethod
def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ):
'''simple docstring'''
_snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ )
if config_dict.get("""model_type""" ) == "bridgetower":
_snake_case : Union[str, Any] = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a_, **a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower"
def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ):
'''simple docstring'''
_snake_case : str = kwargs.pop("""text_config_dict""", a_ )
_snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ )
super().__init__(**a_ )
_snake_case : str = share_cross_modal_transformer_layers
_snake_case : Any = hidden_act
_snake_case : Union[str, Any] = hidden_size
_snake_case : Union[str, Any] = initializer_factor
_snake_case : Dict = layer_norm_eps
_snake_case : Dict = share_link_tower_layers
_snake_case : Optional[int] = link_tower_type
_snake_case : Any = num_attention_heads
_snake_case : int = num_hidden_layers
_snake_case : int = tie_word_embeddings
_snake_case : Optional[Any] = init_layernorm_from_vision_encoder
if text_config is None:
_snake_case : Optional[Any] = {}
logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" )
if vision_config is None:
_snake_case : str = {}
logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" )
_snake_case : Any = BridgeTowerTextConfig(**a_ )
_snake_case : List[Any] = BridgeTowerVisionConfig(**a_ )
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ):
'''simple docstring'''
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[int] = copy.deepcopy(self.__dict__ )
_snake_case : str = self.text_config.to_dict()
_snake_case : List[str] = self.vision_config.to_dict()
_snake_case : Tuple = self.__class__.model_type
return output
| 28 | 1 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class lowercase:
'''simple docstring'''
def __init__( self: Union[str, Any], a_: int = 6 ):
'''simple docstring'''
_snake_case : Node | None = None
_snake_case : Node | None = None
self.create_linked_list(a_ )
def UpperCamelCase_ ( self: int, a_: int ):
'''simple docstring'''
_snake_case : List[Any] = Node()
_snake_case : Any = current_node
_snake_case : int = current_node
_snake_case : Union[str, Any] = current_node
for _ in range(1, a_ ):
_snake_case : Optional[Any] = Node()
_snake_case : str = current_node
_snake_case : str = previous_node
_snake_case : int = current_node
_snake_case : Tuple = self.front
_snake_case : str = previous_node
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
self.check_can_perform_operation()
return self.front.data if self.front else None
def UpperCamelCase_ ( self: int, a_: Any ):
'''simple docstring'''
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
_snake_case : Tuple = self.rear.next
if self.rear:
_snake_case : int = data
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
_snake_case : Tuple = self.front.data
_snake_case : Optional[Any] = None
return data
_snake_case : Optional[Any] = self.front
_snake_case : List[Any] = old_front.next
_snake_case : Optional[Any] = old_front.data
_snake_case : Optional[int] = None
return data
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
if self.is_empty():
raise Exception("""Empty Queue""" )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""" )
class lowercase:
'''simple docstring'''
def __init__( self: Tuple ):
'''simple docstring'''
_snake_case : Any | None = None
_snake_case : Node | None = None
_snake_case : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
"""simple docstring"""
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png"""
_snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" )
return image
def UpperCAmelCase__ (snake_case__ : Any ):
"""simple docstring"""
_snake_case : str = []
# fmt: off
# vision encoder
rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") )
rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") )
rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") )
rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") )
# QFormer
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") )
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") )
# fmt: on
return rename_keys
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : Optional[Any] = dct.pop(snake_case__ )
_snake_case : Optional[int] = val
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ):
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
_snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" )
_snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" )
# next, set bias in the state dict
_snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) )
_snake_case : Dict = qkv_bias
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ):
"""simple docstring"""
_snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24
_snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
_snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict()
elif "opt-6.7b" in model_name:
_snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict()
elif "t5-xl" in model_name:
_snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
_snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
_snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ )
return config, image_size
@torch.no_grad()
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ):
"""simple docstring"""
_snake_case : List[str] = (
AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" )
if """opt""" in model_name
else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" )
)
_snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0]
_snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ )
_snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval()
_snake_case : int = {
"""blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""),
"""blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""),
"""blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""),
"""blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""),
"""blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""),
"""blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""),
"""blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""),
}
_snake_case , _snake_case : List[Any] = model_name_to_original[model_name]
# load original model
print("""Loading original model...""" )
_snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu"""
_snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess(
name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ )
original_model.eval()
print("""Done!""" )
# update state dict keys
_snake_case : Any = original_model.state_dict()
_snake_case : Dict = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
_snake_case : str = state_dict.pop(snake_case__ )
if key.startswith("""Qformer.bert""" ):
_snake_case : str = key.replace("""Qformer.bert""" , """qformer""" )
if "attention.self" in key:
_snake_case : Any = key.replace("""self""" , """attention""" )
if "opt_proj" in key:
_snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" )
if "t5_proj" in key:
_snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" )
if key.startswith("""opt""" ):
_snake_case : List[Any] = key.replace("""opt""" , """language""" )
if key.startswith("""t5""" ):
_snake_case : List[Any] = key.replace("""t5""" , """language""" )
_snake_case : str = val
# read in qv biases
read_in_q_v_bias(snake_case__ , snake_case__ )
_snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ )
assert len(snake_case__ ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
_snake_case : Any = load_demo_image()
_snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ )
_snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ )
# create processor
_snake_case : Any = BlipImageProcessor(
size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ )
_snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
_snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ )
# make sure processor creates exact same pixel values
assert torch.allclose(snake_case__ , snake_case__ )
original_model.to(snake_case__ )
hf_model.to(snake_case__ )
with torch.no_grad():
if "opt" in model_name:
_snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits
_snake_case : int = hf_model(snake_case__ , snake_case__ ).logits
else:
_snake_case : str = original_model(
{"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits
_snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
_snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits
assert original_logits.shape == logits.shape
print("""First values of original logits:""" , original_logits[0, :3, :3] )
print("""First values of HF logits:""" , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
_snake_case : List[str] = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ )
assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
_snake_case : Union[str, Any] = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ )
else:
# cast to same type
_snake_case : int = logits.dtype
assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 )
print("""Looks ok!""" )
print("""Generating a caption...""" )
_snake_case : Any = """"""
_snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ )
_snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} )
_snake_case : Tuple = hf_model.generate(
snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print("""Original generation:""" , snake_case__ )
_snake_case : Optional[Any] = input_ids.shape[1]
_snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ )
_snake_case : Optional[Any] = [text.strip() for text in output_text]
print("""HF generation:""" , snake_case__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(snake_case__ )
hf_model.save_pretrained(snake_case__ )
if push_to_hub:
processor.push_to_hub(F"nielsr/{model_name}" )
hf_model.push_to_hub(F"nielsr/{model_name}" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
A_ = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
A_ = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 1 |
"""simple docstring"""
import argparse
from collections import defaultdict
def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Any ):
"""simple docstring"""
_snake_case : Optional[int] = F"{file}_{class_name}_{test_name}"
done_test[_id] += 1
with open(snake_case__ , """r""" ) as f:
_snake_case : Union[str, Any] = f.readlines()
_snake_case : int = F"class {class_name}("
_snake_case : Optional[int] = F"{4 * ' '}def {test_name}("
_snake_case : List[Any] = F"{8 * ' '}{correct_line.split()[0]}"
_snake_case : Optional[Any] = F"{16 * ' '}{correct_line.split()[0]}"
_snake_case : Union[str, Any] = False
_snake_case : List[Any] = False
_snake_case : Optional[Any] = False
_snake_case : Union[str, Any] = False
_snake_case : Dict = 0
_snake_case : Optional[int] = 0
_snake_case : List[str] = []
for line in lines:
if line.startswith(snake_case__ ):
_snake_case : Optional[Any] = True
elif in_class and line.startswith(snake_case__ ):
_snake_case : List[Any] = True
elif in_class and in_func and (line.startswith(snake_case__ ) or line.startswith(snake_case__ )):
_snake_case : List[Any] = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_snake_case : Union[str, Any] = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_snake_case : Optional[int] = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F"{spaces * ' '}{correct_line}" )
_snake_case : Optional[Any] = False
else:
new_lines.append(snake_case__ )
with open(snake_case__ , """w""" ) as f:
for line in new_lines:
f.write(snake_case__ )
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Tuple=None ):
"""simple docstring"""
if fail is not None:
with open(snake_case__ , """r""" ) as f:
_snake_case : List[str] = {l.strip() for l in f.readlines()}
else:
_snake_case : str = None
with open(snake_case__ , """r""" ) as f:
_snake_case : List[str] = f.readlines()
_snake_case : Tuple = defaultdict(snake_case__ )
for line in correct_lines:
_snake_case , _snake_case , _snake_case , _snake_case : List[str] = line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''')
parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None)
A_ = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 28 |
"""simple docstring"""
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def UpperCAmelCase__ (snake_case__ : Optional[int] ):
"""simple docstring"""
print("""Loading config file...""" )
def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ):
_snake_case : Union[str, Any] = []
for k, v in d.items():
_snake_case : List[str] = parent_key + sep + k if parent_key else k
if isinstance(snake_case__ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() )
else:
items.append((new_key, v) )
return dict(snake_case__ )
_snake_case : Dict = argparse.Namespace()
with open(snake_case__ , """r""" ) as yaml_file:
try:
_snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader )
_snake_case : Any = flatten_yaml_as_dict(snake_case__ )
for k, v in flat_cfg.items():
setattr(snake_case__ , snake_case__ , snake_case__ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) )
return config
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : Dict = MobileViTVaConfig()
_snake_case : Optional[int] = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
_snake_case : Dict = 10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
_snake_case : Union[str, Any] = 3_84
else:
_snake_case : Optional[Any] = 2_56
_snake_case : str = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
_snake_case : str = 2_10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
_snake_case : Dict = 3_84
else:
_snake_case : Union[str, Any] = 2_56
_snake_case : Tuple = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
_snake_case : Tuple = 1_51
_snake_case : str = 5_12
_snake_case : List[Any] = """ade20k-id2label.json"""
_snake_case : Union[str, Any] = True
elif task_name.startswith("""voc_""" ):
_snake_case : List[Any] = 21
_snake_case : List[str] = 5_12
_snake_case : int = """pascal-voc-id2label.json"""
_snake_case : int = True
# orig_config
_snake_case : int = load_orig_config_file(snake_case__ )
assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model"
_snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 )
assert (
getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
_snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
_snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 )
if "_deeplabv3" in task_name:
_snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] )
_snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 )
_snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 )
# id2label
_snake_case : Union[str, Any] = """huggingface/label-files"""
_snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) )
_snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()}
_snake_case : Tuple = idalabel
_snake_case : Any = {v: k for k, v in idalabel.items()}
return config
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : List[str] = dct.pop(snake_case__ )
_snake_case : List[Any] = val
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ):
"""simple docstring"""
if base_model:
_snake_case : Any = """"""
else:
_snake_case : Union[str, Any] = """mobilevitv2."""
_snake_case : Dict = []
for k in state_dict.keys():
if k[:8] == "encoder.":
_snake_case : List[str] = k[8:]
else:
_snake_case : str = k
if ".block." in k:
_snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" )
if ".conv." in k:
_snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" )
if ".norm." in k:
_snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" )
if "conv_1." in k:
_snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." )
for i in [1, 2]:
if F"layer_{i}." in k:
_snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
_snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" )
if ".red_1x1." in k:
_snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" )
for i in [3, 4, 5]:
if F"layer_{i}.0." in k:
_snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if F"layer_{i}.1.local_rep.0." in k:
_snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if F"layer_{i}.1.local_rep.1." in k:
_snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
_snake_case : Optional[Any] = [0, 1]
elif i == 4:
_snake_case : Any = [0, 1, 2, 3]
elif i == 5:
_snake_case : List[Any] = [0, 1, 2]
for j in j_in:
if F"layer_{i}.1.global_rep.{j}." in k:
_snake_case : Any = k_new.replace(
F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if F"layer_{i}.1.global_rep.{j+1}." in k:
_snake_case : List[Any] = k_new.replace(
F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." )
if F"layer_{i}.1.conv_proj." in k:
_snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
_snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" )
if "pre_norm_attn.1." in k:
_snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" )
if "pre_norm_ffn.0." in k:
_snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" )
if "pre_norm_ffn.1." in k:
_snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
_snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" )
if "classifier.1." in k:
_snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" )
if "seg_head." in k:
_snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" )
if ".aspp_layer." in k:
_snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" )
if ".aspp_pool." in k:
_snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" )
rename_keys.append((k, k_new) )
return rename_keys
def UpperCAmelCase__ (snake_case__ : str ):
"""simple docstring"""
_snake_case : List[str] = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(snake_case__ )
for k in keys_to_ignore:
state_dict.pop(snake_case__ , snake_case__ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
_snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ )
# load original state_dict
_snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
_snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval()
_snake_case : List[Any] = False
else:
_snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval()
_snake_case : Optional[Any] = False
# remove and rename some keys of load the original model
_snake_case : Union[str, Any] = checkpoint
remove_unused_keys(snake_case__ )
_snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
# load modified state_dict
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
_snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" )
_snake_case : Optional[Any] = model(**snake_case__ )
# verify classification model
if task_name.startswith("""imagenet""" ):
_snake_case : List[str] = outputs.logits
_snake_case : Any = logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
_snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] )
assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(F"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--task''',
default='''imagenet1k_256''',
type=str,
help=(
'''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '''
'''
Classification (ImageNet-1k)
- MobileViTV2 (256x256) : imagenet1k_256
- MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384
- MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :
imagenet21k_to_1k_256
- MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on
ImageNet-1k 384x384) : imagenet21k_to_1k_384
Segmentation
- ADE20K Dataset : ade20k_deeplabv3
- Pascal VOC 2012 Dataset: voc_deeplabv3
'''
),
choices=[
'''imagenet1k_256''',
'''imagenet1k_384''',
'''imagenet21k_to_1k_256''',
'''imagenet21k_to_1k_384''',
'''ade20k_deeplabv3''',
'''voc_deeplabv3''',
],
)
parser.add_argument(
'''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
A_ = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 28 | 1 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
A_ = [
'''openmmlab/upernet-convnext-tiny''',
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
A_ = '''UperNetConfig'''
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: str, a_: int, a_: int, a_: Union[int, Tuple[int, int]], a_: Union[int, Tuple[int, int], str] = 0, a_: bool = False, a_: Union[int, Tuple[int, int]] = 1, ):
'''simple docstring'''
super().__init__()
_snake_case : Union[str, Any] = nn.Convad(
in_channels=a_, out_channels=a_, kernel_size=a_, padding=a_, bias=a_, dilation=a_, )
_snake_case : Optional[int] = nn.BatchNormad(a_ )
_snake_case : Tuple = nn.ReLU()
def UpperCamelCase_ ( self: Optional[Any], a_: torch.Tensor ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.conv(a_ )
_snake_case : Optional[int] = self.batch_norm(a_ )
_snake_case : Dict = self.activation(a_ )
return output
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: List[str], a_: int, a_: int, a_: int ):
'''simple docstring'''
super().__init__()
_snake_case : List[str] = [
nn.AdaptiveAvgPoolad(a_ ),
UperNetConvModule(a_, a_, kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(a_ ), a_ )
def UpperCamelCase_ ( self: List[Any], a_: torch.Tensor ):
'''simple docstring'''
_snake_case : List[Any] = input
for layer in self.layers:
_snake_case : str = layer(a_ )
return hidden_state
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: List[str], a_: Tuple[int, ...], a_: int, a_: int, a_: bool ):
'''simple docstring'''
super().__init__()
_snake_case : List[str] = pool_scales
_snake_case : Optional[Any] = align_corners
_snake_case : List[Any] = in_channels
_snake_case : Dict = channels
_snake_case : Optional[int] = []
for i, pool_scale in enumerate(a_ ):
_snake_case : Optional[int] = UperNetPyramidPoolingBlock(pool_scale=a_, in_channels=a_, channels=a_ )
self.blocks.append(a_ )
self.add_module(str(a_ ), a_ )
def UpperCamelCase_ ( self: Union[str, Any], a_: torch.Tensor ):
'''simple docstring'''
_snake_case : str = []
for ppm in self.blocks:
_snake_case : Any = ppm(a_ )
_snake_case : Dict = nn.functional.interpolate(
a_, size=x.size()[2:], mode="""bilinear""", align_corners=self.align_corners )
ppm_outs.append(a_ )
return ppm_outs
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: Any, a_: Any, a_: Dict ):
'''simple docstring'''
super().__init__()
_snake_case : Tuple = config
_snake_case : Tuple = config.pool_scales # e.g. (1, 2, 3, 6)
_snake_case : str = in_channels
_snake_case : Dict = config.hidden_size
_snake_case : Any = False
_snake_case : List[Any] = nn.Convad(self.channels, config.num_labels, kernel_size=1 )
# PSP Module
_snake_case : List[Any] = UperNetPyramidPoolingModule(
self.pool_scales, self.in_channels[-1], self.channels, align_corners=self.align_corners, )
_snake_case : int = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels, self.channels, kernel_size=3, padding=1, )
# FPN Module
_snake_case : str = nn.ModuleList()
_snake_case : Tuple = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
_snake_case : List[Any] = UperNetConvModule(a_, self.channels, kernel_size=1 )
_snake_case : Optional[Any] = UperNetConvModule(self.channels, self.channels, kernel_size=3, padding=1 )
self.lateral_convs.append(a_ )
self.fpn_convs.append(a_ )
_snake_case : str = UperNetConvModule(
len(self.in_channels ) * self.channels, self.channels, kernel_size=3, padding=1, )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
self.apply(self._init_weights )
def UpperCamelCase_ ( self: Optional[Any], a_: List[Any] ):
'''simple docstring'''
if isinstance(a_, nn.Convad ):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCamelCase_ ( self: List[Any], a_: Any ):
'''simple docstring'''
_snake_case : Optional[int] = inputs[-1]
_snake_case : Tuple = [x]
psp_outs.extend(self.psp_modules(a_ ) )
_snake_case : Tuple = torch.cat(a_, dim=1 )
_snake_case : Optional[Any] = self.bottleneck(a_ )
return output
def UpperCamelCase_ ( self: Optional[Any], a_: torch.Tensor ):
'''simple docstring'''
_snake_case : int = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(a_ ) )
# build top-down path
_snake_case : List[str] = len(a_ )
for i in range(used_backbone_levels - 1, 0, -1 ):
_snake_case : Dict = laterals[i - 1].shape[2:]
_snake_case : Tuple = laterals[i - 1] + nn.functional.interpolate(
laterals[i], size=a_, mode="""bilinear""", align_corners=self.align_corners )
# build outputs
_snake_case : Optional[int] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1, 0, -1 ):
_snake_case : int = nn.functional.interpolate(
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="""bilinear""", align_corners=self.align_corners )
_snake_case : Optional[Any] = torch.cat(a_, dim=1 )
_snake_case : Any = self.fpn_bottleneck(a_ )
_snake_case : Dict = self.classifier(a_ )
return output
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: Dict, a_: int, a_: int = 2, a_: int = 3, a_: Union[int, Tuple[int, int]] = 1 ):
'''simple docstring'''
super().__init__()
_snake_case : List[Any] = config
_snake_case : Dict = config.auxiliary_in_channels
_snake_case : Dict = config.auxiliary_channels
_snake_case : int = config.auxiliary_num_convs
_snake_case : Any = config.auxiliary_concat_input
_snake_case : Union[str, Any] = in_index
_snake_case : int = (kernel_size // 2) * dilation
_snake_case : Tuple = []
convs.append(
UperNetConvModule(
self.in_channels, self.channels, kernel_size=a_, padding=a_, dilation=a_ ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels, self.channels, kernel_size=a_, padding=a_, dilation=a_ ) )
if self.num_convs == 0:
_snake_case : str = nn.Identity()
else:
_snake_case : List[Any] = nn.Sequential(*a_ )
if self.concat_input:
_snake_case : Dict = UperNetConvModule(
self.in_channels + self.channels, self.channels, kernel_size=a_, padding=kernel_size // 2 )
_snake_case : Optional[Any] = nn.Convad(self.channels, config.num_labels, kernel_size=1 )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
self.apply(self._init_weights )
def UpperCamelCase_ ( self: Dict, a_: List[str] ):
'''simple docstring'''
if isinstance(a_, nn.Convad ):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCamelCase_ ( self: List[Any], a_: torch.Tensor ):
'''simple docstring'''
_snake_case : Any = encoder_hidden_states[self.in_index]
_snake_case : Optional[Any] = self.convs(a_ )
if self.concat_input:
_snake_case : Any = self.conv_cat(torch.cat([hidden_states, output], dim=1 ) )
_snake_case : str = self.classifier(a_ )
return output
class lowercase( __a ):
'''simple docstring'''
lowercase__ = UperNetConfig
lowercase__ = "pixel_values"
lowercase__ = True
def UpperCamelCase_ ( self: Dict, a_: Optional[int] ):
'''simple docstring'''
if isinstance(a_, a_ ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def UpperCamelCase_ ( self: int, a_: Union[str, Any], a_: str=False ):
'''simple docstring'''
if isinstance(a_, a_ ):
_snake_case : Union[str, Any] = value
A_ = r'''
Parameters:
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
A_ = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See
`attentions` under returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under
returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
"UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , __a , )
class lowercase( __a ):
'''simple docstring'''
def __init__( self: Union[str, Any], a_: Any ):
'''simple docstring'''
super().__init__(a_ )
_snake_case : Tuple = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
_snake_case : int = UperNetHead(a_, in_channels=self.backbone.channels )
_snake_case : Tuple = UperNetFCNHead(a_ ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) )
@replace_return_docstrings(output_type=a_, config_class=_CONFIG_FOR_DOC )
def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[torch.Tensor] = None, a_: Optional[bool] = None, a_: Optional[bool] = None, a_: Optional[torch.Tensor] = None, a_: Optional[bool] = None, ):
'''simple docstring'''
_snake_case : Dict = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_snake_case : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions
_snake_case : str = self.backbone.forward_with_filtered_kwargs(
a_, output_hidden_states=a_, output_attentions=a_ )
_snake_case : Dict = outputs.feature_maps
_snake_case : Optional[Any] = self.decode_head(a_ )
_snake_case : int = nn.functional.interpolate(a_, size=pixel_values.shape[2:], mode="""bilinear""", align_corners=a_ )
_snake_case : Dict = None
if self.auxiliary_head is not None:
_snake_case : Optional[Any] = self.auxiliary_head(a_ )
_snake_case : List[str] = nn.functional.interpolate(
a_, size=pixel_values.shape[2:], mode="""bilinear""", align_corners=a_ )
_snake_case : Any = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("""The number of labels should be greater than one""" )
else:
# compute weighted loss
_snake_case : str = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
_snake_case : Any = loss_fct(a_, a_ )
_snake_case : List[str] = loss_fct(a_, a_ )
_snake_case : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
_snake_case : List[str] = (logits,) + outputs[1:]
else:
_snake_case : str = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=a_, logits=a_, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
| 28 |
"""simple docstring"""
import os
import sys
import unittest
A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
A_ = os.path.join(git_repo_path, '''src''', '''diffusers''')
class lowercase( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" )
self.assertEqual(a_, """torch""" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
_snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" )
self.assertEqual(a_, """torch_and_transformers""" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
_snake_case : Union[str, Any] = find_backend(
""" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" )
self.assertEqual(a_, """torch_and_transformers_and_onnx""" )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : Dict = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""", a_ )
self.assertIn("""torch_and_transformers""", a_ )
self.assertIn("""flax_and_transformers""", a_ )
self.assertIn("""torch_and_transformers_and_onnx""", a_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""UNet2DModel""", objects["""torch"""] )
self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] )
self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] )
self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] )
self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] )
self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" )
self.assertEqual(a_, """\nCONSTANT = None\n""" )
_snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" )
self.assertEqual(
a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
_snake_case : List[Any] = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
_snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" )
self.assertEqual(a_, a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
"""
_snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""], a_ )
| 28 | 1 |
"""simple docstring"""
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class lowercase:
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( *a_: Dict, **a_: Union[str, Any] ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
class lowercase( unittest.TestCase ):
'''simple docstring'''
@require_torch
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Tuple = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""", )
_snake_case : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
_snake_case : Any = image_classifier(a_, candidate_labels=["""a""", """b""", """c"""] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(a_ ), [
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}],
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}],
], )
_snake_case : str = image_classifier([image] * 5, candidate_labels=["""A""", """B""", """C"""], batch_size=2 )
self.assertEqual(
nested_simplify(a_ ), [
[
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
],
[
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
],
[
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
],
[
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
],
[
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
],
], )
@require_tf
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : List[str] = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""", framework="""tf""" )
_snake_case : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
_snake_case : str = image_classifier(a_, candidate_labels=["""a""", """b""", """c"""] )
self.assertEqual(
nested_simplify(a_ ), [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], )
_snake_case : Any = image_classifier([image] * 5, candidate_labels=["""A""", """B""", """C"""], batch_size=2 )
self.assertEqual(
nested_simplify(a_ ), [
[
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
],
[
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
],
[
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
],
[
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
],
[
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
{"""score""": 0.333, """label""": ANY(a_ )},
],
], )
@slow
@require_torch
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Dict = pipeline(
task="""zero-shot-image-classification""", model="""openai/clip-vit-base-patch32""", )
# This is an image of 2 cats with remotes and no planes
_snake_case : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
_snake_case : Any = image_classifier(a_, candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(a_ ), [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
], )
_snake_case : str = image_classifier([image] * 5, candidate_labels=["""cat""", """plane""", """remote"""], batch_size=2 )
self.assertEqual(
nested_simplify(a_ ), [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5, )
@slow
@require_tf
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[Any] = pipeline(
task="""zero-shot-image-classification""", model="""openai/clip-vit-base-patch32""", framework="""tf""" )
# This is an image of 2 cats with remotes and no planes
_snake_case : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
_snake_case : Tuple = image_classifier(a_, candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(a_ ), [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
], )
_snake_case : Any = image_classifier([image] * 5, candidate_labels=["""cat""", """plane""", """remote"""], batch_size=2 )
self.assertEqual(
nested_simplify(a_ ), [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5, )
| 28 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
A_ = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''OwlViTFeatureExtractor''']
A_ = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 28 | 1 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''',
'''BridgeTower/bridgetower-base-itm-mlm''': (
'''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json'''
),
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower_vision_model"
def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ):
'''simple docstring'''
super().__init__(**a_ )
_snake_case : str = hidden_size
_snake_case : int = num_hidden_layers
_snake_case : Any = num_channels
_snake_case : Union[str, Any] = patch_size
_snake_case : Dict = image_size
_snake_case : Optional[Any] = initializer_factor
_snake_case : Any = layer_norm_eps
_snake_case : int = stop_gradient
_snake_case : Any = share_layernorm
_snake_case : List[Any] = remove_last_layer
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ )
if config_dict.get("""model_type""" ) == "bridgetower":
_snake_case : str = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a_, **a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower_text_model"
def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ):
'''simple docstring'''
super().__init__(**a_ )
_snake_case : str = vocab_size
_snake_case : Optional[int] = hidden_size
_snake_case : Dict = num_hidden_layers
_snake_case : Optional[int] = num_attention_heads
_snake_case : Optional[int] = hidden_act
_snake_case : List[Any] = initializer_factor
_snake_case : Optional[int] = intermediate_size
_snake_case : int = hidden_dropout_prob
_snake_case : Tuple = attention_probs_dropout_prob
_snake_case : List[str] = max_position_embeddings
_snake_case : Optional[int] = type_vocab_size
_snake_case : List[Any] = layer_norm_eps
_snake_case : Dict = position_embedding_type
_snake_case : Dict = use_cache
_snake_case : int = pad_token_id
_snake_case : Union[str, Any] = bos_token_id
_snake_case : Union[str, Any] = eos_token_id
@classmethod
def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ):
'''simple docstring'''
_snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ )
if config_dict.get("""model_type""" ) == "bridgetower":
_snake_case : Union[str, Any] = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a_, **a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower"
def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ):
'''simple docstring'''
_snake_case : str = kwargs.pop("""text_config_dict""", a_ )
_snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ )
super().__init__(**a_ )
_snake_case : str = share_cross_modal_transformer_layers
_snake_case : Any = hidden_act
_snake_case : Union[str, Any] = hidden_size
_snake_case : Union[str, Any] = initializer_factor
_snake_case : Dict = layer_norm_eps
_snake_case : Dict = share_link_tower_layers
_snake_case : Optional[int] = link_tower_type
_snake_case : Any = num_attention_heads
_snake_case : int = num_hidden_layers
_snake_case : int = tie_word_embeddings
_snake_case : Optional[Any] = init_layernorm_from_vision_encoder
if text_config is None:
_snake_case : Optional[Any] = {}
logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" )
if vision_config is None:
_snake_case : str = {}
logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" )
_snake_case : Any = BridgeTowerTextConfig(**a_ )
_snake_case : List[Any] = BridgeTowerVisionConfig(**a_ )
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ):
'''simple docstring'''
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[int] = copy.deepcopy(self.__dict__ )
_snake_case : str = self.text_config.to_dict()
_snake_case : List[str] = self.vision_config.to_dict()
_snake_case : Tuple = self.__class__.model_type
return output
| 28 |
"""simple docstring"""
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
A_ = logging.get_logger(__name__)
def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ):
"""simple docstring"""
def run_func(snake_case__ : Tuple ):
@wraps(snake_case__ )
def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ):
return func(*snake_case__ , **snake_case__ )
@wraps(snake_case__ )
@tf.function(experimental_compile=snake_case__ )
def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ):
return func(*snake_case__ , **snake_case__ )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
"""Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : List[str] = random.Random()
_snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = 42
lowercase__ = 42
lowercase__ = "TensorFlow"
@property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
return tf.__version__
def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : List[str] = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ )
return self._measure_speed(_inference )
def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : Tuple = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ )
return self._measure_speed(_train )
def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ):
'''simple docstring'''
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ )
_snake_case : str = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ )
return self._measure_memory(_inference )
def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ):
'''simple docstring'''
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ )
_snake_case : Dict = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ )
return self._measure_memory(_train )
def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : List[Any] = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
_snake_case : List[Any] = (
hasattr(a_, """architectures""" )
and isinstance(config.architectures, a_ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] )
_snake_case : Dict = getattr(a_, a_ )
_snake_case : Any = model_cls(a_ )
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
_snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ )
# encoder-decoder has vocab size saved differently
_snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size
_snake_case : List[str] = random_input_ids(a_, a_, a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_decoder_forward():
return model(a_, decoder_input_ids=a_, training=a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_forward():
return model(a_, training=a_ )
_snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : str = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" )
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
_snake_case : Tuple = (
hasattr(a_, """architectures""" )
and isinstance(config.architectures, a_ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case : str = __import__("""transformers""", fromlist=[model_class] )
_snake_case : Tuple = getattr(a_, a_ )
_snake_case : Any = model_cls(a_ )
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
_snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ )
# encoder-decoder has vocab size saved differently
_snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size
_snake_case : int = random_input_ids(a_, a_, a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_decoder_train():
_snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0]
_snake_case : str = tf.gradients(a_, model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_train():
_snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0]
_snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables )
return gradients
_snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def UpperCamelCase_ ( self: Union[str, Any], a_: str ):
'''simple docstring'''
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" )
timeit.repeat(a_, repeat=1, number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
_snake_case : Dict = timeit.repeat(
a_, repeat=self.args.repeat, number=10, )
return min(a_ ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}" )
def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ):
'''simple docstring'''
logger.info(
"""Note that TensorFlow allocates more memory than """
"""it might need to speed up computation. """
"""The memory reported here corresponds to the memory """
"""reported by `nvidia-smi`, which can vary depending """
"""on total available memory on the GPU that is used.""" )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
"""`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"""
""" consumption line by line.""" )
_snake_case : List[Any] = start_memory_tracing("""transformers""" )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"""Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"""
""" with `args.memory=False`""" )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
"""py3nvml not installed, we won't log GPU memory usage. """
"""Install py3nvml (pip install py3nvml) to log information about GPU.""" )
_snake_case : Optional[Any] = """N/A"""
else:
logger.info(
"""Measuring total GPU usage on GPU device. Make sure to not have additional processes"""
""" running on the same GPU.""" )
# init nvml
nvml.nvmlInit()
func()
_snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
_snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ )
_snake_case : List[str] = meminfo.used
_snake_case : Any = Memory(a_ )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
"""When enabling line by line tracing, the max peak memory for CPU is inaccurate in"""
""" TensorFlow.""" )
_snake_case : List[Any] = None
else:
_snake_case : int = measure_peak_memory_cpu(a_ )
_snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes
if self.args.trace_memory_line_by_line:
_snake_case : Tuple = stop_memory_tracing(a_ )
if memory is None:
_snake_case : int = summary.total
else:
_snake_case : int = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}" )
return "N/A", None
| 28 | 1 |
"""simple docstring"""
import itertools
import random
import unittest
import numpy as np
from transformers import BatchFeature, SpeechTaFeatureExtractor
from transformers.testing_utils import require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
A_ = random.Random()
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int]=1.0 , snake_case__ : Any=None , snake_case__ : Optional[int]=None ):
"""simple docstring"""
if rng is None:
_snake_case : Any = global_rng
_snake_case : Dict = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
class lowercase( unittest.TestCase ):
'''simple docstring'''
def __init__( self: Dict, a_: str, a_: List[str]=7, a_: str=400, a_: int=2_000, a_: Any=1, a_: Tuple=0.0, a_: Dict=16_000, a_: List[Any]=True, a_: Optional[Any]=80, a_: int=16, a_: Any=64, a_: int="hann_window", a_: int=80, a_: List[Any]=7_600, a_: Optional[Any]=1E-10, a_: Dict=True, ):
'''simple docstring'''
_snake_case : Union[str, Any] = parent
_snake_case : Any = batch_size
_snake_case : List[Any] = min_seq_length
_snake_case : str = max_seq_length
_snake_case : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
_snake_case : Dict = feature_size
_snake_case : Dict = padding_value
_snake_case : Optional[int] = sampling_rate
_snake_case : Any = do_normalize
_snake_case : List[str] = num_mel_bins
_snake_case : Union[str, Any] = hop_length
_snake_case : Optional[Any] = win_length
_snake_case : Any = win_function
_snake_case : Optional[int] = fmin
_snake_case : Union[str, Any] = fmax
_snake_case : List[Any] = mel_floor
_snake_case : Tuple = return_attention_mask
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"return_attention_mask": self.return_attention_mask,
}
def UpperCamelCase_ ( self: List[str], a_: int=False, a_: Any=False ):
'''simple docstring'''
def _flatten(a_: int ):
return list(itertools.chain(*a_ ) )
if equal_length:
_snake_case : Dict = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
_snake_case : Dict = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
_snake_case : Union[str, Any] = [np.asarray(a_ ) for x in speech_inputs]
return speech_inputs
def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any]=False, a_: List[str]=False ):
'''simple docstring'''
if equal_length:
_snake_case : Optional[Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
_snake_case : Optional[int] = [
floats_list((x, self.num_mel_bins) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
_snake_case : Optional[Any] = [np.asarray(a_ ) for x in speech_inputs]
return speech_inputs
@require_torch
class lowercase( __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = SpeechTaFeatureExtractor
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Dict = SpeechTaFeatureExtractionTester(self )
def UpperCamelCase_ ( self: List[str], a_: List[str] ):
'''simple docstring'''
self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1E-3 ) )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
_snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
_snake_case : List[str] = [np.asarray(a_ ) for speech_input in speech_inputs]
# Test not batched input
_snake_case : Optional[int] = feat_extract(speech_inputs[0], return_tensors="""np""" ).input_values
_snake_case : Dict = feat_extract(np_speech_inputs[0], return_tensors="""np""" ).input_values
self.assertTrue(np.allclose(a_, a_, atol=1E-3 ) )
# Test batched
_snake_case : str = feat_extract(a_, return_tensors="""np""" ).input_values
_snake_case : Any = feat_extract(a_, return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(a_, a_ ):
self.assertTrue(np.allclose(a_, a_, atol=1E-3 ) )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
_snake_case : List[Any] = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
_snake_case : int = ["""longest""", """max_length""", """do_not_pad"""]
_snake_case : List[str] = [None, 1_600, None]
for max_length, padding in zip(a_, a_ ):
_snake_case : str = feat_extract(a_, padding=a_, max_length=a_, return_tensors="""np""" )
_snake_case : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
_snake_case : Dict = range(800, 1_400, 200 )
_snake_case : List[Any] = [floats_list((1, x) )[0] for x in lengths]
_snake_case : Tuple = ["""longest""", """max_length""", """do_not_pad"""]
_snake_case : Any = [None, 1_600, None]
for max_length, padding in zip(a_, a_ ):
_snake_case : str = feat_extract(a_, max_length=a_, padding=a_ )
_snake_case : Optional[Any] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
_snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
_snake_case : List[str] = feat_extract(
a_, truncation=a_, max_length=1_000, padding="""max_length""", return_tensors="""np""" )
_snake_case : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
_snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
_snake_case : Tuple = feat_extract(
a_, truncation=a_, max_length=1_000, padding="""longest""", return_tensors="""np""" )
_snake_case : List[str] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
_snake_case : str = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
_snake_case : int = feat_extract(
a_, truncation=a_, max_length=2_000, padding="""longest""", return_tensors="""np""" )
_snake_case : List[str] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
_snake_case : int = np.random.rand(100 ).astype(np.floataa )
_snake_case : Optional[int] = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
_snake_case : Optional[Any] = feature_extractor.pad([{"""input_values""": inputs}], return_tensors="""np""" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
_snake_case : Optional[int] = feature_extractor.pad([{"""input_values""": inputs}], return_tensors="""pt""" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
_snake_case : List[Any] = [floats_list((1, x) )[0] for x in range(800, 1_400, 200 )]
_snake_case : Tuple = [np.asarray(a_ ) for speech_input in speech_inputs]
# Test feature size
_snake_case : Tuple = feature_extractor(audio_target=a_, padding=a_, return_tensors="""np""" ).input_values
self.assertTrue(input_values.ndim == 3 )
self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins )
# Test not batched input
_snake_case : Any = feature_extractor(speech_inputs[0], return_tensors="""np""" ).input_values
_snake_case : Tuple = feature_extractor(np_speech_inputs[0], return_tensors="""np""" ).input_values
self.assertTrue(np.allclose(a_, a_, atol=1E-3 ) )
# Test batched
_snake_case : Any = feature_extractor(a_, return_tensors="""np""" ).input_values
_snake_case : Optional[Any] = feature_extractor(a_, return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(a_, a_ ):
self.assertTrue(np.allclose(a_, a_, atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
_snake_case : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
_snake_case : Dict = np.asarray(a_ )
_snake_case : List[Any] = feature_extractor(a_, return_tensors="""np""" ).input_values
_snake_case : Optional[int] = feature_extractor(a_, return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(a_, a_ ):
self.assertTrue(np.allclose(a_, a_, atol=1E-3 ) )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : List[Any] = self.feat_extract_tester.prepare_inputs_for_target()
_snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict )
_snake_case : Dict = feat_extract.model_input_names[0]
_snake_case : List[Any] = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(a_ ) == len(a_ ) for x, y in zip(a_, processed_features[input_name] ) ) )
_snake_case : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ )
_snake_case : Tuple = BatchFeature({input_name: speech_inputs}, tensor_type="""np""" )
_snake_case : str = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
_snake_case : int = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ )
_snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
_snake_case : List[Any] = feat_extract.model_input_names[0]
_snake_case : Optional[int] = BatchFeature({input_name: speech_inputs}, tensor_type="""pt""" )
_snake_case : List[Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
_snake_case : Tuple = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_dict )
_snake_case : str = self.feat_extract_tester.prepare_inputs_for_target()
_snake_case : Dict = feat_extract.model_input_names[0]
_snake_case : Optional[Any] = BatchFeature({input_name: speech_inputs} )
_snake_case : str = feat_extract.num_mel_bins # hack!
_snake_case : Any = feat_extract.pad(a_, padding="""longest""", return_tensors="""np""" )[input_name]
_snake_case : Optional[Any] = feat_extract.pad(a_, padding="""longest""", return_tensors="""pt""" )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.feat_extract_dict
_snake_case : int = True
_snake_case : List[str] = self.feature_extraction_class(**a_ )
_snake_case : int = self.feat_extract_tester.prepare_inputs_for_target()
_snake_case : Any = [len(a_ ) for x in speech_inputs]
_snake_case : Optional[int] = feat_extract.model_input_names[0]
_snake_case : Tuple = BatchFeature({input_name: speech_inputs} )
_snake_case : str = feat_extract.num_mel_bins # hack!
_snake_case : Optional[Any] = feat_extract.pad(a_, padding="""longest""", return_tensors="""np""" )
self.assertIn("""attention_mask""", a_ )
self.assertListEqual(list(processed.attention_mask.shape ), list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist(), a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : int = self.feat_extract_dict
_snake_case : int = True
_snake_case : Dict = self.feature_extraction_class(**a_ )
_snake_case : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target()
_snake_case : Optional[int] = [len(a_ ) for x in speech_inputs]
_snake_case : Optional[int] = feat_extract.model_input_names[0]
_snake_case : Dict = BatchFeature({input_name: speech_inputs} )
_snake_case : Tuple = min(a_ )
_snake_case : Optional[Any] = feat_extract.num_mel_bins # hack!
_snake_case : str = feat_extract.pad(
a_, padding="""max_length""", max_length=a_, truncation=a_, return_tensors="""np""" )
self.assertIn("""attention_mask""", a_ )
self.assertListEqual(
list(processed_pad.attention_mask.shape ), [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist(), [max_length for x in speech_inputs] )
def UpperCamelCase_ ( self: Dict, a_: Any ):
'''simple docstring'''
from datasets import load_dataset
_snake_case : Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""", """clean""", split="""validation""" )
# automatic decoding with librispeech
_snake_case : int = ds.sort("""id""" ).select(range(a_ ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Union[str, Any] = torch.tensor(
[2.38_04E-03, 2.07_52E-03, 1.98_36E-03, 2.10_57E-03, 1.61_74E-03,
3.05_18E-04, 9.15_53E-05, 3.35_69E-04, 9.76_56E-04, 1.83_11E-03,
2.01_42E-03, 2.10_57E-03, 1.73_95E-03, 4.57_76E-04, -3.96_73E-04,
4.57_76E-04, 1.00_71E-03, 9.15_53E-05, 4.88_28E-04, 1.15_97E-03,
7.32_42E-04, 9.46_04E-04, 1.80_05E-03, 1.83_11E-03, 8.85_01E-04,
4.27_25E-04, 4.88_28E-04, 7.32_42E-04, 1.09_86E-03, 2.10_57E-03] )
# fmt: on
_snake_case : List[str] = self._load_datasamples(1 )
_snake_case : Tuple = SpeechTaFeatureExtractor()
_snake_case : Dict = feature_extractor(a_, return_tensors="""pt""" ).input_values
self.assertEquals(input_values.shape, (1, 93_680) )
self.assertTrue(torch.allclose(input_values[0, :30], a_, atol=1E-6 ) )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[int] = torch.tensor(
[-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777,
-3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386,
-3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571,
-3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] )
# fmt: on
_snake_case : Tuple = self._load_datasamples(1 )
_snake_case : Dict = SpeechTaFeatureExtractor()
_snake_case : str = feature_extractor(audio_target=a_, return_tensors="""pt""" ).input_values
self.assertEquals(input_values.shape, (1, 366, 80) )
self.assertTrue(torch.allclose(input_values[0, 0, :30], a_, atol=1E-4 ) )
| 28 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : str ):
"""simple docstring"""
_snake_case : str = int(snake_case__ )
# Initialize Result
_snake_case : str = []
# Traverse through all denomination
for denomination in reversed(snake_case__ ):
# Find denominations
while int(snake_case__ ) >= int(snake_case__ ):
total_value -= int(snake_case__ )
answer.append(snake_case__ ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
A_ = []
A_ = '''0'''
if (
input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower()
== "y"
):
A_ = int(input('''Enter the number of denominations you want to add: ''').strip())
for i in range(0, n):
denominations.append(int(input(F'''Denomination {i}: ''').strip()))
A_ = input('''Enter the change you want to make in Indian Currency: ''').strip()
else:
# All denominations of Indian Currency if user does not enter
A_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00]
A_ = input('''Enter the change you want to make: ''').strip()
if int(value) == 0 or int(value) < 0:
print('''The total value cannot be zero or negative.''')
else:
print(F'''Following is minimal change for {value}: ''')
A_ = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=''' ''')
| 28 | 1 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class lowercase:
'''simple docstring'''
def __init__( self: Optional[Any], a_: Optional[Any], a_: Optional[int]=13, a_: Dict=7, a_: Optional[Any]=True, a_: Any=True, a_: Any=True, a_: Any=99, a_: List[str]=32, a_: Any=5, a_: Optional[Any]=4, a_: Dict=37, a_: List[str]="gelu", a_: Any=0.1, a_: List[Any]=0.1, a_: Any=512, a_: int=16, a_: Dict=2, a_: Dict=0.02, a_: Any=3, a_: Optional[int]=4, a_: Tuple=None, ):
'''simple docstring'''
_snake_case : str = parent
_snake_case : Dict = batch_size
_snake_case : Tuple = seq_length
_snake_case : Any = is_training
_snake_case : Union[str, Any] = use_token_type_ids
_snake_case : Tuple = use_labels
_snake_case : str = vocab_size
_snake_case : Any = hidden_size
_snake_case : List[str] = num_hidden_layers
_snake_case : Tuple = num_attention_heads
_snake_case : List[str] = intermediate_size
_snake_case : Union[str, Any] = hidden_act
_snake_case : Optional[int] = hidden_dropout_prob
_snake_case : Optional[int] = attention_probs_dropout_prob
_snake_case : int = max_position_embeddings
_snake_case : str = type_vocab_size
_snake_case : Tuple = type_sequence_label_size
_snake_case : Dict = initializer_range
_snake_case : Dict = num_labels
_snake_case : int = num_choices
_snake_case : str = scope
_snake_case : Tuple = self.vocab_size - 1
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
_snake_case : Any = None
if self.use_token_type_ids:
_snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
_snake_case : Dict = None
_snake_case : Dict = None
_snake_case : int = None
if self.use_labels:
_snake_case : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
_snake_case : str = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
_snake_case : Tuple = ids_tensor([self.batch_size], self.num_choices )
_snake_case : List[Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, )
_snake_case : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: str, a_: Optional[int], a_: List[Any], *a_: str ):
'''simple docstring'''
_snake_case : List[str] = OpenAIGPTModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Tuple = model(a_, token_type_ids=a_, head_mask=a_ )
_snake_case : Union[str, Any] = model(a_, token_type_ids=a_ )
_snake_case : List[str] = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self: List[Any], a_: str, a_: Tuple, a_: List[Any], a_: Tuple, *a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Dict = OpenAIGPTLMHeadModel(a_ )
model.to(a_ )
model.eval()
_snake_case : Optional[Any] = model(a_, token_type_ids=a_, labels=a_ )
self.parent.assertEqual(result.loss.shape, () )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self: str, a_: Any, a_: int, a_: Dict, a_: List[str], *a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : List[Any] = OpenAIGPTDoubleHeadsModel(a_ )
model.to(a_ )
model.eval()
_snake_case : Dict = model(a_, token_type_ids=a_, labels=a_ )
self.parent.assertEqual(result.loss.shape, () )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self: List[Any], a_: int, a_: str, a_: Optional[Any], a_: Dict, *a_: Optional[int] ):
'''simple docstring'''
_snake_case : int = self.num_labels
_snake_case : Union[str, Any] = OpenAIGPTForSequenceClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
_snake_case : str = model(a_, token_type_ids=a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) ,
) : List[str] = config_and_inputs
_snake_case : List[str] = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
lowercase__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
lowercase__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self: str, a_: str, a_: Dict, a_: List[str], a_: str, a_: Tuple ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def UpperCamelCase_ ( self: Any, a_: str, a_: Optional[int], a_: Optional[int]=False ):
'''simple docstring'''
_snake_case : Tuple = super()._prepare_for_class(a_, a_, return_labels=a_ )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
_snake_case : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=a_, )
_snake_case : int = inputs_dict["""labels"""]
_snake_case : str = inputs_dict["""labels"""]
_snake_case : List[str] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=a_, )
_snake_case : Optional[int] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=a_ )
return inputs_dict
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : List[str] = OpenAIGPTModelTester(self )
_snake_case : str = ConfigTester(self, config_class=a_, n_embd=37 )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*a_ )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*a_ )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*a_ )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*a_ )
@slow
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : str = OpenAIGPTModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@require_torch
class lowercase( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" )
model.to(a_ )
_snake_case : Optional[Any] = torch.tensor([[481, 4_735, 544]], dtype=torch.long, device=a_ ) # the president is
_snake_case : List[Any] = [
481,
4_735,
544,
246,
963,
870,
762,
239,
244,
40_477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
_snake_case : str = model.generate(a_, do_sample=a_ )
self.assertListEqual(output_ids[0].tolist(), a_ )
| 28 |
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ):
'''simple docstring'''
_snake_case : Optional[int] = parent
_snake_case : Optional[Any] = 100
_snake_case : Any = batch_size
_snake_case : List[Any] = image_size
_snake_case : Optional[Any] = patch_size
_snake_case : str = num_channels
_snake_case : Tuple = is_training
_snake_case : Tuple = use_labels
_snake_case : Any = hidden_size
_snake_case : Optional[int] = num_hidden_layers
_snake_case : List[str] = num_attention_heads
_snake_case : Union[str, Any] = intermediate_size
_snake_case : Dict = hidden_act
_snake_case : str = hidden_dropout_prob
_snake_case : Optional[int] = attention_probs_dropout_prob
_snake_case : Optional[Any] = type_sequence_label_size
_snake_case : Any = initializer_range
_snake_case : List[str] = scope
_snake_case : int = out_indices
_snake_case : Optional[Any] = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_snake_case : Dict = (image_size // patch_size) ** 2
_snake_case : str = num_patches + 1
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : List[Any] = None
_snake_case : Tuple = None
if self.use_labels:
_snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size )
_snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
_snake_case : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, )
def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ):
'''simple docstring'''
_snake_case : str = BeitModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Dict = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ):
'''simple docstring'''
_snake_case : List[str] = BeitForMaskedImageModeling(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Union[str, Any] = model(a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ):
'''simple docstring'''
_snake_case : Any = self.type_sequence_label_size
_snake_case : Any = BeitForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : List[Any] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_snake_case : Any = 1
_snake_case : str = BeitForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_snake_case : Optional[Any] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ):
'''simple docstring'''
_snake_case : List[str] = self.num_labels
_snake_case : List[Any] = BeitForSemanticSegmentation(a_ )
model.to(a_ )
model.eval()
_snake_case : List[str] = model(a_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
_snake_case : str = model(a_, labels=a_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Tuple = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs
_snake_case : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": BeitModel,
"image-classification": BeitForImageClassification,
"image-segmentation": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Dict = BeitModelTester(self )
_snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""BEiT does not use inputs_embeds""" )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : List[str] = model_class(a_ )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
_snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a_, nn.Linear ) )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Any = model_class(a_ )
_snake_case : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : List[Any] = [*signature.parameters.keys()]
_snake_case : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a_ )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
_snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Any = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]:
continue
_snake_case : List[Any] = model_class(a_ )
model.to(a_ )
model.train()
_snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : List[Any] = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_snake_case : Dict = False
_snake_case : Optional[Any] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(a_ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
_snake_case : Any = model_class(a_ )
model.gradient_checkpointing_enable()
model.to(a_ )
model.train()
_snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : int = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : int = _config_zero_init(a_ )
for model_class in self.all_model_classes:
_snake_case : Tuple = model_class(config=a_ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", )
@slow
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Optional[int] = BeitModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ )
_snake_case : Dict = self.default_image_processor
_snake_case : Dict = prepare_img()
_snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ )
# prepare bool_masked_pos
_snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ )
_snake_case : Dict = outputs.logits
# verify the logits
_snake_case : Optional[int] = torch.Size((1, 196, 8_192) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[Any] = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) )
@slow
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ )
_snake_case : List[Any] = self.default_image_processor
_snake_case : Any = prepare_img()
_snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : int = model(**a_ )
_snake_case : Optional[int] = outputs.logits
# verify the logits
_snake_case : Tuple = torch.Size((1, 1_000) )
self.assertEqual(logits.shape, a_ )
_snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ )
self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) )
_snake_case : str = 281
self.assertEqual(logits.argmax(-1 ).item(), a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to(
a_ )
_snake_case : int = self.default_image_processor
_snake_case : Optional[Any] = prepare_img()
_snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Union[str, Any] = model(**a_ )
_snake_case : Dict = outputs.logits
# verify the logits
_snake_case : Tuple = torch.Size((1, 21_841) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ )
self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) )
_snake_case : List[str] = 2_396
self.assertEqual(logits.argmax(-1 ).item(), a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
_snake_case : int = model.to(a_ )
_snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ )
_snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" )
_snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] )
_snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
_snake_case : Union[str, Any] = outputs.logits
# verify the logits
_snake_case : List[str] = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" )
if is_pillow_less_than_a:
_snake_case : Any = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
], device=a_, )
else:
_snake_case : Optional[Any] = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
], device=a_, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
_snake_case : List[Any] = model.to(a_ )
_snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ )
_snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" )
_snake_case : str = Image.open(ds[0]["""file"""] )
_snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
_snake_case : Union[str, Any] = outputs.logits.detach().cpu()
_snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] )
_snake_case : Optional[int] = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape, a_ )
_snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ )
_snake_case : List[str] = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape, a_ )
| 28 | 1 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
A_ = '''pt'''
elif is_tf_available():
A_ = '''tf'''
else:
A_ = '''jax'''
class lowercase( __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = ByTaTokenizer
lowercase__ = False
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
super().setUp()
_snake_case : List[str] = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
return ByTaTokenizer.from_pretrained("""google/byt5-small""" )
def UpperCamelCase_ ( self: List[Any], **a_: int ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ )
def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ):
'''simple docstring'''
_snake_case : List[Any] = []
for i in range(len(a_ ) ):
try:
_snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) )
_snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) )
if max_length is not None and len(a_ ) > max_length:
_snake_case : Tuple = toks[:max_length]
if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0:
while len(a_ ) < min_length:
_snake_case : List[str] = toks + toks
# toks_str = [t[1] for t in toks]
_snake_case : Tuple = [t[0] for t in toks]
# Ensure consistency
_snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ )
if " " not in output_txt and len(a_ ) > 1:
_snake_case : Dict = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ )
+ """ """
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ )
)
if with_prefix_space:
_snake_case : Union[str, Any] = """ """ + output_txt
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
return output_txt, output_ids
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[int] = self.ta_base_tokenizer
_snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] )
_snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] )
self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[str] = self.ta_base_tokenizer
_snake_case : Tuple = """Unicode €."""
_snake_case : List[Any] = tokenizer(a_ )
_snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded["""input_ids"""], a_ )
# decoding
_snake_case : Tuple = tokenizer.decode(a_ )
self.assertEqual(a_, """Unicode €.</s>""" )
_snake_case : Tuple = tokenizer("""e è é ê ë""" )
_snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded["""input_ids"""], a_ )
# decoding
_snake_case : int = tokenizer.decode(a_ )
self.assertEqual(a_, """e è é ê ë</s>""" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Dict = self.ta_base_tokenizer
_snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
# fmt: off
_snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
_snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ )
self.assertIsInstance(a_, a_ )
if FRAMEWORK != "jax":
_snake_case : List[str] = list(batch.input_ids.numpy()[0] )
else:
_snake_case : Optional[int] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(a_, a_ )
self.assertEqual((2, 37), batch.input_ids.shape )
self.assertEqual((2, 37), batch.attention_mask.shape )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : List[Any] = self.ta_base_tokenizer
_snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
_snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("""input_ids""", a_ )
self.assertIn("""attention_mask""", a_ )
self.assertNotIn("""decoder_input_ids""", a_ )
self.assertNotIn("""decoder_attention_mask""", a_ )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.ta_base_tokenizer
_snake_case : Dict = [
"""Summary of the text.""",
"""Another summary.""",
]
_snake_case : Optional[int] = tokenizer(
text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ )
self.assertEqual(32, targets["""input_ids"""].shape[1] )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : int = self.ta_base_tokenizer
_snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""]
_snake_case : Dict = ["""Summary of the text. </s>"""]
# fmt: off
_snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
_snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
_snake_case : Optional[Any] = tokenizer(a_, text_target=a_ )
self.assertEqual(a_, batch["""input_ids"""][0] )
self.assertEqual(a_, batch["""labels"""][0] )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length, 42 )
# Now let's start the test
_snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
_snake_case : List[str] = tempfile.mkdtemp()
_snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
tokenizer.save_pretrained(a_ )
_snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ )
_snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ )
self.assertListEqual(a_, a_ )
shutil.rmtree(a_ )
_snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
_snake_case : Union[str, Any] = tempfile.mkdtemp()
_snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running"""
tokenizer.add_tokens(["""bim""", """bambam"""] )
_snake_case : Optional[Any] = tokenizer.additional_special_tokens
additional_special_tokens.append("""new_additional_special_token""" )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
tokenizer.save_pretrained(a_ )
_snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ )
_snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ )
self.assertListEqual(a_, a_ )
self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length, 42 )
_snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 )
self.assertEqual(tokenizer.model_max_length, 43 )
shutil.rmtree(a_ )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Optional[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(a_ )
with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file:
_snake_case : Union[str, Any] = json.load(a_ )
with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file:
_snake_case : List[Any] = json.load(a_ )
_snake_case : int = [f"<extra_id_{i}>" for i in range(125 )]
_snake_case : Optional[int] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
_snake_case : Dict = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile:
json.dump(a_, a_ )
with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile:
json.dump(a_, a_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_snake_case : Optional[int] = tokenizer_class.from_pretrained(
a_, )
self.assertIn(
"""an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )]
_snake_case : List[Any] = tokenizer_class.from_pretrained(
a_, additional_special_tokens=a_, )
self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens )
self.assertEqual(
["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : List[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(a_ )
_snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ )
self.assertTrue(tokenizer.decode([255] ) == """""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
_snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""]
_snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ )
self.assertIsInstance(a_, a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
_snake_case : Optional[int] = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
_snake_case : Any = 0
_snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(
a_, skip_special_tokens=a_ )
for attr in attributes_list:
setattr(a_, attr + """_id""", a_ )
self.assertEqual(getattr(a_, a_ ), a_ )
self.assertEqual(getattr(a_, attr + """_id""" ), a_ )
setattr(a_, attr + """_id""", a_ )
self.assertEqual(getattr(a_, a_ ), a_ )
self.assertEqual(getattr(a_, attr + """_id""" ), a_ )
setattr(a_, """additional_special_tokens_ids""", [] )
self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] )
self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] )
setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] )
self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] )
self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
| 28 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase( __a ):
'''simple docstring'''
lowercase__ = (IPNDMScheduler,)
lowercase__ = (("num_inference_steps", 50),)
def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : List[Any] = {"""num_train_timesteps""": 1_000}
config.update(**a_ )
return config
def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ):
'''simple docstring'''
_snake_case : Optional[int] = dict(self.forward_default_kwargs )
_snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ )
_snake_case : Optional[Any] = self.dummy_sample
_snake_case : Dict = 0.1 * sample
_snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_snake_case : int = self.get_scheduler_config(**a_ )
_snake_case : Dict = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals
_snake_case : int = dummy_past_residuals[:]
if time_step is None:
_snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
_snake_case : Tuple = scheduler_class.from_pretrained(a_ )
new_scheduler.set_timesteps(a_ )
# copy over dummy past residuals
_snake_case : Optional[Any] = dummy_past_residuals[:]
_snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ):
'''simple docstring'''
_snake_case : str = dict(self.forward_default_kwargs )
_snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ )
_snake_case : Optional[int] = self.dummy_sample
_snake_case : Tuple = 0.1 * sample
_snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_snake_case : Any = self.get_scheduler_config()
_snake_case : Tuple = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals (must be after setting timesteps)
_snake_case : Union[str, Any] = dummy_past_residuals[:]
if time_step is None:
_snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
_snake_case : List[str] = scheduler_class.from_pretrained(a_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(a_ )
# copy over dummy past residual (must be after setting timesteps)
_snake_case : List[str] = dummy_past_residuals[:]
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.scheduler_classes[0]
_snake_case : Any = self.get_scheduler_config(**a_ )
_snake_case : List[Any] = scheduler_class(**a_ )
_snake_case : Union[str, Any] = 10
_snake_case : Union[str, Any] = self.dummy_model()
_snake_case : List[Any] = self.dummy_sample_deter
scheduler.set_timesteps(a_ )
for i, t in enumerate(scheduler.timesteps ):
_snake_case : Optional[Any] = model(a_, a_ )
_snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
_snake_case : Union[str, Any] = model(a_, a_ )
_snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample
return sample
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : str = dict(self.forward_default_kwargs )
_snake_case : int = kwargs.pop("""num_inference_steps""", a_ )
for scheduler_class in self.scheduler_classes:
_snake_case : Union[str, Any] = self.get_scheduler_config()
_snake_case : Tuple = scheduler_class(**a_ )
_snake_case : Dict = self.dummy_sample
_snake_case : List[str] = 0.1 * sample
if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ):
scheduler.set_timesteps(a_ )
elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ):
_snake_case : Dict = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
_snake_case : List[str] = dummy_past_residuals[:]
_snake_case : Optional[int] = scheduler.timesteps[5]
_snake_case : Optional[Any] = scheduler.timesteps[6]
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
_snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=a_, time_step=a_ )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=a_, time_step=a_ )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = self.full_loop()
_snake_case : Optional[int] = torch.mean(torch.abs(a_ ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 28 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
A_ = {
'''configuration_encodec''': [
'''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''EncodecConfig''',
],
'''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''EncodecModel''',
'''EncodecPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 28 |
"""simple docstring"""
from __future__ import annotations
import math
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
_snake_case : Any = []
for num in range(len(snake_case__ ) ):
_snake_case : Optional[int] = 0
while 2 * i * i <= odd_composites[num]:
_snake_case : Optional[int] = odd_composites[num] - 2 * i * i
if is_prime(snake_case__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(snake_case__ ) == n:
return list_nums
return []
def UpperCAmelCase__ ():
"""simple docstring"""
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'''{solution() = }''')
| 28 | 1 |
"""simple docstring"""
A_ = range(2, 20 + 1)
A_ = [10**k for k in range(ks[-1] + 1)]
A_ = {}
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : Union[str, Any] = sum(a_i[j] for j in range(snake_case__ , len(snake_case__ ) ) )
_snake_case : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(snake_case__ ) , snake_case__ ) ) )
_snake_case , _snake_case : int = 0, 0
_snake_case : List[str] = n - i
_snake_case : List[str] = memo.get(snake_case__ )
if sub_memo is not None:
_snake_case : Optional[Any] = sub_memo.get(snake_case__ )
if jumps is not None and len(snake_case__ ) > 0:
# find and make the largest jump without going over
_snake_case : Optional[int] = -1
for _k in range(len(snake_case__ ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
_snake_case : Any = _k
break
if max_jump >= 0:
_snake_case , _snake_case , _snake_case : Optional[Any] = jumps[max_jump]
# since the difference between jumps is cached, add c
_snake_case : List[str] = diff + c
for j in range(min(snake_case__ , len(snake_case__ ) ) ):
_snake_case , _snake_case : Union[str, Any] = divmod(snake_case__ , 10 )
if new_c > 0:
add(snake_case__ , snake_case__ , snake_case__ )
else:
_snake_case : Any = []
else:
_snake_case : Dict = {c: []}
_snake_case : List[Any] = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
_snake_case , _snake_case : Optional[int] = next_term(snake_case__ , k - 1 , i + dn , snake_case__ )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
_snake_case , _snake_case : List[Any] = compute(snake_case__ , snake_case__ , i + dn , snake_case__ )
diff += _diff
dn += terms_jumped
_snake_case : Dict = sub_memo[c]
# keep jumps sorted by # of terms skipped
_snake_case : Tuple = 0
while j < len(snake_case__ ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(snake_case__ , (diff, dn, k) )
return (diff, dn)
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ):
"""simple docstring"""
if i >= n:
return 0, i
if k > len(snake_case__ ):
a_i.extend([0 for _ in range(k - len(snake_case__ ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
_snake_case : Tuple = i
_snake_case , _snake_case , _snake_case : Optional[Any] = 0, 0, 0
for j in range(len(snake_case__ ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
_snake_case : Optional[Any] = ds_c + ds_b
diff += addend
_snake_case : int = 0
for j in range(snake_case__ ):
_snake_case : Optional[int] = a_i[j] + addend
_snake_case , _snake_case : str = divmod(snake_case__ , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(snake_case__ , snake_case__ , snake_case__ )
return diff, i - start_i
def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] ):
"""simple docstring"""
for j in range(snake_case__ , len(snake_case__ ) ):
_snake_case : Any = digits[j] + addend
if s >= 10:
_snake_case , _snake_case : List[Any] = divmod(snake_case__ , 10 )
_snake_case : List[str] = addend // 10 + quotient
else:
_snake_case : str = s
_snake_case : Dict = addend // 10
if addend == 0:
break
while addend > 0:
_snake_case , _snake_case : Any = divmod(snake_case__ , 10 )
digits.append(snake_case__ )
def UpperCAmelCase__ (snake_case__ : int = 10**15 ):
"""simple docstring"""
_snake_case : Any = [1]
_snake_case : Tuple = 1
_snake_case : int = 0
while True:
_snake_case , _snake_case : str = next_term(snake_case__ , 20 , i + dn , snake_case__ )
dn += terms_jumped
if dn == n - i:
break
_snake_case : Any = 0
for j in range(len(snake_case__ ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(F'''{solution() = }''')
| 28 |
"""simple docstring"""
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class lowercase:
'''simple docstring'''
def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
_snake_case : Optional[int] = device
_snake_case : str = CLIPTokenizerFast.from_pretrained(a_ )
_snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073]
_snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711]
_snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std )
_snake_case : Optional[int] = torchvision.transforms.Resize(224 )
_snake_case : str = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self: List[str], a_: str ):
'''simple docstring'''
_snake_case : Optional[int] = self.resize(a_ )
_snake_case : List[Any] = self.center_crop(a_ )
_snake_case : Optional[Any] = self.normalize(a_ )
return images
def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ):
'''simple docstring'''
_snake_case : Optional[int] = self.tokenizer(text=a_, **a_ )
_snake_case : Any = self.preprocess_img(a_ )
_snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ):
'''simple docstring'''
super().__init__()
_snake_case : int = None
_snake_case : List[str] = device if device else get_device()
if vqgan:
_snake_case : Any = vqgan
else:
_snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ )
self.vqgan.eval()
if clip:
_snake_case : Tuple = clip
else:
_snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" )
self.clip.to(self.device )
_snake_case : List[str] = ProcessorGradientFlow(device=self.device )
_snake_case : Union[str, Any] = iterations
_snake_case : Dict = lr
_snake_case : Optional[int] = log
_snake_case : List[str] = make_grid
_snake_case : Union[str, Any] = return_val
_snake_case : List[str] = quantize
_snake_case : List[str] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ):
'''simple docstring'''
_snake_case : Dict = []
if output_path is None:
_snake_case : Tuple = """./animation.gif"""
if input_path is None:
_snake_case : Any = self.save_path
_snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) )
if not len(a_ ):
raise ValueError(
"""No images found in save path, aborting (did you pass save_intermediate=True to the generate"""
""" function?)""" )
if len(a_ ) == 1:
print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" )
_snake_case : List[Any] = total_duration / len(a_ )
_snake_case : Optional[Any] = [frame_duration] * len(a_ )
if extend_frames:
_snake_case : Optional[int] = 1.5
_snake_case : int = 3
for file_name in paths:
if file_name.endswith(""".png""" ):
images.append(imageio.imread(a_ ) )
imageio.mimsave(a_, a_, duration=a_ )
print(f"gif saved to {output_path}" )
def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ):
'''simple docstring'''
if not (path or img):
raise ValueError("""Input either path or tensor""" )
if img is not None:
raise NotImplementedError
_snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device )
_snake_case : int = preprocess_vqgan(a_ )
_snake_case , *_snake_case : List[Any] = self.vqgan.encode(a_ )
return z
def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = self.latent.detach().requires_grad_()
_snake_case : Tuple = base_latent + transform_vector
if self.quantize:
_snake_case , *_snake_case : Any = self.vqgan.quantize(a_ )
else:
_snake_case : List[Any] = trans_latent
return self.vqgan.decode(a_ )
def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ):
'''simple docstring'''
_snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ )
_snake_case : Any = self.clip(**a_ )
_snake_case : str = clip_outputs.logits_per_image
if weights is not None:
_snake_case : Any = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ):
'''simple docstring'''
_snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) )
if neg_prompts:
_snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] )
else:
_snake_case : Tuple = torch.tensor([1], device=self.device )
_snake_case : int = -torch.log(a_ ) + torch.log(a_ )
return loss
def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ):
'''simple docstring'''
_snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device )
_snake_case : Dict = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
_snake_case : str = self._add_vector(a_ )
_snake_case : List[Any] = loop_post_process(a_ )
_snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ )
print("""CLIP loss""", a_ )
if self.log:
wandb.log({"""CLIP Loss""": clip_loss} )
clip_loss.backward(retain_graph=a_ )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ):
'''simple docstring'''
wandb.init(reinit=a_, project="""face-editor""" )
wandb.config.update({"""Positive Prompts""": positive_prompts} )
wandb.config.update({"""Negative Prompts""": negative_prompts} )
wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} )
if image_path:
_snake_case : Any = Image.open(a_ )
_snake_case : str = image.resize((256, 256) )
wandb.log("""Original Image""", wandb.Image(a_ ) )
def UpperCamelCase_ ( self: str, a_: List[Any] ):
'''simple docstring'''
if not prompts:
return []
_snake_case : List[str] = []
_snake_case : Tuple = []
if isinstance(a_, a_ ):
_snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )]
for prompt in prompts:
if isinstance(a_, (tuple, list) ):
_snake_case : List[Any] = prompt[0]
_snake_case : Optional[Any] = float(prompt[1] )
elif ":" in prompt:
_snake_case , _snake_case : List[Any] = prompt.split(""":""" )
_snake_case : str = float(a_ )
else:
_snake_case : int = prompt
_snake_case : Union[str, Any] = 1.0
processed_prompts.append(a_ )
weights.append(a_ )
return {
"prompts": processed_prompts,
"weights": torch.tensor(a_, device=self.device ),
}
def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ):
'''simple docstring'''
if image_path:
_snake_case : Union[str, Any] = self._get_latent(a_ )
else:
_snake_case : Any = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(a_, a_, a_ )
assert pos_prompts, "You must provide at least one positive prompt."
_snake_case : str = self.process_prompts(a_ )
_snake_case : Dict = self.process_prompts(a_ )
if save_final and save_path is None:
_snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) )
if not os.path.exists(a_ ):
os.makedirs(a_ )
else:
_snake_case : List[Any] = save_path + """_""" + get_timestamp()
os.makedirs(a_ )
_snake_case : Optional[Any] = save_path
_snake_case : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print("""Original Image""" )
show_pil(custom_to_pil(a_ ) )
_snake_case : List[Any] = loop_post_process(a_ )
for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ):
if show_intermediate:
show_pil(a_ )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({"""Image""": wandb.Image(a_ )} )
if show_final:
show_pil(a_ )
if save_final:
transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
"""simple docstring"""
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def UpperCAmelCase__ ():
"""simple docstring"""
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
_snake_case : Dict = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , snake_case__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def UpperCAmelCase__ ():
"""simple docstring"""
assert _test_patching.open is open
_snake_case : Any = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , snake_case__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Union[str, Any] = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , snake_case__ ):
pass
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Any = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , snake_case__ ) is None
with patch_submodule(_test_patching , """len""" , snake_case__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Optional[int] = """__test_patch_submodule_start_and_stop_mock__"""
_snake_case : Dict = patch_submodule(_test_patching , """open""" , snake_case__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def UpperCAmelCase__ ():
"""simple docstring"""
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
_snake_case : Any = """__test_patch_submodule_successive_join__"""
_snake_case : Union[str, Any] = """__test_patch_submodule_successive_dirname__"""
_snake_case : Tuple = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , snake_case__ ):
with patch_submodule(_test_patching , """os.rename""" , snake_case__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , snake_case__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , snake_case__ ):
with patch_submodule(_test_patching , """os.path.join""" , snake_case__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , snake_case__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : str = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , snake_case__ ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , snake_case__ ):
pass
| 28 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or number < 0:
raise ValueError("""Input must be a non-negative integer""" )
_snake_case : Dict = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase( __a ):
'''simple docstring'''
lowercase__ = (IPNDMScheduler,)
lowercase__ = (("num_inference_steps", 50),)
def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : List[Any] = {"""num_train_timesteps""": 1_000}
config.update(**a_ )
return config
def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ):
'''simple docstring'''
_snake_case : Optional[int] = dict(self.forward_default_kwargs )
_snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ )
_snake_case : Optional[Any] = self.dummy_sample
_snake_case : Dict = 0.1 * sample
_snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_snake_case : int = self.get_scheduler_config(**a_ )
_snake_case : Dict = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals
_snake_case : int = dummy_past_residuals[:]
if time_step is None:
_snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
_snake_case : Tuple = scheduler_class.from_pretrained(a_ )
new_scheduler.set_timesteps(a_ )
# copy over dummy past residuals
_snake_case : Optional[Any] = dummy_past_residuals[:]
_snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ):
'''simple docstring'''
_snake_case : str = dict(self.forward_default_kwargs )
_snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ )
_snake_case : Optional[int] = self.dummy_sample
_snake_case : Tuple = 0.1 * sample
_snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_snake_case : Any = self.get_scheduler_config()
_snake_case : Tuple = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals (must be after setting timesteps)
_snake_case : Union[str, Any] = dummy_past_residuals[:]
if time_step is None:
_snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
_snake_case : List[str] = scheduler_class.from_pretrained(a_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(a_ )
# copy over dummy past residual (must be after setting timesteps)
_snake_case : List[str] = dummy_past_residuals[:]
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.scheduler_classes[0]
_snake_case : Any = self.get_scheduler_config(**a_ )
_snake_case : List[Any] = scheduler_class(**a_ )
_snake_case : Union[str, Any] = 10
_snake_case : Union[str, Any] = self.dummy_model()
_snake_case : List[Any] = self.dummy_sample_deter
scheduler.set_timesteps(a_ )
for i, t in enumerate(scheduler.timesteps ):
_snake_case : Optional[Any] = model(a_, a_ )
_snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
_snake_case : Union[str, Any] = model(a_, a_ )
_snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample
return sample
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : str = dict(self.forward_default_kwargs )
_snake_case : int = kwargs.pop("""num_inference_steps""", a_ )
for scheduler_class in self.scheduler_classes:
_snake_case : Union[str, Any] = self.get_scheduler_config()
_snake_case : Tuple = scheduler_class(**a_ )
_snake_case : Dict = self.dummy_sample
_snake_case : List[str] = 0.1 * sample
if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ):
scheduler.set_timesteps(a_ )
elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ):
_snake_case : Dict = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
_snake_case : List[str] = dummy_past_residuals[:]
_snake_case : Optional[int] = scheduler.timesteps[5]
_snake_case : Optional[Any] = scheduler.timesteps[6]
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
_snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=a_, time_step=a_ )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=a_, time_step=a_ )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = self.full_loop()
_snake_case : Optional[int] = torch.mean(torch.abs(a_ ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 28 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ):
'''simple docstring'''
_snake_case : int = parent
_snake_case : int = batch_size
_snake_case : List[Any] = image_size
_snake_case : List[str] = num_channels
_snake_case : Tuple = num_stages
_snake_case : Union[str, Any] = hidden_sizes
_snake_case : List[Any] = depths
_snake_case : Tuple = is_training
_snake_case : List[str] = use_labels
_snake_case : Tuple = intermediate_size
_snake_case : List[str] = hidden_act
_snake_case : Optional[Any] = num_labels
_snake_case : Tuple = initializer_range
_snake_case : Tuple = out_features
_snake_case : Tuple = out_indices
_snake_case : Dict = scope
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : Any = None
if self.use_labels:
_snake_case : Dict = ids_tensor([self.batch_size], self.num_labels )
_snake_case : Optional[Any] = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return ConvNextVaConfig(
num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, )
def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ):
'''simple docstring'''
_snake_case : int = ConvNextVaModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Any = model(a_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), )
def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[int] = ConvNextVaForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : Optional[int] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ):
'''simple docstring'''
_snake_case : List[str] = ConvNextVaBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : int = model(a_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ), len(config.out_features ) )
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_snake_case : Tuple = None
_snake_case : Tuple = ConvNextVaBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : List[Any] = model(a_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ), 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ), 1 )
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Dict = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : Any = config_and_inputs
_snake_case : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[Any] = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : List[str] = config_and_inputs
_snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowercase__ = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Tuple = ConvNextVaModelTester(self )
_snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels()
_snake_case : List[Any] = True
if model_class.__name__ in [
*get_values(a_ ),
*get_values(a_ ),
]:
continue
_snake_case : Tuple = model_class(a_ )
model.to(a_ )
model.train()
_snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Any = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels()
_snake_case : Any = False
_snake_case : List[Any] = True
if (
model_class.__name__
in [*get_values(a_ ), *get_values(a_ )]
or not model_class.supports_gradient_checkpointing
):
continue
_snake_case : Dict = model_class(a_ )
model.to(a_ )
model.gradient_checkpointing_enable()
model.train()
_snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Optional[int] = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : List[str] = model_class(a_ )
_snake_case : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : int = [*signature.parameters.keys()]
_snake_case : Union[str, Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ):
_snake_case : Optional[Any] = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
_snake_case : Any = model(**self._prepare_for_class(a_, a_ ) )
_snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(a_ ), expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Optional[Any] = True
check_hidden_states_output(a_, a_, a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : List[str] = True
check_hidden_states_output(a_, a_, a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : str = ConvNextVaModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ )
_snake_case : Union[str, Any] = self.default_image_processor
_snake_case : List[Any] = prepare_img()
_snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
# verify the logits
_snake_case : Optional[int] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
| 28 | 1 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class lowercase( unittest.TestCase ):
'''simple docstring'''
def __init__( self: Union[str, Any], a_: int, a_: Optional[int]=7, a_: Any=3, a_: Any=18, a_: Union[str, Any]=30, a_: Union[str, Any]=400, a_: Any=True, a_: Tuple=None, a_: Tuple=True, ):
'''simple docstring'''
_snake_case : Tuple = size if size is not None else {"""height""": 18, """width""": 18}
_snake_case : Dict = parent
_snake_case : int = batch_size
_snake_case : Tuple = num_channels
_snake_case : Optional[int] = image_size
_snake_case : Dict = min_resolution
_snake_case : Optional[int] = max_resolution
_snake_case : Any = do_resize
_snake_case : Optional[int] = size
_snake_case : Tuple = do_normalize
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class lowercase( __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = ImageGPTImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : str = ImageGPTImageProcessingTester(self )
@property
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_, """clusters""" ) )
self.assertTrue(hasattr(a_, """do_resize""" ) )
self.assertTrue(hasattr(a_, """size""" ) )
self.assertTrue(hasattr(a_, """do_normalize""" ) )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : str = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {"""height""": 18, """width""": 18} )
_snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict, size=42 )
self.assertEqual(image_processor.size, {"""height""": 42, """width""": 42} )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
_snake_case : str = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(a_, obj[key] ) )
else:
self.assertEqual(obj[key], a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_snake_case : List[str] = os.path.join(a_, """image_processor.json""" )
image_processor_first.to_json_file(a_ )
_snake_case : Tuple = self.image_processing_class.from_json_file(a_ ).to_dict()
_snake_case : List[str] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(a_, image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key], a_ )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Any = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(a_ )
_snake_case : Any = self.image_processing_class.from_pretrained(a_ ).to_dict()
_snake_case : Optional[Any] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(a_, image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key], a_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
pass
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
_snake_case : Dict = Image.open(dataset[4]["""file"""] )
_snake_case : Union[str, Any] = Image.open(dataset[5]["""file"""] )
_snake_case : Optional[Any] = [imagea, imagea]
return images
@require_vision
@require_torch
class lowercase( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : str = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
_snake_case : List[str] = prepare_images()
# test non-batched
_snake_case : Tuple = image_processing(images[0], return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids, torch.LongTensor )
self.assertEqual(encoding.input_ids.shape, (1, 1_024) )
_snake_case : Any = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist(), a_ )
# test batched
_snake_case : Union[str, Any] = image_processing(a_, return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids, torch.LongTensor )
self.assertEqual(encoding.input_ids.shape, (2, 1_024) )
_snake_case : Tuple = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist(), a_ )
| 28 |
"""simple docstring"""
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ):
"""simple docstring"""
assert isinstance(snake_case__ , snake_case__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ):
"""simple docstring"""
_snake_case : str = tmp_path / """cache"""
_snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : str = tmp_path / """cache"""
_snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : List[Any] = features.copy() if features else default_expected_features
_snake_case : List[Any] = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
_snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : List[str] = tmp_path / """cache"""
_snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" , [str, list] )
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ):
"""simple docstring"""
if issubclass(snake_case__ , snake_case__ ):
_snake_case : Optional[Any] = parquet_path
elif issubclass(snake_case__ , snake_case__ ):
_snake_case : int = [parquet_path]
_snake_case : Union[str, Any] = tmp_path / """cache"""
_snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ):
"""simple docstring"""
assert isinstance(snake_case__ , snake_case__ )
for split in splits:
_snake_case : int = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : Tuple = tmp_path / """cache"""
_snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_snake_case : Tuple = ParquetDatasetReader(
{"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_parquet_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : Optional[int] = tmp_path / """cache"""
_snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : Optional[Any] = features.copy() if features else default_expected_features
_snake_case : Dict = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
_snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ):
"""simple docstring"""
if split:
_snake_case : int = {split: parquet_path}
else:
_snake_case : Optional[Any] = """train"""
_snake_case : int = {"""train""": parquet_path, """test""": parquet_path}
_snake_case : Dict = tmp_path / """cache"""
_snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" )
assert writer.write() > 0
_snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" )
_snake_case : int = pf.read()
assert dataset.data.table == output_table
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" )
_snake_case : Tuple = {"""image""": [image_path]}
_snake_case : Optional[int] = Features({"""image""": Image()} )
_snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ )
_snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" )
assert writer.write() > 0
_snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) )
assert dataset.features == reloaded_dataset.features
_snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"""feature, expected""" , [
(Features({"""foo""": Value("""int32""" )} ), None),
(Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ):
"""simple docstring"""
assert get_writer_batch_size(snake_case__ ) == expected
| 28 | 1 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class lowercase( __a ):
'''simple docstring'''
def UpperCamelCase_ ( self: int, a_: Any=None, a_: Optional[int]=None, a_: Dict=None, **a_: Dict ):
'''simple docstring'''
if tokenize_kwargs is None:
_snake_case : Union[str, Any] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
"""truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" )
_snake_case : List[str] = truncation
_snake_case : Dict = tokenize_kwargs
_snake_case : Any = {}
if return_tensors is not None:
_snake_case : Any = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCamelCase_ ( self: Dict, a_: Any, **a_: Optional[Any] ):
'''simple docstring'''
_snake_case : Tuple = self.framework
_snake_case : Optional[Any] = self.tokenizer(a_, return_tensors=a_, **a_ )
return model_inputs
def UpperCamelCase_ ( self: Optional[int], a_: str ):
'''simple docstring'''
_snake_case : Optional[Any] = self.model(**a_ )
return model_outputs
def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: str=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self: Tuple, *a_: Union[str, Any], **a_: Any ):
'''simple docstring'''
return super().__call__(*a_, **a_ )
| 28 |
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ):
'''simple docstring'''
_snake_case : Dict = parent
_snake_case : Dict = batch_size
_snake_case : Optional[Any] = image_size
_snake_case : int = num_channels
_snake_case : Tuple = num_stages
_snake_case : int = hidden_sizes
_snake_case : List[str] = depths
_snake_case : str = is_training
_snake_case : Dict = use_labels
_snake_case : List[str] = intermediate_size
_snake_case : Optional[int] = hidden_act
_snake_case : Any = type_sequence_label_size
_snake_case : List[str] = initializer_range
_snake_case : Union[str, Any] = out_features
_snake_case : Dict = num_labels
_snake_case : int = scope
_snake_case : Dict = num_stages
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : Optional[int] = None
if self.use_labels:
_snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
_snake_case : Tuple = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return UperNetConfig(
backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, )
def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ):
'''simple docstring'''
_snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Tuple = model(a_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Any = self.prepare_config_and_inputs()
(
(
_snake_case
) , (
_snake_case
) , (
_snake_case
) ,
) : List[Any] = config_and_inputs
_snake_case : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : List[str] = UperNetModelTester(self )
_snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Dict = model_class(a_ )
_snake_case : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : Tuple = [*signature.parameters.keys()]
_snake_case : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*a_ )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ):
_snake_case : Optional[Any] = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
_snake_case : Any = model(**self._prepare_for_class(a_, a_ ) )
_snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case : List[str] = self.model_tester.num_stages
self.assertEqual(len(a_ ), expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
_snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : int = True
check_hidden_states_output(a_, a_, a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : Optional[int] = True
check_hidden_states_output(a_, a_, a_ )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Tuple = _config_zero_init(a_ )
_snake_case : Dict = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_snake_case : Optional[int] = model_class(config=a_ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
pass
@slow
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Union[str, Any] = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class lowercase( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
_snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ )
_snake_case : Dict = prepare_img()
_snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ )
with torch.no_grad():
_snake_case : Tuple = model(**a_ )
_snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : int = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
_snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ )
_snake_case : List[str] = prepare_img()
_snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ )
with torch.no_grad():
_snake_case : Optional[Any] = model(**a_ )
_snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : Optional[Any] = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
| 28 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A_ = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 28 |
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
A_ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
A_ = [ord(letter) for letter in string.ascii_lowercase]
A_ = {ord(char) for char in VALID_CHARS}
A_ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ):
"""simple docstring"""
_snake_case : str = ""
_snake_case : int
_snake_case : int
_snake_case : int
for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ):
_snake_case : List[str] = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(snake_case__ )
return decoded
def UpperCAmelCase__ (snake_case__ : list[int] ):
"""simple docstring"""
_snake_case : list[str] = []
for key in product(snake_case__ , repeat=3 ):
_snake_case : List[Any] = try_key(snake_case__ , snake_case__ )
if encoded is not None:
possibles.append(snake_case__ )
return possibles
def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : str ):
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def UpperCAmelCase__ (snake_case__ : str = "p059_cipher.txt" ):
"""simple docstring"""
_snake_case : list[int]
_snake_case : list[str]
_snake_case : str
_snake_case : str
_snake_case : str = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" )
_snake_case : List[Any] = [int(snake_case__ ) for number in data.strip().split(""",""" )]
_snake_case : Optional[Any] = filter_valid_chars(snake_case__ )
for common_word in COMMON_WORDS:
_snake_case : Union[str, Any] = filter_common_word(snake_case__ , snake_case__ )
if len(snake_case__ ) == 1:
break
_snake_case : Optional[int] = possibles[0]
return sum(ord(snake_case__ ) for char in decoded_text )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 28 | 1 |
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
A_ = getLogger(__name__)
A_ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str , snake_case__ : str , snake_case__ : int = 8 , snake_case__ : str = DEFAULT_DEVICE , snake_case__ : Optional[Any]=False , snake_case__ : List[Any]="summarization" , snake_case__ : Optional[int]=None , **snake_case__ : List[Any] , ):
"""simple docstring"""
_snake_case : str = Path(snake_case__ ).open("""w""" , encoding="""utf-8""" )
_snake_case : Optional[int] = str(snake_case__ )
_snake_case : str = AutoModelForSeqaSeqLM.from_pretrained(snake_case__ ).to(snake_case__ )
if fpaa:
_snake_case : str = model.half()
_snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case__ )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
_snake_case : int = time.time()
# update config with task specific params
use_task_specific_params(snake_case__ , snake_case__ )
if prefix is None:
_snake_case : Dict = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(snake_case__ , snake_case__ ) ) ):
_snake_case : Optional[int] = [prefix + text for text in examples_chunk]
_snake_case : Optional[int] = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ )
_snake_case : Optional[int] = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case__ , )
_snake_case : Union[str, Any] = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
_snake_case : Any = int(time.time() - start_time ) # seconds
_snake_case : Union[str, Any] = len(snake_case__ )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def UpperCAmelCase__ ():
"""simple docstring"""
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def UpperCAmelCase__ (snake_case__ : str=True ):
"""simple docstring"""
_snake_case : int = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=snake_case__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=snake_case__ , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=snake_case__ , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=snake_case__ , required=snake_case__ , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=snake_case__ , required=snake_case__ , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=snake_case__ , required=snake_case__ , default=snake_case__ , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=snake_case__ , required=snake_case__ , default=snake_case__ , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=snake_case__ , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=snake_case__ , default=8 , required=snake_case__ , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=snake_case__ , default=-1 , required=snake_case__ , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=snake_case__ , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
_snake_case , _snake_case : List[Any] = parser.parse_known_args()
_snake_case : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case__ )
if parsed_args and verbose:
print(F"parsed the following generate kwargs: {parsed_args}" )
_snake_case : Optional[int] = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
_snake_case : str = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=snake_case__ )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can't mix --fp16 and --device cpu""" )
_snake_case : Any = generate_summaries_or_translations(
snake_case__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case__ , )
if args.reference_path is None:
return {}
# Compute scores
_snake_case : Union[str, Any] = calculate_bleu if """translation""" in args.task else calculate_rouge
_snake_case : str = [x.rstrip() for x in open(args.save_path ).readlines()]
_snake_case : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case__ )]
_snake_case : dict = score_fn(snake_case__ , snake_case__ )
scores.update(snake_case__ )
if args.dump_args:
scores.update(snake_case__ )
if args.info:
_snake_case : Union[str, Any] = args.info
if verbose:
print(snake_case__ )
if args.score_path is not None:
json.dump(snake_case__ , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 28 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowercase( __a ):
'''simple docstring'''
lowercase__ = ["image_processor", "feature_extractor"]
lowercase__ = "TvltImageProcessor"
lowercase__ = "TvltFeatureExtractor"
def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ):
'''simple docstring'''
super().__init__(image_processor=a_, feature_extractor=a_ )
_snake_case : Any = image_processor
_snake_case : Dict = feature_extractor
def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ):
'''simple docstring'''
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""" )
_snake_case : Optional[int] = None
if images is not None:
_snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ )
if images_mixed is not None:
_snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ )
if audio is not None:
_snake_case : Any = self.feature_extractor(
a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ )
_snake_case : List[str] = {}
if audio is not None:
output_dict.update(a_ )
if images is not None:
output_dict.update(a_ )
if images_mixed_dict is not None:
output_dict.update(a_ )
return output_dict
@property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Dict = self.image_processor.model_input_names
_snake_case : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 28 | 1 |
"""simple docstring"""
from .imports import is_rich_available
if is_rich_available():
from rich.traceback import install
install(show_locals=False)
else:
raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
| 28 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
A_ = '''pt'''
elif is_tf_available():
A_ = '''tf'''
else:
A_ = '''jax'''
class lowercase( __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = ByTaTokenizer
lowercase__ = False
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
super().setUp()
_snake_case : List[str] = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
return ByTaTokenizer.from_pretrained("""google/byt5-small""" )
def UpperCamelCase_ ( self: List[Any], **a_: int ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ )
def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ):
'''simple docstring'''
_snake_case : List[Any] = []
for i in range(len(a_ ) ):
try:
_snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) )
_snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) )
if max_length is not None and len(a_ ) > max_length:
_snake_case : Tuple = toks[:max_length]
if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0:
while len(a_ ) < min_length:
_snake_case : List[str] = toks + toks
# toks_str = [t[1] for t in toks]
_snake_case : Tuple = [t[0] for t in toks]
# Ensure consistency
_snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ )
if " " not in output_txt and len(a_ ) > 1:
_snake_case : Dict = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ )
+ """ """
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ )
)
if with_prefix_space:
_snake_case : Union[str, Any] = """ """ + output_txt
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
return output_txt, output_ids
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[int] = self.ta_base_tokenizer
_snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] )
_snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] )
self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[str] = self.ta_base_tokenizer
_snake_case : Tuple = """Unicode €."""
_snake_case : List[Any] = tokenizer(a_ )
_snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded["""input_ids"""], a_ )
# decoding
_snake_case : Tuple = tokenizer.decode(a_ )
self.assertEqual(a_, """Unicode €.</s>""" )
_snake_case : Tuple = tokenizer("""e è é ê ë""" )
_snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded["""input_ids"""], a_ )
# decoding
_snake_case : int = tokenizer.decode(a_ )
self.assertEqual(a_, """e è é ê ë</s>""" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Dict = self.ta_base_tokenizer
_snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
# fmt: off
_snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
_snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ )
self.assertIsInstance(a_, a_ )
if FRAMEWORK != "jax":
_snake_case : List[str] = list(batch.input_ids.numpy()[0] )
else:
_snake_case : Optional[int] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(a_, a_ )
self.assertEqual((2, 37), batch.input_ids.shape )
self.assertEqual((2, 37), batch.attention_mask.shape )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : List[Any] = self.ta_base_tokenizer
_snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
_snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("""input_ids""", a_ )
self.assertIn("""attention_mask""", a_ )
self.assertNotIn("""decoder_input_ids""", a_ )
self.assertNotIn("""decoder_attention_mask""", a_ )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.ta_base_tokenizer
_snake_case : Dict = [
"""Summary of the text.""",
"""Another summary.""",
]
_snake_case : Optional[int] = tokenizer(
text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ )
self.assertEqual(32, targets["""input_ids"""].shape[1] )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : int = self.ta_base_tokenizer
_snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""]
_snake_case : Dict = ["""Summary of the text. </s>"""]
# fmt: off
_snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
_snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
_snake_case : Optional[Any] = tokenizer(a_, text_target=a_ )
self.assertEqual(a_, batch["""input_ids"""][0] )
self.assertEqual(a_, batch["""labels"""][0] )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length, 42 )
# Now let's start the test
_snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
_snake_case : List[str] = tempfile.mkdtemp()
_snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
tokenizer.save_pretrained(a_ )
_snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ )
_snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ )
self.assertListEqual(a_, a_ )
shutil.rmtree(a_ )
_snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
_snake_case : Union[str, Any] = tempfile.mkdtemp()
_snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running"""
tokenizer.add_tokens(["""bim""", """bambam"""] )
_snake_case : Optional[Any] = tokenizer.additional_special_tokens
additional_special_tokens.append("""new_additional_special_token""" )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
tokenizer.save_pretrained(a_ )
_snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ )
_snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ )
self.assertListEqual(a_, a_ )
self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length, 42 )
_snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 )
self.assertEqual(tokenizer.model_max_length, 43 )
shutil.rmtree(a_ )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Optional[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(a_ )
with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file:
_snake_case : Union[str, Any] = json.load(a_ )
with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file:
_snake_case : List[Any] = json.load(a_ )
_snake_case : int = [f"<extra_id_{i}>" for i in range(125 )]
_snake_case : Optional[int] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
_snake_case : Dict = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile:
json.dump(a_, a_ )
with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile:
json.dump(a_, a_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_snake_case : Optional[int] = tokenizer_class.from_pretrained(
a_, )
self.assertIn(
"""an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )]
_snake_case : List[Any] = tokenizer_class.from_pretrained(
a_, additional_special_tokens=a_, )
self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens )
self.assertEqual(
["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : List[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(a_ )
_snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ )
self.assertTrue(tokenizer.decode([255] ) == """""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
_snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""]
_snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ )
self.assertIsInstance(a_, a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
_snake_case : Optional[int] = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
_snake_case : Any = 0
_snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(
a_, skip_special_tokens=a_ )
for attr in attributes_list:
setattr(a_, attr + """_id""", a_ )
self.assertEqual(getattr(a_, a_ ), a_ )
self.assertEqual(getattr(a_, attr + """_id""" ), a_ )
setattr(a_, attr + """_id""", a_ )
self.assertEqual(getattr(a_, a_ ), a_ )
self.assertEqual(getattr(a_, attr + """_id""" ), a_ )
setattr(a_, """additional_special_tokens_ids""", [] )
self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] )
self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] )
setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] )
self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] )
self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
| 28 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowercase( __a ):
'''simple docstring'''
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Optional[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(a_, """hidden_sizes""" ) )
self.parent.assertTrue(hasattr(a_, """neck_hidden_sizes""" ) )
self.parent.assertTrue(hasattr(a_, """num_attention_heads""" ) )
class lowercase:
'''simple docstring'''
def __init__( self: Dict, a_: str, a_: Tuple=13, a_: List[str]=32, a_: Dict=2, a_: Optional[int]=3, a_: Union[str, Any]=640, a_: Tuple=4, a_: Optional[Any]="silu", a_: Tuple=3, a_: str=32, a_: Optional[Any]=0.1, a_: Any=0.1, a_: Optional[Any]=0.1, a_: int=0.02, a_: int=True, a_: int=True, a_: Union[str, Any]=10, a_: Optional[Any]=None, ):
'''simple docstring'''
_snake_case : List[Any] = parent
_snake_case : Tuple = batch_size
_snake_case : Any = image_size
_snake_case : List[Any] = patch_size
_snake_case : List[Any] = num_channels
_snake_case : Optional[Any] = last_hidden_size
_snake_case : Tuple = num_attention_heads
_snake_case : Optional[Any] = hidden_act
_snake_case : int = conv_kernel_size
_snake_case : Dict = output_stride
_snake_case : Any = hidden_dropout_prob
_snake_case : int = attention_probs_dropout_prob
_snake_case : Optional[Any] = classifier_dropout_prob
_snake_case : str = use_labels
_snake_case : List[Any] = is_training
_snake_case : Any = num_labels
_snake_case : Union[str, Any] = initializer_range
_snake_case : Any = scope
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : Dict = None
_snake_case : str = None
if self.use_labels:
_snake_case : Optional[int] = ids_tensor([self.batch_size], self.num_labels )
_snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
_snake_case : Union[str, Any] = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
return MobileViTConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, )
def UpperCamelCase_ ( self: List[str], a_: Any, a_: Optional[int], a_: Dict, a_: Any ):
'''simple docstring'''
_snake_case : Union[str, Any] = MobileViTModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Optional[Any] = model(a_ )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self: Dict, a_: Optional[int], a_: Tuple, a_: List[str], a_: List[Any] ):
'''simple docstring'''
_snake_case : Optional[Any] = self.num_labels
_snake_case : Dict = MobileViTForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : Dict = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self: str, a_: Any, a_: Union[str, Any], a_: Tuple, a_: int ):
'''simple docstring'''
_snake_case : Optional[Any] = self.num_labels
_snake_case : Tuple = MobileViTForSemanticSegmentation(a_ )
model.to(a_ )
model.eval()
_snake_case : int = model(a_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
_snake_case : Tuple = model(a_, labels=a_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Any = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs
_snake_case : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": MobileViTModel,
"image-classification": MobileViTForImageClassification,
"image-segmentation": MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = MobileViTModelTester(self )
_snake_case : Dict = MobileViTConfigTester(self, config_class=a_, has_text_modality=a_ )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViT does not use inputs_embeds""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViT does not support input and output embeddings""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViT does not output attentions""" )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Any = model_class(a_ )
_snake_case : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : List[Any] = [*signature.parameters.keys()]
_snake_case : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
def check_hidden_states_output(a_: Union[str, Any], a_: int, a_: int ):
_snake_case : Union[str, Any] = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
_snake_case : Union[str, Any] = model(**self._prepare_for_class(a_, a_ ) )
_snake_case : List[Any] = outputs.hidden_states
_snake_case : Any = 5
self.assertEqual(len(a_ ), a_ )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
_snake_case : Union[str, Any] = 2
for i in range(len(a_ ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
_snake_case , _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : List[Any] = True
check_hidden_states_output(a_, a_, a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : str = True
check_hidden_states_output(a_, a_, a_ )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*a_ )
@slow
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[str] = MobileViTModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Optional[int] = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(a_ )
_snake_case : Union[str, Any] = self.default_image_processor
_snake_case : Optional[int] = prepare_img()
_snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Union[str, Any] = model(**a_ )
# verify the logits
_snake_case : List[str] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : str = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" )
_snake_case : Union[str, Any] = model.to(a_ )
_snake_case : int = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" )
_snake_case : List[Any] = prepare_img()
_snake_case : str = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Dict = model(**a_ )
_snake_case : Union[str, Any] = outputs.logits
# verify the logits
_snake_case : List[Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[Any] = torch.tensor(
[
[[6.9_713, 6.9_786, 7.2_422], [7.2_893, 7.2_825, 7.4_446], [7.6_580, 7.8_797, 7.9_420]],
[[-10.6_869, -10.3_250, -10.3_471], [-10.4_228, -9.9_868, -9.7_132], [-11.0_405, -11.0_221, -10.7_318]],
[[-3.3_089, -2.8_539, -2.6_740], [-3.2_706, -2.5_621, -2.5_108], [-3.2_534, -2.6_615, -2.6_651]],
], device=a_, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case : List[Any] = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" )
_snake_case : Dict = model.to(a_ )
_snake_case : str = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" )
_snake_case : Any = prepare_img()
_snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Tuple = model(**a_ )
_snake_case : Union[str, Any] = outputs.logits.detach().cpu()
_snake_case : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(50, 60)] )
_snake_case : str = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, a_ )
_snake_case : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=a_ )
_snake_case : Optional[Any] = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, a_ )
| 28 |
"""simple docstring"""
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class lowercase( __a ):
'''simple docstring'''
@staticmethod
@abstractmethod
def UpperCamelCase_ ( a_: ArgumentParser ):
'''simple docstring'''
raise NotImplementedError()
@abstractmethod
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
raise NotImplementedError()
| 28 | 1 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
A_ = logging.get_logger(__name__)
A_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
A_ = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
A_ = {
'''distilbert-base-uncased''': 5_12,
'''distilbert-base-uncased-distilled-squad''': 5_12,
'''distilbert-base-cased''': 5_12,
'''distilbert-base-cased-distilled-squad''': 5_12,
'''distilbert-base-german-cased''': 5_12,
'''distilbert-base-multilingual-cased''': 5_12,
}
A_ = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = PRETRAINED_INIT_CONFIGURATION
lowercase__ = ["input_ids", "attention_mask"]
lowercase__ = DistilBertTokenizer
def __init__( self: int, a_: Union[str, Any]=None, a_: int=None, a_: str=True, a_: Dict="[UNK]", a_: List[str]="[SEP]", a_: Dict="[PAD]", a_: Union[str, Any]="[CLS]", a_: Dict="[MASK]", a_: Optional[Any]=True, a_: List[Any]=None, **a_: Optional[int], ):
'''simple docstring'''
super().__init__(
a_, tokenizer_file=a_, do_lower_case=a_, unk_token=a_, sep_token=a_, pad_token=a_, cls_token=a_, mask_token=a_, tokenize_chinese_chars=a_, strip_accents=a_, **a_, )
_snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""", a_ ) != do_lower_case
or normalizer_state.get("""strip_accents""", a_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""", a_ ) != tokenize_chinese_chars
):
_snake_case : Optional[Any] = getattr(a_, normalizer_state.pop("""type""" ) )
_snake_case : List[Any] = do_lower_case
_snake_case : Optional[Any] = strip_accents
_snake_case : Optional[int] = tokenize_chinese_chars
_snake_case : Dict = normalizer_class(**a_ )
_snake_case : int = do_lower_case
def UpperCamelCase_ ( self: Tuple, a_: Union[str, Any], a_: str=None ):
'''simple docstring'''
_snake_case : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self: Optional[int], a_: List[int], a_: Optional[List[int]] = None ):
'''simple docstring'''
_snake_case : List[Any] = [self.sep_token_id]
_snake_case : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: Optional[str] = None ):
'''simple docstring'''
_snake_case : Optional[Any] = self._tokenizer.model.save(a_, name=a_ )
return tuple(a_ )
| 28 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''',
'''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''',
'''junnyu/roformer_chinese_char_small''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'''
),
'''junnyu/roformer_chinese_char_base''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'''
),
'''junnyu/roformer_small_discriminator''': (
'''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'''
),
'''junnyu/roformer_small_generator''': (
'''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'''
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "roformer"
def __init__( self: List[str], a_: Tuple=50_000, a_: Optional[Any]=None, a_: List[str]=768, a_: Union[str, Any]=12, a_: Optional[int]=12, a_: Optional[Any]=3_072, a_: List[str]="gelu", a_: List[str]=0.1, a_: Tuple=0.1, a_: Optional[int]=1_536, a_: Any=2, a_: Optional[int]=0.02, a_: Tuple=1E-12, a_: Dict=0, a_: str=False, a_: Dict=True, **a_: Dict, ):
'''simple docstring'''
super().__init__(pad_token_id=a_, **a_ )
_snake_case : int = vocab_size
_snake_case : int = hidden_size if embedding_size is None else embedding_size
_snake_case : Dict = hidden_size
_snake_case : Optional[int] = num_hidden_layers
_snake_case : Any = num_attention_heads
_snake_case : Dict = hidden_act
_snake_case : Optional[int] = intermediate_size
_snake_case : List[Any] = hidden_dropout_prob
_snake_case : Union[str, Any] = attention_probs_dropout_prob
_snake_case : Any = max_position_embeddings
_snake_case : Tuple = type_vocab_size
_snake_case : List[Any] = initializer_range
_snake_case : List[Any] = layer_norm_eps
_snake_case : Optional[Any] = rotary_value
_snake_case : List[str] = use_cache
class lowercase( __a ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
if self.task == "multiple-choice":
_snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case : List[str] = {0: """batch""", 1: """sequence"""}
_snake_case : List[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 28 | 1 |
"""simple docstring"""
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case , _snake_case : Any = 9, 14 # noqa: F841
_snake_case : Any = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
_snake_case : int = defaultdict(snake_case__ )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
_snake_case : Union[str, Any] = mst(snake_case__ )
_snake_case : Any = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
_snake_case : Union[str, Any] = tuple(answer[:2] )
_snake_case : Optional[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 28 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ):
"""simple docstring"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ):
"""simple docstring"""
_snake_case : Optional[Any] = []
for old_item in old_list:
_snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" )
_snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" )
_snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" )
_snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" )
_snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" )
_snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ):
"""simple docstring"""
_snake_case : Dict = []
for old_item in old_list:
_snake_case : Dict = old_item
_snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" )
_snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" )
_snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ):
"""simple docstring"""
assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_snake_case : Union[str, Any] = old_checkpoint[path]
_snake_case : Optional[int] = old_tensor.shape[0] // 3
_snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3
_snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 )
_snake_case : Union[str, Any] = query.reshape(snake_case__ )
_snake_case : Tuple = key.reshape(snake_case__ )
_snake_case : Any = value.reshape(snake_case__ )
for path in paths:
_snake_case : List[Any] = path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0]
else:
_snake_case : Optional[Any] = old_checkpoint[path["""old"""]]
def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ):
"""simple docstring"""
_snake_case : int = {}
_snake_case : Tuple = checkpoint["""time_embed.0.weight"""]
_snake_case : List[str] = checkpoint["""time_embed.0.bias"""]
_snake_case : List[str] = checkpoint["""time_embed.2.weight"""]
_snake_case : Tuple = checkpoint["""time_embed.2.bias"""]
_snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""]
_snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""]
_snake_case : List[Any] = checkpoint["""out.0.weight"""]
_snake_case : Any = checkpoint["""out.0.bias"""]
_snake_case : Any = checkpoint["""out.2.weight"""]
_snake_case : List[str] = checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_snake_case : Any = {
layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
# Retrieves the keys for the middle blocks only
_snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_snake_case : Optional[int] = {
layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
# Retrieves the keys for the output blocks only
_snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_snake_case : List[Any] = {
layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
for i in range(1 , snake_case__ ):
_snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1)
_snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1)
_snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key]
_snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key]
if F"input_blocks.{i}.0.op.weight" in checkpoint:
_snake_case : Union[str, Any] = checkpoint[
F"input_blocks.{i}.0.op.weight"
]
_snake_case : Dict = checkpoint[
F"input_blocks.{i}.0.op.bias"
]
continue
_snake_case : Optional[int] = renew_resnet_paths(snake_case__ )
_snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
_snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ )
if len(snake_case__ ):
_snake_case : str = renew_attention_paths(snake_case__ )
_snake_case : List[str] = {
"""old""": F"input_blocks.{i}.1",
"""new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}",
}
_snake_case : Optional[int] = {
F"input_blocks.{i}.1.qkv.bias": {
"""key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"""query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"""value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
F"input_blocks.{i}.1.qkv.weight": {
"""key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"""query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"""value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , )
_snake_case : int = middle_blocks[0]
_snake_case : List[str] = middle_blocks[1]
_snake_case : Any = middle_blocks[2]
_snake_case : Dict = renew_resnet_paths(snake_case__ )
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ )
_snake_case : Any = renew_resnet_paths(snake_case__ )
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ )
_snake_case : Dict = renew_attention_paths(snake_case__ )
_snake_case : Tuple = {
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ )
for i in range(snake_case__ ):
_snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1)
_snake_case : Dict = i % (config["""num_res_blocks"""] + 1)
_snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]]
_snake_case : Any = {}
for layer in output_block_layers:
_snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(snake_case__ )
else:
_snake_case : str = [layer_name]
if len(snake_case__ ) > 1:
_snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key]
_snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key]
_snake_case : List[Any] = renew_resnet_paths(snake_case__ )
_snake_case : int = renew_resnet_paths(snake_case__ )
_snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_snake_case : Any = checkpoint[
F"output_blocks.{i}.{index}.conv.weight"
]
_snake_case : Optional[int] = checkpoint[
F"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(snake_case__ ) == 2:
_snake_case : Any = []
if len(snake_case__ ):
_snake_case : str = renew_attention_paths(snake_case__ )
_snake_case : str = {
"""old""": F"output_blocks.{i}.1",
"""new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
_snake_case : int = {
F"output_blocks.{i}.1.qkv.bias": {
"""key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"""query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"""value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
F"output_blocks.{i}.1.qkv.weight": {
"""key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"""query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"""value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , )
else:
_snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] )
_snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] )
_snake_case : Any = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the architecture.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
A_ = parser.parse_args()
A_ = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
A_ = json.loads(f.read())
A_ = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
A_ = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 28 | 1 |
"""simple docstring"""
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def UpperCAmelCase__ (snake_case__ : Optional[int] ):
"""simple docstring"""
print("""Loading config file...""" )
def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ):
_snake_case : Union[str, Any] = []
for k, v in d.items():
_snake_case : List[str] = parent_key + sep + k if parent_key else k
if isinstance(snake_case__ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() )
else:
items.append((new_key, v) )
return dict(snake_case__ )
_snake_case : Dict = argparse.Namespace()
with open(snake_case__ , """r""" ) as yaml_file:
try:
_snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader )
_snake_case : Any = flatten_yaml_as_dict(snake_case__ )
for k, v in flat_cfg.items():
setattr(snake_case__ , snake_case__ , snake_case__ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) )
return config
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : Dict = MobileViTVaConfig()
_snake_case : Optional[int] = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
_snake_case : Dict = 10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
_snake_case : Union[str, Any] = 3_84
else:
_snake_case : Optional[Any] = 2_56
_snake_case : str = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
_snake_case : str = 2_10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
_snake_case : Dict = 3_84
else:
_snake_case : Union[str, Any] = 2_56
_snake_case : Tuple = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
_snake_case : Tuple = 1_51
_snake_case : str = 5_12
_snake_case : List[Any] = """ade20k-id2label.json"""
_snake_case : Union[str, Any] = True
elif task_name.startswith("""voc_""" ):
_snake_case : List[Any] = 21
_snake_case : List[str] = 5_12
_snake_case : int = """pascal-voc-id2label.json"""
_snake_case : int = True
# orig_config
_snake_case : int = load_orig_config_file(snake_case__ )
assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model"
_snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 )
assert (
getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
_snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
_snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 )
if "_deeplabv3" in task_name:
_snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] )
_snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 )
_snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 )
# id2label
_snake_case : Union[str, Any] = """huggingface/label-files"""
_snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) )
_snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()}
_snake_case : Tuple = idalabel
_snake_case : Any = {v: k for k, v in idalabel.items()}
return config
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : List[str] = dct.pop(snake_case__ )
_snake_case : List[Any] = val
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ):
"""simple docstring"""
if base_model:
_snake_case : Any = """"""
else:
_snake_case : Union[str, Any] = """mobilevitv2."""
_snake_case : Dict = []
for k in state_dict.keys():
if k[:8] == "encoder.":
_snake_case : List[str] = k[8:]
else:
_snake_case : str = k
if ".block." in k:
_snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" )
if ".conv." in k:
_snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" )
if ".norm." in k:
_snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" )
if "conv_1." in k:
_snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." )
for i in [1, 2]:
if F"layer_{i}." in k:
_snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
_snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" )
if ".red_1x1." in k:
_snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" )
for i in [3, 4, 5]:
if F"layer_{i}.0." in k:
_snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if F"layer_{i}.1.local_rep.0." in k:
_snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if F"layer_{i}.1.local_rep.1." in k:
_snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
_snake_case : Optional[Any] = [0, 1]
elif i == 4:
_snake_case : Any = [0, 1, 2, 3]
elif i == 5:
_snake_case : List[Any] = [0, 1, 2]
for j in j_in:
if F"layer_{i}.1.global_rep.{j}." in k:
_snake_case : Any = k_new.replace(
F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if F"layer_{i}.1.global_rep.{j+1}." in k:
_snake_case : List[Any] = k_new.replace(
F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." )
if F"layer_{i}.1.conv_proj." in k:
_snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
_snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" )
if "pre_norm_attn.1." in k:
_snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" )
if "pre_norm_ffn.0." in k:
_snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" )
if "pre_norm_ffn.1." in k:
_snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
_snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" )
if "classifier.1." in k:
_snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" )
if "seg_head." in k:
_snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" )
if ".aspp_layer." in k:
_snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" )
if ".aspp_pool." in k:
_snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" )
rename_keys.append((k, k_new) )
return rename_keys
def UpperCAmelCase__ (snake_case__ : str ):
"""simple docstring"""
_snake_case : List[str] = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(snake_case__ )
for k in keys_to_ignore:
state_dict.pop(snake_case__ , snake_case__ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
_snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ )
# load original state_dict
_snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
_snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval()
_snake_case : List[Any] = False
else:
_snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval()
_snake_case : Optional[Any] = False
# remove and rename some keys of load the original model
_snake_case : Union[str, Any] = checkpoint
remove_unused_keys(snake_case__ )
_snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
# load modified state_dict
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
_snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" )
_snake_case : Optional[Any] = model(**snake_case__ )
# verify classification model
if task_name.startswith("""imagenet""" ):
_snake_case : List[str] = outputs.logits
_snake_case : Any = logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
_snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] )
assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(F"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--task''',
default='''imagenet1k_256''',
type=str,
help=(
'''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '''
'''
Classification (ImageNet-1k)
- MobileViTV2 (256x256) : imagenet1k_256
- MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384
- MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :
imagenet21k_to_1k_256
- MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on
ImageNet-1k 384x384) : imagenet21k_to_1k_384
Segmentation
- ADE20K Dataset : ade20k_deeplabv3
- Pascal VOC 2012 Dataset: voc_deeplabv3
'''
),
choices=[
'''imagenet1k_256''',
'''imagenet1k_384''',
'''imagenet21k_to_1k_256''',
'''imagenet21k_to_1k_384''',
'''ade20k_deeplabv3''',
'''voc_deeplabv3''',
],
)
parser.add_argument(
'''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
A_ = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 28 |
"""simple docstring"""
from typing import Any
def UpperCAmelCase__ (snake_case__ : list ):
"""simple docstring"""
if not input_list:
return []
_snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list]
_snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
"""simple docstring"""
import math
class lowercase:
'''simple docstring'''
def UpperCamelCase_ ( self: Union[str, Any], a_: list[list[float]], a_: list[int] ):
'''simple docstring'''
_snake_case : str = 0.0
_snake_case : Optional[int] = 0.0
for i in range(len(a_ ) ):
da += math.pow((sample[i] - weights[0][i]), 2 )
da += math.pow((sample[i] - weights[1][i]), 2 )
return 0 if da > da else 1
return 0
def UpperCamelCase_ ( self: Tuple, a_: list[list[int | float]], a_: list[int], a_: int, a_: float ):
'''simple docstring'''
for i in range(len(a_ ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : List[str] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
_snake_case : Dict = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
_snake_case : Any = SelfOrganizingMap()
_snake_case : Dict = 3
_snake_case : str = 0.5
for _ in range(snake_case__ ):
for j in range(len(snake_case__ ) ):
# training sample
_snake_case : List[Any] = training_samples[j]
# Compute the winning vector
_snake_case : Optional[Any] = self_organizing_map.get_winner(snake_case__ , snake_case__ )
# Update the winning vector
_snake_case : List[Any] = self_organizing_map.update(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# classify test sample
_snake_case : Tuple = [0, 0, 0, 1]
_snake_case : Dict = self_organizing_map.get_winner(snake_case__ , snake_case__ )
# results
print(F"Clusters that the test sample belongs to : {winner}" )
print(F"Weights that have been trained : {weights}" )
# running the main() function
if __name__ == "__main__":
main()
| 28 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''',
'''BridgeTower/bridgetower-base-itm-mlm''': (
'''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json'''
),
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower_vision_model"
def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ):
'''simple docstring'''
super().__init__(**a_ )
_snake_case : str = hidden_size
_snake_case : int = num_hidden_layers
_snake_case : Any = num_channels
_snake_case : Union[str, Any] = patch_size
_snake_case : Dict = image_size
_snake_case : Optional[Any] = initializer_factor
_snake_case : Any = layer_norm_eps
_snake_case : int = stop_gradient
_snake_case : Any = share_layernorm
_snake_case : List[Any] = remove_last_layer
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ )
if config_dict.get("""model_type""" ) == "bridgetower":
_snake_case : str = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a_, **a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower_text_model"
def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ):
'''simple docstring'''
super().__init__(**a_ )
_snake_case : str = vocab_size
_snake_case : Optional[int] = hidden_size
_snake_case : Dict = num_hidden_layers
_snake_case : Optional[int] = num_attention_heads
_snake_case : Optional[int] = hidden_act
_snake_case : List[Any] = initializer_factor
_snake_case : Optional[int] = intermediate_size
_snake_case : int = hidden_dropout_prob
_snake_case : Tuple = attention_probs_dropout_prob
_snake_case : List[str] = max_position_embeddings
_snake_case : Optional[int] = type_vocab_size
_snake_case : List[Any] = layer_norm_eps
_snake_case : Dict = position_embedding_type
_snake_case : Dict = use_cache
_snake_case : int = pad_token_id
_snake_case : Union[str, Any] = bos_token_id
_snake_case : Union[str, Any] = eos_token_id
@classmethod
def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ):
'''simple docstring'''
_snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ )
if config_dict.get("""model_type""" ) == "bridgetower":
_snake_case : Union[str, Any] = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a_, **a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower"
def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ):
'''simple docstring'''
_snake_case : str = kwargs.pop("""text_config_dict""", a_ )
_snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ )
super().__init__(**a_ )
_snake_case : str = share_cross_modal_transformer_layers
_snake_case : Any = hidden_act
_snake_case : Union[str, Any] = hidden_size
_snake_case : Union[str, Any] = initializer_factor
_snake_case : Dict = layer_norm_eps
_snake_case : Dict = share_link_tower_layers
_snake_case : Optional[int] = link_tower_type
_snake_case : Any = num_attention_heads
_snake_case : int = num_hidden_layers
_snake_case : int = tie_word_embeddings
_snake_case : Optional[Any] = init_layernorm_from_vision_encoder
if text_config is None:
_snake_case : Optional[Any] = {}
logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" )
if vision_config is None:
_snake_case : str = {}
logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" )
_snake_case : Any = BridgeTowerTextConfig(**a_ )
_snake_case : List[Any] = BridgeTowerVisionConfig(**a_ )
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ):
'''simple docstring'''
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[int] = copy.deepcopy(self.__dict__ )
_snake_case : str = self.text_config.to_dict()
_snake_case : List[str] = self.vision_config.to_dict()
_snake_case : Tuple = self.__class__.model_type
return output
| 28 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class lowercase( unittest.TestCase ):
'''simple docstring'''
def __init__( self: Tuple, a_: Optional[Any], a_: Optional[Any]=7, a_: Any=3, a_: Tuple=18, a_: int=30, a_: Union[str, Any]=400, a_: List[Any]=True, a_: int=None, a_: Optional[Any]=True, a_: List[str]=None, a_: Optional[Any]=True, a_: Tuple=[0.48_145_466, 0.4_578_275, 0.40_821_073], a_: Optional[int]=[0.26_862_954, 0.26_130_258, 0.27_577_711], a_: Union[str, Any]=True, ):
'''simple docstring'''
_snake_case : str = size if size is not None else {"""height""": 224, """width""": 224}
_snake_case : str = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_snake_case : Tuple = parent
_snake_case : List[str] = batch_size
_snake_case : Tuple = num_channels
_snake_case : int = image_size
_snake_case : Dict = min_resolution
_snake_case : Optional[Any] = max_resolution
_snake_case : Any = do_resize
_snake_case : Tuple = size
_snake_case : int = do_center_crop
_snake_case : List[Any] = crop_size
_snake_case : Optional[Any] = do_normalize
_snake_case : Optional[Any] = image_mean
_snake_case : Dict = image_std
_snake_case : str = do_convert_rgb
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def UpperCamelCase_ ( self: Union[str, Any], a_: Any=False, a_: List[str]=False, a_: Union[str, Any]=False ):
'''simple docstring'''
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
_snake_case : List[Any] = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uinta ) )
else:
_snake_case : Any = []
for i in range(self.batch_size ):
_snake_case , _snake_case : Union[str, Any] = np.random.choice(np.arange(self.min_resolution, self.max_resolution ), 2 )
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
_snake_case : str = [Image.fromarray(np.moveaxis(a_, 0, -1 ) ) for x in image_inputs]
if torchify:
_snake_case : Dict = [torch.from_numpy(a_ ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class lowercase( __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : Tuple = ChineseCLIPImageProcessingTester(self, do_center_crop=a_ )
@property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_, """do_resize""" ) )
self.assertTrue(hasattr(a_, """size""" ) )
self.assertTrue(hasattr(a_, """do_center_crop""" ) )
self.assertTrue(hasattr(a_, """center_crop""" ) )
self.assertTrue(hasattr(a_, """do_normalize""" ) )
self.assertTrue(hasattr(a_, """image_mean""" ) )
self.assertTrue(hasattr(a_, """image_std""" ) )
self.assertTrue(hasattr(a_, """do_convert_rgb""" ) )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {"""height""": 224, """width""": 224} )
self.assertEqual(image_processor.crop_size, {"""height""": 18, """width""": 18} )
_snake_case : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size, {"""height""": 84, """width""": 84} )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_snake_case : Any = self.image_processor_tester.prepare_inputs(equal_resolution=a_ )
for image in image_inputs:
self.assertIsInstance(a_, Image.Image )
# Test not batched input
_snake_case : int = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
# Test batched
_snake_case : Union[str, Any] = image_processing(a_, return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_snake_case : Any = self.image_processor_tester.prepare_inputs(equal_resolution=a_, numpify=a_ )
for image in image_inputs:
self.assertIsInstance(a_, np.ndarray )
# Test not batched input
_snake_case : str = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
# Test batched
_snake_case : Optional[int] = image_processing(a_, return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_snake_case : str = self.image_processor_tester.prepare_inputs(equal_resolution=a_, torchify=a_ )
for image in image_inputs:
self.assertIsInstance(a_, torch.Tensor )
# Test not batched input
_snake_case : Tuple = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
# Test batched
_snake_case : str = image_processing(a_, return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
@require_torch
@require_vision
class lowercase( __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case : List[str] = ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=a_ )
_snake_case : Optional[int] = 3
@property
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_, """do_resize""" ) )
self.assertTrue(hasattr(a_, """size""" ) )
self.assertTrue(hasattr(a_, """do_center_crop""" ) )
self.assertTrue(hasattr(a_, """center_crop""" ) )
self.assertTrue(hasattr(a_, """do_normalize""" ) )
self.assertTrue(hasattr(a_, """image_mean""" ) )
self.assertTrue(hasattr(a_, """image_std""" ) )
self.assertTrue(hasattr(a_, """do_convert_rgb""" ) )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_snake_case : List[str] = self.image_processor_tester.prepare_inputs(equal_resolution=a_ )
for image in image_inputs:
self.assertIsInstance(a_, Image.Image )
# Test not batched input
_snake_case : Dict = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
# Test batched
_snake_case : List[str] = image_processing(a_, return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
| 28 |
"""simple docstring"""
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png"""
_snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" )
return image
def UpperCAmelCase__ (snake_case__ : Any ):
"""simple docstring"""
_snake_case : str = []
# fmt: off
# vision encoder
rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") )
rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") )
rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") )
rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") )
# QFormer
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") )
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") )
# fmt: on
return rename_keys
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : Optional[Any] = dct.pop(snake_case__ )
_snake_case : Optional[int] = val
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ):
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
_snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" )
_snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" )
# next, set bias in the state dict
_snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) )
_snake_case : Dict = qkv_bias
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ):
"""simple docstring"""
_snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24
_snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
_snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict()
elif "opt-6.7b" in model_name:
_snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict()
elif "t5-xl" in model_name:
_snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
_snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
_snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ )
return config, image_size
@torch.no_grad()
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ):
"""simple docstring"""
_snake_case : List[str] = (
AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" )
if """opt""" in model_name
else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" )
)
_snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0]
_snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ )
_snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval()
_snake_case : int = {
"""blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""),
"""blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""),
"""blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""),
"""blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""),
"""blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""),
"""blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""),
"""blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""),
}
_snake_case , _snake_case : List[Any] = model_name_to_original[model_name]
# load original model
print("""Loading original model...""" )
_snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu"""
_snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess(
name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ )
original_model.eval()
print("""Done!""" )
# update state dict keys
_snake_case : Any = original_model.state_dict()
_snake_case : Dict = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
_snake_case : str = state_dict.pop(snake_case__ )
if key.startswith("""Qformer.bert""" ):
_snake_case : str = key.replace("""Qformer.bert""" , """qformer""" )
if "attention.self" in key:
_snake_case : Any = key.replace("""self""" , """attention""" )
if "opt_proj" in key:
_snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" )
if "t5_proj" in key:
_snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" )
if key.startswith("""opt""" ):
_snake_case : List[Any] = key.replace("""opt""" , """language""" )
if key.startswith("""t5""" ):
_snake_case : List[Any] = key.replace("""t5""" , """language""" )
_snake_case : str = val
# read in qv biases
read_in_q_v_bias(snake_case__ , snake_case__ )
_snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ )
assert len(snake_case__ ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
_snake_case : Any = load_demo_image()
_snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ )
_snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ )
# create processor
_snake_case : Any = BlipImageProcessor(
size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ )
_snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
_snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ )
# make sure processor creates exact same pixel values
assert torch.allclose(snake_case__ , snake_case__ )
original_model.to(snake_case__ )
hf_model.to(snake_case__ )
with torch.no_grad():
if "opt" in model_name:
_snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits
_snake_case : int = hf_model(snake_case__ , snake_case__ ).logits
else:
_snake_case : str = original_model(
{"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits
_snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
_snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits
assert original_logits.shape == logits.shape
print("""First values of original logits:""" , original_logits[0, :3, :3] )
print("""First values of HF logits:""" , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
_snake_case : List[str] = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ )
assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
_snake_case : Union[str, Any] = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ )
else:
# cast to same type
_snake_case : int = logits.dtype
assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 )
print("""Looks ok!""" )
print("""Generating a caption...""" )
_snake_case : Any = """"""
_snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ )
_snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} )
_snake_case : Tuple = hf_model.generate(
snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print("""Original generation:""" , snake_case__ )
_snake_case : Optional[Any] = input_ids.shape[1]
_snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ )
_snake_case : Optional[Any] = [text.strip() for text in output_text]
print("""HF generation:""" , snake_case__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(snake_case__ )
hf_model.save_pretrained(snake_case__ )
if push_to_hub:
processor.push_to_hub(F"nielsr/{model_name}" )
hf_model.push_to_hub(F"nielsr/{model_name}" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
A_ = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
A_ = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = 42
lowercase__ = None
lowercase__ = None
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Optional[Any] = Node(1 )
_snake_case : Dict = Node(2 )
_snake_case : Dict = Node(3 )
_snake_case : Dict = Node(4 )
_snake_case : Union[str, Any] = Node(5 )
return tree
def UpperCAmelCase__ (snake_case__ : Node | None ):
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def UpperCAmelCase__ (snake_case__ : Node | None ):
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def UpperCAmelCase__ (snake_case__ : Node | None ):
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def UpperCAmelCase__ (snake_case__ : Node | None ):
"""simple docstring"""
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def UpperCAmelCase__ (snake_case__ : Node | None ):
"""simple docstring"""
_snake_case : list[Any] = []
if root is None:
return output
_snake_case : Union[str, Any] = deque([root] )
while process_queue:
_snake_case : str = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def UpperCAmelCase__ (snake_case__ : Node | None , snake_case__ : int ):
"""simple docstring"""
_snake_case : list[Any] = []
def populate_output(snake_case__ : Node | None , snake_case__ : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case__ , snake_case__ )
return output
def UpperCAmelCase__ (snake_case__ : Node | None , snake_case__ : int ):
"""simple docstring"""
_snake_case : list[Any] = []
def populate_output(snake_case__ : Node | None , snake_case__ : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case__ , snake_case__ )
return output
def UpperCAmelCase__ (snake_case__ : Node | None ):
"""simple docstring"""
if root is None:
return []
_snake_case : list[Sequence[Node | None]] = []
_snake_case : List[Any] = 0
_snake_case : Optional[int] = height(snake_case__ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case__ , snake_case__ ) )
_snake_case : Tuple = 1
else:
output.append(get_nodes_from_right_to_left(snake_case__ , snake_case__ ) )
_snake_case : Tuple = 0
return output
def UpperCAmelCase__ (): # Main function for testing.
"""simple docstring"""
_snake_case : Optional[int] = make_tree()
print(F"In-order Traversal: {inorder(snake_case__ )}" )
print(F"Pre-order Traversal: {preorder(snake_case__ )}" )
print(F"Post-order Traversal: {postorder(snake_case__ )}" , """\n""" )
print(F"Height of Tree: {height(snake_case__ )}" , """\n""" )
print("""Complete Level Order Traversal: """ )
print(level_order(snake_case__ ) , """\n""" )
print("""Level-wise order Traversal: """ )
for level in range(1 , height(snake_case__ ) + 1 ):
print(F"Level {level}:" , get_nodes_from_left_to_right(snake_case__ , level=snake_case__ ) )
print("""\nZigZag order Traversal: """ )
print(zigzag(snake_case__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 28 |
"""simple docstring"""
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def UpperCAmelCase__ (snake_case__ : Optional[int] ):
"""simple docstring"""
print("""Loading config file...""" )
def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ):
_snake_case : Union[str, Any] = []
for k, v in d.items():
_snake_case : List[str] = parent_key + sep + k if parent_key else k
if isinstance(snake_case__ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() )
else:
items.append((new_key, v) )
return dict(snake_case__ )
_snake_case : Dict = argparse.Namespace()
with open(snake_case__ , """r""" ) as yaml_file:
try:
_snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader )
_snake_case : Any = flatten_yaml_as_dict(snake_case__ )
for k, v in flat_cfg.items():
setattr(snake_case__ , snake_case__ , snake_case__ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) )
return config
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : Dict = MobileViTVaConfig()
_snake_case : Optional[int] = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
_snake_case : Dict = 10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
_snake_case : Union[str, Any] = 3_84
else:
_snake_case : Optional[Any] = 2_56
_snake_case : str = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
_snake_case : str = 2_10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
_snake_case : Dict = 3_84
else:
_snake_case : Union[str, Any] = 2_56
_snake_case : Tuple = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
_snake_case : Tuple = 1_51
_snake_case : str = 5_12
_snake_case : List[Any] = """ade20k-id2label.json"""
_snake_case : Union[str, Any] = True
elif task_name.startswith("""voc_""" ):
_snake_case : List[Any] = 21
_snake_case : List[str] = 5_12
_snake_case : int = """pascal-voc-id2label.json"""
_snake_case : int = True
# orig_config
_snake_case : int = load_orig_config_file(snake_case__ )
assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model"
_snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 )
assert (
getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
_snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
_snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 )
if "_deeplabv3" in task_name:
_snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] )
_snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 )
_snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 )
# id2label
_snake_case : Union[str, Any] = """huggingface/label-files"""
_snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) )
_snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()}
_snake_case : Tuple = idalabel
_snake_case : Any = {v: k for k, v in idalabel.items()}
return config
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : List[str] = dct.pop(snake_case__ )
_snake_case : List[Any] = val
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ):
"""simple docstring"""
if base_model:
_snake_case : Any = """"""
else:
_snake_case : Union[str, Any] = """mobilevitv2."""
_snake_case : Dict = []
for k in state_dict.keys():
if k[:8] == "encoder.":
_snake_case : List[str] = k[8:]
else:
_snake_case : str = k
if ".block." in k:
_snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" )
if ".conv." in k:
_snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" )
if ".norm." in k:
_snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" )
if "conv_1." in k:
_snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." )
for i in [1, 2]:
if F"layer_{i}." in k:
_snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
_snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" )
if ".red_1x1." in k:
_snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" )
for i in [3, 4, 5]:
if F"layer_{i}.0." in k:
_snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if F"layer_{i}.1.local_rep.0." in k:
_snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if F"layer_{i}.1.local_rep.1." in k:
_snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
_snake_case : Optional[Any] = [0, 1]
elif i == 4:
_snake_case : Any = [0, 1, 2, 3]
elif i == 5:
_snake_case : List[Any] = [0, 1, 2]
for j in j_in:
if F"layer_{i}.1.global_rep.{j}." in k:
_snake_case : Any = k_new.replace(
F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if F"layer_{i}.1.global_rep.{j+1}." in k:
_snake_case : List[Any] = k_new.replace(
F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." )
if F"layer_{i}.1.conv_proj." in k:
_snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
_snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" )
if "pre_norm_attn.1." in k:
_snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" )
if "pre_norm_ffn.0." in k:
_snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" )
if "pre_norm_ffn.1." in k:
_snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
_snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" )
if "classifier.1." in k:
_snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" )
if "seg_head." in k:
_snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" )
if ".aspp_layer." in k:
_snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" )
if ".aspp_pool." in k:
_snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" )
rename_keys.append((k, k_new) )
return rename_keys
def UpperCAmelCase__ (snake_case__ : str ):
"""simple docstring"""
_snake_case : List[str] = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(snake_case__ )
for k in keys_to_ignore:
state_dict.pop(snake_case__ , snake_case__ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
_snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ )
# load original state_dict
_snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
_snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval()
_snake_case : List[Any] = False
else:
_snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval()
_snake_case : Optional[Any] = False
# remove and rename some keys of load the original model
_snake_case : Union[str, Any] = checkpoint
remove_unused_keys(snake_case__ )
_snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
# load modified state_dict
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
_snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" )
_snake_case : Optional[Any] = model(**snake_case__ )
# verify classification model
if task_name.startswith("""imagenet""" ):
_snake_case : List[str] = outputs.logits
_snake_case : Any = logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
_snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] )
assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(F"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--task''',
default='''imagenet1k_256''',
type=str,
help=(
'''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '''
'''
Classification (ImageNet-1k)
- MobileViTV2 (256x256) : imagenet1k_256
- MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384
- MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :
imagenet21k_to_1k_256
- MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on
ImageNet-1k 384x384) : imagenet21k_to_1k_384
Segmentation
- ADE20K Dataset : ade20k_deeplabv3
- Pascal VOC 2012 Dataset: voc_deeplabv3
'''
),
choices=[
'''imagenet1k_256''',
'''imagenet1k_384''',
'''imagenet21k_to_1k_256''',
'''imagenet21k_to_1k_384''',
'''ade20k_deeplabv3''',
'''voc_deeplabv3''',
],
)
parser.add_argument(
'''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
A_ = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 28 | 1 |
"""simple docstring"""
import inspect
import unittest
class lowercase( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
try:
import diffusers # noqa: F401
except ImportError:
assert False
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
import diffusers
from diffusers.dependency_versions_table import deps
_snake_case : List[str] = inspect.getmembers(a_, inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
_snake_case : Optional[Any] = """k-diffusion"""
elif backend == "invisible_watermark":
_snake_case : Tuple = """invisible-watermark"""
assert backend in deps, f"{backend} is not in the deps table!"
| 28 |
"""simple docstring"""
import os
import sys
import unittest
A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
A_ = os.path.join(git_repo_path, '''src''', '''diffusers''')
class lowercase( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" )
self.assertEqual(a_, """torch""" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
_snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" )
self.assertEqual(a_, """torch_and_transformers""" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
_snake_case : Union[str, Any] = find_backend(
""" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" )
self.assertEqual(a_, """torch_and_transformers_and_onnx""" )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : Dict = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""", a_ )
self.assertIn("""torch_and_transformers""", a_ )
self.assertIn("""flax_and_transformers""", a_ )
self.assertIn("""torch_and_transformers_and_onnx""", a_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""UNet2DModel""", objects["""torch"""] )
self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] )
self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] )
self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] )
self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] )
self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" )
self.assertEqual(a_, """\nCONSTANT = None\n""" )
_snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" )
self.assertEqual(
a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
_snake_case : List[Any] = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
_snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" )
self.assertEqual(a_, a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
"""
_snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""], a_ )
| 28 | 1 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ):
"""simple docstring"""
def get_matched_characters(snake_case__ : str , snake_case__ : str ) -> str:
_snake_case : str = []
_snake_case : Any = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
_snake_case : Optional[int] = int(max(0 , i - limit ) )
_snake_case : Any = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(snake_case__ )
_snake_case : List[str] = F"{_stra[0:_stra.index(snake_case__ )]} {_stra[_stra.index(snake_case__ ) + 1:]}"
return "".join(snake_case__ )
# matching characters
_snake_case : Optional[Any] = get_matched_characters(snake_case__ , snake_case__ )
_snake_case : Optional[Any] = get_matched_characters(snake_case__ , snake_case__ )
_snake_case : int = len(snake_case__ )
# transposition
_snake_case : List[str] = (
len([(ca, ca) for ca, ca in zip(snake_case__ , snake_case__ ) if ca != ca] ) // 2
)
if not match_count:
_snake_case : Tuple = 0.0
else:
_snake_case : str = (
1
/ 3
* (
match_count / len(snake_case__ )
+ match_count / len(snake_case__ )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
_snake_case : int = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler('''hello''', '''world'''))
| 28 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
A_ = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''OwlViTFeatureExtractor''']
A_ = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 28 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OPTForCausalLM''',
'''OPTModel''',
'''OPTPreTrainedModel''',
'''OPTForSequenceClassification''',
'''OPTForQuestionAnswering''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''FlaxOPTForCausalLM''',
'''FlaxOPTModel''',
'''FlaxOPTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 28 |
"""simple docstring"""
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
A_ = logging.get_logger(__name__)
def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ):
"""simple docstring"""
def run_func(snake_case__ : Tuple ):
@wraps(snake_case__ )
def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ):
return func(*snake_case__ , **snake_case__ )
@wraps(snake_case__ )
@tf.function(experimental_compile=snake_case__ )
def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ):
return func(*snake_case__ , **snake_case__ )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
"""Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : List[str] = random.Random()
_snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = 42
lowercase__ = 42
lowercase__ = "TensorFlow"
@property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
return tf.__version__
def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : List[str] = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ )
return self._measure_speed(_inference )
def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : Tuple = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ )
return self._measure_speed(_train )
def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ):
'''simple docstring'''
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ )
_snake_case : str = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ )
return self._measure_memory(_inference )
def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ):
'''simple docstring'''
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ )
_snake_case : Dict = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ )
return self._measure_memory(_train )
def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : List[Any] = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
_snake_case : List[Any] = (
hasattr(a_, """architectures""" )
and isinstance(config.architectures, a_ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] )
_snake_case : Dict = getattr(a_, a_ )
_snake_case : Any = model_cls(a_ )
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
_snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ )
# encoder-decoder has vocab size saved differently
_snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size
_snake_case : List[str] = random_input_ids(a_, a_, a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_decoder_forward():
return model(a_, decoder_input_ids=a_, training=a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_forward():
return model(a_, training=a_ )
_snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : str = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" )
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
_snake_case : Tuple = (
hasattr(a_, """architectures""" )
and isinstance(config.architectures, a_ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case : str = __import__("""transformers""", fromlist=[model_class] )
_snake_case : Tuple = getattr(a_, a_ )
_snake_case : Any = model_cls(a_ )
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
_snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ )
# encoder-decoder has vocab size saved differently
_snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size
_snake_case : int = random_input_ids(a_, a_, a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_decoder_train():
_snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0]
_snake_case : str = tf.gradients(a_, model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_train():
_snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0]
_snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables )
return gradients
_snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def UpperCamelCase_ ( self: Union[str, Any], a_: str ):
'''simple docstring'''
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" )
timeit.repeat(a_, repeat=1, number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
_snake_case : Dict = timeit.repeat(
a_, repeat=self.args.repeat, number=10, )
return min(a_ ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}" )
def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ):
'''simple docstring'''
logger.info(
"""Note that TensorFlow allocates more memory than """
"""it might need to speed up computation. """
"""The memory reported here corresponds to the memory """
"""reported by `nvidia-smi`, which can vary depending """
"""on total available memory on the GPU that is used.""" )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
"""`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"""
""" consumption line by line.""" )
_snake_case : List[Any] = start_memory_tracing("""transformers""" )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"""Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"""
""" with `args.memory=False`""" )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
"""py3nvml not installed, we won't log GPU memory usage. """
"""Install py3nvml (pip install py3nvml) to log information about GPU.""" )
_snake_case : Optional[Any] = """N/A"""
else:
logger.info(
"""Measuring total GPU usage on GPU device. Make sure to not have additional processes"""
""" running on the same GPU.""" )
# init nvml
nvml.nvmlInit()
func()
_snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
_snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ )
_snake_case : List[str] = meminfo.used
_snake_case : Any = Memory(a_ )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
"""When enabling line by line tracing, the max peak memory for CPU is inaccurate in"""
""" TensorFlow.""" )
_snake_case : List[Any] = None
else:
_snake_case : int = measure_peak_memory_cpu(a_ )
_snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes
if self.args.trace_memory_line_by_line:
_snake_case : Tuple = stop_memory_tracing(a_ )
if memory is None:
_snake_case : int = summary.total
else:
_snake_case : int = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}" )
return "N/A", None
| 28 | 1 |
"""simple docstring"""
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def UpperCAmelCase__ (snake_case__ : Any ):
"""simple docstring"""
_snake_case : Dict = {}
_snake_case : Union[str, Any] = job["""started_at"""]
_snake_case : Any = job["""completed_at"""]
_snake_case : Optional[int] = date_parser.parse(snake_case__ )
_snake_case : List[str] = date_parser.parse(snake_case__ )
_snake_case : int = round((end_datetime - start_datetime).total_seconds() / 60.0 )
_snake_case : Dict = start
_snake_case : Dict = end
_snake_case : Any = duration_in_min
return job_info
def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple=None ):
"""simple docstring"""
_snake_case : Optional[Any] = None
if token is not None:
_snake_case : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"}
_snake_case : Tuple = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"
_snake_case : Optional[Any] = requests.get(snake_case__ , headers=snake_case__ ).json()
_snake_case : int = {}
try:
job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__ ) for job in result["""jobs"""]} )
_snake_case : Optional[int] = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(snake_case__ ):
_snake_case : List[str] = requests.get(url + F"&page={i + 2}" , headers=snake_case__ ).json()
job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__ ) for job in result["""jobs"""]} )
return job_time
except Exception:
print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
A_ = parser.parse_args()
A_ = get_job_time(args.workflow_run_id)
A_ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(F'''{k}: {v['duration']}''')
| 28 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : str ):
"""simple docstring"""
_snake_case : str = int(snake_case__ )
# Initialize Result
_snake_case : str = []
# Traverse through all denomination
for denomination in reversed(snake_case__ ):
# Find denominations
while int(snake_case__ ) >= int(snake_case__ ):
total_value -= int(snake_case__ )
answer.append(snake_case__ ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
A_ = []
A_ = '''0'''
if (
input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower()
== "y"
):
A_ = int(input('''Enter the number of denominations you want to add: ''').strip())
for i in range(0, n):
denominations.append(int(input(F'''Denomination {i}: ''').strip()))
A_ = input('''Enter the change you want to make in Indian Currency: ''').strip()
else:
# All denominations of Indian Currency if user does not enter
A_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00]
A_ = input('''Enter the change you want to make: ''').strip()
if int(value) == 0 or int(value) < 0:
print('''The total value cannot be zero or negative.''')
else:
print(F'''Following is minimal change for {value}: ''')
A_ = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=''' ''')
| 28 | 1 |
"""simple docstring"""
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def UpperCAmelCase__ (*snake_case__ : List[Any] , snake_case__ : Optional[Union[Dict, Any]] = None , snake_case__ : str=True , snake_case__ : Dict=2 ):
"""simple docstring"""
from .. import __version__
_snake_case : Tuple = take_from
_snake_case : Tuple = ()
if not isinstance(args[0] , snake_case__ ):
_snake_case : Optional[int] = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(snake_case__ ).base_version ) >= version.parse(snake_case__ ):
raise ValueError(
F"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"
F" version {__version__} is >= {version_name}" )
_snake_case : Optional[Any] = None
if isinstance(snake_case__ , snake_case__ ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(snake_case__ ),)
_snake_case : List[Any] = F"The `{attribute}` argument is deprecated and will be removed in version {version_name}."
elif hasattr(snake_case__ , snake_case__ ):
values += (getattr(snake_case__ , snake_case__ ),)
_snake_case : Union[str, Any] = F"The `{attribute}` attribute is deprecated and will be removed in version {version_name}."
elif deprecated_kwargs is None:
_snake_case : List[Any] = F"`{attribute}` is deprecated and will be removed in version {version_name}."
if warning is not None:
_snake_case : Any = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , snake_case__ , stacklevel=snake_case__ )
if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0:
_snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1]
_snake_case : str = call_frame.filename
_snake_case : int = call_frame.lineno
_snake_case : Any = call_frame.function
_snake_case , _snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" )
if len(snake_case__ ) == 0:
return
elif len(snake_case__ ) == 1:
return values[0]
return values
| 28 |
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ):
'''simple docstring'''
_snake_case : Optional[int] = parent
_snake_case : Optional[Any] = 100
_snake_case : Any = batch_size
_snake_case : List[Any] = image_size
_snake_case : Optional[Any] = patch_size
_snake_case : str = num_channels
_snake_case : Tuple = is_training
_snake_case : Tuple = use_labels
_snake_case : Any = hidden_size
_snake_case : Optional[int] = num_hidden_layers
_snake_case : List[str] = num_attention_heads
_snake_case : Union[str, Any] = intermediate_size
_snake_case : Dict = hidden_act
_snake_case : str = hidden_dropout_prob
_snake_case : Optional[int] = attention_probs_dropout_prob
_snake_case : Optional[Any] = type_sequence_label_size
_snake_case : Any = initializer_range
_snake_case : List[str] = scope
_snake_case : int = out_indices
_snake_case : Optional[Any] = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_snake_case : Dict = (image_size // patch_size) ** 2
_snake_case : str = num_patches + 1
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : List[Any] = None
_snake_case : Tuple = None
if self.use_labels:
_snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size )
_snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
_snake_case : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, )
def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ):
'''simple docstring'''
_snake_case : str = BeitModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Dict = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ):
'''simple docstring'''
_snake_case : List[str] = BeitForMaskedImageModeling(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Union[str, Any] = model(a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ):
'''simple docstring'''
_snake_case : Any = self.type_sequence_label_size
_snake_case : Any = BeitForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : List[Any] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_snake_case : Any = 1
_snake_case : str = BeitForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_snake_case : Optional[Any] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ):
'''simple docstring'''
_snake_case : List[str] = self.num_labels
_snake_case : List[Any] = BeitForSemanticSegmentation(a_ )
model.to(a_ )
model.eval()
_snake_case : List[str] = model(a_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
_snake_case : str = model(a_, labels=a_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Tuple = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs
_snake_case : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": BeitModel,
"image-classification": BeitForImageClassification,
"image-segmentation": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Dict = BeitModelTester(self )
_snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""BEiT does not use inputs_embeds""" )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : List[str] = model_class(a_ )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
_snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a_, nn.Linear ) )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Any = model_class(a_ )
_snake_case : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : List[Any] = [*signature.parameters.keys()]
_snake_case : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a_ )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
_snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Any = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]:
continue
_snake_case : List[Any] = model_class(a_ )
model.to(a_ )
model.train()
_snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : List[Any] = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_snake_case : Dict = False
_snake_case : Optional[Any] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(a_ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
_snake_case : Any = model_class(a_ )
model.gradient_checkpointing_enable()
model.to(a_ )
model.train()
_snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : int = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : int = _config_zero_init(a_ )
for model_class in self.all_model_classes:
_snake_case : Tuple = model_class(config=a_ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", )
@slow
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Optional[int] = BeitModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ )
_snake_case : Dict = self.default_image_processor
_snake_case : Dict = prepare_img()
_snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ )
# prepare bool_masked_pos
_snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ )
_snake_case : Dict = outputs.logits
# verify the logits
_snake_case : Optional[int] = torch.Size((1, 196, 8_192) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[Any] = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) )
@slow
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ )
_snake_case : List[Any] = self.default_image_processor
_snake_case : Any = prepare_img()
_snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : int = model(**a_ )
_snake_case : Optional[int] = outputs.logits
# verify the logits
_snake_case : Tuple = torch.Size((1, 1_000) )
self.assertEqual(logits.shape, a_ )
_snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ )
self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) )
_snake_case : str = 281
self.assertEqual(logits.argmax(-1 ).item(), a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to(
a_ )
_snake_case : int = self.default_image_processor
_snake_case : Optional[Any] = prepare_img()
_snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Union[str, Any] = model(**a_ )
_snake_case : Dict = outputs.logits
# verify the logits
_snake_case : Tuple = torch.Size((1, 21_841) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ )
self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) )
_snake_case : List[str] = 2_396
self.assertEqual(logits.argmax(-1 ).item(), a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
_snake_case : int = model.to(a_ )
_snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ )
_snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" )
_snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] )
_snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
_snake_case : Union[str, Any] = outputs.logits
# verify the logits
_snake_case : List[str] = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" )
if is_pillow_less_than_a:
_snake_case : Any = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
], device=a_, )
else:
_snake_case : Optional[Any] = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
], device=a_, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
_snake_case : List[Any] = model.to(a_ )
_snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ )
_snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" )
_snake_case : str = Image.open(ds[0]["""file"""] )
_snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
_snake_case : Union[str, Any] = outputs.logits.detach().cpu()
_snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] )
_snake_case : Optional[int] = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape, a_ )
_snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ )
_snake_case : List[str] = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape, a_ )
| 28 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = field(
default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} )
lowercase__ = field(
default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} )
lowercase__ = field(
default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} )
lowercase__ = field(
default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} )
lowercase__ = field(default=2 , metadata={"help": "Batch size for training."} )
lowercase__ = field(default=2 , metadata={"help": "Batch size for evaluation."} )
lowercase__ = field(default=0.1 , metadata={"help": "Value of weight decay."} )
lowercase__ = field(
default=1_00_00 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} )
lowercase__ = field(default=2e-4 , metadata={"help": "Learning rate fo training."} )
lowercase__ = field(default="cosine" , metadata={"help": "Learning rate."} )
lowercase__ = field(
default=7_50 , metadata={"help": "Number of warmup steps in the learning rate schedule."} )
lowercase__ = field(
default=16 , metadata={"help": "Number of gradient accumulation steps."} )
lowercase__ = field(
default=__a , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} )
lowercase__ = field(default=5_00_00 , metadata={"help": "Maximum number of training steps."} )
lowercase__ = field(
default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} )
lowercase__ = field(default=10_24 , metadata={"help": "Sequence lengths used for training."} )
lowercase__ = field(default=1 , metadata={"help": "Training seed."} )
lowercase__ = field(
default=10_24 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , )
lowercase__ = field(
default=__a , metadata={"help": "States path if the training should continue from a checkpoint folder."} )
lowercase__ = field(default=__a , metadata={"help": "If True the data is pretokenized."} )
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = field(
default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} )
lowercase__ = field(
default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} )
lowercase__ = field(default=2 , metadata={"help": "Batch size used for evaluation."} )
lowercase__ = field(
default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} )
lowercase__ = field(default=10_24 , metadata={"help": "Length of sequences to be evaluated."} )
lowercase__ = field(default=1 , metadata={"help": "Random seed used for evaluation."} )
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = field(
default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} )
lowercase__ = field(default=__a , metadata={"help": "Number of workers used for code evaluation."} )
lowercase__ = field(
default=__a , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , )
lowercase__ = field(
default=__a , metadata={"help": "Sample from the language model's output distribution."} )
lowercase__ = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} )
lowercase__ = field(default=2_56 , metadata={"help": "Maximum number of newly generated tokens."} )
lowercase__ = field(default=0 , metadata={"help": "Top-k parameter used for generation."} )
lowercase__ = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} )
lowercase__ = field(default=10 , metadata={"help": "Number of generations to run in parallel."} )
lowercase__ = field(
default=2_00 , metadata={"help": "Number of completions to generate for each sample."} )
lowercase__ = field(default=1 , metadata={"help": "Random seed used for evaluation."} )
lowercase__ = field(
default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} )
lowercase__ = field(
default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} )
lowercase__ = field(
default=-1 , metadata={
"help": (
"Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"
" number corresponds to which GPU device id to run on."
)
} , )
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = field(
default=__a , metadata={
"help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."
} , )
lowercase__ = field(
default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} )
lowercase__ = field(
default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} )
lowercase__ = field(
default=10_00_00 , metadata={"help": "Number of files to save per JSON output file."} )
lowercase__ = field(default="content" , metadata={"help": "Column containing text data to process."} )
lowercase__ = field(
default=10_00 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} )
lowercase__ = field(
default=1_00 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} )
lowercase__ = field(
default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} )
lowercase__ = field(
default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} )
lowercase__ = field(
default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} )
lowercase__ = field(
default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , )
lowercase__ = field(
default=__a , metadata={"help": "If True, near-duplicate samples are removed."} )
lowercase__ = field(
default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} )
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = field(
default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} )
lowercase__ = field(
default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} )
lowercase__ = field(default="content" , metadata={"help": "Column containing text data to process."} )
lowercase__ = field(default=20_00_00 , metadata={"help": "Number of examples to train tokenizer on."} )
lowercase__ = field(
default=3_27_68 , metadata={"help": "Number of examples to train the tokenizer on."} )
lowercase__ = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} )
lowercase__ = field(default=__a , metadata={"help": "Push saved tokenizer to the hub."} )
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = field(
default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} )
lowercase__ = field(
default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} )
lowercase__ = field(
default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} )
lowercase__ = field(default=__a , metadata={"help": "Number of workers used for code evaluation."} )
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = field(
default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} )
lowercase__ = field(
default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} )
lowercase__ = field(default="codeparrot" , metadata={"help": "Name of the created model."} )
lowercase__ = field(default=__a , metadata={"help": "Push saved tokenizer to the hub."} )
| 28 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase( __a ):
'''simple docstring'''
lowercase__ = (IPNDMScheduler,)
lowercase__ = (("num_inference_steps", 50),)
def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : List[Any] = {"""num_train_timesteps""": 1_000}
config.update(**a_ )
return config
def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ):
'''simple docstring'''
_snake_case : Optional[int] = dict(self.forward_default_kwargs )
_snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ )
_snake_case : Optional[Any] = self.dummy_sample
_snake_case : Dict = 0.1 * sample
_snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_snake_case : int = self.get_scheduler_config(**a_ )
_snake_case : Dict = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals
_snake_case : int = dummy_past_residuals[:]
if time_step is None:
_snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
_snake_case : Tuple = scheduler_class.from_pretrained(a_ )
new_scheduler.set_timesteps(a_ )
# copy over dummy past residuals
_snake_case : Optional[Any] = dummy_past_residuals[:]
_snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ):
'''simple docstring'''
_snake_case : str = dict(self.forward_default_kwargs )
_snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ )
_snake_case : Optional[int] = self.dummy_sample
_snake_case : Tuple = 0.1 * sample
_snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_snake_case : Any = self.get_scheduler_config()
_snake_case : Tuple = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals (must be after setting timesteps)
_snake_case : Union[str, Any] = dummy_past_residuals[:]
if time_step is None:
_snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
_snake_case : List[str] = scheduler_class.from_pretrained(a_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(a_ )
# copy over dummy past residual (must be after setting timesteps)
_snake_case : List[str] = dummy_past_residuals[:]
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.scheduler_classes[0]
_snake_case : Any = self.get_scheduler_config(**a_ )
_snake_case : List[Any] = scheduler_class(**a_ )
_snake_case : Union[str, Any] = 10
_snake_case : Union[str, Any] = self.dummy_model()
_snake_case : List[Any] = self.dummy_sample_deter
scheduler.set_timesteps(a_ )
for i, t in enumerate(scheduler.timesteps ):
_snake_case : Optional[Any] = model(a_, a_ )
_snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
_snake_case : Union[str, Any] = model(a_, a_ )
_snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample
return sample
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : str = dict(self.forward_default_kwargs )
_snake_case : int = kwargs.pop("""num_inference_steps""", a_ )
for scheduler_class in self.scheduler_classes:
_snake_case : Union[str, Any] = self.get_scheduler_config()
_snake_case : Tuple = scheduler_class(**a_ )
_snake_case : Dict = self.dummy_sample
_snake_case : List[str] = 0.1 * sample
if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ):
scheduler.set_timesteps(a_ )
elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ):
_snake_case : Dict = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
_snake_case : List[str] = dummy_past_residuals[:]
_snake_case : Optional[int] = scheduler.timesteps[5]
_snake_case : Optional[Any] = scheduler.timesteps[6]
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
_snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=a_, time_step=a_ )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=a_, time_step=a_ )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = self.full_loop()
_snake_case : Optional[int] = torch.mean(torch.abs(a_ ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 28 | 1 |
"""simple docstring"""
import numpy as np
def UpperCAmelCase__ (snake_case__ : np.array ):
"""simple docstring"""
return 1 / (1 + np.exp(-vector ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
"""simple docstring"""
from __future__ import annotations
import math
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
_snake_case : Any = []
for num in range(len(snake_case__ ) ):
_snake_case : Optional[int] = 0
while 2 * i * i <= odd_composites[num]:
_snake_case : Optional[int] = odd_composites[num] - 2 * i * i
if is_prime(snake_case__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(snake_case__ ) == n:
return list_nums
return []
def UpperCAmelCase__ ():
"""simple docstring"""
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'''{solution() = }''')
| 28 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {
'''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''],
'''tokenization_roformer''': ['''RoFormerTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''RoFormerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RoFormerForCausalLM''',
'''RoFormerForMaskedLM''',
'''RoFormerForMultipleChoice''',
'''RoFormerForQuestionAnswering''',
'''RoFormerForSequenceClassification''',
'''RoFormerForTokenClassification''',
'''RoFormerLayer''',
'''RoFormerModel''',
'''RoFormerPreTrainedModel''',
'''load_tf_weights_in_roformer''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRoFormerForCausalLM''',
'''TFRoFormerForMaskedLM''',
'''TFRoFormerForMultipleChoice''',
'''TFRoFormerForQuestionAnswering''',
'''TFRoFormerForSequenceClassification''',
'''TFRoFormerForTokenClassification''',
'''TFRoFormerLayer''',
'''TFRoFormerModel''',
'''TFRoFormerPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FlaxRoFormerForMaskedLM''',
'''FlaxRoFormerForMultipleChoice''',
'''FlaxRoFormerForQuestionAnswering''',
'''FlaxRoFormerForSequenceClassification''',
'''FlaxRoFormerForTokenClassification''',
'''FlaxRoFormerModel''',
'''FlaxRoFormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 28 |
"""simple docstring"""
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class lowercase:
'''simple docstring'''
def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
_snake_case : Optional[int] = device
_snake_case : str = CLIPTokenizerFast.from_pretrained(a_ )
_snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073]
_snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711]
_snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std )
_snake_case : Optional[int] = torchvision.transforms.Resize(224 )
_snake_case : str = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self: List[str], a_: str ):
'''simple docstring'''
_snake_case : Optional[int] = self.resize(a_ )
_snake_case : List[Any] = self.center_crop(a_ )
_snake_case : Optional[Any] = self.normalize(a_ )
return images
def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ):
'''simple docstring'''
_snake_case : Optional[int] = self.tokenizer(text=a_, **a_ )
_snake_case : Any = self.preprocess_img(a_ )
_snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ):
'''simple docstring'''
super().__init__()
_snake_case : int = None
_snake_case : List[str] = device if device else get_device()
if vqgan:
_snake_case : Any = vqgan
else:
_snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ )
self.vqgan.eval()
if clip:
_snake_case : Tuple = clip
else:
_snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" )
self.clip.to(self.device )
_snake_case : List[str] = ProcessorGradientFlow(device=self.device )
_snake_case : Union[str, Any] = iterations
_snake_case : Dict = lr
_snake_case : Optional[int] = log
_snake_case : List[str] = make_grid
_snake_case : Union[str, Any] = return_val
_snake_case : List[str] = quantize
_snake_case : List[str] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ):
'''simple docstring'''
_snake_case : Dict = []
if output_path is None:
_snake_case : Tuple = """./animation.gif"""
if input_path is None:
_snake_case : Any = self.save_path
_snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) )
if not len(a_ ):
raise ValueError(
"""No images found in save path, aborting (did you pass save_intermediate=True to the generate"""
""" function?)""" )
if len(a_ ) == 1:
print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" )
_snake_case : List[Any] = total_duration / len(a_ )
_snake_case : Optional[Any] = [frame_duration] * len(a_ )
if extend_frames:
_snake_case : Optional[int] = 1.5
_snake_case : int = 3
for file_name in paths:
if file_name.endswith(""".png""" ):
images.append(imageio.imread(a_ ) )
imageio.mimsave(a_, a_, duration=a_ )
print(f"gif saved to {output_path}" )
def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ):
'''simple docstring'''
if not (path or img):
raise ValueError("""Input either path or tensor""" )
if img is not None:
raise NotImplementedError
_snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device )
_snake_case : int = preprocess_vqgan(a_ )
_snake_case , *_snake_case : List[Any] = self.vqgan.encode(a_ )
return z
def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = self.latent.detach().requires_grad_()
_snake_case : Tuple = base_latent + transform_vector
if self.quantize:
_snake_case , *_snake_case : Any = self.vqgan.quantize(a_ )
else:
_snake_case : List[Any] = trans_latent
return self.vqgan.decode(a_ )
def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ):
'''simple docstring'''
_snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ )
_snake_case : Any = self.clip(**a_ )
_snake_case : str = clip_outputs.logits_per_image
if weights is not None:
_snake_case : Any = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ):
'''simple docstring'''
_snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) )
if neg_prompts:
_snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] )
else:
_snake_case : Tuple = torch.tensor([1], device=self.device )
_snake_case : int = -torch.log(a_ ) + torch.log(a_ )
return loss
def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ):
'''simple docstring'''
_snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device )
_snake_case : Dict = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
_snake_case : str = self._add_vector(a_ )
_snake_case : List[Any] = loop_post_process(a_ )
_snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ )
print("""CLIP loss""", a_ )
if self.log:
wandb.log({"""CLIP Loss""": clip_loss} )
clip_loss.backward(retain_graph=a_ )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ):
'''simple docstring'''
wandb.init(reinit=a_, project="""face-editor""" )
wandb.config.update({"""Positive Prompts""": positive_prompts} )
wandb.config.update({"""Negative Prompts""": negative_prompts} )
wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} )
if image_path:
_snake_case : Any = Image.open(a_ )
_snake_case : str = image.resize((256, 256) )
wandb.log("""Original Image""", wandb.Image(a_ ) )
def UpperCamelCase_ ( self: str, a_: List[Any] ):
'''simple docstring'''
if not prompts:
return []
_snake_case : List[str] = []
_snake_case : Tuple = []
if isinstance(a_, a_ ):
_snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )]
for prompt in prompts:
if isinstance(a_, (tuple, list) ):
_snake_case : List[Any] = prompt[0]
_snake_case : Optional[Any] = float(prompt[1] )
elif ":" in prompt:
_snake_case , _snake_case : List[Any] = prompt.split(""":""" )
_snake_case : str = float(a_ )
else:
_snake_case : int = prompt
_snake_case : Union[str, Any] = 1.0
processed_prompts.append(a_ )
weights.append(a_ )
return {
"prompts": processed_prompts,
"weights": torch.tensor(a_, device=self.device ),
}
def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ):
'''simple docstring'''
if image_path:
_snake_case : Union[str, Any] = self._get_latent(a_ )
else:
_snake_case : Any = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(a_, a_, a_ )
assert pos_prompts, "You must provide at least one positive prompt."
_snake_case : str = self.process_prompts(a_ )
_snake_case : Dict = self.process_prompts(a_ )
if save_final and save_path is None:
_snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) )
if not os.path.exists(a_ ):
os.makedirs(a_ )
else:
_snake_case : List[Any] = save_path + """_""" + get_timestamp()
os.makedirs(a_ )
_snake_case : Optional[Any] = save_path
_snake_case : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print("""Original Image""" )
show_pil(custom_to_pil(a_ ) )
_snake_case : List[Any] = loop_post_process(a_ )
for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ):
if show_intermediate:
show_pil(a_ )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({"""Image""": wandb.Image(a_ )} )
if show_final:
show_pil(a_ )
if save_final:
transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
"""simple docstring"""
from collections import deque
def UpperCAmelCase__ (snake_case__ : Optional[int] ):
"""simple docstring"""
_snake_case : Dict = len(snake_case__ )
_snake_case : List[Any] = deque()
_snake_case : List[str] = [False for _ in range(snake_case__ )]
_snake_case : List[str] = [-1 for _ in range(snake_case__ )]
_snake_case : Optional[int] = index_of[:]
def strong_connect(snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ):
_snake_case : Dict = index # the number when this node is seen
_snake_case : Tuple = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
_snake_case : Tuple = True
for w in g[v]:
if index_of[w] == -1:
_snake_case : int = strong_connect(snake_case__ , snake_case__ , snake_case__ )
_snake_case : Dict = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
_snake_case : Dict = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
_snake_case : int = []
_snake_case : List[str] = stack.pop()
_snake_case : int = False
component.append(snake_case__ )
while w != v:
_snake_case : Optional[int] = stack.pop()
_snake_case : str = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
_snake_case : Any = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ):
"""simple docstring"""
_snake_case : Dict = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
A_ = 7
A_ = [0, 0, 1, 2, 3, 3, 4, 4, 6]
A_ = [1, 3, 2, 0, 1, 4, 5, 6, 5]
A_ = [(u, v) for u, v in zip(source, target)]
A_ = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 28 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or number < 0:
raise ValueError("""Input must be a non-negative integer""" )
_snake_case : Dict = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
'''configuration_trajectory_transformer''': [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TrajectoryTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrajectoryTransformerModel''',
'''TrajectoryTransformerPreTrainedModel''',
'''load_tf_weights_in_trajectory_transformer''',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 28 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ):
'''simple docstring'''
_snake_case : int = parent
_snake_case : int = batch_size
_snake_case : List[Any] = image_size
_snake_case : List[str] = num_channels
_snake_case : Tuple = num_stages
_snake_case : Union[str, Any] = hidden_sizes
_snake_case : List[Any] = depths
_snake_case : Tuple = is_training
_snake_case : List[str] = use_labels
_snake_case : Tuple = intermediate_size
_snake_case : List[str] = hidden_act
_snake_case : Optional[Any] = num_labels
_snake_case : Tuple = initializer_range
_snake_case : Tuple = out_features
_snake_case : Tuple = out_indices
_snake_case : Dict = scope
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : Any = None
if self.use_labels:
_snake_case : Dict = ids_tensor([self.batch_size], self.num_labels )
_snake_case : Optional[Any] = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return ConvNextVaConfig(
num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, )
def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ):
'''simple docstring'''
_snake_case : int = ConvNextVaModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Any = model(a_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), )
def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[int] = ConvNextVaForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : Optional[int] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ):
'''simple docstring'''
_snake_case : List[str] = ConvNextVaBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : int = model(a_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ), len(config.out_features ) )
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_snake_case : Tuple = None
_snake_case : Tuple = ConvNextVaBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : List[Any] = model(a_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ), 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ), 1 )
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Dict = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : Any = config_and_inputs
_snake_case : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[Any] = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : List[str] = config_and_inputs
_snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowercase__ = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Tuple = ConvNextVaModelTester(self )
_snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels()
_snake_case : List[Any] = True
if model_class.__name__ in [
*get_values(a_ ),
*get_values(a_ ),
]:
continue
_snake_case : Tuple = model_class(a_ )
model.to(a_ )
model.train()
_snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Any = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels()
_snake_case : Any = False
_snake_case : List[Any] = True
if (
model_class.__name__
in [*get_values(a_ ), *get_values(a_ )]
or not model_class.supports_gradient_checkpointing
):
continue
_snake_case : Dict = model_class(a_ )
model.to(a_ )
model.gradient_checkpointing_enable()
model.train()
_snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Optional[int] = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : List[str] = model_class(a_ )
_snake_case : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : int = [*signature.parameters.keys()]
_snake_case : Union[str, Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ):
_snake_case : Optional[Any] = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
_snake_case : Any = model(**self._prepare_for_class(a_, a_ ) )
_snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(a_ ), expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Optional[Any] = True
check_hidden_states_output(a_, a_, a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : List[str] = True
check_hidden_states_output(a_, a_, a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : str = ConvNextVaModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ )
_snake_case : Union[str, Any] = self.default_image_processor
_snake_case : List[Any] = prepare_img()
_snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
# verify the logits
_snake_case : Optional[int] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
| 28 | 1 |
"""simple docstring"""
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
A_ = logging.get_logger(__name__)
class lowercase( __a ):
'''simple docstring'''
def __init__( self: int, a_: Union[List[ControlNetModel], Tuple[ControlNetModel]] ):
'''simple docstring'''
super().__init__()
_snake_case : Tuple = nn.ModuleList(a_ )
def UpperCamelCase_ ( self: Dict, a_: torch.FloatTensor, a_: Union[torch.Tensor, float, int], a_: torch.Tensor, a_: List[torch.tensor], a_: List[float], a_: Optional[torch.Tensor] = None, a_: Optional[torch.Tensor] = None, a_: Optional[torch.Tensor] = None, a_: Optional[Dict[str, Any]] = None, a_: bool = False, a_: bool = True, ):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(a_, a_, self.nets ) ):
_snake_case , _snake_case : List[str] = controlnet(
a_, a_, a_, a_, a_, a_, a_, a_, a_, a_, a_, )
# merge samples
if i == 0:
_snake_case , _snake_case : List[Any] = down_samples, mid_sample
else:
_snake_case : Tuple = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(a_, a_ )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCamelCase_ ( self: Union[str, Any], a_: Union[str, os.PathLike], a_: bool = True, a_: Callable = None, a_: bool = False, a_: Optional[str] = None, ):
'''simple docstring'''
_snake_case : List[Any] = 0
_snake_case : Optional[int] = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
a_, is_main_process=a_, save_function=a_, safe_serialization=a_, variant=a_, )
idx += 1
_snake_case : Tuple = model_path_to_save + f"_{idx}"
@classmethod
def UpperCamelCase_ ( cls: Any, a_: Optional[Union[str, os.PathLike]], **a_: str ):
'''simple docstring'''
_snake_case : Optional[int] = 0
_snake_case : List[Any] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
_snake_case : int = pretrained_model_path
while os.path.isdir(a_ ):
_snake_case : List[str] = ControlNetModel.from_pretrained(a_, **a_ )
controlnets.append(a_ )
idx += 1
_snake_case : str = pretrained_model_path + f"_{idx}"
logger.info(f"{len(a_ )} controlnets loaded from {pretrained_model_path}." )
if len(a_ ) == 0:
raise ValueError(
f"No ControlNets found under {os.path.dirname(a_ )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(a_ )
| 28 |
"""simple docstring"""
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ):
"""simple docstring"""
assert isinstance(snake_case__ , snake_case__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ):
"""simple docstring"""
_snake_case : str = tmp_path / """cache"""
_snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : str = tmp_path / """cache"""
_snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : List[Any] = features.copy() if features else default_expected_features
_snake_case : List[Any] = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
_snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : List[str] = tmp_path / """cache"""
_snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" , [str, list] )
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ):
"""simple docstring"""
if issubclass(snake_case__ , snake_case__ ):
_snake_case : Optional[Any] = parquet_path
elif issubclass(snake_case__ , snake_case__ ):
_snake_case : int = [parquet_path]
_snake_case : Union[str, Any] = tmp_path / """cache"""
_snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_dataset(snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ):
"""simple docstring"""
assert isinstance(snake_case__ , snake_case__ )
for split in splits:
_snake_case : int = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : Tuple = tmp_path / """cache"""
_snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_snake_case : Tuple = ParquetDatasetReader(
{"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_parquet_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : Optional[int] = tmp_path / """cache"""
_snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : Optional[Any] = features.copy() if features else default_expected_features
_snake_case : Dict = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
_snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ):
"""simple docstring"""
if split:
_snake_case : int = {split: parquet_path}
else:
_snake_case : Optional[Any] = """train"""
_snake_case : int = {"""train""": parquet_path, """test""": parquet_path}
_snake_case : Dict = tmp_path / """cache"""
_snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" )
assert writer.write() > 0
_snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" )
_snake_case : int = pf.read()
assert dataset.data.table == output_table
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" )
_snake_case : Tuple = {"""image""": [image_path]}
_snake_case : Optional[int] = Features({"""image""": Image()} )
_snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ )
_snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" )
assert writer.write() > 0
_snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) )
assert dataset.features == reloaded_dataset.features
_snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"""feature, expected""" , [
(Features({"""foo""": Value("""int32""" )} ), None),
(Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ):
"""simple docstring"""
assert get_writer_batch_size(snake_case__ ) == expected
| 28 | 1 |
"""simple docstring"""
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any]=True , snake_case__ : int="pt" ):
"""simple docstring"""
_snake_case : Dict = {"""add_prefix_space""": True} if isinstance(snake_case__ , snake_case__ ) and not line.startswith(""" """ ) else {}
_snake_case : Dict = padding_side
return tokenizer(
[line] , max_length=snake_case__ , padding="""max_length""" if pad_to_max_length else None , truncation=snake_case__ , return_tensors=snake_case__ , add_special_tokens=snake_case__ , **snake_case__ , )
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : int=None , ):
"""simple docstring"""
_snake_case : str = input_ids.ne(snake_case__ ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class lowercase( __a ):
'''simple docstring'''
def __init__( self: Union[str, Any], a_: Optional[int], a_: List[Any], a_: Optional[Any], a_: List[Any], a_: Dict="train", a_: List[Any]=None, a_: Tuple=None, a_: Any=None, a_: Tuple="", ):
'''simple docstring'''
super().__init__()
_snake_case : Union[str, Any] = Path(a_ ).joinpath(type_path + """.source""" )
_snake_case : int = Path(a_ ).joinpath(type_path + """.target""" )
_snake_case : int = self.get_char_lens(self.src_file )
_snake_case : List[Any] = max_source_length
_snake_case : Union[str, Any] = max_target_length
assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}"
_snake_case : Optional[Any] = tokenizer
_snake_case : Tuple = prefix
if n_obs is not None:
_snake_case : Any = self.src_lens[:n_obs]
_snake_case : Union[str, Any] = src_lang
_snake_case : str = tgt_lang
def __len__( self: Dict ):
'''simple docstring'''
return len(self.src_lens )
def __getitem__( self: Union[str, Any], a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Any = index + 1 # linecache starts at 1
_snake_case : Tuple = self.prefix + linecache.getline(str(self.src_file ), a_ ).rstrip("""\n""" )
_snake_case : Tuple = linecache.getline(str(self.tgt_file ), a_ ).rstrip("""\n""" )
assert source_line, f"empty source line for index {index}"
assert tgt_line, f"empty tgt line for index {index}"
# Need to add eos token manually for T5
if isinstance(self.tokenizer, a_ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
_snake_case : List[str] = (
self.tokenizer.question_encoder if isinstance(self.tokenizer, a_ ) else self.tokenizer
)
_snake_case : Union[str, Any] = self.tokenizer.generator if isinstance(self.tokenizer, a_ ) else self.tokenizer
_snake_case : List[str] = encode_line(a_, a_, self.max_source_length, """right""" )
_snake_case : Optional[Any] = encode_line(a_, a_, self.max_target_length, """right""" )
_snake_case : Dict = source_inputs["""input_ids"""].squeeze()
_snake_case : int = target_inputs["""input_ids"""].squeeze()
_snake_case : List[Any] = source_inputs["""attention_mask"""].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def UpperCamelCase_ ( a_: List[str] ):
'''simple docstring'''
return [len(a_ ) for x in Path(a_ ).open().readlines()]
def UpperCamelCase_ ( self: str, a_: Dict ):
'''simple docstring'''
_snake_case : List[str] = torch.stack([x["""input_ids"""] for x in batch] )
_snake_case : List[Any] = torch.stack([x["""attention_mask"""] for x in batch] )
_snake_case : Optional[int] = torch.stack([x["""decoder_input_ids"""] for x in batch] )
_snake_case : Optional[int] = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer, a_ )
else self.tokenizer.pad_token_id
)
_snake_case : int = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer, a_ )
else self.tokenizer.pad_token_id
)
_snake_case : Tuple = trim_batch(a_, a_ )
_snake_case , _snake_case : List[str] = trim_batch(a_, a_, attention_mask=a_ )
_snake_case : Optional[Any] = {
"""input_ids""": source_ids,
"""attention_mask""": source_mask,
"""decoder_input_ids""": y,
}
return batch
A_ = getLogger(__name__)
def UpperCAmelCase__ (snake_case__ : List[List] ):
"""simple docstring"""
return list(itertools.chain.from_iterable(snake_case__ ) )
def UpperCAmelCase__ (snake_case__ : str ):
"""simple docstring"""
_snake_case : List[str] = get_git_info()
save_json(snake_case__ , os.path.join(snake_case__ , """git_log.json""" ) )
def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple=4 , **snake_case__ : List[Any] ):
"""simple docstring"""
with open(snake_case__ , """w""" ) as f:
json.dump(snake_case__ , snake_case__ , indent=snake_case__ , **snake_case__ )
def UpperCAmelCase__ (snake_case__ : Any ):
"""simple docstring"""
with open(snake_case__ ) as f:
return json.load(snake_case__ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Dict = git.Repo(search_parent_directories=snake_case__ )
_snake_case : Any = {
"""repo_id""": str(snake_case__ ),
"""repo_sha""": str(repo.head.object.hexsha ),
"""repo_branch""": str(repo.active_branch ),
"""hostname""": str(socket.gethostname() ),
}
return repo_infos
def UpperCAmelCase__ (snake_case__ : Callable , snake_case__ : Iterable ):
"""simple docstring"""
return list(map(snake_case__ , snake_case__ ) )
def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Any ):
"""simple docstring"""
with open(snake_case__ , """wb""" ) as f:
return pickle.dump(snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
def remove_articles(snake_case__ : Union[str, Any] ):
return re.sub(R"""\b(a|an|the)\b""" , """ """ , snake_case__ )
def white_space_fix(snake_case__ : List[Any] ):
return " ".join(text.split() )
def remove_punc(snake_case__ : Any ):
_snake_case : List[str] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(snake_case__ : int ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(snake_case__ ) ) ) )
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict ):
"""simple docstring"""
_snake_case : List[str] = normalize_answer(snake_case__ ).split()
_snake_case : int = normalize_answer(snake_case__ ).split()
_snake_case : List[Any] = Counter(snake_case__ ) & Counter(snake_case__ )
_snake_case : Union[str, Any] = sum(common.values() )
if num_same == 0:
return 0
_snake_case : Dict = 1.0 * num_same / len(snake_case__ )
_snake_case : List[Any] = 1.0 * num_same / len(snake_case__ )
_snake_case : Optional[int] = (2 * precision * recall) / (precision + recall)
return fa
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Any ):
"""simple docstring"""
return normalize_answer(snake_case__ ) == normalize_answer(snake_case__ )
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : List[str] ):
"""simple docstring"""
assert len(snake_case__ ) == len(snake_case__ )
_snake_case : Optional[Any] = 0
for hypo, pred in zip(snake_case__ , snake_case__ ):
em += exact_match_score(snake_case__ , snake_case__ )
if len(snake_case__ ) > 0:
em /= len(snake_case__ )
return {"em": em}
def UpperCAmelCase__ (snake_case__ : Tuple ):
"""simple docstring"""
return model_prefix.startswith("""rag""" )
def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : str = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
_snake_case : List[str] = """dropout_rate"""
for p in extra_params:
if getattr(snake_case__ , snake_case__ , snake_case__ ):
if not hasattr(snake_case__ , snake_case__ ) and not hasattr(snake_case__ , equivalent_param[p] ):
logger.info("""config doesn't have a `{}` attribute""".format(snake_case__ ) )
delattr(snake_case__ , snake_case__ )
continue
_snake_case : Optional[int] = p if hasattr(snake_case__ , snake_case__ ) else equivalent_param[p]
setattr(snake_case__ , snake_case__ , getattr(snake_case__ , snake_case__ ) )
delattr(snake_case__ , snake_case__ )
return hparams, config
| 28 |
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ):
'''simple docstring'''
_snake_case : Dict = parent
_snake_case : Dict = batch_size
_snake_case : Optional[Any] = image_size
_snake_case : int = num_channels
_snake_case : Tuple = num_stages
_snake_case : int = hidden_sizes
_snake_case : List[str] = depths
_snake_case : str = is_training
_snake_case : Dict = use_labels
_snake_case : List[str] = intermediate_size
_snake_case : Optional[int] = hidden_act
_snake_case : Any = type_sequence_label_size
_snake_case : List[str] = initializer_range
_snake_case : Union[str, Any] = out_features
_snake_case : Dict = num_labels
_snake_case : int = scope
_snake_case : Dict = num_stages
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : Optional[int] = None
if self.use_labels:
_snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size )
_snake_case : Tuple = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return UperNetConfig(
backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, )
def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ):
'''simple docstring'''
_snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Tuple = model(a_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Any = self.prepare_config_and_inputs()
(
(
_snake_case
) , (
_snake_case
) , (
_snake_case
) ,
) : List[Any] = config_and_inputs
_snake_case : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : List[str] = UperNetModelTester(self )
_snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Dict = model_class(a_ )
_snake_case : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : Tuple = [*signature.parameters.keys()]
_snake_case : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*a_ )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ):
_snake_case : Optional[Any] = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
_snake_case : Any = model(**self._prepare_for_class(a_, a_ ) )
_snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case : List[str] = self.model_tester.num_stages
self.assertEqual(len(a_ ), expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
_snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : int = True
check_hidden_states_output(a_, a_, a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : Optional[int] = True
check_hidden_states_output(a_, a_, a_ )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Tuple = _config_zero_init(a_ )
_snake_case : Dict = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_snake_case : Optional[int] = model_class(config=a_ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
pass
@slow
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Union[str, Any] = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class lowercase( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
_snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ )
_snake_case : Dict = prepare_img()
_snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ )
with torch.no_grad():
_snake_case : Tuple = model(**a_ )
_snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : int = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
_snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ )
_snake_case : List[str] = prepare_img()
_snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ )
with torch.no_grad():
_snake_case : Optional[Any] = model(**a_ )
_snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : Optional[Any] = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
| 28 | 1 |
"""simple docstring"""
import unittest
from knapsack import greedy_knapsack as kp
class lowercase( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Optional[Any] = [10, 20, 30, 40, 50, 60]
_snake_case : List[str] = [2, 4, 6, 8, 10, 12]
_snake_case : Tuple = 100
self.assertEqual(kp.calc_profit(a_, a_, a_ ), 210 )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
self.assertRaisesRegex(a_, """max_weight must greater than zero.""" )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
self.assertRaisesRegex(a_, """Weight can not be negative.""" )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
self.assertRaisesRegex(a_, """Profit can not be negative.""" )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
self.assertRaisesRegex(a_, """max_weight must greater than zero.""" )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
self.assertRaisesRegex(
a_, """The length of profit and weight must be same.""" )
if __name__ == "__main__":
unittest.main()
| 28 |
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
A_ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
A_ = [ord(letter) for letter in string.ascii_lowercase]
A_ = {ord(char) for char in VALID_CHARS}
A_ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : tuple[int, ...] ):
"""simple docstring"""
_snake_case : str = ""
_snake_case : int
_snake_case : int
_snake_case : int
for keychar, cipherchar in zip(cycle(snake_case__ ) , snake_case__ ):
_snake_case : List[str] = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(snake_case__ )
return decoded
def UpperCAmelCase__ (snake_case__ : list[int] ):
"""simple docstring"""
_snake_case : list[str] = []
for key in product(snake_case__ , repeat=3 ):
_snake_case : List[Any] = try_key(snake_case__ , snake_case__ )
if encoded is not None:
possibles.append(snake_case__ )
return possibles
def UpperCAmelCase__ (snake_case__ : list[str] , snake_case__ : str ):
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def UpperCAmelCase__ (snake_case__ : str = "p059_cipher.txt" ):
"""simple docstring"""
_snake_case : list[int]
_snake_case : list[str]
_snake_case : str
_snake_case : str
_snake_case : str = Path(snake_case__ ).parent.joinpath(snake_case__ ).read_text(encoding="""utf-8""" )
_snake_case : List[Any] = [int(snake_case__ ) for number in data.strip().split(""",""" )]
_snake_case : Optional[Any] = filter_valid_chars(snake_case__ )
for common_word in COMMON_WORDS:
_snake_case : Union[str, Any] = filter_common_word(snake_case__ , snake_case__ )
if len(snake_case__ ) == 1:
break
_snake_case : Optional[int] = possibles[0]
return sum(ord(snake_case__ ) for char in decoded_text )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 28 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class lowercase( unittest.TestCase ):
'''simple docstring'''
def __init__( self: int, a_: Tuple, a_: List[Any]=7, a_: Tuple=3, a_: Dict=10, a_: Dict=18, a_: Optional[int]=30, a_: Dict=400, a_: Optional[Any]=True, a_: Dict=None, a_: int=True, a_: Tuple=[0.5, 0.5, 0.5], a_: Tuple=[0.5, 0.5, 0.5], a_: Optional[int]=None, ):
'''simple docstring'''
_snake_case : Any = size if size is not None else {"""shortest_edge""": 18}
_snake_case : List[str] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_snake_case : int = parent
_snake_case : List[Any] = batch_size
_snake_case : Union[str, Any] = num_channels
_snake_case : Dict = num_frames
_snake_case : str = image_size
_snake_case : int = min_resolution
_snake_case : Dict = max_resolution
_snake_case : Any = do_resize
_snake_case : Optional[Any] = size
_snake_case : Optional[Any] = do_normalize
_snake_case : Dict = image_mean
_snake_case : str = image_std
_snake_case : List[str] = crop_size
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class lowercase( __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = VivitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case : Union[str, Any] = VivitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_, """image_mean""" ) )
self.assertTrue(hasattr(a_, """image_std""" ) )
self.assertTrue(hasattr(a_, """do_normalize""" ) )
self.assertTrue(hasattr(a_, """do_resize""" ) )
self.assertTrue(hasattr(a_, """do_center_crop""" ) )
self.assertTrue(hasattr(a_, """size""" ) )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size, {"""height""": 18, """width""": 18} )
_snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size, {"""height""": 84, """width""": 84} )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
_snake_case : List[str] = prepare_video_inputs(self.image_processor_tester, equal_resolution=a_ )
for video in video_inputs:
self.assertIsInstance(a_, a_ )
self.assertIsInstance(video[0], Image.Image )
# Test not batched input
_snake_case : Optional[Any] = image_processing(video_inputs[0], return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape, (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
# Test batched
_snake_case : Dict = image_processing(a_, return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_snake_case : Union[str, Any] = prepare_video_inputs(self.image_processor_tester, equal_resolution=a_, numpify=a_ )
for video in video_inputs:
self.assertIsInstance(a_, a_ )
self.assertIsInstance(video[0], np.ndarray )
# Test not batched input
_snake_case : Dict = image_processing(video_inputs[0], return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape, (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
# Test batched
_snake_case : List[Any] = image_processing(a_, return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_snake_case : str = prepare_video_inputs(self.image_processor_tester, equal_resolution=a_, torchify=a_ )
for video in video_inputs:
self.assertIsInstance(a_, a_ )
self.assertIsInstance(video[0], torch.Tensor )
# Test not batched input
_snake_case : Any = image_processing(video_inputs[0], return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape, (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
# Test batched
_snake_case : Union[str, Any] = image_processing(a_, return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
), )
| 28 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowercase( __a ):
'''simple docstring'''
lowercase__ = ["image_processor", "feature_extractor"]
lowercase__ = "TvltImageProcessor"
lowercase__ = "TvltFeatureExtractor"
def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ):
'''simple docstring'''
super().__init__(image_processor=a_, feature_extractor=a_ )
_snake_case : Any = image_processor
_snake_case : Dict = feature_extractor
def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ):
'''simple docstring'''
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""" )
_snake_case : Optional[int] = None
if images is not None:
_snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ )
if images_mixed is not None:
_snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ )
if audio is not None:
_snake_case : Any = self.feature_extractor(
a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ )
_snake_case : List[str] = {}
if audio is not None:
output_dict.update(a_ )
if images is not None:
output_dict.update(a_ )
if images_mixed_dict is not None:
output_dict.update(a_ )
return output_dict
@property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Dict = self.image_processor.model_input_names
_snake_case : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 28 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
A_ = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 28 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
A_ = '''pt'''
elif is_tf_available():
A_ = '''tf'''
else:
A_ = '''jax'''
class lowercase( __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = ByTaTokenizer
lowercase__ = False
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
super().setUp()
_snake_case : List[str] = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
return ByTaTokenizer.from_pretrained("""google/byt5-small""" )
def UpperCamelCase_ ( self: List[Any], **a_: int ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ )
def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ):
'''simple docstring'''
_snake_case : List[Any] = []
for i in range(len(a_ ) ):
try:
_snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) )
_snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) )
if max_length is not None and len(a_ ) > max_length:
_snake_case : Tuple = toks[:max_length]
if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0:
while len(a_ ) < min_length:
_snake_case : List[str] = toks + toks
# toks_str = [t[1] for t in toks]
_snake_case : Tuple = [t[0] for t in toks]
# Ensure consistency
_snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ )
if " " not in output_txt and len(a_ ) > 1:
_snake_case : Dict = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ )
+ """ """
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ )
)
if with_prefix_space:
_snake_case : Union[str, Any] = """ """ + output_txt
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
return output_txt, output_ids
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[int] = self.ta_base_tokenizer
_snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] )
_snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] )
self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[str] = self.ta_base_tokenizer
_snake_case : Tuple = """Unicode €."""
_snake_case : List[Any] = tokenizer(a_ )
_snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded["""input_ids"""], a_ )
# decoding
_snake_case : Tuple = tokenizer.decode(a_ )
self.assertEqual(a_, """Unicode €.</s>""" )
_snake_case : Tuple = tokenizer("""e è é ê ë""" )
_snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded["""input_ids"""], a_ )
# decoding
_snake_case : int = tokenizer.decode(a_ )
self.assertEqual(a_, """e è é ê ë</s>""" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Dict = self.ta_base_tokenizer
_snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
# fmt: off
_snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
_snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ )
self.assertIsInstance(a_, a_ )
if FRAMEWORK != "jax":
_snake_case : List[str] = list(batch.input_ids.numpy()[0] )
else:
_snake_case : Optional[int] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(a_, a_ )
self.assertEqual((2, 37), batch.input_ids.shape )
self.assertEqual((2, 37), batch.attention_mask.shape )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : List[Any] = self.ta_base_tokenizer
_snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
_snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("""input_ids""", a_ )
self.assertIn("""attention_mask""", a_ )
self.assertNotIn("""decoder_input_ids""", a_ )
self.assertNotIn("""decoder_attention_mask""", a_ )
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.ta_base_tokenizer
_snake_case : Dict = [
"""Summary of the text.""",
"""Another summary.""",
]
_snake_case : Optional[int] = tokenizer(
text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ )
self.assertEqual(32, targets["""input_ids"""].shape[1] )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : int = self.ta_base_tokenizer
_snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""]
_snake_case : Dict = ["""Summary of the text. </s>"""]
# fmt: off
_snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
_snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
_snake_case : Optional[Any] = tokenizer(a_, text_target=a_ )
self.assertEqual(a_, batch["""input_ids"""][0] )
self.assertEqual(a_, batch["""labels"""][0] )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length, 42 )
# Now let's start the test
_snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
_snake_case : List[str] = tempfile.mkdtemp()
_snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running"""
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
tokenizer.save_pretrained(a_ )
_snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ )
_snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ )
self.assertListEqual(a_, a_ )
shutil.rmtree(a_ )
_snake_case : Tuple = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
_snake_case : Union[str, Any] = tempfile.mkdtemp()
_snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running"""
tokenizer.add_tokens(["""bim""", """bambam"""] )
_snake_case : Optional[Any] = tokenizer.additional_special_tokens
additional_special_tokens.append("""new_additional_special_token""" )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
_snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ )
tokenizer.save_pretrained(a_ )
_snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ )
_snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ )
self.assertListEqual(a_, a_ )
self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length, 42 )
_snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 )
self.assertEqual(tokenizer.model_max_length, 43 )
shutil.rmtree(a_ )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Optional[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(a_ )
with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file:
_snake_case : Union[str, Any] = json.load(a_ )
with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file:
_snake_case : List[Any] = json.load(a_ )
_snake_case : int = [f"<extra_id_{i}>" for i in range(125 )]
_snake_case : Optional[int] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
_snake_case : Dict = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile:
json.dump(a_, a_ )
with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile:
json.dump(a_, a_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_snake_case : Optional[int] = tokenizer_class.from_pretrained(
a_, )
self.assertIn(
"""an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )]
_snake_case : List[Any] = tokenizer_class.from_pretrained(
a_, additional_special_tokens=a_, )
self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens )
self.assertEqual(
["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : List[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(a_ )
_snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ )
self.assertTrue(tokenizer.decode([255] ) == """""" )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
_snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""]
_snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ )
self.assertIsInstance(a_, a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
_snake_case : Optional[int] = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
_snake_case : Any = 0
_snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(
a_, skip_special_tokens=a_ )
for attr in attributes_list:
setattr(a_, attr + """_id""", a_ )
self.assertEqual(getattr(a_, a_ ), a_ )
self.assertEqual(getattr(a_, attr + """_id""" ), a_ )
setattr(a_, attr + """_id""", a_ )
self.assertEqual(getattr(a_, a_ ), a_ )
self.assertEqual(getattr(a_, attr + """_id""" ), a_ )
setattr(a_, """additional_special_tokens_ids""", [] )
self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] )
self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] )
setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] )
self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] )
self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
| 28 | 1 |
"""simple docstring"""
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
A_ = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowercase( __a ):
'''simple docstring'''
def __init__( self: Optional[Any], *a_: str, a_: int=None, a_: Optional[Any]=None, a_: List[str]=None, **a_: str ):
'''simple docstring'''
super().__init__(*a_, **a_ )
_snake_case : int = eval_examples
_snake_case : Optional[int] = post_process_function
_snake_case : Dict = quant_trainer_args
_snake_case : Optional[int] = 128 # default number of calibration samples
def UpperCamelCase_ ( self: Tuple, a_: Any=None ):
'''simple docstring'''
if calib_dataset is None and self.calib_dataset is None:
raise ValueError("""Trainer: calibration requires an calib_dataset.""" )
_snake_case : List[str] = calib_dataset if calib_dataset is not None else self.calib_dataset
_snake_case : List[Any] = self._remove_unused_columns(a_, description="""Calibration""" )
return DataLoader(
a_, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, shuffle=a_, )
def UpperCamelCase_ ( self: List[str], a_: Any=None ):
'''simple docstring'''
_snake_case : List[Any] = self.train_dataset if calib_dataset is None else calib_dataset
_snake_case : Optional[int] = self.get_calib_dataloader(a_ )
_snake_case : int = self.model
quant_trainer.configure_model(a_, self.quant_trainer_args, calib=a_ )
model.eval()
quant_trainer.enable_calibration(a_ )
logger.info("""***** Running calibration *****""" )
logger.info(f" Num examples = {self.calib_num}" )
logger.info(f" Batch size = {calib_dataloader.batch_size}" )
for step, inputs in enumerate(a_ ):
# Prediction step
_snake_case , _snake_case , _snake_case : str = self.prediction_step(a_, a_, prediction_loss_only=a_ )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(a_, self.quant_trainer_args )
_snake_case : str = model
def UpperCamelCase_ ( self: List[Any], a_: Optional[int]=None, a_: str=None, a_: Optional[int]=None, a_: str = "eval" ):
'''simple docstring'''
_snake_case : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset
_snake_case : int = self.get_eval_dataloader(a_ )
_snake_case : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_snake_case : int = self.compute_metrics
_snake_case : str = None
_snake_case : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_snake_case : str = eval_loop(
a_, description="""Evaluation""", prediction_loss_only=True if compute_metrics is None else None, ignore_keys=a_, )
finally:
_snake_case : Any = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
_snake_case : Any = self.post_process_function(a_, a_, output.predictions )
_snake_case : Union[str, Any] = self.compute_metrics(a_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
_snake_case : Dict = metrics.pop(a_ )
self.log(a_ )
else:
_snake_case : Union[str, Any] = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_snake_case : List[Any] = self.callback_handler.on_evaluate(self.args, self.state, self.control, a_ )
return metrics
def UpperCamelCase_ ( self: Optional[Any], a_: int, a_: int, a_: Optional[Any]=None, a_: str = "test" ):
'''simple docstring'''
_snake_case : Dict = self.get_test_dataloader(a_ )
# Temporarily disable metric computation, we will do it in the loop here.
_snake_case : Dict = self.compute_metrics
_snake_case : Optional[int] = None
_snake_case : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_snake_case : List[str] = eval_loop(
a_, description="""Prediction""", prediction_loss_only=True if compute_metrics is None else None, ignore_keys=a_, )
finally:
_snake_case : List[str] = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
_snake_case : List[Any] = self.post_process_function(a_, a_, output.predictions, """predict""" )
_snake_case : int = self.compute_metrics(a_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
_snake_case : List[str] = metrics.pop(a_ )
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=a_ )
def UpperCamelCase_ ( self: Optional[int], a_: int="./" ):
'''simple docstring'''
_snake_case : Optional[int] = self.eval_dataset
_snake_case : Union[str, Any] = self.get_eval_dataloader(a_ )
_snake_case : str = next(iter(a_ ) )
# saving device - to make it consistent
_snake_case : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
# convert to tuple
_snake_case : List[Any] = tuple(v.to(a_ ) for k, v in batch.items() )
logger.info("""Converting model to be onnx compatible""" )
from pytorch_quantization.nn import TensorQuantizer
_snake_case : Dict = True
_snake_case : str = self.model.to(a_ )
model.eval()
model.float()
_snake_case : List[Any] = model.module if hasattr(a_, """module""" ) else model
quant_trainer.configure_model(a_, self.quant_trainer_args )
_snake_case : Dict = os.path.join(a_, """model.onnx""" )
logger.info(f"exporting model to {output_model_file}" )
_snake_case : List[Any] = {0: """batch_size""", 1: """seq_len"""}
torch.onnx.export(
a_, a_, a_, export_params=a_, opset_version=13, do_constant_folding=a_, input_names=["""input_ids""", """attention_mask""", """token_type_ids"""], output_names=["""output_start_logits""", """output_end_logits"""], dynamic_axes={
"""input_ids""": axes,
"""attention_mask""": axes,
"""token_type_ids""": axes,
"""output_start_logits""": axes,
"""output_end_logits""": axes,
}, verbose=a_, )
logger.info("""onnx export finished""" )
| 28 |
"""simple docstring"""
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class lowercase( __a ):
'''simple docstring'''
@staticmethod
@abstractmethod
def UpperCamelCase_ ( a_: ArgumentParser ):
'''simple docstring'''
raise NotImplementedError()
@abstractmethod
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
raise NotImplementedError()
| 28 | 1 |
"""simple docstring"""
from collections.abc import Callable
def UpperCAmelCase__ (snake_case__ : Callable[[float], float] , snake_case__ : float , snake_case__ : float ):
"""simple docstring"""
_snake_case : float = a
_snake_case : float = b
if function(snake_case__ ) == 0: # one of the a or b is a root for the function
return a
elif function(snake_case__ ) == 0:
return b
elif (
function(snake_case__ ) * function(snake_case__ ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("""could not find root in given interval.""" )
else:
_snake_case : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(snake_case__ ) == 0:
return mid
elif function(snake_case__ ) * function(snake_case__ ) < 0:
_snake_case : Tuple = mid
else:
_snake_case : List[str] = mid
_snake_case : Any = start + (end - start) / 2.0
return mid
def UpperCAmelCase__ (snake_case__ : float ):
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 10_00))
import doctest
doctest.testmod()
| 28 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''',
'''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''',
'''junnyu/roformer_chinese_char_small''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'''
),
'''junnyu/roformer_chinese_char_base''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'''
),
'''junnyu/roformer_small_discriminator''': (
'''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'''
),
'''junnyu/roformer_small_generator''': (
'''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'''
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "roformer"
def __init__( self: List[str], a_: Tuple=50_000, a_: Optional[Any]=None, a_: List[str]=768, a_: Union[str, Any]=12, a_: Optional[int]=12, a_: Optional[Any]=3_072, a_: List[str]="gelu", a_: List[str]=0.1, a_: Tuple=0.1, a_: Optional[int]=1_536, a_: Any=2, a_: Optional[int]=0.02, a_: Tuple=1E-12, a_: Dict=0, a_: str=False, a_: Dict=True, **a_: Dict, ):
'''simple docstring'''
super().__init__(pad_token_id=a_, **a_ )
_snake_case : int = vocab_size
_snake_case : int = hidden_size if embedding_size is None else embedding_size
_snake_case : Dict = hidden_size
_snake_case : Optional[int] = num_hidden_layers
_snake_case : Any = num_attention_heads
_snake_case : Dict = hidden_act
_snake_case : Optional[int] = intermediate_size
_snake_case : List[Any] = hidden_dropout_prob
_snake_case : Union[str, Any] = attention_probs_dropout_prob
_snake_case : Any = max_position_embeddings
_snake_case : Tuple = type_vocab_size
_snake_case : List[Any] = initializer_range
_snake_case : List[Any] = layer_norm_eps
_snake_case : Optional[Any] = rotary_value
_snake_case : List[str] = use_cache
class lowercase( __a ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
if self.task == "multiple-choice":
_snake_case : str = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case : List[str] = {0: """batch""", 1: """sequence"""}
_snake_case : List[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 28 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
A_ = {
'''Acehnese Arabic''': '''ace_Arab''',
'''Acehnese Latin''': '''ace_Latn''',
'''Mesopotamian Arabic''': '''acm_Arab''',
'''Ta\'izzi-Adeni Arabic''': '''acq_Arab''',
'''Tunisian Arabic''': '''aeb_Arab''',
'''Afrikaans''': '''afr_Latn''',
'''South Levantine Arabic''': '''ajp_Arab''',
'''Akan''': '''aka_Latn''',
'''Amharic''': '''amh_Ethi''',
'''North Levantine Arabic''': '''apc_Arab''',
'''Modern Standard Arabic''': '''arb_Arab''',
'''Modern Standard Arabic Romanized''': '''arb_Latn''',
'''Najdi Arabic''': '''ars_Arab''',
'''Moroccan Arabic''': '''ary_Arab''',
'''Egyptian Arabic''': '''arz_Arab''',
'''Assamese''': '''asm_Beng''',
'''Asturian''': '''ast_Latn''',
'''Awadhi''': '''awa_Deva''',
'''Central Aymara''': '''ayr_Latn''',
'''South Azerbaijani''': '''azb_Arab''',
'''North Azerbaijani''': '''azj_Latn''',
'''Bashkir''': '''bak_Cyrl''',
'''Bambara''': '''bam_Latn''',
'''Balinese''': '''ban_Latn''',
'''Belarusian''': '''bel_Cyrl''',
'''Bemba''': '''bem_Latn''',
'''Bengali''': '''ben_Beng''',
'''Bhojpuri''': '''bho_Deva''',
'''Banjar Arabic''': '''bjn_Arab''',
'''Banjar Latin''': '''bjn_Latn''',
'''Standard Tibetan''': '''bod_Tibt''',
'''Bosnian''': '''bos_Latn''',
'''Buginese''': '''bug_Latn''',
'''Bulgarian''': '''bul_Cyrl''',
'''Catalan''': '''cat_Latn''',
'''Cebuano''': '''ceb_Latn''',
'''Czech''': '''ces_Latn''',
'''Chokwe''': '''cjk_Latn''',
'''Central Kurdish''': '''ckb_Arab''',
'''Crimean Tatar''': '''crh_Latn''',
'''Welsh''': '''cym_Latn''',
'''Danish''': '''dan_Latn''',
'''German''': '''deu_Latn''',
'''Southwestern Dinka''': '''dik_Latn''',
'''Dyula''': '''dyu_Latn''',
'''Dzongkha''': '''dzo_Tibt''',
'''Greek''': '''ell_Grek''',
'''English''': '''eng_Latn''',
'''Esperanto''': '''epo_Latn''',
'''Estonian''': '''est_Latn''',
'''Basque''': '''eus_Latn''',
'''Ewe''': '''ewe_Latn''',
'''Faroese''': '''fao_Latn''',
'''Fijian''': '''fij_Latn''',
'''Finnish''': '''fin_Latn''',
'''Fon''': '''fon_Latn''',
'''French''': '''fra_Latn''',
'''Friulian''': '''fur_Latn''',
'''Nigerian Fulfulde''': '''fuv_Latn''',
'''Scottish Gaelic''': '''gla_Latn''',
'''Irish''': '''gle_Latn''',
'''Galician''': '''glg_Latn''',
'''Guarani''': '''grn_Latn''',
'''Gujarati''': '''guj_Gujr''',
'''Haitian Creole''': '''hat_Latn''',
'''Hausa''': '''hau_Latn''',
'''Hebrew''': '''heb_Hebr''',
'''Hindi''': '''hin_Deva''',
'''Chhattisgarhi''': '''hne_Deva''',
'''Croatian''': '''hrv_Latn''',
'''Hungarian''': '''hun_Latn''',
'''Armenian''': '''hye_Armn''',
'''Igbo''': '''ibo_Latn''',
'''Ilocano''': '''ilo_Latn''',
'''Indonesian''': '''ind_Latn''',
'''Icelandic''': '''isl_Latn''',
'''Italian''': '''ita_Latn''',
'''Javanese''': '''jav_Latn''',
'''Japanese''': '''jpn_Jpan''',
'''Kabyle''': '''kab_Latn''',
'''Jingpho''': '''kac_Latn''',
'''Kamba''': '''kam_Latn''',
'''Kannada''': '''kan_Knda''',
'''Kashmiri Arabic''': '''kas_Arab''',
'''Kashmiri Devanagari''': '''kas_Deva''',
'''Georgian''': '''kat_Geor''',
'''Central Kanuri Arabic''': '''knc_Arab''',
'''Central Kanuri Latin''': '''knc_Latn''',
'''Kazakh''': '''kaz_Cyrl''',
'''Kabiyè''': '''kbp_Latn''',
'''Kabuverdianu''': '''kea_Latn''',
'''Khmer''': '''khm_Khmr''',
'''Kikuyu''': '''kik_Latn''',
'''Kinyarwanda''': '''kin_Latn''',
'''Kyrgyz''': '''kir_Cyrl''',
'''Kimbundu''': '''kmb_Latn''',
'''Northern Kurdish''': '''kmr_Latn''',
'''Kikongo''': '''kon_Latn''',
'''Korean''': '''kor_Hang''',
'''Lao''': '''lao_Laoo''',
'''Ligurian''': '''lij_Latn''',
'''Limburgish''': '''lim_Latn''',
'''Lingala''': '''lin_Latn''',
'''Lithuanian''': '''lit_Latn''',
'''Lombard''': '''lmo_Latn''',
'''Latgalian''': '''ltg_Latn''',
'''Luxembourgish''': '''ltz_Latn''',
'''Luba-Kasai''': '''lua_Latn''',
'''Ganda''': '''lug_Latn''',
'''Luo''': '''luo_Latn''',
'''Mizo''': '''lus_Latn''',
'''Standard Latvian''': '''lvs_Latn''',
'''Magahi''': '''mag_Deva''',
'''Maithili''': '''mai_Deva''',
'''Malayalam''': '''mal_Mlym''',
'''Marathi''': '''mar_Deva''',
'''Minangkabau Arabic ''': '''min_Arab''',
'''Minangkabau Latin''': '''min_Latn''',
'''Macedonian''': '''mkd_Cyrl''',
'''Plateau Malagasy''': '''plt_Latn''',
'''Maltese''': '''mlt_Latn''',
'''Meitei Bengali''': '''mni_Beng''',
'''Halh Mongolian''': '''khk_Cyrl''',
'''Mossi''': '''mos_Latn''',
'''Maori''': '''mri_Latn''',
'''Burmese''': '''mya_Mymr''',
'''Dutch''': '''nld_Latn''',
'''Norwegian Nynorsk''': '''nno_Latn''',
'''Norwegian Bokmål''': '''nob_Latn''',
'''Nepali''': '''npi_Deva''',
'''Northern Sotho''': '''nso_Latn''',
'''Nuer''': '''nus_Latn''',
'''Nyanja''': '''nya_Latn''',
'''Occitan''': '''oci_Latn''',
'''West Central Oromo''': '''gaz_Latn''',
'''Odia''': '''ory_Orya''',
'''Pangasinan''': '''pag_Latn''',
'''Eastern Panjabi''': '''pan_Guru''',
'''Papiamento''': '''pap_Latn''',
'''Western Persian''': '''pes_Arab''',
'''Polish''': '''pol_Latn''',
'''Portuguese''': '''por_Latn''',
'''Dari''': '''prs_Arab''',
'''Southern Pashto''': '''pbt_Arab''',
'''Ayacucho Quechua''': '''quy_Latn''',
'''Romanian''': '''ron_Latn''',
'''Rundi''': '''run_Latn''',
'''Russian''': '''rus_Cyrl''',
'''Sango''': '''sag_Latn''',
'''Sanskrit''': '''san_Deva''',
'''Santali''': '''sat_Olck''',
'''Sicilian''': '''scn_Latn''',
'''Shan''': '''shn_Mymr''',
'''Sinhala''': '''sin_Sinh''',
'''Slovak''': '''slk_Latn''',
'''Slovenian''': '''slv_Latn''',
'''Samoan''': '''smo_Latn''',
'''Shona''': '''sna_Latn''',
'''Sindhi''': '''snd_Arab''',
'''Somali''': '''som_Latn''',
'''Southern Sotho''': '''sot_Latn''',
'''Spanish''': '''spa_Latn''',
'''Tosk Albanian''': '''als_Latn''',
'''Sardinian''': '''srd_Latn''',
'''Serbian''': '''srp_Cyrl''',
'''Swati''': '''ssw_Latn''',
'''Sundanese''': '''sun_Latn''',
'''Swedish''': '''swe_Latn''',
'''Swahili''': '''swh_Latn''',
'''Silesian''': '''szl_Latn''',
'''Tamil''': '''tam_Taml''',
'''Tatar''': '''tat_Cyrl''',
'''Telugu''': '''tel_Telu''',
'''Tajik''': '''tgk_Cyrl''',
'''Tagalog''': '''tgl_Latn''',
'''Thai''': '''tha_Thai''',
'''Tigrinya''': '''tir_Ethi''',
'''Tamasheq Latin''': '''taq_Latn''',
'''Tamasheq Tifinagh''': '''taq_Tfng''',
'''Tok Pisin''': '''tpi_Latn''',
'''Tswana''': '''tsn_Latn''',
'''Tsonga''': '''tso_Latn''',
'''Turkmen''': '''tuk_Latn''',
'''Tumbuka''': '''tum_Latn''',
'''Turkish''': '''tur_Latn''',
'''Twi''': '''twi_Latn''',
'''Central Atlas Tamazight''': '''tzm_Tfng''',
'''Uyghur''': '''uig_Arab''',
'''Ukrainian''': '''ukr_Cyrl''',
'''Umbundu''': '''umb_Latn''',
'''Urdu''': '''urd_Arab''',
'''Northern Uzbek''': '''uzn_Latn''',
'''Venetian''': '''vec_Latn''',
'''Vietnamese''': '''vie_Latn''',
'''Waray''': '''war_Latn''',
'''Wolof''': '''wol_Latn''',
'''Xhosa''': '''xho_Latn''',
'''Eastern Yiddish''': '''ydd_Hebr''',
'''Yoruba''': '''yor_Latn''',
'''Yue Chinese''': '''yue_Hant''',
'''Chinese Simplified''': '''zho_Hans''',
'''Chinese Traditional''': '''zho_Hant''',
'''Standard Malay''': '''zsm_Latn''',
'''Zulu''': '''zul_Latn''',
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "facebook/nllb-200-distilled-600M"
lowercase__ = (
"This is a tool that translates text from a language to another. It takes three inputs: `text`, which should "
"be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, "
"which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in "
"plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."
)
lowercase__ = "translator"
lowercase__ = AutoTokenizer
lowercase__ = AutoModelForSeqaSeqLM
lowercase__ = LANGUAGE_CODES
lowercase__ = ["text", "text", "text"]
lowercase__ = ["text"]
def UpperCamelCase_ ( self: str, a_: int, a_: Any, a_: Dict ):
'''simple docstring'''
if src_lang not in self.lang_to_code:
raise ValueError(f"{src_lang} is not a supported language." )
if tgt_lang not in self.lang_to_code:
raise ValueError(f"{tgt_lang} is not a supported language." )
_snake_case : List[Any] = self.lang_to_code[src_lang]
_snake_case : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
a_, return_tensors="""pt""", src_lang=a_, tgt_lang=a_ )
def UpperCamelCase_ ( self: List[str], a_: Optional[Any] ):
'''simple docstring'''
return self.model.generate(**a_ )
def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ):
'''simple docstring'''
return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=a_ )
| 28 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ):
"""simple docstring"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ):
"""simple docstring"""
_snake_case : Optional[Any] = []
for old_item in old_list:
_snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" )
_snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" )
_snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" )
_snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" )
_snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" )
_snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ):
"""simple docstring"""
_snake_case : Dict = []
for old_item in old_list:
_snake_case : Dict = old_item
_snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" )
_snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" )
_snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ):
"""simple docstring"""
assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_snake_case : Union[str, Any] = old_checkpoint[path]
_snake_case : Optional[int] = old_tensor.shape[0] // 3
_snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3
_snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 )
_snake_case : Union[str, Any] = query.reshape(snake_case__ )
_snake_case : Tuple = key.reshape(snake_case__ )
_snake_case : Any = value.reshape(snake_case__ )
for path in paths:
_snake_case : List[Any] = path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0]
else:
_snake_case : Optional[Any] = old_checkpoint[path["""old"""]]
def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ):
"""simple docstring"""
_snake_case : int = {}
_snake_case : Tuple = checkpoint["""time_embed.0.weight"""]
_snake_case : List[str] = checkpoint["""time_embed.0.bias"""]
_snake_case : List[str] = checkpoint["""time_embed.2.weight"""]
_snake_case : Tuple = checkpoint["""time_embed.2.bias"""]
_snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""]
_snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""]
_snake_case : List[Any] = checkpoint["""out.0.weight"""]
_snake_case : Any = checkpoint["""out.0.bias"""]
_snake_case : Any = checkpoint["""out.2.weight"""]
_snake_case : List[str] = checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_snake_case : Any = {
layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
# Retrieves the keys for the middle blocks only
_snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_snake_case : Optional[int] = {
layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
# Retrieves the keys for the output blocks only
_snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_snake_case : List[Any] = {
layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
for i in range(1 , snake_case__ ):
_snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1)
_snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1)
_snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key]
_snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key]
if F"input_blocks.{i}.0.op.weight" in checkpoint:
_snake_case : Union[str, Any] = checkpoint[
F"input_blocks.{i}.0.op.weight"
]
_snake_case : Dict = checkpoint[
F"input_blocks.{i}.0.op.bias"
]
continue
_snake_case : Optional[int] = renew_resnet_paths(snake_case__ )
_snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
_snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ )
if len(snake_case__ ):
_snake_case : str = renew_attention_paths(snake_case__ )
_snake_case : List[str] = {
"""old""": F"input_blocks.{i}.1",
"""new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}",
}
_snake_case : Optional[int] = {
F"input_blocks.{i}.1.qkv.bias": {
"""key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"""query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"""value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
F"input_blocks.{i}.1.qkv.weight": {
"""key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"""query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"""value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , )
_snake_case : int = middle_blocks[0]
_snake_case : List[str] = middle_blocks[1]
_snake_case : Any = middle_blocks[2]
_snake_case : Dict = renew_resnet_paths(snake_case__ )
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ )
_snake_case : Any = renew_resnet_paths(snake_case__ )
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ )
_snake_case : Dict = renew_attention_paths(snake_case__ )
_snake_case : Tuple = {
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ )
for i in range(snake_case__ ):
_snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1)
_snake_case : Dict = i % (config["""num_res_blocks"""] + 1)
_snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]]
_snake_case : Any = {}
for layer in output_block_layers:
_snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(snake_case__ )
else:
_snake_case : str = [layer_name]
if len(snake_case__ ) > 1:
_snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key]
_snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key]
_snake_case : List[Any] = renew_resnet_paths(snake_case__ )
_snake_case : int = renew_resnet_paths(snake_case__ )
_snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_snake_case : Any = checkpoint[
F"output_blocks.{i}.{index}.conv.weight"
]
_snake_case : Optional[int] = checkpoint[
F"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(snake_case__ ) == 2:
_snake_case : Any = []
if len(snake_case__ ):
_snake_case : str = renew_attention_paths(snake_case__ )
_snake_case : str = {
"""old""": F"output_blocks.{i}.1",
"""new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
_snake_case : int = {
F"output_blocks.{i}.1.qkv.bias": {
"""key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"""query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"""value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
F"output_blocks.{i}.1.qkv.weight": {
"""key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"""query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"""value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , )
else:
_snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] )
_snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] )
_snake_case : Any = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the architecture.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
A_ = parser.parse_args()
A_ = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
A_ = json.loads(f.read())
A_ = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
A_ = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 28 | 1 |
"""simple docstring"""
from __future__ import annotations
class lowercase:
'''simple docstring'''
def __init__( self: Optional[int], a_: int = 0 ):
'''simple docstring'''
_snake_case : str = key
def UpperCamelCase_ ( self: Tuple, a_: str, a_: int ):
'''simple docstring'''
assert isinstance(a_, a_ ) and isinstance(a_, a_ )
_snake_case : Optional[Any] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(a_ ) ^ key ) for ch in content]
def UpperCamelCase_ ( self: Union[str, Any], a_: str, a_: int ):
'''simple docstring'''
assert isinstance(a_, a_ ) and isinstance(a_, a_ )
_snake_case : Dict = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(a_ ) ^ key ) for ch in content]
def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int = 0 ):
'''simple docstring'''
assert isinstance(a_, a_ ) and isinstance(a_, a_ )
_snake_case : List[Any] = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_snake_case : List[str] = """"""
for ch in content:
ans += chr(ord(a_ ) ^ key )
return ans
def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int = 0 ):
'''simple docstring'''
assert isinstance(a_, a_ ) and isinstance(a_, a_ )
_snake_case : Any = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_snake_case : str = """"""
for ch in content:
ans += chr(ord(a_ ) ^ key )
return ans
def UpperCamelCase_ ( self: Dict, a_: str, a_: int = 0 ):
'''simple docstring'''
assert isinstance(a_, a_ ) and isinstance(a_, a_ )
try:
with open(a_ ) as fin, open("""encrypt.out""", """w+""" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(a_, a_ ) )
except OSError:
return False
return True
def UpperCamelCase_ ( self: Union[str, Any], a_: str, a_: int ):
'''simple docstring'''
assert isinstance(a_, a_ ) and isinstance(a_, a_ )
try:
with open(a_ ) as fin, open("""decrypt.out""", """w+""" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(a_, a_ ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 28 |
"""simple docstring"""
from typing import Any
def UpperCAmelCase__ (snake_case__ : list ):
"""simple docstring"""
if not input_list:
return []
_snake_case : List[Any] = [input_list.count(snake_case__ ) for value in input_list]
_snake_case : Optional[int] = max(snake_case__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
"""simple docstring"""
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
A_ = logging.getLogger(__name__)
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "sequence-classification"
def __init__( self: Union[str, Any], a_: Any ):
'''simple docstring'''
if type(a_ ) == dict:
_snake_case : Dict = Namespace(**a_ )
_snake_case : List[Any] = glue_output_modes[hparams.task]
_snake_case : Optional[Any] = glue_tasks_num_labels[hparams.task]
super().__init__(a_, a_, self.mode )
def UpperCamelCase_ ( self: List[Any], **a_: Optional[Any] ):
'''simple docstring'''
return self.model(**a_ )
def UpperCamelCase_ ( self: Optional[int], a_: List[Any], a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
_snake_case : Optional[int] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None
_snake_case : Union[str, Any] = self(**a_ )
_snake_case : List[str] = outputs[0]
_snake_case : Tuple = self.trainer.lr_schedulers[0]["""scheduler"""]
_snake_case : List[Any] = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Dict = self.hparams
_snake_case : List[str] = processors[args.task]()
_snake_case : Optional[Any] = processor.get_labels()
for mode in ["train", "dev"]:
_snake_case : Union[str, Any] = self._feature_file(a_ )
if os.path.exists(a_ ) and not args.overwrite_cache:
logger.info("""Loading features from cached file %s""", a_ )
else:
logger.info("""Creating features from dataset file at %s""", args.data_dir )
_snake_case : Any = (
processor.get_dev_examples(args.data_dir )
if mode == """dev"""
else processor.get_train_examples(args.data_dir )
)
_snake_case : str = convert_examples_to_features(
a_, self.tokenizer, max_length=args.max_seq_length, label_list=self.labels, output_mode=args.glue_output_mode, )
logger.info("""Saving features into cached file %s""", a_ )
torch.save(a_, a_ )
def UpperCamelCase_ ( self: str, a_: str, a_: int, a_: bool = False ):
'''simple docstring'''
_snake_case : Optional[int] = """dev""" if mode == """test""" else mode
_snake_case : str = self._feature_file(a_ )
logger.info("""Loading features from cached file %s""", a_ )
_snake_case : int = torch.load(a_ )
_snake_case : Optional[int] = torch.tensor([f.input_ids for f in features], dtype=torch.long )
_snake_case : List[str] = torch.tensor([f.attention_mask for f in features], dtype=torch.long )
_snake_case : str = torch.tensor([f.token_type_ids for f in features], dtype=torch.long )
if self.hparams.glue_output_mode == "classification":
_snake_case : Optional[int] = torch.tensor([f.label for f in features], dtype=torch.long )
elif self.hparams.glue_output_mode == "regression":
_snake_case : List[Any] = torch.tensor([f.label for f in features], dtype=torch.float )
return DataLoader(
TensorDataset(a_, a_, a_, a_ ), batch_size=a_, shuffle=a_, )
def UpperCamelCase_ ( self: Tuple, a_: Dict, a_: List[str] ):
'''simple docstring'''
_snake_case : List[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
_snake_case : Union[str, Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None
_snake_case : Optional[int] = self(**a_ )
_snake_case , _snake_case : Union[str, Any] = outputs[:2]
_snake_case : List[str] = logits.detach().cpu().numpy()
_snake_case : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def UpperCamelCase_ ( self: Tuple, a_: int ):
'''simple docstring'''
_snake_case : Optional[Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item()
_snake_case : Tuple = np.concatenate([x["""pred"""] for x in outputs], axis=0 )
if self.hparams.glue_output_mode == "classification":
_snake_case : Tuple = np.argmax(a_, axis=1 )
elif self.hparams.glue_output_mode == "regression":
_snake_case : Optional[int] = np.squeeze(a_ )
_snake_case : Optional[Any] = np.concatenate([x["""target"""] for x in outputs], axis=0 )
_snake_case : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )]
_snake_case : Tuple = [[] for _ in range(out_label_ids.shape[0] )]
_snake_case : Tuple = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task, a_, a_ )}
_snake_case : Optional[int] = dict(results.items() )
_snake_case : str = results
return ret, preds_list, out_label_list
def UpperCamelCase_ ( self: str, a_: list ):
'''simple docstring'''
_snake_case , _snake_case , _snake_case : Tuple = self._eval_end(a_ )
_snake_case : int = ret["""log"""]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def UpperCamelCase_ ( self: str, a_: Any ):
'''simple docstring'''
_snake_case , _snake_case , _snake_case : str = self._eval_end(a_ )
_snake_case : List[str] = ret["""log"""]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def UpperCamelCase_ ( a_: Optional[Any], a_: Tuple ):
'''simple docstring'''
BaseTransformer.add_model_specific_args(a_, a_ )
parser.add_argument(
"""--max_seq_length""", default=128, type=a_, help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
), )
parser.add_argument(
"""--task""", default="""""", type=a_, required=a_, help="""The GLUE task to run""", )
parser.add_argument(
"""--gpus""", default=0, type=a_, help="""The number of GPUs allocated for this, it is by default 0 meaning none""", )
parser.add_argument(
"""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""" )
return parser
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Dict = argparse.ArgumentParser()
add_generic_args(snake_case__ , os.getcwd() )
_snake_case : Optional[Any] = GLUETransformer.add_model_specific_args(snake_case__ , os.getcwd() )
_snake_case : Tuple = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
_snake_case : int = os.path.join(
"""./results""" , F"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , )
os.makedirs(args.output_dir )
_snake_case : Optional[Any] = GLUETransformer(snake_case__ )
_snake_case : Union[str, Any] = generic_train(snake_case__ , snake_case__ )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
_snake_case : List[Any] = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=snake_case__ ) )
_snake_case : Any = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(snake_case__ )
if __name__ == "__main__":
main()
| 28 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''',
'''BridgeTower/bridgetower-base-itm-mlm''': (
'''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json'''
),
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower_vision_model"
def __init__( self: Tuple, a_: str=768, a_: Union[str, Any]=12, a_: List[str]=3, a_: Optional[int]=16, a_: List[Any]=288, a_: Optional[Any]=1, a_: Any=1E-05, a_: Dict=False, a_: Any=True, a_: int=False, **a_: int, ):
'''simple docstring'''
super().__init__(**a_ )
_snake_case : str = hidden_size
_snake_case : int = num_hidden_layers
_snake_case : Any = num_channels
_snake_case : Union[str, Any] = patch_size
_snake_case : Dict = image_size
_snake_case : Optional[Any] = initializer_factor
_snake_case : Any = layer_norm_eps
_snake_case : int = stop_gradient
_snake_case : Any = share_layernorm
_snake_case : List[Any] = remove_last_layer
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], a_: Union[str, os.PathLike], **a_: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = cls.get_config_dict(a_, **a_ )
if config_dict.get("""model_type""" ) == "bridgetower":
_snake_case : str = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a_, **a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower_text_model"
def __init__( self: str, a_: Dict=50_265, a_: List[Any]=768, a_: Union[str, Any]=12, a_: List[str]=12, a_: str=1, a_: Optional[Any]=3_072, a_: int="gelu", a_: int=0.1, a_: int=0.1, a_: Optional[int]=514, a_: Tuple=1, a_: Tuple=1E-05, a_: Optional[int]=1, a_: Union[str, Any]=0, a_: str=2, a_: Any="absolute", a_: List[Any]=True, **a_: Union[str, Any], ):
'''simple docstring'''
super().__init__(**a_ )
_snake_case : str = vocab_size
_snake_case : Optional[int] = hidden_size
_snake_case : Dict = num_hidden_layers
_snake_case : Optional[int] = num_attention_heads
_snake_case : Optional[int] = hidden_act
_snake_case : List[Any] = initializer_factor
_snake_case : Optional[int] = intermediate_size
_snake_case : int = hidden_dropout_prob
_snake_case : Tuple = attention_probs_dropout_prob
_snake_case : List[str] = max_position_embeddings
_snake_case : Optional[int] = type_vocab_size
_snake_case : List[Any] = layer_norm_eps
_snake_case : Dict = position_embedding_type
_snake_case : Dict = use_cache
_snake_case : int = pad_token_id
_snake_case : Union[str, Any] = bos_token_id
_snake_case : Union[str, Any] = eos_token_id
@classmethod
def UpperCamelCase_ ( cls: str, a_: Union[str, os.PathLike], **a_: int ):
'''simple docstring'''
_snake_case , _snake_case : Optional[int] = cls.get_config_dict(a_, **a_ )
if config_dict.get("""model_type""" ) == "bridgetower":
_snake_case : Union[str, Any] = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a_, **a_ )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "bridgetower"
def __init__( self: int, a_: List[str]=True, a_: Any="gelu", a_: List[Any]=768, a_: int=1, a_: Optional[int]=1E-05, a_: Tuple=False, a_: Optional[Any]="add", a_: List[str]=12, a_: Union[str, Any]=6, a_: int=False, a_: Any=False, a_: Dict=None, a_: Any=None, **a_: str, ):
'''simple docstring'''
_snake_case : str = kwargs.pop("""text_config_dict""", a_ )
_snake_case : Optional[Any] = kwargs.pop("""vision_config_dict""", a_ )
super().__init__(**a_ )
_snake_case : str = share_cross_modal_transformer_layers
_snake_case : Any = hidden_act
_snake_case : Union[str, Any] = hidden_size
_snake_case : Union[str, Any] = initializer_factor
_snake_case : Dict = layer_norm_eps
_snake_case : Dict = share_link_tower_layers
_snake_case : Optional[int] = link_tower_type
_snake_case : Any = num_attention_heads
_snake_case : int = num_hidden_layers
_snake_case : int = tie_word_embeddings
_snake_case : Optional[Any] = init_layernorm_from_vision_encoder
if text_config is None:
_snake_case : Optional[Any] = {}
logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" )
if vision_config is None:
_snake_case : str = {}
logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" )
_snake_case : Any = BridgeTowerTextConfig(**a_ )
_snake_case : List[Any] = BridgeTowerVisionConfig(**a_ )
@classmethod
def UpperCamelCase_ ( cls: Union[str, Any], a_: BridgeTowerTextConfig, a_: BridgeTowerVisionConfig, **a_: Optional[Any] ):
'''simple docstring'''
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[int] = copy.deepcopy(self.__dict__ )
_snake_case : str = self.text_config.to_dict()
_snake_case : List[str] = self.vision_config.to_dict()
_snake_case : Tuple = self.__class__.model_type
return output
| 28 | 1 |
"""simple docstring"""
from __future__ import annotations
import queue
class lowercase:
'''simple docstring'''
def __init__( self: List[str], a_: Optional[Any] ):
'''simple docstring'''
_snake_case : Union[str, Any] = data
_snake_case : List[Any] = None
_snake_case : int = None
def UpperCAmelCase__ ():
"""simple docstring"""
print("""\n********Press N to stop entering at any point of time********\n""" )
_snake_case : Union[str, Any] = input("""Enter the value of the root node: """ ).strip().lower()
_snake_case : queue.Queue = queue.Queue()
_snake_case : List[str] = TreeNode(int(snake_case__ ) )
q.put(snake_case__ )
while not q.empty():
_snake_case : Union[str, Any] = q.get()
_snake_case : str = F"Enter the left node of {node_found.data}: "
_snake_case : int = input(snake_case__ ).strip().lower() or """n"""
if check == "n":
return tree_node
_snake_case : Optional[Any] = TreeNode(int(snake_case__ ) )
_snake_case : List[Any] = left_node
q.put(snake_case__ )
_snake_case : List[str] = F"Enter the right node of {node_found.data}: "
_snake_case : Optional[Any] = input(snake_case__ ).strip().lower() or """n"""
if check == "n":
return tree_node
_snake_case : List[Any] = TreeNode(int(snake_case__ ) )
_snake_case : Union[str, Any] = right_node
q.put(snake_case__ )
raise
def UpperCAmelCase__ (snake_case__ : TreeNode ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
print(node.data , end=""",""" )
pre_order(node.left )
pre_order(node.right )
def UpperCAmelCase__ (snake_case__ : TreeNode ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
in_order(node.left )
print(node.data , end=""",""" )
in_order(node.right )
def UpperCAmelCase__ (snake_case__ : TreeNode ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=""",""" )
def UpperCAmelCase__ (snake_case__ : TreeNode ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
_snake_case : queue.Queue = queue.Queue()
q.put(snake_case__ )
while not q.empty():
_snake_case : int = q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def UpperCAmelCase__ (snake_case__ : TreeNode ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
_snake_case : queue.Queue = queue.Queue()
q.put(snake_case__ )
while not q.empty():
_snake_case : Any = []
while not q.empty():
_snake_case : Dict = q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(snake_case__ )
def UpperCAmelCase__ (snake_case__ : TreeNode ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
_snake_case : list[TreeNode] = []
_snake_case : List[str] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=""",""" )
stack.append(snake_case__ )
_snake_case : List[Any] = n.left
# end of while means current node doesn't have left child
_snake_case : Optional[int] = stack.pop()
# start to traverse its right child
_snake_case : Optional[int] = n.right
def UpperCAmelCase__ (snake_case__ : TreeNode ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
_snake_case : list[TreeNode] = []
_snake_case : Dict = node
while n or stack:
while n:
stack.append(snake_case__ )
_snake_case : Tuple = n.left
_snake_case : List[str] = stack.pop()
print(n.data , end=""",""" )
_snake_case : Dict = n.right
def UpperCAmelCase__ (snake_case__ : TreeNode ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
_snake_case , _snake_case : Union[str, Any] = [], []
_snake_case : List[Any] = node
stacka.append(snake_case__ )
while stacka: # to find the reversed order of post order, store it in stack2
_snake_case : List[Any] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(snake_case__ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=""",""" )
def UpperCAmelCase__ (snake_case__ : str = "" , snake_case__ : List[str]=50 , snake_case__ : str="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
_snake_case , _snake_case : Any = divmod(width - len(snake_case__ ) - 2 , 2 )
return F"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt('''Binary Tree Traversals'''))
A_ = build_tree()
print(prompt('''Pre Order Traversal'''))
pre_order(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal'''))
in_order(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal'''))
post_order(node)
print(prompt() + '''\n''')
print(prompt('''Level Order Traversal'''))
level_order(node)
print(prompt() + '''\n''')
print(prompt('''Actual Level Order Traversal'''))
level_order_actual(node)
print('''*''' * 50 + '''\n''')
print(prompt('''Pre Order Traversal - Iteration Version'''))
pre_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal - Iteration Version'''))
in_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal - Iteration Version'''))
post_order_iter(node)
print(prompt())
| 28 |
"""simple docstring"""
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png"""
_snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" )
return image
def UpperCAmelCase__ (snake_case__ : Any ):
"""simple docstring"""
_snake_case : str = []
# fmt: off
# vision encoder
rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") )
rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") )
rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") )
rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") )
# QFormer
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") )
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") )
# fmt: on
return rename_keys
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : Optional[Any] = dct.pop(snake_case__ )
_snake_case : Optional[int] = val
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ):
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
_snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" )
_snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" )
# next, set bias in the state dict
_snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) )
_snake_case : Dict = qkv_bias
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ):
"""simple docstring"""
_snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24
_snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
_snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict()
elif "opt-6.7b" in model_name:
_snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict()
elif "t5-xl" in model_name:
_snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
_snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
_snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ )
return config, image_size
@torch.no_grad()
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ):
"""simple docstring"""
_snake_case : List[str] = (
AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" )
if """opt""" in model_name
else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" )
)
_snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0]
_snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ )
_snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval()
_snake_case : int = {
"""blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""),
"""blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""),
"""blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""),
"""blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""),
"""blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""),
"""blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""),
"""blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""),
}
_snake_case , _snake_case : List[Any] = model_name_to_original[model_name]
# load original model
print("""Loading original model...""" )
_snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu"""
_snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess(
name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ )
original_model.eval()
print("""Done!""" )
# update state dict keys
_snake_case : Any = original_model.state_dict()
_snake_case : Dict = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
_snake_case : str = state_dict.pop(snake_case__ )
if key.startswith("""Qformer.bert""" ):
_snake_case : str = key.replace("""Qformer.bert""" , """qformer""" )
if "attention.self" in key:
_snake_case : Any = key.replace("""self""" , """attention""" )
if "opt_proj" in key:
_snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" )
if "t5_proj" in key:
_snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" )
if key.startswith("""opt""" ):
_snake_case : List[Any] = key.replace("""opt""" , """language""" )
if key.startswith("""t5""" ):
_snake_case : List[Any] = key.replace("""t5""" , """language""" )
_snake_case : str = val
# read in qv biases
read_in_q_v_bias(snake_case__ , snake_case__ )
_snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ )
assert len(snake_case__ ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
_snake_case : Any = load_demo_image()
_snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ )
_snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ )
# create processor
_snake_case : Any = BlipImageProcessor(
size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ )
_snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
_snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ )
# make sure processor creates exact same pixel values
assert torch.allclose(snake_case__ , snake_case__ )
original_model.to(snake_case__ )
hf_model.to(snake_case__ )
with torch.no_grad():
if "opt" in model_name:
_snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits
_snake_case : int = hf_model(snake_case__ , snake_case__ ).logits
else:
_snake_case : str = original_model(
{"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits
_snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
_snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits
assert original_logits.shape == logits.shape
print("""First values of original logits:""" , original_logits[0, :3, :3] )
print("""First values of HF logits:""" , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
_snake_case : List[str] = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ )
assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
_snake_case : Union[str, Any] = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ )
else:
# cast to same type
_snake_case : int = logits.dtype
assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 )
print("""Looks ok!""" )
print("""Generating a caption...""" )
_snake_case : Any = """"""
_snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ )
_snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} )
_snake_case : Tuple = hf_model.generate(
snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print("""Original generation:""" , snake_case__ )
_snake_case : Optional[Any] = input_ids.shape[1]
_snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ )
_snake_case : Optional[Any] = [text.strip() for text in output_text]
print("""HF generation:""" , snake_case__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(snake_case__ )
hf_model.save_pretrained(snake_case__ )
if push_to_hub:
processor.push_to_hub(F"nielsr/{model_name}" )
hf_model.push_to_hub(F"nielsr/{model_name}" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
A_ = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
A_ = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 1 |
"""simple docstring"""
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
A_ = 5_00_00
A_ = 50_00
A_ , A_ = os.path.split(__file__)
A_ = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json'''))
@get_duration
def UpperCAmelCase__ (snake_case__ : datasets.Dataset , snake_case__ : Dict ):
"""simple docstring"""
for i in range(snake_case__ ):
_snake_case : Dict = dataset[i]
@get_duration
def UpperCAmelCase__ (snake_case__ : datasets.Dataset , snake_case__ : Optional[Any] , snake_case__ : str ):
"""simple docstring"""
for i in range(0 , len(snake_case__ ) , snake_case__ ):
_snake_case : Tuple = dataset[i : i + batch_size]
@get_duration
def UpperCAmelCase__ (snake_case__ : datasets.Dataset , snake_case__ : str , snake_case__ : int ):
"""simple docstring"""
with dataset.formatted_as(type=snake_case__ ):
for i in range(snake_case__ ):
_snake_case : Union[str, Any] = dataset[i]
@get_duration
def UpperCAmelCase__ (snake_case__ : datasets.Dataset , snake_case__ : Any , snake_case__ : int , snake_case__ : Union[str, Any] ):
"""simple docstring"""
with dataset.formatted_as(type=snake_case__ ):
for i in range(0 , snake_case__ , snake_case__ ):
_snake_case : Optional[Any] = dataset[i : i + batch_size]
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Dict = {"""num examples""": SPEED_TEST_N_EXAMPLES}
_snake_case : int = [
(read, {"""length""": SMALL_TEST}),
(read, {"""length""": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}),
(read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}),
]
_snake_case : Optional[Any] = [
(read, {"""length""": SMALL_TEST}),
(read, {"""length""": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}),
(read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print("""generating dataset""" )
_snake_case : Optional[int] = datasets.Features(
{"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} )
_snake_case : Optional[int] = generate_example_dataset(
os.path.join(snake_case__ , """dataset.arrow""" ) , snake_case__ , num_examples=snake_case__ , seq_shapes={"""list""": (1_00,)} , )
print("""first set of iterations""" )
for func, kwargs in functions:
print(func.__name__ , str(snake_case__ ) )
_snake_case : List[Any] = func(snake_case__ , **snake_case__ )
print("""shuffling dataset""" )
_snake_case : Tuple = dataset.shuffle()
print("""Second set of iterations (after shuffling""" )
for func, kwargs in functions_shuffled:
print("""shuffled """ , func.__name__ , str(snake_case__ ) )
_snake_case : List[Any] = func(
snake_case__ , **snake_case__ )
with open(snake_case__ , """wb""" ) as f:
f.write(json.dumps(snake_case__ ).encode("""utf-8""" ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating()
| 28 |
"""simple docstring"""
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def UpperCAmelCase__ (snake_case__ : Optional[int] ):
"""simple docstring"""
print("""Loading config file...""" )
def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ):
_snake_case : Union[str, Any] = []
for k, v in d.items():
_snake_case : List[str] = parent_key + sep + k if parent_key else k
if isinstance(snake_case__ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() )
else:
items.append((new_key, v) )
return dict(snake_case__ )
_snake_case : Dict = argparse.Namespace()
with open(snake_case__ , """r""" ) as yaml_file:
try:
_snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader )
_snake_case : Any = flatten_yaml_as_dict(snake_case__ )
for k, v in flat_cfg.items():
setattr(snake_case__ , snake_case__ , snake_case__ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) )
return config
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : Dict = MobileViTVaConfig()
_snake_case : Optional[int] = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
_snake_case : Dict = 10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
_snake_case : Union[str, Any] = 3_84
else:
_snake_case : Optional[Any] = 2_56
_snake_case : str = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
_snake_case : str = 2_10_00
if int(task_name.strip().split("""_""" )[-1] ) == 3_84:
_snake_case : Dict = 3_84
else:
_snake_case : Union[str, Any] = 2_56
_snake_case : Tuple = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
_snake_case : Tuple = 1_51
_snake_case : str = 5_12
_snake_case : List[Any] = """ade20k-id2label.json"""
_snake_case : Union[str, Any] = True
elif task_name.startswith("""voc_""" ):
_snake_case : List[Any] = 21
_snake_case : List[str] = 5_12
_snake_case : int = """pascal-voc-id2label.json"""
_snake_case : int = True
# orig_config
_snake_case : int = load_orig_config_file(snake_case__ )
assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model"
_snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 )
assert (
getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
_snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
_snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 )
if "_deeplabv3" in task_name:
_snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] )
_snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 )
_snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 )
# id2label
_snake_case : Union[str, Any] = """huggingface/label-files"""
_snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) )
_snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()}
_snake_case : Tuple = idalabel
_snake_case : Any = {v: k for k, v in idalabel.items()}
return config
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : List[str] = dct.pop(snake_case__ )
_snake_case : List[Any] = val
def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ):
"""simple docstring"""
if base_model:
_snake_case : Any = """"""
else:
_snake_case : Union[str, Any] = """mobilevitv2."""
_snake_case : Dict = []
for k in state_dict.keys():
if k[:8] == "encoder.":
_snake_case : List[str] = k[8:]
else:
_snake_case : str = k
if ".block." in k:
_snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" )
if ".conv." in k:
_snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" )
if ".norm." in k:
_snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" )
if "conv_1." in k:
_snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." )
for i in [1, 2]:
if F"layer_{i}." in k:
_snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
_snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" )
if ".red_1x1." in k:
_snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" )
for i in [3, 4, 5]:
if F"layer_{i}.0." in k:
_snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if F"layer_{i}.1.local_rep.0." in k:
_snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if F"layer_{i}.1.local_rep.1." in k:
_snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
_snake_case : Optional[Any] = [0, 1]
elif i == 4:
_snake_case : Any = [0, 1, 2, 3]
elif i == 5:
_snake_case : List[Any] = [0, 1, 2]
for j in j_in:
if F"layer_{i}.1.global_rep.{j}." in k:
_snake_case : Any = k_new.replace(
F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if F"layer_{i}.1.global_rep.{j+1}." in k:
_snake_case : List[Any] = k_new.replace(
F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." )
if F"layer_{i}.1.conv_proj." in k:
_snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
_snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" )
if "pre_norm_attn.1." in k:
_snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" )
if "pre_norm_ffn.0." in k:
_snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" )
if "pre_norm_ffn.1." in k:
_snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
_snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" )
if "classifier.1." in k:
_snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" )
if "seg_head." in k:
_snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" )
if ".aspp_layer." in k:
_snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" )
if ".aspp_pool." in k:
_snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" )
rename_keys.append((k, k_new) )
return rename_keys
def UpperCAmelCase__ (snake_case__ : str ):
"""simple docstring"""
_snake_case : List[str] = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(snake_case__ )
for k in keys_to_ignore:
state_dict.pop(snake_case__ , snake_case__ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
_snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ )
# load original state_dict
_snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
_snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval()
_snake_case : List[Any] = False
else:
_snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval()
_snake_case : Optional[Any] = False
# remove and rename some keys of load the original model
_snake_case : Union[str, Any] = checkpoint
remove_unused_keys(snake_case__ )
_snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
# load modified state_dict
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
_snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" )
_snake_case : Optional[Any] = model(**snake_case__ )
# verify classification model
if task_name.startswith("""imagenet""" ):
_snake_case : List[str] = outputs.logits
_snake_case : Any = logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
_snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] )
assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(F"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--task''',
default='''imagenet1k_256''',
type=str,
help=(
'''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '''
'''
Classification (ImageNet-1k)
- MobileViTV2 (256x256) : imagenet1k_256
- MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384
- MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :
imagenet21k_to_1k_256
- MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on
ImageNet-1k 384x384) : imagenet21k_to_1k_384
Segmentation
- ADE20K Dataset : ade20k_deeplabv3
- Pascal VOC 2012 Dataset: voc_deeplabv3
'''
),
choices=[
'''imagenet1k_256''',
'''imagenet1k_384''',
'''imagenet21k_to_1k_256''',
'''imagenet21k_to_1k_384''',
'''ade20k_deeplabv3''',
'''voc_deeplabv3''',
],
)
parser.add_argument(
'''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
A_ = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 28 | 1 |
"""simple docstring"""
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
A_ = '''3'''
print('''Python version:''', sys.version)
print('''transformers version:''', transformers.__version__)
try:
import torch
print('''Torch version:''', torch.__version__)
print('''Cuda available:''', torch.cuda.is_available())
print('''Cuda version:''', torch.version.cuda)
print('''CuDNN version:''', torch.backends.cudnn.version())
print('''Number of GPUs available:''', torch.cuda.device_count())
print('''NCCL version:''', torch.cuda.nccl.version())
except ImportError:
print('''Torch version:''', None)
try:
import deepspeed
print('''DeepSpeed version:''', deepspeed.__version__)
except ImportError:
print('''DeepSpeed version:''', None)
try:
import tensorflow as tf
print('''TensorFlow version:''', tf.__version__)
print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU''')))
print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU''')))
except ImportError:
print('''TensorFlow version:''', None)
| 28 |
"""simple docstring"""
import os
import sys
import unittest
A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
A_ = os.path.join(git_repo_path, '''src''', '''diffusers''')
class lowercase( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" )
self.assertEqual(a_, """torch""" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
_snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" )
self.assertEqual(a_, """torch_and_transformers""" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
_snake_case : Union[str, Any] = find_backend(
""" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" )
self.assertEqual(a_, """torch_and_transformers_and_onnx""" )
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case : Dict = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""", a_ )
self.assertIn("""torch_and_transformers""", a_ )
self.assertIn("""flax_and_transformers""", a_ )
self.assertIn("""torch_and_transformers_and_onnx""", a_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""UNet2DModel""", objects["""torch"""] )
self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] )
self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] )
self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] )
self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] )
self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" )
self.assertEqual(a_, """\nCONSTANT = None\n""" )
_snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" )
self.assertEqual(
a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
_snake_case : List[Any] = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
_snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" )
self.assertEqual(a_, a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
"""
_snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""], a_ )
| 28 | 1 |
"""simple docstring"""
from random import randint, random
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : int = 5 , ):
"""simple docstring"""
_snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car
_snake_case : List[Any] = 0
_snake_case : Any = max(snake_case__ , 0 )
while i < number_of_cells:
_snake_case : Optional[int] = (
randint(0 , snake_case__ ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def UpperCAmelCase__ (snake_case__ : list , snake_case__ : int ):
"""simple docstring"""
_snake_case : Optional[int] = 0
_snake_case : Dict = highway_now[car_index + 1 :]
for cell in range(len(snake_case__ ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(snake_case__ , -1 )
def UpperCAmelCase__ (snake_case__ : list , snake_case__ : float , snake_case__ : int ):
"""simple docstring"""
_snake_case : Tuple = len(snake_case__ )
# Beforce calculations, the highway is empty
_snake_case : Optional[int] = [-1] * number_of_cells
for car_index in range(snake_case__ ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
_snake_case : Tuple = min(highway_now[car_index] + 1 , snake_case__ )
# Number of empty cell before the next car
_snake_case : Union[str, Any] = get_distance(snake_case__ , snake_case__ ) - 1
# We can't have the car causing an accident
_snake_case : List[Any] = min(next_highway[car_index] , snake_case__ )
if random() < probability:
# Randomly, a driver will slow down
_snake_case : int = max(next_highway[car_index] - 1 , 0 )
return next_highway
def UpperCAmelCase__ (snake_case__ : list , snake_case__ : int , snake_case__ : float , snake_case__ : int ):
"""simple docstring"""
_snake_case : str = len(highway[0] )
for i in range(snake_case__ ):
_snake_case : List[Any] = update(highway[i] , snake_case__ , snake_case__ )
_snake_case : Optional[int] = [-1] * number_of_cells
for car_index in range(snake_case__ ):
_snake_case : List[Any] = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
_snake_case : Dict = (car_index + speed) % number_of_cells
# Commit the change of position
_snake_case : Optional[Any] = speed
highway.append(snake_case__ )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
A_ = {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''OwlViTFeatureExtractor''']
A_ = ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 28 | 1 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : int = 10_00 ):
"""simple docstring"""
return sum(e for e in range(3 , snake_case__ ) if e % 3 == 0 or e % 5 == 0 )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 28 |
"""simple docstring"""
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
A_ = logging.get_logger(__name__)
def UpperCAmelCase__ (snake_case__ : bool , snake_case__ : bool ):
"""simple docstring"""
def run_func(snake_case__ : Tuple ):
@wraps(snake_case__ )
def run_in_eager_mode(*snake_case__ : str , **snake_case__ : Any ):
return func(*snake_case__ , **snake_case__ )
@wraps(snake_case__ )
@tf.function(experimental_compile=snake_case__ )
def run_in_graph_mode(*snake_case__ : Any , **snake_case__ : Optional[int] ):
return func(*snake_case__ , **snake_case__ )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
"""Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ):
"""simple docstring"""
_snake_case : List[str] = random.Random()
_snake_case : Optional[int] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class lowercase( __a ):
'''simple docstring'''
lowercase__ = 42
lowercase__ = 42
lowercase__ = "TensorFlow"
@property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
return tf.__version__
def UpperCamelCase_ ( self: List[str], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : List[str] = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[int] = self._prepare_inference_func(a_, a_, a_ )
return self._measure_speed(_inference )
def UpperCamelCase_ ( self: int, a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : Tuple = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[Any] = self._prepare_train_func(a_, a_, a_ )
return self._measure_speed(_train )
def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: int ):
'''simple docstring'''
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ )
_snake_case : str = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : List[str] = self._prepare_inference_func(a_, a_, a_ )
return self._measure_memory(_inference )
def UpperCamelCase_ ( self: Tuple, a_: str, a_: int, a_: int ):
'''simple docstring'''
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], a_ )
_snake_case : Dict = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_snake_case : Optional[int] = self._prepare_train_func(a_, a_, a_ )
return self._measure_memory(_train )
def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : List[Any] = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
_snake_case : List[Any] = (
hasattr(a_, """architectures""" )
and isinstance(config.architectures, a_ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case : str = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case : List[Any] = __import__("""transformers""", fromlist=[model_class] )
_snake_case : Dict = getattr(a_, a_ )
_snake_case : Any = model_cls(a_ )
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
_snake_case : Any = TF_MODEL_MAPPING[config.__class__](a_ )
# encoder-decoder has vocab size saved differently
_snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size
_snake_case : List[str] = random_input_ids(a_, a_, a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_decoder_forward():
return model(a_, decoder_input_ids=a_, training=a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_forward():
return model(a_, training=a_ )
_snake_case : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def UpperCamelCase_ ( self: Optional[int], a_: str, a_: int, a_: int ):
'''simple docstring'''
_snake_case : str = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" )
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
_snake_case : Tuple = (
hasattr(a_, """architectures""" )
and isinstance(config.architectures, a_ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case : str = __import__("""transformers""", fromlist=[model_class] )
_snake_case : Tuple = getattr(a_, a_ )
_snake_case : Any = model_cls(a_ )
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
_snake_case : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ )
# encoder-decoder has vocab size saved differently
_snake_case : List[Any] = config.vocab_size if hasattr(a_, """vocab_size""" ) else config.encoder.vocab_size
_snake_case : int = random_input_ids(a_, a_, a_ )
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_decoder_train():
_snake_case : Dict = model(a_, decoder_input_ids=a_, labels=a_, training=a_ )[0]
_snake_case : str = tf.gradients(a_, model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla )
def encoder_train():
_snake_case : Optional[Any] = model(a_, labels=a_, training=a_ )[0]
_snake_case : Optional[Any] = tf.gradients(a_, model.trainable_variables )
return gradients
_snake_case : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def UpperCamelCase_ ( self: Union[str, Any], a_: str ):
'''simple docstring'''
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" )
timeit.repeat(a_, repeat=1, number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
_snake_case : Dict = timeit.repeat(
a_, repeat=self.args.repeat, number=10, )
return min(a_ ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}" )
def UpperCamelCase_ ( self: Optional[Any], a_: Callable[[], None] ):
'''simple docstring'''
logger.info(
"""Note that TensorFlow allocates more memory than """
"""it might need to speed up computation. """
"""The memory reported here corresponds to the memory """
"""reported by `nvidia-smi`, which can vary depending """
"""on total available memory on the GPU that is used.""" )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
"""`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"""
""" consumption line by line.""" )
_snake_case : List[Any] = start_memory_tracing("""transformers""" )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"""Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"""
""" with `args.memory=False`""" )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
"""py3nvml not installed, we won't log GPU memory usage. """
"""Install py3nvml (pip install py3nvml) to log information about GPU.""" )
_snake_case : Optional[Any] = """N/A"""
else:
logger.info(
"""Measuring total GPU usage on GPU device. Make sure to not have additional processes"""
""" running on the same GPU.""" )
# init nvml
nvml.nvmlInit()
func()
_snake_case : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
_snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(a_ )
_snake_case : List[str] = meminfo.used
_snake_case : Any = Memory(a_ )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
"""When enabling line by line tracing, the max peak memory for CPU is inaccurate in"""
""" TensorFlow.""" )
_snake_case : List[Any] = None
else:
_snake_case : int = measure_peak_memory_cpu(a_ )
_snake_case : List[str] = Memory(a_ ) if isinstance(a_, a_ ) else memory_bytes
if self.args.trace_memory_line_by_line:
_snake_case : Tuple = stop_memory_tracing(a_ )
if memory is None:
_snake_case : int = summary.total
else:
_snake_case : int = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}" )
return "N/A", None
| 28 | 1 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowercase( __a ):
'''simple docstring'''
lowercase__ = ["image_processor", "feature_extractor"]
lowercase__ = "TvltImageProcessor"
lowercase__ = "TvltFeatureExtractor"
def __init__( self: Dict, a_: Union[str, Any], a_: Union[str, Any] ):
'''simple docstring'''
super().__init__(image_processor=a_, feature_extractor=a_ )
_snake_case : Any = image_processor
_snake_case : Dict = feature_extractor
def __call__( self: int, a_: str=None, a_: Tuple=None, a_: Dict=None, a_: str=None, a_: Optional[int]=False, a_: Tuple=False, *a_: List[str], **a_: int, ):
'''simple docstring'''
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""" )
_snake_case : Optional[int] = None
if images is not None:
_snake_case : Tuple = self.image_processor(a_, mask_pixel=a_, *a_, **a_ )
if images_mixed is not None:
_snake_case : Optional[int] = self.image_processor(a_, is_mixed=a_, *a_, **a_ )
if audio is not None:
_snake_case : Any = self.feature_extractor(
a_, *a_, sampling_rate=a_, mask_audio=a_, **a_ )
_snake_case : List[str] = {}
if audio is not None:
output_dict.update(a_ )
if images is not None:
output_dict.update(a_ )
if images_mixed_dict is not None:
output_dict.update(a_ )
return output_dict
@property
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Dict = self.image_processor.model_input_names
_snake_case : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 28 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : str ):
"""simple docstring"""
_snake_case : str = int(snake_case__ )
# Initialize Result
_snake_case : str = []
# Traverse through all denomination
for denomination in reversed(snake_case__ ):
# Find denominations
while int(snake_case__ ) >= int(snake_case__ ):
total_value -= int(snake_case__ )
answer.append(snake_case__ ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
A_ = []
A_ = '''0'''
if (
input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower()
== "y"
):
A_ = int(input('''Enter the number of denominations you want to add: ''').strip())
for i in range(0, n):
denominations.append(int(input(F'''Denomination {i}: ''').strip()))
A_ = input('''Enter the change you want to make in Indian Currency: ''').strip()
else:
# All denominations of Indian Currency if user does not enter
A_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00]
A_ = input('''Enter the change you want to make: ''').strip()
if int(value) == 0 or int(value) < 0:
print('''The total value cannot be zero or negative.''')
else:
print(F'''Following is minimal change for {value}: ''')
A_ = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=''' ''')
| 28 | 1 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
A_ = logging.getLogger(__name__)
def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[Any] ):
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowercase__ = field(
default=__a , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowercase__ = field(
default=__a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowercase__ = field(
default=__a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} )
lowercase__ = field(metadata={"help": "Should contain the data files for the task."} )
lowercase__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowercase__ = field(
default=__a , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_snake_case , _snake_case , _snake_case : List[Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , snake_case__ )
# Set seed
set_seed(training_args.seed )
try:
_snake_case : int = processors[data_args.task_name]()
_snake_case : Any = processor.get_labels()
_snake_case : int = len(snake_case__ )
except KeyError:
raise ValueError("""Task not found: %s""" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_snake_case : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
_snake_case : List[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_snake_case : Optional[int] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , )
# Get datasets
_snake_case : List[str] = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=snake_case__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
_snake_case : Dict = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=snake_case__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(snake_case__ : EvalPrediction ) -> Dict:
_snake_case : List[Any] = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(snake_case__ , p.label_ids )}
# Data collator
_snake_case : Any = DataCollatorWithPadding(snake_case__ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
_snake_case : int = Trainer(
model=snake_case__ , args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , compute_metrics=snake_case__ , data_collator=snake_case__ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_snake_case : Optional[int] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
_snake_case : Optional[int] = trainer.evaluate()
_snake_case : int = os.path.join(training_args.output_dir , """eval_results.txt""" )
if trainer.is_world_master():
with open(snake_case__ , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(""" %s = %s""" , snake_case__ , snake_case__ )
writer.write("""%s = %s\n""" % (key, value) )
results.update(snake_case__ )
return results
def UpperCAmelCase__ (snake_case__ : List[Any] ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 28 |
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ):
'''simple docstring'''
_snake_case : Optional[int] = parent
_snake_case : Optional[Any] = 100
_snake_case : Any = batch_size
_snake_case : List[Any] = image_size
_snake_case : Optional[Any] = patch_size
_snake_case : str = num_channels
_snake_case : Tuple = is_training
_snake_case : Tuple = use_labels
_snake_case : Any = hidden_size
_snake_case : Optional[int] = num_hidden_layers
_snake_case : List[str] = num_attention_heads
_snake_case : Union[str, Any] = intermediate_size
_snake_case : Dict = hidden_act
_snake_case : str = hidden_dropout_prob
_snake_case : Optional[int] = attention_probs_dropout_prob
_snake_case : Optional[Any] = type_sequence_label_size
_snake_case : Any = initializer_range
_snake_case : List[str] = scope
_snake_case : int = out_indices
_snake_case : Optional[Any] = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_snake_case : Dict = (image_size // patch_size) ** 2
_snake_case : str = num_patches + 1
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : List[Any] = None
_snake_case : Tuple = None
if self.use_labels:
_snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size )
_snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
_snake_case : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, )
def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ):
'''simple docstring'''
_snake_case : str = BeitModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Dict = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ):
'''simple docstring'''
_snake_case : List[str] = BeitForMaskedImageModeling(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Union[str, Any] = model(a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) )
def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ):
'''simple docstring'''
_snake_case : Any = self.type_sequence_label_size
_snake_case : Any = BeitForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : List[Any] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_snake_case : Any = 1
_snake_case : str = BeitForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_snake_case : Optional[Any] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ):
'''simple docstring'''
_snake_case : List[str] = self.num_labels
_snake_case : List[Any] = BeitForSemanticSegmentation(a_ )
model.to(a_ )
model.eval()
_snake_case : List[str] = model(a_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
_snake_case : str = model(a_, labels=a_ )
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Tuple = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs
_snake_case : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": BeitModel,
"image-classification": BeitForImageClassification,
"image-segmentation": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : Dict = BeitModelTester(self )
_snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""BEiT does not use inputs_embeds""" )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: List[Any] ):
'''simple docstring'''
_snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : List[str] = model_class(a_ )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
_snake_case : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a_, nn.Linear ) )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Any = model_class(a_ )
_snake_case : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : List[Any] = [*signature.parameters.keys()]
_snake_case : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a_ )
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
_snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Any = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]:
continue
_snake_case : List[Any] = model_class(a_ )
model.to(a_ )
model.train()
_snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : List[Any] = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_snake_case : Dict = False
_snake_case : Optional[Any] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(a_ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
_snake_case : Any = model_class(a_ )
model.gradient_checkpointing_enable()
model.to(a_ )
model.train()
_snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : int = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : int = _config_zero_init(a_ )
for model_class in self.all_model_classes:
_snake_case : Tuple = model_class(config=a_ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", )
@slow
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Optional[int] = BeitModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
_snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ )
_snake_case : Dict = self.default_image_processor
_snake_case : Dict = prepare_img()
_snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ )
# prepare bool_masked_pos
_snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ )
_snake_case : Dict = outputs.logits
# verify the logits
_snake_case : Optional[int] = torch.Size((1, 196, 8_192) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[Any] = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) )
@slow
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ )
_snake_case : List[Any] = self.default_image_processor
_snake_case : Any = prepare_img()
_snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : int = model(**a_ )
_snake_case : Optional[int] = outputs.logits
# verify the logits
_snake_case : Tuple = torch.Size((1, 1_000) )
self.assertEqual(logits.shape, a_ )
_snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ )
self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) )
_snake_case : str = 281
self.assertEqual(logits.argmax(-1 ).item(), a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to(
a_ )
_snake_case : int = self.default_image_processor
_snake_case : Optional[Any] = prepare_img()
_snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Union[str, Any] = model(**a_ )
_snake_case : Dict = outputs.logits
# verify the logits
_snake_case : Tuple = torch.Size((1, 21_841) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ )
self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) )
_snake_case : List[str] = 2_396
self.assertEqual(logits.argmax(-1 ).item(), a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
_snake_case : int = model.to(a_ )
_snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ )
_snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" )
_snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] )
_snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
_snake_case : Union[str, Any] = outputs.logits
# verify the logits
_snake_case : List[str] = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape, a_ )
_snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" )
if is_pillow_less_than_a:
_snake_case : Any = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
], device=a_, )
else:
_snake_case : Optional[Any] = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
], device=a_, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
_snake_case : List[Any] = model.to(a_ )
_snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ )
_snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" )
_snake_case : str = Image.open(ds[0]["""file"""] )
_snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
_snake_case : Union[str, Any] = outputs.logits.detach().cpu()
_snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] )
_snake_case : Optional[int] = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape, a_ )
_snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ )
_snake_case : List[str] = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape, a_ )
| 28 | 1 |
"""simple docstring"""
A_ = [
'''DownloadConfig''',
'''DownloadManager''',
'''DownloadMode''',
'''StreamingDownloadManager''',
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 28 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase( __a ):
'''simple docstring'''
lowercase__ = (IPNDMScheduler,)
lowercase__ = (("num_inference_steps", 50),)
def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : List[Any] = {"""num_train_timesteps""": 1_000}
config.update(**a_ )
return config
def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ):
'''simple docstring'''
_snake_case : Optional[int] = dict(self.forward_default_kwargs )
_snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ )
_snake_case : Optional[Any] = self.dummy_sample
_snake_case : Dict = 0.1 * sample
_snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_snake_case : int = self.get_scheduler_config(**a_ )
_snake_case : Dict = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals
_snake_case : int = dummy_past_residuals[:]
if time_step is None:
_snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
_snake_case : Tuple = scheduler_class.from_pretrained(a_ )
new_scheduler.set_timesteps(a_ )
# copy over dummy past residuals
_snake_case : Optional[Any] = dummy_past_residuals[:]
_snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ):
'''simple docstring'''
_snake_case : str = dict(self.forward_default_kwargs )
_snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ )
_snake_case : Optional[int] = self.dummy_sample
_snake_case : Tuple = 0.1 * sample
_snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_snake_case : Any = self.get_scheduler_config()
_snake_case : Tuple = scheduler_class(**a_ )
scheduler.set_timesteps(a_ )
# copy over dummy past residuals (must be after setting timesteps)
_snake_case : Union[str, Any] = dummy_past_residuals[:]
if time_step is None:
_snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(a_ )
_snake_case : List[str] = scheduler_class.from_pretrained(a_ )
# copy over dummy past residuals
new_scheduler.set_timesteps(a_ )
# copy over dummy past residual (must be after setting timesteps)
_snake_case : List[str] = dummy_past_residuals[:]
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ):
'''simple docstring'''
_snake_case : Union[str, Any] = self.scheduler_classes[0]
_snake_case : Any = self.get_scheduler_config(**a_ )
_snake_case : List[Any] = scheduler_class(**a_ )
_snake_case : Union[str, Any] = 10
_snake_case : Union[str, Any] = self.dummy_model()
_snake_case : List[Any] = self.dummy_sample_deter
scheduler.set_timesteps(a_ )
for i, t in enumerate(scheduler.timesteps ):
_snake_case : Optional[Any] = model(a_, a_ )
_snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
_snake_case : Union[str, Any] = model(a_, a_ )
_snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample
return sample
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
_snake_case : str = dict(self.forward_default_kwargs )
_snake_case : int = kwargs.pop("""num_inference_steps""", a_ )
for scheduler_class in self.scheduler_classes:
_snake_case : Union[str, Any] = self.get_scheduler_config()
_snake_case : Tuple = scheduler_class(**a_ )
_snake_case : Dict = self.dummy_sample
_snake_case : List[str] = 0.1 * sample
if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ):
scheduler.set_timesteps(a_ )
elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ):
_snake_case : Dict = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
_snake_case : List[str] = dummy_past_residuals[:]
_snake_case : Optional[int] = scheduler.timesteps[5]
_snake_case : Optional[Any] = scheduler.timesteps[6]
_snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
_snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample
_snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=a_, time_step=a_ )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=a_, time_step=a_ )
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = self.full_loop()
_snake_case : Optional[int] = torch.mean(torch.abs(a_ ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 28 | 1 |
"""simple docstring"""
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class lowercase( __a ):
'''simple docstring'''
def __init__( self: int, a_: int, a_: int, a_: Any=1_024, a_: List[Any]=1_024, a_: Optional[Any]=3.6 ):
'''simple docstring'''
_snake_case : Union[str, Any] = tokenizer
_snake_case : int = tokenizer.bos_token_id
_snake_case : Any = dataset
_snake_case : str = seq_length
_snake_case : List[Any] = seq_length * chars_per_token * num_of_sequences
def __iter__( self: Optional[int] ):
'''simple docstring'''
_snake_case : Optional[int] = iter(self.dataset )
_snake_case : Optional[int] = True
while more_examples:
_snake_case , _snake_case : Optional[Any] = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(a_ )["""content"""] )
buffer_len += len(buffer[-1] )
except StopIteration:
_snake_case : Any = False
break
_snake_case : List[str] = tokenizer(a_, truncation=a_ )["""input_ids"""]
_snake_case : Any = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0, len(a_ ), self.seq_length ):
_snake_case : Union[str, Any] = all_token_ids[i : i + self.seq_length]
if len(a_ ) == self.seq_length:
yield torch.tensor(a_ )
def UpperCAmelCase__ (snake_case__ : Tuple ):
"""simple docstring"""
_snake_case : Tuple = {"""streaming""": True}
_snake_case : Dict = load_dataset(args.dataset_name , split="""train""" , **snake_case__ )
_snake_case : Union[str, Any] = ConstantLengthDataset(snake_case__ , snake_case__ , seq_length=args.seq_length )
_snake_case : str = DataLoader(snake_case__ , batch_size=args.batch_size )
return eval_dataloader
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
model.eval()
_snake_case : int = []
for step, batch in enumerate(snake_case__ ):
with torch.no_grad():
_snake_case : int = model(snake_case__ , labels=snake_case__ )
_snake_case : List[Any] = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(snake_case__ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
_snake_case : List[str] = torch.mean(torch.cat(snake_case__ ) )
try:
_snake_case : Tuple = torch.exp(snake_case__ )
except OverflowError:
_snake_case : Dict = float("""inf""" )
return loss.item(), perplexity.item()
# Setup Accelerator
A_ = Accelerator()
# Parse configuration
A_ = HfArgumentParser(EvaluationArguments)
A_ = parser.parse_args()
set_seed(args.seed)
# Logging
A_ = logging.getLogger(__name__)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
# Load model and tokenizer
A_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
A_ = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
A_ = create_dataloader(args)
# Prepare everything with our `accelerator`.
A_ , A_ = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('''Evaluating and saving model after training''')
A_ , A_ = evaluate(args)
logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 28 |
"""simple docstring"""
from __future__ import annotations
import math
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
_snake_case : Any = []
for num in range(len(snake_case__ ) ):
_snake_case : Optional[int] = 0
while 2 * i * i <= odd_composites[num]:
_snake_case : Optional[int] = odd_composites[num] - 2 * i * i
if is_prime(snake_case__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(snake_case__ ) == n:
return list_nums
return []
def UpperCAmelCase__ ():
"""simple docstring"""
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'''{solution() = }''')
| 28 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ):
'''simple docstring'''
_snake_case : int = parent
_snake_case : int = batch_size
_snake_case : List[Any] = image_size
_snake_case : List[str] = num_channels
_snake_case : Tuple = num_stages
_snake_case : Union[str, Any] = hidden_sizes
_snake_case : List[Any] = depths
_snake_case : Tuple = is_training
_snake_case : List[str] = use_labels
_snake_case : Tuple = intermediate_size
_snake_case : List[str] = hidden_act
_snake_case : Optional[Any] = num_labels
_snake_case : Tuple = initializer_range
_snake_case : Tuple = out_features
_snake_case : Tuple = out_indices
_snake_case : Dict = scope
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : Any = None
if self.use_labels:
_snake_case : Dict = ids_tensor([self.batch_size], self.num_labels )
_snake_case : Optional[Any] = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return ConvNextVaConfig(
num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, )
def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ):
'''simple docstring'''
_snake_case : int = ConvNextVaModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Any = model(a_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), )
def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[int] = ConvNextVaForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : Optional[int] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ):
'''simple docstring'''
_snake_case : List[str] = ConvNextVaBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : int = model(a_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ), len(config.out_features ) )
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_snake_case : Tuple = None
_snake_case : Tuple = ConvNextVaBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : List[Any] = model(a_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ), 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ), 1 )
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Dict = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : Any = config_and_inputs
_snake_case : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[Any] = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : List[str] = config_and_inputs
_snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowercase__ = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Tuple = ConvNextVaModelTester(self )
_snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels()
_snake_case : List[Any] = True
if model_class.__name__ in [
*get_values(a_ ),
*get_values(a_ ),
]:
continue
_snake_case : Tuple = model_class(a_ )
model.to(a_ )
model.train()
_snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Any = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels()
_snake_case : Any = False
_snake_case : List[Any] = True
if (
model_class.__name__
in [*get_values(a_ ), *get_values(a_ )]
or not model_class.supports_gradient_checkpointing
):
continue
_snake_case : Dict = model_class(a_ )
model.to(a_ )
model.gradient_checkpointing_enable()
model.train()
_snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Optional[int] = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : List[str] = model_class(a_ )
_snake_case : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : int = [*signature.parameters.keys()]
_snake_case : Union[str, Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ):
_snake_case : Optional[Any] = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
_snake_case : Any = model(**self._prepare_for_class(a_, a_ ) )
_snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(a_ ), expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Optional[Any] = True
check_hidden_states_output(a_, a_, a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : List[str] = True
check_hidden_states_output(a_, a_, a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : str = ConvNextVaModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ )
_snake_case : Union[str, Any] = self.default_image_processor
_snake_case : List[Any] = prepare_img()
_snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
# verify the logits
_snake_case : Optional[int] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
| 28 |
"""simple docstring"""
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class lowercase:
'''simple docstring'''
def __init__( self: List[Any], a_: str = "cpu", a_: str = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
_snake_case : Optional[int] = device
_snake_case : str = CLIPTokenizerFast.from_pretrained(a_ )
_snake_case : Union[str, Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073]
_snake_case : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711]
_snake_case : str = torchvision.transforms.Normalize(self.image_mean, self.image_std )
_snake_case : Optional[int] = torchvision.transforms.Resize(224 )
_snake_case : str = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self: List[str], a_: str ):
'''simple docstring'''
_snake_case : Optional[int] = self.resize(a_ )
_snake_case : List[Any] = self.center_crop(a_ )
_snake_case : Optional[Any] = self.normalize(a_ )
return images
def __call__( self: Any, a_: Optional[int]=None, a_: str=None, **a_: str ):
'''simple docstring'''
_snake_case : Optional[int] = self.tokenizer(text=a_, **a_ )
_snake_case : Any = self.preprocess_img(a_ )
_snake_case : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class lowercase( nn.Module ):
'''simple docstring'''
def __init__( self: List[Any], a_: List[Any]=10, a_: Optional[Any]=0.01, a_: List[str]=None, a_: str=None, a_: Any=None, a_: Tuple=None, a_: List[str]=None, a_: List[str]=None, a_: str=False, a_: List[str]=True, a_: Any="image", a_: Optional[Any]=True, a_: Dict=False, a_: List[str]=False, a_: Optional[int]=False, ):
'''simple docstring'''
super().__init__()
_snake_case : int = None
_snake_case : List[str] = device if device else get_device()
if vqgan:
_snake_case : Any = vqgan
else:
_snake_case : Optional[Any] = load_vqgan(self.device, conf_path=a_, ckpt_path=a_ )
self.vqgan.eval()
if clip:
_snake_case : Tuple = clip
else:
_snake_case : Optional[Any] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" )
self.clip.to(self.device )
_snake_case : List[str] = ProcessorGradientFlow(device=self.device )
_snake_case : Union[str, Any] = iterations
_snake_case : Dict = lr
_snake_case : Optional[int] = log
_snake_case : List[str] = make_grid
_snake_case : Union[str, Any] = return_val
_snake_case : List[str] = quantize
_snake_case : List[str] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self: Tuple, a_: str=None, a_: Dict=None, a_: Dict=5, a_: Dict=True ):
'''simple docstring'''
_snake_case : Dict = []
if output_path is None:
_snake_case : Tuple = """./animation.gif"""
if input_path is None:
_snake_case : Any = self.save_path
_snake_case : Optional[int] = sorted(glob(input_path + """/*""" ) )
if not len(a_ ):
raise ValueError(
"""No images found in save path, aborting (did you pass save_intermediate=True to the generate"""
""" function?)""" )
if len(a_ ) == 1:
print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" )
_snake_case : List[Any] = total_duration / len(a_ )
_snake_case : Optional[Any] = [frame_duration] * len(a_ )
if extend_frames:
_snake_case : Optional[int] = 1.5
_snake_case : int = 3
for file_name in paths:
if file_name.endswith(""".png""" ):
images.append(imageio.imread(a_ ) )
imageio.mimsave(a_, a_, duration=a_ )
print(f"gif saved to {output_path}" )
def UpperCamelCase_ ( self: str, a_: Tuple=None, a_: Optional[Any]=None ):
'''simple docstring'''
if not (path or img):
raise ValueError("""Input either path or tensor""" )
if img is not None:
raise NotImplementedError
_snake_case : int = preprocess(Image.open(a_ ), target_image_size=256 ).to(self.device )
_snake_case : int = preprocess_vqgan(a_ )
_snake_case , *_snake_case : List[Any] = self.vqgan.encode(a_ )
return z
def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[int] = self.latent.detach().requires_grad_()
_snake_case : Tuple = base_latent + transform_vector
if self.quantize:
_snake_case , *_snake_case : Any = self.vqgan.quantize(a_ )
else:
_snake_case : List[Any] = trans_latent
return self.vqgan.decode(a_ )
def UpperCamelCase_ ( self: List[Any], a_: Any, a_: Union[str, Any], a_: Dict=None ):
'''simple docstring'''
_snake_case : Tuple = self.clip_preprocessor(text=a_, images=a_, return_tensors="""pt""", padding=a_ )
_snake_case : Any = self.clip(**a_ )
_snake_case : str = clip_outputs.logits_per_image
if weights is not None:
_snake_case : Any = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self: Any, a_: Any, a_: List[str], a_: Dict ):
'''simple docstring'''
_snake_case : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""], a_, weights=(1 / pos_prompts["""weights"""]) )
if neg_prompts:
_snake_case : List[str] = self._get_clip_similarity(neg_prompts["""prompts"""], a_, weights=neg_prompts["""weights"""] )
else:
_snake_case : Tuple = torch.tensor([1], device=self.device )
_snake_case : int = -torch.log(a_ ) + torch.log(a_ )
return loss
def UpperCamelCase_ ( self: Optional[Any], a_: Tuple, a_: Union[str, Any], a_: List[str] ):
'''simple docstring'''
_snake_case : Tuple = torch.randn_like(self.latent, requires_grad=a_, device=self.device )
_snake_case : Dict = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
_snake_case : str = self._add_vector(a_ )
_snake_case : List[Any] = loop_post_process(a_ )
_snake_case : List[Any] = self._get_CLIP_loss(a_, a_, a_ )
print("""CLIP loss""", a_ )
if self.log:
wandb.log({"""CLIP Loss""": clip_loss} )
clip_loss.backward(retain_graph=a_ )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self: int, a_: Any, a_: Union[str, Any], a_: Optional[int] ):
'''simple docstring'''
wandb.init(reinit=a_, project="""face-editor""" )
wandb.config.update({"""Positive Prompts""": positive_prompts} )
wandb.config.update({"""Negative Prompts""": negative_prompts} )
wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} )
if image_path:
_snake_case : Any = Image.open(a_ )
_snake_case : str = image.resize((256, 256) )
wandb.log("""Original Image""", wandb.Image(a_ ) )
def UpperCamelCase_ ( self: str, a_: List[Any] ):
'''simple docstring'''
if not prompts:
return []
_snake_case : List[str] = []
_snake_case : Tuple = []
if isinstance(a_, a_ ):
_snake_case : Union[str, Any] = [prompt.strip() for prompt in prompts.split("""|""" )]
for prompt in prompts:
if isinstance(a_, (tuple, list) ):
_snake_case : List[Any] = prompt[0]
_snake_case : Optional[Any] = float(prompt[1] )
elif ":" in prompt:
_snake_case , _snake_case : List[Any] = prompt.split(""":""" )
_snake_case : str = float(a_ )
else:
_snake_case : int = prompt
_snake_case : Union[str, Any] = 1.0
processed_prompts.append(a_ )
weights.append(a_ )
return {
"prompts": processed_prompts,
"weights": torch.tensor(a_, device=self.device ),
}
def UpperCamelCase_ ( self: Dict, a_: List[Any], a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Any]=True, a_: Dict=False, a_: Optional[Any]=True, a_: Optional[Any]=True, a_: Any=None, ):
'''simple docstring'''
if image_path:
_snake_case : Union[str, Any] = self._get_latent(a_ )
else:
_snake_case : Any = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(a_, a_, a_ )
assert pos_prompts, "You must provide at least one positive prompt."
_snake_case : str = self.process_prompts(a_ )
_snake_case : Dict = self.process_prompts(a_ )
if save_final and save_path is None:
_snake_case : Any = os.path.join("""./outputs/""", """_""".join(pos_prompts["""prompts"""] ) )
if not os.path.exists(a_ ):
os.makedirs(a_ )
else:
_snake_case : List[Any] = save_path + """_""" + get_timestamp()
os.makedirs(a_ )
_snake_case : Optional[Any] = save_path
_snake_case : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print("""Original Image""" )
show_pil(custom_to_pil(a_ ) )
_snake_case : List[Any] = loop_post_process(a_ )
for iter, transformed_img in enumerate(self._optimize_CLIP(a_, a_, a_ ) ):
if show_intermediate:
show_pil(a_ )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({"""Image""": wandb.Image(a_ )} )
if show_final:
show_pil(a_ )
if save_final:
transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
| 28 | 1 |
"""simple docstring"""
import sys
from collections import defaultdict
class lowercase:
'''simple docstring'''
def __init__( self: Optional[Any] ):
'''simple docstring'''
_snake_case : Any = []
def UpperCamelCase_ ( self: List[Any], a_: Any ):
'''simple docstring'''
return self.node_position[vertex]
def UpperCamelCase_ ( self: Any, a_: List[Any], a_: str ):
'''simple docstring'''
_snake_case : Optional[Any] = pos
def UpperCamelCase_ ( self: List[Any], a_: int, a_: Dict, a_: int, a_: Optional[Any] ):
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
_snake_case : Dict = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
_snake_case : int = 2 * start + 1
else:
_snake_case : Optional[Any] = 2 * start + 2
if heap[smallest_child] < heap[start]:
_snake_case , _snake_case : Any = heap[smallest_child], positions[smallest_child]
_snake_case , _snake_case : Tuple = (
heap[start],
positions[start],
)
_snake_case , _snake_case : Optional[Any] = temp, tempa
_snake_case : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child], self.get_position(positions[start] ) )
self.set_position(positions[start], a_ )
self.top_to_bottom(a_, a_, a_, a_ )
def UpperCamelCase_ ( self: Union[str, Any], a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: Dict ):
'''simple docstring'''
_snake_case : str = position[index]
while index != 0:
_snake_case : Tuple = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
_snake_case : Union[str, Any] = heap[parent]
_snake_case : int = position[parent]
self.set_position(position[parent], a_ )
else:
_snake_case : List[Any] = val
_snake_case : Any = temp
self.set_position(a_, a_ )
break
_snake_case : int = parent
else:
_snake_case : Tuple = val
_snake_case : List[Any] = temp
self.set_position(a_, 0 )
def UpperCamelCase_ ( self: Optional[Any], a_: Optional[int], a_: int ):
'''simple docstring'''
_snake_case : Any = len(a_ ) // 2 - 1
for i in range(a_, -1, -1 ):
self.top_to_bottom(a_, a_, len(a_ ), a_ )
def UpperCamelCase_ ( self: Optional[Any], a_: List[str], a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : List[Any] = positions[0]
_snake_case : str = sys.maxsize
self.top_to_bottom(a_, 0, len(a_ ), a_ )
return temp
def UpperCAmelCase__ (snake_case__ : str ):
"""simple docstring"""
_snake_case : Optional[Any] = Heap()
_snake_case : Optional[Any] = [0] * len(snake_case__ )
_snake_case : Dict = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
_snake_case : List[str] = [] # Heap of Distance of vertices from their neighboring vertex
_snake_case : Dict = []
for vertex in range(len(snake_case__ ) ):
distance_tv.append(sys.maxsize )
positions.append(snake_case__ )
heap.node_position.append(snake_case__ )
_snake_case : Any = []
_snake_case : Tuple = 1
_snake_case : List[str] = sys.maxsize
for neighbor, distance in adjacency_list[0]:
_snake_case : List[Any] = 0
_snake_case : Dict = distance
heap.heapify(snake_case__ , snake_case__ )
for _ in range(1 , len(snake_case__ ) ):
_snake_case : Dict = heap.delete_minimum(snake_case__ , snake_case__ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
_snake_case : List[Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(snake_case__ )]
):
_snake_case : Any = distance
heap.bottom_to_top(
snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ )
_snake_case : Tuple = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A_ = int(input('''Enter number of edges: ''').strip())
A_ = defaultdict(list)
for _ in range(edges_number):
A_ = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 28 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or number < 0:
raise ValueError("""Input must be a non-negative integer""" )
_snake_case : Dict = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
"""simple docstring"""
import numpy as np
A_ = [
['''a''', '''b''', '''c''', '''d''', '''e'''],
['''f''', '''g''', '''h''', '''i''', '''k'''],
['''l''', '''m''', '''n''', '''o''', '''p'''],
['''q''', '''r''', '''s''', '''t''', '''u'''],
['''v''', '''w''', '''x''', '''y''', '''z'''],
]
class lowercase:
'''simple docstring'''
def __init__( self: Dict ):
'''simple docstring'''
_snake_case : List[Any] = np.array(a_ )
def UpperCamelCase_ ( self: Union[str, Any], a_: str ):
'''simple docstring'''
_snake_case , _snake_case : Union[str, Any] = np.where(letter == self.SQUARE )
_snake_case : Dict = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def UpperCamelCase_ ( self: Union[str, Any], a_: int, a_: int ):
'''simple docstring'''
_snake_case : List[str] = self.SQUARE[indexa - 1, indexa - 1]
return letter
def UpperCamelCase_ ( self: Any, a_: str ):
'''simple docstring'''
_snake_case : int = message.lower()
_snake_case : str = message.replace(""" """, """""" )
_snake_case : Optional[int] = message.replace("""j""", """i""" )
_snake_case : List[str] = np.empty((2, len(a_ )) )
for letter_index in range(len(a_ ) ):
_snake_case : List[Any] = self.letter_to_numbers(message[letter_index] )
_snake_case : Union[str, Any] = numbers[0]
_snake_case : Optional[int] = numbers[1]
_snake_case : Tuple = first_step.reshape(2 * len(a_ ) )
_snake_case : Optional[Any] = """"""
for numbers_index in range(len(a_ ) ):
_snake_case : int = int(second_step[numbers_index * 2] )
_snake_case : Tuple = int(second_step[(numbers_index * 2) + 1] )
_snake_case : Optional[int] = self.numbers_to_letter(a_, a_ )
_snake_case : int = encoded_message + letter
return encoded_message
def UpperCamelCase_ ( self: Any, a_: str ):
'''simple docstring'''
_snake_case : List[Any] = message.lower()
message.replace(""" """, """""" )
_snake_case : Any = np.empty(2 * len(a_ ) )
for letter_index in range(len(a_ ) ):
_snake_case : List[str] = self.letter_to_numbers(message[letter_index] )
_snake_case : str = numbers[0]
_snake_case : Dict = numbers[1]
_snake_case : int = first_step.reshape((2, len(a_ )) )
_snake_case : Optional[Any] = """"""
for numbers_index in range(len(a_ ) ):
_snake_case : Union[str, Any] = int(second_step[0, numbers_index] )
_snake_case : Tuple = int(second_step[1, numbers_index] )
_snake_case : List[str] = self.numbers_to_letter(a_, a_ )
_snake_case : List[str] = decoded_message + letter
return decoded_message
| 28 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase:
'''simple docstring'''
def __init__( self: List[str], a_: List[Any], a_: str=13, a_: Dict=32, a_: Union[str, Any]=3, a_: Union[str, Any]=4, a_: Tuple=[10, 20, 30, 40], a_: Dict=[2, 2, 3, 2], a_: Tuple=True, a_: Optional[Any]=True, a_: Any=37, a_: Any="gelu", a_: int=10, a_: Tuple=0.02, a_: str=["stage2", "stage3", "stage4"], a_: List[str]=[2, 3, 4], a_: List[str]=None, ):
'''simple docstring'''
_snake_case : int = parent
_snake_case : int = batch_size
_snake_case : List[Any] = image_size
_snake_case : List[str] = num_channels
_snake_case : Tuple = num_stages
_snake_case : Union[str, Any] = hidden_sizes
_snake_case : List[Any] = depths
_snake_case : Tuple = is_training
_snake_case : List[str] = use_labels
_snake_case : Tuple = intermediate_size
_snake_case : List[str] = hidden_act
_snake_case : Optional[Any] = num_labels
_snake_case : Tuple = initializer_range
_snake_case : Tuple = out_features
_snake_case : Tuple = out_indices
_snake_case : Dict = scope
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
_snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case : Any = None
if self.use_labels:
_snake_case : Dict = ids_tensor([self.batch_size], self.num_labels )
_snake_case : Optional[Any] = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return ConvNextVaConfig(
num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, )
def UpperCamelCase_ ( self: int, a_: Tuple, a_: Any, a_: Dict ):
'''simple docstring'''
_snake_case : int = ConvNextVaModel(config=a_ )
model.to(a_ )
model.eval()
_snake_case : Any = model(a_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), )
def UpperCamelCase_ ( self: Optional[int], a_: List[str], a_: Tuple, a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Optional[int] = ConvNextVaForImageClassification(a_ )
model.to(a_ )
model.eval()
_snake_case : Optional[int] = model(a_, labels=a_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self: Union[str, Any], a_: Tuple, a_: Tuple, a_: Tuple ):
'''simple docstring'''
_snake_case : List[str] = ConvNextVaBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : int = model(a_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ), len(config.out_features ) )
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_snake_case : Tuple = None
_snake_case : Tuple = ConvNextVaBackbone(config=a_ )
model.to(a_ )
model.eval()
_snake_case : List[Any] = model(a_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ), 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ), 1 )
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : Dict = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : Any = config_and_inputs
_snake_case : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
_snake_case : List[Any] = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case : List[str] = config_and_inputs
_snake_case : Any = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class lowercase( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase__ = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowercase__ = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
_snake_case : Tuple = ConvNextVaModelTester(self )
_snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 )
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self: Tuple ):
'''simple docstring'''
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self: Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels()
_snake_case : List[Any] = True
if model_class.__name__ in [
*get_values(a_ ),
*get_values(a_ ),
]:
continue
_snake_case : Tuple = model_class(a_ )
model.to(a_ )
model.train()
_snake_case : Optional[Any] = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Any = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: Optional[int] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels()
_snake_case : Any = False
_snake_case : List[Any] = True
if (
model_class.__name__
in [*get_values(a_ ), *get_values(a_ )]
or not model_class.supports_gradient_checkpointing
):
continue
_snake_case : Dict = model_class(a_ )
model.to(a_ )
model.gradient_checkpointing_enable()
model.train()
_snake_case : str = self._prepare_for_class(a_, a_, return_labels=a_ )
_snake_case : Optional[int] = model(**a_ ).loss
loss.backward()
def UpperCamelCase_ ( self: str ):
'''simple docstring'''
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : List[str] = model_class(a_ )
_snake_case : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : int = [*signature.parameters.keys()]
_snake_case : Union[str, Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1], a_ )
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
def check_hidden_states_output(a_: str, a_: Tuple, a_: Tuple ):
_snake_case : Optional[Any] = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
_snake_case : Any = model(**self._prepare_for_class(a_, a_ ) )
_snake_case : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(a_ ), expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], )
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Optional[Any] = True
check_hidden_states_output(a_, a_, a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case : List[str] = True
check_hidden_states_output(a_, a_, a_ )
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
_snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a_ )
@slow
def UpperCamelCase_ ( self: Dict ):
'''simple docstring'''
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : str = ConvNextVaModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self: Optional[Any] ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self: int ):
'''simple docstring'''
_snake_case : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ )
_snake_case : Union[str, Any] = self.default_image_processor
_snake_case : List[Any] = prepare_img()
_snake_case : Optional[int] = preprocessor(images=a_, return_tensors="""pt""" ).to(a_ )
# forward pass
with torch.no_grad():
_snake_case : Optional[int] = model(**a_ )
# verify the logits
_snake_case : Optional[int] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, a_ )
_snake_case : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1E-4 ) )
| 28 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.